Technical Report e

Number 1

Computer Laboratory

The JACKDAW database package

M.E. Challis

October 1974

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1974 M.F. Challis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

TECHNICAL REPORT No. l.

THE JACKDAW DATABASE PACKAGE

by

M. F. Challis

University of Cambridge Computing Service

Series Editor:

M.F.Challis

University of Cambridge
Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG
England

October 1974

This report describes a general database package which has been
implemented in BCPL on an IBM 370/165 at the University of Cambridge.
One current application is the provision of an administrative database
for the Computing Service.

" Entries within a database may include (in addition to primitive
fields such as 'salary' or ‘'address') links to other entries: each link
represents a relationship between two entries and is always two-way.

Generality is achieved by including within each database class
definitions which define the structure of the entries within it; these
definitions may be interrogated by program.

The major part of the package presents a procedural interface between
an applications program and an existing database, enabling entries and
their fields to be created, interrogated, updated and deleted. The
creation of a new database (or modification of an existing one) by
specifying the class definitions is handled by a separate program.

The first part of the report describes the database structure and
this is followed by an illustration of the procedural interface. Finally,
some of the implementation techniques used to ensure integrity of the
database are described.

M. F. Challis
October 1974

5

CEETTNTS
wcnm et

Introduction

Structural Description

2.1
2.2
2.3
2.4

2.5

Entries and classes
Primitive fields
Link fields

Marks

Link element parameters

Creating databases

The Procedural Interface

4.1

4.2

Illustration

Other procedures

Implementation topics

5.1 Integrity

5.2 Applications program erxrors
5.3 System crashes

5.4 Disc file maintenance

5.5 Consistency and indivisibility
Applicatién

Conclusions

Acknowledgement

Reference

11

13

15

15

15

i Introduction

This report describes a general database package which has been
implemented on an IBM 370/165 at the University of Cambridge.

Entries held within a database maintained by the package may
include (in addition to primitive fields such as 'salary' or 'address'),
links to other entries: these 'link elements' are the way by which
relationships between entries are expressed in the database. A
characteristic feature of the JACKDAW package is that all such links are
two-way: if entry X is linked to entry Y then the package automatically
ensures that Y is linked to X, and we can truly speak of a relationship
'between' the two entries.

Generality is achieved by including within each database a set of
‘class definitions® which define the structure of entries within it. The
package enables the definitions in an existing database to be altered, so
that new kinds of entry and new relationships between entries can be added
as a particular database evolves.

The interface between the package and an applications program is a
procedural one, and access to entries and their fields and relationships
is by name. As a consequence, all applications programs are completely
independent of data representations - indeed, additions to entry structure
(as described in the paragraph above) may be made without affecting
existing programs in any way. '

The proper functioning of an applications program, then, depends
only on the existence of the entries it accesses and the existence of the
class and field names to which it refers; but even these dependences may
be avoided. It is, cof course, possible to determine whether a particular
entry exists, and to access one by one all those entries belonging to a
particular class - indeed, few useful applications could be implemented
without these facilities, But the package also provides analogous
facilities for class definition interrogation: a program may discover
whether a particular class or field exists, and may even access and
examine each class definition in turn, thus determining by enquiry the
structure of all entries in the database. In this way it is possible to
write programs which are entirely independent of database structure: for
example, general updating, enquiry and listing programs are feasible.

The remainder of this report is divided into four main sections.
The first describes the database structure in some detail, and this is
followed by an illustration of the procedural interface. The third section
discusses some of the implementation techniques used to ensure integrity
of the database, and the final section gives some details of a major
application.

M.P.C. OCaotoper 1374 T.R.1 - 12

2 Structural Description

2.1 Entries and classes

Information is stored in a database within named entries, each of
which must be of some 'class'; for example, there might be entries named
FRED and BILL (these are 'entry identifiers') which belong to the class
STAFF. Information within an entry is held in 'primitive fields' and 'link
fields'; each field of an entry is referred to by its 'field identifier’.
Primitive fields contain simple values, and link fields specify the
relationships which exist between different entries in a database. The
number, nature and identifiers of the fields of an entry are determined by
the class of that entry: in other words, all entries of one class have the
same structure.

