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SUMMARY

A descriptive model of database systems is presented. The model
is intended to provide a general framework for the description of
database systems which is not limited to any particular DBMS or even
to any of the three mainstream approaches to DBMS architecture. This
generality is derived from a new analysis of file organisation methods
on which the model is based. The model concentrates on the aspects of
a database system relevant to first-order performance prediction. These
include database structure, the hardware and software used in implementing
the system, the size of the database at various points in its lifetime,
and its known or anticipated usage. Particular attention has been
devoted to arriving at a general treatment of the details of database
systems at the physical level, including access paths and their encoding,
storage devices and their operating characteristics, and the mapping of

data representations to storage devices.

A formal language has been devised in which to write textual
descriptions of a database system in terms of the model. In addition,
an experimental prediction program has been written which accepts a
description of a database system expressed in the language and produces
performance estimates for the described activity using computational
methods based on expected-value formulae. Some preliminary results
obtained by comparing estimates given by the program with measurements of
an operational database system are presented. Further experimentation
that would allow a definitive evaluation of the prediction program is
outlined and a review is made of the current limitations of the model

and program with suggestions for further research.
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1. INTRODUCTION

The research described here is concerned with the development of
a general model for the description of database systems. Identification
of the aspects of a database system most significant with regard to
performance prediction has been emphasized. This work has two principal

motivations.

The first is a belief that a general model is an aid to a better
understanding of existing systems. Describing these systems in terms
of a netitral canonical model enables a clearer understanding of their
similarities and differences. The benefits of such an exercise should
include making it easier to appreciate and learn from results published
about other systems and to recognise techniques employed elsewhere

that could be usefully implemented in one's own system.

The second is to explore the possibility of developing a non-
"DBMS-specific" prediction program based on computational methods and
expected-value estimates. The entire database system is to be textually,
rather than procedurally, described and equations, rather than simulation,
are to be used to estimate the average time taken in performing basic
database accessing functions. There are two aims here. The primary one
is to build a program that is cheap to use in the sense that it runs
in seconds rather than minutes or hours. A secondary one is to keep
the amount of input data to the minimum necessary to get useful

results.

1.1 Scope of application

This research is intended to be applicable to what are usually

called integrated database systems. A DBS (database system) is here




defined as a computerised system for managing a large collection of
data. The term computerised system is meant to .refer to the. collection
of hardware, software, and data (stored on the hardware by the software)
which altogether acts as a vehicle for the storage, retrieval and
updating of facts. An Zntegrated DBS is one in which the data is used
for diverse purposes by a number of different users. These users are

assumed to belong to some sort of common organisation.

There are three important implications arising from the above
definitions.
1. The database is a communal resource and so must
be managed in a way that optimises overall performance
for everyomne.
2. The database is a large collection of data which
means that there are genuine difficulties in
arriving at a physical database organisation that
permits efficient and rapid access and is at the
same time cost-effective.
3. Points 1 and 2 imply a large scale design effort
is worthwhile. A large scale design effort is
costly; the existence of a common organisational
framework means the necessary financial support
can be found.
These points have touched on the design and physical organisation of

databases. Thisg ties in with the previously mentioned emphasis on

performance prediction.

An iqterest in design and performance evaluation suggests the
concept of a general model for describing integrated DBSs and a
program to accept such descriptions and produce performance estimates
for the described DBSs. Focusing on physical organisation and physical
database design leads to a particular effort to accommodate as rich
a variety of physical organisation and designs as possible within the

framework of the model. Figure 1.1 illustrates the use envisaged for
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Figure 1.1: BAn Idealised Database Design Cycle

such a prediction program in an idealised database design cycle. The
section of the design cycle concerned with physical database design and
performance prediction is enclosed by a broken line. The role of the
prediction program is to evaluate candidate physical designs produced

by some physical design process. That process might be a specific design

methodology or simply the work of an experienced practitioner. The




general model provides the framework for describing both the candidate
physical designs and the logical design for which a suitable realisation

is being sought.

1.2 Basic concepts and terminclogy

This thesis assumes that the reader is familiar with basic file
organisation techniques and the three main approaches to DBMS*
architecture (relational, hierarchical and network). A suitable introduc-
tion to file organisations can be found in [Dodde9]; a good introductory
treatment of DBMSs is provided by the Computing Surveys special issue

on that topic (vol. 8/1, 1976).

Some basic terminology will now be introduced. These terms and
all others defined in subsequent chapters are listed . in a glossary which
follows the last chapter. The definition of the first three terms follows

that of Dodd [Dodde9].

A piece of raw information stored, retrieved or otherwise processed
by a DBS is an elementary data “tem. This will usually be shortened
to data item or field. A collection of one or more data items accessed
together is called a record. Data items ﬁay be grouped into records to
indicate logical relationships or for performance considerations. A key
is a group of data items from the same record used to represent the record
in some way (for searching, indexing, sorting etc.). A primary key is
one which uniquely identifies the full record, otherwise it is a secondary
key. A:file is a collection of records, usually of the same type.

fcess is used throughout this dissertation as a generic term for the

* DBMS stands for Data Base Management System.




the “touching' of data, whether for the purpose of retrieval or update.

An integrated DBS is built around a database which generally
consists of a number of files. An access path is some mechanism
for accessing a set of records which requires less effort than the
scanning of all records in the database. Access paths are of two
types [Nijs74], associative and positional. An associative access
path leads to a record (or group of records) identified by some key
value. A positional access path leads to a record which is in some
sense "next" relative to a record of known location. A file organisation
is the combination of structures and algorithms used to provide an access
path. Some examples of file organisations are a file of sorted records
accessed by binary search, a file of records grouped into secondary

storage buckets addressed by a hashing function, or an inverted file.

1.3 Overview of thesis

The remainder of the thesis comprises seven chapters and two
appendices. The next chapter, Chapter 2, overviews the work of other
researchers which has served as a point of departure for or has influenced
the development of this research. It concludes with a summary of

directly related work.

Chapter 3 introduces the problem of modelling a DBS and then
develops some ideas about the nature of databases and an analysis of
file organisation methods which have influenced the DBS model.
Chapters 4 through 6 go on to explain the model in detail with the aid

of an example.

Chapter 7 describes the prediction program built around the model




and presents some preliminary results obtained from experimentation with
an operational hospital patient administration system. Chapter 8
discusses further experimentation possible with the prediction program
as it stands, suggests directions for further research to remove some
of the present limitations of the model and program, and makes some

observations based on the author's experience in developing them,

Appendix A describes the hospital DBS using the general DBS
model. Appendix B is a complete BNF grammar defining the syntax of a
language in which to write DBS descriptions accepted by the prediction

program.




2. RELATED RESEARCH ON DBSs

A recent survey [Senk77] has identified two divergent streams of
research in the area of DBSs. The first, which might be termed DBS
theory, deals with data models, database accessing languages and data
dictionaries. The second, which could be called system performance
research, is concerned with the description of system workloads, the
design, evaluation and optimisation of file organisations and the
evaluation of DBSs constructed using file organisation techniques.

The author's research has been influenced by results from both streams.
Some of the research on DBS theory was used as a starting point for the
development of a general model of DBSs. Other reseaxrchers' work on the
evaluation of file organisations has been used fo guide that development
and in the writing of an experimental prediction program. This chapter
surveys the related work from both streams with particular attention

devoted to previous efforts at DBS evaluation.

2.1 Contributions from DBS theory

The directly relevant research from the stream of DBS theory
concerns concepts from the organisation and architecture of DBSs. The
last ten years have seen a number of proposals for viewing a DBS in

terms of levels of abstraction.

Application of this approach in the late 1960s led to the
formulation of two levels of abstraction known as logical and physical.
At the logical level one is interested in establishing a correct and
complete representation of the real world system to be modelled by the
database. Correctness and completeness are judged in the context of

anticipated database usage. At the physical level attention shifts




to the performance and efficiency issues of maintaining and manipulating
the database representation of the real world. The motivation behind

the logical-physical separation is to allow the designer to solve the
logical aspects of his database problem first and then consider separately
the selection of a physical storage structure that provides satisfactory

performance.

Several years later, Earley proposed a tri-level definition of
data structures [Earl72]. His three levels were the relational level
at which only the relationships between data items are specified, the
access path level which describes how data can be accessed and the
implementation level which defines how a data structure is to be
realised in a machine or on a storage medium. Earley thought of the
relational and access path levels as being sub-levels of what he called
the semantic level which defines, in a representation-independent way,
the data in a data structure, how it can be accessed and in what ways

the structure can be altered.

A major advance was then made by Senko and some other researchers
at IBM San Jose with the introduction of the Data Independent Accessing

Model (DIAM)[Senk73]. DIAM defined four levels of abstraction:

1. the Entity Set Level
-- to provide a structured model of the real-
world information in the database. This model is
independent of all implementation details.

2. the String (Access Path) Level
-— to describe access paths through the data
constructed for reasons of efficiency

3. the Encoding Level
—- to describe the bit-level encoding of access
paths

{

4., the Physical Device Level
~= to define the placement of the bit-level
encodings on physical devices




The DIAM entity set level corresponds to the logical level of
abstraction. The other three DIAM‘levels are sub-levels of the physical
level of abstraction. Although originally conceived as a general
descriptive model of database structure, DIAM evolved to become a

DBMS arxrchitecture complete with two accessing languages, RIAL and RDAL.

DIAM is further described in [Sénk72, Senk76] .

In an interesting theoretical paper Sundgren [sund74] identified
the function of a database as modelling some object system. He went

on to make a useful distinction between:

a) the object system
b) dinformation about the object system
c¢) data representations of that information

d) the storage media on which those representations are
recorded

Database design can then be characterised as the choosing of three
mappings: a)->b), b)->c) and c)->d). 1 Logical database design defines
the first mapping a)->b); mappings b)->c) and c)->d) are the province
of physical database design. DIAM provides a good treatment of b)->c)
and c)->d). A DBS model oriented towards performance prediction must
concentrate on the physical level of abstraction. Hence DIAM was
chosen as the starting point for the development of the general model

of DBSs described in chapters 3 through 6.

2.2 Contributions from file organisation evaluation

Initial work in this area concentrated on the evaluation of one
file organisation at a time. Later, as the underlying principles
became better understood, attention shifted to formulating general

models of file organisations and using them to develop generalised
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equations for file organisation evaluation.

2.2.1 Evaluation of single file organisations

As early as 1957, Petersen used empirical methods in an exhaustive
study of hashing with linear probing [Pete57]. In 1971, Lum et. al.
published the results of a major study of hashing algorithms based on
extensive experimentation with live rather than artificially generated
data [Lum71]. Xnuth [Knut73] provides analytical formulae for estimating
the expected number of secondary sforage accesses incurred in accessing
records on direct-access storage devices by several different hashing

techniques.

An early paper by Bloom [Bloo69] presented an analytical evaluation
of a large inverted file organisation. The FOREM model developed by a
group at IBM [Senk68] calculated timings for file organisations built
around IBM indexing and direct-access methods. In 1970, Collmeyer
and Shemer [Col170] published analytical formulae for the retrieval
performance of file organisations providing access on a primary key
through binary search, indexing or hashing. Cardenas has developed
detailed equations for predicting the retrieval performance of inverted
files [Card75a]l and doubly-chained trees [Card75b]. Siler has covered
similar ground using stochastic and Monte Carlo techniques [Sile76].
A common factor in all this work is that it deals with retrieval only
and does not consider CPU costs. The rationale for neglecting CPU
costs is that they are assumed to be several orders of magnitude smaller
than secondary storage access times and can be ignored for practical
purposes. Another point in common is that a different set of equations
or programmed evaluation module must be used for each type of file

organisation.
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2.2.2 Generalised file organisation evaluation

In order to develop general equations for file organisation
evaluation it was first necessary to develop general models. An
influential early paper in this regard was that of Hsiao and Harary
[Hsia70] who proposed a list-oriented classification of file organisa-
tions. A file organisation is viewed as partitioning a file into lists
of records with the same key value. To this end there is a directory
containing each distinct key value and a list of the heads of sublists
of records with the key value. The parameters describing a file
organisation are the average number of records having a particular
key value and the average number of sublists per value. For example,

a primary index has one sublist of length one for every primary key
value, an inverted file has k sublists of length one for every secondary
key value (where k is the average number of records per secondary key
value) and a multilist has one sublist of length k for every secondary
key value (k is again the average number of records for a secondary key
value). The major limitation of Hsiao and Harary's model is that it
cannot differentiate between lists implemented by physical contiguity
and those implemented by pointers. 1In fact, the use of pointers to
link list elements is implicitly assumed. Consequently, some important
file organisations such as sequential and index sequential cannot be

described.

A second influential model in this area is due to Severance
[Seve72, Seve75]. Severance proposed that file organisations be regarded
as lists of record nodes. Each record node has two connections, one
linking it to its list successor and another linking it to its data
items. In each case the connections may be represented by physical

contiguity ox by a pointer. The parameters of the model are the
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proportion of direct (contiguous) connections to indirect (pointer) ones
for both the inter-record (record successor) and intra-record (data
location) connections. In a sequential file all inter-record and
intra-record connections are direct, in one of the inverted lists of an
inverted file all inter-record connections are direct and intra-recoxd
ones indirect, and in one of the lists for a particular key value in

the multilist organisétion all inter-record connections are indirect

and intra-record ones direct. An indexed sequential file is viewed as
falling somewhere between a sequential file and a list in that some
inter-record connections are direct and others indirect, the exact
proportion depending on the amount of overflow. The principal limitation
of Severance's model is that it lacks something equivalent to the notion
of a directory which enabled Hsiao and Harary to combine lists for each

key value into a complete file structure.

Building on the work of both Hsiao & Harary and Severance,
Yao [Yao77a]'has recently published details of a general model which
describes file organisations in terms of three basic parameters: the
number of index levels, the expected search length at each index
level and at the level of the data records, and the proportion of
direct to indirect connections at each level. Yao's model can describe
a wide range of file organisations including multi—level'primary and
secondary indexing, multilists, cellular lists, index sequential and
B~trees. Generalised equations for estimating secondary storage access
times for random retrievals and updates have been developed as well.
This work represents a significant advance since all these organisations
can be described and evaluated in terms of the one model. However,
evaluation is still limited to a single file organisation at a time

and CPU costs are not taken into account. Teory and Das [Teor76]
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have built a program called the File Design Analyzer which is based on

Yao's model with some extensions to take in sequential and batch processing.

The culmination of work in the area of generalised file organisation
evaluation is research leading to procedures for the design of optimal
file organisations. Kennedy [Kenn73] has studied the use of access
frequency information to optimise file orxrganisation performance.
Severance [Seve72] developed the parametric model of file orxganisations
referred to earlier and presented cost equations using those model
parameters and a design algorithm to determine "good" solutions for
a restricted class of problems. Yao [vao74] used an earlier version
of his general model described above as a basis for a restricted
optimisation procedure. Duhne [Duhn77] extended Severance's models
and equations to include a wider class of implementation alternatives
and then developed a semi-automatic design procedure based on branch and

bound techniques.

2.2.3 Estimation of expected number of record or block accesses

Another relevant area of file organisation evaluation treats
statistical questions involving batch accessing of files. Usually the
quantity of interest is the expected number of record or block accesses.
Papers in this category include those of Pezarro [Peza76] and Yao
[Yao77blwhich deal with the problem of estimating the number of blocks
accessed in retrieving K records of known device address from a file,
one by Schneiderman’ and Goodman [schm76]which provides estimates of the
savings in record accesses gained from the batching of queries to
sequential or tree structured files, and one by Kollias [Ko1178] which
supplies an estimate forx the proportion of a file which must be accessed

in processing a batch of records ordered by device address.




14

2.3 Performance prediction for DBSs

All the work on performance prediction mentioned in the previous
section shares a common characteristic -— the evaluation of file
organisation techniques as applied to a single file only. Performance
prediction for DBSs presents a considerably more difficult problem.

An integrated database may be thought of as a number of files inter-
related by a lattice of logical and physical connections. The
retrieving or updating of data may necessitate travelling a

path leading across several files and following an arbitrary combination
of connections. It is dealing with this possibility which makes

the task of performance evaluation for a DBS much more difficult.
However, results from the study of file organisation evaluation

can serve as a foundation for the more complex systems which

predict DBS performance.

Prediction systems for DBSs can be’divided into two classes:
analytic and event-driven simulation. Analytic systems are usually
predicated on the assumption of single-threaded accessing of the
database. This simplification makes it possible to estimate performance
with equations, resulting in a prediction system that runs much faster
than real time and is relatively inexpensive to use. Event~driven
simulation systems, on the other hand, can be designed to model the
complex effects of concurrent access, channel contention and operating
system overheads arising from multiprogramming. Consequently,
they provide much greater accuracy at the price of a much higher cost

in running time. Event simulation systems also require considerably
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more detailed input.

Six DBS prediction systems that have been reported in the literature
will now be looked at briefly. Besides the analytic/simulation
classification, they also can be claésified as DBMS-specific or
DBEMS—independent. DBMS—specific is taken to mean applicable to DBSs
implemented with a specific DBMS whereas a DBMS-independent prediction
system covers a range of DBMSs. The DBMS-specific ones will be reviewed

first.

Several DBMS-specific prediction systems have been developed by
the vendor of the DBMS concerned.. An example is IBM's DBPROTOTYPE
[I1BM74] . DBPROTOTYPE is a package of six programs that permit detailed
simulation of DL/l calls against a skeleton IMS database. One of the
programs builds the skeleton database which is specified by listing all
root and child segments and providing a statistical description of
segment occurrence frequencies. The others generate DL/1 calls against
the skeleton database and report the results. DBPROTOTYPE as described

in [IBM74] does not model concurrent access.

Other DBMS-specific prediction systems have been proposed or
developed by large users. One of these is a system under development
by Shell-Holland for evaluation of Univac's DMS-1100. As described
by de Beer and Smit [deBe76], the Shell-Holland system accepts a DDL
schema as input and produces internal data structures from which storage
requirements are computed. De Beer and Smit also outline some formulae
for estimating the number of block accesses to transfer a random
selection of records to or from secondary storage. They do not propose
to deal with concurrent access. Database usage is to be modelled at

the level of DBTG DML commands, for example "FIND a record occurrence
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using its CALC key".

An analytic DBMS-specific system which has actually been built is
described by Teory and Oberlander [Teor78]. Called the Database Design
Evaluator (DBDE), it produces expected-value performance estimates for
applications running under Honeywell's IDS [Hone71]. Input to the DBDE
includes a description of the IDS database, of the hardware (limited
to one type of secondary storage device) and of the application as a
sequence of IDS DML operations (RETRIEVE, STORE etc.). Principal output
is an estimate of I/0 processing time made up of seek time, rotational
delay and data transfer time, and CPU time which includes database search
time, I/0 initiation and termination overheads and moving data bétween
IDS buffers and the user work area. The DBDE seeks to provide bounds on
I/0 processing time in a multi-threading environment by suppling two
estimates for this figure: one for "single access", defined as a
dedicated device with no seek time and average rotational delays between
consecutive sequential accesses, and "mhlti—access", modelled as a
shared device with all sequential accesses for an individual application
becoming effectively random because of interference from other processes.
Other features of the DBDE are computation of overflow probabilities
on the basis of database growth and the distribution of record sizes,
evaluation of the effect of multiple buffering on I/O processing time*
and modelling of dependent sequences of IDS operations involving
currency. No figures are given for the DBDE's size or average
running time. One validation test is reported using a live database
of 155,000 records of three different types. A comparison was made

between estimates of total elapsed time+ for a batch of retrieval

* This is not done analytically but by a kind of limited simulation.

obtained from a central server queuing model of the test system using
the DBDE's estimates of application CPU and I/O times.
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applications and measured elapsed time. On this basis the DBDE estimate

differed from the obsgerved one by 21%.

A final example of DBMS-specific systems is the one developed by
the MITRE corporation for NASA and described by Spitzer [spit76]. It
was built around an already existing simulation system for Exec-8 on
the Univac 1108 to evaluate the performance of System 2000 in that
machine/operating system environment. The 1108 simulator is driven by a
workload of tasks characterised in terms of CPU time, I/0 transfers and
primary store requirements. The approach followed was to select eight
primitive database operations out of which to construct sequences that
represented System 2000 transactions. Each primitive database operation
was described in terms of five parameters that had been identified by a
separate study as being the most significant in determining System 2000
performance. A series of experimental runs was made, varying the five
database parameters to produce graphs of CPU time and I/0 transfers as
a function of the database parameters. Using these graphs, a sequence
of database operations representing a DBS transaction could be converted
into a sequence of simulator tasks. Output from the simulator then gave
total response time broken down into time waiting for processing by the
DBMS, time waiting for primary store, swapping time, time spent in
primary store (waiting to execute and executing) and I/O wait time.
The MITRE system does model concurrent access and the interference

effects arising from database locking to synchronise such access.

Two DBMS—independent prediction systems have recently been reported
in the literature. The first is described by Nakurama, Yoshida and Kondo
of Hitachi [Naka75]. It is a comprehensive simulation system with a
two-part organisation. One part consists of a textual description

of the hardware and database being modelled. The other is a procedural
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modelling of the operating system, DBMS and application programs

that together comprise the software driving the DBS. Task scheduling,
I/0 interrupt processing, communication processing, message scheduling,
database access processing, buffer management and disc space management
are all simulated. Detailed reports on all these activities are
available as output from the simulater. The limitations of this system
are that it can only describe hierarchical database structures and that
a large reprogramming effort would be involved in applying it to a
different host system (or even another set of applications) because of
its use of procedural modelling. The latter limitation appears to be

an inevitable consequence of an effort to obtain a very high degree of
accuracy. No precise running times were given,but as a rough guide

the authors reported that the simulator runs about 10 to 20 times faster

than real-time.

The last system to be reviewed was developed by the Martin
Marietta Group for NASA [Schn75]. It is a DBMS—independent simulator
based on an implementation of the DIAM model mentioned earlier. Input to
the simulator consists of a database description in terms of the DIAM
model and a set of queries expressed in the DIAM RIAL accessing language.
The storage devices and operating system were modelled procedurally as
far as was thought necessary to calculate response time and resource
usage. NASA decided not to use the simulator after extensive evaluation
[NASA76] because it was judged very difficult to use and because the
response time predictions were not accurate enough. However, it was
felt that most of the deficiencies could be corrected at the cost of

a major reprogramming effort.

Table 2.1 shows a categorisation of the six prediction systems

based on the two classifications of analytic/simulation and DBMS—
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specific/DBMS-independent. The position of SEER, the experimental
prediction program developed as part of the author's research, is also

shown within the scheme of categorisation. As Table 2.1 shows, it is

DBMS~specific DBMS-independent
analytic Shell-Holland
DBDE SEER
event-driven DBPROTOTYPE Hitachi*
simulation MITRE Martin Marietta

* hierarchical database structures only

Table 2.1: Categorisation of DBS Prediction Systems

the only analytic, DBMS-independent prediction system of which the

author is aware.
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3. MODELLING A DBS

The problem to be addressed is how does one describe a DBS for the
purposes of performance prediction. The first decision to be made is
what measure of system performance should be used. Following that
decision, the next step is to identify the aspects of a DBS that must
be described to estimate performance in terms of the selected metric.
The first three sections of this chapter expand on these points to
present an overall picture of the descriptive model developed by the
author. The last three sections introduce some general ideas about the
nature of databases, an analysis of file organisation methods and an
example of a simple database. These are used in chapters 4 to 6 which

explain the descriptive model in detail.

3.1 A measure of DBS performance

If a DBS is thought of as a repository of facts of interest to
the organisation using it, then there are two principal activities which
it must support. These.are the retrieval of facts stored in the database
and the updating of facts to keep them in line with external reality.
Updating can be divided into three distinct activities: modification,
insertion and deletion. A request to the DBS to perform one of these
four activities is termed an operation request. Thus the DBS is viewed
as a kind of "black box" system which stores facts, retrieves them later,
can be asked to modify or delete them, or add new ones. This way of

looking at things is depicted in Figure 3.1.

A reasonable goal is to aim at producing first-order or expected-
value estimates of the time taken by a DBS to perform an operation

request. This will be known as database access time. It should be
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emphasized that this is not what is known as response time but rather

is a component of response time. Response time in an online, interactive
system typically consists of three basic componénts: teleprocessing and
communication delays, multi-user overheads (0/S overheads and /0
contention) and time spent in accessing the database itself. The work

outlined in this dissertation limits itself to the last of these.

Figure 3.1 suggests an application program communicating requests
to a DBS either as a batch program or as a result of interaction with a

user. Performance of an operation request is more precisely defined

facts
A‘ : (data)
possible |
~interaction |
] e A
I 4
] operation
- application requests , ’
program system ] DBS
response: ~
facts or
. operation
completed

Figure 3.1: DBS as "black box" System

according to this view of matters as follows. In the case of retrieval,

it is the location of all specified facts (if any) and their return to
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the address space of the application program. In the case of update,

it is the copying of all supplied facts (if any) to the address space of
the DBS and execution of the requested operation. Thus database access
time has two components: secondary storage accessing time and CPU

processing time.

Two restrictions are imposed as simplifying assumptions. In both
instances this is because there is no way of analytically treating the
complications that arise in the unconstrained general case within the
limitations of an expected-value model. The first restriction is that
only single-threaded accessing of a database will be modelled. Proper
treatment of multi-threading does not appear possible without the use
of queuing or simulation models, a conclusion also reached by other
researchers [Teor76]. The second restriction is that the model does
not attempt to account for any reduction in secondary storage accesses
that might be gained by the use of multiple page buffers. Trying to
model this effect analytically involves making assumptions about the
access patterns of application programs and it is difficult to see
what assumptions would be reasonable., Extensive experimentation akin
to that reported by Saltzer [Salt74] and Greenberg [Gree74] in
postulating a linear relation between mean headway between page faults
and the size of paging memory would be required. The author's experience in
implementing a prediction program has led to some ideas about relaxing

these restrictions. They are discussed in chapter 8.

In the context of the simplifying assumptions described above,
secondary storage accessing time is taken to mean the sum of the time
required to position a device at the starting point for a transfer and
the time to transfer data from/to DBS buffers. Estimates of CPU |

processing time are intended to model overheads common to any DBMS,
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such as the time to move data between DBS and application program buffers
and the time required to compare index keys or evaluate hashing functions.
As suggested in Figure 3.1, no estimate is made of the CPU time. used by
the application program because it is a function of program behaviour

which is difficult to quantify analytically.

Database access time has now been selected as the measure of DBS
performance. The other important quantity to be estimated is the

total storage requirement of a described system.

3.2 Aspects of DBS description

Having chosen database access time and total storage requirements
as the quantities to be estimated, it is now possible to identify the
aspects of a DBS that must be described. These are:

1. database structure
—- the type of information stored in the database
and how it is represented on the available storage
media.

