COMPUTER SCIENCE TRIPOS Part II – 2025 – Paper 9

4 Cryptography (mgk25)

- (a) List six properties that an algebraic group should have to be usable for Diffie–Hellman key exchanges. [6 marks]
- (b) Let $T:A^8\to A^4$ be a new collision-resistant compression function approved for use in Tripos papers, where $A=\{\mathtt{a},\ldots,\mathtt{z},\mathtt{0},\ldots,\mathtt{9},\mathtt{=},\mathtt{\&}\}$ is the "base38" alphabet used.
 - (i) Assuming a Tripos student with pocket calculator can evaluate T once per minute, and assuming all students have a brain with unlimited memory and instantaneous recall time, how many hours will it roughly take until at least half of all students can be expected to each have independently found a collision T(x) = T(y) with $x \neq y$? [2 marks]
 - (ii) Use T to define a collision-resistant hash function $H:A^*\to A^4$, such that the security proof for the Merkle–Damgård construction can be applied. Describe your padding scheme and list the input blocks fed into T when you evaluate H("love&peace"). [6 marks]
 - (iii) Consider an ATM that receives from a bank computer authorization responses of the form (M, C), such as

$$M = \text{``txn=491\&pincheck=0\&limit=0''}, \quad C = H(K||M)$$

where $K \in A^8$ is the private key shared between the bank and the ATM, and H is as in Part (b)(ii).

After recalculating and checking C, the ATM splits M into fields separated by "&", and then executes any variable assignments it encounters in such fields from left to right, ignoring fields that do not form an assignment. The above M confirms that the PIN provided for transaction 491 was incorrect and that the cardholder is therefore authorized to receive up to £0 in cash.

Mallory has intercepted the line between the ATM and the bank computer and can read (M,C) and replace it with a modified message (M',C'). She would like to withdraw cash without knowing the PIN. Show how she can form a message M' that ends in "&pincheck=1&limit=1000" and how she can calculate for that M' a matching tag C' = H(K||M') without knowing K. [6 marks]