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1. Introduction

This thesis discusses some aspects of the design of computer systems for local area
networks (LANs), with particular emphasis on the way such systems present themselves to
their users. Too little attention to this issue frequently results in computing environments
that cannot be extended gracefully to accommodate new hardware or software and do not
present consistent, uniform interfaces to either their human users or their |.:>rogrammatic
clients. Before computer systems can become truly ubiquitous tools, these problems of
extensibility and accessibility must be solved. The work described here has concentrated
on one possible approach, which has emphasised support for program development on LAN-

based systems.

1.1 The Domain schema

To provide a framework for much of the discussion which follows, | shall make use of the
concept of domains. A domain is defined here as a region in which reside a set of
resources and their monager, which is responsible for their allocation and control. Seen
from outside, the domain is itself a resource with a single uniform interface—that of its
manager. In this context a resource is something whose use is subjected to an allocation
policy; processors, disc space, virtual memory and screen space are all examples of
resources. Various types of domains can be identified: execution domains provide the
physical memory and processing capability necessary for the execution of a task or
process; storage domains are responsible for the maintenance of long term state
information, and contain, allocate and manage resources such as disc space; terminol
domains provide connection paths to end users! that may be interactive (e.g. terminals and
graphics screens) or not (e.g. line printers and card readers). A domain behaves like an
instance of a module or an abstract data type; it needs initialising when it is created and
finalising when it is terminated, and it implements a protected abstract data type with a
limited number of operations. (The internal implementation details of a domain cannot
always remain entirely hidden; for example, note needs to be taken of the machine

architecture and virtual machine environment provided by an execution domain.)

1 | shall reserve the term user exclusively for referring to humans, and use the term
client to indicate a software or hardware entity.
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Other domain types (or further instances of the three basic ones) can be constructed
by building them out of lower level domains. For example, a network operating system may
present a large scale execution domain constructed from a number of smaller ones, each
consisting of a domain containing a minicomputer with its own local disc storage.

The lifetime of a domain may exceed that of the domain or system of which it is a part.
Consider the case of a timesharing system which is a component of a distributed operating
system based on a local area network. When the LAN is taken down for engineering work,
the timesharing system may still continue to function for its own locally attached terminals.
Conversely, a domain may outlive some of its components. This is one of the reasons for
replicating parts of systems in an attempt to increase the reliability of the whole.

The domain mode! will be used to characterise existing systems, both centralised and
distributed, in order to compare the mechanisms they use for resource control. As a
framework, it can help to extract the architecture of a resource management scheme from
its implementation details. Note that it is an expositive, rather than prescriptive, model: it
aims to provide a basis for discussion rather than suggest a particular implementation.

it is interesting to note the work described in [Liskov82], in which constructs called
guardians are added to an extended version of CLU. A guardian can be thought of as an
abstraction of a node containing one or more processors or other resources: as such, it is
an almost exact analogue of a domain manager. Guardians are but one of many possible
realisations of the domain scheme, and so their semantics are necessarily more restrictive

than those of the general model discussed here.

1.2 Thesis organisation

This thesis is divided into three parts. The first is a short review of existing execution
resource allocation schemes that looks at a range of systems from single processors to
loosely coupled multiprocessor networks, with an emphasis on local area network systems.
The second part is concerned with how secondary storage is managed in such systems.
1t briefly discusses ways in which underlying storage systems can be distributed and
controlled, and then presents a scheme for organising data based on the use of long-term
typesafe objects. This scheme promises many of the performance benefits associated with
conventional files, and yet is able to express complex interrelationships between bodies of

data and to cope with the constant change which characterises programming environments.
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Finally (and this represents the main part of the work described), a partial
implementation of a terminal domain is presented, in the form of a design for a graphics
workstation specifically tailored to the requirements of local area network systems. The
workstation provides hardware support for windowing by dynamically mapping images onto
a screen at display refresh time. Most other display systems have to achievg the effect of
windowing by image generation techniques, which can consume much of their power if
reasonable response times are to be attained. Some of the implementation tradeoffs made by
other workers are discussed, followed by the ones that were adopted for the prototype
display. Software as well as hardware aspects of the project are covered, and the section
concludes with a discussion of possible future work that could be attempted using the

system described as a basis.
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2. Execution domains

Execution’ domains are those components of computer software systems that manage
processor and memory resources, typically in order to provide some form of virtual machine
abstraction. Such an abstraction serves two roles. It simplifies the environment that a
client program sees by removing unnecessary interactions with other clients 'and a variety
of hardware interfaces. It also allows real hardware to be multiplexed betv«-/een several
virtual machines. With separate protection domains available to the domain manager and its
clients (provided by a supervisor state, memory management hardware or disjoint physical

processors, for example), virtual machine interfaces can be enforced; without them, they

can only work by consensus.

2.1 Non-networked systems

If an execution domain is to encompass many physical machines, methods for resource
allocation amongst them are necessary. Two extreme methods can be observed: loosely
coupled systems with a collection of largely autonomous processors and no overall execution
domain; and tightly coupled systems where a single global execution domain manages
physical resources to present the illusion of a single, large system. The systems that have
been built to run on local area networks cover most points between these two, and will be
discussed further below.

Loosely coupled systems are by far the commonest arrangement. Their components can
usually be viewed as almost disjoint systems. Workloads and resources are physically
partitioned at system installation time, with little or no opportunity for automated resource
management. Consequently, they will not be considered further in this discussion.

Tightly coupled systems demonstrate a range of techniques for achieving the illusion of
a uniprocessor system. They seem to have two main functions: to enhance the performance
of machines in which the central processor unit (cpu) is a bottieneck, and to increase the
overall availability of a system by replicating some of its components. The first function is
achieved in two different ways, both of which typically make use of shared memory as the
communication medium. In one scheme extra processors, akin to the main cpu, are added to
increase the raw instruction execution rate. There is usually less than a unit increase in
throughput for each cpu added because of memory contention: for example, a dual

processor IBM 370/168 runs only 1.8 times as fast as a uniprocessor. The other scheme
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adds specialised processors to offload some particular part of the main processor's
workload, such as input/output or floating point manipulations. Increasing the availability.
of a system by replicating some of its components needs a somewhat different approach.
The first step towards this goal is to limit the interactions between components at the
hardware level, to reduce the likelihood of correlated failures. The second _is to replicate
critical components such as processors, interprocessor links like backplane buses, device
controllers, and controller ports on the devices themselves. Additionally, data may be
replicated by writing multiple copies of it onto separate devices, either simultaneously or
by using some form of stable storage protocol. Finally, mechanisms for failure detection are
crucial if recovery is to be initiated before any erroneous outputs have been generated or

acted upon.

2.2 Local area network systems

The degree of coupling in a system is largely a reflection of the amount of communication
between its components. Loosely coupled execution domains are often a product of links
with low bandwidth or high latency, while shared memory and high-speed interprocessor
buses encourage more tightly coupled domain management. Developments in communication
technology have made possible local area networks that combine some properties of both
wide-area and high-speed links: physical extents of about a kilometre and bandwidths in
the range 1-10MHz are readily achieved with very low error rates and small signalling
delays. Much greater bandwidths are likely to be commercially available in the near future
as the result of developments in fibre optics. Examples of extant LANs include the Xerox
Ethernet [Metcalfe76], the Cambridge Ring [Wilkes79, Needhami9}, and the token rings
used by Apollo and the Distributed Computer System [Apollo81, Farber72]. Such networks
provide sufficiently high bandwidths and signalling rates to allow the construction of global
execution domains that extend across the whole network. (Even though its bandwidth and
size are not characteristic of local area networks, the ARPANET [Heart70, McQuillan77] has
been used in this fashion [Thomas73, Cohen74]. Indeed, the ARPANET can itself be
thought of as running a single distributed computation in a large global execution domain
encompassing its switching processors.)

The distributed system designs that local area networks make possible rely upon

powerful, cheap processors based on very large scale integration (VLS|) technology. The
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cost of a machine is to a large degree dependent on the level of integration achieved in its
logic circuitry, because hardware cost is related almost entirely to the number of chips
rather than their complexity. The level of integration that can be achieved for a particular
machine is dictated by the absolute performance required, because of the need to use
different technologies for each performance class. It is still the case that higher
performance is only achieved at the expense of integration levels (assuming similar
architectures). In 1980, integration levels of roughly 68000, 2000 and 500 transistors per
chip were achieved for a microcomputer, a mainframe and a super-computer respectively
[Agnew82]. As technologies improve, so does performance at a given integration level:
some of the new VLSI-based microcomputers are beginning to rival traditional
‘minicomputers’ in power [Hansen82]. The current architectural trend towards reduced-
complexity designs is likely to result in an increase in the absolute performance achievable
at a given integration level. One consequence is that Grosch’s Law—that the power of a
machine is proportional to the square of its price—no longer holds [GroschS3, Kelly-
Bootle81, Siewiorek82a, GordonBell82]. Rather than running many unrelated applications
on a single, large mainframe, it is often more economical to divide up the workload and use
the smallest machines that can handle the parts in a reasonable elapsed time. A persuasive
argument for this strategy in the business community is the freedom it offers to distribute
processing power and data to match organisational structures. Sometimes this concern is
even more important than cost [Clark80].

The price and performance advantages of small processors are not yet reflected in
peripherals, where economies of scale still predominate. LAN-based operating systems can
take advantage of the availability of cheap processing power that can be distributed as
required, and still reap the benefits of concentrating most peripherals onto a few server
machines that make their resources available to the rest of the network. In addition, more
absolute performance may be required than is available from current-generation VLSI
processors, and so there may still be a need to centralise large-scale computing power.

There are many approaches to building local area network systems, although locational
transparency for at least some resources seems to be a common goal. One group of systems
is constructed from machines that have their own peripherals, no one site being
distinguished in the role of server to the others (e.g. SODS/0S [Sincoskie80] and LOCUS
[Popek81]). A few examples emphasise the migration of processes to balance the processor

load across the nodes (e.g. [Casey77] and SODS/0S). This first group is characterised by
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the highest degree of locational transparency, often presenting what looks like a generic
timesharing system interface to its users with no indication of where data are being
processed, stored or otherwise manipulated.

A second group is formed by those systems that provide locational transparency for
only a few services, with processors and filing systems not usually amongst them—instead,
these functions are supplied on a node dedicated to an individual user. TBe network is
used only for relatively infrequent sharing operations, often on explicit user request.
Xerox, at their Palo Alto Research Center (PARC), were probably the earliest proponents
of this 'personal computer’ scheme. Since then, several systems have been modelled on it
(e.g. the PERQ [ThreeRivers79], Xerox's own Star [Seybold81], various CAD systems
[Versatec83, Werner83], Apple’'s Lisa [Lisa83], MIT's Nu-machine [Ward80] and the ETH
Lilith [Wirth81]).

