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Abstract

HOL is a version of Robin Milner’s LCF theorem proving system for higher-order

logic. It is currently being used to investigate
e how various levels of hardware behaviour can be rigorously modelled and

e how the resulting behavioral representations can be the basis for verification

by mechanized formal proof.

This paper starts with a tutorial introduction to the meta-language ML. The ver-
sion of higher-order logic implemented in the HOL system is then described. This
is followed by an introduction to goal-directed proof with tactics and tacticals
Finally, there is a little example showing the system in action. This example

illustrates how HOL can be used for hardware verification.
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1 Introduction to HOL

Higher-order logic is a promising language for specifying all aspects of hardware
behaviour (8], [1]. It was originally developed as a foundation for mathematics [2].
Its use for hardware specification and verification was first advocated by Keith
Hanna [9].

The approach to mechanising logic described in this paper is due to Robin Mil-
ner [6]. He originally developed the approach for a system called LCF designed
for reasoning about higher-order recursively defined functions. The HOL system
is a direct descendant of this work. The original LCF system was implemented
at Edinburgh and is called “Edinburgh LCF”. The code for it was ported from
Stanford Lisp to Franz Lisp by Gerard Huet at INRIA and formed the basis for
a French research project called “Formel”. Huet’s Franz Lisp version of LCF was
further developed at Cambridge by Larry Paulson and eventually became known
as “Cambridge LCF” [18]. The HOL system is implemented on top of Cambridge
LCF and consequently many (good and bad) features of LCF are found in it. In
particular, the axiomatization of higher-order logic used is not the classical one
due to Church, but an equivalent formulation strongly influenced by LCF.

To make this paper self-contained, a brief introduction to ML (the LCF meta-
language) is included. The version of ML described here (and included as part of
the HOL system) is not Standard ML [16] but the version of ML documented in
the ML Handbook [4].

The acronym “HOL” refers to both the computer system and the version of
higher-order logic that it supports; the former will be called the “HOL system”
and the latter the “HOL logic”.

Because this paper is about the HOL system, the machine-readable syntax for the
_logic will be presented. For example, instead of the conventional logical symbols
A, V, 7, V¥, 3 and A, we use the following strings of ASCII characters /\, \/, 7, !,
7 and \ respectively. In various other papers on HOL (e.g. [8], [1]) conventional
notation, rather than the ASCII notation, is employed. The two notations are, of

course, equivalent.

2 Introduction to ML

This section is a Vefy brief introduction to the metalanguage ML. The aim is just
to give a feel for what it is like to interact with ML and to introduce some features

of the HOL system (e.g. the representation in ML of the types and terms of the
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HOL logic?). , .

ML is an intéractive programming language like Lisp. At top level one can eval-
uate expressions and perform declarations. The former results in the expression’s
value and type being printed, the latter in a value being bound to a name. The
boxes below contain a little session with the system. The interactions in these
boxes should be understood as occurring in sequence. For example, variable bind-
ings made in earlier boxes are assumed to persist to later ones. To enter the HOL
system one types hol to Unix?; the HOL system then prints a sign-on message and
puts one into ML. The ML prompt is #, so lines beginning with # are typed by the

user and other lines are the system’s response.

% hol

(Built on Sept 31)

#1.[2;3;4;5]1;;
[1; 2; 3; 4; 5] : int list

The ML expfession 1.[2:3;4;5] has the form e; op e, where ¢; is the expression 1
(whose value is the integer 1), e; is the expression [2;3;4;5] (whose value is a list
of four integers) and op is the infixed operator ‘.’ which is like Lisp’s cons function.
Other list processing functions include hd (car in Lisp), t1 (edr in Lisp) and null

‘;;” terminates a top-level phrase. The

(null in Lisp). The double semicolon
system’s response is shown on the line not starting with a prompt. It consists of -
- the value of the expression followed, after a colon, by its type. The ML typechecker
infers the typé of expressions using methods invented by Robin Milner {15]. The
type int list is the type of ‘lists of integers’; list is a unary type operator. The
type system of ML is very similar to the type system of the HOL logic which is
explained in Section 3.1

The value of the last expression evaluated at top-level in ML is always remem-

bered in a variable called it.

1Types and terms are explained in detail in Section 3.2.

2The Unix prompt is %.




let 1 = it;;
1=1[1; 2; 3; 4; 5] : int list

#tl 1;;
[2;: 3; 4; 5] : int list

#hd it;;
2 : int

#51(E1(E1(E1(EL 1))))
[1 : int list

Following standard A-calculus usage, the application of a function f to an ar-
gument z can be written without brackets-as fz (although the more conventional
f(z) is also allowed). The expression fz,z;-- -z, abbreviates (---((fz1)z2)- )z,
(¢.e. function application associates to the left).

Declarations have the form let z;=e; and --- and z,=e, and result in the value

of each expression e; being bound to the name z;.

#let 11 = [1;2;3] and 12 = [‘a“;‘b ;‘c‘];;
11 = [1; 2; 3] : int list
12 = [a*; *b*; ‘c*] : string list

ML expressions like ‘a‘, ‘b*, ‘foo* etc. are strings and have type string. Any
sequence of ASCII characters can be written between the quotes. The function
words splits a single string into a list of single character strings, using space as

separator.

#words‘a b c*;;
[a‘; ‘D*; ‘c'] : string list

An expression of the form (e;,es) evaluates to a pair of the values of e; and
es. If e; has type oy and e; has type o2 then (e;,e;) has type o#0,. A tuple
(e1,...,€,) is equivalent to (e;, (e3,...,€,)) (i.e. ¢, is right associative). The
brackets around pairs and tuples are optional; the system doesn’t print them. The
first and second‘components of a pair can be extracted with the ML functions fst

and snd respectively.

#(1,true, ‘abc‘);;
1,true,‘abc’ : (int # bool # string)

#snd it;;
true, ‘abc’ : (bool # string)

#fst it;;
true : bool




The ML expressions true and false denote the two truthvalues of type bool.

ML types can contain the type variables *, *x, sxx  etc. Such types are called
polymorphic. A function with a polymorphic type should'be thought of és possess-
ing all the types obtainable by replacing type variables by types. This is illustrated
below with the function zip.

Functions are defined With: declarations of the form let f vy ... v, =€ Where
each v; is either a variable or a pattern build out of variabies 3. Recursive functions
are declared with letrec instead of let. ’ |

AThe function zip, below, converts a pair of lists ([z1;...;Z,], [Y1;...:¥n]) to

a list of pairs [(z1,y1);...: (Zn,¥n)]. ‘

#letrec zip(1l1,12) =
#if null 11 or null 12

# then [] :
# else (hd 11,hd 12).zip(tl 11,t1 12);;
zip = -~ : ((* list # *x 1list) -> (* # *x) list)

#zip([1;2:3]1,['a*;d";‘c' D) s ;
[1,¢a‘; 2,b*; 3,c‘] : (int # string) list ‘

Functions may be curried, ¢.e. take their arguments ‘one at a time’ instead as

as a tuple. This is illustrated with the function curried_zip below:

#let ‘curried_'_zip 11 12 = zip(11,12);;
curried_zip = - : (*, list -> %% list -> (% # %%) list)

#let zip_num = curried_zip [0;1;2;3;4;5;6;7;8;9];;
zip_num = - : (* list -> (int # %) list)

#zip_num [‘a*;‘b';‘'c'];; E
[0,*a*; 1,b*; 2,‘c*] : (int # string) list

‘Curried function are useful because they can be ‘partially applied’ as illustrated
above by the partial application of curried_zip to [0;1;2;3;4;5;6;7;8;9] which
- results in the function zip_nunm. I

The evaluation of an expression either succeeds or fails. In the‘ former case,
the evaluation returnsra value; in the latter case the evaluation is aborted and a
failure string (usually the name of the function that caused the failure) is passed
~ to whatever invoked the evaluation. This context can either propagate the failure

(this is the default) or it can trap it. These two possibilities are illustrated below.

A failure trap is an expression of the form e;?e;. An expression of this form is

3The ML Handbook [4] gives exact details.
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evaluated by first evaluating e;. If the evaluation succeeds (i.e. doesn’t fail) then

the value of e;?e; is the value of e;. If the evaluation of e, fails, then the value of
e;?€ is obtained by evaluating e,.

hdll;;
evaluation failed hd

#hd[] ? ‘hd applied to empty list‘;;
‘hd applied to empty list‘ : string

Terms of the HOL logic are represented in ML by a type called term. For example,
the expression "x /\ y ==> z" evaluates in ML to a term representing xAyDz.
Anything between a pair of quotes is parsed as a logical term. The quotation
mechanism is described in Section 3.3. Terms can be manipulated by various built-
in ML functions. For example, dest_imp splits an implication into a pair of terms

consisting of the antecedant and consequent, and dest_conj splits a conjunction
into its conjuncts.

#'x /\ y ==> z";;
"x /\y ==>2z" : term

#dest_imp it;;
"x /\ y","z" : (term # term)

#dest_conj(fst it);;
"', "y" : (term # term)

~ Terms of the HOL logic are quite similar to ML expressions and this can at first
be confusing. Indeed, terms of the logic have types similar to ML expressions. For
example, "(1,2)" is an ML expression with ML type term. The HOL type of this
term is num#nun. By contrast, the ML expression ("1","2") has type teriﬁ#term.
The types of HOL terms form an ML type called type. Expressions of the form
". ...

" evaluate to logical types. The built-in function type_of has ML type
term->type and returns the logical type of a term.

_'#11(1,2)";;
"1,2" . term

#type_of it;;
":num # num" : type

#("1","2") i
tyn 19" . (term # term)

#type_of(fst it);;
":num" : type




To try to minimise confusion between the logical types of HOL terms and the
ML types of ML expressions, we will call the former object language types and
the latter meta-language types. For example, "(1,T)" is an ML expression that

has meta-language type term and evaluates to a term with object language type

" :num#bool”.

#n(1,T)";;
"1,T" : term

#type_of it;;
":num # bool™ : type

Ty

HOL terms can be input using explicit quotation, as above, or they can be
constructed using ML constructor functions. The function mk_var constructs a
variable from a string and a type. In the example below, three variables of type

bool are constru_cted. These are used later.

#let x = mk_var(‘x‘,":bool")
#and y = mk_var(‘y‘,":bool")
#and z = mk_var(‘z‘,":bool")
X = "x" : term

= "y" : term
z = "z" : term

The constructors mk_conj and mk_imp construct conjunctions and implications

respectively.

#let t = mk_imp(mk_conj(x,y),2);;
t =" /\ y==>2z": ternm

Theorems are represented in HOL by values of type thm. The only Way to create

theorems is by proof. For a logician, a formal proof is a sequence each of whose

elements is either an aziom or follows from earlier members of the sequence by a

‘rule of inference. In HOL (following LCF) a proof is a sequence in just that sense.

There are five axioms of the HOL logic and eight primitive inference rules. The
axioms are bound to ML names. For example, the Law of Excluded Middle is
bound to the ML name BOOL_CASES_AX:

#BOOL_CASES_AX; ;
- 16, (£ =T) \/ (t = F)




Theorems are printed with a preceding turnstile |- as illustrated above; ! is
the universal quantifier V. Rules of inference are ML functions that return values
of type thm. For example, the rule of specialization (or V-elimination) is an ML
function, SPEC, which takes as arguments a term "a" and a theorem |- !z.t[z] and

returns the theorem |- t[a], the result of substituting a for z in t[z].

#SPEC; ;
- : (term -> thm -> thm)

#SPEC "1=2" BOOL_CASES_AX:;
- (1 =2)=T)\/ ((1 =2) =F)

A proof in the HOL system is constructed by repeatedly applying inference rules
to axioms or to previously proved theorems.