2. database content
~— the volume of data items and distribution of
data values.

3. hardware configuration
-- the performance and capacity of the available

storage devices and limited details of CPU performance.

4. DBS software
—— the CPU cost of executing certain basic DBS functions.

5. database activity
—-- a representative set of operation requests.
Prediction of database access time entails evaluating the cost
of executing operation requests. Execution of an operation request
is thought of as navigating a route through the détabase leading from
some known starting point to the records of ‘interest. Once these

target records have been located, they may be retrieved, modified, deleted

oxr
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have new records inserted before (or after) them. With this model the
relevance of each ¢f the five aspects mentioned above can easily be

explained.

A description of database structure is, in a sense, a map of the
database. It enables a route to be selected or, equivalently, defines
how to go about answering a query or making an update. This means
providing sufficient information to decide 1) if the operation request
is valid in the sense of being directed at facts of a type known to be
in the database, 2) which records are of interest and how to get to them

and 3) how to interpret their contents.

Given a route to the records of interest, the next step is to
estimate how many records have to be visited in travelling it and to
sum the expected costs of their accessing and processing. The result
will be an estimate of database access time. Estimates of the number of
records visited are made on the basis of information about database
content. The cost of record accessing and processing is predicted from

the details about the hardware configuration and DBS software.

Specification of the first four aspects thus provides enough
information to evaluate a single operation request. For evaluating
a DBS as a whole, a representative set of operation requests for the
entire user community is needed. A description of database activity
supplies such a set of requests which is similar in concept to the
instruction-mix often used in the evaluation of CPU performance. This
analogy is especially appropriate when one considers that the instruction
set of a "database machine" would almost certainly include the four
fundamental operations of retrieval, modification, insertion and deletion

[cana74, 0Ozka75, Su75].
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Storage requirements can be estimated from the specification of

the number of bits used to store individual values and information about

the number of values stored.

Figure 3.2 shows the structure of the general descriptive model
which has been proposed. It has five components, one for each aspect

to be described. The following sub-sections discuss these components

STRUCTURE \\?ARDWARE

~

CONTENT.

Figure 3.2: Components of a DBS Descriptive Model

in turn.

3.2.1. Structural description

Database structure was previously likened to a map of a database

providing three kinds of information. These were: 1) an indication
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of what types of facts are in the database, 2) a specification of which
records hold which facts and of the access paths leading to records,
and 3) a definition of the bit-level representation of facts. The
above decomposition suggests structure can be described in terms of
three hierarchic levels. These are an information level corresponding
to 1), an access level corresponding to 2) and an encoding level

corresponding to 3).

The information level is the conceptual level of database descrip-
tion. It specifies which entities are modelled by a database and which
of their properties are represented in it. This is known as the
information structure of a database. Information structure defines the
types of fact in a database. Information content refers to the actual
collection of facts in a database at some instant in time (they will

be of type defined by the information structure).

The access level describes the access structure of a database.
Access structure refers to the network of logical paths in a database
which lead from known starting points to individual data values. A
description of access structure declares such logical paths and specifies
which data values represent which entity properties and the mechanisms for
accessing those data values. The term logical path is used to emphasize
that the access level is concerned with which logical connections exist

and not how those connections are represented.

Data values are thought of as being stored in one or more virtual
address spaces. In turn, the virtual address spaces are physically
located on the devices described by the hardware configuration component
of a DBS description. The encoding level specifies how many bits are

allocated to store data values and the representation of logical
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connections (direct by contiguity or indirect by pointer, for example) .

Figure 3.3 adapted from [Yao74] is a simple example of the

Information Level:

N €)= () =y

— )
Encoding Level: P o———p Q Q—ﬁb{ Rl @

-
i) 2
bytes bytes

Figure 3.3: Levels of Structural Description

different levels of structural description. Imagine that there is

a collection of three properties of some entity. At the information
level these are seen as a set, {P,Q,R}, in which no ordering is implied.
One possible path at the access level is P->Q->R., At the encoding
level that access path could be represented by a linked list of elements
with six bytes to hold a property value and two bytes to point to the

next element. Equally well, the elements could be stored contiguously,

in which case pointers would not be required.

Figure 3.4 sums up the above approach to structural description.
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Figure 3.4: Tri-level Structural Description

Structure is described by one component of the

DBS model. That component is split into three

hierarchical levels, each an expansion of its

parent providing an increasingly detailed

gpecification of database structure.
Each level represents a freezing of a certain class of design parameters.
The information level reflects a selection from all the entities and
their properties in the real world, the access level a choice as to
what access paths to provide to the values of entity properties and
the encoding level a decision as to the number of bits to allocate to
the storage of individual data values and the representation of logical
connections. Thus for a given information level there are a number

of possible access levels and, similarly, each one of these could be

encoded in several different ways.

3.2.2 Content description

Database content is described separately from structure because

the amount of data in a database usually varies as additions or
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deletions are made to reflect changes in the real world. An exact
specification of database content describes a database frozen at some
instant in time. For the purposes of first-order performance prediction
it is more useful to have a rough statistical description which is a
reasonable approximation of database content over some time interval.

The length of this interval is primarily a function of database volatility.
In the case of a database which is expected to change significantly

in size, it is advisable to provide content specifications corresponding
to several stages in its growth. By this strategy one can determine

when a planned access structure is likely to become inadequate and a

new one will have to be devised.

A more concrete specification of the sort of content information
required may be given in terms of the concepts of record and field.
One needs to know such things as the number of occurrences of a
particular type of recoxrd and the range of possible values for a particular
field of a record. As far as the model described in the next three
chapters is concerned, content description specifies how many instances

of the various structural elements of the model are expected.

3.2.3 Hardware description and the SDM

Hardware description characterises the storage devices of the DBS
in terms of their performance and capacity. Device performance and
capacity suffice for the prediction of secondary storage access times
and a check that total data volume is witﬁin total.device capacity.
There 1s one device description per type of device. Specification of
the secondary storage configuration does not extend to identifying
individual devices because that would be unnecessarily detailed for

the purposes of this model. Limited details of CPU performance are
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included for use in estimating CPU . overheads.

In the sub-section on structural description it was .mentioned that
data values were thought of as being encoded in virtual address spaces
which were themselves stored on physical devices. The assignment of
virtual address spaces to devices depends on both database structure and
hardware configuration, Therefore, there is a sixth component of a
DBS description, not previously mentioned, to define this assignment.

It is called the SDM (Structure-Device Mapping) .

3.2.4 ~'Software description

The main reason for making an attempt at software description is
as an aid in estimating CPU processing costs. The minimal requirement
is a means of specifying average CPU time for the execution of various
primitive functions (hashing for example), the cost of which cannot be
solely estimated from the simple CPU description mentioned above.
Another reason is to provide a limited escape mechanism for indicating
the CPU cost of algorithms or procedures other than the standard ones

assumed by the prediction software.

3.2.5 Activity description

The components of the model described so far are sufficient to
estimate DBS performance for a single access request. However, as was
mentioned in chapter 1, the performance of an integrated DBS must be
~globally optimised taking into account the needs (and their relative
importance) of all users. Hence a mechanism for generating a representative
set offoperation requests is needed to serve as a characterisation of

database usage.
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Operation requests can generally be classed as either routine
or nom—routine. Routine requests are those which occur frequently. They
are exemplified by those generated by transaction processing, batch
database applications or the processing of stored relational views as in
System R [Astr76]. Routine requests define frequently used access
patterns which can be accurately identified and profitably supported

by file organisation techniques.

Non-routine operation requests are typically generated by high-
level query language processors. The facts to be accessed are specified
by arbitrary Boolean selection expressions which can range over any
entity property represented in the database. Consequently, it is
very difficult to identify access patterns which will be heavily
enough used to justify the expense of bullding and maintaining access
paths to support them. The most promising approach for selecting
cost-effective access structures for DBSs in which non-routine requests
predominate seems to lie in the direction of learning systems such as
Stocker and Dearnley's self-organising DBMS [Stoc74] and Hammer and

Chan's prototype system for automatic secondary index selection [Hamm76] .

For the above reasons the model adopted here restricts itself to
a simple strategy for generating routine operation requests. A list of
pre-determined operation requests with associated usage weightings-is
supplied. The prediction program then estimates the average database
access time for each operation request and also combines the results
using the usage welghtings to produce an estimate of average database

access time across all database activity.
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3.3 PRODD

Considering the inter-relationships of all six description
components yields a diagram like Figure 3.5. The next three chapters
describe a scheme for specifying the six components and their inter-
relationships through a model called PRODD (for Prediction (riented

Database Description). The placing of structure in the middle is

ACTIVITY

|

HARDWARE

mxac3Qao-3n

SDM

CONTENT

Figure 3.5: Components of PRODD

deliberate. It'reflects the central role it plays in defining the
procedures for database accessing. Once an access route has been
determined, the three components of software, hardware and content
description plus the SDM component supply the details needed to
estimate the cost of travelling it. The activity component sits on top

and directs the overall evaluation process by indicating which access
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routes are to be costed.

3.4 What is a database?

In developing a general descriptive model of DBSs some assumptions
about the nature and purposes of databases must be made. Mealy [Meal67]
has observed that there are three realms of interest in data processing,
namely, the real world itself, ideas about it existing in people's
minds and symbols representing these ideas recorded on paper or some other
medium. Following this classification, a database is a repository
for recording symbols representing ideas about the real world. Logical
database design is concerned with selecting which ideas about the real
world to include in the database. Physical database design deals with
choosing an appropriate symbolic representation of those ideas on the

available storage media.

These ideas can be made more precise by introducing the concept of
entities which are objects of interest in the real world. They may
be people, places, things or relationships. Entities have properties
which describe them. A property is a correspondence between an entity
and some value describing it. The properties of an entity chosen for
inclusion in a database are grouped into one or more entity descriptions.
A database now becomes a collection of the representations of entity

descriptions.

One might then consider how these representations of entity
descriptions are going to be accessed, in particular how they are going
to be addressed or located. It is here asserted that a fundamental
characteristic of databases is that data is addressed on the basis of

content, at least from the conceptual point of view. Any deviations
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from this principle can be explained as performance optimisatiors of one
kind or other. This principle leads to a simple conceptual model of
database accessing. If new entity descriptions, i.e. new data, are

to be added they are presented to the DBS to place where it sees fit.
Existing entity descriptions, i.e. existing data, are addressed by
supplying values for one or more of their properties. Any descriptions
(possibly none) matching the content ctriterion will then be processed
according to the operation specified (retrieval, modification or
deletion). It is the responsibility of the DBS to find the stored
representations of the target entity descriptions by whatever means are

available.

One algorithm which can always be used is sequential search of the
entire database, that is all entity descriptions. Although satisfactory
from a theoretical standpoint, sequential search is too slow for most
practical purposes. Consequently, a number of file organisations have
been developed to speed up content addressing. The basic principle
underlying all of these is a reduction of the search space in one way
or another, a principle neatly expressed in Senko et. al's definition
of a file organisation as "... the preprocessing and prestructuring of
information so as to reduce the amount of scanning for the kinds of

transactions that are anticipated" [Senk73].

3.5 Analysis of file organisation methods

Reduction of the size of the search space has just been identified
as the basic principle underlying all file organisations. Why this

should be so is easily seen by considering the formula for search time:
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T = V/R
where T is search time
V is searxch space volume (number of bits to be scanned)

R is rate at which the search space can be scanned.

Clearly search time (T) can be made smaller either by reducing the

number of bits to be scanned (V) or increasing the rate of scanning

(R). R is determined by hardware factors. Current efforts in the
direction of increasing R are centred around associative hardware. V

can be reduced by software techniques and this is where file organisations

come in.
Software methods for reducing V fall into two categories:

1. reduction of the number of records in the search
space that must be examined

2., reduction of the size of records in the search space

In all cases the objective is to reduce the number of bits that must
be scanned. Methods in category 1 are often used by themselves; those
in category 2 are generally used in conjunction with a method from the

first category.

3.5.1 Reduction of number of records scanned

Methods in category 1 will be examined first. The three principal
ones discussed here are:
. partitioning
. restriction.

. ordering
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Partitioning divides a collection of records into equivalence
classes on the basis of a function of a record key. All records with
the samé function value are in the same equivalence class and there are
as many equivalence classes as there are unigque function values. A
familiar example of partitioning is provided by hashing. All records
hashing to the same bucket or table entry are in the same equivalence
class and it is only necessary to examine them when searching on a

given key value.

There is an important special case of partitioning where the
partitioning function is Boolean and members of only one of the two
equivalence classes are of interest. Therefore, an explicit access
path is defined only for the members of the collection corresponding
to that equivalence class. This is known as restriction. It limits
the search space to a subset of the orginal collection of records with
the Boolean function acting as the membership predicate for the subset.
Subsequent searching among records known to match that criterion can
be satisfied by considering only that subset. Restriction may be
profitable when it is known that there will be a lot of activity directed
to a certain subset of the file with wvery little to the remaining
records. The expense of maintaining the access path for frequently
accessed records is then justified and none is incurred for the
infrequently accessed ones. A simple example would be keeping a list of

orders for the current week (day) in a file of pending orders.

Ordering is the arranging of a collection of records in some
particular order, usually defined on the basis of their key values. The
advantage of ordering on key value is that sequential search on the
ordering key can stop as soon as the key value or the first value after

it is found (for successful and unsuccessful searches respectively) .
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If the collection of records has the additional property that the ith

record can be directly accessed without touching any other record in the

collection, then algorithms such as binary or Fibonaccian search can

be used to further reduce the number of records to be scanned.

3.5.2 Reduction of size of records scanned

T™wo methods in category 2 will be considered. They are:

abbreviation

. compression

Abbreviation is the shortening of a record to one or perhaps
several keys and providing a link to the rest of the fields stored
elsewhere. The keys in the shortened record represent the record for
the purposes of scanning. Abbreviation is normally used with one or
more of the category 1 methods because by itself it does not usually
reduce search space volume sufficiently. Abbreviation is particularly
profitable when the data has to be transferred across memory levels in
order to carrxy out the scanning and comparison operations since it
cuts down the amount of data that has to be transferred (data transfer
usually being an expensive opération relative to comparison in primary
memory) . It may also be advantageous in dealing with variable-length
records. If their key is fixed~length, or can be made to appear to be
fixed-length, then some kind of algorithm better than sequential search
can be used by ordering the keys. A one-level primary index is an example
of the use of ordering in conjunction with abbreviation. A secondary
index in which the accession lists* are ordered is an example of

partitioning and ordering plus abbreviation. An example of abbreviation

* a list of records with a particular key value -
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used by itself is the proposed use of an associative disc to provide
partial inversion described in [Coul72]. The file to be partially
inverted is stored on a larger, slower and cheaper moving-head disc.
The fields selected for inversion and the address of the complete
record on the moving-head disc are stored on the associative disc. It
can then be searched for abbreviated records containing the desired

key values and a link to the full record@& on the larger disc.

Compression [Ruth72] is the transformation of a string of bits or
characters into a shorter string. Although at first sight compression
meets the criterion of reducing record size, it is not generally used
in conventional file organisations because compressed data normally has
to be decompressed before comparison. Thus the number of bits to be
scanned effectively remains the same. The only possible gain is a
reduction in transfer time and this is offset by the time required for
decompression. Compression is often used in DBSs as an encoding level
technique, however, because of its potential for increasing the capacity

of secondary storage devices, channels and communication lines.

3.5.3 Connecting record collections

The preceding sub-sections have frequently mentioned record
collections. Often the difference between two file organisations lies
only in the way in which membership in the record collections it
defines is represented. For example, a multilist and inverted list are
logically the same in that for each secondary key value there isg an
associated list of records having that value. The. list defines a
logical collection of records. The difference between the two
organisations lies solely in the way the list is represented, i.e. in

the encoding of the logical connections. If the original record is
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regarded as pure data and a new super-record is defined which contains
the data plus linkage information concerned with representing its
membership in record collections, then the difference can be conveniently
stated in terms of Severance's ideas about inter-record and intra-record
connections. In the multilist Qrganisation,inter—record connections

are indirect and intra-record ones direct; in an inverted file it is

the converse, inter-record connections are direct and intra-record ones
indirect. These points suggest that a powerful and general model for
describing file organisations, and thus access paths, can be developed
by combining the ideas of this section on reducing search space

valume with Severance's ideas concerning record connections. This is
the basis for the access and encoding levels of PRODD structural
specification described in the next chapter and the foundation of their

generality.

3.6 An example for demonstrating the use of PRODD

This example has been adapted from the March 1976 special issue
of Computing Surveys (vol. 8/1, 1976) on DBMSs. It is known as the
presidential database example and is introduced in Fry and Sibley's
paper [Fry76]. For detailed exposition of PRODD's descriptive mechanisms,
a section of the presidential database will be used to provide a more
manageable and compact example. This section consists of information
about presidents, states and administrations. It will be known as
the PSA example. Figure 3.6 is a diagram of the entities and relationships
using P. P.-S. Chen's conventions [Chen76]. Three entities are modelled:
presidents, states and administrations. Presidents have headed one or
more administration and are native sons of one state. Each state

was admitted during a particular administration with the exception of
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Figure 3.6: The PSA Example

the original thirteen states of the Union. The ADMINISTRATION entity
set is represented by a weak entity relation to show its primary key
includes the primary key of PRESIDENT. Furthermore, the directed
edge linking relationship admins-headed and entity set ADMINISTRATION
indicates an existence dependency of ADMINISTRATION on PRESIDENT.
This reflects the fact that information about administrations is only

relevant in the presence of information about the president who headed

those administrations.
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4. ~ STRUCTURAL SPECIFICATION

Structural specification was earlier identified as the central
component of a DBS description since its function is to define which
operation requests are legitimate and how legitimate requests can be
executed. Thus it is the first component of a PRODD DBS description
and the first component to be discussed in detail. The discussion will
be in three main sections, one for each of the three levels of structural

description introduced in Chapter 3. These were:

.  the information level
. the access level

. the encoding level

DIAM was mentioned in chapter 2 as the starting point for the develop-
ment of the PRODD model. More precisely, it served as the starting
point for the development of the structural specification component of
PRODD. The overall organisation of DIAM and the PRODD structural
component is the same but the mechanics of description in PRODD have
been completely rethought. It was decided, however, that PRODD
constructs with the same or similar function as in DIAM should retain
their DIAM names to aid the reader already familiar with DIAM and its
concepts. A more detailed review of the similarities and differences

between PRODD and DIAM is given in the last section of this chapter.

4.1 A network realisation of the PSA example

PRODD is intended as a tool for describing actual DBSs. Therefore,
something more concrete than the collection of entity sets and
relationships introduced as the PSA database in the previous chapter is

needed as an example. A network (DBTG) realisation of the PSA example
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has been chosen for this purpose. Its subschema may be found in the
tutorial paper on Codasyl DBTG systems [Tayl76] in the Computing
Surveys special issue. In those cases where a particular DBMS has to

be assumed, Xerox's EDMS* [Xero73] will be taken as the standard.

A network, rather than relational or hierarchical, realisation has
been chosen because the network data model is the most complex of the
three. Its constructs are a superset of those of the other two models
[Date76]. A demonstration that PRODD can describe a reasonable
approximation to an arbitrary network-type DBS should also serve as
evidence that the same could be done for hierarchical er relational-
type DBSs. A further argument for concentrating on a network realisation
is that the network model is widely known and has been successfully

implemented in a number of commercial systems.

SYSTEM i

~ ALL-PRES-SS ALL-STATES-SS )

c|  PRESIDENT [cf] smm
* LAST-NAME PIC A(10) < NATIVE-SON % STATE-NAME PIC X(10)
% FIRST-NAME PIC A(10) YEAR-ADMITTED PIC 9999

ADMINS-HEADED ADMITTED-DURING

[v] ADMINISTRATION
L——,—} ¥ ADMIN-NO PIC XXX -

INAUG-MONTH PIC 99

C| location mode

——] CALC INAUG-YEAR PIC 9999 * member of

‘!J location mode : : primary key
ViA ,

Figure 4.1: Network Realisation of the PSA Example

* EDMS is an implementation of the 1971 DBTG report [Coda7l].
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The augmented data structure diagram shown in Figure 4.1 can be
used to summarise the structural information provided by a network
schema. A PRODD description of such a structure must capture all details
relevant to the previously stated goals of first-order prediction of
database access time and storage requirements. In the following
discussion the term coset due to Nijssen [Nijs75] will be used in
referring to DBTG sets to avoid confusion with the use of set in its
customary mathematical sense. The names of DBTG constructs will always
be written in capital letters -- for example, record type PRESIDENT and
coset type ADMINS-HEADED -- and fhe names of PRODD constructs appearing
in plain text will be enclosed in double angle brackets -- description
set <<rams>> for example. Figure 4.1 will now be examined with a view
to seeing what information it provides corresponding to the three levels

of PRODD structural description.

Starting with information structure, Figure 4.1 defines a database
holding facts about classes of entities and their inter-relationships.
The three record types represent three entity classes and the three
coset types indicate relationships between entities from those classes.
Entity properties are represented by the data items associated with each
record type. Every record type has a set of data items making up a

primary key.

Access structure is embodied in the cosets and the CALC location
modes. Singilar cosets ALL~PRES~SS and ALL-STATES-8S and CALC location
mode for record types PRESIDENT and STATE define entry points or known
starting points for accessing data item values. Singuliar cosets ALL-
PRES-SS and ALL-STATES-SS are positional access paths while CALC location
modes for PRESIDENT and STATE establish two associative access paths.

There are another three positional access paths indicated by the
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cosets NATIVE-SON, ADMINS-~-HEADED and ADMITTED-DURING.

Encoding-level information for data values is directly specified
by the PIC declarations for the various data items. Different encodings
of instances of logical access paths, i.e. coset occurrences, can be
specified with the DBTG concept of set mode*. Set modes are not shown
in Figure 4.1 but for the purposes qf this discussion they will be

assumed to be CHAIN with NEXT pointers only.

4.2 The information level

Returning to the model of a DBS as a "black-box" repository of
facts, the first concern is to define which facts can be placed in the
repository. The mechanism in PRODD for doing this is simple because,
as explained in Chapter 1, it is primarily intended for use in the contéext
of physical database design. It was therefore considered unnecessary
to attempt to in¢lude as much semantic information as is expressed by

some recent data models such as Chen's entity-relationship model [Chen76].

PRODD uses the following model of the real world in formulating
an information~level description. There is a universe of entities or
objects. Each entity has properties, some distinguishing it from and
some shared in common with other entities. The information level
specifies which entities are described by the database by listing the
properties of those entities chosen for representation in the database.
A fact can now be defined as a value for one property of one entity.
From the information-level viewpoint the database maintained by a DBS is

simply a collection of facts.

To aid in organising a database into a usable form it is desirable

* Set mode was included in the 1971 DBTG report [coda71l] but was
subsequently dropped in the 1973 Codasyl JOD [coda73] revision of
the 1971 report.
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to impose a structure on the jumble of facts defined above. A first

step is to observe that entities can be grouped into classes on the

basis of their properties chosen for inclusion in the database. 2n

entity description is the set of property representations stored in the
database for some entity. Entity classes are formed by grouping

together all entities having the same set of properties chosen for
description. Entity descriptions are similarly grouped into description
sets. There is a natural 1:1 mapping between entity classes and the
description sets which define them. Figure 4.2 illustrates the
correspondence between entities in the real world and their representation

by descriptions stored in a database.

An example may help to clarify these points. Suppose the owner
of a large sheep farm decided to use a database to keep track of his
animals. The basic entity to be described is a sheep. Properties
of a sheep chosen for description might be

(name, age, weight, colour, sex).
All sheep entities have the same‘description and are therefore in the
same class. There is one description set <<éheep>> having all sheep
descriptions as members. This picture of things is illustrated by

Figure 4.3.

Now suppose that the owner wants to co-ordinate his breeding
program instead of just keeping track of his animals. In this event
he will probably want to record additional information besides the
five properties listed above. Furthermore, these additional properties
will depend on an animal's sex. Number of offspring and year first
bred might be relevant for ewes while for rams the pertinent fact

might be whether they are to be retained for breeding or to be sold.
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entity: sheep
application: keep track of sheep
one description set: '

<<SHEEP>>

name
age

weight
colour

seX

Figure 4.3: The <<sheep>> Description Set

Now there are two description sets, <<rams>> and <<ewes>>, and
correspondingly two classes of sheep entities. The revised picture of

things is shown in Figure 4.4.

An entity description was earlier defined as a set of property
representations for some entity. How is an entity property represented
for storage in a database? In PRODD, the representation of the entity
property is defined by an attribute. Accordingly, an entity description

is now redefined as a set of attributes describing some entity.

An attribute is a triple consisting of a role name, domain name
and data value. A domain is simply a set of possible data values.

Naming a domain specifies the set from which attribute values can be
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entity: sheep . ‘
application: co-ordinate breeding program
two description sets:

<<RAMS>> ' <<EWES>>

name
name

, age
age

weight

weight

: colour
colour

. o_of_offsprin
breed/sell Ho—o- pring

year_ first_ bred

Figure 4.4: The <<rams>> and <<ewes>> Description Sets

drawn. Domains are said to underlie attributes. The role name identifies
the role played by the associated value in describing the entity. An
entity description is a set and hence unordered; a role name acts as a
selector for one element of the description and allows several attributes

to draw values from the same domain without confusion.

There is one more information level construct, the identifier.
An identifier for a particular description set is a minimal set of its
attributes which uniquely identifies every possible description in
that set*. By minimal it is meant that removal of any attribute

* The set of all possible descriptions in a description set is the
cross-product of the domains underlying the attributes of the
descriptions in that set. The requirement of unique identification for
every possible description ensures that a set of attributes classed as
an identifier will have that property throughout the lifetime of the
database and for any possible combination of entity descriptions.
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from the set would nullify its property of unique identification. The
PRODD model demands the existence of at least one identifier for every
description set. This guarantees a logical access path to every entity

description and its attributes and thus to every fact in the database.

It may be helpful to mention that a description set is equivalent
to what Codd calls a relationship or domain-unordered relation [Codd70}.
Attribute, role name and domain name have the same meanings as in
Codd's relational model with the proviso that here domain is restricted
to what’Codd calls a simple domain+. An identifier is equivalent to a

candidate key [Codd71].