In the middle ground lie a few systems that aim to combine some of the better features
of the two extreme approaches. Examples of this are the Apollo AEGIS operating system
[Apolio81] and the software running on the Symbolics LISP machines [Weinreb81]. They
both provide locational transparency for resources such as servers and files, but retain
the personal computer approach for processing power. Washington's Eden project is aiming
in much the same direction [Lazowska81, Aimes83]. A slightly different approach is that of
the Cambridge Distributed System, where the local area network is used to decouple users
physically from all of the central system services—processors as well as file storage,
authentication and session management. Once a processor has been acquired for a session
it is effectively treated as a personal machine, thus gaining the benefits of simple software
and predictable performance, which are the desirable properties of the ‘personal machine’
approach.

Since the Cambridge and Xerox models form the background to much of the work
described in this thesis, a short review of each of them is provided by way of introduction

to what follows.

2.3 The personal computer approach

The approach adopted by Xerox PARC is based on the view that computing hardware is
cheap—so cheap, in fact, that everybody can have a processor. PARC designed a novel

computer specifically for this purpose (the Alto [Thacker81]), made it suitable for putting
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into an office, gave it a local area network connection so that it could communicate with its
fellows, and built it in large enough numbers that many members of the staff could be
given one. The result was a success, for which there seem to be a number of reasons: the
personal nature of the machines was popular; they were always available when wanted;
their bitmapped screens were capable of providing an engaging, flexible user environment;
and there was no advantage to computing in the early hours of the morning. Each machine
had a removable disc cartridge, allowing relatively speedy access to local files as well as
the ability for a user to move to another machine if necessary (e.g. if one broke down).
The local area network proved to be much more important than its designers had originally
anticipated, providing access to resources that could not be replicated for every Alto,
such as high-quality, high-speed printers, bulk disc storage, and gateways to other
networks.

The personal computer approach does not use a machine-based execution domain
manager. Instead, human managers take over this role and allocate machines to people on a
long-term basis. In practice, there are never enough machines to go around, which leads
to slightly more dynamic resource allocation techniques being used—such as sign-up
sheets.

One of the major benefits of a personal computer is also one of its limitations: its lower
performance bound is the same as its upper bound. By comparison with an environment
that is—even only occasionally—resource deficient (such as many timesharing systems) the
reduced variability of response time with a personal computer is often cited as a
considerable improvement. In practice, the difference is becoming less and less noticeable
as greater degrees of multiprogramming are adopted on personal machines. in addition,
sufficient resources must be allocated to each individual to cope with their peak processing
(and disc and 1/0) needs: the time-averaging effect that may be possible in a shared
resource system cannot be used. Economically viable personal machines cannot easily do
many of the large computations at which mainframes excel, because they are simply not
powerful enough. (Processor cycles may not be the bottleneck: |/O throughput or real
memory may be the limiting factors in the performance of an application, and these may be
independent of the processor power available.) Certain large calculations can be divided up
into manageable chunks that can proceed in parallel on a number of small machines

[Schoch82]; others are naturally arranged in this fashion (e.g. the stages of a pipe in
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UNIX™ [Ritchie78]). Unfortunately, the programming overheads can be considerable if any
interaction between the components is required that cannot be expressed in some stylised
form (such as a serial character stream). In any case, the approach goes against the idea
of machines being personal: where is such a calculation fragment to be run if all the
machines are dedicated to individuals?

It can be argued that the technology of computer hardware is advancing at a sufficient
rate for such a static resource allocation policy to be viable before very long. There are
two obvious rebuttals that can be made. To begin with, there is always a desire for more
processing power than can sensibly be put into an office-like environment. The class of
problems that can be addressed by a given cpu cycle rate in reasonable time is limited,
often as much by aiming to improve human productivity as by fundamental hardware
limitations. There are a number of trends that aggravate this:

* The desire to do more in a given time, such as some human reaction interval or
a screen refresh period. An example is the continuing trend towards higher
quality graphics: from black and white to grey scale and then colour, with
increasing spatial resolution and heightened image realism.

e A wish to perform a fixed set of operations more quickly, especially if they fall
into a critical path in a production process. (For example, the machine
intensive parts of the edit/compile/debug cycle, or the execution speed of an
interpretive system.)

e Absolute limitations on human resources and capabilities may necessitate
tradeoffs that would otherwise be considered undesirable, such as the use of
automatic program genecrators or very high-level languages. While such
approaches can dramatically increase their users’ productivity, they tend to
make heavy demands on underlying computing resources. With time they will be
used more, simply in order to allow problems to be tackled that would otherwise
be insoluble in any reasonable time.

The economic issue (as well as the environmental one) hinges largely upon the current
level of technology. Systems that can be built within the limitations of the production
technology of their day (such as those exemplified by high chip integration jevels) are
much more likely candidates for the personal computer approach than ones that cannot. As
personnel costs continue to rise faster than hardware ones, ‘'within' in this sense will
encompass more and more functionality from a given level of technology over time. Acting

against this trend is the comparable growth in the functional support a person requires to

work effectively.

™ UNIX is a registered trademark of Bell Laboratories.
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The set of problems it would be desirable to handle on personal computers is growing
rapidly. Today's most advanced hardware may provide sufficient performance to prototype
tomorrow’s applications, but it cannot usually implement them in a form suitable for large-
scale dissemination. Its promise is always of better products for the future. Of course, in
a few years time, the prototype will be replaced with something of compgrable power,
consuming a fraction of the volume, electricity and air conditioning load, but- there is no
guarantee that this next stage will be adequate to serve the needs of applications
developed to stretch the prototypes of today. Current trends would seem to indicate that
we will continue to traverse this cycle, with each circuit taking several years to complete,
although improving VLS| design tools are helping to shorten it a little. The Dorado
[Lampson80] is a good example of this: as a prototyping engine for high-performance
personal workstations it has been very successful; as an item of office furniture, less so.
Environmenta! concerns have forced the processor to be relegated to a remote machine
room, with video cable connecting it to a display and keyboard in the user's office.
(Although the cable is relatively cheap, laying it is not; furthermore, the physical
separation makes it difficult to add new interactive I/0 devices [Pier83].)

There seem to be two consequences of the fact that current technology (realistically,
two to three year old technology as far as products are concerned) is unsuitable for the
tasks being required of it if the additional constraint of residing in an office is imposed.
The first is that personnel costs have not yet risen high enough (or management has not
yet acknowledged that they have) to encourage widespread adoption of the expensive
solutions that powerful personal machines still seem to be. The second is that there are
still grounds for adopting a more dynamic resource allocation policy than the static worst-
case provision that characterises the personal computer policy. A scheme that could pool
cpu resources as well as peripherals would be very attractive if it were able to time-
multiplex them over a community of users while making similar guarantees as the more
distributed system about response times and availability. Given such constraints, the
physical implementation of a solution should be a secondary concern. There is no question
that high-performance machines should be integrated into the computing resources available
to users from their terminals—the variances in approach are merely expressions of
different beliefs of how best this should be accomplished.

The second major objection to the purely personal approach is that it makes sharing

data more difficult than it is with a centralised scheme. In a system with a large shared
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disc pool it is almost as easy to access another’'s files as one's own. There need be no
replication of files, since everybody can share a single copy. Even if a central file
repository is provided for a personal computer environment, it is often more expensive to
access a remote file than a local one. A common result is that a copy is taken of items of
interest, plus the operating system and utilities. This replication provides speedier access,
resistance to failure of the central repository—and great difficulties when an-item has to
be updated. in a user community sharing a large body of data, this can be very
inconvenient, especially when changes are occurring on a relatively short timescale
[Lauer81]. Exacerbating this is the fact that some users may not connect into the central
repository until several months after a change is announced. There are some who would
argue that this decoupling between updates and private copies of objects is beneficial,
because it allows people to ignore ‘improvements’ they do not like. Unfortunately, while it
is relatively easy to implement an isolationalist philosophy on top of a communal service,
the converse is not true—at least, not if timeliness of update is to be maintained
[Schmidt82]. Finally, the 'programming in the large’ technologies all seem to rely upon
efficient, speedy access to a communal body of software and data. Data management is
simplified considerably if the need to handle physical distribution is not an issue beyond
some very low level (it need not be hidden completely, of course). in short, it would seem

that the benefits of easily sharing data outweigh the occasional drawbacks.

2.4 The Cambridge Distributed System

The other LAN-based system to be discussed here is the Cambridge Distributed System
(CDS). Its main characteristics are that its components are distributed over a number of
machines connected through a Cambridge Ring, and that instead of permanently allocating
processors to users, they are pooled into a processor bank and lent out on request
[Wilkes80, Needham82). The distributed nature of the operating system trades off the
complexity of providing interprocessor communication against that of sharing one machine
between several tasks, and it uses many small (Z80-based) machines to handle just one
control function apiece. The simplicity of these machines means that they are both cheap
and very reliable. They provide services such as processor bank management (essentially
the resource allocation policy part of an execution domain manager), authentication, session

management and the multiplexing of a single ring connection amongst several terminals.
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The machines in the processor bank are relegated to a (logical) basement and never
touched by users: all access is via the ring. Rather than being permanently associated
with a single user, they are allocated on request to act as personal machines for the
duration of a session. The resource allocator can be informed of the type of computation to
be done when a machine is requested, and will attempt to match one of the processors at
its disposal to the particular need. A range of machines with different capabilities can be
accommodated, and the best use made of each of them. When the load is light, an
individual can carry out a limited form of multiprocessing by acquiring more than one
processor, each with its own separate terminal connection. (This is almost the only support
for an execution domain that extends over more than one machine.) If the maximum number
of simultaneous sessions is less than the size of the user community, less hardware need
be provided than for the straightforward personal computer approach. This circumstance
appears to be a frequent occurrence in many environments.

in effect, by allocating reusable resources (such as machines or disc space) in smaller
units, it is possible to time or space-multiplex a larger user community onto the same
hardware. The important metric (for processing power) is the difference between the
guaranteed and average response times: by making them more and more dissimilar, longer
integration periods for load averaging become possible. This approach is taken to extremes
on timesharing systems by reducing the timeslice from the duration of a session to a
fraction of a second. Intermediate algorithms in which a processor is allocated only for the
duration of a command have been suggested, but these either ignore the effects of long-
lived programs such as editors (which may tie up a machine for an hour or more), or
require that such programs execute in a user's 'home' machine. Significantly improved
hardware utilisation would only result if the duration of the commands were to be well
below that of the sessions users have with the system. Furthermore, human efficiency is
severely compromised if the multiplexing is not transparent below some level: people have
state and threads of execution, too, and disrupting them can be irritating and
counterproductive.