Since proofs may consist of many tens of thousands of steps, it is necessary to
provide tools to make proof construction easier for the user. The proof generating
tools in the HOL system are just those of LCF, and are described in Section 7.1.

Theorems have assumptions and a conclusion. The inference rule ASSUME gen-
erates theorems of the form ¢ |- ¢{. The ML printer prints each assumption as a
dot. The function dest_thm decomposes a theorem into a pair consisting of list of

assumptions and the conclusion. The ML type goal abbreviates (term)list#tern,

this is motivated in Section 7.1.

#let thl = ASSUME "t1==>t2";;
thi = . |- t1 ==> t2

#dest_thm thi;;
["t1 ==> t2"],"t1 ==> t2" : goal

The inference rule UNDISCH moves the antecedant of an implication to the assump-

tions.

#let th2 = UNDISCH thi;;
th2 = .. |- t2

#dest_thm th2;;
["t1 ==> t2"; "ti"],"t2" : goal

The rule DISCH takes a term and a theorem and ‘discharges’ the given term from
the assumptions of the theorem. The functions hyp and concl select the list of
hypotheses and the conclusion of a theorem, respectively. They just return the

components of the pé,ir computed by dest_thm.




#DISCH "t1==>t2" (DISCH "t1" th2);;
|- (61 ==> £2) ==> t1 ==> t2

#let th3 = DISCH "ti1==>t2" (DISCH "t1" th2);;
th3 = |- (t1 ==> £2) ==> t1 ==> 2

#hyp th3;;
[1 : term list

#concl th3;;
"(t1 ==> £2) ==> t1 ==> t2" : term

In the sections that follow we systematically describe HOL. We then conclude

with another session illustrating the various theorem-proving tools in action.

3 Syntax of the HOL logic

In this section, the structure of HOL terms and types is explained. The particular
sets of types, constants and axioms that are available to a user of the HOL system is
specified by the theory he or she is working in. Each theory T specifies sets Tyopst
and Constst of type operators and constants. These sets then determine the sets
Typest and Termst of types and terms. How to set up theories is described in
Section 5. '

We start by giving fairly abstract definitions of the sets Typest and Termsr.
Various constructor and destructor functions are then described. Finally, we ex-
plain the quotation mechanism built-in to the ML parser. This mechanism includes
a type inference algorithm that enables the user to input terms without having to
write an excessive amount of explicit type information. '

In what follows, a name is a sequence of letters, digits or primes () beginning
with a letter. The set of names is denoted by Names. For example; x, fred23,

fred23’ and fred23’ ' are all members of Names.

3.1 HOL Types

Object language types are expressions that denote sets. Following tradition, we use
d, o', 0", ..., 01, 02, etc. to stand for arbitrary types. HOL terms will be defined
in such a way that all well-formed terms are type-consistent. Before describing
the terms of the HOL logic we must first specify its types.

 There are four kinds of object language types. These can be described informally
as follows.
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1. Type variables: These are sequences of asterisks, optionally followed by
sequences of digits. The set of type variables is denote by Tyvars; for example,
%, sk, ek, x1) xxx24 are all members of Tyvars. Type variables provide the
system with a limited amount of polymorphism (this is explained later).
Small Greek letters, possibly with subscripts or primes, are used to stand

for type variables.

2. Type constants: These are names like bool, num and tok. They denote

fixed sets of values.

3. Function types: If o; and o3 are types, then o;->0; is the function type
with domain o, and range o,; it denotes the set of functions from the set

denoted by its domain to the set denoted by its range.

4. Compound types: These have the form (o;, ... ,0,)0p, where the types
01, ... , Oy are the argument types and op is a type operator of arity n. Type
operators must be names; they denote operations for constructing sets. The
type (o1, ... .0,)op denotes the set resulting from applying the operation
denoted by op to the sets denoted by oy, ..., 0,. For example, list is a
type operator with arity 1. It denotes the operation of forming all finite lists
of elements from a given set. Another example is the type operator prod of

arity 2 which denotes the cartesian product operation.

Although these four kinds of types are logically distinct, the HOL system (fol-
lowing LCF) represents constant types as compound types built with O-ary type
operators and function types as compound types built with a 2-ary type operator
called fun. Thus the constant type num is represented as the compound type ()num
and o1->0; is represented as (o,,03)fun.

I.n'genera,l, compound types must be written in the postﬁxéd form described

above, but there are two exceptions (in addition to ->).
o Cartesian product types of the form (o0,,02)prod can be written as oy#0;.
o Disjoint union types of the form (o,,0;)sun can be written as o;+0.

Products and unions are not primitive, but because they are so useful, the HOL
parser treats them specially. These types are explained in Section 5.5 and Sec-
tion 5.6 respectively.

It is useful to describe the set of types of a theory a bit more formally. Each

theory T determines a set Tyopst of type operators. A type operator is a pair
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(op,n) where op is the name of the operator and n is its arity. The set Typest of
~ types of the theory T is the smallest set such that:

¢ Tyvars C Typest.
e If 0, € Types; and o; € Types; then 0,->0; € Typest.

o If 0y € Typest (for all 7 between 1 and n) and (op,n) € Tyops; then
(01, ... ,0n)0pE Types. o

Types containing type variables are called polymorphic; others are monomorphic.
An instance o' of a type o is obtained by replacing all occurrences of a type
variable in ¢ by a type. The only instance of a monomorphic type is itself. Note

that Typest is closed under the operation of taking instances.

3.2 HOL Terms

A theory T specifies a set Constst of constants. Each constant is a pair (c,0)
where ¢ is a name and ¢ is a type of T (i.e. 0 € TypésT); o is called the generic
type of c. | ‘

Distinct constants of a theory cannot have the same name; (i.e. if (¢,0) and
(¢,0') are both members of Constst then o = ¢').

The set Termst of terms of the theory T is the smallest set such that:

1. If z is a name which is not the name of a constant in T (¢.e. Constst
does not contain a pair whose first component is z) and o € Typest, then

(z,0) € Termst. Terms formed in this way are called variables.

2. If (¢,0) € Constst and ¢' € Types is an instance of o, then (¢,0') € Termsr.

Terms formed in this way are called constants.

&)

. If (¢,0'->0) € Termsr and (t',0') € Termst then (comb,t;,t;,0) € Termst.

Terms formed in this way are called combinations or function applz'éatz'ons.

4. If (z,0) € Termst (where z is a name that is not the name of a constant in T)
and (¢,0') € Termst and o->0' € Types; then (abs,z,t,0->0') € Termsr.
Terms formed in this way are called abstractions or A-terms (\ is HOL’s ASCII

* approximation to A). | A o
Members of the sets Typest and Termst éorrespond closely to the internal rep-
resentations of ML values of type type and term in the HOL system. The following

constructor f_unétions (listed below with their ML types) can be used to input types

and terms; they are explained in Section 3.3 below.
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mk_vartype : string -> type

mk_type : (string # type list) -> type
mk_var : (string # type) -> term
mk_const : (string # type) -> term
mk_comb : (term # term) -> term
mk_abs : (term # term) -> term

The HOL logic consists of the build-in theories bool and ind {see Sections 5.3
and 5.7)) together with eight rules of inference. In the theory bool the type bool
is introduced (we often name theories after the type which they introduce). Terms
of type bool are called formulas. There are two constant formulas: T and F; these
represent true and false respectively. It follows from the Law of Excluded Middle

(an axiom of HOL) that any formula is either equivalant to T or to F.

3.3 Quotation

It would be extremely tedious to always have to input types and terms using the
constructor functions. The HOL system has a special parser and type-checker that
enable them to be input using a fairly standard syntax. The HOL printer also
outputs types and terms using this syntax.

For example, the ML expression ":bool->bool" denotes exactly the same value

(of ML type type) as

mk_type(‘fun‘, [mk_type(‘bool*,[1):mk_type(‘bool*,[1)])

and "\x.x+1" can be used instead of

mk_abs
(mk_var(x*',mk_type(‘num‘,[1)),
mk_ceomb -
(mk_comb
(mk_const
(‘e
mk_type(‘fun’, [mk_type(‘num‘,[1);
mk_type(‘fun‘, [mk_type(‘num*,[1);
mk_type(‘num‘,[1)1)1)),
mk_var(‘x*, mk_type(‘num‘,[]1))),
mk_const(‘1*, mk_type(‘num‘,[]1))))

Notice that there is no explicit type information in *\x.x+1". The HOL type-
checker knows that (1, nun) € Constspy, and (+, num->(nun->num)) € Constspyn,
;.e. that the constants 1 and + have type num and num->(num->num), respectively.

From the types of 1 and + the type-checker infers that both occurrences of x in

13




"\x.x+1" could have type num. This is not the only type assignment possible; one
could, for exé.mple, make the first occurrence of x have type bool and the second
one have type num. In that case there would be two different variables with name
x, namely (x, bool) and (x, num), the second of which is free. In fact, in HOL,
the only way to construct a term with this second type assignment would be by
using constructors, since the type-checker uses the heuristic that variables with the
same name have the same type. The type-checker was designed by Robin Milner.
It uses the heuristics like the one above to infer a sensible type for all variables
occurring in a term. It uses the types of any constants in making this inference.

If there are not enough clues, then the system will complain with the message

evaluation failed types indeterminate in quotation

To give the system a hint, one can explicitly indicate types by following any sub-
term by a colon and then a type. For example, *f(x:nun) :bool" will typecheck
with f and x getting types num->bool and num respectively. If there are polymorphic
constants in a term, there must be enough type information to uniquely identify
a type instance for each such constant.

The type-checking algorithm used for the HOL logic differs from that used for
ML. For example, the ML expression \x.x will get ML type *->*, but the HOL term
"\x.x" will fail to type-check and will result in the message shown above. To get
this term to type-check one must indicate explicity t_hé type of the variable x by
writing, for example, "\x:*.x". This treatment of types is inherited from LCF.

The table below shows ML expressions for various kinds of type quotations. The

expressions in adjacent columns are equivalent.

Types
Kind of type ML quotation Constructor expression
Type variable L mk_vartype( ‘s---*)
Type constant ":op" mk_type(‘op‘,[1)
Function type "o->09" mk_type(‘fun', {":01";":0,"])
Compound type | ": (01, ..., Op)op" | mk_type(‘op‘, [":0:"; ... :":0,"1)

Equivalent ways of inputting the four primitive kinds of term are shown in the

next table.
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Kind of term

Primitive terms

ML gquotation

Constructor expression

Variable "yar:o" mk_var(‘var*,":o")
Constant "eonst:o" mk_const(‘const*,":o")
Combination | "t; t3" mk_comb ("t ", "Ea")
Abstraction | "\z.t" mk_abs("z","t")

The HOL quotation mechanism can translate various standard logical notations

into primitive terms. For example, if + has been declared an infix (as explained in

Section 5), then "x+1" is translated to "$+ 1 2". The escape character $ suppresses

the infix behaviour of + and prevents the quotation parser getting confused. In

general, $ can be used to suppress any special syntactic behaviour a constant

name might have; this is illustrated in the table below, in which the terms in

the column headed “ML quotation” are translated by the quotation parser to the

corresponding terms in the column headed “Primitive term”. Conversely, the

terms in the latter column are always printed in the form shown in the former

one. The ML constructor expressions in the rightmost column evaluate to the

same values (of type term) as the other quotations in the same row.