Figure 4.5 illustrates an information-level view of the PSA

<<PRESIDENT_DS>>

% last_name/surhame year_admitted/year

+ native_state/states # state name/statés

+ admitting_admin/
admin_nos

¥ first_name/forename
<<STATE_DS>>

inaug_year/year

(O description set
¥ element of an

identifier + .pres_first_name/
+ Mforeign" forename <<ADMINISTRATION_DS>>
attribute + pres_last_name/
surname

% admin-no/admin_nos

inaug month/month

Figure 4.5: Information Level for the PSA Example

* This restriction effectively forces the information level to be in a
form equivalent to the relational first normal form. There is no loss
of generality, however, as there is a simple algorithm for going from
unnormalised to first normal form which is given in [Codd71].
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example. There are three description sets: one for presidents, one

for states and one for administrations. Within the circle representing
each description set appear the names 6f its attributes. No particular
ordering is implied. There is one attribute for each data item in the
corresponding network record type. In addition there are a number of
"foreign" attributes (marked with a '+') used to model membership in
information-bearing cosets [Meta75] representing l:n relationships between
record types. Ll:n relationships can be modelled at the PRODD information
level by including an identifier of the "owner" description set among

the attributes of the "member" description set. At the access level it
will be possible to indicate that these foreign attributes are not
actually present as accessible values but are instead represented by
permanént access paths. Each attribute appears in the diagram as a role
name, domain name pair with '/' acting as a separator. In the PSA
example each description set has exactly one identifier; the attributes

comprising the identifier are marked with a '*'.

A PRODD information-level description is thus built out of four

primitive constructs:

. the description set
. -the domain
. - the attribute

. the identifier

A formal, textual specification of the information level for a DBS

consists of the declaration of all domains followed by the declaration

of all description sets. Domains are simply named at present, although
additional information defining valid values and other consistency/integrity

constraints could conceivably be included. Déscription sets are declared
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by listing all their attributes.and specifying one or more identifiers.

Figure 4.6 is a fragment of a PRODD description declaring

description set <<president DS>> and its underlying domains. The first

few lines place the information-level fragment within the structural

specification component of a complete DBS description. These constructs

are all named to make it possible to refer to different versions of them.

DBS_DESCRIPTION PSA example

STRUCTURE SPECIFICATION network realisation

INFORMATION_LEVEL PSA entities

.

DOMAIN forename
DOMAIN surname
DOMAIN states

DESCRIPTION SET president DS
ATTRIBUTE first name / forename
ATTRIBUTE last name / surname
ATTRIBUTE native state / states

IDENTIFIER [ last name,first name]
END SET

END IEVEL

Figure 4.6: Information Level Fragment
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4.3 The access level

After the facts to be stored in the database have been declared,
the next step is to describe how they can be accessed. PRODD has

four primitive constructs for building a description of access structure:

the AVC
the A string
the C string

the L string

These four constructs make it possible to describe database access gstructure
as a combination of the fundamental methods of file organisation

previously explained in the context of files, records and fields. The
information-level view of a database consists of description sets,

entity descriptions and attribute values and those methods will now be

restated in these terms.

At the information level a database is a simple, unordered collection
of entity descriptions. Clearly, any particular description in the
database could be located by scanning all entity descrip;ions and
picking out the one having the specified attribute value or values.

Once again, this would be too slow for any database of reasonable size
and so some form of organisation must be introduced. All the methods

mentioned for records and fields can be applied equally well to entity
descriptions and attributes. A collection of entity descriptions

can be partitioned, restricted or ordered and individual descriptions

can be abbreviated to their identifiers or some other subset of their

attributes.

At the information level one thinks of a single stored instance
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of each attribute value. However, in using file organisation techniques

to speed up access, it may be necessary to store additional copies of

some attribute values. This leads to the concept of AV(Cs (attribute

value copies) and A strings (AVC strings) which declare them. The A string
construct can be used to describe the use of abbreviation as a means

of reducing search space volume.

Another construct exists to describe the organisation of collections
of entity descriptions using partitioning, restriction and ordering.
This is the CLﬁtring (collection string). Finally, there is a
construct to link various collections together, for example, a collection
of full descriptions to a collection of abbreviated ones, the latter
perhaps being further organised by partitioning or ordering. This is
the role of the'L_string (link string). These four constructs will
now be explained in detail using the PSA example as a common point of

reference.

A minimal access structure for a given information structure is
one which provides for exactly one instance of every unique fact presented
to the DBS for storage and exactly one access route to the representation
of each fact, An access route is a path beginning at a known starting
point. A minimal access structure is sufficient to perform any legitimate
operation request directed to the DBS. Hence a basic constraint on any
proposed access structure is that it contains a minimal access structure.
While this constraint guarantees that any legitimate operation request
can be correctly dealt with, it does not provide any assurance that
database access times are likely to be satisfactory. The access level
describes how the two basic techniques of redundant storage of facts
and multiple access paths are used to provide acceptable database access

times.
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An example of a fact in the PSA database is the year in which a
state was admitted to the Union. In the network realisation there is
exactly one instance of this fact, the value of the YEAR-ADMITTED data
item in the STATE record type. While this particular fact is only
recorded in one place, there are several paths to it from different known
starting points. For example, one path starts at ALL-STATES-SS and
can be followed to an individual STATE record occurrence which gives
access to all data item values stored therein including YEAR-ADMITTED.
The four access-level constructs will now be explained in detail using

the PSA example as a common point of reference.

4.3.1 The A string and AVC

The purpose of the A string is to declare the existence of
individual copies of the values of the attributes of a description set.
Since the access level is concerned with defining access paths along
which scanning can logically proceed, a definite ordering must exist.
Consequently, an A string defines a sequence of AVCs. It is said to
be over them and they under it. Over and under are similarly used when
referring to the other string constructs for organising collections of

access-level elements.

AVCs are said to cover the attributes for which they are value
copies. The minimal access structure constraint implies that every
attribute declared at the information level must have at least one
copy of its value, i.e. an AVC, declared at the access level. Thus the
first part of the minimal access requirement may be rephrased as "every

attribute must be covered".
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The A string and other strings are essentially type declarations.

Actually existing in the database are instances of those types. In the

case of A strings there 1s one potential instance for every distinct set

of values of the AVCs it defines*. The A string defines a logical path

along which the AVCs can be visited in the order of their declaration.

Figure 4.7 shows the access-level diagram for the PSA example with the

(ast _ name
first - name
* s native - State

-—-}1:1

— AVC
«+ link AVC
O A_string

Figure 4.7:

appropriate A strings and AVCs.

state_ name
. year. a&n\id,ec{

‘admﬁtmg-qdmm.

admin-A

/

admin-no
inaug- month
inaug - year
*9 pres. (ast-name
* ¢ pres-fiest —name

A strings and AVCs for the PSA Example

* Therefore, in order to have one A string instance for each description
in a description set, the set of attributes covered by the AVCs of the
A string must include at least one identifier.
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Two types of AVC appear in Figure 4.7, actual and link. There
is a third type, not shown,termed derived. The type of an AVC depends
on the role it plays in the access structure. The simplest type of AVC
is actual. This is the case in which existence of the AVC is simply

represented by physical storage of the appropriate value.

Derived AVCs declare the existence of attribute value copies
which are derived from the values of other attributes present in the
database. Derivation may be defined as simple copying of an AVC for
some other attribute or as the execution of a procedure taking AVCs as
arguments. There is a further choice between storing derived values or
rederiving them each time the AVC is accessed. That choice is relegated
to the encoding level. Derived AVCs are basically similar to the DBTG
notion of SOURCE and RESULT data items with the PRODD equivalent of

choosing between ACTUAL and VIRTUAL being left to the encoding level.

Link AVCs are neither physically present in the database nor
accessible for retrieval. Their function is to define the connections
to be made when building information-bearing access paths as a consequence
of update activity. They are necessary because all grouping and linking
of strings at the access level is defined in terms of AVC values, i.e.
on the basis of content. The value of a link AVC is defined in the

same way as for derived AVCs.

Figure 4.8 is a fragment of a PRODD access-level declaration of
A string <<pres_A>> which defines the AVCs covering all the attributes
of description set <<president DS>> (as shown in Figure 4.7) . An AVC
name is formed by concatenating the name of its defining A string with
the role name of the covered attribute and using ':' as a separator.

Every string declaration must list all strings defined ovexr the string
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A STRING pres A
OVER president DS
(  last name,
first name,
native state LINK
SOURCE IS state A:state name

)
UNDER president
END_STRING

Figure 4.8: 'A string Declaration

being declared. This makes extra checking by the translator possible
and forces the PRODD user to think more carefully about the structures
he is describing. This list is known as the UNDER entry and appears as
the last entry in the string declaration as in Figure 4.8. The string
<<president>> named there will be properly introduced in the following

sub-section describing C_strings.

4.3.2 The C string

The C_string is a powerful grouping construct which can define
various combinations of the category 1 file organigation methods. An
example will help motivate the presentation of the C string. Figure 4.9
depicts the set of all instances of A stringi<<admin/.A>>. There is one
instance of <<admin A>> for each administration entity which has had its
entity description recorded in the database. This is guaranteed by
the fact that one of its AVCs is <<admin no>> which covers the attribute
of the same name acting as an identifier of description set
<<administration DS>>. Some typical <<admin A>> instances are represented.
Each instance is a triple of three values: one for <<admin no>>, one for
<<inaug month>> and one for <<inaug year>>. These value triples are shown
in the diagram. Now suppose that for historical purposes one is interested

in all administrations inaugurated before 1960, that it is furthermore
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set of all instances
of collected string

collection defined by
—— ™ restriction predicate C_string <<historical_admins>>
< c¢ollects <<admin_A>> instances
restricted to
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partitioned on <<inaug_month>>
ordered on <<admin_no>>
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instances of
A_string <<admin A>>

Figure 4.9: C string Partitioning

desirable to group these historical administrations by month of
inauguration, and that within those groupings it would be convenient
to have administrations ordered by administration number. All this can

be accomplished with one C string.
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A C string can restrict, partitibn and order the instances of the
string over which it is defined, although not all of these.functions
need necessarily be exercised. All three functions are defined in
terms of accessible AVCs. An AVC, A, is accessible from a string, S,

v

if there exists a sequence of strings <Sl, Sar eees Sn>'(n>=l)

2

such that Si is over Si for i=1,...,n-1, S.,=S and Sn is an A string

+1 1

over A. Intuitively, an AVC is accessible from the A string which defines

it and thence from any higher level string(s) giving access to that A string.

The first thing a C_string declaration specifies is which string
it is defined over, i.e. of which string it is collecting instances.
In Figure 4.9 C_string <<historical admins>> has been declared over
A string <<admin_ A>>. The next point to be considered is whether all
instances of the string are to be collected or only a certain subset.
To this end a restriction predicate is provided. The restriction predicate
may be null, in which case all instances are collected. Alternatively,
a disjunctive normal form combination of comparisons on accessible
AVCs or a named function with accessible AVCs as actual parameters may
be used. In Figure 4.9 the restriction predicate is "RESTRICT ON
admin A:inaug year < 1960". This is an example of the simplest form

of a disjunctive normal form expression used as a restriction predicate.

After restriction the next function of a C string is to partition
the selected instances into equivalence classes. A list of accessible
AVCs is specified in the partitioning list. A Cartesian cross-product,
C, can be defined over the domains of the AVCs in the partitioning list.
Each element of C 1s then a distinct set of possible values for the
AVCs in the partitioning list. All instances of the collected string

with the same set of values for the partitioning list are grouped into
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an equivalence class represented.by the element of cross-product C with
that set of values. Not all-elements of the cross-~product will necessarily
represent a non-empty equivalence class at any one instance in the DBS's
lifetime. Partitioning thus declares a set of logical paths, each logical
path being a sequence connecting all the instances in one equivalence

class and identified by an element of C. Each such sequence is one
instance of the C string, with the number of C_string instances thereby
being equal to the number of non-empty equivalence classes. The

ordering which transforms an equivalence class (a set) into a sequence

is defined by the C string's ordering function described subsequently.

Figure 4.9 illustrates the effect of a partitioning list consisting
of the single AVC <<admin A:inaug month>>. Partitioning on <<admin A:
inaug month>>'results in twelve different equivalence classes and
therefore twelve instances of <<historical admins>> (one for each month
of the year). It is also possible to declare partitioning on the basis
of a function with an actual argument list of accessible AVCs. There
will be one equivalence class associated with each unique value in the
range of values returned by the function. Hashing to secondary storage
buckets is naturally described by function partitioning. Buckets are
equivalence classes represented by the integers in the range of the
hashing function. Assuming the ideal case of no overflow, a record is
placed in the bucket (equivalence class) identified by the result of
applying the hashing function to one or more of its field values. A
final possibility is that the partitioning list may be empty. This is
taken to mean that there is one equivalence class comprising the entire
collection and so only one instance of the C string. A C string with

an empty partitioning list is said to be null-partitioned.




6l

The C_string has been described as declaring a set of sequences
of instances of another string. The word "sequence" implies that an
ordering exists. This is because the function of strings is to define
access paths along which scanning can proceed and scanning is essentially
a sequential operation (at least for an individual processor). Further-
more, those access paths are going to be mapped onto linear address

space and some ordering will have to be used in performing that mapping.

An explicit ordering may be indicated by supplying a list of
accessible AVCs called the ordering List. Each sequence over the members
of an equivalence class is then ordered using the elements of the ordering
list as sort keys. For Figure 4.9 the ordering list is (admin A:admin no/a).
The '/A' indicates that the sequence is in ascending order by <<admin-no>>_
/D' after an AVC would specify descending ordering on that AVC. The
first element of the ordering list specifies the primary sort order,
the second the secondary sort order and so on. An empty ordering list
is used to indicate that no ordering based on key values exists. In
this case one of two possibilities can be specified: last in, first out
or first in, first out. A final alternative is to declare an ordering
opposite to that of another C string with an identical restriction
predicate and partitioning list. This option permits the description
of doubly linked lists or chains such as DBTG cosets with NEXT and

PRIOR pointers.

Figure 4.10 is an access-level fragment illustrating the
declaration of C string <<historical admins>>. The UNDER list has been

left unspecified, it not being relevant to this example.

The C string has one optional entry, the RING entry. It is assumed

by default that the sequence linking the members of each equivalence class
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C STRING historical admins
OVER .admin A
RESTRICT ON (admin A:inaug year < 1960)
PARTITION ON (admin A:inaug month)
ORDER ON (admin A:admin no/A)
UNDER ( . . . )

END_STRING

Figure 4.10: C string Declaration

is a one-~way linear structure and that when its end is reached no further
travel is possible. The ring entry exists to describe the case where
the last element of the sequence is connected to another string instance
producing a one-way circular structure instead. The RING entry can be
used to describe DBTG cosets where a coset occurrence is effectively a

circular linked list with the owner record occurrence as the list head.

Returning to the PSA example, it was observed earlier that
accessing a record occurrence gave access to two types of information:
1) its data item values and 2) coset linkages, i.e. the member occurrences
of any coset occurrences owned by that record occurrence. The first
type of information has been modelled by the A strings shown in Figure 4.7.
A C_string partitioned on AVC(s) can be used to model the second type.
For example, the grouping of PRESIDENT record occurrences into occurrences
of the coset NATIVE-SON can be modelled by defining a C string <<sons>>
over the A string <<pres A>> with partitioning on the link AVC
<<pres_A:native_state>>. Partitioning on a link AVC is here being used
to model an information-bearing coset. Two similarly defined C strings,
<<headed>> and <<admitted>$, model ADMINS-HEADED and ADMITTED-DURING.
The access-level view of the PSA network with these C strings included

is illustrated by Figure 4.11.
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Figure 4.11: C strings for the PSA ExXample

4.3.3 The L string

The idea of the L string is to establish links between individual
instances in different . collections of string instances which represent

information about the same entities. This is indicated by the fact
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that they provide access to AVCs with matching values. An L string is
defined over a sequence of strings of distinct type said to be Linked
by that L string. The linked strings are related by each having a list
of accessible AVCs, called ma?ching Zisté,with values drawn from domains
of the same type*. All matching lists must be of the same length. The
set of matching lists for all linked strings is known as the matching

eriterion for the L string.

An instance of an L string is a sequence of instances of the strings
over which it is defined, there being e#actly one instance of each linked
string in the sequence. Every instance in a particular sequence has
the same values for the AVCs in its matching list. For the sake of
gsimplicity at the encoding level, there is a constraint that the
matching lists must determine a 1:1 mapping between L string instances
and linked instances. In other words, for a given L string instance
there must be at most one instance of each linked string and every
instance of each linked string must only be eligible for inclusion

. . +
under at most one L string instance.

* The values must be drawn from domains of the same type in order that
meaningful comparisons can be made.

More formally, an L string, L, is defined over a sequence of other
strings <Si,S9,...,5n> such that n>=2, L#S; for i=1,2,...,n and no

Sj=Sk for j#k, 1<j, kxn. Furthermore, each §j has associated with it

a matching list MLi = (Aj1. Bior wver Ajp) where A;s is an AVC accessible
from S; for 1<j<m and m is constant for all i. The matching criterion
for L is the set {ML;, MLp,..., MLy}. Each instance LI of L is a

sequence S%I, Szl, ..., 8T such that MLy = ML2I = ... = MLnI where
MLiI = ML.T if the two lists are element-wise equal (i.e. Ay} = A
for k = 1? 2, ..., n). There is a further requirement that thergkbe a

partial 1:1 mapping between the L string instances and the linked string
instances. This constraint may be slightly relaxed in the case of a
two-element L string. Under certain encodings it will be sufficient if
the mapping between instances of the L string and the second linked string
is a partial function. This implies that each instance of a linked
string can be in at most one sequence, except instances of the second
linked string of a two-element L string which may be at the end of

several sequences provided that one of a restricted class of encodings

has been chosen.
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An example can be constructed by considering the building of
a secondary index on president first names. To do this an abbreviated
<<president DS>> description consisting of just the <<first name>>
attribute is defined by an A string called say <<name key>>. Instances
of <<name key>> cannot be directly linked to <<pres A>> instances with
the same value of <<first name>> because more than one president may
have the same first name, thereby violating the 1:1 mapping constraint.
The solution is to partition the <<pres A>> instances on <<first name>>
with a C string called <<same first name>>. Now <<name key>> instances
can be linked to <<same first name>> instances by an L string <<index-entry>>
matching on <<first name>>. It only remains to collect all the
<<index entry>> instances together with a C string <<first name index>>
and the secondary index is complete. Figure 4.12 is a diagram of the

structure just described.

Returning to the PSA example, there are two types of information
for each record type, data items and coset linkages. It has already been
explained how A strings can be used to model the data items and C strings
to model the coset linkages. Still to be demonstrated is how to link the
data item and coset linkage information for each record type. This

is done with an L string.

Two strings which have already been introduced for representing
information about presidents are A string <<pres A>> and C string
<<headed>>. Instances of <<pres A>> are uniquely identified by the
AVC list

(pres_A:last name, pres A:first name).
C string <<headed>> defines partitioning of the <<admin_ A>> instances
on_the partitioning list

(admin A:pres last name, admin A:pres_first name) .
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Figure 4.12: Secondary Index on President First Names

The underlying domains for both these lists are <<surname>> and

<<forename>>. Hence an L string defined over the séquence <pres_A, headed>

with matching criterion
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(pres_A :las t name, pres A: firs’t__name) =
(admin A:pres_last name, .admin A:pres first name)
will model access to the same types of information as the PRESIDENT

record type. Figure 4.13 illustrates this state of affairs. L string

| . admitted
SONS .

headed

(aat-r\ame. stqfen/\ame
~Lirst_ nane yeat_ adm! tted
4 0y attoe. stale o qdmifh'ng.,aimft\
~_ AVC adm(l\—t\o i
«« link AVC inaug _month :
A stri émug-gzar '+ 11
O -SULring P nres.. Laxt_l\ame
D C_string e pres. first_name :’ 1:n
/\ L_string

Figure 4.13: First Attempt at Modelling PRESIDENT Record
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<<president>> links instances of <<pres A>> (modelling PRESIDENT

data items) with instances of <<headed>> partitioning the instances of

<<admin A>> (modelling ADMINISTRATION data items) into groups headed by

a particular president. An example of the role of link AVCs can be seen

here. When a new <<admin A>> instance is added to the database, values

must be supplied for the link AVCs, <<pres last name>> and <<pres_first name>>,
in order that the DBS can select the correct equivalence class'corresponding
to an instance of C_string <<headed>>* in which to place the new

<<admin A>> instance. Once this has been done the values of the link

AVCs are equivalently represented by collection of the '<<admin A>>

instance under the appropriate <<headed>> instance.

However, this representation of the network record is not yet
accurate enough. Following an ADMINS-HEADED coset occurrence leads to a
set of ADMINISTRATION record occurrences, each in turn providing access
to a set of data item values and linkage to STATE record occurrences
through the ADMITTED-DURING coset. As presently defined, L string
<<president>> gives access to what corresponds to the set of AbMINISTRATION
data items (A string <<admin A>>), but not the the representation of
the ADMITTED-DURING coset linkage provided by C string <<admitted>>.

This difficulty can be resolved by introducing two more L strings,
<<administration>> and <<state>>, defined analogously to L string
<<president>>. C strings <<headed>>, <<admitted>> and <<sons>> are now
defined over L strings <<administration>>, <<state>> and <<president>>
respectively with the result shown in Figure 4.14. L string <<presidents>>
still links instances of A string <<pres A>> and C string <<headed>>

as before., The difference

E

<<headed>> partitions <<admin A>> instances on exactly those AVC values.
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Figure 4.14: 'L strings for the PSA Example

is that <<headed>> now collects instances of L string <<administration>>
which are pairings of <<admin A>> instances with C string <<admitted>>
instances. The coset linkage to STATE record occurrences defined by
ADMITTED~DURING is now correctly modelled by the link to <<admitted>>

through <<administration>>.
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As a further example, Figure 4.15 is an access-level fragment
declaring L_string <<president>>.
L STRING president
OVER (pres_A,headed)
MATCH ON ((pres A:last name,pres A:first . name) =
(admln A:pres_last name,admin A:pres first . name))
UNDER (sons, . . . )
END_STRING

Figure 4.15: L string Declaration

It is now possible to introduce the notion of identifiers for
étrings as an extension of the identifier concept for description sets.
A string identifier is thus a minimal set of AVCs accessible from a
string which uniquely identifies every instance of the string. The
partitioning list of a C string and the matching list of an L string*
are examples of string identifiers. A partitioning list is an identifier
by definition because there is at most one instance of a C string
corresponding to an element of the cross-product of the domains underlying
the AVCs in the partitioning list. A similar comment applie§ to matching

lists.

4.3.4 Key-access C strings and entry points

Figure 4.14 as it stands models all the positional access paths
in the PSA network. Modelling of entry points and associative access

paths remains to be described.

The two singular cosets, ALL-PRES-SS and ALL-STATES-SS, are

naturally modelled by two null-partitioned C strings, <<all pres 8S>>

* In the case of a two-element ,partial function 'L string the matching
list is an identifier of the first linked string only. However, there
will still be at least one identifier for the L _string, that being the
identifier of the first linked string.
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and <<all states SS>>. These are defined over L_strings <<president>>
and <<state>> respectively, collecting all instances (i.e. the restriction
predicate 1s null) and ordering them on their identifiers.'<<all_pres_§s>>
and <<all_§tates;ss>> are themselves linked together under an L string

<<gystem>> representing the system owner of singular sets.

A special type of C string, the key-access C string, is used in
describing the associative access paths provided by CALC location mode
for the PRESIDENT and STATE record types. Although LOCATION MODE CALC
is usually taken to imply hashing this is not a requirement of the DBTG
proposals [Date75]. What is required is that the implementor supply a
CALC procedure which accepts a CALC-key as input and produces an
appropriate database key as output. With this definition the CALC concept

is one of general key-to-address transformation or software content-addressing.

A similar concept is embodied in the key-access C string of PRODD.
The idea is that collected instances will be partitioned into equivalence
classes on the basis of a list of accessible AVCs, as for standard C strings.
This list is called a key—access list. However, when supplied with a
set of values for the key-access list the DBS will provide immediate access
to the beginning of the sequence linking the elements of the equivalence
class identified by that set of values. Key-access is declared to be either
primary, meaning the key-access list is an identifier for the collected
string and each equivalence class will contain one instance or be empty,
or secondary, in which case an equivalence class may hold zero to many
instances. The mechanism employed by the DBS to support immediate key-
access is not specified at the access level. This is done at the
encoding level instead, in accordance with the principle that the access

level deals: with the logical paths which exist and not with their
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realisation.

Returning to the desé¢ription of CALC location mode, primary
key-access 'C_strings <<pres C>> and <<state C>> are declared to model
CALC lécation mode for the PRESIDENT and STATE record types respectively.
Their key-access lists consist of the AVCs corresponding to the CALC-

keys of the two record types.

An access-level fragment declaring <<system>>, <<all pres SS>>

and <<pres C>> is illustrated in Figure 4.16. <<system>> and <<pres C>>

L STRING system
OVER (all pres SS,all states SS)
MATCH ON () Il.because children are l-instance
KNOWNPOINT

END STRING

C STRING all pres SS
OVER president
RESTRICT ON ()
PARTITION ON ()
ORDER ON (pres A:last name/A,pres A:first name/A)
UNDER system
END STRING

C_STRING pres C
OVER president
RESTRICT ON ()
PRIMARY KEY ACCESS ON (pres_A:last name,pres A:first name)
ORDER ON ()
KNOWNPOINT
END_STRING

Figure 4.16: Entry Point Strings

are declared as KNOWNPOINTs instead of providing an UNDER list as in the
earlier string declaration examples. A KNOWNPOINT is a known starting
point for access routes through the database. Therefore, only key-access
C strings or strings known to have just one instance can be declared as
KNOWNPOINTs.  The latter are termed I-imstance. A l-instance string

is either a null-partitioned C string or an L string defined over l-instance
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strings.

Aside from known starting points, there is another method of
locating a beginning for an access route. This is the scanning of all
instances of a given string looking for a match on accessible AVC
values. Thus any string (A, € or L) can be designated as a SEARCHPOINT,
meaning it can be the starting point of an access route where the
appropriate string instance will be located by sequential search. Every
DBTG record is effectively a SEARCHPOINT since one of the variants of
the FIND command permits scanning of all occurrences of a record type

within a specified AREA.

All access routes must start at a KNOWNPOINT or SEARCHPOINT
string instance. Hence such strings are collectively referred to as
entry points., In both cases there is a known algorithm for finding
a single instance of a string at which to begin traversal of the

access route.

Figure 4.17 presents a diagram of the complete network of strings
and AVCs modelling the access structure of the PSA example. A formal
PRODD description of access structure declares the strings and AVCs
corresponding to all fact instances and the logical access paths to

then.