The CDS provides a central disc repository to avoid many of the problems of replicated
data noted with the Xerox approach. To some extent, this organisation was dictated by the
late binding of individuals to processors adopted by the CDS. The locally-attached cache of
a private personal machine is of little use over any period longer than a session (at least

for the storage of private data). Unfortunately, removing the code for handling a local
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disc and replacing it by that needed to access the central file server complicated, rather
than simplified, the standard ring operating system [Knight82]. It seems that this was
largely a result of the need for more complicated error handling machinery in distributed
systems, which are much more prone to transient failures of individual components. The
underlying LAN is very reliable when running (an error rate of roughly 1 in 10%! is
quoted), but surprisingly complex protocols seem to be necessary to cope with the ring's
occasional outages and—more importantly—contention at key machines such as centralised
resource managers. The CDS as a whole is not notably more robust than a timesharing
system because it contains many components that are not replicated (such as the resource
and session managers), all of which are necessary for successful operation. On the other
hand, high availability should be achievable with lower incremental cost because of the
separation of critical components from general processing elements.

The machines in the processor bank are mostly half-megabyte Motorola 68000 systems,
each with a ring interface as its only peripheral. The ring interface contains a 6809
microprocessor, and so is able to carry out a number of housekeeping functions on behalf
of the CDS, such as booting and debugging its 68000. The system's emphasis upon
supplying raw machines to its users has resulted in certain consequences that affect the
design of the remainder of the CDS. One of these is the requirement that no component of
the CDS reside in a user's machine, partly because the lack of memory management on the
processor bank systems means that there would be no way to protect such software against
malicious or erroneous user programs, and partly because it is felt that no restrictions
should be imposed on the software run in the machine. In practice, there is encouragement
for all user operating systems to support a 'dead man's handle’ protocol with the resource
manager. The mechanism can be circumvented by choosing a long timeout period, but the
advantages of early detection in case of a crash tend to be sufficiently beneficial that this
is not often done.

Although there is no intrinsic reason why the CDS could not make use of a
sophisticated operating system with memory management to support multiple virtual
processors, it does not do so. One reason seems to be the confusion between the need for
memory protection hardware and the provision of multi-user operating systems. It has
repeatedly been stated that "a personal machine has no use for protection” and this view
seems to have coloured the attitudes of the CDS designers. The argument goes that

protection is necessary for a multi-user machine, to prevent denial of service or corruption
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of other users’ data, but is unnecessary for a single-user one because there is nobody
else to be hurt if something goes wrong. This last is, in my opinion, a non sequitur. Why
should users be denied facilities when their machine happens to be personal rather than
shared? Many personal machines use multitasking operating systems, and the additional
support needed for memory protection or virtual memory is small and l_'elatively well
understood, given suitable hardware. lIronically, the CDS processor bank machines are
used mostly for program development—which is probably the activity that would benefit
most from memory protection. It is also claimed that multi-user operating systems are
inherently much more complex than single-user ones, and that this causes difficulties that
should be avoided if at all possible. However, the example of VM/CMS on VM/370 shows
that provision of multiple virtual machines can be much simpler than a conventional
operating system for the same hardware [Donovan?5]. The multi-user version of RSX-11M
is not significantly more complicated than the single-user version, since almost all
operating system primitives have to be provided by both. It is not the multi-user nature of
such operating systems that is expensive to provide, but their multi-programming
functionality—and this is something that is necessary for all but the most trivial of
application systems. Given multiprogramming and process isolation (e.g. via memory
management), a multi-user system requires relatively little extra work, especially in
systems that already have to deal with authentication issues ‘in the large’ over the
network.

The CDS approach of separating computers from their users seems to work well, given
the price/performance ratio of currently available hardware: it does indeed allow more
effective use to be made of limited processing resources than can be achieved by
permanently assigning them to individuals. The computing power can indeed be hidden in a
remote machine room, leading to economies of scale, maintenance, and fewer environmental
restrictions. A user can access more processing power than a personal computer could
provide, either by using several machines simultaneously, or by being granted control of a
large machine for the duration of a session.

There are some areas where the CDS approach has drawbacks. The first is in the
performance of the central file system, which seems to be the limiting factor on overall
CDS performance. Thi; means that many resource management techniques that would appear
attractive at first sight are unusable (e.g. running a command in another free machine

than the user's 'home’ one, thereby attempting to make still better use of the processor
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resources available). The overheads of booting a processor bank machine are considerable:
even on a completely empty system, it takes several seconds. (By comparison, RSX-11M
takes a fraction of a second to construct a new virtual machine and load a program into
it—on hardware roughly comparable to that used by the CDS.) Some of these problems
could be alleviated by making use of virtual machines provided by a processor that could
support several of them at a time. Of course, a multiprocessing operating -system that
could isolate its clients from each other's effects would be needed if security and
authentication were to be enforced. One advantage to be gained is the much lower
initialisation overheads that can be achieved by such systems when setting up a virtual
machine. Another is economical support for services for which it would be difficult to
justify dedication of a complete physical machine, either because of their very low resource
requirements or the infrequency of their use. There need be less concern about tying up
the single copy of a resource if the system can build new instances of it on demand. (In
practice, the CDS implementation uses this technique for a few specialised applications such
as error logging. In my opinion its use should be viewed as a strength, not a weakness.)

The second drawback is that a significant portion of the hardware must be running
before the system can be used at all. Whereas an environment of homogeneous personal
machines will degrade relatively gracefully when some of them fail, the same is not true of
the CDS because its critical components are not replicated.

The final difficulty is the decoupling of processors from the terminals through which
they communicate. This sometimes leads to extended end-to-end delays and reduced
bandwidth between applications and their users. Some of the techniques that work well in a
personal computer—such as a memory-mapped display-——cannot be duplicated across a
network in a simple fashion (because of bandwidth limitations, for example). Many of these
difficulties arise because of the limited amount of intelligence provided at the terminal end.
The terminal concentrator provides only a very few, rather primitive, screen management
functions, and no full-screen support at all. | would suggest that the view that "it is not,
therefore, necessary for computing power to be available in [the user’s] terminal, nor
indeed if it were would it have any clearly differentiated role to play” [Wilkes80] is no
longer tenable if user interfaces with more grace and power than virtual teleprinters are to
be supported. The provision of high-quality, timely interaction facilities needs more

processing power than a Z80-based terminal multiplexor can supply.
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2.5 Execution domains—summary

Execution domains come in a variety of shapes and forms. The simplest are those to be
found on single-user uniprocessor machines; some of the most complex on tightly coupled
multiprocessor machines designed for high availability. Execution domain management for
local area networks comes somewhere in between, with a bias in practice towards the
personal machine approach. Both the Xerox and Cambridge distributed comput-ing schemes
are based on the availability of cheap processing power as a result of recent advances in
technology, particularly in the area of VLSI. Each emphasises different areas, each has
various drawbacks and advantages. The Xerox one favours guaranteed response time and
local computing power at the expense of network transparency in data and processor
management. The CDS favours centralised, pooled resources to reduce hardware costs at
the expense of locally-available processing power for user interfaces, but tries to make
short-term guarantees about response times by dedicating hardware for the duration of a
session.

| believe that the CDS approach offers better scope for taking advantage of a range of
processor and peripheral hardware technologies, but that it does not (in the form first
proposed) offer enough power locally to individuals. This causes signalling delay and
bandwidth difficulties when communicating with a simple character display device, and
means that there is essentially no mechanism capable of supporting 'dumb’ bitmapped
displays. If local processing power were to be available, there is some chance that it could
remove these infelicities. In particular, by choosing a judicious split between front-end and
back-end processing responsibilities, the low-variance response time characteristics of a
personal computer could be provided while still taking advantage of the resource pool
supplied by the rest of the system. Choosing such a division would entail selecting a
useful mid-point between providing too much processing power in the front end (and thus
making it expensive to replicate), or too little, which would be unduly constraining in
terms of the front-end's functionality. One approach to designing just such a machine is

the topic of the latter part of this thesis.



PART Il

Storage domains



17

3. Storage domains

The storage domain component of a computer system is responsible for the management of
state whose bulk or persistence requirements preclude the use of (semiconductor) main
memory for its implementation. Typical implementation techniques are based on moving
magnetic media (discs, tapes, drums), although a few specialised niches are filled by the
likes of bubble memories and optical recording methods. As with processor- technology,
there have been enormous advances in storage subsystems in recent years, with the
general trend being towards greater data capacity in both absolute terms and storage
density. Coupled with these have been similar—although not so pronounced—decreases in
access times and failure rates. One general characteristic remains, however: the time
penalty for touching an object on secondary storage is several orders of magnitude greater
than if it were in local main memory. This speed dichotomy and the volatile nature of data
in primary memory are the main reasons for the traditional existence of the storage domain
as such a visible object.

Traditionally, the permanent data storage and speed-differential suppression functions
of the storage domain have been interwoven. A ’file system' was used to store permanent
data: it was carefully optimised to minimise unnecessary secondary storage traffic, and
application programmers were acutely aware of the distinction between primary and
secondary memory. With the advent of virtual memory, the visibility of this boundary was
reduced, and programmers concerned themselves less with explicit management of dynamic
data space, until with the introduction of mapped files in the style of Multics
[Organick72], the difference between pérmanent and dynamic data was eliminated after an
initial mapping operation. The logical conclusion of this line of development has been the
idea of a workspace in which objects reside, with the implementation completely hiding the
distinction between primary and secondary storage. This approach has been used to good
effect by some LISP, APL and Smalltalk systems.

The idea of atomicity was found to be a convenient addition to a simple read/write
interface. If a sequence of actions is atomic, then either all of the changes effected occur,
or none do. When they do occur, they behave as though they were made visible to the
outside world at a single instant (all intermediate states are hidden from view). Usually,
atomicity is combined with the properties of permanence (once committed, a change will not
be lost) and revocability (until a change is committed, it may be undone). The major

benefit of atomicity is that it guarantees certain behavioural properties when updates are
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made to a shared poo! of data, and thus acts as a framework for such operations (in much
the same way that serial execution of instructions in a uniprocessor forms the framework
for conventional programming).

A property of most implementations of atomicity is that they introduce a distinction
between transactional storage and ‘ordinary' storage that does not support atomic
operations. Main memory usually comes into the latter category, although seme memory-
mapped architectures can provide somewhat finer granularity. One reason for the
distinction is that there are often considerable performance gains to be had from using
non-transactional storage [Mitchell82]. In the past, transactional storage has largely been
associated with so-called database systems, which usually also provide rather elaborate data
structuring and manipulation facilities. More recently, the trend has been towards
supporting transaction facilities at a lower level so that they are available to more clients;
several file systems have been built with varying degrees of sophistication in this regard
[Sturgis80, Dion81, Popek81]. To date, transaction support does not seem to have been
provided for workspace-oriented environments.

Since real transactions take non-zero time to execute, a mechanism for enforcing their
serialisation is useful, and some form of locking is generally used for this purpose. Lock
granularities and locking strategies vary; all attempt to maximise throughput and take the
greatest advantage of available concurrency while retaining the serialisability property of
transactions. As always, there are tradeoffs to be made between the potential benefits of
increased parallelism and fewer deadlocks on the one hand, and the costs of administering
finer granularities or more elaborate strategies on the other.