2.2 Primitive fields

The definition of a primitive field includes the 'type' of value
that the field may contain. Four types are allowed: 'word' (any 32-bit
quantity), 'string' (variable length of up to 255 characters), 'bool' (a
truth value) and 'vector' (a variable length indexable sequence of words).

Values of the appropriate type may be stored in and retrieved from
primitive fields of entries and, in addition, existing elements of a vector
field may be individually accessed. Whenever a value is stored, the field
in that entry is said to be 'set’; it is possible to determine whether a
field is set or not, and also to unset (or ‘delete') it.

Example:
STAFF entries might include a primitive string field called NAME and
a primitive word field STAFFNUMBER.

2.3 Link fields

A link field consists of a number (possibly none) of 'link
elements®, each of which refers to an entry of a particular class; this
class is called the ‘'class' of the link field.

A fundamental property of database structure is that links between
entries must always be reciprocal, In detail, this means that if an entry
X1 of class Cl contains a link element referring to an entry X2 of class
C2, then entry X2 will contain a link element of class Cl referring to Xl.
A corollary is that if a class Cl contains a link field of class C2, then
class C2 must contain a link field of class Cl.

Example:
Suppose that members of staff are working on various projects, and
that we wish to represent these relationships in a database. We define
2 new class PROJECT with entries 0S, TSO etc. for each project, and
then define a link field PROJECTS for the class STAFF and a
corresponding link field MEMBERS for the class PROJECT.

M.F.C., October 1974 T.R.1 3

If FRED belongs to the OS project, then his PROJECTS field will
contain a link element referring to entry 0S; if BILL works on both 0S
and TSO, then his link field will contain two link elements. As a
consequence of this state of affairs, the MEMBERS link field in OS
will have two link elements referring to the STAFF entries FRED and
BILL, whereas TSO's link field will contain only one link element (for
BILL). The structure is shown pictorially as:

PROJECT: o TSO

STAFF: FRED BILL

The two-way nature of links is automatically maintained by the
package, so that the addition of a new MEMBERS link element to a PROJECT
entry automatically results in the addition of a new PROJECTS link element
to the appropriate STAFF entry. As a consequence, it is as easy to discover
the members of staff working on a particular project as it is to determine
the projects to which a particular staff member is attached, regardless of
the way in which the information was originally recorded.

2.4 Marks

It is possible to select one of the link elements within a link
field and to 'mark' it; marks are given names ('mark identifiers') so that
more than one mark can be associated with the same link field. In the
example above, we might define a mark LEADER for the MEMBERS link field of
the class PROJECT; the link element so marked would refer to the member of
staff who was the project leader.

Marks are strictly unnecessary, as the same effect can be achieved

by defining additional link fields, but it is particularly cheap to
implement and turns out to be practically of great value.

2.5 Link element parameters

It is sometimes necessary to hold information which is associated
with a link between two entries rather than with either entry itself. As an
example, suppose we have classes CIRCULATIONLIST and SUBSCRIBER with a link
between to indicate membership, and we wish to record the number of copies
required of each circulation list by each subscriber. This number is not a
property of the circulation list or of the subscriber, but belongs to the
link itself.

The JACKDAW package provides this facility by allowing primitive
fields to be held within link élements: these are called link element
parameters, For example, if the link from SUBSCRIBER to CIRCULATIONLIST is
called LISTS then a primitive word field COPIES might be defined which
would occur in each link element of every LISTS field.

T.R.1 4 M.F.C. October 1974

3 Creating databases

The program for constructing a new database needs to read in class
definitions and translate them into a format suitable for use by the rest
of the package. The translation process involves assigning offsets to the
various fields and is very similar to the compilation of data structure
declarations for a programming language.

A suitable language for expressing class definitions has been
designed, and an example is given below:

ADD CLASS STAFF (WORD STAFFNUMBER, STRING NAME)
ADD CLASS PROJECT
ADD LINK (PROJECTS, MEMBERS (MARK LEADER)) FROM STAFF TO PROJECT

Other commands enable the modification of existing definitions in a
database; fields and classes may be renamed, added, or removed:

e.g. AMEND CLASS STAFF
BEGIN
RENAME NAME AS SURNAME
DELETE STAFFNUMBER
ADD STRING ADDRESS
END

AMEND LINK FIELD PROJECTS IN STAFF
BEGIN

ADD MARK MAJORPROJECT
END

Note that certain of these commands (e.g. DELETE) may result in the
destruction of fields of entries -~ or even the entries themselves: to
minimise the possibility of accidental information loss, the system demands
explicit authorisation before any entry or field in a database is actually
destroyed.