4.3.5 String structure

A network like Figure 4.17 is called a string structure. It is

constructed from four primitives —- AVCs, A strings, C_strings and L strings

-— colleectively known as SSFs (string structure elements). A string may
be under several other strings, as are L _strings <<president>> and

<<state>> in Figure 4.17. AVCs are always under one string only, the
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A string which defines them. Strings declared to be KNOWNPOINTs are
not under any string. A string which is a SEARCHPOINT may or may not

be under another string or strings.

A string structure can be regarded as a directed graph and it is
often convenient to use terminology from graph theory in discussing one.
Most of the terms used in this dissertation are clearly defined in
[aho72]. Several terms not mentioned there are defined here. The
filial set, ¥, of a node, N, of a directed graph is the set of all direct
descendants'of N. N is a parent of each node in F. Each member of F is
a ¢child of N and a stbling of every other node in F. For the remainder
of this dissertation graph will be taken to mean directed graph unless

explicitly stated otherwise.

Considering a string structure in graph-theoretic terms, KNOWNPOINTs
are base nodes because, having no parents, their in-degree is zero. All
other strings are interior nodes and AVCs are leaf nodes. Accessibility
can now be easily defined for all SSEs. A SSE, B, is accessible from
another SSE, A, if there is a path of length zero or greater from A to

B.

The minimal access constraint was earlier expressed as "every fact
must have at least one instance in the database and every fact instance

must be reachable by at least one access route". In the section

discussing AVCs the first part of the constraint was rephrased as "every attribute

must be covered". The second part can now be rephrased as "every
AVC must be accessible from an entry point". The minimal access constraint
thus becomes "every attribute must be covered by at least one AVC and

every AVC must be accessible from at least one entry point”.
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In addition to satisfying the minimal access constraint, the further
requirement of connectivity.is demanded of a valid string structure,
A string structure is termed comnected if there is at least one entry
point and every SSE which is not an entry point is accessible from at least
one entry point. Figure 4.18 depicts two string structures represented as
graphs. Both have one base node and in both all leaves are accessible from

the base node. However, graph A is connected and graph B is not.

GRAPH A -~ "econnected"
C) base node'
/n/ ‘\\
// \
. . >, < ( Q\’
N /
~

GRAPH B -- "unconnected"
Figure 4.18: String Structure Connectivity

Connectivity could be established in graph B if one of the nodes in the
three node cycle encircled by a broken line were designated a SEARCHPOINT,
The point of the connectivity requirement is that it guarantees the

existence of an access route to .every SSE in the structure.
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4.4 . The encoding level

The function of the encoding level is to . define the bit-level
representation of the fact instances and logical access paths defined
at the encoding level. The encoded representations are thought of as
being stored in one or more virtual address spaces, themselves physically
located on the devices described by the hardware specification component

of PRODD.

The abovementioned virtual address spaces are called LASs (linear
address spaces). An LAS is an addressable stream of units of storage.
Description of an LAS first specifies which of the basic storage units
recognised by PRODD is to be the unit of space allocation within the LAS.
PRODD recognises three basic storage units: the bit, the byte and the word.
A byte is taken to be eight bits. The number of bits per word is included

as part of the hardware specification.

LAS units of storage are grouped into pages which are the logical
units of organisation for secondary storage accessing. The LAS descrip-
tion also specifies page size and whether deletion is logical or physical
(space reclaimed immediately). This is an LAS parameter because different
policies may be appropriate for different LASs depending on the update
activity directed at the data stored in an individual LAS. An LAS
description also gives percentage page fiil at database loading time.
Figure 4.19 illustrates the description of the one LAS for the PSA
example. Here the LAS is being used to approximate the DBTG concept
of AREA/REALM. The parameter values are from a typical EDMS database.

A separate component of PRODD, the SDM, defines the allocation of LASs

to physical devices.
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LAS presidential area
STORAGE_UNIT IS BYTE
PAGE SIZE IS 512 WORDS
DELETION IS PHYSICAL
PAGE FILL IS 65%

END LAS

Figure 4.19:. An LAS for the PSA Example

4.4.1 The BEU: Fundamentals

The encoding of SSEs (string and AVCs) is defined by means of a
single parameterised format, the BEU (basic encoding unit). There must
be one’BEU defined for every SSE declared at the access level with one
exception. Link AVCs do not require an encoding because their values
are not actually stored. It is assumed in PRODD that all instances of
a single SSE are placed in one LAS. This assumption made the initial
implementation of a prediction program easier but is not essential. It
could be removed later if it should prove unduly restrictive. Thus the
first part of a BEU is the LAS entry which names the LAS in which all

instances of that SSE are to be placed.

Strings have been described as giving access to other strings or to
AVCs. At the encoding level this means that an encoded string instance
identifies the start of an ordered collection or sequence. In PRODD
terminology this is the value of a string instance. The collection of
SSE instances is called a value sequence. The value sequences of A and
L strings are made up of a fixed number of SSE instances, one for each
SSE. in their filial sets. 'C string instances may have a variable number
of child instances in their wvalue sequences. The notion of value sequence
can be extended to AVCs by defining the value of an AVC to be the start
of a collection of storage units holding its Qalue. This collection may

be fixed or variable in number depending on whether the data value is
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stored in a fixed or variable-length field.

So the second point to be described by each BEU is where the start
ofai#SSE instance's value sequence is located. This is roughly equivalent
to Severance's intra-record connection describing the location of the
data portion of a record. By defining a CDG (contiguous data group) as
a group of SSE instances always stored or fetched together three
possibilities can be identified:

1. the value sequence may start in the same CDG
(Severance's direct connection)

2. the value sequence may start in the next CDG in
the same LAS

3. the value sequence may start in a randomly located CDG
in any LAS (Severance's indirect connection) .

The significance of the above classification is that:

1. means that no further accessing of secondary
storage is required to access the SSE instance or
storage unit which begins the value sequence

2. implies only a sequential access is needed

3. necessitates a time-~consuming random access

In each one of these cases a pointer field might exist to indicate the
exact location of the start of the value sequence. Therefore, in
addition to specifying one of same, next or any CDG, it is possible to

declare the existence of a value start field of fixed size.

In order to evaluate the performance of an operation request,
it is necessary to have some information about the length of access
routes. Hence the length of a value sequence, known as the value length,
must be indicated. A value length may be fixed, in which case the value
is supplied as part of the structural specification. On the other hand,

it may be variable with an average value supplied by the content
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specification component. It may be the case that a field exists to
record the value length. Therefore, it is possible to declare a value

length field of fixed size.

Figure 4.20 illustrates a partial BEU for the C_string <<headed>>
The I.AS and VALUE entries are shown. A VALUE entry has two sub-entries:
BEU FOR headed

LAS IS presidential area

.

VALUE START IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
LENGTH IS VARIABLE
END_BEU

Figure 4.20 Partial BEU Declaration

a START sub-entry giving the location of the first element of the
value sequence relative to its parent (SAMECDG, NEXTCDG or ANYCDG) and

a LENGTH sub-entry describing the length of the value sequence.

The string structure for the PSA example demonstrated that a

string might be under severél other strings and thus a single string
instance may be an element of several value sequences. Accordingly,
there is one NEXT entry for each value sequence in which the SSE instance
may appear. For each of these value sequences the associated NEXT entry
specifies where the next element of that value sequence is located. Here
is the approximate equivalent of Severance's inter-record connection
which describes the location of the next record in a record collection.
Normally there must be one NEXT entry for éach parent of the SSE*,
* It is optional in the case of the last stored element of an A or

'L _string, or in the case of the child of a C_string partitioned on

an identifier of the child string because in both cases they will
be the last or only element of their parent's value sequence.
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A NEXT entry provides the same details as the VALUE START sub-entry.

Figure 4.21 represents an approximate encoding-level description
of the network PSA example. At the top is a schematic representation
of a PRESIDENT record occurrence. It has fields for LAST-NAME and FIRST-
NAME plus a NEXT pointer for each of the two cosets of which it is a
menber and a FIRST pointer for the set occurrence which it owns. On the
left below is the section of the network string structure corresponding to
the PRESIDENT record type. It has been isolated from Figure 4.17.
Instances of the strings and AVCs shown on the left of Figure 4.21 make up

a CDG corresponding to the PRESIDENT record occurrence.

Below right in Figure 4.21 is a simplified version of a formal
encoding-level specification for the string structure diagrammed on the
left. All SSE instances are assigned to one LAS, <<presidential area>>,
corresponding to the DBTG REALM PRESIDENTIAL-AREA. The BEU for
<<pres_C>> is a special case because <<pres C>> is a key-access C string.
Tts VALUE START sub-entry must specify the mechanism to be used in
transforming key values into addresses. At present PRODD supports three
alternatives: hashing, indexing and binary search. In the case of
<<pres C>> the choice is hashing and the name of a hashing function is
supplied. The software specification component of PRODD will provide

details concerning the CPU cost of executing the hashing function.

The BEU for L string <<president>> declares the start of its value
sequence to be in the same CDG as the <<president>> instance with a
length fixed by its access-level definition. This will be two instances,
one for A string <<pres_A>> and a second for C string <<headed>>. It
also has two NEXT entries which declare the next elements in the value

sequences of C strings <<all pres S8S>> and <<sons>> to be in any CDG
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C | LAST-NAME

C | FIRST-NAME

\FIRST: ADMINS-HEADED

1 CDG

STRING STRUCTURE

headed

to L- str(v\g : ;

<¢administrationsy I
) ;
(asty.mame
Lirst - name
* *native_stale

ENCODING

LAS for all BEUsg is
presidential_area

BEU for pres C
VALUE is found by hashing
using DBS hash

BEU for president
VALUE is in same CDG with
length of 2 instances
NEXTs are in any CDG with
4 byte pointers

BEU for pres A
VALUE & NEXT in same CDG,
length is 3 instances

BEU for headed
VALUE is in any CDG with
4 byte pointer

BEU for pres_A:last“name
VALUE & NEXT in same CDG,
length is 10 bytes

BEU for pres_A:first_name
VALUE is in same CDG with
length of 10 bytes

Figure 4.21: Encoding Level Description of PRESIDENT record
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identified by a four byte pointer field. ‘A string <<pres_A>>“s BEU
declares its VALUE START as .being in the same CDG with a length again
fixed by its access level definition! this time as the number of AVCs
under <<pres A>>., It has a NEXT entry for the value sequence of its
one parent, L string <<president>>, defining the next element (an

instance of C string <<headed>>) to be in the same CDG.

BEUs for the other SSEs are constructed in a similar manner.

However, note that BEUs for C string <<headed>> and AVC <<pres_A:first name>>

do not have a NEXT entry because they are the last encoded elements

of L and A strings respectively (link AVCs such as <<pres A:native state>>

not being encoded). Note also that the VALUE LENGTHs for AVCs <<last name>>

and <<first name>> are in terms of storage units, in this case bytes,

instead of SSE instances as for strings.

4.4.2 ~ Optional BEU entries

There is one BEU entry reserved for derived AVCs which must be the
first entry when present. The DERIVATION entry declares one of three
options for the computation and storage of a derived AVC's value.
Derivation may be Zmmediate meaning that whenever the value of an SSE
instance on which derivation is based is changed the derived value is
immediately recomputed. I2layed derivation means that recomputation of
the derived value is delayed until it i1s accessed. In both cases the
derived value is physically stored. VZrtugl derivation means that the
derived value is recomputed upon each access and therefore is not

actually stored between accesses.,

It is well-known that one of the crucial factors affecting

performance is clustering of related records on the same page so as to




84

reduce the .number of secondary‘storage accesses required in processing
them sequentially. Consequently, many DBMSs have a facility which enables
a database designer to specify a placement strategy to exploit this kind
of physical organisation. An example can be seen in the DBTG VIA location
mode which is usually implemented so that the DBMS tries to store the
members of a set occurrence near the owner record, preferably on the

same page [Bake75]. Another example is found in System R [astr76] where
images (indices) and binary links (equivalent to DBTG cosets with

manual membership) may be declared to have the clustering property.

PRODD provides for description of the use of such a facility by
means of the CLUSTER entry of a BEU. Instances of a SSE may be declared
to be clustered with respect to the value sequence of at most one
of the SSE's parents. That value sequence must be connected by pointers
since it does not make sense to refer to clustering of SSE instances
already related by contiguity. In the PSA example the BEU for L string
<<administration>> would declare clustering under C string <<headed>> to
model the fact that the ADMINISTRATION record has LOCATION MODE VIA the

coset ADMINS-HEADED.

There are several other BEU entries which enable a more exact
modelling of the encoding of access structure in a particular DBS. The
first is the notion of labelling. A BEU for a SSE may declare labelling,
meaning that every instance will be prefixed by a label field identifying
its SSE type*. The LABEL entry declares the size of the label field. If
an LAS is to be processed sequentially then at least some of the SSE
instances will have to be labelled so that the stream of storage units

can be correctly interpreted as distinct SSE instances. Declaring labelling

is also a convenient mechanism for representing the existence of other

* Labelling is compulsory for SEARCHPOINT strings.
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DBS control information. Having mentioned labelling, the average size

of an SSE instance can now .be defined as the sum of the size of the LABEL
field, the VALUE START and VALUE LENGTH fields, and any NEXT pointer fields.
If any of these fields have not been specified their size will be reckoned

as zero for this calculation.

In order to aid the PRODD translator in identifying the membership
of CDGs and in carrying out various semantic checks, the concept of a
CDGHEAD has been introduced. An SSE is a CDGHEAD if its instances are
first in (at the head of) the CDGs in which they are placed. All

CDGHEADs must be declared as such by their BEUs.

There is an optional entry for describing alignment to permit
precise estimation of space usage. Each LAS declares the basic storage
unit used in defining encoding and space allocation within that LAS.

All BEUs for SSEs assigned to that LAS must specify field sizes in terms

of that storage unit or multiples of it. By default an SSE instance is
assumed to be aligned on the basic storage unit of the LAS to which it

is assigned. The ALIGN entry permits the specification of alignment on

some larger storage unit. Looking at Figure 4.21 the storage‘unit for

LAS <<presidential area>> was declared to be the byte and all SSE

instances except those of L string <<president>> would be considered to

be aligned on byte boundaries by default. The BEU for <<president>> however,
declares word alignment because in many DBMSs, EDMS in particular, record

occurrences are constrained to begin and end on word boundaries.

The use of compression is described by another optional entry. A
sub-sequence of the value sequence of an A string can be designated as a
compression sequence. One AVC is nominated as the COMPRESSIONHEAD. Its

BEU names the compression and decompression functions and defines the
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length of the compressed sequence in the standard way. All other AVCs
in the compression sequence specify compression under the. COMPRESSIONHEAD
in lieu of the usual NEXT entry. Their VALUE entries must specify VALUE
START in the same CDG while VALUE LENGTH. is used to indicate the
uncompressed length of rtheir wvalue sequences. When route costing is
being carried out, the entire compression sequence is considered
decompressed when the COMPRESSIONHEAD is reached and so other AVCs in

the compression sequence can be visited without further cost.

As a final example, Figure 4.22 presents a complete BEU for the

L string <<president>>.

BEU FOR president
LAS IS presidential area
ALIGN ON WORD
LABEL IS FIELD OF 3 BYTES

NEXT UNDER all pres SS
IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
NEXT UNDER sons
IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
VALUE
START IS IN SAMECDG
LENGTH IS FIXED BY DEFN

IN FIELD OF 1 BYTE
END BEU

Figure 4.22: BEU for L string <<president>>
Table 4.1 summarises the various BEU entries and their functions.
They appear in the same order as in an actual BEU declaration.

Three primitive constructs for describing encoding structure have

now been introduced:
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entry name optional/ . function
compulsoxry -
DERIVATION only for required and allowed only for derived
derived AVCs: specifies whether derivation is
AVCs immediate, delayed or virtual
LAS compulsory names LAS in which SSE instances are
to be placed
CDGHEAD optional declares this BEU as a CDGHEAD
ALIGN optional declares unit of storage on which SSE
instances are to be aligned
LABEL optional declares a label field of fixed size
COMPRESSION optional declares this BEU as the head of a
HEAD compression segquence
COMPRESSED optional declares this BEU to be in the
UNDER sse compression sequence headed by sse
NEXT one for specifies location of next element in
UNDER each parent's value sequence; optionally
parent parent SSE may specify a fixed-size pointer field
CLUSTER optional, specifies SSE instances are stored
UNDER one parent "near" the previous element in the
parent only parent's value sequence
VALUE compulsory specifies location of first element
START of SSE's value sequence; optionally
may specify a fixed-size pointer field
VALUE compulsory specifies length of SSE value sequence;
LENGTH optionally may specify a fixed-size
length field ~
Table 4.1: BEU Entries
the LAS
. the BEU
the CDG

A formal PRODD encoding-level specification consists of the declaration

of all LASs in which SSE instances can be placed followed by one BEU for
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each SSE defined at the encoding level (excepting link AVCs).

4.4.3 Factoring of control information

In the encoding-level examples presented earlier certain SSEs
had constants for the values of some of their BEU entries. Examples
have included VALUE START in same CDG or VALUE LENGTH fixed by
definition. In such cases it is usual to record the information
in some kind of system catalogue rather than in the data stream.
This is called factoring. The more regular the access structure,
the more factoring is possible. In cases of great structural
regularity, such as a sequential file of fixed-length records,
all the structural connections are represented by contiguity and
hence are factored. Only the actual data values appear in the
data stream. In general, the amount of storage consumed by control
information can be estimated by noting that only the value sequences
of AVCs represent pure data; all storage devoted to LABEL fields,
NEXT and VALUE pointer fields and LENGTH fields represents the

access structure governing access to that data.

4.5 The relationship between DIAM and PRODD

The PRODD information level is a merging of concepts from the DIAM
entity set level, Codd's relational model [Codd70] and Mealey's ideas
about the nature of data [Meal67]. The access level is a rationalised
and more powerful version of the DIAM string level based on the analysis
of file organisation methods in the previous chapter. The notions of
AVCs and the possibility of derived data values, entry points and access

routes, the minimal access constraint and string structure connectivity
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were introduced by the author, as was the terminology of over, under and
covering used in describing access structure. The PRODD C string only
bears a limited resemblance to the DIAM'E string which is why it was
renamed. PRODD A strings and L strings are more rigorously defined than
their DIAM counterparts. The PRODD encoding level only superficially
resembles the DIAM encoding level which has been systematically overhauled
following the analysis of the details necessary for analytic performance
prediction presented in chapter 3. DIAM's encoding level seems

primarily designed to allow a precise description of storage structure
down to fine details such as the bit pattern stored in a particular field
of the last record in a chain to mark its end. Thus, although the LAS,
BEU and CDG have kept their DIAM names because their broad conceptual
functions are the same, the way in which they are used is quite different.
Finally, a complete language and formal syntax for describing database
structures with PRODD have been developed, something which was never done

for DIAM.

This chapter has demonstrated how database structure can be
described with considerable precision through the use of a small number
of general and powerful primitive constructs. It has been shown in detail
how database structure defines what facts exist in a database and how
their representations are to be accessed and encoded. The next»chapter,
chpater 5, discusses the four components of PRODD which provide the
details necessary to cost operation request performance. Chapter 6 then
explains how operation requests are actually described in PRODD and how

that description is used to estimate database access time.
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5. CONTEXT SPECIFICATION

Structural specification was earlier likened to providing a map of
a database. Such a map is adequate in an abstract algorithmic sense;
it defines whether or not a particular type of fact can be found in the
database and how to go about accessing instances of it. However, it is
like a map without scale, one on which all cities are represented as
being equidistant and of equal size and all roads as being of the same
standard. Before total storage requirements can be estimated and the
travelling of access routes costed, it will be necessary to place a
description of database structure within the context of a particular DBS
implementation. There are four components of PRODD used in context

placement:

. content specification

. software specification

. hardware specification

. SDM (Structure-Device Mapping) specification

These will be discussed in turn.

5.1 Content specification

As mentioned in chapter 3, database content is specified separately
from structure in order to allow for changes in the number of facts
stored in a database. It is possible to imagine a completely static
database in which no update activity occurs after its initial loading,
but this would seem to be the exception rather than the rule. The contents
of a static database could be specified in the course of structural
description by declaring all value sequences to be of fixed length and

providing a constant or average length as appropriate. The static
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case is thus easily dealt with and will not be further discussed.

PRODD provides for the description of dynamic database content
by allowing variable-length value sequences to be specified for C_strings
and AVCs. Supplying an average length for every value sequence of variable
length has the effect of fixing database content at some instant in
time. Depending on the database's volatility this will be a . reasonable
approximation to reality for an interval of greater or lesser duration:
If volatility is high, it will be short. If volatility is low, it will

be relatively long.

These ideas suggest that it would be desirable to specify a
database's contents at a number of different times so as to be able to
evaluate the effect of database growth on performance and storage
requirements. This is the approach adopted in PRODD. Database content
is declared to be described at a number of points in a database's

lifetime known as evaluation points.

The first evaluation point is conventionally at the time of initial
pbulk loading of the database. It is called the loading point. Other
evaluation points are numbered 1,2,.... The lengths of value sequences
are defined in térms of the average number of collected instances per
equivalence class in the case of C strings and the average number of
units of storage per data value in the case of AVCs. The values at the.
loading point are known as loading values. Subsequent evaluation points
may be defined in the same manner or, alternatively, in terms of
percentage increases/decreases from previous evaluation points, whichever
is more convenient. If percentage changes are used they may be specified
as being with respect to the initial loading values or to those computed

for the previous evaluation point.
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A partial demonstration of content specification for the PSA
example should help to clarify these ideas. If it is imagined that the
database became operational just after the 1956 presidential elections,
then at loading time there would have been 50 states, 50 administrations
and 33 presidents (Eisenhower was the 33rd president and his 1956-59
texrm of office the 50th administration). Now suppose evaluation points
are fixed at just after the 1976 and 1996 elections. In 1976 Carter
became the 38th president and his 1976 administration the 57th. Assuming
a similar increase in the number of presidents and administrations over
the following twenty years, by 1996 there will have been 43 presidents and
64 administrations. The number of states can reasonably be assumed to

remain constant. Table 5.1 presents the above figures in tabular form.

year number of number of number of
presidents states administrations
1956 33 50 50
1976 38 50 57
1996% 43 50 64
% change
per 20 yrs. +15.15% +0.0% +14.0%
(1956 base)

* 1996 figures estimated assuming same rate of growth
as 1956 - 1976.

Table 5.1: PSA Occurrence Figures

Figure 5.1 illustrates the content specification for strings
<<all pres 8§8>>, <<headed>> and <<sons>>, all of which have variable-
length value sequences. First the number of evaluation points after

loading is indicated. Next is the specification for <<all pres_SS>
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CONTENT SPECIFICATION  PSA_1965_to_1996
EVALUATION POINT OCCURS 2 TIMES

VALUE LENGTH

FOR all pres SS
AT TOADING IS 33.0 INSTANCES
AT EVALUATION POINT 1 IS + 15.15% FROM LOADING
- 2 IS + 30.30% FROM LOADING
END FOR
FOR headed
AT TOADING IS 1.52 INSTANCES
AT EVALUATION POINT 1 IS 1.5 INSTANCES
: - 2 IS 1.49 INSTANCES
END FOR
FOR sons
AT LOADING IS .66 INSTANCES
AT EVALUATION POINT 1 IS + 15.15% FROM LOADING

2 IS + 30.30% FROM LOADING
END FOR

e

Figure 5.1:; Content Specification

which is the simplest. From 1956 to 1976 there was an increase of 5

in the number of presidents or a change of +15.15%. Under the assumption
of an equal increase over the following 20 years the value of evaluation
point 2 (1996) will be up 30.30% from the initial loading value.

The calculations for <<headed>> and <<sons>> are slightly more
complex? At loading time there were 33 presidents and 50 adminsitrations.
Therefore, on average there were 1.52 administrations per president.

At evaluation point 1 this has fallen to 1.5 and to.1.49 by evaluation
point 2. The figures for <<sons>> depends on the ratio of presidents
to states. At loading time there were 33 presidents and 50 states

and thus an average of 0.66 presidents per state. Since the number

of states is constant, the percentage change in value lengths for instances
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of the C string <<sons>> will'.be exactly proportional to that for
C string <<all pres SS>>. Therefore, evaluation points 1 and 2 can
be fixed without further calculation at increases of 15.15% and 30.30%

from loading respectively.

Once value sequence lengths have been specified for all strings,
either as fixed at the encoding level or as variable with a set of
values provided by content specification, database content is almost
fully described. One small loophole remains, however. This arises in

some cases concerning SEARCHPOINT strings.

Generally, all SSEs are either known to be under other strings or
to be l-instance KNOWNPOINTS. In the first case, the number of SSE
instances can be estimated from the information about the length of their
parent's value sequences. In the second, the number of instanceg is
known to be one by definition. However, for a string which is a SEARCHPOINT
and which has no parents neither of these considerations apply.
Congequently, there is a second optional section of content specification
which is used to indicate the number of instances of such strings at
each evaluation point. The form for doing so is exactly the same as for
specifying value lengths. Figure 5.2 presents a fragment illustrating

this for L string <<president>>. Strictly speaking this would be

SEARCHPOINT COUNT
FOR president
AT LOADING IS 33.0 INSTANCES
AT EVALUATION POINT 1 IS + 15.15% FROM LOADING
2 IS + 30.30% FROM LOADING

END_FOR

Figure 5.2: Searchpoint Counts
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unnecessary since the number of instances of <<president>> can be
estimated from the length of the value sequence for C string <<all_pres_ SS5>>
which collects all instances of L string <<president>>. However, it is

included for the sake of illustration.

A complete content specification thus guarantees two things: a
value is known for the (average) length of every SSE instance's value
sequence and for the number of instancgs of every entry point. Using
these figures, an estimate of the number of instances of every SSE at
each evaluation point can be computed. Once this stage has been reached,
it is possible to estimate the volume of SSE instances since their

average size will be known from the structural specification.

There is one minor complication remaining before LAS volumes can be
computed. If logical deletion is specified for an LAS, an estimate of
dead space at each evaluation point must be supplied. Since a BEU
assigns all instances of an'SSE to one LAS, the volume of live data in
each LAS can be estimated. The number of pages which must be allocated
to achieve the specified initial page fill factor can also be calculated.
The volume figures are computed at every evaluation point (taking dead
space into account if appropriate) and then printed for each LAS. A
warning can be issued if projected volume at any evaluation point would
overflow the initial page allocation determined by the loading volume and
initial page £ill factor. Page fill factors can be calculated for all

other evaluation points and used to estimate page overflow probabilities.