An important concern for the implementors of a storage domain in a distributed system
is data location—be it explicitly visible or hidden inside the virtual address system.
Storage sites can be distributed in much the same way as processor power is, although
economies of scale in the cost and performance of peripheral devices favours concentration
rather than dispersement. Some existing systems have opted for a purely decentralised
approach (e.g. the early Alto environment at PARC, the current Lilith one at ETH), some
for a purely centralised one (e.g. the Cambridge File Server), and some for partly
centralised ones (e.g. a Xerox Star system with a shared file server). A few (like LOCUS
and Aegis) provide network-wide locational transparency for data. The majority of systems

that are not purely centralised use local storage as a cache for a central repository, which
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may itself be a multi-site entity (e.g. the Xerox DFS [Sturgis80] and proposed Spice file
server [Accetta80]). Cache management may be visible at the user level or not, depending
upon the particular implementation.

Support for multiple storage sites offers the ability to increase the availability of data
through replication. Failure modes common to all systems include media and storage
hardware failures; in a network environment, server crashes and network partitioning are
also potential sources of trouble. Physical distribution may provide assistance with the
latter two, but also introduces problems that a single-site system does not have. Careful
attention needs to be paid to the difficulties that multiple updatable copies of replicated
objects can bring to algorithms and consistency—and this applies to those location
strategies that make use of caches as well as those that just replicate permanent data. The
problems are similar to those encountered in shared-memory multiprocessors with separate
hardware caches, and the solutions proposed to date for secondary storage management
have many of the same properties as their hardware counterparts. There are a few
differences, however. For example, sufficient information may be available about the
semantic content of data held by a storage domain for relaxed updates to be usable (cf.
LOCUS, Grapevine [Birrell82] and the Xerox Clearinghouse [Oppen81}). Also, continued
operation in the face of network partitioning is not usually a characteristic of tightly

coupled multiprocessor systems.

3.1 Files

The previous section concentrated on the lower-level facilities that a storage domain might
supply. Once they are provided, how should the interface to client programs best be
organised? Of course, the answer to this depends to a large degree upon the problem
domain being addressed: batch payroll programs are likely to have different requirements
than interactive syntax-directed editors or program development environments. | choose to
limit the scope of the discussion here to the requirements of an "(experimental
programming) environment” in the sense of {[Deutsch80]; nevertheless, much of what is to
follow is of more general applicability.

The commonest abstraction presented by storage domains is that of a file, which
usually has properties like its size, creation time, and stored data, and may include a

particular record structure and owner or protection information. Most traditional storage
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domains encourage the use of an access method to manipulate the contents of a file; these
have roughly the status of an abstract type manager although the long-term binding
between manager and instance of state is usually weak or non-existent. It is often
observed that clustering of the data associated with the properties of a file is beneficial to
performance. A common implementation technique is to store such information in a file
header, which also contains pointers to the user-data property. The principal' disadvantage
of this scheme as far as a experimental programming environment is concerned is that the
list of stored properties is fixed by the storage domain manager. (One counter-example is
the Symbolics Lisp machine file system [Symbolics81], but this restricts user properties to
less than 512 bytes, including their tags.) To extend the properties (with distributed
dependency trees or time evolution maps, for example), another way has to be found to
store the new information. Invariably one of two things then happens: either the standard
utilities (such as compiler, spelling corrector, linker) have to be modified to cope with a
new user-data format, or a different set of utilities are not cognisant of the need for
special action engendered by the use of a second file to store the extra data. The classic
example of the latter is a copy program.

The difficulties here appear to be arising because traditional storage management
schemes do not distinguish between accessing information and accessing its representation.
They mainly concern themselves with the latter problem, and give little or no support for
the former. When representation schemes were sufficiently simple, this tactic was not at all
bad—indeed, very successful systems have been built in just this fashion, with all the
clients agreeing in advance how some datum is to be stored, indexed, and interlocked to
prevent inadvertent corruption. However, this approach becomes less and less attractive
as the complexity of software systems increases. Numerous practitioners have observed that
procedural, rather than data-structure, abstractions alleviate many of the difficulties
noticed with the earlier system. They also lend themselves better to current language
design methodologies, and so it seems only natural to ask how they could best be applied
to this problem.

One of the first issues that arises is that of binding: if a representation is to be
accessed only via a procedural interface then some way is needed to tie the data and its
associated interface together. A single procedural abstraction can often be used to access

many individual data items, and so it becomes worthwhile to separate the interface from the
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data—i.e. the binding is not a simple agglomeration of the two into one structure. Some
form of indirection is needed, and this in turn requires a naming mechanism that can
identify the object being referred to.

Returning for the moment to traditional storage domain systems, observe that the
majority provide only textual naming schemes, designed to be (more or less) human-
oriented. Unfortunately, these are usually unsuitable for the binding required-here, being
neither unique over space or time, nor convenient or efficient for machine-oriented
manipulation. The latter problem is easily solved by adopting some internal binary
identifier structure that is fixed-length, compact, and relatively easy to look up; the
former is worthy of a little more consideration.

Why is uniqueness required of the naming scheme—or, more correctly, what are the
naming domains over which uniqueness is to be preserved and what are the consequences
of failing to do so? The latter is the easier question to answer: failing to guarantee
uniqueness over the chosen domain means both that the wrong object may be selected for
an operation and that there will be no general way to detect this (other than by observing
the potentially catastrophic errors that may result). If locationally transparent access is
desired, then space uniqueness for names is usually a prerequisite. Given this as a goal,
it seems desirable to advocate an identifier format that is globally unique—i.e. the domain
over which uniqueness is guaranteed is the universe of computer systems. This will ensure
that the uniqueness property will not be compromised when two existing systems are
joined. It will also allow objects to be migrated freely between systems without fear of
name conflicts.

The justification for uniqueness over time is the need to identify specific instances of
data, not just the most recent one. An obvious example occurs when a module that has
long been linked into a program is to be debugged, and the symbol table information that
corresponds to the instance of the module at hand is needed. Time uniqueness can be
achieved by encoding a timestamp into a name, but more efficient techniques are available
that consume fewer bits to similar effect. In the same way that globally space-unique
identities are implicitly limited to the space currently reachable by man, a time span needs
to be defined after which recycling of temporally-unique identifiers is acceptable. Values
around a hundred years are not too difficult to achieve with reasonable object creation

rates, and would appear to be ample given current system lifetime expectations.
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3.2 Summary

This chapter has presented a short overview of some of the more pertinent aspects of
storage domain technology as they affect networked computer systems. The next chapter
discusses one possible way of organising storage domains at the next level of abstraction,
to build procedurally accessed, typesafe, persistent objects with some characteristics that

would seem to make them well suited for use in programming environments.



4. Entities

This chapter presents a scheme for organising data and helping with the dynamic aspects
of information structuring. It is based on the idea of typesafe entities, which play a role
roughly equivalent to that of files in a traditional storage management scheme, together

with a standardised way of handling the properties of such objects.

4.1 Concepts and definitions
4.1.1 Entities

An entity is a named object made up of a collection of attributes, each of which represents
some aspect of the whole (figure 4.1). An entity corresponds to a file; an attribute is akin
to the individual items of data held by traditional file systems, such as last-modified dates
and file data components. Entities are uniquely identified by an entity identifier (or
entitylD), which is a globally unique name over both space and time. The exact form of
these unique identifiers (UIDs) is not particularly important, although it needs to be long
enough to supply a sparse name space for many objects if a capability-based access control
mechanism is to be used (as envisaged here), and identifiers should be easy to generate in
a distributed fashion.

It is convenient to think of entities as containers for attributes. An entity can have
more than one instance of an attribute of a given type or class, such as timestamp, but
the class is then further qualified to indicate the use to which the attribute is being put
(e.g. source code timestamp, object module timestamp). This attribute instance identifier
(another UID) must be unique in the entity. (There is no sensible way to support
positional attribute identification when the number and composition of the attributes can
vary through time.) In effect, this puts an upper limit on what an entity is: it is
unlikely, for example, to contain several temporal variants of a piece of text, although it
might perform an organisational role and contain pointers to other entities that each hold a
variant. (Such pointers would probably be managed by an attribute with a directory-like
interface.)

A certain simplicity would result if an entity could be defined as a rigidly typed object
in its own right, with its set of attributes (and thus its complete class specification) fixed

at creation time once and for all. [Crawley81] proposed just such a model. Unfortunately,
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Figure 4.1. Entities and attributes

this simplification is unacceptable since any change to the list of attributes would
necessitate a change in the type of the entity, which is inappropriate for the applications
envisaged here. To accommodate the kinds of operations that occur in a programming
environment, it must be easy to change the set of attributes of an entity. Evolution and
change are the norm in program development and systems that model the real world
[Atkinson77, Date77, Heering81, Lauer81]). ([Schrodt82] reports on the considerable

benefits that can be gained from a flexible system.

4,1.2 Attributes

Each attribute supplies a typesafe procedural interface to its clients and may have one or
more associated values, which it is convenient to have the entity hold on its bebhalf.
Insisting on a procedural interface to an attribute results in an encapsulated data type,
and also makes it possible to upgrade an implementation without changing its external
interface (e.g. to improve its performance). The encapsulation affords the opportunity to
synthesise attributes: for example, two attributes could separately store 'untabbed text’
and 'tab stops' in the entity, and another one could merge them on request to produce
‘tabbed text'. 'Object module’ could be automatically derived from ’source code’ and

‘compilation control file' by an attribute implementation that invoked a suitable compiler.
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One of the attributes is designated as the master attribute, and it is this one that
receives notification of global operations on the entity itself. It is the only mandatory
attribute, and must provide the operations initialise, finalise, open, close, add_attribute
and delete_attribute, which are interpreted as operations on the entity itself. This scheme
avoids the need to handle objects of type 'entity’ explicitly. Different kinds of entity can
be constructed by using different master attribute classes and irﬁp_lementations;
furthermore, this can be achieved without introducing any new mechanisms. The simplest
form of master attribute makes no attempt to impose any access constraints upon its
clients. An entity controlled by one may be likened to a jungle, as anybody may come up
to it and add new attributes. As with introducing animals to a real jungle, adding
attributes may be deleterious (to the attribute or to the entity). More selective master
attributes can be devised and may be likened to keepers of safari parks, who, presumably,

take care to avoid introducing zebras into a lion enclosure.

4.1.3 Kernels

Preservation of the typesafeness of entity interfaces is the responsibility of language
dependent kernels that execute in some protection domain isolated from their clients. These
kernels map a client's operation requests onto invocations of the relevant functions
provided by attributes of the target entities. Each entity contains a data area private to

these kernels containing the information needed to define the entity's structure: a list of

attributes together with their implementations, classes, instance types and state.