M.F.C, Ociober 1973 T.R.1 3

4 The Procedural Interface

The package proper consists of a set of procedures which may be
called upon to create, update, interrogate and delete entries and their
fields within a database of fixed structure: procedures are also provided
to interrogate the class structure, but no alterations may be made.

The package is written in BCPL (ref [1]), and at present the
‘interface is also BCPL: this is not strictly necessary, but is certainly
convenient!

4.1 Illustration

The example below (in which the interface procedure calls are
underlined) serves to illustrate the way in which database facilities
are provided by the interface procedures; its effect is to list the names
of those members of staff who are working on project 0S, noting which one
(if any) is the project leader.

Lines (1) to (5) serve to translate class, field and mark
identifiers into values which are to be used as parameters to further
interface procedures. These values are more convenient internally than
strings and avoid the need for repeated look-up by the package.

In line (6), we locate the PROJECT entry 0S and assign a value
representing its location to the variable OS. This value remains valid
until it is explicitly released (in line (16)), and, while it is valid,
the entry OS and all its fields and link elements will be available to the
program.

$(LET STAFF = LOOKUPCLASSID ("STAFF") - (1)
LET NAME = LOOKUPPRIMID (STAFF, “NAME") - (2)
LET PROJECT = LOOKUPCLASSID (“PROJECT") - (3)
LET MEMBERS = LOOKUPLINKID (PROJECT, “MEMBERS") - (4)
LET LEADER = LOOKUPMARKID (MEMBERS, “LEADER") - (5)
LET OS = FINDENTRY (PROJECT, "OS") ‘ - (6)
LET L = SETUPLINKS(0OS, MEMBERS) ' - (7)
WHILE NEXTLINK(L) DO - (8)
$(LET E = REFERENCEDENTRY (L) - {9)

LET WORKSPACE = VEC 64 ‘ -(10)
WRITES (READSTRING(E, NAME, WORKSPACE)) -{11)

IF ISMARKEDLINK{L, LEADER) DO - =(12)
WRITES (" (Project Leader)"™) -{13)

NEWLINE () -(14)
RELEASEZNTRY(E) $) -(15)
RELEASEENTRY (0S) §) -(16)

Program 1

M.F.C. October 1974 T.R.1 7

In line (7) we locate the MEMBERS link field of this entry;
NEXTLINK (L) will now cause L to represent each link element in this field
in turn, returning the value TRUE so long as there are any link elements
left. Link elements are held in alphabetical order, and so the effect of
the loop (8) to (15) is to execute lines (9) to (15) twice: once with L
describing the link element referring to BILL, and once for the link
element referencing FRED.

In line (9) we locate the STAFF entry referred to by L - say BILL.

In line (1l1) the call of READSTRING causes the contents of the
primitive string field NAME of entry E to be copied to the vector
WORKSPACE (declared in line (10)): the address of WORKSPACE is also
returned as result so that the library routine WRITES (for Write String)
writes BILL's name.

In line (12) we determine whether link element L is marked or not:
if BILL is a project leader, line (13) will add " (Project Leader)" after
his name.

Line (15) releases entry E before returning to (8), and line (16),
executed after all link elements in the field have been processed, finally
releases entry OS.

4.2 Other procedures

Over sixty interface procedures are defined, most of which are
analogous to those in the example: they allow creation and deletion of
entries, addition, location and deletion of link elements, setting and
unsetting of primitive fields etc.

An important set of procedures not illustrated by program 1l are
those which enable the class definitions to be interrogated. Program 2
uses some of these procedures to list all the classes defined in a
database.

$(LET WORKSPACE = VEC 64 - (1)
LET CLASS = FIRSTCLASS() - (2)
UNTIL CLASS = 0 DO - (3)
$(WRITES (IDOFCLASS(CLASS, WORKSPACE)) - (4)

NEWLINE () - (5)

CLASS := NEXTCLASS (CLASS) $) $) - (6)

Program 2

Line (2) sets the variable CLASS to the (translated form of the)
first class definition; in line (6), the call of NEXTCLASS returns a value
representing the next class definition if one is present, or 0 if not. The
loop (3) to (6) is therefore executed with CLASS representing each class
definition in turn, and line (4) causes the identifier of each class to be
printed.