Non-primitive terms
Kind of term ML quotation Primitive term | Constructor ezpression
| Negation neg ngT ot mk_neg("t")
Disjunction "t \/ty" "$\/ 1y ty" mk_disj ("ti","E2")
Conjunction "t/ \E" "$/\ t £" mk_conj ("£;","t,")
Implication nEy==>ty" ng==> t; £," | mk_imp("t;","ty")
Equality nti=t," ng= £y £y mk_eq("t1", "E,")
V-quantification | "!z.¢" "$1(\z.t)" mk_forall("z","t")
J-quantification | "7z .t" "$2(\z.OO" mk_exists("z","{")
e-term "er.t" "g@(\z.t)" mk_select("z","{")
Conditional "(E=>tit)" "COND ¢ t; to" mk_cond ("E","t1", "Ea")
let-expression "let z=t; in t3" | "LET(\x.{3)¢{" | mk_let("z" "E", "Iy")

The constants COND and LET are explained in Section 5.3. The constants \/, /\,

==> and = are examples of infizes. If ¢ is declared to be an infix, then the HOL

parser will translate "t; ¢ t3" to "$c ¢, t". The constants !, ? and @ are examples
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ly ="+ 1" . term

of binders (see Section 5.3 also). If ¢ is declared to be a binder, then the HOL
parser will translate "¢ z.¢" to the combination "$c(\z.£)".
In addition to the kinds of terms in the tables above, the parsei also supports

the following syntactic abbreviations.

Syntactic abbreviations
Abbreviated term | Meaning Constructor expression
"t ty ceet," n(e.-(t t1)++-tp)" | list_mk_comb("t", ["t;"; ... ;"tn"]‘)
"\Zy---ZTy.T" "\Zy. -+ \Zp.t" | list_mk_abs(["zy"; ... ;"z,"]1,"t")
T PR L Mizy. - VT, t" | list_mk_forall(["zi"; ... ;"z,"1,"t")
"?Ty - T, 1" NPLy. -+ TT,.t" | list_mk_exists(["zi"; ... ;"z,"1,"E") |

The parser will also convert "\(z;,z3).t" to "UNCURRY(\z; Z;.t)" (the constant

~ UNCURRY is described in Section 5.5). This transformation is done recursively so

that, for example,
"\(zy,T2,T3) .t"
is converted to
"UNCURRY (\z; . UNCURRY (\Z2 Z3.1))" 7
More generally, if b is a binder, then "b(.’ZI]_,.’E-g)‘.t" is parsed as "$b(\(z;,z2) .£)".
For example, "1 (x,y) .x>y" parses to "$! (UNCURRY (\x.\y.$> x y))" (> is an infixed

constant of the theory num meaning “is greater than”).

3.4 Antiquotation

Within a quotation, expressions of the form ~(¢) (where t is an ML expression of
type term or type) are called antiquotations. An antiquotation ~(¢) evaluates to the
ML value of t. For example, "x \/ *(mk_con'j (‘"y:booll" ,"z:bool"))" evaluates to .
the same term as "x \/ (y /\ z)". The most common occurrence of antiquotation

is when the term t is just an ML variable z; in this case ~(z) can be abbreviated

" by ~z. The following session illustrates antiquotion.

#let y = "x+1";;

#let z
Z="y

o
”
+
-
ct
o
H
El

#"ix.?y.%z";; :
"Ix. ?y. y=x + 1" : term
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4 Sequents, Theorems and Proof

The HOL system supports proof by natural deduction. Assertions in the HOL
logic are not individual formulas (i.e. boolean terms), but are sequents of the form
(T,¢), where T is a set of formulas called the assuymptions and t a formula called
the conclusion. A sequent(I',t) asserts that if all the formulas in [ are true, then
so is t. Using sequents, one can design.a deductive system in which proofs are
more ‘natural’ than in other (e.g. Hilbert-style) systems.

Sequents are represented in ML by pairs with ML type (térm list)#term; the first
component represents the assumptions and the second component the conclusion.
For example, (["x>y";"y>z"],"x>2z") is an ML expression representing the sequent
with assumptions "x>y" and "y>z" and conclusion "x>z".

A theorem is a sequent that has a proof. More precisely, a theorem is a sequent
that is either an aziom, or follows from other thebrems by a rule of inference.

To guarantee that the only way to get theorems is by proof, the HOL system
(following LCF) distinguishes sequents from theorems by haifing a separate ML
type thm*. There are five initial theorems corresponding to.the five axioms of the
HOL logic. The only way to generate other objects with ML type thm is by using
one of the eight primitive inference rules of the logic (see Section 5.4). ML’s type
discipline ensures that only inference rules are applicable to theorems [5].

Interesting theorems require large numbers of applications of the primitive in-
ference rules for their proof. For example, a recent verification of the design of
a simple microproceésor took over a million inference:steps [3]. The HOL system
provides tools to help the user generate such proofs. One such tool is a derived
inference rule. This is an ML function which invokes sequences of applications of
the eight primitive rules. There are.abmit a hundred derived inference rules prede-
fined in the system. A brief discussion of derived rules can be found in Section 6.
Proofs can be generated in a goal-oriented style using tactics; these were invented
(for LCF) by Robin Milner and are explained in Section 7.1. The goal-directed
proof style starts with a formula (representing the goal one wants to prove) and
then reduces this to sub-goals, sub-sub-goals etc. until the problem is decomposed
into trivial goals (e.g. instances of axioms). This is in contrast to forward proof in
which one works forward from the axioms, using the rules of inference, until the

dfasired theorem is deduced.

4In ML jargon, thm is an abstract type whose representing type is (term list)#term.
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4.1 Axioms and definitions

FEach theory T has a set Axiomst C Termst of terms of type bool, called axioms.
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system enables the user to assert any formula as an axiom.

A definition is an axiom of the form c=t, where ¢ is a constant and ¢ is a closed
term®. A constant ¢ is defined in T if there is exactly one axiom in T containing
¢ and that axiom is a definition. If all the axioms of T are definitions, then T
is a definitional theory. Definitional theories have the important property that
they cannot introduce any new inconsistency that wasn’t already present; they .
are what logicians call conservative ertensions. '

Axioms of the form f z;,...z, = t, where the free variables of ¢ are included
among ri, ... , I, are also regarded as definitions. This is because the formula
fzy...z, = tis equivalent to the ordinary definition f’ = \z;...T,.t. Definitions
are also allowed to have the form f(z;,...,z,) = t.

Another kind of conservative extension is a type definition.

4.2 Type definitions

There does not seem to be any standard notion of type definition in the literature

on higher-order logic. The mechanism described in this section was suggested to

me by Mike Fourman.

Recalling that a constant type denotes a set and an n-ary type operator denotes
an operatlon for combining n sets to form a set, the 1ntu1t1ve 1dea behind type

definitions in the HOL logic is as follows:

¢ A constant type is defined by specifying it to be in one-to-one correspondence

with a non-empty subset of an ex1stmg type.

e An n-ary type operator op is defined by specifying (a;,...,a,)op to be in
one-to-one correspondence with a non-empty subset of an existing type con-

structed from a4, ..., a,.

All types in the HOL logic must denote non-empty sets. This is because the term
ex:0.T denotes a member of the set denoted by o (for arbitrary o). The binder @

. is explained in Section 5.3.

The HOL system has a single mechanism for defining types. The idea behind this

mechanism is to define an n-ary type operator® op by specifying the set denoted

S A term is closed if it contains no free variables.

SConstant types are defined by taking n = 0.
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by (ai,....a,)op for all denotations of the type variables ¢y, ... , a,. This set is

specified by giving a (polymorphic) term denoting its characteristic function’.

This idea can perhaps be made clearer with a concrete example. Suppose

we want to define a binary type operator iso such that the type denoted by
v. (%,**)iso" is the subset of the set denoted by ":%->xx" consisting of those func-
tions which have an inverse. The characteristic function of the set of functions
with inverses is denoted by the term W\f:x->¥x. 7g. 1x. g(f x) = x". To ensure
that only non-empty sets are used to define types, the HOL system requires the
user to supply a theorem asserting non-emptiness when making a type definition.
If t,, is the term representing the characteristic function defining op, then the user
is required to supply a theorem of the form |- ?z.t,, z. In the case of our exam-
ple, op is iso and tjgo is "\f:x->%%.7g.1x. g(f x) = x", so the required theorem
is:

[- 2f. (\f:*->xx 7g. 1x. g(f x) = x) £

The ML function

new_ﬁype_definition : (string # term # thm) -> thm
is used to make a new type definition. Suppose op is a name, t,, is a term whose
object language type has the form o->bool (where o contains n distinct type
variables ay, ..., a,) and th is the theorem |- ?z.t,, . Then

new_type_definition(op,.i,p,.th)
declares op to be a new n-ary type-operator such that (ay,...,a,)op denotes the
set with characteristic function t,,. This set is a subset of the set denoted by o.
The theorem th ensures that this subset is non-empty for all values of the type
variables oy, ..., an. The type o is called the representing type of op. The result
of the type definition is an axiom asserting the existence of a one-to-one function
from (oy,...,enYop onto the subset of o characterized by ¢,,.

Suppose we have proved |- ?f. (\f:*->xx.7g.1x. g(f x) = x) £ and bound
this theorem to the ML name th. Then the new type iso is defined by executing
the ML expression

new_type_definition(‘iso‘, "(\f:x->xx 7g.Ix. g(f x) = x)", th)

The HOL system then automatically declares a new 2-ary type operator iso, a
new constant REP_iso (whose name is generated by prefixing the name of the type
operator being defined with the string ‘REP_*), and finally, HOL automatically

generates the axiom

"The characteristic function of a set is a boolean-valued function that maps an element to true
if and only if the element is a member of the set.
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|- ONE_ONE REP_iso /\
(1f. (\f. 7g. 'x. g(f x)

1]

x)f = (?f°. £ = REP_iso £'))

This axiom has,t;he form

|- ONE_ONE REP_op /\ 'f.t,, £ = (7£°. £ = REP_op £’)

where the function ONE_ONE is defined by

|- ONE_ONE £ = (!x1 x2. (f x1 = £ x2) ==> (x1 = x2))

The constant ONE_ONE is introduced in the theory bool (see Section 5.3) and so is
built into the HOL system.

5 'Theories

The set of types, constants and axioms that are available in HOL depends on

~ the theory in which one is working (see Section 3). Theories form a hierarchy in

which a theory Ty can be a parent of another theory T3, meaning that the types,
constants and axioms of T; will be available in T;- If Ty is a parent of T3, then

T3 is an tmmediate descendant of T;. Ty is a descendant of Ty if the two theories

" are in the transitive closure of the immediate descendant relation. In this case we

also say that T; is an ancestor of T,. When first entering the HOL system one
enters a theory called HOL; this is a descendant of several theories including bool
and theories of numbers, lists and pairs. In the subsections below, we describe the
ML functions provided for manipulating theories and the various theories built in
to the HOL system. First we describe a bit more abstractly exactly what a theory
is. '

5.1 Abstract Definition of a Theory

A theory T is characterized by a 4-tuple
(Parentst, Tyops;, Constst, Axiomst)

where:
o Parentst is a (finite) set of all the parent theories of T .
o Tyops; is a set of type operator§ (see Section 4.2).
| ¢ Constst is a set of constants (see Section 3.2).
o Axiomsr is a set of theorems which are the axioms of T (see Section 4.1).
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5.2 ML Functions for Manipulating Theories

In the HOL system, the four components of a theory are stored on disk in files
with names of the form name.th, where name is the name given to the theory
(with new_theory) when it is created. Various additional pieces of information
are stored in the name.th files, including the parsing status of the contants (i.e.
whether they are infixes or binders), which axioms are definitions (see Section 4.1)

and the theorems that have been proved and saved by the user.

The ML functions for creating theories are listed below.

new_theory : string -> void
new_parent : string -> void

new_type : int -> string -> void
new_constant : (string # type) -> void
new_infix : (string # type) -> void
new_binder : (string # type) -> void
new_axiom : (string # term) -> thm
new_definition : (string # term) -> thm
new_infix_definition : (string # term) -> thnm
new_binder_definition : (string # term) -> thm
new_type_definition : (string # term # thm) -> thm

The effect of these functions should be reasonably clear from their names and
types. The first argument of new_type is the arity of the type operator being
declared; the second argument is its name. The arguments of type string to
new_axiom, new_definition etc. are the names of the corresponding axioms and
definitions. These names are used when accessing theories with the functions
axiom, definition, efc., described below. The various functions for setting up
theories are illustrated in the example session in Section 8.