4.1.4 Implementations and replicas

As with languages like Mesa and Modula-2, the implementation of an attribute is an object
distinct from its specification or class. Each attribute in an entity contains a pointer to
the particular piece of code that is its implementation—its implementationlD (figure 4.2).
This binding makes it possible for several different versions of the same attribute class to
be active at once, with different organisations for their internal states. Provided the
different implementations all adhere faithfully to their class specifications, an external
client should be unable to distinguish between them other than in the area of performance.

There is no need for an elaborate external version number scheme to determine the correct
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Figure 4.2. Attributes, implementations and classes

format of the saved state given to a type manager, as is required in systems in which the
binding between state and manager is weak or non-existent. (As [Keedy82] notes, most
traditional filing systems fall into this category.) Instead, the entity system provides
precisely the correct form of binding in the implementationID for the attribute.

Since it is expected that entities could be used in a multilanguage environment, the
concept of implementations is broadened slightly to include replicas, which are variants of
a particular implementation for different languages, hardware architectures or operating
systems. Whereas different implementations of one class need not use the same internal
data structures for their saved state, all the replicas of an implementation must do so. All
the replicas for an implementation share the same class specification, translated as
necessary into different implementation languages.

The implementationID of an attribute is the entitylD for the entity that will provide the
implementation’'s replicas, each of which has a separate attribute instance type. Loading an
implementation is thus a recursive process; termination occurs because the implementations
of the attribute instances that hold replicas (which are known as /oaders) are bound into

the runtime kerne!, and so are always memory resident. (Strictly, only the first such
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loader need be so bound; provided it can itself load other loaders, the mechanism for a
bootstrap has been established.) The binding employed to make the replicas themselves can
be early or late: the former would require a link stage to include any needed subroutine
modules; the latter external symbol resolution at load time.

Supporting multiple implementations for an attribute type allows its _internal data
structures to be chosen for optimal performance in a particular application while preserving
the external specification. The process that chooses the implementation can be as simple or
as complex as desired. ([Sherman83] discusses some of the issues involved.) It clearly has
to be driven by performance and behavioural advice from the particular application; in the
absence of such hints, some default implementation needs to be identified. If the initial
guess is wrong and it is important to correct it, the data held by an attribute must be
copied (and hence reformatted) into another one that then replaces it. That this is
possible is a consequence of the late binding of attribute instance identifiers to the
implementation and saved state of the attribute. The longevity of the binding between
entity!Ds and entities means that doing the same for complete entities is only possible if
there is a similar indirection between the entitylD and the underlying storage (of which
more below).

The very late binding to implementations means that the most recent version of an
attribute (complete with the latest bug fixes) is used whenever an entity is accessed. Some
care thus needs to be exercised: much of the benefit of the scheme can be lost if
implementations are 'improved’ in situ in a cavalier fashion. Optimisations for one particular
access style might prove to be the exact opposite for another. Rather, a new
implementation should be made available for use by new objects as they are created; if

desirable, it may also be made the new default.

4.2 Storage objects

The two major roles of the entity system are to provide state storage and to organise its
access. A convenient internal abstraction is that of storage objects, whose sole purpose is
to handle state saving [Crawley8la]. Each storage object provides storage for the
attributes of a single entity by supplying one or more value stores: simple, indexed byte
arrays with a flexible upper bound (figure 4.3). Each value store is tagged with the

identity of its owning attribute, so that it can be garbage collected in a simple way. The
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storage object contains a data area private to the entity kernel in which the latter stores
the description of the entity structure, including the classes, implementation|Ds and
instance types of the attributes.

Each storage object resides on a storage medium under the control of a storage
manager that is responsible for whatever is necessary to handle a particular underlying
storage resource. Storage objects, like entities, have unique identifiers (storage object
identifiers or SOIDs), which contain a medium identifier and a medium-specific handle onto
the storage object itself. It is expected that the number of storage medium instances will
be small compared to the number of storage objects; nevertheless, relatively lengthy
medium identifiers may still be convenient in order to simplify UID generation when using a
distributed name generation scheme.

To a first approximation, SOIDs and entitylDs are identical: both can uniquely identify
an entity and its saved state. The main reason for distinguishing SOIDs (which are largely
internal names) from entitylDs (which are freely available to applications and attribute
implementations) is that the latter will contain access-rights information that the former do
not need. The primary protection model envisaged for entities is a capability-like one, with
different instances of entitylDs for the same object conferring different access rights to
their wielders. A simple way of achieving this is to concatenate an encoded representation

of the access rights (such as a value in a sparse address space) onto a name {(such as a
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SOID) that merely identifies the subject entity. It might also prove convenient to provide
an indirection between the name of an entity and the name of its storage object, so that
the latter can be migrated or replicated for greater reliability, availability or performance.
This could be provided on per-storage medium basis, but it may be more convenient to
have it available for all entities in the system.

| choose to assume that storage managers may perform asynchronoeus garbage
collection, mainly because of the advantages that implicit object management brings with it
[Deutsch80]. The cost of insisting on a suitable interface to the storage object level is
relatively low; more importantly, non-compliance early on is not easily rectified if the
decision is later reversed. An asynchronous garbage collector needs some structure in
common between itself and the entity system that the former can traverse during its node-
marking phase and that the latter can use to ensure the continued existence of storage
objects. One of the simplest such arrangements is the inclusion of a link store in the
kernel-private portion of each storage object. Putting an SOID into a link store that is
itself accessible by following a path from the root node would ensure the continued
existence of the storage object named by the SOID. Only SOIDs in link stores would have
such existence properties. (The construction of an entitylD from an SOID and an access-
rights field simplifies this; the garbage collector only needs the SOID portion.) One
consequence of this arrangement is that an attribute can act as a directory by providing a
mapping between names and entitylDs in the form of SOID/access-rights pairs. Most
existing file systems completely separate directories (or indices) from data files; in the
entity system there is still a distinction, but it is made intra-object rather than inter-

object. Like a value vector, a slot in the link store is tagged with its owning attribute.

4,2.1 Providing value stores

Strategies for building and maintaining vector-of-byte storage abstractions are relatively
well understood, and have formed the basis of file systems for some time now. However,
there are some relevant second-order effects that result from the data access clustering
assumed by the entity model. A basic tenet of this model is that data can (and will) be
organised in a way that causes accesses to be grouped more or less tightly around a
relatively small number of named centres—the entities. If, as seems likely, the overheads

of name resolution and address binding for an entity are comparable to the costs of file



Entities 30

location in a more traditional system, benefits will only be achieved by making the cost of
subsequent accesses to internal value and link stores small by comparison with those of
accessing other entities. Such efficiency is clearly important for small attributes, since
they will be quite numerous; potentially large ones should also be handied without overt
penalties in time or space, preferably without the implementation appearing different to
client applications.

One possible storage manager implementation would allocate byte arrays (value stores)
completely independently of one another, regardless of their size. Whilst the simplicity of
such an approach is attractive, as well as its trivial mapping onto an existing file system,
lookup overheads and disc fragmentation would pose severe problems. An alternative might
be to build each entity on a single traditional file (provided by some existing disc
management system) and have the storage manager do its own division of the file into
multiple value stores. This is almost as unsuitable as the first: many optimisations that can
usefully be applied to a real storage medium (such as locality of reference) are
inappropriate for a virtual one because they require knowledge of physical layout, which is
precisely the information that the file abstraction is hiding.

The suggested approach is something of a compromise, and relies upon the assumption
that many attributes will know in advance some details about their likely storage
requirements. The problem is one of choosing some common abstraction that can be used to
represent this knowledge that is both sufficiently general to be a worthwhile performance
hint and at the same time simple enough to be easy to generate.

Storage objects will normally be built on top of a fairly standard underlying file
abstraction that supplies independent byte vectors, with roughly the usual level of
overhead that that entails. The address space of each value store is divided into a
logically fixed-length header portion and a variable-length trailer. Either part may be
absent (more correctly, of zero size), and there may also be a limit to the size of the
complete value store. One byte vector is used per storage object to hold the fixed-length
parts of the value stores. Its layout is optimised for efficient access to small attribute
values, possibly taking advantage of simplified storage allocation techniques such as the
use of a fixed allocation quantum. The variable-length portions of the byte vectors spill
over into further individual byte vector.'s, subject to some further allocation granularities

(it may be possible to put all of a small variable part into the main vector).
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Since the division is just a hint to the storage object manager, the accuracy or
otherwise of the information will only affect performance, not correctness; restricting it to
be a simple breakpoint in the address space means that value stores retain the semantics of
a simple byte vector without embedded holes, which means that the structure imposed for
performance reasons is otherwise transparent to the code of an attribute. As with other
performance hints to file systems—such as those indicating preferred extent allocation,
spindle/arm affinities, cylinder placement or access frequency—supplying this one is

optional, and no assumption should be made about whether or not it is used.

4,2.2 Further internal structure

S. C. Crawley's first proposal for storage objects allowed them to be arbitrarily nested
within one another. An implementation of this scheme proved intolerably slow and so he
changed the proposal to allow just one level of nesting. (A second-level storage object
could be built in the value store of a first-level one.) In turn, this was abandoned in
favour of a simpler model, in which capability-like refinements are used to express rights
to read or update parts of the value and link stores within a storage object. The
motivation for these schemes seemed to be a desire to build entities inside other entities,
extending the binding and structuring properties of entities to an arbitrarily nested
structure.

In the model proposed here, by contrast, all the attributes of an entity exist at the
same level in the hierarchy. Furthermore, since the attributes are cooperating in the
implementation of the abstract object that the entity represents, there is no support for
elaborate internal protection schemes. Of course, an attribute implementation may choose to
use modules that require access to separate parts of the storage object in which they
reside (such as a private subroutine package to build 'tabbed text from ’tab stops' and
‘untabbed text'), but this is a simple matter of compile time information hiding and need
not be reflected in increased complexity or overheads at runtime.

) conjecture that the type of hierarchies suggested by S.C. Crawley probably lie on
the wrong side of the dividing line between functionality that has respectable payoffs for

the resulting performance overheads and that which does not.
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4.2.3 Non-disc storage objects

Although this discussion concentrates on disc-based objects, storage objects could be
implemented on other media: semiconductor main memory, for example. This generalisation
would allow traditional dynamic runtime structures to be integrated into the persistent
storage model, while retaining the typesafe interfaces that characterises entities. As with
any memory-based structure in a distributed system, particular care is needec-i in the face
of shared access (especially with memory-update rather than disc-update semantics), site

and communication failures.

4.3 Active entities and concurrency control

If entities were to be 'active’ objects capable of independent asynchronous processing, they
could be used to represent processes as typed objects. An implementation of this idea
would require an entity-based operating system, of course, so that entities could properly
be integrated into process management and synchronisation mechanisms. With a message-
passing operating system, the procedural interfaces to entities could still be modelled
through a form of remote procedure call [Nelson81].