Given a particular class, analogous procedures enable the

identifier and type of each primitive field and the identifier and class
of each link field to be determined,

T.R.1 8 M.F.C. October 1974

5 Implementation topics

5.1 Integrity

One of the major design gcals of any database package should be
that of integrity of the database. By this I mean that the effects of
non-malicious program malfunctions and system crashes should be minimised:
dealing with deliberate attacks is quite a different matter and outside
the scope of this paper.

5.2 ggglications program errors

Errors in applications programs may result in package code or
buffer areas being overwritten or in incorrect parameter values being
passed to the package. If code is overwritten, we can expect chaos to
ensue rapidly and for the program to terminate abnormally; many internal
consistency checks ensure abnormal termination in the case of buffer
overwriting as well, and so both these cases can be treated as system
crashes, Most parameters are values which were originally provided by the
package itself {e.g. PROJECT in line (6) and L in line (8) of program 1)
and so can be directly checked; others can be checked to be of the right
type (e.g. the second parameter cf FINDENTRY must be a string).

If it were possible to install the package (code and -data) in an
area of core inaccessible to the applications program except by procedure
call then most of this checking would be unnecessary: in no case does the
package require a program to read directly from or write directly to an
area under package control.

5.3 System crashes

A database is held as a file on disc, and, as it is processed,
portions are paged into core. Toc guard against system crashes we must
ensure that the version cn disc is always consistent - that is, if a
sequence of mutually dependent updates has to be made then either all or
none of them will appear in the disc version. This is achieved as follows.

5.4 Disc file maintenance

The database is held on disc as a sequence of ‘physical blocks'
all of the same size, whereas pointers (or addresses) within the database
refer to 'logical blocks'sy the first physical block of the datafile
contains the mapping from logical to physical blocks. Not all physical
blocks are allccated to logical blocks, so that there are always some
spare., This is illustrated below, where a logical database of 3 blocks is
‘held in a physical file of 7 blocks:

0 1 2 3 4 5 6
Physical L1~->P6
dataZfile: L2~>P3 L3 spare L2 spare spare L1
L3->p1

M. F.C. October 1974 T.R.1 ¢

When the datafile is opened, the logical/physical mapping is read
into core and is used to translate logical addresses to physical
addresses; blocks from disc are then paged into core as necessary.

Whenever a logical block is updated (i.e. when an entry is changed
in some way), a new spare physical block is allocated to it, and the
changed mapping is noted in core but not on the disc. Since the original
physical block is not yet made available for re-use, the disc file still
retains the information that describes the original {unaltered) logical
database - i.e. the original logical/physical mapping together with the
physical blocks described by it - but the core mapping together with its
allocated physical blocks describes the new updated logical database. This
is illustrated below, where we suppose that logical block 3 has been
updated:

0 1 2 3 4 5 6
Physical L1->P6
datafile: L2->P3 L3 L3 L2 spare spare Ll
L3->P1

Core mapping: L1->PS
L2->P3
L3->P2

The disc mapping and blocks P1, P3 and P6 define the original
database, whereas the core mapping and blocks P2, P3 and P6 define the
updated database. - '

At the end of a run or at some other suitable moment (see next
section), any altered blocks in core are written back to disc finishing
with the new logical/physical mapping itself, thus bringing the disc file
up-to-date; we say that the disc file has been ‘'remade’. We see that the
disc file defines the original logical database right up to the moment
when the new mapping is written back: provided this block is written
successfully, the disc file will thereafter define the new logical
database and all physical blocks allocated in the 0ld database mapping but
not in the new become available for re-use again:

0 1 2 3 4 5 6
Physical L1->P6
datafile: L2->P3 spare L3 L2 spare spare Ll
L3->P2

To guard against the remote possibility of the new mapping being
only partially written back, a slight modification is made to the scheme
described above by arranging that mappings are written alternately to the
first two physical blocks of the datafile so that a new mapping never
physically obliterates the preceding one. Each mapping is allocated a
sequence number one greater than its predecessor, so that we can
distinguish between the mappings available in the first two blocks of the
file: the current mapping is that with the greater sequence number,

T.R.1 10 M,F.C. October 1974

5.5 Consistency and indivisibility

By avoiding remaking the disc file during a sequence of mutually
dependent updates, we can avoid the possibility of an inconsistent logical
database appearing on the disc.