A theory with no descendants can be extended by adding new parents, types,
constants, axioms and definitions. Theories that are already the parents of other
theoriés cannot be extended because it would be messy (though not impossible)
‘to implement the necessary checks to ensure that added types, constants etc. did
not invalidate declarations in the descendant theories. When one is creating a new
theory or extending an existing theory one is said to be in draft mode. When one
is working in a completed theory, one is said to be in working mode; in this mode
the functions with prefix “new_” listed above are not available. In draft mode there
is the danger that one is not prevented from asserting inconsistent axioms such as
|- T=F. See the discussion of definitional axioms in Section 4.1. '

The functions for entering an already existing theory in either draft mode or

working mode are, respectively:
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extend_theory : string -> void
load_theory : string -> void -

; )
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function:

close_theory : void -> void

There are various functions for loading the contents of theory files:

parents : string -> string list

types - : string -> (int # string) list
constants : string -> term list

infixes : string -> term list

binders 1 string -> string list

axioms : string -> (string # thm) list
definitions : string -> (string # thm) list

theorems : string -> (string # thm) list

Once a theorem has been proved, it can be saved with the function
save_thm : string # thm -> thm
Evaluating save_thm(‘Thi‘,th) will save the theorem th with name Thi on the

current theory. Individual axioms, definitions and theorems can be read (from

ancestor theories) using the following ML functions:

axiom : string -> string -> thm
definition : string -> string -> thm-
theorem : string -> string -> thm

Theories can be printed using the function print_theory, which takes a theory
name (a value of type string) and then prints out the named theory in a readable
format.

“In the remaining subsections of this section we describe all the theories built into

the HOL system®. The theory HOL has all of these as parents.

8The actual theory structure in the HOL system is very slightly different from that described in
this paper. Specifically, the types and definitions for pairs are included in the theory bool (rather
than being in a separate descendant theory called prod). It is hoped that future versions of the
~ system will correct this anomaly.
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5.3 The Theory bool

The theory bool introduces the type bool and contains four of the five axioms for

higher-order logic (the fifth axiom is in the theory ind). These axioms, together

with the rules of inference described in Section 5.4, constitute the core of the HOL
logic. Because of the way the HOL system evolved from LCF®, the particular ax-
iomatization of higher-order logic it uses is superficially different from the classical
axiomatization due to Church [2]. The biggest difference is that in Church’s for-
mulation, type variables are in the meta-language, whereas in the HOL logic they
are part of the object language. .

There are three primitive constants in the theory bool: = (equality, an infix),
==> (implication, an infix) and @ (choice, a binder). Equality and implication
are standard .predicate calculus notions, but choice is more exotic: if ¢t is a term
having type o->bool, then @x.t x (or, equivalently, $e¢) denotes some member
of the set whose characteristic function is ¢. If the set is empty, then ex.t x
denotes an arbitrary member of the set denoted by 0. The constant @ is a higher-
order version of Hilbert’s e-operator; it is related to the constant ¢ in Church’s
formulation of higher-order logic. For more details, see Leisenring’s book [12] and
Church’s original paper [2]. |

The logical constants T (truth), F (falsity), = (negation), /\ (conjunction), \/
(disjunction), ! (universal quantification) and ? (existential quantification) can
all be defined in terms of equality, implication and choice. The definitions listed
below are fairly standard; each one is preceded by its ML name. (Later definitions

sometimes use earlier ones.)

T.DEF I-T = (QO\x:x. x)=(\x. x))
FORALL_DEF - $1 = \P:x->bool. P=(\x. T)
_ EXISTS_DEF - $2 = \P:*->bool. P($@ P)
AND_DEF [- $/\ = \t1 t2. tt. (t1 ==> £2 ==> t) ==> ¢
OR_DEF - $\/ = \t1 t2. 't (t1 ¥=> t) ==> (t2 ==> t) ==> t
F_DEF i-F =1t. ¢t
NOGT_DEF I-$ =\t. t ==>F

There are four axioms in the theory bool:

9Tn order to simplify the porting of the LCF theorem-proving tools to the HOL system, the
HOL logic was made as like PPLAMBDA (the logic built-in to LCF) as possible.
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BOOL_CASES_AX [- 't. (¢t =T) \/ (t = F)

IMP_ANTISYM_AX |- 181 t2. (1 ==> t2) ==> (£2 ==> t1) ==> (£1 = t2)
ETA_AX - 16, (\x. t x) =¢
SELECT_AX |- 1P:%->bool x. P x ==> P($€ P)

The fifth and last axiom of the HOL logic is the Axiom of Infinity; this is in the
theory ind described in Section 5.7. The theory bool supplies the definitions of a

number of useful constants: v

LET_DEF |- LET \f x. £ x

COND_DEF |- COND

\t t1 £2.0x. ((t=T)==>(x=t1))/\((t=F)==>(x=t2))

ONE_ONE_DEF |- ONE_ONE £ (Ix1 x2. (£ x1 = £ x2) ==> (x1 = x2))

ONTO_DEF |- ONTO £ = (ly. ?7x. y = £ x)

The constant LET is used in representing terms containing local variable bindings
(¢.e. let-terms, as in Section 3.3). The constant COND is used in representing
conditionals. The constant ONE_ONE is used in type definitions (see Section 3.3).

The constant ONTO is used in stating the Axiom of Infinity (see Section 5.7).

5.4 Primitive Rules of Inference of the HOL Logic

There are eight primitive rules of inference of the HOL logic. We will specify
these using standard natural deduction notation. The metavariables ¢, t;, ¢, etec.

stand for arbitrary terms. The theorems above the horizontal line are called the

hypotheses of the rule and the theorem below the line is called the result. Each rule

asserts that its result can be deduced from its hypotheses, provided any restrictions
(listed after the bullets) hold.

The first three rules have no hypotheses; their results can always be deduced.

The square brackets contain the ML names of the rules followed by their ML types.

5.4.1 Assumption introduction

[ASSUME‘: term -> thm]

t |-t

ASSUME "t" evaluates to |- .t.
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5.4.2 Reflexivity

[REFL : term -> thm|

- ¢

t

REFL "t" evaluates to |- ¢ = t.

5.4.3 Beta-conversion

[BETA_CONV : term -> thn]

= Ozt = thty/z

e where t1[ts/z] denotes the result of substituting ¢; for z in ¢;, with the
restriction that no free variables in ¢, become bound after substitution into
t;.

BETA_CONV "(\z.t;)t," evaluates to the theorem |- (\z.ty)t2 = t1[t2/z].

5.4.4 Substitution
[SUBST : (thm#term)list -> term -> thm -> thn|

Ty 1= t=ty - Tpd- te=th, T I- tltr,---yta/ZT1,. . s Tn
FyU---UT, UL 1- t[t),...,00)

e where t[t,...,¢,] denotes a term ¢t with some free occurrences of the terms
ti, ... , tn singled out and t[t,...,¢ | denotes the result of simultaneously
replacing each occurrences of ¢; by ¢t} (for 1 < 7 < n), with the restriction

that the context ¢ | must not bind any variable occurring free in either #; or
t; (for 1 <1z < mn).

e U denotes set union.

The first argument to SUBST is a list [(|-t,=t} . zy);...(1-t,=t,, z,)1. Thesecond
argument is a template term t{z,,..., z,| in which occurrences of the variable z;
(where 1 < ¢ < n) are used to mark the places where substitutions with |- #;=¢!

are to be done.
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5.4.5 Abstraction
[ABS : term -> thm -> thm]

r'i-t
L' 1- (\z.t)

l2
(\z.1t3)

e where z is not free in I.

If th is an ML name for the theorem I' |- t;=tz, then ABS "z" th returns the
theorem I' |- (\z.%;) = (\z.t9).

5.4.6 Type instantiation

[INST_TYPE : (type#type) list -> thm -> thm)]

Li-t¢

T 1~ for, --- yonfan, - ]

e tloy, ... ,0n/0q, ... ,ay] denotes the result of substituting (in parallel) the
types o1, ..., 0, for type variables a1, ..., a, in t, with the restriction that

none of ey, ..., o, occur in I'.

INST_TYPE[ (01, ¢1) ;...; (On,0,)]th returns the result of instantiating each occur-
rence of o; in the theorem th to o; (for 1 <7 < n).

5.4.7 Discharging an assumption

[DISCH : term -> thm -> thn]

T l- &
F—{t]_} [- &ty ==> ¢y

e T'—{t;} denotes the set obtained by removing ¢; from T

If th is the theorem I' |- {3, then the ML expression DISCH "#;" th evaluates to
the theorem I'—{¢;} |- ¢; ==> ¢5. Note that if ¢; is not a member of T, then
T—{t,} =T. '

26




5.4.8 Modus Ponens
[MP : thm -> thm -> thn]

Ty |- ¢ ==>t, L, 1- 4
F1UI‘2 |‘ t-z

MP takes two theorems (in the order shown above) and returns the result of applying

Modus Ponens.

5.5 The Theory prod

The binary type operator prod denotes the Cartesian product operator (see Sec-
tion 3.1). Values of type (o1,02)prod are ordered pairs whose first component has
type o1 and whose second o;. The HOL parser recognises o,#0; as an abbreviation
for (oy1,09)prod.

Cartesian products can be defined by representing a pair (¢;,%¢3) as the function
\x y.(x=t1)/\(y=t2). The representing type of o1#0; is thus 0;->05->bool. To

define pairs this way, we first evaluate the ML expressions:

new_definition
(‘MK_PAIR_DEF‘', "MK_PAIR(x:*)(y:**) = \a b. (a=x)/\(b=y)")

new_definition
(‘IS_PAIR_DEF‘, "IS_PAIR p = ?x:%.?7y:*%. p = MK_PAIR x y")

We then prove that:
|- ?7p:*->xx->bool. IS_PAIR p

which is easily done (since |- IS_PAIR(MK_PAIR x y) is easily proved). This theo-
rem is called PAIR_EXISTS. Next we define the type operator prod by evaluating
new_type_definition(‘prod*, "IS_PAIR: (¥->%%->bool)->bool", PAIR_EXISTS)
This results in the constant REP_prod being declared and the following axiom
(called DEF_prod) being asserted.
|- ONE_ONE REP_prod /\ (!p. IS_PAIR p = (?p’'. p = REP_prod p’))

The infix constructor “,” and the selectors FST b= and SND:=#%x->%% can
then be defined by:
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new_infix_definition
(‘COMMA_DEF‘, "$, (x:%) (y:*x)

@p. REP_prod p = MK_PAIR x y")

- new_definition

- (“FST_DEF*, "FST(p:(*,*x)prod) = €x.?y. MK_PAIR x y = REP_prod P™)
new_definition
(*SND_DEF*, "SND(p: (*,**)prod) = Qy.7x. MK'__PAIR x 'y = REP_prod p")

From these definitions and the axiom DEF_prod, the following theorems are

proved and stored in the theory prod.

PAIR |- tx. (FST x,8ND x) = x
. FST I- 'x y. FST(x,y) = X
SND - 1% y. SND(x.y) =y

In addition to the constants just described, the theory prod also contains the
definitions of CURRY and UNCURRY.

|- CURRY f x ¥

£(x,7)

|- UNCURRY £ (x,7) fxy
These constants are used for representing generalized the abstractions of the
form \(z;,...,z,) .t described in Section 3.3.