A simpler scheme can be used to associate an entity with a process, rather than treat
them as equivalent, which is suited for use with existing operating systems. When such an
entity is created it would generate a new process, passing a handle to itself as a
parameter. The entity could then act as a data-oriented monitor to channel procedural
invocations of operations on its attributes into requests of its associated process. Indeed,
many such processes could be created and used in parallel for greater concurrency in
handling requests; because the processes created in this way would be private to the
entity, their number could remain hidden from its clients. Of course, some form of process
synchronisation facilities must be available to serialise requests on the entity.

A similar idea has been developed for the Eden system [Lazowska81]. Here, at ‘object
reincarnation time' (when an object is reactivated, after having being passive), behaviours
may be created, which have the semantics of independently executing processes tied to the
data portion of an object. The Eden designers suggest that behaviours be used for
caretaking operations such as tree balancing or internal garbage collection, and note that a
traditional single-thread program can be viewed as an object with a single behaviour and

no externally invokable operations.
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1t should be noted that entities do not, in their own right, contribute anything new to
the universe of concurrency control mechanisms. They provide data storage, not process
control primitives. Nevertheless, concurrency control is an important part of any scheme
that manipulates shared data, and so thought needs to be given to the issues it brings up.
At the least, mechanisms need to be provided (by the kernel) to administerl some form of
locking mechanism with deadlock prevention or detection, together with a way of
implementing transactional storage. The two correspond to the requirements for external
consistency and atomicity noted by [Liskov82]. As the UNIX experience has shown, the
optimisation point should be that of infrequent conflicts while accessing locked objects
[Ritchie78]. A simple multiple-reader/single-writer interlock combined with notification of
intent (to reduce the need for backing off transactions) would probably suffice. The exact
form of the mechanism chosen is not particularly important for the present discussion.

Since an attribute may access further entities while performing a request, it seems
natural for it to propagate the lock and commit status of any transaction in which it
participates. The alternative would be to make the caller lock all the entities an operation
is to touch, but this would violate the information hiding rules that prove so useful
elsewhere. An attribute can always choose to use a transaction to carry out its processing
even if it is not invoked as part of one; nested transaction support would make this
particularly easy. Purely low-level locks are inadequate in some applications, and some
higher-level synchronisation method may be necessary if too great a frequency of deadiock
is to be avoided in certain specialised circumstances. There is also the need to synchronise
actions to events taking place in the 'real’ world outside. Making the same distinction as
the CFS does between 'normal’ entities (with no transaction mechanisms) and 'special’ ones
(which have full transactional storage capability) would bring performance benefits: not all
entities will need the additional safeguard of being able to back off their updates part way
during processing, and those that do not can avoid the overheads that this functionality

imposes.

4.4 Keeping entities consistent

It is a desirable property of complicated data structures that they should be internally
consistent—and known to be so by their clients. This requirement gets stronger as the

size and complexity of the structure under consideration increases, and so does the
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difficulty of ensuring it. Such consistency may be expressed in the form of one or more
invariants, which are conditions that must be satisfied at certain key moments. Internal
consistency can be checked with 'local’ invariants, but deciding the correctness of data
needs some form of external agency: that is, the invariant cannot be expressed in terms of
data available locally. Constraints expressed in the form of invariants may be used in a
‘contract’ between their maintainer and its clients, as a mechanism for describing some
agreed-upon behaviour pattern.

The main emphasis in this section is the maintenance of consistency in data structures
that are distributed over one or more attributes in a number of entities. Handling
consistency within the value stores of single attributes is a task of the attribute
implementation alone, and there is little that can be done that is specific to entities. Some
assistance may be obtained from languages such as Euclid [Lampson81], which allow the
specification of invariants to be checked at compile time or during execution.

Consider an entity that has a number of separate attributes that all have to be kept in
step over a period of time. (| am not concerned here with the real-time inconsistencies that
transactions are designed to prevent, assuming that these are adequately handled by the
supporting level.) It would be nice if mechanisms were available for preventing
inconsistencies, or at the very least for allowing their early detection. Clearly, any
solution should fit in with the already existing infrastructure, and an attempt should be
made to avoid introducing a new set of ideas to achieve the desired effects.

It is suggested that the entity (more strictly, the master attribute) be taken as the
unit of invariant conservation. An alternative would be to use an attribute, but this could
not prevent ‘sideways’' accesses from other attributes in the same entity, nor would it meld
well with the protection facilities afforded to entities by the projection mechanism (see
below). Channelling all accesses to the data structure through a single piece of code would
give the latter the power to enforce any constraints that it sees as desirable, or at least
to check the structure for consistency at suitable intervals. An entity is not required to
implement all the operations itself, of course; some could be passed on to other (private)
entities or attributes for which it is acting as a sentinel, leaving it with the role of an
intelligent transaction broker.

By sacrificing the requirement for all accesses to a data structure to be checked for
validity, and only checking the invariant at intervals, the necessity of passing everything

through a single guard module may be relaxed. This approach is only useful if a constraint
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is soft in the sense that it does not have to be maintained continually as far as external
processors are concerned: it takes on the status of advice about preferred behaviour
rather than an invariant. Consistency checks of this form can be performed by a separate
process fired up at intervals. The process could make use of an entity that held pointers
to all the entities in its care (somewhat like the external consistency constraints or
contracts of [Goldstein81]), or it could simply be a stand-alone program with internal
knowledge of the links defining the mesh of interesting objects. The principal disadvantage
is that the entire data structure may have to be checked at every invocation; as the size
of the structure grows, so does the cost. This has to be weighed against the cost of
channelling every operation on such a large data structure through a single guard, which
may impact the size of the guard's definition or the amount of work needed in order to
maintain the invariant. The externally-enforced approach has been used for file server
garbage collectors (e.g. [Garnett80]), which can be viewed as examples of ‘constraint’
maintainers, designed (roughly) to ensure that there be no non-deleted inaccessible files.

With some systems this may be the only sensible way to proceed.

4.5 Putting entities into perspective

Much of the substance of this section was inspired by a set of papers by Goldstein and
Bobrow [Goldstein81] that describe an experimental programming environment built in
Smalltalk.

Consider the case of a large system capable of supporting many thousands of
attributes: keeping track of them and naming them all will be a major problem. There is no
way to remove this problem completely, but steps can be taken to minimise its impact on
application programmers. One way of doing this is to simplify the naming scheme by
carving it up into smaller naming domains—as is done, for example, by subschemas in the
database world [Date77]. Database subschemas function at the level of data definitions,
whereas the entity scheme would benefit most from one that acted at the level of operations
on abstract data types. The idea is that a display program (for example) should be able to
read the value of an object and update its position on the screen, but not be allowed to
change that value or delete the object. Although attribute instance types still need to be
given globally unique identifiers, they can be accessed via a perspective that maps them

into a local name set for one or more client programs (figure 4.4).
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Figure 4.4, Perspectives

Perspectives provide a way of limiting the access of a program to the outside world at
the level of individual operations on attributes. The very operation of limiting this access
also acts to define the possible effects of a program upon the world. The limitation is
carried out entirely at compile time, and consequently should impose no runtime inefficiency
(hence the choice of a reasonably fine granularity). Perspectives are direct counterparts
of module import lists that work in a universe of operations named in a globally unique
manner, except that they also provide a local naming facility. A perspective for a group of
one or more programs contains a section for each attribute instance type that defines those
operations in the associated class that are to be visible. When a perspective is bound into
a form ready for use by a compiler, the local names in the perspective template are mapped
onto global attribute instance type identifiers and operation/Ds for the functions they
provide. Each attribute instance identifier acts as a pointer to the entity holding the class
specification that it obeys, which itself contains the list of operations supported by the
attribute’'s class. The result is an interface description somewhat akin to a compiled

definition module for a language like Mesa. Obviously, there is no need for the names of
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the attributes and operations within the perspective to be globally unique: avoidance of
clashes with local names is all that is required, given the ability to perform the global
binding in some way.

An attribute implementation is like any other piece of program in its requirement for
local names. Rather than invent an ad hoc mechanism, attribute implementations use a
(degenerate) perspective consisting of the complete set of operations in their class. In
form therefore, a class specification is just a perspective with no references to any
external class definitions.

Perspectives are defined in a top-down fashion, in terms of allowed operations on sets
of attribute instance types. That is, a perspective is a set of templates to impose on one
or more classes. Adding a new class to a perspective requires that the perspective be
changed, since it is equivalent to altering the environment of the programs that use it.
Adding a new perspective to a class requires no alteration to the class. There is a dual of
this approach, which would be to add a list of supported perspectives to each class. This
would result in information about a perspective—which is likely to have a greater rate of
change than a class definition—being distributed over many sites, and is not recommended.

There are potentially some protection issues associated with perspectives, since they
can be used to restrict access to sensitive operations of certain attributes. If this is done,
it should be accomplished by handing out refined versions of the perspectives rather than
by preventing users from running the program that generates perspectives, which would
deny them a convenient facility. The ability to make new perspectives is as useful to

application programmers as it is to system ones.

4.5.1 Altering class definitions

A class definition is a classed object in its own right, with operations of the form ‘what is
the definition of operation N'. Without perspectives, it would be extremely difficult to
change a class definition: all the software that imported anything from it would need to be
recompiled. (The dynamic binding of application programs to implementations is not helping
here.) However, because perspectives implement a form of information hiding, they can be
used to prevent an addition to a class definition from being revealed ahead of time. Only
the programs that wish to use the new function need be given access to it through their

perspectives, and all other clients of the class can remain unaware of its existence. For
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this to be possible two conventions must be observed: perspectives must contain explicit
lists of the items they import from class definitions (there must be no 'import everything’
function), and class definitions can only grow by the addition of new functions. The first
ensures the invisibility of new functions unti! explicit action is taken to release them. The
second allows old and new class implementations to coexist during a pre-release period
while they are all made to conform to the new specification. -

It has been suggested that the above scheme is too restrictive: that more flexibility is
needed than is afforded by the simple addition of components to an attribute's class. One
way in which this might be achieved is as follows, due to J.G. Mitchell [private
communication]. A class could be upgraded by modifying all its implementations so that
when they were next invoked, they reformatted the stored values and then replaced the
reference that caused them to be activated by one to a. new version of the class. This
reference must be accessible to (and modifiable by) the implementation at attribute open
time. Since it should normally be held in the kernel-data portion of the entity, and is
always used via a level of indirection, there is no reason why this should not be possible,
if applications were never given access to implementationlDs. The rate of change of class
specifications would need to be very small to allow clients as well as implementations to be
upgraded (since perspectives provide no help here), and the difficulty of supporting
multiple transition implementations over potentially long periods of time should not be
underestimated.