Often we know that only a certain (small) number of blocks will be
affected by the series of updates, and so we can reasonably require that
sufficient spare physical blocks are available before embarking on the
series: if enough are not immediately available we remake the disc file
first, hoping that sufficient will be freed by this process. This
technique is used when the package creates a new link between two entries:
a new link element must be added to each entry, and, since the entries
probably lie in different blocks, two blocks will need to be updated.

Sometimes, however, the number of blocks to be updated may be very
large, and it becomes unreasonable to insist that a sufficient number of
spare blocks be available: for example, deleting an entry will involve
changes to all entries to which it is linked. In these cases, the package
arranges to record extra information on the disc whenever the file is
remade whilst the updating operation is in progress. This extra
information enables the operation to be completed when the file is next
opened if some failure prevents its completion during the current run.

By judicious application of these two techniques, the database
package ensures both the consistency of the database on disc (in the sense
that no entries will appear 'half linked' or 'partially' updated) and the
'indivisibility' of each interface procedure (in the sense that any
procedure call will either complete its specified action or do nothing at
all).

M., F.C. October 1972 T.R.1 11

& AEElication

The major application to date has been the provision of an
administrative database for the University Computing Service. Computing
resources are allocated to 'projects' and 'fileowners': each project is
given a number of shares which controls the rate of working on that
project, and each fileowner is given space allocations which control the
amount of disc space which he may use. Each person who wishes to use the
computing facilities is allocated a 'user identifier' by which he is known
to the system and is given access to one or more projects and fileowners
to satisfy his computing needs. Thus in the database we have classes USER,
PROJECT and FILEOWNER with SHARES and SPACE primitive fields for PROJECTs
and FILEOWNERs, and links between USERs and the other two classes.

For accounting purposes, projects are grouped together into
departments which are themselves part of a 'tree structure' of superior
departments and faculties etc., and further classes and link fields
represent this structure.

Other information maintained in the database includes magnetic
tapes (each linked to its owner), names and addresses of users, and
mailing lists. At present, the database includes approximately 2500 USER
entries, 1800 PROJECT entries, 1500 FILEOWNER entries and 2500 TAPE
entries, and is about one megabyte in size.

The database is usually interrogated and updated using an
interactive program at a terminal, but the same program may be used in
batch mode. Other applications programs in use include a general purpose
listing program (which allows listings of entries selected according to
conditions on both primitive and link field values) and a program which
produces user names and addresses on 'sticky labels' for mailing purposes.

The system has been in full operation for about one year with
updates taking place almost daily. During this period, many operating
system crashes whilst the database is being interactively updated have
provided a practical test of the integrity techniques: in fact, although
- the database is dutifully dumped to magnetic tape once a week, we have not
Yet needed to back up from such a tape copy.

M.F.C. October 1974 T.R.1 13

7 Conclusions

The characteristic features of the JACKDAW database package are
its automatic reciprocal linking mechanism and its generality.

The linking mechanism allows a relationship between classes to be
represented in its most natural way, without favouring either class; new
examples of this relationship may then be set up between particular
entries in either direction. For example, the interactive program for
maintaining the administrative database (see previous section) allows an
extra user to be added to a project whilst updating a project entry, or an
extra project may be added to a user whilst updating a user entry.

The generality of the package results partly from the ability tc
interrogate the class definitions and partly from the procedural
interface: in the Introduction we showed how these two features affected
the dependence of a particular applications program on a particular
database structure. Experience has shown that completely general purpose
programs are extremely difficult to design: for example, it is very
difficult to design an output format for displaying an entry of arbitrary
structure. However, useful compromises are attainable in which a program
can continue to function over quite large changes in database structure;
and completely general programs are always of use, of course, when major
structure changes have to be made before 'tailor made' software is
completed. '

8 Acknowledgement

The structural aspects of the JACKDAW package arose from ideas
originally put forward by Dr. J. Larmouth as the basis of a project for
the provision of an administrative database; I am indebted to him for many
helpful discussions during the design of this package.

Reference

[1] - Richards, M. 'The BCPL Programming Manual', The Computer Laboratory,
University of Cambridge, April 1973.

M.,F.C. October 1974 T.R.1 15

