COMPUTER SCIENCE TRIPOS Part IB — 2025 — Paper 4
6 Programming in C and C++ (djgll)

(a) You are building a complex-number library where the expression R = R+ A* B
is coded roughly like

struct cpx { double re, im; };
extern cpx A, B; cpx R ={ 1.0, 1.0 };
mul (R, R, mul(A, B));

The outer call to mul returns its result using pass-by-reference in its first
argument: the other two arguments are the operands.

(i) Give a complete implementation of the multiply function (and any overloads
needed) and an example of using it, using C++ where all arguments to mul
are references. There might not be any deviations from the original coding
style, but if there are, justify changes with a brief comment. [4 marks]

(i) Likewise, give a complete C implementation, including the caller and callee,
where all arguments are pointers. To achieve overloading in C, variations
on the method name can be used. [4 marks|

(7ii) Explain how the passing of R to mul twice (aliasing) can cause an incorrect
result in some simple implementations and suggest a fix if either of your
implementations might fail. [2 marks]

(b) You have no access to the standard library and must code a flexible C++
reference counter class refct<T>. It will automatically delete a heap object
when its reference count reaches zero.

ptr
count

ptr
count

n
foo count

ptr
count

foo

foo

[]
[]
[]
ptr) .
- Left Middle Right
(i) Briefly assess each of the above three design sketches. [2 marks]

(i) Write a C++ implementation of the middle design so that it would behave
sensibly under the following (far from ideal) artificial use pattern:

foo *copyl = new foo(); // An object to be managed. [5 marks]

refct<foo> rcf(copyl); // Add management to the first reference.
foo *copy2 = rcf.new_user(); // Create a second reference to it.

rcf.drop(); // Drop one of the references.
rcf.drop(); // Drop the last one, causing foo to be deleted.

(#i¢) Criticise the inclusion of the drop() method, suggesting an improvement
to the overall design that follows the RAII (Resource Acquisition Is
Initialization) programming idiom. [3 marks]

1