In any case, attribute implementations and their clients must check to see that they
are using the same version of the class specification (in practice, ’this check would be
carried out by the kernel). One method is to bind a change record for the class into both,
which might be done with major and minor version numbers. Major version numbers would
only change if an incompatible change to the specification of a class took place, such as an
arbitrary shuffling of an argument list, while the minor version number would be used to
ensure that an implementation and a specification agree exactly. The latter binding is
tighter (the minor version number would be incremented for any change to the class
specification), to ensure that the implementation is capable of handling any operation that a

client may have access to.
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Figure 4.5. Projections

4.6 Protection by projection

A projection is defined as the view that an entity allows the outside world to see of
itself—thus it is the complement of a perspective, which is the view a client program has
of the entities around it (figure 4.5). Projections are the mechanism by which the set of
attributes held by an entity is made public. The concept of a projection is intimately tied
to protection—by altering its projection, an entity will be able to exercise control over
which clients may invoke which operations on it. The analogy is with a screen that is
being viewed by a client program through a window (its perspective), onto which are
projected a number of interesting things. What is projected will depend upon who is
looking, and how much of it is seen by the client is dependent upon the size and shape of
the window. An alternative description is that perspectives are encodings of capability
lists and projections are a form of access control list.

A projection is a list of attributes. As with perspectives, the grain could have been at

the level of individual operations, but efficiency considerations will probably militate
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against this: whereas the selection implicit in perspectives can be done at compile time,
projections are by their very nature dynamic and hence impose some runtime overheads.
The finer the checking that needs to be performed, the greater the likely cost of doing
so; hence the restriction to the attribute level.

Entities generate projections dynamically when they are approached by the kernel,
which is assumed to be a trustworthy mediator between an entity and.its clients.
Description of 'my identity’ (some capability-like object), will flow from client to kernel to
the entity's master attribute, and information about the attributes on offer will return.
This is one of the reasons for an open operation on entities and their attributes: runtime
efficiency gains can be achieved by bringing forward the binding time of the checking
operation so that it need only be done once for each client activation. As with all such
schemes, some flexibility is sacrificed by doing this, and there may be circumstances in
which a ‘'single-shot’ validation is more appropriate.

Many database managers provide elaborate access control schemes. Because they are
built into the code of the database manager, they are of necessity data-driven rather than
compiled code, and the resulting tradeoff of generality vs performance can, in the worst
case, impose serious penalties [Date77]. The projection scheme avoids this by allowing the
access control mechanisms to be early bound to the type manager for the data, rather than
dynamically derived from its content or form; the control exercised can be as general or as
specific as desired. Of course, it would be possible to apply additional, pervasive,
filtering in the kernel: concurrency control is one example, another might be an access
control scheme using a system-wide list of per-user privileges. Increased efficiency or
consistency across entities can result from putting protection policies into the kernel, but

only at the cost of the inflexibility that accompanies such early-binding schemes.

4.7 Coercions

What happens if the perspective of a client program and the projection offered by an entity
do not fulfil each other's expectations? Assuming that this was not a mistake, there are
some real benefits to be gained from handling this case. Consider the case of a linker,
which has a perspective defining operations on object module attributes, and an entity that

only offers source code in its projection. By using a suitable compiler as a coercion, the
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Figure 4.6. Coercions

two could be fitted together with useful results (figure 4.6). For maximum effect, the
compiler could be controlled by another attribute in the entity that might record the set of
compiler options to be used for this program.

The role of a coercion is to map a perspective onto a projection. In database terms,
coercions provide computed subschemas; they are similar to UNIX filters in the way they
are used. If necessary, more than one coercion can be combined to map a perspective onto
the available projections. Coercions can be thought of as ‘free’ attribute implementations
that are not bound to a particular piece of state. They perform a similar function to

computed attributes, but at a different level and with different binding-time properties.

4.8 Related work

[Atkinson81] describes an implementation of a persistent heap structure for the language
S-Algol. The extended language is called PS-Algol, and is based upon a remote database
manager with local program stubs to perform the necessary processing and communications.
The work focuses on providing persistent data structures, rather than explicitly typesafe
objects; for example, there is no insistence that a program only access a data item via an
abstract data type, as there is with entities, nor is PS-Algol typesafe across two
programs. The commit operation (which is the only way to affect the external stored state
permanently) causes the invoking program to be terminated. A user has to remember to

bind an item in the local heap into a special index structure before a commit will make it
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part of the persistent data. Each PS-Algol program refers to a separate database when it
issues an open, which causes its index structure to be transferred into local memory.
Concurrency controls operate on whole databases; only one such database is made
accessible at a time. Both restrictions severely limit the range of useful applications.

Heering and Klint [Heering81] discuss how command, debugging and programming
languages can be integrated to provide a better environment for interactive working.
Perhaps surprisingly, most of the conclusions and recommendations they make are more
closely associated with data handling than the control aspects of programming language
design. They suggest that permanent and local objects should have identical status, that
all objects should have abstract type definitions, with user types of the same status as
system-provided ones, and note that instances of permanent types would correspond to
files in conventional systems—precisely the approach adopted by entities. Unfortunately,
although a case for such an approach is presented, no suggestions for how it might be
implemented are provided.

Keedy and Richards' study of conventional filing systems [Keedy82] emphasises the
drawbacks of both traditional operating system access methods (too general, too coarsely-
grained and too easy to misapply) and database techniques (too clumsy, too complex and
not well integrated with their host system). They advocate the association of access
modules with data segments to manage their internal structure and use semantic routines
(which they endow with protection operations via a capability mechanism) to operate on the
data content, rather than its form. The combination of access module and semantic routines
looks just like an entity plus an attribute, although the splits between the pairs occur in
different places: semantic routines are similar to attributes that present computed, rather
than stored, values to their clients. Protection is achieved in their scheme by checking
access rights on every operation: there is no equivalent of the open operation for entities.

The software that runs on the Xerox Star workstation [Seybold81] is object-oriented.
In the process of its development, the designers noted a major difficulty associated with a
class inheritance scheme like that of Simula-67, which is purely hierarchical: often, it is
desirable to be able to synthesise a class from several disjoint subclasses. As a way of
expressing this, they developed the concept of traits, which are subclasses that can have
arbitrary (directed graph) derivations from other traits [Curry82]. Each object in their
system has a type composed of one or more trait specifications. A trait corresponds

roughly to an attribute in the entity scheme, with two main differences. Firstly, traits
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are statically bound to objects and have to be made known to a global trait manager. This
avoids any runtime overheads for the use of traits, at the cost of considerable
inconvenience during development. The traits scheme is more of a programming style than
anything else—a tool-by-convention for a group of people writing object-oriented programs
in a fairly traditional language. As with other such conventions, language and compiler
assistance is of major importance for success; regrettably, Mesa is lacking in this area.
The second difference is that traits can be defined in terms of other traits in an
arbitrarily complex fashion, whereas the entity scheme provides only one level of
indirection—from the entity to the attribute—and leaves the implementation of the attribute
itself to more conventional means. Again, this is a performance issue: there is no runtime
overhead in searching the structures that define traits, since everything is handled during
or before compilation. In the entity scheme the view is taken that whilst the flexibility
afforded by late binding is desirable when constructing the (dynamic) class specification of
an object, the costs of extending this into the lower layers would be too great. There is of
course nothing to stop the integration of these schemes to gain the benefits of each:
statically defined traits to help build attribute implementations, and the dynamic binding
facilities of entities to construct objects whose type can change over time.

The Intel iAPX 432 processor system [Intel81] was a realisation in silicon of many
facilities that would have made a simple implementation of the entity scheme possible.!
Indeed, the designers of the 432’s operating system (iMAX) chose to provide an object-
oriented filing system that extends the machine's object management facilities into
secondary storage [Pollack81]. iMAX distinguishes between two states for an object
(passive and active), leaving control of the transition to the object's type manager. This
aliows atomic updates to the preserved state to be accomplished at points where internal
consistency has been achieved. There is no concept of the agglomeration of objects that is
characteristic of entities—an iIMAX type manager is closer to a free-floating attribute than
an entity. The types of objects are fixed, and cannot change dynamically in the way that
an entity can absorb new attributes.

The Eden project team have proposed a scheme with strong resemblances to the entity
system described here [LazowskaB1]. Like the iMAX object filing system, Eden

distinguishes between active and passive objects; unlike entities, active objects are

! The project has recently been cancelled.
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associated with operating system processes and locational transparency is seen as a goal,
with the Eden kernel managing remote procedure calls. Eden, too, distinguishes data stores
from link stores—the latter being explicitly referred to as ‘capability stores'.

The Smalltalk language embodies many of the ideas associated with entities, with
particular emphasis on the late binding aspects {[i{ngalls78, Goldberg83]. However, there is
no equivalent of the dynamic clustering property that entities bring to attribute instances,
and Smalitalk objects behave more like free-standing attributes than entities. Only a single
implementation for an object type can be active at a time, and although a unique naming
scheme is used, it is at a level in the implementation below that seen by a Smalltalk
programmer. Efficiency is sacrificed in favour of flexibility by binding operation

applications to object instances on every invocation.

4.9 Summary

The entity concept has been presented as a structuring scheme to build on top of abstract
storage media. Its desirable properties include the provision of typesafe persistent objects,
the transparency of underlying implementations (both algorithms and data structures) and
the ease with which these can be changed to reflect new requirements. This chapter has
discussed some of the ramifications and possibilities it affords, including the support of
several different language and operating system environments, a local naming and access
system with low overheads and good resolution, a protection mechanism that is tied closely
to the data it guards, and a way of managing invariant conservation for consistency
purposes. An implementation of an entity-based system would seem to hold considerable

promise for use as the basis of a programming environment storage scheme.

4.9.1 Acknowledgements

The original abstraction of storage objects is due to S.C. Crawley, who has since
implemented some prototype entity systems (although with somewhat different semantics to
those discussed above). D.W. Singer and J. J. Gibbons were involved in many of the early

discussions from which the set of ideas presented here grew.



PART Il

Terminal domains



45

5. Terminal domains

Terminal domains manage the communications between computer systems and their users:
their concern is with the presentation of data rather than its preservation. To achieve this
end they employ a wide variety of hardware and software components, ranging in
sophistication from humble line printers and their device drivers to high-performance
graphics systems capable of real-time animation and hidden surface remova.l. Existing
display systems tend to emphasise simple image types such as monochrome line drawings
and fixed pitch characters, although there is growing interest in more flexible presentation
techniques, including bitmapped displays, video systems, colour, and the use of audio
input and output.

A major function of terminal domains is to present an interface that is largely
independent of the underlying device hardware, software, access protocol and location.
The abstractions may include virtual input and output tools multiplexed from a single
physical set, line editing, optical character recognition, and spooling data to and from
serially reusable devices to offload a host machine or to improve its real-time response.