Implementation of the PRODD model in a prediction program revealed
an oversight in the scheme described in the preceding paragraphs. It
becameclear that it was necessary to distinguish between two values for

the "average length of a value.sequence", these being 1) an unweighted
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average taken over all instances of the string in the database, and 2)

a weighted average reflecting the frequency of accesses to the different

instances of a string. If all instances of a string are accessed with

equal probability then these two are the same. This is not always the

case,as is described in more detail in chapter 7 where experience

with using the prediction program is discussed. If a difference does

exist then 1) must be used in estimating storage requirements and 2)

in costing access routes. The content specification component was

accordingly extended to allow specification of both 1) and 2).

5.2 Software specification

The purpose of software specification is to give approximate CPU

costs for some of the basic functions provided by the sdftware with

which a DBS has been implemented. These functions are introduced in a

number of places at the access and encoding levels:

1.

C string selection may be defined as the result
of a procedure.

C string partitioning may be defined as the
result of a function.

the value of a link or derived AVC may be defined
as the result of a function.

if the method chosen to support key access is
hashing, then the name of a hashing function must be
supplied.

if compression 1s specified then the names of
compression and decompression procedures must be
supplied.

The role of software specification is to supply approximate timings

for the procedures which have been named as performing those functions.

A procedure timing is expressed in terms of two components:’a
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fixed overhead for every procedure call and a variable overhead depending
on the combined length in bytes of all arguments of the procedure call.
Either, but not both, of these components may be zero. This formulation
has been found satisfactory for describing procedures such as hashing or
compression routines; it is certainly not claimed to be suitable for

characterising the execution time of procedures in general.

Figure 5.3 illustrates the specification of a procedure timing
for the function DBS hash introduced in Chapter 4. DBS_hash was declared

as the hashing function used in finding the start of value sequences for

SOFTWARE_SPECIFICATION EDMS_functions
PROCEDURE DBS_hash
TIMING IS 129.2 uSEC

+ 16.0 uSEC PER BYTE
END PROCEDURE

Figure 5.3: Procedure Timing

C string <<pres_ C>>, <<pres_C>> having been declared to model location
mode CALC for the PRESIDENT recoxd type. The figures used here were

obtained by hand-timing of the assembly code for the standard hashing

function of EDMS [Xero73].

5.3 Hardware specification-

The PRODD component for hardware specification characterises the
CPU and storage devices on which a DBS runs. Limited particulars of
CPU performance and architecture are supplied for use in estimating
CPU overheads. Details of device performanbe and capacity define

average secondary storage access times under various conditions.
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5.3/1 CPU description

A CPU is described in a simple fashion by four parameters. These

are:

the number of bits per byte
the number of bits per word

the time to perform a one byte comparison
(operands in store)

the time to copy one byte from one store location

to another
Byte size and word size are used to calculate storage requirements
expressed in bytes. Byte comparison and copying times are used in
calculating CPU overheads for operations such as index searching,
binary search and transferring data between application program and

DBS buffers.

Figure 5.4 illustrates the description of the Xerox Sigma 6 CPU

[Xero71]. The first line of text is the declaration of a hardware

HARDWARE SPECIFICATION Xerox Sigma6_configuration

CPU
BYTE IS 8 BITS
WORD IS 32 BITS
COMPARISON IS 8.5 uSEC PER BYTE
COPYING IS 7.4 uSEC PER BYTE
END_CPU

Figure 5.4: CPU Description

specification component, the first element of which is a CPU description.
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5.3.2 < The transducer-surface model

The description of  storage devices in PRODD is based on an abstract

view of such devices called the transducer-surface model. This model
has been formulated with two objectives in mind: 1) to capture only
those details relevant to first~order performance prediction and 2) to

embrace as wide a range of secondary storage devices as possible.

The transducer-surface model pictures a device as one read/write
transducer operating over a single surface of some storage medium.
The surface is divi@ed into strips of width determined by the resolution
characteristics of the transducer. Operation of the device is imagined
to proceed as follows. The transducer can be positioned over any strip
and then a known point on that strip brought into position under the
transducer. After positioning, data can be read from or written to a
section of the strip. By convention the transducer is considered to
move across strips and the surface is considered to move under the
transducer once it has been positioned over a particular strip. However,
as far as the actual device being described is concerned, only one of
the two may move or there may be no macroscopic movement at all. Figure

5.5 shows a schematic representation of the idealised device.

Secondary storage accessing time can now be seen to have three

components:

. transducer positioning time or 8seek time
. surface positioning time or latency time
. data read/write time or transfer time
Seek time and latency time together make up positioning time, the delay

incurred before data transfer can begin.
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Figure 5.5: The Transducer-Surface Model

Two groupiﬁgs of units of secondary storage follow naturally
from the above model. The first is the block, here defined to be the
minimum number of units of storage that can be read or written in one
physical operation. The second is the tfack, defined as the maximum
number of units of storage accessible once the transducer has been
positioned over a certain strip. A track is usually equivalent to one
strip. In this model a track always comprises an integral number of

blocks and a device an integral number of tracks.

As mentioned in chapter 1, database accesses conceptually fall
into two categories: associative and positional. An associative access

is one in which an entity description is located through supplying a
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value for one of its identifiers whereas a positional access addresses the
next description in some sequence. At the hardware levelkthis division

is continued with two modes of physical access: random and sequential.
Random access is taken to mean the accessing of a block of known address
starting from a random positioning of transducer and surface. Sequential
acceess is understood to mean the accessing of the next block relative to

the current positioning of transducer and surface.

The above classification suggests that there are two types of
positioning, random and sequential. A random positioning is considered
to consist of a random seek and a random latency delay. For the
purposes of modelling, the time for those two operations will be represented
by the average random seek and latency times respectively. Sequential
positioning will normally incur one sequential latency delay. However,
in the case where the next block is in a different track, it is considered
to consist of a sequential seek plus a random latency delay. This
convention was suggested by Yao [Yao77al. It is based on the assumption
that one sequential seek is made to position the transducer over the
next track followed by one random latency delay in positioning the first
block of the track under the transducer. Thus, the other two relevant
parameters for estimating positioning time are the averages sequential,

seek and latency times.

Transfer time is determined by a combination of the time required
to read or write one block, known as block transfer time, and the seek
and latency times for the device concerned. Table 5.2 defines the
calculation of transfer time for a contiguous sequence of b blocks
where b is greater than or equal to 1 and less than the total number

of blocks on the device.
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b=1, i.e. the amount of transfer time is:
data to be transferred is 1l*(block transfer time)
<= one block

b>1, but all blocks are in transfer time is:
the same track b* (block transfer time) +
(b-1) * (sequential latency time)

b>1 and the b blocks lie in transfer time is:

T>1 tracks b*(block transfer time) +
(T-1) * (sequential seek time) +
(T-1) * (random latency time) +
(b-T) * (sequential latency time)

Table 5.2: Transfer Times for Block Sequences

It has been found‘useful to introduce a second category of
sequential latency delay in connection with devices having substantial
latency times. Consider the problem of estimating secondary storage
access time for the retrieval of a record stored by hashing with linear
probing. This will consist of 6ne primary access to the home bucket and
a number (possibly zero) of secondary accesses to overflow buckets. The
primary access can be modelled accurately enough as random. However,
if latency time is large, CPU time to seaxch a bucket is small and the
device is a rotating one, then the latency delay between secondary accesses
will be much closer to the maximum than the average. With a moving-head
disc this can mean a difference of as much as 10-15 msec. which is too
much to ignore. Accordingly, a second type of latency delay is defined,

known as secondary latency, to deal with the above class of accesses.

When a device is being used for random accessing of relatively small
amounts of data (relative to total device capacity) seek time becomes
the dominant component of access time. Attempts to reduce seek time
overhead can be observed in two common storage devices: moving-head

and fixed~head discs. In the terminology of the transducer-surface
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model a moving-head disc has multiple surfaces with one transducer per
surface. The transducers move together so that they are always positioned
over the same strip of theilr respective surfaces. The advantage of this
arrangement is that the number of units of storage accessible from one
transducer positioning has now been increased by a factor of m, m being
the number of surfaces. Consequently, the seek time overhead can be shared
among a larger volume of data than was the case with only one surface.

In terms of the transducer-surface model, track size has been increased
m-fold without paying any penalty in increased random latency time. A
more expensive solution with higher performance is represented by the
fixed-head disc. There one transducer is allocated per strip thereby

eliminating seek time altogether.

A wide range of devices may be approximately described with
the transducer-surface model by:
1. allowing zero values for seek time and/or latency
time
2. allowing a track to contain exactly one block
with the possibility that blocks may be only one
unit of storage.

Table 5.3 illustrates the classification of a number of classes of

storage devices in terms of the model.

device no. of no. of no. of seek latency

v transducers tracks | surfaces time time
tape drive 1 1 1 no yes
moving-head disc m n m yes yes
fixed-head disc oxr n n 1 no yes
drum
bubble memory 1 n 1 no yes '
(major/minor loop)
EBAM 1 n 1 ves no
(block addressed)
RAM word size 1 1 no no

Table 5.3: Storage Device Classification
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type description

Hardware
present in the

type of device

specification does not identify the individual devices
secondary storage configuration. A description of each

in terms of the transducer-surface model and a declaration

of how many devices ofeach type are available online was judged adequate

for the purposes of first-order prediction. It also simplifies the

preparation of

a complete DBS description.

As an example of the application of the transducer-surface model to

device description, Figure 5.6 shows the specification for the Xerox

RXD-71 disc unit. The RXD-71 has 400 cylinders of 20 surfaces, with a

surface consisting of tracks of 3 blocks of 512 words (2048 bytes)

DEVICE TYPE RXD 71

OCCURS

DEVICE
TRACK
BLOCK

3 TIMES

IS 400 TRACKS
IS 60 BLOCKS Il a cylinder
IS 512 WORDS

BLOCK_TRANSFER TIME IS 8.3 mSEC

SEEK TIME
SEQUENTIAL IS 7.5 mSEC
RANDOM IS 29.0 mSEC

LATENCY TIME
SEQUENTIAL IS 0.0 mSEC
SECONDARY IS 25.0 mSEC
RANDOM IS 12.5 mSEC

END DEVICE

Figure 5.6: The RXD-71 Moving-Head Disc

each. It rotates at 2400 rpm. Notice that track size has been set to

cylinder size since all blocks in one cylinder can be accessed without

head movement.

The phrase "OCCURS 3 TIMES" indicates that the online

configuration includes three devices of this type.
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5.4 ~ SDM specification

After the hardware configuration has been described, it remains
to define the mapping of LASs to the devices of that configuration.
This mapping serves to bind LASs to actual devices so that real-time

estimates of secondary storage access times can be made.

The actual mapping specified by a PRODD SDM component is not
very detailed. It does not go beyond indicating which type of device
a particular LAS is stored on. More detailed mappings in which an
actual address range on a particular device is specified can be imagined,
as in Senko et. al.'s Physical Device Level [Senk73], but were judged
unnecessary for the goals of the PRODD model. At the level of detail
chosen for PRODD, the structure-device mapping might be more accurately

termed a structure-device type mapping.

Figure 5.7 is a PRODD fragment detGlaring the SDM component for the
PSA example. This consists of just one entry because the example makes

use of only one LAS. In general there would be one entry for every LAS

SDM SPECIFICATION PSA realm
LAS presidential area IS ON DEVICE_TYPE RXD 71

END SPECIFICATION

Figure 5.7: Structure-Device Mapping

declared at the encoding level.

Using the figures generated for maximum LAS size, the total storage
requirement for a device type can be calculated at each evaluation point

and a warning given if it exceeds that available. The available online
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storage capacity for each type is taken to be the product of the number
of devices of that type times the individual capacity; both these

figures are provided by the hardware specification component.
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6. ACTIVITY SPECIFICATION AND EVALUATION

The components of PRODD discussed in the last two chapters serve
to characterise a DBS in a passive sense. They describe how it is put
together, how big it is, what devices it is stored on and how Long
it takes to perform certain basic functions. But they do not provide
any information about how it is used. This is the role of activity
specification and is discussed in the first two sections of this chapter.
The third section explains how the description of database usage
provided by activity specification is processed to yield estimates of

database access time.

6.1 The activity set

In chapter 3 a "black box" view of a DBS (c.f. Figure 3.1) was
introduced in which a DBS was seen as responding to four classes of
operation request, namely, retrieval, modification, insertion and
deletion. A natural consequence of this view is to describe the
usage of a DBS in terms of a representative set of operation requests

called an activity set.

The first problem to be faced is how to determine the activity
set. Chapter 3 proposed a classification of operation requests as
either routine or non-routine. Routine operation requests clearly
ought to be included in the activity set. It remains only to choose
a suitable way of indicating their relative significance as components
of DBS activity. The solution adopted with PRODD is to assign a weight-
ing to each operation request in the activity set. The sum of the
weightings should be one. Normally the weighting would be the number

of times a particular request occurred within a representative period
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of time expressed as a fraction of the total number of operation

request occurrences within that period.

Non-routine operation requests present a more difficult problem.
It is possible to devise schemes for their generation based on statistical
descriptions of the frequency with which requests of the four different
classes occur and the likelihood of accessing different types of facts.
A strategy of this kind was used for query generation in the Martin
Marietta simulator described in Chapter 2. Since the research described
here is aimed at DBSs in which routine operation requests predominate,
it will be assumed that the contribution of non-routine ones to overall
activity is minimal and hence can be ignored for practical purposes.
Accordingly, at this time no method of including them in the activity

set has been implemented..

6.2 Specification of routine operation requests

Activity specification has now been reduced to the problem of
describing an activity set made up of routine operation requests. The
idea of weighting operation requests in accordance with their frequency
of occurrence has already been introduced. The next requirement is a
method for specifying individual operation requests. The one described
here has been designed with the primary objective of making it easy to

get an experimental prediction program off the ground..

A major simplification was not to include any path selection or
route finding capability in the program. Instead the specification
for each operation request fully defines the elements of the access
structure which must be visited to carry out the operation request.

This decision is further justified by the fact that the method used for
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path selection various from DBS to DBS and is generally a complex
algorithm. Therefore, the only practicable way of describing path
selection in a general fashion would be procedural modelling, something

which the PRODD model explicitly seeks to avoid.

As mentioned in chapter 3, the performancg of an operation request
can be thought of as following a route through the database. The route
begins at some known starting point and leads to the representations
of the relevant facts. The cost of following this route in terms of
database access time has been adopted as the metric of DBS performance.
Thus a natural and convenient way to specify an operation reguest is

+o describe the route followed in its execution.

6.2.1 Route following and pre-order visiting

A route must begin at some known starting point, i.e. one of the
entry points of the access structure. From there one or more of its
children may be visited. Looking at the database at the access level,
this means that the path from an entry point string may be followed to
one or more of its child SSEs. In turn any of their children may be

visited and so on recursively.

Route following can be described as partial pre-order visiting
of a section of the string structure graph. Pre-order visiting of an
ordered graph may be recursively defined in a manner analogous to the
definition of pre-order traversal of trees. For each node visited,
process the node itself and then visit each child in turn. Partial
pre-order visiting means that not every child of a visited node must
be visited but only a possibly empty sub-sequence of the filial

sequence. Every non-empty sub-sequence must start with the first child.
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For the ordered graph shown in Figure 6.1 a pre-order visit beginning

at entry point N1 would pass through nodes

N1, N2, N3, N4, N5, N6

entry . ‘ N1 '
point ' ’ ‘ //(/§:<\

N2 : Né N8 N11

®

Y
* N3 « N4 + N6 + N9 * N1C * N12

Figure 6.1: Pre-order Visiting of an Ordered Graph

whereas one of the partial pre-order visits possible from node N1 would

be
NL, N2, N3, N5

Route following is now defined as partial pre-order visiting beginning

at an entry point of the string structure graph.

In actual fact it is SSE instances rather than SSEs which are being
visited. This consideration does not lead to any complication with
regard to the children of A or L strings because an A or L string
instance has a value sequence made up of exactly one instance of each
child SSE in the string's filial set. Therefore, visiting a child of
an A or L string corresponds to visiting the one instance of that child
in the value sequence of a parent string instance. However, when
visiting the child instances of a C string instance, there are a number

of instances of the collected string in the value sequence. Consequently,
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Figure 6.2: Complete Access Level for the PSA Example
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an indication as to how many of these are actually visited must be

supplied.

In describing pre-order visiting, some processing of each node
visited was mentioned. This referred to the examination of the
encoded representation of the SSE instance in order to find its value
sequence. Selected SSE instances along the route may also be marked
as having additional operations performed on them. These operations

are comparison, retrieval, modification, deletion or insertion.

6.2.2 Simple retrieval

As an aid to following the description of access routes with
PRODD, the diagram of the complete access level for the PSA example

‘(Figuré 4.17) has been reproduced here as Figure 6.2.

Figure 6.3 shows the PRODD description of the access route for
the operation request "retrieve year admitted for a given state"*. The
route begins at the entry point <<state C>> which defines primary
key-access to instances of L_string <<state>>. After accessing the
correct instance of <<gtate>> , its value sequence is followed to
A string <<state A>> in turn giving access to the AVCs <<state name>>
and <<year admitted>>. The appearance of '/R' after <<year admitted>>
marks it as being retrieved. The symbol '=l' indicates the end of the

route.

* Tn terms of DBTG DML, a simple procedure to do this wduld be
to FIND the STATE record occurrence for the specified state using
the CALC key  STATE-NAME and then GET the STATE record occurrence.
The value of the YEAR-ADMITTED data item would then be available
in the UWA (user work area).
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ENTRY AT
state C
=> SELECT EXACTLY 1.0 OF

state

=> gtate A

=> ( state_A:state name,
state A:year admitted/R
)

Figure 6.3: A Route for Simple Retrieval

6.2.3 The "selection-entry"

When visiting the child instances of a C string it is necessary
to indicate how many of the usually variable number of instances are
actually to be visited. A similar consideration applies when a route
begins with a SEARCHPOINT since it is possible that more than one of the
SEARCHPOINT string instances may satisfy the matching condition on
their accessible AVC values. The construct for supplying this figure
is called a "selection-entry". It has a number of forms which will be

discussed in the remainder of this sub-section.

The first classification of these forms is on the basis of
whether the child instances to be visited are identified by position
or by content. The first group of forms which describe seleqtion
by position includes selection of the first, selection of the last or
selection of all child instances. When the last child instance
is selected it is assumed that all other child instances must be
passed through in following the next sibling connections leading to the
last instance. This leads to a division of visited instances into
selected instances which are of real interest and scanned instances
which are examined in the course of reaching the selected instances.

Another possibility included in the first group is that in which the
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locations of the instances to be visited are known beforehand. This

is known aé exact selection because only selected instances are visited,
no scanning being necessary. An example of exact selection appears in
Figure 6.3 where following <<state C>> is assumed to provide the address
of exactly one instance of <<state>> because <<state C>> is declared

to provide primary key-access on state name.

The second group bf forms comprises those in which the target instances
are selected on the basis of content, i.e. on the basis of their

content or the content of instances to which they provide access. There
are two possibilities within this second group, one for the cases in
which the number of instances to be selected is known beforehand = and

a second for those in which it is only known after all of the child
instances have been visited. These are known as ¢ priori and a posteriori
respectively. The reason for distinguishing between them is that in

the a priori case, visiting of the child instances can terminate as soon
as the a priori known number of selected instances are found. Otherwise,
all child instances will have to be visited, that being the only way of
ensuring that all child instances satisfying the selection criterion

have been visited.

An example should make the distinction clear. Suppose that it is
the case that one of the collected instances will be selected on the
basis of its content. If this is known before the collection is
searched, i.e. a priori (because the selection criterion is matching on
a primary key or something similar), and advantage is taken of this
knowledge to terminate the search as soon as that one instance is found,

then only half of the collected instances will be visited on average. On

the other hand, if knowledge of the distribution of data values provides
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the estimate that, on average, one instance will be found to satisfy
the selection criterion, then this will be described as a posteriori
selection of one instance because it will have been necessary to visit

all collected instances checking them against the selection criterion.

Six forms of selection have now been mentioned. These were first,
last, all, exact, a priori and a posteriori. The first three implicitly
define how many of the child instances are to be visited,but with the
last three it is necessary to include an estimate of the number of
instances selected. This estimate may be expressed as a number,or as
a percentage of the value length or number of SEARCHPOINT instances.

On the basis of the form of selection and the number of instances
selected an estimate is made as to the number of instances scanned.

The sum of the two gives the number of instances visited.

An example of the use of the selection-entry construct in

describing more complex operation requests is presented in Figure 6.4.

SEARCH FROM
president SELECT A POSTERIORI 3.2
=> ( pres_ A
=> ( pres_A:last name /R,
res A:first name /C
T end of selection section
)y
headed
=> SELECT ALL OF
administration
=> admin A
=> ( admin A:admin no /R,
admin A:inaug month /R,
admin A:inaug year /R

)
Figure 6.4: A Route Involving Selection

It illustrates the route followed to perform the operation request "find
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all presidents with a certain first name and retrieve for each
administration they headed its number and the month and year of

inauguration”.

The first use of the selection-entry construct in Figure 6.4 is
in describing how many instances of <<president>> will be selected
by a SEARCHPOINT scan on <<pres A:first name>>. For each selected
instance of <<president>> the route visits its first child <<pres A>>
and in turn the two children <<last name>> and <<first name>> éf
<<pres_A>>. The symbol '|' marks the end of the section of an access
route followed to reach the value used in selection by content.
Partial pre-order visiting for the scanned instances will terminate
at the node immediately before the '|'. The '/C' after <<first name>>
indicates that on every visit from a <<president>> instance the value
of instances of this SSE will be compared to determine selection.
The '/R' after <<last name>> means that in the case of a visit from
a selected <<president>> instance the value of the <<last name>>
instance will be retrieved (implying a CPU overhead to copy it out of
the DES buffers). Parentheses have been used for grouping when more
than one child is visited, as with ‘<<pres A>> and <<headed>> visited
from <<president>> and <<last name>> and <<first name>> visited from
<<pres_A>>. Pre-order visiting from the selécted instances of
<<president>> will continue past the '|' and on through <<headed>> to
select all <<administration>> instances linked to the selected
<<president>> instance. From those <<administration>> instances the
route contines through <<admin A>> to its children <<admin no>>,

<<inaug month>> and <<inaug_ year>> which are retrieved as required.
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6.2.4 . Specification of update operation requests

The previous two examples have been concerned with retrieval. In
dealing with update operation requests there is an additional factor to
take into account, namely the cost of updating the various file organ-
isations used to speed up access. An example of this kind of house-
keeping is the updating of secondary indices after a record hés been

added or deleted.

If an update operation request is regarded as affecting a certain
group of target SSE instances, then its execution can be broken down
into two phases. The first is the location and processing of the
target instances; this is called the primary phase. The second is the
location and processing of all SSE instances which must be altered to
keep them consistent with the update; this is called the secondary phase.
It is the secondary phase which performs the housekeeping chores referred
to above. In the case of retrieval operation requests there is only a

primary phase; no secondary phase is necessary since no changes are made.

Figure 6.5 is a PRODD specification of a route for the operation
request "add a new president who is a native son of a certain state".
The route followed in the primary phase is shown first. Referring to
the PSA example one again, PRESIDENT has CALC location mode and so its
placement will be determined by the CALC routine. This is described
by entry at <<pres C>> leading to the selection of 0.0 instances
because the cost of locating the place at which to insert a new
instance is the same as an unsuccessful search for an instance with the

same primary key*. Next one instance of a CDG headed by a <<president>>

* This is true of all three primary key-access methods -- hashing,
indexing and binary search -- currently specifiable at the encoding
level.
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PRIMARY

ENTRY AT

pres C

=> SELECT EXACTLY 0.0 OF
president /ADDCDG

SECONDARY
FOR all pres-SS
ENTRY AT
system
=> all pres SS
=> SELECT A PRIORI 1.0 OF
president /M
=> pres_ A
=> ( pres_A:last name /C,
pres A:first name /C
|l end of selection section

FOR sons
ENTRY. AT
state C .
=> SELECT EXACTLY 1.0 OF
state
=> ( state A,
sons
=> SELECT A PRIORI 1.0 OF
president /M
=> pres A
=> pres_A:last name /C,
pres_A:first name /C
[ || end of selection section

Figure 6.5: A Route for an Update Operation Request

instance is added. Addition and deletion are specified in terms of
CDGs because, as defined in Chapter 4, a CDG is a group of data values

always stored or retrieved together.

The secondary phase involves following two addiﬁional routes, one
for each of the other two parents of <<president>> (<<all pres SS>>
and <<gong>>) . The processing described by those two routes is intended
to approximate that entailed in updating the coset occurrences of

ALL~-PRES~SS and NATIVE-SON when a new PRESIDENT occurrence is added.
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The first route specified leads to the correct position at which to
insert the new <<president>> instance in the chain of <<president>>
instances under <<all pres 8S>>. It begins at entry point <<gystem>>
and then searches through the chain of <<president>> instances comparing
the values of <<pres A:last name>> and <<pres A:first name>> accessible
from those instances. Once the <<president>> instance which should
immediately precede the new instance has been located, its NEXT pointer
field for the <<all pres SS>> value sequence will have to be changed.
This is indicated by marking the one selected instance of <<president>>
with a '/M' for modify. The second route is basically the same. It
describes the processing to find the correct position at which to insert
the new <<president>> instance in the <<sons>> value sequence under the

<<state>> instance for the named native state.

There is one further refinement concerning the possibility of
conditional processing. Conditional processing refers to the situation
in which one of a number of routes may be followed depending on the
data values present in the database. The simplest way of describing
this is to list all possible routes that might be followed in carrying
out the operation request along with the probability of their being
used. The expected database access time for the operation request can
then be calculated from the average database access time for each route

and the associated probabilities. This is the approach adopted in PRODD.

An example can be constructed as follows. Suppose one of the
transactions carried out on the PSA database has the description "retrieve
year admitted for a certain state and the names of its native sons if
there are any ". If the number of states with one or more native sons
is 34 then .68 of the states are in that category. Bearing these

figures in mind, Figure 6.6 illustrates the PRODD description of the
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possible routes that could be followed. This example additionally

OPERATION REQUEST state info
WEIGHTING IS .

ROUTE no_ 1 || no sons exist
WEIGHTING IS .32

PRIMARY
ENTRY AT
state C
=> SELECT EXACTLY 1.0 OF
state
=> ( state A
=> ( state A:state name,
state A:year admitted /R
),
sons /C

=1.

END ROUTE

ROUTE no_2 ll one or more sons do exist
WEIGHTING IS .68

PRIMARY
ENTRY AT
state C
=>' SELECT EXACTLY 1.0 OF
state
=> ( state A
=> ( state A:state name,
state A:year admitted /R
Y
sons /C
=> SELECT ALL OF
president
=> pres A
=> ( pres A:last name /R
pres A:first name /R
) )
=|

END__ROUTE
END REQUEST

Figure 6.6: Conditional Processing

illustrates the full syntax for specifying an operation request. The
first weighting indicates the frequency of occurrence of this operation
request amongst all requests in the activity set. Next is a specification

of the route followed when no sons exist. It ends with a comparison
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on the value of the C string <<sons>> instance which reveals that no
<<president>> instances are collected under this particular <<sons>>
instance. The second route is for the case in which sons do exist.