5.6 The Theory sum

A type (01,02)sun (which may be abbreviated as 1+03) denotes the disjoint union
of types o; and 03. The type operator sum can be defined just as prod was, but we
omit the details herel®. From the user’s point of view, all that is needed are the
functions '

INL 0 % => sk

INR : #% => kR

OUTL : *x+x%x -> x

S OUTR : w+%% => %

ISL - : =+4xx -> bool

ISR : =+%x -> bool
INL and INR are the injections for inserting elements in’_co the sum; OUTL and OUTR
are the corresponding projections out of the sum. The predicates ISL and ISR test
~ whether an element of a sum is in the left or right summand respectively. The

following theorems are pre—pro{red in the system.

quhe definition of disjoint unions in the HOL system is due to Tom Melham.
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ISL |- (fe. ISL(INL e)) /\ (le. "ISL(INR e))

ISR |- (Ye. ISR(INR e)) /\ (!e. “ISR(INL e))
ISL.OR_ISR |- ts. ISL s \/ ISR s

OUTL |- te. OUTL(INL e) = e

OUTR 1- te. DUTR(INR e) = e —

" INL |- 1s. ISL s ==> (INL(OUTL s) = s)

INR |- ts. ISR s ==> (INR(OUTR s) = s)

These theorems follow from the definitions.

5.7 The Theory ind

The theory ind introduces the type ind of individuals and the Aziom of Infinity.
This axiom states that the set denoted by ind is infinite. The four axioms of the
theory bool, the rules of inference in Section 5.4 and the Axiom of Infinity, are
together sufficient for developing all of standard mathematics. Thus, in principle,
the user of the HOL system should never need to make a non-definitional theory.
In practice, it is often very tempting to take the risk of introducing new axioms
because deriving them from definitions can be tedious; proving that ‘axioms’ follow
from definitions amounts to giving a consistency proof of them.

The Axiom of Infinity is called INFINITY_AX; it states:

|- 7f:ind->ind. ONE_ONE £ /\ ~(ONTO f)

This asserts that there exists a one-to-one map from ind to itself that is not onto.

This implies that the type ind denotes an infinite set.

5.8 Thé Theory num

The type num of natural numbers can be defined as equivalent to a countable subset
of ind. Peano’s axioms can then be proved as theorems. However, this has not
yet been done in the HOL system. The type num is declared as a new primitive
type and the constants 0 and SUC are taken as primitive const’ants‘ with types num
and num->nun respectively. Peano’s axioms are then asserted u.sing new_axiom. The

resulting theorems are:

NOT_SUC |- tn. “(SUC n = 0)
INV_SUC - {- tmn. (SUC m = SUC n) ==> (m = n)
INDUCTION - 1P. PO /\ (!n. P n ==> P(SUC n)) ==> (In. P n)
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In higher-order logic, Peano’s axioms are sufﬁcien’q for developing number theory
because addition and multiplication can be defined. In first order logic these must
be taken as primitive. Note also that INDUCTION could not be stated as a single
axiom in first-order logic because predicates (e.g. P) cannot be quantified.

5.9 The Theory prim rec

In classical logic, unlike domain theory logics such as PPLAMBDA, arbitrary re-
cursive definitions are not allowed. For example, there is no function £ (of type

num->num) such that

'x. £x = (fx)+1

Certain restricted forms of recursive definition do, however, uniquely define func-
tions. An important example are the primitive recursive functions. For any x and
f the Primitive Recursion Theorem tells us that there is a unique function fun
such that: '

(fun 0 = x) /\
(im. fun(SUC m) = f£(fun m)m)

The Primitive Recursion Theorem follows from Peano’s axioms. When the HOL

system is built, the following theorem is proved and stored in the theory prim_rec:

j- 1x £. ?fun.
(fun 0 = x) /\
('m. fun(SUC m) = f(fun m)m)

From this it follows that there exists a function PRIM_REC such that:

i- 'mx £.
(PRIMREC x £ 0 = x) /\
(PRIM_REC x f (SUC m) = f(PRIM_REC x f m)m)

The function PRIM_REC can be used to justify any primitive recursive definition. In

higher-order logic a recursion of the form

fun 0 x1...xn = f1(x1,...,xn)
fun (SUC m) x1...xn = f2(fun m xi...xn, m, xi,...,xn)
is equivalent to:
fun O = \xt...xn. £1(x1,...,xn)
- fun (SUC m) = \x1...xn. f2(fun m x1...xn, m, x1,...,xn)
= (\fmxl...xn. £2(f x1...xm, m, x1,...,xn))(fun m)m
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which is equivalent to the non-recursive definition:

fun = PRIM_REC .
(\x1...xn. f1(x1,...,xn))
(\Mf mx1...xn. £f2(f x1...xn, m, x1,...,xn))

For example, we can define addition and multiplication by:

-+

PRIM_REC(\n. n)(\f m n. SUC(f n))

j- =

PRIM_REC(\n. O)(N\f m n. (f n) + n)

To automate the use of the Primitive Recursion Theorem, HOL provides
functions: '
new_prim_rec_definition : (string # term) -> thm

new_infix_prim_rec_definition : (string # term) -> thm

Evaluating

new_prim_rec_definition

(“fun‘,
"(ixl...xn. fun 0 x1...xn = t1[x1,...,xn]) /\
. (Im x1...xn. _

fun (SUC m) x1...xn = t2[fun m x1...xn, m, x1,...,xn])")

automatically makes the (non-recursive) definition:

new_definition

(‘fun_DEF°‘,
"fuyn = PRIM_REC
(\x1...xm. ti[x1,...,xn])
(\fun m x1...xn. t2[fun x1...xn, m, xi,...,xn])")

and then proves the theorem:

t1lx1,...,xm] /\
t2[fun m x1...xn, m, xi,...,xn]

|- fun O xl...xn
fun (SUC m) x1...xn

which is saved as the theorem with name ‘fun‘.

two

The ML function new_inf ix_prim_rec_definition declares an infixed function by

primitive recursion. For example, here is the definition of + used by the system:

new_infix_prim_rec_definition
(“ADD“,
"($+ O n = n) /\ '
($+ (SUC m) n = SUC($+ m n))")

The $’s are there to indicate that + is being declared an infix. Evaluating this

expression will create a definition of the following form in the current theory:
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ADD_DEF |- $+ = PRIM_REC(\n. n)(\f m n. SUC(f n))

The $ is now necessary since the call to new_infix_prim_rec_definition declares
+ as an infix. It also automatically proves the following theorem:
ADD |- (0 +n=mn) /\ ((SUC m) + n = SUC(m + n))
which is saved in the current theory with name ADD.
We might hope to define the less-than relation “<” by primitive recursion, but it

is needed for the proof of the Primitive Recursion Theorem, so we must somehow

define it before we have primitive recursion available. A definition that works is:

LESS |- $<m n = (?P. (in. P(SUC n) ==> P n) /\ Pmn/\ “P n)

Intuitively, this says that m<n if there exists a set (with characteristic function P)

that is downward closed!! and contains m but not n.

'5.10 The Theory arithmetic

The theory arithmetic contains primitive recursive definitions of standard arith-

metic operators. For example:

|- (0+n=mn) /\ ((SUCm) + n =8UC(m + n))

- 0 -m=0) /\ ((SUCm) -n

{m<n=>01| SUC{(m - n)))

- (0*n=0) /\ ((SUCm) *n={(m*n) +n)

It also contains various non-recursive definitions.

I-m>n =n<n

[-m<=n =m<n\/ (m=n)

l-m>n =m>n\/ (m=n)

l-mDIVn = (&x. (n * x) <= m /\ m < ((n * x) + n))
_l‘mREMn=m-(n*(mDIVn))

LA set of numbers is downward closed if whenever it contains the successor of a number, it also
contains the number.




An ad hoc collection of elementary arithmetic theorems are pre-proved in the

theory arithmetic. For example:

I-tmn. n<m==>(7p. p+n=m
I-Imnp.m<n/\n<p==>n<p
I- Imn. "(m< ﬁ /A\'n <m

J]-ifmn. m*n=mn=x*mn

| - !ﬁ np. (m+n) *p=(m=*p) + (n=*p)

At the time of writing there are about seventy such pre-proved theorems.

5.11 The Theory list

The theory 1list introduces the unary type operator list and the list processing
functions:

NIL : (¥)list

CONS : * -> (x)list -> (*)list

HD : (%)list -> =

TL @ (®)1list -> (%)1list

NULL : (*)list -> bool

These satisfy the usual axioms:

|- NULL NIL /\ !(x:%) 1. ~(NULL(CONS x 1))

{- t(x:%) 1. HD(CONS x 1) = x

|- t(x:x) 1. TL(CONS x 1) 1

|- 11:(*)1list. CONS(HD 1)(TL 1) = 1

These theorems could be proved from suitable definitions (which we don’t give);
~the rule of structural inductioh can also be derived from these definitions.
The HOL parser allows one to write [] instead Qf NIL and [t;;¢2;...;t,] instead
of CONS t; (CONS t;--- (CONS &, NIL) ---). '

5.12 The Theory tok

The theory tok (for token) introduces the types char and tok to represent charac-
ters and strings of characters respectively. The type char could be defined equiv-
alent to a suitable subset of num (for example, representing ASCII codes) and the

type tok could then be defined as equivalent to (char)list. In fact, characters and
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tokens are currently axiomatized rather than defined (but we plan to eventually
change this). The HOL parser converts any expression of the form *string* into a
constant of type tok (where string can be any string of characters not containing
the quote ).
There are two constants in the theory tok:
EXPLODE : tok -> (char)list
IMPLODE : (char)list -> tok

EXPLODE converts a token to the list of characters it contains; IMPLODE is its inverse.

6 Derived Inference Rules

Derived inference rules are rules that can be justified on the basis of the axioms
and primitive inference rules. For example, consider the following rule for ‘undis-

charging’ assumptions:

ri- t1 ==> i,
TU{ti} I- ¢t

This is valid because if we have a theorem I' |- t;==>t, then we can derive the
theorem TU{t;} |- ¢t by Modus Ponens from the theorem ¢, |- ¢; (which follows
from the primitive rule ASSUME).

Derived inference rules enable proofs to be done using bigger and more natural
steps. They can be defined in ML simply as functions that call the primitive infer-
ence rules. For example, the undischarging rule just described can be implemented
by:

let UNDISCH th = MP th (ASSUME(fst (dest_imp(eoncl th))))

Each application of UNDISCH will invoke an application of ASSUME followed by an
application of MP. Some of the predefined derived rules in HOL can invoke many
thousands of primitive inference steps. _ |

The HOL system has all the standard introduction and elimination rules of Pred-
icate Calculus predefined as derived inference rules. It is these, rather than the
primitive rules, that one normally uses in practice. In additien, there are some
special rules that do a limited amount of automatic theorem-proving. The most
generally useful examples of these are a collection of rewriting rules developed
by Larry Paulson [17]. Rewriting rules use equations of the form |- ¢1=t; to re-
peatedly replace subterms metching t; by the corresponding instances of t;. The
Cambridge LCF Manual [18] documents the rewriting rules in the HOL system, so

we do not describe them here.
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7 Goal Direcf_éd Proof: Tactics and Tacticals

A tactic is an ML function which is applied to a goal to reduce it to subgoals. A
tactical is a (higher-order) ML function for combining tactics to build new tactics!?
For example, if T; and T are tactics, then the ML expression T} THEN T evalu-
ates to a tactic which first applies T} to a goal and then applies T; to each subgoal
produced by T;. The tactical THEN is an infixed ML function.
'The tactics and tacticals in the HOL system are derived from those in the Cam-
bridge LCF system [18] (which evolved from the ones in Edinbﬁrgh LCF [6])

7.1 Tactics

It simplifies the description of tactics if we use various type abbreviations. A type
abbreviation is just a name given to a type . A type and its abbreviation can be
used interchangeably. The system prints types using any abbreviations that are

in force. A type abbreviation is introduced by executing a declaration of the form
lettype name = type |

For example:

| lettype goal = term list # term

The following ML type abbreviations are also used in connection with tactics .

(they will be explained later).

proof = thm list -> thm
subgoals ='goal list # prooi
tactic = goal -> subgoals
thm_tactic = thm -> tactic
conv = term -> thm

If T is a tactic and g is a goal, then applying T to g (i.e. evaluating the ML
expression T' g) will result in an object of ML type subgoals, ¢.e. a pair whose first
component is a list of goals and whose second compohent has ML type proof.

Suppose T g = ([g1:...:9n].p). The idea is that g, , ..., gn are subgoals and
p is a ‘justification’ of the reduction of goal g to subgoals g1 , ..., gn. Suppose
further that we have solved the subgoals g; , - .. , gn. This would mean that we
had somehow proved theorems th; , ... , th, such that each th; (1 < ¢ < n)
‘achieves’ the goal g;. The justification p (produced by applying T to g) is an ML
function which when applied to the list [thy;...;th,] returns a theorem, th, which

12The terms “tactic” and “tactical” are due to Robin Milner, who invented the concepts.
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‘achieves’ the original goal g. Thus p is a function for converting a solution of the
subgoals to a solution of the original goal. If p does this successfully, then the tactic
T is called valid. Invalid tactics cannot result in the proof of invalid theorems;
the worst they can do is result in insolvable goals or unintended theorems being
proved. If T were invalid and were used to reduce goal g to subgoals g1 , ... , gn,
then one might prove theorems th,; , ..., th, achieving ¢, , ..., gn, only to find
that these theorems are useless because plth;;...;th,] doesn’t achieve g (i.e. it
fails, or else it achieves some other goal). ‘

A theorem achieves a goal if the assumptions of the theorem are included in
the assumptions of the goal and if the conclusion of the theorems is equal (up
to renaming of bound variables) to the conclusion of the goal. More precisely,
we say a theorem #y, ..., t,, |- t achieves a goal ([u;;...;u,],u) if and only if
{t1,...,tm} is a subset of {uy,...,u,} and ¢ is equal to u (up to renaming of bound
variables). For example, the goal (["x=y";"y=2";"z=u"],"x=2") is achieved by the
theorem x=y, y=z |- x=z (the assumption "z=w" is not needed).

We say that a tactic solves a goal if it reduces the goal to the empty list of
subgoals. Thus T solves g if T g = ([1.p). If this is the case and if T is valid,
then p[] will evaluate to a theorem achieving g. Thus if T solves g then the ML
expression snd(T ¢) []1 evaluates to a theorem achieving g.

Tactics are specified using the following notation:

goal

goaly goaly . ... goal,

For example, a tactic called CONJ_TAC is described by

t1 /\ &2
21 ta
Thus CONJ_TAC reduces a goal of the form (I',"t;/\t;") to subgoals (I',"¢;")
and (T, "¢,"). The fact that the assumptions of the top-level goal are propagated
unchanged to the two subgoals is indicated by the absence of assumptions in the
notation.
Another example is INDUCT_TAC, the tactic for doing mathematical induction on

the natural numbers:

in.t(n|
t[o] {t[n]} t[suc n]
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INDUCT_TAC reduces a goal (I',"tn.t[rn]") to a basis subgoal (I',"t[0]") and an
induction step subgoal (I'U{"¢[n]"},"¢[sUC n|"). The extra assumption "¢[SUC n}|"
is indicated in our tactic notation with set brackets. B ,

Tactics generally fail (in the ML sense) if they are applied to inappropriate goals.
For example, cONJ_TAC will fail if it is applied to a goal whose conclusion is not a

conjunction. Some tactics never fail, for example ALL_TAC

t
t

is the ‘identity tactic’; it reduces a goal (I',%) to the single subgoal ‘(I'.t) — t.e.
it has no effect. ALL_TAC is useful for writing complex tactic using tacticals (e.g.
see the definition of REPEAT in Section 7.3).

7.2 Using Tactics to Prove Theorems

Suppose one has a goal g to solve. If g is simple one might be able to think up
a tactic, T' say, which reduces it to the empty list of subgoals. If this is the case
then executing
let gl,p=Tgyg . ‘ |
will bind p to a function which when applied to the empty list of theorems yields
a theorem th achieving g. (The declaration above will also bind g/ to the empty
list of goals.) Thus a theorem achieving g can be computed by executing
let th = pl[]
After proving a theorem one usually wants to store it in the current theory. To do
this one chooses an unused name, Thnl say, and then executes: '
savé_thm(‘Thml', th) |
This saves the theorem th with name Thmi. If the current theory is called T then
to retrieve th (in a later session, in T or its descendants) one does:
let th = theorem ‘T ° ‘Thml® ,
The ML function theorem has type string->string->thm. Its first argument should
be the name of a theory and its second argument the name of a theorem on that
theory. The named theorem is returned.
To simplify the use of tactics there is a standard function called érove_thm;

prove_thm : (string # term # tactic) -> thm

prove_thm(‘foo*,t,T) proves the goal ([]1,t) (¢.e. the goal with no assumptions
and conclusion t) using tactic 7' and saves the resulting theorem with name foo

on the current theory.
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7.3 Tacticals

A tactical is an ML function that returns a tactic (or tactics) as result. Tacticals
may take various parameters; this is reflected in the various ML types that the
built-in tacticals have. Some important tactics in the HOL system are listed below
(these are all in LCF also).

7.3.1 ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If 7} and T, are tactics, then the
ML expression T; ORELSE T evaluates to a tactic which first tries T}
and then if Ty fails it tries T5. It is defined in ML by

let (T1 ORELSE T2) g = Tig? T2 g

7.3.2 THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T; and T are tactics, then the ML
expression 77 THEN T, evaluates to a tactic which first applies 73 and
then applies T to all the subgoals produced by 7). Its definition in
ML is tricky and not given here.

7.3.3 THENL : tactic -> tactic list -> tactic

If T is a tactic which produces n subgoals and T3, ..., T, are tactics
then T THENL [T3;...;T,] is a tactic which first applies T and then
applies T; to the sth subgoal produced by T. The tactical THENL is

- useful if one wants to do different things to different subgoals.

7.3.4 REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic which repeatedly applies.T
until it fails. The ML code defining REPEAT illustrates the elegance of

programming with higher-order functions.

letrec REPEAT (T:tactic) = (T THEN REPEAT T) ORELSE ALL_TAC

7.3.5 EVERY_ASSUM : (thm -> tactic) -> tactic

Applying EVERY_ASSUM f to a goal ([#;;...;t,].t) is equivalent to ap-
plying the tactic:

f(ASSUME #;) THEN ... THEN f(ASSUME t,)
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7.3.6 FIRST_ASSUM : (thm -> tactic) -> tactic

Applying FIRST_ASSUM f to a goal ([t;;...;¢,]1,t) is equivalent to ap-

plying the tactic:

f(ASSUME ¢;) ORELSE ... ORELSE f(ASSUME t,)

7.4 Tactics Built into HOL

We list below some of the tactics built into the HOL system, including those that
are used in the example proof in Section 8. '

Recall that the ML type thm_tactic abbreviates theorem->tactic, and the type

conv!® abbreviates term->thm.

7.4.1 ACCEPT.TAC : thm tactic

e Summary: ACCEPT_TAC th is a tactic that solves any goal that is achieved
" by th.

* Use: Interfacing forward and backward proofs. For example, one might
reduce a goal g to subgoals g1, ... , g, using a tactic T and then prove

theorems th,, ..., th, achieving these goals by forward proof. The tactic
T THENL[ACCEPT_TAC th;;...;ACCEPT_TAC th,]

would then solve g.

7.4.2 DISJ.CASES.TAC : thm tactic

e Summary: DISJ_CASES_TAC |- u\/v splits a goal into two cases: one with

"y" as an assumption and the other with "v" as an assumption.

{ujt  {v}t

e Uses: Case analysis. The tactic ASM_CASES_TAC (see below) is defined in ML
by ‘

let ASM_CASES_TAC t = DISJ_CASES_TAC(SPEC t EXCLUDED_MIDDLE)

where EXCLUDED_MIDDLE is the theorem |- 1t. t \/ ~t.

13The type conv comes from Larry Paulson’s theory of conversions [17‘}.7
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7.4.3 ASM_CASES_TAC : term -> tactic

e Summary: ASM_CASES_TAC "u" does case analysis on the boolean term "u".

fuyt  {ult

e Uses: Case analysis.

7.4.4 COND_CASES_TAC : tactic

¢ Summary: Does a case split on the condition of a conditional term.

t(p=>ulv]
{p=1}t[u]  {p=F}t[v]

COND_CASES_TAC searches for a conditional term and then does cases on its

if-part. It fails if the context t[] captures any free variables in the if-part p.

o Uses: Most useful when there is only one conditional term in the goal
(otherwise it is difficult to predict which condition will be chosen for the
case split). Successive case analysis on all conditions can be done using
REPEAT COND_CASES_TAC.

7.4.5 REWRITE_.TAC : thm list -> tactic

e Summary: REWRITE_TAC[th;;...;th,] simplifies the goal by rewriting it with

the explicitly given theorems thy, ... , th,, and various built-in rewriting
rules.

{t1,...,tm}t

{t1,.- tm}t'

where t' is obtained from ¢ by rewriting with

1. thy, ..., th, and

2. the standard rewrites held in the ML variable basic_rewrites.
¢ Uses: Simplifying goals using previously proved theorems.
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e Other rewriting tactics (based on REWRITE_TAC):
1. ASM_REWRITE_TAC adds the assumptions of the goal to the list of theorems
-used for rewriting. _ N
2. FILTER_ASM_REWRITE_TAC p [th,;...;th,] simplifies the goal by rewrit-
ing it with the explicitly given theorems th; , ..., th,, , together with
those assumptions of the goal which satisfy the predicate p and also the

built-in rewrites in the ML variable basic_rewrites.

3. PURE_ASM_REWRITE_TAC is like ASM_REWRITE_TAC, but it doesn’t use any

built-in rewrites.

4. PURE_REWRITE_TAC uses neither the assumptions nor the built-in rewrites

7.4.6 ASSUME_TAC : thm_tactic

e Summary: ASSUME_TAC |-u adds v as an assumption.

¢

{u}t

e Uses: Enriching the assumptions of a goal with préviously proved theorems.

7.4.7 CONJ_TAC : tactic

e Summary: Splits a goal "t;/\t2" into two subgoals "t;" and "ty".

ty /\ &
ty ty

e Uses: Solving conjunctive goals. CONi_TAC is invoked by STRIP_TAC (see
below). '

7.4.8 DISCH_TAC : tactic

é Summary: Moves the antecedant of an implicative gda.l into the assump-

tions.



e Uses: Solving goals of the form "u ==> v" by assuming "u" and then solving
ny". STRIP_TAC (see below) will invoke DISCH_TAC on implicative goals.

7.4.9 GEN_TAC : tactic

e Summary: Strips off one universal quantifier.

'z.t[z]
t[z']

Where z' is a variant of z not free in the goal or the assumptions.

e Uses: Solving universally quantified goals. REPEAT GEN_TAC strips off all
universal quantifiers and is often the first thing one does in a proof. STRIP_TAC
(see below) applies GEN_TAC to universally quantified goals.

7.4.10 IMP RES_TAC : tactic

e Summary: IMP_RES_TAC th ‘resolves’ (see below) th with the assumptions

of the goal and then adds the results to the assumptions.