In this case the route continueé on to visit all <<president>> instances

and retrieve the name information accessible from them.

6.3 Evaluation of operation requests

This section explains how estimates of database access time (DAT)
are obtained for the operation requests described by activity specification.
The complete form of an operation request description is sketched in
Figure 6.7. Figure 6.7 illustrates that, in general, an operation
n

request is performed by following one of a number of routes, Rl' R2,..., R

with associated freguency weightings W W Wn" The average

1! or ted

database access time for an operation request is then given by

n
par[OoR] = ) W, * DATIR,] (6.1)
\ i i
i=1
A route in turn will generally consist of one primary sub-route with
average access time DAT[Pi] and s secondary sub-routes with average

access time DAT[Sij], j=1,...,s. Therefore the average access time

for a route Ri is ghkven by

s
pAT[R,] = DaT[R ]+ ) DAT[S,.] (6.2)
i I . 1]
j=1
It now remains to explain how database access time for a sub-route
(DAT[Pi] or DAT[Sij] is estimated. As mentioned earlier in this chapter
a sub-route is described in terms of partial pre-order visiting of

the string structure graph. This can be conveniently represented by
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OPERATION REQUEST
WEIGHTING IS

ROUTE no_1
WEIGHTING W )
PRIMARY
ENTRY AT . .

. - DAT[Pi}
SECONDARY

“FOR - - -,
ENTRY AT .

— DAT[Sl ] - DAT[Rl]

FOR - - -
ENTRY AT . ...

: - DAT[Sl ]

END_ROUTE

ROUTE no_? ‘ D
WEIGHTING W

—— DAT[RZ]

END_ROUTE

ROUTE 1no n
WEIGHTING W

-- DAT[R ]

END_ROUTE

END REQUEST

Figure 6.7: The General Form of an Operation Request
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a doubly-chained tree [Suss63]. The doubly-chained tree is a way of
representing a j-ary tree using nodes with a fixed number of pointer
fields. 1In its simplest form each node has two pointer fields, one for
the first child in its filial set and another for one of the node's
siblings. Figure 6.8 shows a j-ary tree and its equivalent representation

as a doubly-chained tree.

Figure 6.9 illustrates the doubly-chained tree representation of
the operation request of Figure 6.3 which retrieved year admitted for

a given state. This is a simple example in which only one instance of

/\

J=ary tree

/.
10
doubly-chained 1
" representation
2- Ny, 6
3 , T,2 10 o,m
u‘———-—-———->05 I 8'————-———)09 12&—%a13

Figure 6.8: Representation of a J-ary Tree as a Doubly-Chained Tree

every SSE on the route is visited. Each SSE is represented by a node
with six fields. The first two are pointer fields, indicating the

nodes for the first child and sibling to be visited respectively. &
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1t

pass through

® | ENTRY 1.0 | Cg P

KNOWNPOINT R = retr;eve

@ | state_C 1.0{P [Cq

e ¢

ANYCDG by hashing

+ ¢

@ | state 1.0|P |Cy
: v SAMECDG |
®| 0| state_A 1.0|P 1C3
+SAMECDG | | |
Y/ ? state_name .1.0 P |Cy | @ Giyear_admitted 1.0 {R | C5
L SAMECDG

Figure 6.9: Doubly-Chained Tree for an Operation Request

null pointer is indicated by the symbol @', The third field contains
the name of the SSE. The fourth is a pointer to a vector of multipliers,
one per evaluation point, indicating how many instances of that SSE are
to be visited. In the example all the vectors are unit vectors. The
fifth field records the operation to be carried out on those instances
and the sixth points to a vector of costs, again one per evaluation
point. The cost of processing a node has two components, CPU processing
time and secondary storage accessing time. These are determined by the
operation to be performed on the SSE instance(s) represented by that
node. If it is passing through or retrieval then the secondary storage
accessing component will be zero. Costing is done for each evaluation
point because the secondary storage access times incurred by the update

operations of insertion, modification and deletion will vary with
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database content.

To arrive at the total cost of travelling a (sub-)route is a
relatively simple matter of adding up the costs of visiting each node
and of following the connections between nodes. The cost of following
a connection depends on its type. If it is SAMECDG then it is assumed
to be nothing. If it is NEXTCDG then it is the cost of one sequential
access times the probability that the next CDG is not on the same page.
If it is ANYCDG then it will be the cost of one random access. Normally
the cost of following a connection will only have the secondary storage
component of database access time. However, in the case of connections
established by one of the key-access methods there will be a CPU component

as well, for example the time to evaluate . a hashing function.

Figure 6.10 presents a mathematical formulation of route costing,

It defines the cumulative cost of visiting a node and all its descendants.

Let the cost of processing node N be p(N) and the cost of
following a pointer P linking elements of a value sequence be
£(P). Then the cumulative cost, C, of visiting node N and
all its descendants may be defined recursively as follows.

If node N has m children with cumulative costs
Cl' C2, . e e g Cm

and multipliers

Ml' M2, . e e g Mm
linked by pointers
Pl' P2, « e ey Pm

where Pi is the pointer leading to the ith child
then

) (6.3)

m
cg = P+ izl £(p) +McC, + (M-DEE@

Note for a leaf node L, C, = p(L)

If the processing cost for the special ENTRY node E is defined to
be zero, the DAT for a (sub-)route is CE‘

Figure 6.10: Cumulative Costing
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The cumulative cost of the root node plus the cost of accessing the
entry point instance represented by the root node is the database access
time for the whole route. In expressing the general cumulative cost
formula some conventions have been used. All the descendants of an A or

‘'L _string have unitary multipliers. Thus in their case (6.3) reduces to

m
¢, = P + iZl[f(Pi) + ¢l (6.4)

In (6.4) C

N is the sum of processing a node plus the cost of reaching

each of its child instances and their cumulative costs. C strings
only have one child so m=1l. There are potentially two types of connection

in their value sequences, however. These are P the type of connection

ll
linking a C string instance with its first child instance, and P2, the

type of sibling (NEXT) pointer connecting collected instances. For a

C string, (6.3) reduces to

Cy = p(N) + f(Pl) +oMC o+ (Ml—l)f(Pz) (6.5)

In (6.5) CN is the sum of processing a node and reaching its first
child instance plus the product of the cumulative cost for a child
instance times the number of child instances (the multiplier, Ml) plus

the cost of following the sibling connection to reach all child

instances visited after the first one.

In Figure 6.9 all the multipliers were 1.0. A simple example
using non-unitary multipliers can be demonstrated by changing the
operation request of Figure 6.3 slightly to become "retrieve state name
and year admitted for all states". A route for this operation request

is illustrated in Figure 6.11.




ENTRY AT
system
=> ( all pres 8S
all states SS
=> SELECT ALL OF
state
=> state A
=> ('state A:state name /R,
state A:year admitted /R
)

Figure 6.11: A Route Visiting All <<state>> Instances

Throughout the lifetime of the PSA database the number of states
will be constant at 50. Hence the multiplier vector for the node for
<<state>> instances will be a constant vector with all elements set

to 50. Figure 6.12 depicts the doubly-chained tree representation

of the route.

127
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* ENTRY 1.0 CE
KNOWNPOINT
° @| system 1.0{P | C4q
SAMECDG
\ 4 | |
] ? all_pres_SS 1.0{P {Co ? ¢ | all_states SS|1.0 | P| C3
L SAMECDG ANYCDG ANYCDG by
by pointer pointer k\
®| 7 | state §0.0 | P | Cy
i SAMECDG
?(21 state_A 1.0 P 05
¢ SAMECDG
P = pass through ? | @| state_name 1.0 | R| Cg
R = retrieve

SAMECDG

@ 1@ | year_admitted|{1.0 | R C7

Figure 6.12: Tree for a Route Visiting All <<state>> Instances
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7. SEER ~—- EXPERIMENTATION WITH A PREDICTION PROGRAM

This chapter falls into two parts. The first describes SEER, the
experimental prediction program developed using the concepts of the PRODD
model. The second presents some preliminary results from experimentation

with SEER on an operational DBS.

7.1 SEER

SEER has two principal components: a translator and a cost estimator.
The translator accepts a DBS description written in the PRODD language
informally introduced in the examples of the preceding three chapters and
formally deﬁined by the BNF grammar of Appendix B. It generates an
internal representation of that description for use by the cost estimator.
If the description is syntactically correct and satisfies” a.nunber of
semantic checks the cost estimator proceeds to evaluate the access routes
defined by activity specification and thus arrives at estimates of database

access time. Figure 7.1 depicts this organisation.

7.1.1 The translator

The translator is based on parsing by the top~down technique of
recursive descent [Grie7l]. There is approximately one routine to every
BNF rule in Appendix B. Part of the commentary for each routine is a
statement of the BNF rule or rules it is to translate. Appendix B
has been produced by extracting those rules from the source listing of

the translator.

Recursive descent was chosen as the parsing technique because it
is relatively easy to program and, more importantly, it is easy to make

syntactic changes by adding or removing the routines corresponding to
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PRODD
description of

2 DBS TRANSLATOR

internal COST
data ESTIMATOR
structure

—Jpp» INPUT
—)» OUTPUT

database
access time -
estimates

Figure 7.1: SEER components

new or deleted syntactic rules. Recursive descent also makes it possible
to produce accurate error messages, a feature which the author found
helpful in debugging, aside from its obvious desirability from the

user's standpoint.

In general the translator makes as many semantic checks as it can.
There are two reasons for this policy. The first is so that the cost
estimator routines can "trust" the data structure produced by the
translator to be complete. 2An example would be that, if a BEU specifies
the length of a value sequence as being variable then the translator
checks that a length is indeed specified for each evaluation point by the
content specification component. Consequently, the cost estimator

routines can assume without checking that these values exist when it
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finds in the BEU description that they should exist. The second

reason is that a PRODD description of any non-trivial example is reasonably
complicated and it is probably as easy to make mistakes as when writing

in a high-level programming language. It is clearly desirable that the
translator trap as many of tﬁese as it can. For example, the translator
ensures that the minimal access constraint is satisfied and that every

SSE declared at the access level does in fact have an encoding (BEU)
specified for it at the encoding level. More subtly, it checks points

such as that members of a clustered value sequence have had the location

of their siblings (via the NEXT entry) specified as being in any CDG.

7.1.2 The cost estimator

The cost estimator is based on the principle of solving a large and
difficult problem by dividing it into smaller, more manageable pieces.
Here the problem is costing an operation request. Chapter 6 showed that
this could be reduced to the problem of costing an access route which
was in turn reduced to costing the visiting of instances of the SSEs
making up the access route. Costing the visiting of an SSE instance is
a question of estimating quantities such as the expected number of
probes in retrieving a record stored by external hashing*. Equations
for these quantities are either available in the literature on file organis-
ation evaluation (surveyed in chapter 2) or have been derived by the
author (cf. [Peza 76] ). Values to be substituted for the
parameters of the equations are obtained from the information in a
translated DBS description. A method for combining the costs of "small
pieces" into an overall estimate for an operation request is defined

by equations (6.1), (6.2) and (6.3) of chapter 6 (cf. section 6.3).

* Knuth's term for using hashing to store records on direct-access
storage devices such as discs or drums [Knut73] .
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An example of the costing of "small pieces" in SEER is the routine
to estimate the CPU and secondary storage access costs of using hashing
with linear probing to realise a key-access C_string. These consist of:

1. the CPU cost of evaluating the hashing function
-— supplied by the software specification component
and a calculation of the total size in bytes of the

hash key(s) .

2. the CPU cost of scanning the CDGs hashing to the

same home bucket -- the average number of CDGs
scanned is calculated using formulae from
[Knut73].

3. the secondary storage accessing cost of reading
the pages on which the scanned CDGs reside -=- the
average number of pages read is interpolated from
a table from [Seve76]. ’

7.1.3 SEER size, development and running time

SEER is a large program and represents a considerable programming
effort. The initial design work was begun in 1976. Two years later it
consists of just under 19,000 lines of BCPL, a high-level systems
programming language [Rich73]. The object code generated for an IBM
370/165 is slightly more than 165K bytes*. Table 7.1 is a breakdown
of the distribution of almost 1,000 hours of the author's time among
the various tasks involved in SEER's development. These hours were
logged daily and represent actual productive time spent on the project.
For the most part the captions should be self-explanatory. Shared
refers to time spent on various utility routines used throughout the
system. Testing covers the construction of test data and its input,
the running of tests and subsequent debugging and time spent in making
minor changes to correct bugs revealed by testing. Time spent on major
changes is included under the headings of coding etc. for the appropriate

component. Maintenance includes the revision of existing code owing

* This figure does not include the BCPL runtime system.
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cost

translator estimator shared task totals

hours % -hours % hours % hours %
design 57.05 11.9% | 13.70 12.8%| 33.20 8.7% 103.95 10.7%
coding 175.15 36.7% | 35.40  33.0%] 69.15 18.1% 279.70 28.9%
input/edit 103.95 21.8% | 14.85 13.8%| 80.95 21.2% 199.75 20.6%
desk checking 28.30 5.9% 2.95 2.8% 5.05 1.3% 36.30 3.8%
compiling 2.95 .6% 2.05 1.9%| 16.50 4.3% 21.50 2.2%
testing 102.55 21.5% | 37.25 34.7%) 94.95 24.8% 234.75'24.3%
maintenance 8.00 1.7% 1.25 1.2%] 82.50 21.6% 91.75 9.5%
component totals | 447.95 49.4% |107.45 11.1%|382.30 39.5% 967.70 100.%
component size
(lLines of BCPL) 9,500 50.2% 2,400 12.7%| 7,000 37.1% I 18,900 100.%

percentages for component and task
totals are of total hours (967.7)

Table 7.1: Breakdown of Time Spent on SEER's Development

to changes in program specifications, the reorganisation of modules as the
program grew and the bookkeeping involved in keeping track of module
versions (source and object code) and test output. The figures for design
do not reflect the full design effort because they do not include the time
spent on deciding PRODD's syntax nor on formulating the strategy for

route costing. Those hours really ought to be included since the
translator is driven by the syntax rules it has to translate and the

cost estimator is a relatively straightforward implementation of the

route costing strategy outlined in chapter 6. The figures for the

cost estimator component are on the low side because not all of it
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has been written. Due to time pressure, some of the low-level cost

‘ estimator routines not actually called into play in evaluation of the
test case have been left uncoded. The necessary theoretical work to
write them has been done and the translator generates the parameters
required to drive them, but at the moment if called they abort the

run with an appropriate mesgsage.

The major portion of execution time in a SEER run is spent in
the translation phase. Translation of the full PSA example (about 780
lines) takes just over 1.6 seconds on anIBM 370/165. For the complete
master index description (Appendix A) it is slightly more than 1.8
seconds. The costing phase is much quicker since much of the work has
already been done by the translator. Costing of the six operation
requests in the PSA example at three evaluation points takes .343
seconds. The costing phase for the two operation requests modelling
the MI and MIOOO3 transactions at five evaluation points is .170

seconds. Thus costing takes about .02 seconds per data point.

It may be interesting to compare the above figures with similar
ones for the File Design Analyzer (FDA) of Teory and Das mentioned
in chapter 2. The FDA is a program which produces estimates of
secondary storage overhead and I/O processing time by analytic methods
for a wide range of file organisations. It is written in ANS/FORTRAN
and consists of about 1,800’ source lines compiling to 96K bytes of
object code. Execution timé on an IBM 370/168 is approximately .1

seconds per data point.

7.2 Background to experimentation

This section and the next discuss the author's experience with
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SEER in predicting the performance of several transactions running on
an operational DBS. SEER has been used to make performance predictions
for the system as it currently stands. Those predictions are compared
with actual measurements obtained from a built-in monitoring facility.
The use of SEER in predicting the effect of a proposed change to

the DBS is also discussed. These results should be interpreted as
preliminary. Unfortunately,lack of time has prevented the full range

of experimentation that had been intended.

7.2.1 The test case

The DBS used as a basis for comparison is a patient administration
system running dt Addenbrooke's Hospital, Cambridge. The system is
intended to maintain online information about patients currently
receiving treatment at the hospital and to provide for the retrieval
from archival storage of the medical history of any patient previously
treated at the hospital. Online information is envisaged to include
patient registration details (address, family physician), outpatient
appointments, waiting lists and bed occupancy, results of laboratory
tests and theatre scheduling. Applications currently running at
Addenbrocke's cover a mastér index of patients, registration of
patients and outpatient appointments. A general review of the aims
of the patient administration system and the database design evolved

to meet them is given by Baker et. al. [Bake74].

The Addenbrooke's system has been developed using Xerox's
Extended Déta Management System (EDMS) [Xerox73]. EDMS is an implement-
ation of the 1971 Codasyl DBTG report [Coda7l]. The hospital computer
unit has a Xerox Sigma 6 computer with 512K bytes of primary memory

and 147M bytes of disc store. Most of the work is done during the day
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using online transaction processing. Typically, some 2,500 transactions
are handled in an 8-hour day. A number of batch programs are run
during the evening and night to carry out document printing and

maintenance functions.

The online patient administration system is resident in two
partitions. One partition is occupied by a terminal interface
controller which polls terminals and places messages on a queue for
the transaction processing monitor resident in the other partition.
The transaction processing monitor initiates the loading of the
correct application program to carry out a transaction. EDMS calls
are made by the application programs, of which at most one will ever
be active (eligible to run) at a given moment., The effect is that
database accessing initiated by the online system is single-threaded,
a fact which makes the Addenbrooke's system particularly suitable as

a basis for comparison with SEER's predictions.

7.2.2  The master index

The master index contains an entry for every patient treated
at Addenbrocke's since 1948. Besides such details as name, address,
sex and date of birth, each entry contains the hospital number (a
unique serial number) assigned to every patient and used throughout
the rest of the system to identify the patient in all other processing.
The master index is designed to serve two functions. The first is a
search on a person's surname and sex and,'optionally, forename and date
of birth, to determine if the individual concerned has ever been treated
at Addenbrooke's before. If so, an index entry will be found giving
a hospital number which can be used to retrieve the person's medical

history and which will be used in any other transactions run in dealing
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with him or her. If not, a new hospital number is assigned,
registration details collected and the person added to the index. The
second function is to provide a translation from patient hospital number

to personal details, i.e. name, address, age and so on.

These two functions of the master index mean that it will be
consulted extremely often. Great care was therefore taken in designing
a suitable structure for it. This included writing programs to make
statistical measurements on the file of patient entries (converted
from manual records) to be taken on at initial database loading. The
congiderations and reasoning that led to the final design are clearly
described in an interesting paper by Fenlon [Fenl75]. Two factors that
made it a difficult problem were the highly skewed distribution of
surnames among patients, 1% of surnames accounting for 41.5% of
patients, and the fact that the master index can be expected to
increase monotonically in size since a patient's index entry is never

deleted.

Figure 7.2 is a simplified data structure diagram of the master
index structure chosen to support searching on name, sex and date of
birth. There is one SURNAME-SEX record for every distinct surname-sex
combination among the registered patients. SURNAME~SEX records have
CALC location mode on SURNAME and SEX data items. There is an INDEX
record for every patient, holding the rest of patient details and
stored in an INDEX~SET occurrence owned by the appropriate SURNAME-SEX
occurrence. INDEX records have VIA location mode through INDEX-SET
and therefore will usually be placed on the same page as the owner
SURNAME-SEX occurrence. INDEX-SET is ordered on forename. A primary
search finds the appropriate SURNAME-SEX record by hashing on the

supplied surname and sex and then searches through the associated
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SOUNDEX~SEX

SURNAME-SET
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SURNAME-SEX
INDEX-SET
Cl CALC location
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V| VIA location
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Figure 7.2: Master Index Structure

INDEX-SET occurrence looking for matches on forename and date of
birth. The ordering of INDEX records by forename within INDEX-SET
is used to terminate a search as soon as a forename higher than the

specified one is found.

There is a secondary search mechanism to deal with possible mis-
spelling of surnames. Each surname is assigned a Soundex code using
the Soundex scheme (described in [Knut73]) which attempts to assign the
same four-character code to names which sound the same but are spelled
differently. SURNAME-SEX records with the same Soundex code are
linked together by membership in an occurrence of SURNAMS SET owned

by a SOUNDEX-SEX record having their common Soundex code and sex as




139

CALC data items. A secondary search locates a SOUNDEX-SEX record by
computing the Soundex code for the supplied surname and then hashing on
Soundex code and sex., All SURNAME-SEX records in the SURNAME-SET

owned by tha£ SOUNDEX~SEX record are visited and the INDEX records owned
by each of the SURNAME-SEX records are searched as for a primary search.
Since the SURNAME-SEX records have CALC location mode they are spread
out across the master index page range and there will be one page

access for each one visited.

The highly skewed distribution of surnames means that some INDEX-
SET occurrences will be extremely long. These long coset occurrences
also tend to be frequently visited. It is the surnames with over 150
occurrences which are the 1% accounting for 41.5% of patients. The
long INDEX-SET occurrences owned by these common surnames can be
expected to be visited 41.5% of the time on the assumption that, over
all, patient entries tend to be accessed with equal probability. A
strategy of constructing separate INDEX~-SET occurrences for the most
frequently occurring initials of common names was adopted to speed up
the searching of these worst cases. A threshold of 150 patients of
the same surname-sex was determined experimentally. Aﬁ the time of
initial loading of the master index in 1975, all surname-sex combinations
exceeding this threshold had their most common initial split off and
stored under a new SURNAME-SEX record with a modified surname key formed
by concatenation of surname and initial. This procedure was repeated
unfil the number of remaining INDEX records dropped below 150. The
new surname—initial records are said to be scattered. A flag is set
in the original SURNAME-SEX record for each initial scattered.
Scattered SURNAME-SEX records are not included in any SURNAME-SET

occurrence to keep secondary search times down and stop them finding
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too many matches.

The master index is stored in a separate EDMS AREA of 15,000
pages. An EDMS page is one disc block of 512 words. Table 7.2 shows
the number of occurrences of the various record types as of 1 April 1978.

These figures are based on linear interpolation of exact counts taken on

record count
SOUNDEX~-SEX 7,968
SURNAME-SEX 75,203
INDEX 543,748
total 626,919
load factor = ,792
page capacity = 53.2

Table 7.2: Master Index Record Counts

15 January 1978 and 15 June 1978. The load factor is the total volume

of data space in the 15,000 pages (each page has a 3 word header)
divided by the total volume of all record occurrences. Page capacity is
the ratio of data space on a single page to the average size of a record

occurrence.

Table 7.3 presents some statistics about the distribution of
surnames among the patient population prior to database loading in
September 1975. In the absence of exact information it has been
assumed that the percentage proportions have remained the same over the
growth of the master index, i.e. that the 184 surnames accounting for
28.8% of patients in 1975 still did so on 1 April 1978. Again owing

to lack of exact information it has been assumed that surnames having
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threshold >= threshold with those surnames proportion
150 450 179,659 1.0% account for 41.5%
300 184 124,274 0.4% account for 28.8%

Table 7i3:

total of surnames was 45,481

total of patients was 432,028

male/female ratio was

Surname Freguencies

223,682

208,345

.931

as of September 1975

more than 300 occurrences also ha® more than 150 occurrences of each

sex. There is a further implicit assumption underlying all calculations

discussed in this chapter.

It is that inquiries about patients are

randomly distributed among the master index population. More precisely,

it is assumed that inquiries are randomly distributed among the patients

currently undergoing treatment and, at a lower level of activity, among

those persons who have received treatment in the past and so have entries

in the index.

7.2.3 A PRODD Description of the master index

The information-level view of the master index is very simple.

There is just one description set, <<patient>>, with the attributes

shown in Figure 7.3.<<soundex code>> is included as an attribute to

model the secondary search mechanism.

A fully specified primary search

might be described as "find all patient descriptions with <<surname>>=X

and <<forename>>=Y and <<sex>>=Z and <<date of birth>>=N". A secondary

search would be phrased as "find all patient descriptions such that
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<<PATIENT>>

sex/male_female

forename/forenames

surname/surnames

soundex_code/soundex_codes
¥ hospital_no/hospital_nos

date_of birth/dates

other_details/details

¥ element of
identifier

Figure 7.3: Information-Level View of Master Index

<<soundex_pode>>=s and <<forename>>=Y and <<sex>>=Z and <<date_pf_birth>>=N“.

The access-level view is pictured in Figure 7.4. <<soundex sex>>,
<<surname_sex>> and <<index>> model the record types of the same name.
Coset linkages have been modelled as in the PSA example. A full PRODD

description of the master index appears in Appendix A.

7.2.4 Timings for master index transactions

The two transactions chosen for modelling were those that do
primary and secondary searching, known as MI and MIOOO3 respectively.
They were picked because they are run frequently and therefore average

figures for them have significance. They have the additional property
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of being self-contained and not referencing other parts of the database
aside from a small scratchpad structure for which a correction factor

can be easily computed.

Measurements. were available for the three days 31 March 1978,

1 April 1978 and 3 April 1978. Those for MI and MIOOO3 are shown in
the first two columns of Table 7.4. A third column with the same
measurements for all transactions run over the three days is included

to give an idea of overall system performance and workload. All

figures are averages apart from the first row giving the number of times

the transaction ran.

Table 7.4:

ML MIOO003 all
no. of times ran 431 294 7900
records visited 112.320 89.959 92.401
records inserted 8.631 1.017 1.987
records deleted 2.796 12.910 1.243
page reads 7.7786 7.636 12.883
page writes 1.077 1.163 1.799
transient accesses 1.077 1.163 1.799
overlay accesses 2.900 2.820 1.361
journalling writes 3.457 3.272 3.196
user CPU (sec) . 716 .578 .539
total I/0 (sec) .695 . 760 1.022
database I/0 (sec) .448 .518 . 789
search I/0 (sec) .341 .402 n/a

Measurements for MI, MIOOO3 and All Transactions

Records visited is a count of how many records

occurrences were scanned in processing the EDMS calls for the transaction.

Records

inserted and deleted are exactly that.

Page reads and page
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writes are the number of page reads and writes done by EDMS*,

Transient accesses are page writes done to a temporary disc area for
quick rollback of an individual transaction. Overlay accesses are those
incurred in bringing in overlays. These are organised so as to always
be sequential reads. Journalling writes are sequential tape writes to

the journal tape.