{t1,.. ., tm}t

{tl,...,tm,ul,...,un}t

where uy, ..., u, are derived by ‘resolving’ th with ¢1, ..., t,. Resolution in
HOL is not classical resolution, but just Modus Ponens with a bit of one-way

pattern matching (not unification). The usual case is where th is of the form

b= 1z . Ty 017D 0=, L ==>Y, =200,
IMP_RES_TAC th then tries to specialize z,, ..., zp so that vy, ..., v, match
members of {¢;,...,t,}. If such a match is found then the appropriate

instance of v is added to the assumptions, together with all appropriate in-

stances of v;==>...v,==>v (2 < 7 < n). IMP_RES_TAC can also be given a

conjunction of implications in which case it will do ‘resolution’ with each of

the conjuncts. In fact, it applies a canonicalization rule to its argument to

split it into a list of theorems. Each theorem produced by this canonicaliza- '
‘tion process is resolved with the assumptions. Full details can be found in

the Cambridge LCF Manual [18].
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e Uses: Deriving new assumptions from existing ones and previously proved
theorems so that subsequent tactics (e.g. ASM_REWRITE_TAC) have more to

work with.

7.4.11 STRIP._.TAC : tactic

e Summary: Breaks a goal apart. STRIP_TAC removes one outer connective
from the goal, using CONJ_TAC, DISCH_TAC, GEN_TAC, etc. If the goal has the
form t1/\---/\t, ==> ¢ then DISCH_TAC makes each ¢; into a separate assump-

tion.

e Uses: Useful for spliting a goal up into manageable pieces. Often the best -

thing to do first is REPEAT STRIP_TAC.

7.4.12 SUBST_TAC : thm list -> thm

e Summary: SUBST_TAC[|-u;=v;;...;|-u,=v,] converts a goal of the form

t[u1,...,un| to a subgoal of the form t[vy,...,vs].

¢ Uses: To make replacements for terms in situation in which REWRITE_TAC is

too general or would loop.

7.4.13 ALL_TAC : tactic
e Summary: Identity tactic for the tactical THEN (see end of Section 7.1).
e Uses:

1. Writing tacticals (see description of REPEAT in Section 7.3).

2. With THENL; for example, if tactic T produces two subgoals and we want
to apply T} to the first one but to do nothing to the second, then the
tactic to use is T THENL[7;;ALL_TAC].

7.4.14 NO_TAC : tactic

e Summary: Tactic that always fails.

o Uses: Writing tacticals (see the example in Section 8).
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8 An Example of HOL in Action

The example in this section has been chosen to give a flavour of what it is like
to use the HOL system. Although the theorems proved are simple, the way we
prove them illustrates the kind of intricate ‘proof engineering’ that is typical. The
proofs below could be done more elegantly, but presenting them that way would
defeat our purpose of illustrating various features of HOL. We have tried to use a
small example to give the reader a feel for what it is like to do a big one. Readers
who are not interested in hardware verification should be able to learn something
about the HOL system even if they do not wish to penetrate the details of the
parity-checking example we use.

As in Section 2, the boxed interactions below should be understood as occurring
in sequence. These interactions comprise the specification and verification of a
device that computes the parity of a sequence of bits. More specifically, we verify
the implementation of a device with an input in and an output out with the
specification that the nth output on out is T if and only if there have been an even
number of T’s input on in. We shall construct a new theory called Parity in which
we specify and verify the device. The first thing we do is start up the HOL system
and then enter draft mode for this theory.

% hol

[ Pl |
I

(Built on Sept 31)

#new_theory‘Parity"’;;
() : void

To specify the device we define a primitive recursive function PARITY such that

PARITY n £ is true if the number of T’s in the sequence £ 0, ..., f n is even.

#let PARITY_DEF =
# new_prim_rec_definition
# (‘PARITY_DEF*,
# "(PARITY O f =T) /\
# (PARITY(SUC n)f = (£(SUC n) => ~“(PARITY n f) | PARITY n £))");;
PARITY_DEF =
|- (PARITY O £ = T) /\ ‘
(PARITY(SUC n)f = (£(SUC n) => "PARITY n £ | PARITY n £))
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The effect of new_prim_rec_definition is to store the definition of the constant
PARITY on the theory Parity and to bind the defining theorem to the ML variable
PARITY. The specification of the device can now be given as: '

't. out t = PARITY t in

The schematic diagram below shows the design of a device that is intended to

implement this specification:

in .

NOT |

11 12

ONE MUX

REG 13 | 14

—
—

REG

.

out

Intuitively, this works by storing the parity of the sequence input so far in the lower
of the two registers. Each time T is input at in, this stored value is complemented.
Registers are assumed to ‘power up’ in a state in which they are storing F. The
second register (connected to ONE) initially outputs F and then outputs T forever.
Its role is just to ensure that the device works during the first cycle by connecting
the output out to the device ONE via the lower multiplexer. For all subsequent
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cycles out is connected to 13 and so either carries the stored parity value (if the

current input is F) or the complement of this value (if the current input is T).
The devices making up this schematic will be modelled with predicates [8]. For

example, the predicate ONE is true of a signal'* out if for all times t, the value of

out is T.

#let ONE_DEF =

# new_definition

# (‘ONE_DEF‘, "ONE(out:num->bool) = !t. out t = T");;
ONE_DEF = |- ONE out = (!t. out t = T)

Note that “ONE_DEF” is used both as an ML variable and as the name of the
definition in the theory Parity.

The binary predicate NOT is true of a pair of signals (in,out) if the value of out
is always the negation of the value of in. We thus model inverters as having no
delay. This is appropriate for a register-transfer level model, but would be wrong

at a lower level.

#let NOT_DEF =

# new_definition

# (°NOT_DEF‘, "NOT(in,out:num->bool)
NOT_DEF = |- NOT(in,out) = (!t. out t

1t. out t = “(in t)");;
“in t)

- The final combinational device we need is a multiplexer. This is a ‘hardware
conditional’; the input sw selects which of the other two inputs are to be connected

to the output out.

#let MUX_DEF =

# new_definition

# (‘MUX_DEF°,

# "MUX(sw,inl,in2,out:num->bool) =

# 1t. out t = (sw t => inl ¢t | in2 t)");;

MUX_DEF = |- MUX(sw,ini,in2,out) = (!t. out t = (sw t => ini t | in2 t))

The remaining devices in the schematic are registers. These are unit-delay ele-
ments; the values output at time t+1 are the values input at the preceding time t,

except at time 0 when the register outputs F° .

L4Gignals are modelled as functions from numbers (representing times) to booleans.

L5Time O represents when the device is switched on.
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#let REG_DEF =

# new_definition

# (‘REG_DEF‘, "REG(in,out:num->bool) =

# 1t. out t = ((£=0) =>F | in(t-1))");; ‘
REG_DEF = |- REG(in,out) = (!t. out t = ((t = 0) => F | in(t - 1)))

The schematic diagram above can be represented as a predicate by conjoining
the relations holding between the various signals and then existentially quantifying

the internal lines. This techniques is explained elsewhere (e.g. see [8], [1]).

#let PARITY_IMP_DEF =
# new_definition
# (*PARITY_IMP_DEF",
# "PARITY_IMP(in,out) =
# 711 12 13 14 15. :
# NOT(12,11) /\ MUX(in,11,12,13) /\ REG(out,12) /
# ONE 14  /\ REG(14,15) /\ MUX(15,13,14,out)");;
PARITY_IMP_DEF = :
{- PARITY_IMP(in,out) =
(711 12 13 14 15.
"NOT(12,11) /\
MUX(in,11,12,13) /\
REG(out,12) /\
ONE 14 /\
REG(14,15) /\
MUX(15,13,14,0ut))

What we shall prove is

|- tin out. PARITY_IMP(in,out) ==> (!t. out t = PARITY t in)

This states that if in and out are related as in the schematic diagram (s.e. as
in the definition of PARITY_IMP), then the pair of signals (in,out) satisfies the
specification. ' -

To assist in the proof, it is convenient to make the following auxiliary definition.

#let PARITY_BODY_DEF =
# new_definition
# (“PARITY_BODY_DEF®,
# YPARITY_ BODY(in,out,11,12,13,14,15) =
# NOT(12,11) /\ MUX(in,11,12,13) /\ REG(out,12) /\
# ONE 14 /\ REG(14,15) /\ MUX(15,13,14,0ut)");;
PARITY_BODY_DEF =
|- PARITY_BODY(in,out,11,12,13,14,15) =
NOT(12,11) /\
MUX(in,11,12,13) /\
REG(out,12) /\
ONE 14 /\
REG(14,15) /\
MUX(15,13,14,0ut)
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We shall start by proving the following lemma:

|- 1in out.
PARITY_BODY(in,out,11,12,13,14,15) ==>
(out 0 = T) /\ !t. out(SUC t) = (in(SUC t) => ~“(out t) | out t)
We will prove this interactively using HOL’s subgoal package!®. We start the proof
by putting the goal we want to prove on a goal stack using the function set_goal

which takes a goal as argument.

#set_goal
# ([J, "'in out.
# PARITY_BODY(in,out,11,12,13,14,15) ==>
# (out 0 = T) /\
# 1t. out(SUC t) = (in(SUC t) => “(out t) | out t)");;
"1in out.
PARITY_BODY(in,out,11,12,13,14,15) ==
(out 0 = T) /\ ('t. out(SUC t) = (in(SUC t) => “out t | out t))"

The subgoal package prints out the goal on the top of the goal stack. We now
expand this top goal by rewriting with the definitions PARITY_BODY_DEF, ONE_DEF,
NOT_DEF, MUX_DEF and REG_DEF. The ML function expand takes a tactic and applies
it to the top goal; the resulting subgoals are pushed on to the goal stack. The

”

message “OK..” is printed out just before the tactic is applied. Only one subgoal

is produced by the rewriting tactics (see Section 7.4.5).

#expand
# (PURE_REWRITE_TAC[PARITY_BODY_DEF;ONE_DEF;NOT_DEF ;MUX_DEF;REG_DEF]);;
OK..

"lin out.
(1%, 11 t = 712 &) /\ .
('t. 13t = (in t => 11 t | 12 £)) /\
(1t. 12t = ((t =0) =>F | out(t - 1))) /\
('t. 14t = T) /\ .
('t. 15t = ((t =0) =>F | 14t - 1))) /\

(1t. out t = (15t => 13t | 14 t)) ==>
(out 0 = T) /\ (1t. out(SUC t) = (in(SUC t) => “out t | out t))"

We proceed by first removing the quantifiers (with GEN_TAC), then moving the
conjuncts of the antecedant into the assumptions (using STRIP_TAC) and finally,
splitting the remaining conjunction into its two conjuncts (with CONJ_TAC). We
can do all this in one step using a compound tactic built with the tacticals REPEAT
and THEN.

16The subgoal package is part of Cambridge LCF, but not Edinburgh LCF. It was implemented
by Larry Paulson and provides proof building tools similar to those found in Stanford LCF [14].
We do not describe the subgoal package in this paper, but hope that the simple uses of it that we
make will be clear.
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#expand (REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC);;
oK. . ’
2 subgoals .
"1t. out(SUC t) = (in(SUC t) => “out t | out t)"
[ "t. 11t ="12%" 1] ' '
["t. 13t =(nt=>11t%t]12¢t)"] :
"t 12t = ((t =0) =>F | out(t - 1))" ]
["t. 14t =1"1]
[m™t.15t=((t=0)=>F | 14t - 1)) ]
[ "1t. out. t = (16 ¢t => 13 t | 14 &)" ]
"out 0 = T
[mig. 11t = "12 & ]
IMmt. 13t =(nt=>11t|12¢)" ]
I[™t. 12t =((t =0) =>F | out(t - 1))" ]
[ "%, 14 &t = T" ]
[ "1t. 166 =((t=0)=>F | 14(t - 1))" ]
[ "1t. out t = (15t =>13 ¢t | 14 t)" ]

The assumptions of the two subgoals are shown in square brackets. The last goal
printed is the one on the top of the stack. We would like to expand the top goal
(¢.e. the second one listed above) by rewriting with the assumptions. However, if -
we do this the system will go into an infinite loop because the assumptions of this
goal are mutually recursive. To prevent this, we must be rﬁore'delic'a.te and only
rewrite with a non-looping subset of the assumptions. |
To enable the assumptions .corresponding to particular lines to be selected for
rewriting, we define an ML function lines such that lines */y...[," t is true
if ¢ has the form "!t. [; t = ... for some [; in the set specified by the string
“ly...1,*. The functions words and rator used below are explained in the examples

in Section 2.