User CPU is the CPU time used by the application program and EDMS
put together. This includes many factors not taken into account in
SEER's estimation of the CPU processing component of database access
time. In particular, SEER does not make any attempt to estimate the
CPU time used by the application program. As a result there is not
much correspondence between CPU overhead as predicted by SEER and
the user CPU figure produced by the monitoring module. These points
will be taken up in more detail when SEER's predictions are compared

with the measurements from Table 7.4.

Total I/0 time is not actually recorded by the monitoring module.
What is available are user CPU time, teleprocessing monitor time and’
elapsed time from transaction iniation to termination. Total I/O
time has been computed as elapsed time minus user CPU time and tele-
processing monitor time. It therefore includes a component corresponding
to the delay incurred in waiting to regain the CPU after losing it to
do an I/0 request. Unfortunately, there is no way of estimating the

size of this component from the information available.

* It is interesting to note the significantly higher number of page reads

done overall than by either MI or MIOOO3 separately, even though the
number of records visited in both their cases is about the same or
higher than the overall figure for records visited. This undoubtedly
reflects the extra care taken in designing the master index structure.
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SEER attempts to predict the secondary storage accessing

component of database access time. This is not equivalent to the total
I/0 time for a transaction. Therefore, some factors contributing to
total I/0 have been subtracted out. First to be removed are transient
accesses, overlay accesses and journalling writes*, The result has been
called database I/0. A final correction is made to account for the fact
that both transactions use a small DBTG coset structure as a scratchpad
for recording search results. All update activity for MI and MIOOO3
shown in Table 7.4 is due to operations on this scratchpad structure.
It has not been explicitly modelled with SEER because SEER does not
model the effect of multiple buffers (for reasons explained in chapter 3)
which ig instrumental in this case in ensuring that normally only one
page read is necessary to read the scratchpad in at the beginning of a
transaction and one page write required to write it out at the end.
Consequently, SEER would considerably overestimate the number of page
accesses involved in manipulating the scratchpad. It is easy to estimate
a correction factor for the MI and MIOOO3 transactions because all
page writes are attributable to scratchpad manipulation and the number
of scratchpad reads will always equal the number of writes. Thus the
final correction is to subtract the product of twice the number of
page writes times an average random access (49.8 msec) from database I/O.
The result has been called search I/0 and should be close to what SEER
estimates as secondary storage accessing time. Search I/O has not
been shown in the column for all transactions since there are some
transactions that do permanent updating as well as scratchpad manipulation.
* Transient accesses are assumed to be random (average time of 49.8

msec) , overlay accesses to be sequential (average time of 20.925 msec)

and journalling writes to be sequential from current tape position
{(average time of 38.3 msec).
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7.3 SEER predictions

In making predictions for the MI and MIOOO3 transactions it is
necessary to distinguish carefully between the average length of a coseét
occurrence and the average length of a visited coset occurrence, i.e.
the average length of the coset occurrences actually traversed. They
are not always the same. The former is easily computed as the number
of owner records divided by the number of member records. Estimating
the latter is more difficult. Some assumptions about the underlying
distributions of data values and their effect on which coset occurrences
are accessed must be made. It is important to get those assumptions
at least approximately correct because it is the average length of visited
coset occurrences which dominates the performance of MI and MIOOO3.

In the following discussion the term average visited length will be used

for the average length of visited coset occurrences.

An example shows just how great a difference may exist. The
database side of an MI transaction consists of locating one SURNAME-SEX
record by hashing and then looking around its set of INDEX records for
matches on forename and date of birth. Clearly the important factor
here is the average length of INDEX-SETs traversed in MI transactions.
From the information in Table 7.2 the average length of an INDEX-SET
occurrence is easily calculated as 7.23. However, as pointed out in
the discussion of the master index structure, it is the long INDEX-SET
occurrences which are most frequently visited. 1In fact the average
vigited length of an INDEX-SET occurrence as calculated from measurements
is over 140. There will be a great difference in performance predictions

depending on which of these figures is used.

Proceeding along these lines, the discussion of SEER's performance
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predictions is presented in four sub-sections. The first shows what
happens when "naive" assumptions are made about average visited lengths.
It is intended as a point of reference -- what is the worst estimate
that can be made? The second presents results obtained by making
"intelligent" assumptions about the average length of visited cosets.

It is intended to show the kind of results an experienced analyst who
understood the problem and the prediction program's limitations might
be able to obtain. This class of results should be obtainable before
actually building the DBS. The third demonstrates what is possible if
actual measurements are used to estimate the average visited length.

The effect is to tune the predictions to the particular DBS being
studied. Those predictions can then be comparéd with SEER's predictions
of the consequences of changing the DBS to yield an estimate of relative
changes in performance. The fourth sub-section concludes with an

example of using SEER to do just that in the case of the master index.

7.3.1 Predictions based on "naive" assumptions

Table 7.5 shows the results obtained assuming that the average
visited lengths of INDEX-SET and SURNAME-SET occurrences are the same

as their average lengths. This is equivalent to assuming a uniform

MI error MIOOO03 erroxr
user CPU (O) . 716 n/a .578 n/a
CPU overhead (Pn) .005 .060 :
search I/0 (O) .341 .402
-85.3% +29.4%
SSAT (Pn) .050 .520

all times are in seconds

(0) = observed SSAT
(Pn) predicted "naively"

secondary storage
accessing time

1l
Ii

Table 7.5: Predictions Based on "Naive" Assumptions
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distribution of surnames among patients and Soundex codes among surnames.
The latter is not unreasonable but the former is not particularly realistic
as the results bear out. Error has been expressed as a percentage of
observed time with direction indicated by + (high) or - (low). This

convention is used throughout the rest of the chapter.

The CPU time figures will be discussed first. SEER tries to
estimate the CPU overhead component of database access time by estimating
such factors as the time taken to transfer data from DBMS to application
program buffers, the time needed to make comparisons on search keys
and the time needed to reorgaenise a page to reclaim space released
by deletion. Factors of this kind should be common to all DBMSs and
have a place in a DBMS-independent prediction program like SEER. The
large difference between the CPU overheads predicted by SEER (whi.ch
must be regarded as something in the nature of theoretical minima) and
the measured user CPU fiqures are indicative of just how much other
processing is being done by EDMS and the application program. For
example, EDMS spends time administering its page buffers and interpreting
the translated version of the subschemé which describes record formats and
field sizes. Examining the COBOL listing of the MI program reveals that
about 95% of the procedure division is concerned with details that are
not directly related to database accessing at all, such as data validation,
reformatting for display and moving data around in internal buffers to
do character and string processing. Thus measured CPU time and SEER'S
estimate of CPU overhead cannot be directly compared and, unfortunately,
there is insufficient information to make corrections as was done with
the I/O time measurements. Table 7.5 shows CPU overhead to be estimated
as being an order of magnitude less than secondary storage access time

for both transactions. The same result can also be observed in the SEER
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estimates based on "intelligent" assumptions and on the use of measure-
ment to estimate average visited lengths*. A similar order of magnitude
difference can be observed between the egtimates for CPU and I/0 time
produced by Teory and Oberlander's IDS model, which suggests that SEER's
CPU estimates are reasonable even:.though direct comparison with cobserved

timings has not been possible.

Turning to secondary storage access time, the predicted time for
MI bears no relation to observed time. This was anticipated given the
highly skewed distribution of surnames among patients. On the other
hand, the result for MIOOO3 is quite promising and shows that the
assumption of a uniform distribution of surnames to Soundex codes is

not unreasonable.

7.3.2 Prediction based on "intelligent" assumptions

Examining MI (the primary search transaction) first, the basic
problem is to arrive at a better estimate of the average visited length
of INDEX-SET occurrences. A method suggested by Heising's "80-20
principle" [Heis63] can be used for this purpose. Heising suggested
that in many commercial applications 80% of record activity deals with
only the most active 20% of a file. In the case of MI, from the
statistical measurements recorded in Table 7.2 one can estimate
that 41;5% of INDEX records will be in 900 INDEX~SET occurrences+ and
the remaining 58.5% distributed among 74;303 INDEX~SET occurrences.
Combining the estimates of the average coset lengths for the 900 frequently
visited INDEX-SET occurrences and the remaining infrequently visited ones

Tabulation of the results under the last two classes of assumptions
has been limited to the I/0O estimates because only they permit

meaningful comparison, but the relationship mentioned was observed in
the estimates produced by SEER under all three classes of assumptions.

* 900 because there will be two SURNAME-SEX records for every common surname,
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using weightings of 41.5% and 58.5% respectively yields an estimate
of 108.33 for average visited length, considerably more than that of

7.23 obtained under the "naive" assumption of uniform distribution.

In order to improve on the prediction for MIOOO3 it is necessary
to arrive at some estimate of how many SURNAME-SEX records were scattered
and use this to arrive at a better estimate of visited average lengths
for SURNAME-SET and INDEX-SET occurrences. As already mentioned, it is
assumed that the 184 surnames exceeding 300 occurrences among the
patient population as measured in 1975 also fall above the scattering
threshold of 150 in each sex. The next problem is to estimate how many
initials will have to be split off on average to bring the 368 common
surname-sex comhinations under the threshold. No measurement was made
of this figure but an estimate can be made using Zipf's Law [Knut73]
which states that the nth most common event (here an event is an initial)
occurs with frequency inversely proportional to n*. Assuming a Zipfian
distribution for the initials of forenames leads to an estimate that
5 initials per common surname, or 1840 SURNAME-SEX records in all,
will be scattered. Average SURNAME-SET length is recalculated excluding
the scattered SURNAME-SEX records and used as an estimate for average
visited length since the assumption of a uniform distribution of surnames
among Soundex codes appears to be a reasonable one. By similar reason-
ing the average length of visited INDEX-SET occurrences in a secondary
search is estimated as the average length of INDEX-SET occurrences

owned by non-scattered SURNAME-SEX records.

Table 7.6 presents the predictions obtained on the basis of these

assumptions. The prediction for MI has increased markedly in accuracy.

*
Zipf's law was originally formulated for and tested on the distribution

of words in natural language text but has since been found useful in a
large number of other contexts.
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MI error MIOOO3 error
search I/0 (0O) .341 n/a .402 n/a
SSAT (Pn) .050 ~-85.3% .520 +29.4%
SSAT (Pi) .197 -42,2% .508 +26.4%

all times are in seconds

(0) = observed SSAT = secondary storage
(Pn) = predicted "naively" accessing time
(Pi) = predicted "intelligently"

Table 7.6: Predictions Based on "Intelligent" Assumptions

It is now out by less than a factor of 2 in comparison with a factor
of 7 under the "naive" assumption. The improvement in the prediction
for MIOOO3 is not so dramatic because the "nalve" assumption was already

a fairly sensible one.

7.3.3 Predictions based on actual measurement

The method here was to make use of the statistics on records visited,
inserted and deleted to estimate average visited lengths for the access
pattern of each transaction. By examination of a detailed trace of
25 transactions it was possible todevelop formulae for the average visited
lengths based on the three measured figures and an estimate of the number
of record probes involved in hashing. Table 7.7 shows the results

obtained.

Once again an increase in accuracy can be observed. It is
difficult to draw any definite conclusions from these figures. Further

experimentation would be required first. Nonetheless, it is the author's
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ML error MIOQO3 error
seaxch I/0 (0) .341 n/a .402 n/a
SSAT (Pn) .050 -85.3% .520 +29.4%
SSAT (Pi) .197 -42,2% .508 +26.4%
SSAT (Pm) .251 -26.4% .375 - 6.7%

all times are in seconds

(o) = observed SSAT = secondary storage
(pn) = predicted "naively" accessing -time
(pi) = predicted "intelligently"

(Pm) predicted using measurements

Table 7.7: Predictions Based on Measurements

feeling that it should be possible to achieve results over a wide range
of systems that fall within the 25-40% range based on "intelligent"
assumptions and within the 10-25% range based on measurements. To put
these in perspective, researchers working with analytical models of
single file organisations have reported their predictions as being within
8% [rum74], 5% [Duhn77] and 10% [Tear76]. The work reported in [Lum74]
and [Duhn77] used files of artificially generated data as a basis for
comparison whereas in [Teor76] the comparison was made using a file

of live data.

7.3.4 Predicting the effect of change

As demonstrated in the previous sub-section, once a DBS has been
implemented and its performance can be measured, it is possible to tune
SEER's predictions using those measurements. Those improved predictions
can be used to estimate the effect of changes to the DBS while holding

content and activity constant. The types of changes that can be
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investigated are those affecting aspects of a DBS described by the other
four components of PRODD. These would include adding an index (access
level), changing record boundaries (encoding level), adding a new or
faster device (hardware specification), changing the allocation of

files on existing devices (SDM) and using a faster hashing algorithm

(software specification) .

A convenient example can be found in Addenbrooke's master index.
The computer unit will soon acquire a new disc unit. It is proposed
that it be used to improve the performance of transactions referencing
the master index structure because that is at the heart of the entire
online system. The easiest way to do this, and one which involves no
reprogramming, is to increase the number of pages allocated to storage
of the master index. A lower load factor will result and EDMS should
have greater success in placing INDEX records on or near the same page

as the SURNAME-SEX record owning the INDEX~SET occurrence to which they

belong.

Table 7.8 illustrates the predicted effect of increasing the
number of pages allocated to the master index structure from 15,000 to

23,000*%, an increase of 63.3% and lowering the load factor from .792 to

* This is a slight simplification. The actual proposal is to store
the master index structure in two separate EDMS AREAs (for technical
reasons not relevant here). One would be for the records supporting
searching on.-surname-sex and the other for the recerds supplying
inversion on hospital number. The predictions' in Table 7.8 are based
on modelling the existence of two such AREAs. The overall effect,
however, is to increase the total number of pages allocated to the

master index structure to 23,000, as stated in the main body of the text.
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MT improvement MIOOO3 improvement
SSAT (15,000 pages) .251 .375
24.7% 0%
SSAT (23,000 pages) .189 .375

all times are in seconds
SSAT = secondary storage
accessing time

Table 7.8: Effect of Ircreasing Master Index Page Range

factors in primary and secondary search times.

it is the expected number of page accesses required to search an INDEX-
SET occurrence which is a function of their average visited length and

the load factor. Decreasing the load factor will decrease the average

In primary searches

number of pages a visited INDEX-SET occurrence spreads across,but the

long ones will still spill over somewhere in the order of ten or more

pages because their average visited length is unchanged.

searches the dominating factor is the average visited length of

SURNAME~SET occurrences. This has not changed at all and is the reason

why SEER predicts no improvement for MIOOO3.

In secondary
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8. EVALUATION AND FURTHER RESEARCH

This chapter begins with a program of further experimentation
which would be carried out if time permitted. A review of the limitations
of the existing PRODD model and SEER prediction program and a discussion
of avenues of research to remove them follows. The chapter concludes
with some observations about the conflicting demands of producing a

complete theoretical model and building a practical design tool.

8.1 Further experimentation

This section describes further experimentation which could be
performed with SEER as it stands at the moment. The Ffirst step would be
to model an update transaction. One of these was actually selected from
among those running on the Addenbrooke's system and the necessary PRODD
description written and SEER estimates produced. Unfortunately,
the Addenbrooke's systems staff had a mistaken impression of the
frequency with which it ran. In the three day sample from which the
measurements for MI and MIOOO3 were taken it only ran twice, not often
enough to allow any meaningful comparisons to be made. Preliminary work
(statistics gathering, sketching a PRODD description) has also been
carried out on the modelling of several transactions drawn from the

outpatient appointments application.

Provided that the cost estimator routines that were left uncoded
were finished, some limited experimentation with relational systems
could be done. The phrase "limited experimentation" is used because
PRODD/SEER does not currently have any mechanism for describing
"dynamic organisation" of data undertaken in the course of database
accessing. Sorting of intermediate relations is an example of this

kind of processing which is an important component of database access
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time in relational systems. The next section explores how this limitation

might be removed.

An opportunity for experimentation with relational-type DBSs
exists in a special-purpose relational system under development in the
Laboratory by T.J. King. Incorporating data pipelining concepts from
PRTV [Todd77], the system provides for the storage and manipulation of a
large collection of 16th-18th century parish records used in historical
research by a group of anthropologiéts. Current plans are to extend the
prototype system by exploiting indexing techniques to increase its speed.
It would be possible to experiment with PRODD/SEER in predicting the

effect of introducing these optimisations.

Another avenue for experimentation with SEER would lie in modelling
the DML calls of ADABAS [Soft71], a "flat-file" system permitting
cross-linking of files [Tsic77]. ADABAS is supported by the University
of Cambridge Computing Serivce and so is readily available. It is being
used for production purposes by several research projects and it might
prove possible to obtain live data for testing purposes. Experimentation
with ADABAS would allow detailed checking of PRODD/SEER's accuracy in
modelling partial inversion, the file organisation on which ADABAS is

based.

It is estimated that nine months to a year would see the above
program through. The results would permit some definite statements about
the potential accuracy and utility of a general, analytic prediction
program instead of the necessarily tentative ones to which this dissertation

limits itself.
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8.2 Present limitations and further research

The limitations of PRODD/SEER are of two types: 1) minor ones
in the sense that they could be dealt with by known methods and 2) major
ones requiring further research. A review of the latter will be used
to motivate the discussion of directions for further research aimed at

thelir removal.

8.2.1 Minor limitations

There are three of these. The first is that the current definition
of secondary storage accessing time does not include any of the overheads
due to maintaining database integrity and providing for error recovery.
Adding a small section to the PRODD description to specify recovery
precautions taken at the page level during updates would enable the
modelling of overheads such as tapejourﬁallingand quick rollback page
writes, which were subtracted from total I/O in making the comparisons
presented in chapter 7. A related point is that no allowance is made
for the CPU overhead to set up and finish off I/0 operations. It was
initially left out because it was felt that it is not an easy figure to
obtain without detailed measurement of the system (usually the host
operating system) responsible for individual physical I/O transfers. Also
since SEER reports its estimates of the number of secondary storage
accesses as well as the time taken to perform them, it is easy to adjust
the CPU overhead estimates if the figure is known. On balance it is
now felt that the CPU cost of I/0 initiation/termination should be

optioenally specifiable as part of the CPU description.

The second is that current estimates are averages only with no

indication of the range in which values can be expected to fall. Best
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and worst case predictions would also be useful. This would mean tripling
the amount of data required for content specification and hardware
description (maximum, minimum and average would be required instead of
just averages) and entail some careful thought in developing equatioﬁs

for the boundary cases.

The third is the previously mentioned inability to describe
"dynamic organisation" of records in the course of database accessing.
PRODD could be revised to accommodate dynamic organisation by extending
the specification of access routes to allow for a second type of node,
a processing node. The cost of processing could be either fixed or it
could be defined in terms of the number of SSE instances visited in the
section of the access route below the node. The latter information
could be made available as part of the process of cumulative costing.
This extension has the further attraction of making it possible to estimate
application program processing time, or at least that component of it
directly related to processing of thé data returned by or passed to
the DBS. The main obstacle would lie: in estimating execution times
for the sections of code concerned. If it is written in assembly code,
hand—timing.is feasible,but if it is written in a high-level language
the problem is more difficult. Three possible solutions are: 1) a
method for "hand-timing" high-level language code developed by Wichman
[Wich72], 2) the use of built-in compiler tracing options where they
exist or 3) external measurement techniques as described by Storey and

Todd [Stor77].

8.2.2 Major limitations requiring further research

There would seem to be three. Two of them are the principal

simplifying assumptions mentioned in chapter 3, non-consideration of the
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effects of multiple buffering and the restriction to predictions for
single-threaded accessing only. The third is not strictly speaking a
limitation but is more in the nature of an inelegancy in the formalisation
of the real world by the PRODD model. Specifically it is the somewhat

plecemeal approach to the handling of overflow in PRODD/SEER.

Multiple buffering was excluded from consideration in chapter 3
because there was no known method of evaluating its effect analytically.
There are two possibilities for further research. The first is a follow-
up to Greenberg's work [Gree74] to make the same kind of measurements
on DBSs as were made on Multics. Saltzer [Salt74] had postulated that

a relation of the form

MIBF = cCZ where ¢ is a constant (8.1)

existed between mean headway between page faults (MHBF) and paging memory
size (Z). Greenberg carried out extensive measurements of Multics and
found this simple linear model to be an adequate characterisation of the
paging behaviour of Multics for primary memory sizes less than 16 Mbytes.
It seems likely that a similar relation might exist between total DBS
buffer size and number of secondary storage accesses,but experimentation
would be required to confirm this and obtain values for the constant c

in (8.1). Greenberg was careful to add the qualification "We hypothesize
that the reference patterns observed, and the headway function derived
are characteristic of a large-scale computer utility being used by an
academic community through interactive consoles". The second possibility
is to take advantage of the fairly detailed description of access routes
demanded by PRODD's activity specification component to simulate buffer
usage. in an average case. A description of an access route can also be

regarded as a description of an access (reference) pattern and so is
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well-suited to this purpose. Although this strategy would considerably
increase the complexity of the low-level cost estimator routines, no
insurmountable difficulties are foreseen in implementing it. Again
experimentation would be necessary to evaluate the effectiveness of such

an approach.

Consideration of multi-threading was also ruled out because there
was no established means of estimating its impact analytically. Teory
and Das [Teor76] propose a strategy for allowing for the effects of multi-
access interference on sequential accessing of secondary storage blocks.
They suggest assuming that all accesses to secondary storage are
effectively random, even when an individual application is accessing
sequential blocks, because of interference from other application
programs accessing the database concurrently. Similar reasoning would
appear to suggest the assumption that when the number of buffers is
relatively small* multi-access interference will reduce performance to
that obtainable from singie buffering on the grounds that a phenomenon
akin to thrashing will occur. Teory and Das do not cite any results
from experiments with live data and operational DBSs to support their
hypothesis. It is the author's feeling that, despite the intuitive
appeal of the above ideas, this must be done before they can be accepted

as practically applicable.

The remark made above about the somewhat piecemeal approach to
overflow was meant to refer to the lack of a general mechanism for
describing the action to be taken on overflow. Instead,each SEER
cost estimator routine which deals with an operation where overflow might
occur must make allowance for it individually. Schneider [Schn76] has

* relatively small could be made more precise by introducing the
notion of an application program having a "working set" of database

pages .
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suggested two ways of looking at overflow: 1) overflow occurs when a
space is too small for the collections of records assigned to it and
the solution is to modify the description of the space to increase its
capacity or 2) overflow occurs when the collection is too large for the
space assigned to its storage and the solution is to redirect the overflow-
ing records somewhere else. 1In PRODD terms 1) implies associating
overflow rules with the LAS and 2) implies associating them with the
BEU. Conventional practice favours the former but the latter has
advantages when considering the possibility of different overflow rules
for SSEs of diffefent types assigned to the same LAS. It is not clear
to the author at this time which approach is better. Further study

would be necessary.

8.3 Some final thoughts

As defined in chapter 1 the aims of this research were twofold,
namely, to develop a general canonical model for the description of
DBSs and to explore the feasibility of building an analytic, DBMS-
independent prediction program. When I began this project I was unaware
of the full magnitude of the divergence between the two goals of
producing a complete theoretical model and a practical design tool.
The PRODD/SEER system falls somewhere between the two with a tendency
to lean towards the former. If one were interested in building a
production tool for physical database design it would be desirable
to streamline PRODD considerably. Possibilities for doing so include
eliminating the information level and revising the encoding level té
focus on the CDG (i.e. record) rather than the SSE (i.e. data item).
At the same time, having the two goals was a definite asset because
work on one stimulated thought on and provided inspiration for work on

the other.
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I also found it a very valuable experience to work with real data
from a real system. There is nothing quite like confrontation with
- reality for forcing a sharpening of one's ideas and clarification of
ill-defined concepts. Furthermore, it was reassuring to see that
approximations to reality such as the uniform distribution and Zipf's
Law did yield realistic estimates. Many researchers in this field have
used artificially generated data as a basis of comparison. There is a
certain risk here in that the data is usually generated to conform to
the statistical assumptions of one's model. The degree of correlation
between predictions and the results of tests made with such artificial
data is only really indicative of the confidence that can be placed in
predictions for such ideally distributed data. It seems more interesting

to observe what happens when the techniques are applied in real life.

The DIAM model has been widely acknowledged as being extremely
general in its descriptive scope,as witnessed by the decision of the
Codasyl SDDTTG* to adopt it as the starting point for developing its
model and language [Coda77] for describing and translating data to be
communicated between different computing environments. It has also been
described as computationally intractable [Duhn77] precisely because
of its extreme generality. This thesis has developed a complete reworking
of DIAM in the light of a new analysis of file organisation methods
to become the component describing database structure of a general model
for describing DBSs. Some preliminary experimental results were
presented which indicate that it should be possible to develop an
analytic, DBMS-independent prediction program based on the model which

would produce reliable, useful estimates. It could not be claimed that

* Stored Data Description and Translation Task Group
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SEER as it stands meets those criteria but I would contend that
the research described here demonstrates that it can be done and more-—

over lays the foundations for doing so.
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Erratum

In Appendix A the phrase
"SEIECT ON ( )"

should be replaced by
"RESTRICT ON ( )"

wherever it appears in a C string declaration.