#let lines tok t = '

# (let x = fst(dest_var(rator(lhs(snd(dest_forall )
# in- o o

# mem x (words tok)) ? false;;

lines = - : (string -> term -> bool)

The tactic FILTER_ASM_REWRITE_TAC(lines‘out 11 13 14 15°)[] rewrites with only

those assumptions that involve out, 11, 13, 14 and 15 (see Section 7.4.5).
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#expand (FILTER_ASM_REWRITE_TAC(lines‘out 11 13 14 15°)[1);;
0K.. :

goal proved

..... |- out 0 =T

Previous subproof:

"1, out(SUC t) (in(SUC t) => “out t | out t)*

[ "¢, 11 t = 12 t" ]

[ "t. 13t =(int=>11¢t | 12 t)" ] .
["t.12¢ =t =0) =>F | out(t - 1))" ]
[ "t. 14t =1"] '
[ "t. 16t =(((t=0)=>F | 14t - 1)) ]

[ "t. out t = (16t =>13¢t | 14 t)" ]

The first of the two subgoals is proved, so the system backs up to the second (and
last) subgoal. We start working on this by first stripping off the quantifiers using
GEN_TAC. .

#expand GEN_TAC;;

OK..

"out(SUC t) = (in(SUC &) => “out t | out )"
["1t. 11t = "12 t" ]
["+t.13¢t=(@nt=>11t]12t)"]

[ "tt. 12t = ((t =0) =>F | out(t - 1))" ]
[ "t. 14t =T" ]

[ "t.15¢=(((t=0)=>F | 14(t - 1)) ]
{

"1, out t = (15t =>13t | 14 £)" ]

Inspecting this goal we see that it will be solved if we expand out(SUC t) using
the assumption !t. out t = (16 t => 13 t | 14 t). If we just rewrite with this
assumption, then all the subterms of the form out t will also be expanded. To
prevent this we are forced to use the messy and ad hoc tactic shown below.
FIRST_ASSUM
(\th. if lines‘out‘(concl th)

then SUBST_TAC[SPEC "SUC t" th]
else NO_TAC)

FIRST_ASSUM is explained in Section 7.3.6. The function it is applied to converts a
theorem of the form |- !'t. out t = --- t --- to a tactic that replaces out (SUC t)

by --- SUC t ---; it maps all other theorems to NO_TAC, a tactic that always fails.
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#expand

# (FIRST_ASSUM

# (\th.  if lines‘out’(concl th)

# , then SUBST_TAC[SPEC "SUC t" th]

# else NO_TAC));;

0K.. : :

"(15(SUC t) => 13(SUC t) | 14(SUC t)) = (in(SUC t) => “out t | out t)"
[ "tt. 11 € = 12 't" ] , - ' I ‘
[ "1£. 13t =(int =>11 ¢t | 12 £)" ]
[ "1t. 12 € = ((t =0) =>F | out(t - 1))" ]
[ "mt. 14 ¢ =71T"]
[t 158 = ((t =0) =>F | 14(t - 1))" ]
[ "1t. out t = (16 t => 13 ¢t | 14 t)" ]

The fact that we had to resort to this messy use of FIRST_ASSUM illustrates both
the strengths and weaknesses of the HOL system. Trivial deductions sometimes
| require elaborate tactics, but on the other hand one never reaches an impasse.
HOL experts can prove arbitraﬁly complicated theorems if they are willing to use
sufficient ingenuity. Furthermore, the type discipline ensures that no matter how
complicated and ad hoc are fhe tactics, it is impossible to prove an invalid theorem.
Inspecting the goal above, we see that the next step is to unwind the equations
for lines 11, 13, 14 and 15 and then, when this is done, unwind with the equation

for line 12.

#expand (FILTER_ASM_REWRITE_TAC(lines‘1l1 13 14 15°)(]
# THEN FILTER_ASM_REWRITE_TAC(lines‘12‘)[1);;
oK. .
"(((SUC t =0) =>F | T) =>

(in(SUC t) =>

“((SUC t = 0) => F | out((SUC t) - 1)) |
((SUC t = 0) => F | out((SUC t) - 1))) |

T) =

(in(SUC t) => “out t | out t)" -
[ "1t. 11 & = "12 t" ]
[ "1t. 13t =(int=>11t ] 12 %) ]
[ "15. 12t = ((t£ =0) = F | out(t - 1)) 1]
[ "1t.. 14t =1T"1]
["™t. 156t =(((t=0) =>F | .14 - )" 1]
L

Mt oout t = (15t =>13t | 14 t)* ]

This goal can now be solved by rewriting with two standard theorems:

- NOT_SUC - tn. “(SUC n = 0)
SUC_SUB1 |- tm. (SUC m) -1

m
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#expand (REWRITE_TAC[NOT_SUC;SUC_SUB1]);;
OK..
goal proved
- (((SUCt =0) =>F | T) =>
(in(SUC t) =>
“((SUC t = 0) => F | out((SUC &) - 1)) |
((SUC t = 0) =>F | out({SUC t) - 1))) |
T =
(in(SUC t) => “out t | out t)
... |- (15(SUC t) => 13(SUC t) | 14(SUC t)) =
(in(8UC t) => “out t | out t)
...... |- out(SUC t) = (in(SUC t) => “out t | out t)
...... [- 't. out(SUC t) = (in(SUC t) => ~“out t | out t)

|- tin out.
(1t. 11 t = 12 &) /\
(1t. 13t = (int => 11 &t | 12 £)) /\
(1t. 12t = ((£ =0) =>F | out(t - 1))) /\
('t. 124t = T) /\
(Y. 15t = ((t =0) =>F | 14(t - 1))) /\

(1t. out t = (156t => 13 t | 14 t)) ==>

(out 0 = T) /\ (!t. out(SUC t) = (in(SUC t) => “out t | out t))
|- tin out. :

PARITY_BODY(in,out,11,12,13,14,15) ==

(out 0 =T) /\ ('t. out(SUC t) = (in(SUC t) => “out t | out t))

Previous subproof:
goal proved

The goal is proved, .e. the empty list of subgoals is produced. The system now
applies the justification functions (see Section 7.1) produced by the tactics to the
lists of theorems achieving the subgoals (starting with the empty list). These
theorems are printed out in the order they are generated (note that assumptions
of theorems are printed as dots).

We name the theorem just proved PARITY_LEMMA and save it in the current theory.

1
i

#save_top_thm‘'PARITY_LEMMA®;;

|- 'in out. ' _
PARITY_BODY(in,out,11,12,13,14,15) ==>
(out 0 = T) /\ (1t. out(SUC t) = (in(SUC t) => “out t | out t))

#let PARITY_LEMMA = it;;
PARITY_LEMMA =
|- tin out.
PARITY_BODY(in,out,11,12,13,14,15) ==
(out 0 = T) /\ (!t. out(SUC t) = (in(SUC t) => “out t | out t))

We could have proved PARITY_LEMMA in one step with a single compound tactic.
To illustrate this we set up the goal again.
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#set_goal
# ([1, "!in out.

# PARITY_BODY(in,out,11,12,13,14,15) ==

# (out 0 = T) /\

# 15. out(SUC t) = (in(SUC t) => ~(out t) | out t)");;
"1in out.

PARITY_BODY(in,out,11,12,13,14,15) ==
(out 0 = T) /\ (it. out(SUC t) = (in(SUC t) => “out t | out t))"

We then expand with a single tactic correspondmg to the sequence of tactics that
we used interactively.

#expand
(PURE_REWRITE_TAC[PARITY_BODY_DEF ; ONE_DEF ; NOT_DEF ; MUX_DEF ; REG_DEF]
THEN REPEAT GEN_TAC
THEN STRIP_TAC
THEN CONJ_TAC
THENL
[FILTER_ASM_REWRITE_TAC(linesfout 11 13 14 15°)[]1;GEN_TAC]
THEN FIRST_ASSUM
(\th. if lines‘out‘(concl th) :
then SUBST_TAC[SPEC "SUC t" th]
else NO_TAC)
THEN FILTER_ASM_REWRITE_TAC(lines‘l1 13 14 15°)[]
THEN FILTER_ASM_REWRITE_TAC(lines‘12°)[]
THEN REWRITE_TAC[NOT_SUC;SUC_SUB1]);;
0K..
goal proved
}- lin out.
PARITY_BODY(in,out,11,12,13,14,15) ==
(out 0 = T) /\ (!t. out(SUC t) = (in(SUC t) => “out t | out t))

Armed with PARITY_LEMMA, we can now move quickly towards the final theorem.

First we prove:

|- tin out. :
PARITY_BODY(in,out,11,12,13,14,15) ==> (!t. out t = PARITY t in)

We will do this proof in one step using the ML function prove_thm described in
Section 7.2.
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#let PARITY_THM =
# prove_thm
(*PARITY_THM®,

"1in out.

PARITY_BODY(in,out,11,12,13,14,15) ==> (it. out t = PARITY t in)",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN INDUCT_TAC

THEN IMP_RES_TAC PARITY_LEMMA

THEN ASM_REWRITE_TAC[PARITY]);;
PARITY_THM =
|- 1in out.

PARITY_BODY(in,out,11,12,13,14,15) ==> (!t. out t = PARITY t in)

HH R

This proof consists of first removing the quantifiers (with GEN_TAC), then moving
the antecedant of the implication to the assumptions (with STRIP_TAC), then doing
mathematical induction on the term "t", then resolving with PARITY_LEMMA and
finally rewriting with the assumptions and the theorem PARITY.

We can use PARITY_THM to prove the correctness of the device. We strip off the
quantifiers, then rewrite with PARITY_IMP_DEF and SYM(PARITY_BODY_DEF)!7, then
we apply STRIP_TAC followed by resolution with PARITY_THM and finally we wrewrite

with the assumptions.

#let PARITY_CORRECT =

# prove_thm

# (“PARITY_CORRECT®,

# "{in out. PARITY_IMP(in,out) ==> (!t. out t = PARITY t in)",
# REPEAT GEN_TAC

# THEN REWRITE_TAC[PARITY_IMP_DEF;SYM(PARITY_BODY_DEF)]
# THEN REPEAT STRIP_TAC

# THEN IMP_RES_TAC PARITY_THM

# THEN ASM_REWRITE_TAC[]);;

PARITY_CORRECT =

|- tin out. PARITY_IMP(in,out) ==> (!t. out t = PARITY t in)

#close_theory();;
O : void

This completes the proof of the parity checking device.

9 C(Conclusion

The example in the preceding section, though simple, is representative of larger

scale proofs using the HOL system. For descriptions of such proofs see Avra Cohn’s

'7SYM is a derived rule that reverses an equation.
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. paper on the verification of the major state machine of the Viper microprocessor
3], Jeff Joyce’s paper on the verification of a simple microcoded computer [11],
John Herbert’s proof of the ECL ch1p of the Cambndge Fast Ring [10] and Tom
Melham’s proof of a simple local area network [13]." All of these examples show
that HOL can be used to prove non-trivial digital systems correct.

- Current research at Cambridge is looking at new ways of modelling hardware in
higher-order logic (e.g. the representation of low-level circuit behaviour); ways of
expressing and relating behavioural abstractions; and methods of executing formal
specification (for animation and simulation). |

In addition, we are trying to make the HOL technology available to the industrial
community. This involves reimplementing the research prototye sysfem to make
it acceptably efficient and rugged. It also involves preparing documentation and

tutorial material.
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