APPENDIX A: A PRODD Description of the Addenbrooke's Master Index

DBS_DESCRIPTION hospital_database

STRUCTURE_SPECIFICATION EDMS_network

INFORMATION_LEVEL master_index

DOMAIN forenames
DOMAIN surnames
DOMAIN male female
DOMAIN soundex_codes
DOMAIN hospital_nos
DOMAIN dates

DOMAIN details
DOMAIN inversion_nos

DESCRIPTION_SET patient

ATTRIBUTE forename / forenames
ATTRIBUTE surname_start / surnames i
ATTRIBUTE surname_finish / surnames i
ATTRIBUTE sex / male female
ATTRIBUTE date_of birth / dates
ATTRIBUTE hospital_no / hospital_nos
ATTRIBUTE other_details/details
ATTRIBUTE soundex_code / soundex_codes
ATTRIBUTE inversion no / inversion_nos ii for inversion on
i1 hospital number

IDENTIFIER hospital_no
END_SET

END_LEVEL

ACCESS_LEVEL EDMS_access_paths

ii equivalent of SOUNDEX~-SET
i1 ENTRYPOINT equivalent to ownership by MI area

C_STRING soundex set
TOVER sound
SELECT ON ?§
PARTITION ON ()
ORDER ON (soundex_ A:soundex_code/A,soundex_A:sex/A)
KNOWNPOINT
END_STRING

|1 equivalent of SOUNDEX-SEX & SURNAME-SET
C_STRING soundex_C
OVER soundex
SELECT ON ()
PRIMARY KEY_ACCESS ON (soundex_A:soundex_code,soundex_A:sex)
ORDER ON ()™
KNOWNPOINT
END_STRING

L_STRING soundex Il link data items and set pointers
“OVER (soundex_A, surname_set
MATCH ON ( soundex A:soundex_code, soundex_A: sexg =
surname_A:soundex_ code surname_A:sex))

SEARCHPOINT UNDER Téoundex set soundex - C)
END_STRING
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surname split into two parts:
1st nine letters + remainder




A_STRING soundex A il data items
“OVER patient : T(soundex_code, sex?
UNDER soundex

END_STRING

C_STRING surname_set || establish set pointers
OVER surname
SELECT ON () ii not quite correct because doesn't

i1 account for scattered SURNAME records
PARTITION ON (surname_A:soundex_code, surname_ Aisex)

ORDER ON surname_A:surname_start/A
RING TO soundex
UNDER soundex

END_STRING

{1 define equivalent of SURNAME-SEX & INDEX-SET

C_STRING surname C
OVER surname
SELECT O §
PRIMARY KEY ACCESS ON (surname_A:surname_start,surname_A:sex)
ORDER ON ()
KNOWNPOINT
END_STRING

L_STRING surname Il link data items & set pointers
OVER (surname_A,index_set)
MATCH ON ( surname A:surname_start,surname_A:sex) =
index:surname_start, index:sex
SEARCHPOINT UNDER (surname_: set, surname_C)
END_STRING

A_STRING surname_A |l data items
OVER patient : (
surname_start,
sex,
soundex code IS LINK
SOURCE IS soundex_A:soundex_code )
UNDER surname
END_STRING

C_STRING index_set || establish set pointers
OVER 1ndex
SELECT O 6
PARTITION ON (index:surname_start,index:sex)
ORDER ON ()
RING TO surname
UNDER surname

END_STRING

i1 define equivalent of INDEX

A_STRING index ii no L._STRING necessary because index
"OVER patient : ( i1 1s not a set owner
forename
date_of | Blrth
hospital no,
other_details, ii address, duplicate hospital no,

.. 11 registration status, dead or alive flag
surname_finish,

sex,
surname_start IS LINK

SOURCE IS surname_A:surname_start,
inversion no IS LINK

RESULT OF compute_century (index:hospital no)

)
SEARCHPOINT UNDER (index_set,inversion_ptr)
END_STRING
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The following five strings are here to model the INVERSION
record which is in the same AREA as the other master index
records. The INVERSION record provides inversion of the

INDEX records on hospital no. t must be included to get
load factors and page occupancies for the master index
AREA right.
|
C_STRING inversion C
OVER inversion
SELECT ON ()
PRIMARY K%¥_ACCESS ON inversion A:inversion no
ORDER ON

KNOWNPOINT
END_STRING

L_STRING inversion i1 link century no. & list of index ptrs.
OVER (inversion_clist,inversion_A)
MATCH ON (inversion_A:inversion no = index:inversion_no)
UNDER inversion C

END_STRING

C_STRING inversion clist ‘i group ptrs to all memberg with same
[

QVER inversion ptr inversion no. (a century)
SELECT ON ?% -P y

PARTITION ON index:inversion no
ORDER ON ()

UNDER _inversion
END_STRING

C_STRING inversion_ptr ii provide ptrs to all members of a
OVER index i1 given century
SELECT ON ()
PARTITION ON index:hospital no
ORDER ON ()
UNDER inversion_clist
END_STRING

A_STRING inversion_ A Il to hold inversion (century) no.
OVER patient : inversion no
UNDER inversion

END_STRING

END_LEVEL
ENCODING_LEVEL EDMS_encoding

LAS MI
STORAGE_UNIT IS BYTE
PAGE_SIZE IS 512 WORDS
PAGE_FILL IS 60.%
PAGE _LABEL IS FIELD OF 3 WORDS
END_LAS

BEU FOR soundex_set
LAS IS MI

CDGHEAD
ALIGN ON WORD
LABEL IS FIELD OF 3 BYTES
VALUE START IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
LENGTH IS VARIABLE
END_BEU

BEU FOR soundex_C
LAS IS MI
VALUE START IS FQUND BY HASHING
USING EDMS_calc WITH PROBING
LENGTH IS VARIABLE
END_BEU
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BEU FOR soundex
LAS IS MI
CDGHEAD
ALIGN ON WORD
LABEL IS FIELD OF 3 BYTES
NEXT UNDER soundex_set
IS IN ANYCDG
PTR IS FIELD OF U4 BYTES
NEXT UNDER soundex C
IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
VALUE START IS IN SAMECDG

LENGTH_IS_FIXED BY DEFN
IN FIELD OF 1 BYTE
END_BEU

BEU FOR soundex_ A
LAS IS MI

NEXT UNDER soundex
IS IN SAMECDG
VALUE START IS IN SAMECDG
LENGTH IS FIXED BY DEFN
END_BEU

BEU FOR soundex_A:soundex_code
LAS IS MI
NEXT UNDER soundex_A
S IN SAMECDG
VALUE START IS IN S
LENGTH IS FIXED AS 3 BYTES
END_BEU

BEU FOR soundex_A:sex
LAS IS MI

VALUE START IS IN SAMECDG

LENGTH IS FIXED AS 1 BYTE
END_BEU

BEU FOR surname_set
LAS IS MI
VALUE START IS IN ANYCDG
PTR IS FIELD OF 4 BYTES
LENGTH IS VARIABLE
END_BEU

BEU FOR surname_C
LAS IS MI
VALUE START IS FOUND BY HASHING

SING EDMS_calc WITH PROBING
LENGTH IS VARIABLE
END_BEU

BEU FOR surname
LAS IS MI
CDGHEAD

ALIGN ON WORD
LABEL IS FIELD OF 7 BYTES i1 includes 4 bytes for surname vector
NEXT UNDER surname_set
IS IN ANYCDG
PTR IS FIELD OF U4 BYTES
NEXT UNDER surname C
IS IN ANYCDG
PTR IS FIELD OF Y4 BYTES
VALUE START IS IN SAMECDG

LENGTH_IS FIXED BY DEFN
IN FIELD OF 1 BYTE
END_BEU

BEU FOR surname_A
LAS IS MI
NEXT UNDER surname
IS IN SAMECDG

VALUE START IS IN SAMECDG
LENGTH IS FIXED BY DEFN
END_BEU




BEU FOR surname_A:surname_start
LAS IS MI

NEXT UNDER surname_A
IS IN SAMECDG
VALUE START IS IN SAME
LENGTH IS FIXED AS 9 BYTES
END_BEU

BEU FOR surname_A:sex
LAS IS MI

VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 1 BYTE
END_BEU

BEU FOR index set
LAS IS MI
VALUE START %% I¥ ANYCDG

FIELD OF U4 BYTES

LENGTH IS VARIABLE
END_BEU

BEU FOR index
LAS IS MI
CDGHEAD
ALIGN ON WORD
LABEL IS FIELD OF 3 BYTES
NEXT UNDER index_set
IS IN ANYCDG

TR IS FIELD OF 4 BYTES
CLUSTER UNDER index_set

VALUE START IS IN SAMECDG
LENGTH IS FIXED BY DEFN

IN FIELD OF 1 BYTE
END_BEU

BEU FOR index:forename
LAS IS MI |
NEXT UNDER index
IS IN SAMECDG

VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 12 BYTES
END_BEU

BEU FOR index:date_of birth
LAS IS MI
NEXT UNDER index
IS IN SAMECDG
VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 7 BYTES
END_BEU

BEU FOR index:hospital no
LAS IS MI
NEXT UNDER index
IS IN SAMECDG

VALUE START IS IN SAMECDG
ENGTH IS FIXED AS 6 BYTES
END_BEU

BEU FOR index:other details
LAS IS MI
NEXT UNDER index
IS IN SAMECDG
VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 63 BYTES
END_BEU

BEU FOR index:surname_finish
LAS IS MI
NEXT UNDER index
IS IN SAMECDG

VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 19 BYTES
END_BEU
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BEU FOR index:sex
LAS IS MI

VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 1 BYTE
END_BEU

BEU FOR inversion C
LAS IS MI
VALUE START IS FOUND BY HASHING
USING EDMS_cale WITH PROBING
LENGTH IS VARIABLE
END_BEU

BEU FOR inversion
LAS IS MI
CDGHEAD
ALIGN ON WORD
LABEL IS FIELD OF 3 BYTES
NEXT UNDER inversion C
IS IN ANYCDG
TR IS FIELD QF 4 BYTES
VALUE START IS IN SAMECDG
LENGTH IS FIXED BY DEFN

IN FIELD OF 1 BYTE
END_BEU

BEU FOR inversion_clist -
LAS IS MI
NEXT UNDER inversion
IS IN SAMECDG

VALUE START IS IN SAMECDG
LENGTH IS FIXED AS 100 INSTANCES
END_BEU

BEU FOR inversion ptr
LAS IS MI
NEXT UNDER inversion clist
IS IN SAMECDG

VALUE START IS IN ANYCDG
PTR IS FIELD OF Y4 BYTES

LENGTH IS FIXED AS 1 INSTANCE
END_BEU

BEU FO? in¥ersion_A

LAS IS M
VALUE START IS IN SAMECDG
LENGTH IS FIXED BY DEFN
END_BEU

BEU FOR inversion A:inversion _no
LAS IS MI
VALUE START IS IN SAMECDG

LENGTH IS FIXED AS 4 BYTES
END_BEU

END_LEVEL

END_SPECIFICATION




179

CONTENT_SPECIFICATION March 31_1978_ estimates
}*
These figures are based on linear interpolation of record occurrence

counts for mid January '78 and mid June '78 to estimate figures
for the end of March of the same year. The set occupancy Figures

are for five different cases:

loadin%.point: assumin% uniform distribution
evaluation point ;: ?dJuste for MI using Heisings's 80-20 rule
. 1

: " group access statistics
g: %djusted for MIO0003 usinﬁ Zipf's law

%1 group access statistics

EVALUATION_POINT OCCURS 4 TIMES

VALUE LENGTH
FOR soundex_set

AT LOADING IS T7968. INSTANCES
AT EVALUATION_POINT 1 IS 7968. INSTANCES
2 IS ;82%. INSTANCES
3 IS . INSTANCES
IS 7968. INSTANCES
END_FOR
FOR soundex_C
AT LOADING IS 7968, INSTANCES
AT EVALUATION_POINT 1 IS 7968. INSTANCES
2 IS ;96%. INSTANCES
IS 7968. INSTANCES
IS 7968. INSTANCES

END_FOR

FOR surname_set
AT LOADING IS 9.438 INSTANCES
AT EVALUATION_POINT 1 IS 9,438 INSTANCES
2 IS 8.488 INSTANCES
3 IS 9.207 INSTANCES
4 IS 6.535 INSTANCES
END_FOR

FOR surname_ C
AT LOADING IS T75203. INSTANCES
AT EVALUATION_POINT 1 IS 75023. INSTANCES
2 IS ;502%. INSTANCES
g IS 75023, INSTANCES
IS 75023, INSTANCES
END_FOR

FOR index_set
AT LOADING IS 7.230 INSTANCES
AT EVALUATION_POINT 1 IS 108.332 INSTANCES

2 IS 148.5 INSTANCES
313 .227 INSTANCES
4 IS  6.227 INSTANCES

END_FOR

FOR inversion C
AT LOADING IS 5288. INSTANCES
AT EVALUATION_POINT 1 IS 5288. INSTANCES
2 IS 52%8. INSTANCES
3 IS 5288. INSTANCES
4} IS 5288, INSTANCES
END_FOR

END_SPECIFICATION
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SOFTWARE_SPECIFICATION EDMS_timings

FUNCTION EDMS_calc
TIMING IS 129.2 uSEC + 16. uSEC PER BYTE
END_FUNCTION

FUNCTION compute century
TIMING IS 31.8 uSEC
END_FUNCTION

END_SPECIFICATION

HARDWARE_SPECIFICATION Xerox_Sigmab_configuration

CPU
BYTE IS 8 BITS
WORD IS 32 BITS
COMPARISON IS 8.5 uSEC PER BYTE
COPYING IS 7.4 uSEC PER BYTE
END_CPU

| %
I
copying per byte is timed as:

LB 2.5 load byte indexed
STB 3.1 store byte indexed
BDR 1. branch on decrementing register (branch)
7.4 uSEC
comparison per byte is timed as:
LB 2.5 load byte indexed
CB 2.2 compare byte indexed
BCS 2.8 branch on conditions set (no branch)
BDR 1. branch on decrementing register (branch)

8.5 uSEC
*|

DEVICE_TYPE RXD_T71
OCCURS 3 TIMES
DEVICE IS 400 TRACKS
TRACK IS 60 BLOCKS Il a cylinder
BLOCK IS 512 WORDS

BLOCK_TRANSFER_TIME IS 8.3 mSEC

SEEK TIME
SEQUENTIAL IS 7.5 mSEC
RANDOM IS 29.0 mSEC

LATENCY TIME
SEQUENTIAL IS 25.0 mSEC ii one rotation because EDMS only set

ii up to read 1 page at a time
RANDOM IS 12.5 mSEC
END_DEVICE

END_SPECIFICATION

SDM_SPECIFICATION MI_area

LAS MI IS ON DEVICE_TYPE RXD_T71
END_SPECIFICATION
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ACTIVITY_ SPECIFICATION Master Index Transactions

OPERATION_REQUEST MIO0000
| #

Primary searching on surname and sex, optionally forename and
‘date of birth as well.

WEIGHTING IS .594 11 431/725

ROUTE Dbasic

WEIGHTING IS 1.0

PRIMARY
ENTRY AT
surname_C
=> SELECT EXACTLY 1.0 OF
surname
=> ( surname_A
=> surname_A:surname_start /R ,
index_set
=> SELECT A_PRIORI 1.0 OF
index
=> ( index:forename /C,
+ndex date_of" blrth /C

1ndex hospital_no /R,
index:other_details /R

=1
=i
END_ROUTE

END_REQUEST

OPERATION_REQUEST MI0003
WEIGHTING IS .406 |1 294/725

ROUTE basic
WEIGHTING IS 1.0

PRIMARY
ENTRY AT
soundex_C
=> SELECT EXACTLY 1.0 OF
soundex
=> ( soundex_A,
surname_; set
=> SELECT ALL OF
sur?ame

=> surname_A, Il no need to examine surname
index_; set
=> SELECT A_POSTERIORI 1.0 OF
index

=> ( index:forename /C,
1ndex date_of blrth /C

1ndex.hosp1tal_no /R,
index:other_details /R
l )
END_ ROUTE
END_REQUEST
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END_SPECIFICATION

END_DESCRIPTION

STATISTICS _SPECIFICATION
LAS MI 15000 632207. 632207. 632207. 632207. 632207.
CDGHEAD soundex_set é g é' . 1.

CDGHEAD soundex 1 7968207928 7968 7968 7968,
CDGHEAD surname gséogz 752033 75§o3 75203. 75203.

CDGHEAD index 2 surname 5437”8 543748, 543748, 543748, 543748,

55 36, g51 36 751 86 .751 36.751
CDGHEAD inversion 1 5288 52 8, 528 . 5288,
312. 312, 312

BEU index_set IN surname
END_SPECIFICATION
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APPENDIX B: PRODD Syntax

The syntax of a language for describing DBSs in terms of the PRODD
model is defined below using a variant of BNF. The following rules

define the formalism for syntax definition informally:

1. Syntactic constructs (i.e. nonterminals) are named by identifiers
without being enclosed in any form of brackets. An identifier for
this purpose is any sequence of lower case alphanumeric symbols
(possibly including '_') beginning with an alphabetic symbol.

e.g. attribute
descriptionset name

2, '=>' separates a construct identifier from its definition and '|!
separates alternative definitions.

e.g. vehicle -> car | lorry | motorcycle

3. Terminal symbols occur as upper case words or as the symbols

themselves. 'C' indicates the occurrence of the character C itself
as a terminal symbol.
e.g. DOMAIN
/
VC'
4. The sequence "#% , | _#¥w encloses a right hand side definition in
plain text.

e.g. idfr => #% a3 sequence of alphanumeric characters beginning
with an alpahbetic character

5. Parentheses are used to group symbols and square brackets are used to
enclose parts of a definition which may be omitted.

e.g. equipment -> lamp pump [(bell | horn)]

is equivalent to

equipment -> lamp pump |
lamp pump bell |
lamp pump horn

6. The format
<x S .o

where x is some sequence of symbols and S is a single terminal symbol
(S may be omitted) indicates possible repetition; it stands for

x | xSx | xSxSx | ...

e.g. name_list -> < name , ... >

7. There are three h{per rules to define various alternatives for
writing a list of items. Each upper case word appearing on the left
hand side of the rule can be replaced on both sides of the rule b¥
any lower case nonterminal to produce a definition of tha
nonterminal in standard form. The three hyper rules are:

ELEMENT_list -> ELEMENT !
"(* [< ELEMENT , ... >] ')t




ELEMENT SEPARATOR pack -> ELEMENT |
(" [< ELEMENT SEPARATOR ... >] ')!

ELEMENT_LMARKER_RMARKER_SEPARATOR_gackage -> ELEMENT |
LMARKER [< ELEMENT SEPARATO ... >] RMARKER

For example the first hyper rule could be used to specify a
definition for a list of names by writing the lower case sequence
"name_list", Substitution of the nonterminal '"name" for the upper
case sequence "ELEMENT" yields the rule:

name_list -> name |
'"(* [< name , ... >] ')

A simplified version of the BCPL [Rich73] comment facility has been
provided. The sequence "||" introduces a comment extending to the end
of the line in which it appears. The sequence "[¥ ., ., ., #¥|" ig g

bracketed comment which may span a number of lines.

The rules for the PRODD language now follow:

dbs_description -> DBS_DESCRIPTION idfr

structure_spec
content_spec
software_spec
hardware_spec
sdm_spec
activity_spec

END_DESCRIPTION

structure_spec -> STRUCTURE_SPECIFICATION idfr
information_level
access level
encoding level
END_SPECIFICATION

information level => INFORMATION_LEVEL idfr
{domain_stmt ... >

{description stmt ... >
END_LEVEL

domain_stmt => DOMAIN domain_name

description stmt -> DESCRIPTION_SET descriptionset_name

<attribute stmt ... >
identifiers_stmt
END_SET

attribute_stmt -> ATTRIBUTE role name / domain_name
identifiers stmt -> IDENTIFIER(S) identifier list

identifier -> rolename_leftbracket_rightbracket commasymbol_ package
domain_name -> idfr

descriptionset _name -> idfr

rolename => idfr
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access_level <> ACCESS_LEVEL idfr
< string stmt ... >
END_LEVEL

string stmt -> a_string i
¢_string
1 _string

a_string -> A_STRING astring name
astg_over_ stmt
under_stmt
END_STRING

c_string =~> C_STRING cstring name

OVER string name
restrict stmt

(key_accéss_stmt | partition_stmt)
order_stmt
[ring_stmt]
under_stmt
END_STRING

1 _string -> L_STRING 1lstring name
OVER string name list
match_stmt
under_stmt
END_STRING
astg over_stmt -> OVER descriptionset_name : (ALL | avc_name list)
ave_name_entry => rolename [IS]
E(LINK | DERIVED)
SOURCE [IS] ave_name | function_ref)]

restrict stmt-> RESTRICT [ON] (function_ref | dnf expn)

dnf_expn => cnf_expn_orsymbol_pack

enf_expn -> comparison lbracket_rbracket_andsymbol_package

comparison -> avc_name relop cvalue

relop => = | = | > | < | > | <=

cvalue => integer | string

order_stmt -> ORDER [IS] ( LIFO i
FIFQ |

[ON] order_avec list |
OPPOSITE [TO] estring name )

key_access stmt -> (PRIMARY | SECONDARY)
KEY_ACCESS [ON] avec_name list

partition stmt -> PARTITION [ON] (ave_name_list | function_ref)
ring stmt -> RING [TO] string name

match_stmt ~> MATCH [ON] matchlist_equalsymbol_pack
matchlist =~> ave_name_list
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under_stmt => KNOWNPOINT |
SEARCHPOINT |
SEARCHPOINT UNDER ostring name list |
UNDER ostring name list

ostring name =-> cstring name | 1string name

string name -> astring name | cstring name | 1string name
astring name -> idfr

estring name -> idfr

lstring name -> idfr

ave_name -> astring name : rolename

order_ave =-> avec_name / (A | D)

function_ref -> RESULT [OF] function name avc_name list

encoding level -> ENCODING LEVEL idfr
las_stmt ... >
< beu_stmt ... >
END_LEVEL

las_stmt -> LAS las_name
STORAGE_UNIT [IS] wunit

PAGE SIZE [IS] (unit count | LAS)

DELETION [IS]  (PHYSICAL | LOGICAL)

PAGE FILL [IS] _percentage

[PAGE_LABEL [IS] field deln]
END_LAS

beu_stmt -> BEU [FOR] sse_name
[derivation _entry]
las_entrg
[head_en ry]
align_entry]
label_entry]
(chead_entry | cunder_entry)]
< next_entry ... >l
[cluster_entry]
value_ entry

END_BEU
derivation_entry -> DERIVATION [IS] (VIRTUAL } IMMEDIATE | DELAYED)
las_entry -> LAS [IS] las_name
head_entry =-> CDGHEAD
align entry -> ALIGN [ON] unit
label_entry -> LABEL [IS] field _decln
chead_entry -> COMPRESSIONHEAD
cunder_entry -> COMPRESSION UNDER sse_name

next_entry ~> NEXT UNDER string name
address_dcln

cluster entry -> CLUSTER UNDER string name
value_entry -> VALUE

vstart_decln
vlength_decln
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vstart_deln -> START [IS] (address_decln | keyaccess_deln | COMPUTED)

vlength _deln -> LENGTH [ISE
(FIXED ([BY] DEFN | [AT] count_deln) | VARIABLE)
[[IN] field _decln]

keyaccess deln -> FOUND [BY]
(HASHING [USING] function name
WITH]  (PROBING | CHAINING)
INDEXING [LEVEL [IS] integer]
PTR [IS] field_dcln
BINARYCHOP )

address_decln -> {IN] ESAMECDG | NEXTCDG | ANYCDG)
PTR [IS] field_decln]

field deln ~> FIELD [OF] unit_count

las _name > idfr

sse_name -> string name | avc_name

content_spec ~> CONTENT _SPECIFICATION idfr
evaluation_count
searchpoint_counts]
value_. engﬁHs?
deadspace_counts]
END_SPECIFICATION

evaluation _count -> EVALUATION_POINT occurs_count
searchpoint_counts => SEARCHPOINT COUNT

< searchpoint_entry ... >
value_lengths -> VALUE LENGTH
< variablesse_entry ... >
deadspace_counts -~> DEADSPACE COUNT
< deadlas_entry ... >

searchpoint_entry -> FOR string name
load_point
evaluation_stmt
D_FOR

variablesse_entry -> FOR (cstring name | ave_name)
load_point
evaluation_stmt
END_FOR

deadlas_entry -> FOR 1las_nhame
load_point
evaluation stmt
END_FOR

evaluation _stmt -> [AT] EVALUATION_POINT < evaluation_point ... >

load_point -> LOADING [IS] real_count

evaluation _point =~> integer [IS]
( sign percentage [OF] (LOADING | PREVIOUS) |
real_count )
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software_spec -> SOFTWARE SPECIFICATION idfr
function stmt ... >
END_SPECIFICATION

function stmt ~-> FPFUNCTION function_name
timing entry
END_FUNCTION

timing entry -> TIMING [IS] real_time [+ byte_timel

function name => idfr

hardware_spec -> HARDWARE_SPECIFICATION idfr
cpu_stmt
{devicetype_stmt ... >
END_SPECIFICATION

cpu_stmt => CPU
BYTE I5] bltcount

WORD S ount
COMPAR O byte_time
YING byte_time
END CPU

bit_count -> integer BITS

devicetype _stmt -> DEVICE_TYPE devicetype_name
occurs_count
DEVICE [IS] integer TRACKS
TRACK [IS] integer BLOCKS
BLOCK [IS] unit_count
BLOCK_TRANSFER_TIME [IS] real_time
SEEK_TIME seqgran_entry
LATENCY_TIME seqran_entry

END_DEVICE
seqran_entry -> SEQUENTIAL [IS] real time
[SECONDARY [IS] real time]

RANDOM [IS] real_time
devicetype_name ~> idfr

sdm_spec => SDM | SPECIFICATION idfr

allocation stmt ... >
END SPECIFICATION

allocation stmt -> LAS 1las_name [IS] {[ON]
DEVICE_TYPE devicetype_name

activity_spec -> ACTIVITY SPECIFICATION idfr
<or stmt ... >
END_SPECIFICATION
or_stmt -> OPERATION_REQUEST idfr
weighting entry
< route stmt ... >
END_REQUEST

welighting stmt ~> WEIGHTING [IS] real
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route_stmt -> ROUTE route_name
weighting entry
Erimary_route
secondary_routes]
END_ROUTE

primary_route =-> PRIMARY sse_ trip

secondary_routes =-> SECONDARY
< secondary route ... >

secondaryroute =~> FOR string name
sse_trip
sse_trip ~-> starting point visit_children ‘'=]!

starting point -> (ENTRY [AT] knownpoint_strin% |
SEARCH [FROM] searchpoint_string selection entry)

selection entry =-> SELECT (FIRST | LAST | ALL | selectivity estimate) [OF]
selectivity_estimate -> EEXACTLY | A_PRIORI | A_POSTERIORI)

real | percentage)
visit_children =~> '=>' (selected_instances | child_list)

selected_instances -> selection entry child

child => child entry ['|'] recursive visit
recursive-visit -> [[starting point] visit_children]
child entry =-> child_sse [operation]

operation ~> / (ADDCDG | DELCDG | C | R | M)
knownpoint_string -> ostring name

searchpoint_string -> string name

child_sse -> sse_name

percentage -> real %

units -> BIT | BITS | BYTE | BYTES | WORD | WORDS
i_unit -> (INSTANCES | units)
time unit -> uSEC | mSEC | SEC

occurs_count -> OCCURS integer TIMES
unit_count -> integer units
count_decln -> integer i_unit
real_count -> real i_unit
real_time > real time unit
byte _time -> real_time [PER] BYTE
sign > '+' | '
real -> integer '.' integer |
integer '.' |
',' “integer
integer -> < digit ... >
digit -> 1 {21 ... 19
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idfr -> letter [< (letter | digit | ' ') ... >]
letter -> A | B ...l Z)Jalb! ...} 2

" any sequence of charaoters exclu
double ‘quotes ##%
# any sequence of characters excluding
single quotes %%

string -> ¥*¥ any sequence of characters excludlng blanks ## |
in

|

|

orsymbol -> \/

andsymbol -> /\
commasymbol -> ,