Central to many terminal domain implementations are issues of how best to partition
them between the available processors to reduce latency, improve throughput, or simplify
programming (both internally and externally). This has long been of interest in high-
performance graphics systems and is becoming of more general concern as the use of
moderate to high-speed networks (such as LANs) increases. Such networks allow some
terminal domain components to be centralised for economic, support, or environmental
reasons, and others to be physically dispersed closer to their users. The potential benefits
from doing this include commonality in host system software, output formats and interaction
techniques; improved responsiveness to input events; and all the advantages that can
accrue from a global resource pool. At the same time, such standardisation is extremely
difficult to achieve. One reason is the very wide range of hardware capabilities that need
to be encompassed. Another is a desire for maximum machine efficiency, particularly on
processors that are not designed to handle high interrupt rates.

The remainder of this chapter discusses terminal domain hardware, with particular

attention to raster graphics display devices. The next one concerns itself with the software
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issues associated with terminal domain design. Both chapters largely restrict themselves to
considering interactive terminal domains, and emphasise the aspects relevant to the design
of a terminal domain processor appropriate for a resource management model like that of

the Cambridge Distributed System.

5.1 Display technology

Whereas paper is the predominant output medium in non-interactive terminal domains, in
interactive ones this role is fulfilled by the cathode ray tube (crt). The crt has many
disadvantages: it is heavy, bulky, requires analogue driving circuitry with high
accelerating potentials, and has a limited screen size. Nevertheless, it remains the most
common display device largely because of its versatility. The crt can be used in directly-
addressed point plotting and vector displays (both refreshed and storage-tube based), or
in a raster mode. A wide range of colours and persistence characteristics is available
through the use of different phosphors, and shadow masks and multiple electron guns allow
the display of full-colour images.

To date, attempts to make use of other display technologies have not been particularly
successful. The flat screen techniques such as liquid crystal and plasma panels suffer from
limited resolution and slow image update, although both products have found application in
a number of specialised markets (e.g. portable computers and banking terminals,
respectively). Electroluminescent displays still cost too much and consume too much power
to compete generally with the crt, although they have been used for at least one
commercial portable computer [GRiD84].

The earliest interactive crt displays were based on point-plotting: a pair of (x, y)
registers were loaded to position the electron beam, which was then turned on briefly to
illuminate the phosphor. The TX-0 at MIT and DEC's PDP-1/Type 30 displays were of this
type [Myer68]. The overheads of such a scheme are considerable: a large amount of data
is needed to describe even a simple image; the display must be refreshed sufficiently often
to prevent flicker, limiting the image complexity achievable; and the load on the host
processor can be extremely high—either because it and the display controller are one and
the same or because of cycle-stealing by the display as it accesses a shared main memory.

Second generation refresh devices attempted to alleviate some of these difficulties in a

number of ways: using analogue circuitry to interpolate between line endpoints (and hence
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avoid the jagged lines that the point-plotting devices produced); providing a separate
display memory to reduce contention with the host processor; and increasing the power and
flexibility of the display controller. This class of devices is called vector refresh displays.
Subsequent attempts to develop display processors to further offload the host's workload
caused a phenomenon that Myer and Sutherland christened the ‘wheel of reincarnation’
[Myer68]. Creeping featurism in the design tended to produce an auxiliary processor so
powerful—and expensive—that the obvious next step was to offload from it the time-
consuming display maintenance functions into a subsidiary display processor ... Although
first observed with vector refresh displays, this is a general problem. Escape from the
cycle comes only from external pressures on the siting and role of processing power in a
host/display controller combination; the optimum set of points on the cycle at any given
time is a function of available technology and ideas.

Vector refresh devices inherently support extremely fast update of the displayed
image. This is a result of their late and frequent binding of a relatively high-level image
representation (lines, arcs, characters) to the electron beam movements used to make it
visible. However, such devices are expensive, difficult to program, difficult to maintain
because of the large quantities of high-speed analogue circuitry they contain, and limited
in the style, complexity and colour of their displayed images. They also tend to require
very good real-time processing capabilities of their hosts. Modern systems are capable of
displaying many more picture elements than their predecessors, and some will even support
colour, but most of the other drawbacks remain.

in the late 1960s, the direct view storage tube was introduced. It had one enormous
benefit—low price—and a number of smaller ones:‘ ease of programming, reasonably high
resolution and the ability to display a large number of picture elements at a time.
Computer graphics suddenly became more widely available [Luehrmann74, Newman79]). The
storage display's disadvantages lie in its poor picture update qualities: selective erasure is
essentially impossible, so the whole screen has to be redrawn to reflect a change
accurately. The range of colours and intensities is also very limited, even with the
development of multi-layer phosphors, and the writing speed that can be achieved is
considerably lower than for vector refresh devices.

Finally, the third major crt technology evolved: that associated with raster displays.
The first widespread use was in 'glass teletypes’ to replace electro-mechanical hard-copy

terminals based on Telex machines and typewriters. The advantages were several. The
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original restrictions on line speed could be lifted; expensive mechanisms that were difficult
to maintain could be replaced by cheap, reliable electronics; and a range of display
highlighting techniques became available. The circuitry and memory requirements for this
application are modest: a 24 x 80 screen of text, even with eight bits of attribute data per
character, consumes less than 4 Kbytes of RAM, plus about 2 Kbytes of character-generator
ROM. Soon such visual display units (vdus) came to include small microprocessors; the
Intel 8008 was developed for just this role [Morse82]. Increased intelligence allowed the
vdu to provide local editing functions, such as form filling and simple input validation, and
led to reduced communication overheads with the host through the use of more and more
powerful command repertoires. In some systems it proved more economical to move the
intelligence into a cluster controller that supported several display heads, but shared a
single communication line with the host (e.g. some early variants of the IBM 3270 series).
More recently the trend has been towards self-contained units again as a result of the
decreasing cost of VLS| components such as microprocessors and memories. Some vdus now
more nearly resemble personal computers than the terminals of a decade ago; indeed,
almost all personal computers provide some form of vdu emulation.

The earliest raster graphics systems were born as a result of the need for displays
capable of handling arbitrary images. [Ophir68] describes one example using a magnetic
drum as its frame buffer—a memory that stores a complete frame of image data in a form
ready for immediate display; other early examples used semiconductor shift registers
[McCracken75, Klimek81]. However, it was not until the advent of VLS| semiconductor
memories that the random-access frame buffer became really viable. This coincided with
developments in television, which made cheap, high-quality displays available in large
;Iumbers, and itself needed frame buffers for standards conversion and image manipuiation
[Klimek81]. Cheap memory allowed frame buffers to be added to vdus so that they could
compete with storage tube displays, and stimulated increasing interest in colour and
greyscale image handling. Costs continue to drop with improved VLS| technology and
economies of scale, and are now sufficiently low that colour raster graphics—albeit
crude—is a major selling point for even the cheapest of personal computers.

Raster scan graphics systems have several advantages over their predecessors. They
can easily support filled areas, greyscale, colour, selective erasure, and arbitrarily
complex pictures. The traditional image representation technique—a memory-mapped array

of picture cells (pixels)—is convenient and flexible. Of course, there are a number of
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disadvantages: the amount of data needed to represent a picture is large (and independent
of its complexity); high spatial resolution is expensive in memory and processing time;
image generation is expensive; and care must be taken to avoid aliasing effects, which
further reduces image update rates.

Crt raster displays are now the dominant display technology in all but a few
specialised applications where flexibility and cost are less important consideratiens than the
particular properties of other devices (such as late binding, low power, small size or
ruggedness). One reason for this dominance is the wide range of implementation choices
available to implementers of raster display systems. The remainder of this chapter is

devoted to a survey of some of those options.

5.2 Variable intensity techniques

If the total number of memory bits available for a display memory is constrained (e.g. by
cost considerations) it may be better to build a variable intensity display than one with
higher spatial resolution. A 2-bit deep greyscale image can hold more information than a
single-bit deep one with twice the spatial resolution: the two bits can form white, black
and two shades of grey in the former case, but only white, black and a single grey in the
latter. The number of shades that can be represented increases linearly with spatial
resolution and exponentially with increased intensity resolution. Crt technology is well
suited to displaying moderate-resolution greyscale images, while high spatial resolution is
expensive—particularly for colour shadow-mask tubes. Of course, once pixels become large
enough to be individually distinguishable there are no further gains to be made by
decreasing spatial resolution; furthermore, the human eye can only distinguish about fifty

shades of grey [Foley83b].

5.2.1 Anti-aliasing

Aliasing is the result of poor image sampling. It most frequently arises when an area-based
representation scheme (such as a pixel on a raster display) is combined with point-like
sampling. Small shifts in reference point in the sampling process can produce dramatically
different stored representations of the image—its aliases. The solution is to integrate over

the area of the pixel when sampling the image, rather than to use just a single value. The
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resulting anti-aliased images often give the impression of increased clarity because the
human eye/brain combination is very good at differentiating, and can generate apparently
sharp edges from very scanty evidence.

One approximate integration scheme is to use point-like supersampling: collecting a
number of individual samples at a higher resolution than the pixel spacing, and integrating
over them with some form of averaging method. Aliasing can still oecur if the
supersampling frequency happens to coincide with some feature of the image (e.g. a
checkerboard at the supersampling interval). A particularly simple variant is sometimes
appropriate for pictures that are originally just black and white (most printed pages, for
example). This approximates the integration by assuming that pixels are square,
supersamples the image on a rectangular grid to obtain a set of binary values, and then
determines an average value by simply ‘counting the bits’. Care is needed, of course: this
technique is only an approximation to a low-pass filter, which is what is really desired.
One of the difficulties is that the spot of light that an electron beam generates on the
phosphor of a crt is not evenly illuminated over all its extent, and it is certainly not
square. Better results can be obtained by choosing an integration method that more closely
approximates the physical characteristics of the display being used [Warnock80].

Memory is now so cheap that these techniques can be applied to more than just the
representation of graphical images. In particular, the use of greyscale for displaying
characters can enhance their legibility, improve their packing density on the screen, and
allow more variation from fount to fount than a simple binary display can. Some pioneering
work on this was done at Xerox PARC. A set of experiments performed in the process of
generating a greyscale alphabet using the simple supersampling method described above
suggested that four bits of intensity information (sixteen levels) are adequate for character
work [WilkesAJ82a]. Since most vdu character sets are held in read-only memory, the
incremental cost of providing the extra information is a negligible portion of that of the

complete display station.

5.2.2 Colour

With three components to be controlled, colour images need more memory to represent them
than do monochrome ones. In practice, most applications of colour use it just to provide

increased differentiation between image elements, rather than to display pictures with
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subtle variations in intensity, hue and saturation. This class of use can be supported at
moderate cost (much less than a multiplier of three) through the use of a lookup table (or
colour map—although the technique can also be used with monochrome displays), which
maps the values coming out of a graphics memory into a larger number of bits for the
output stages. The bits in the graphics memory are used to index a set of _values from a
colour space much larger than they could represent directly. Since the lookup table is
invariably very much smaller than the graphics memory (because it has much more
stringent performance constraints) some form of pre-selection is needed to choose the
shades that can be represented, but it should be noted that normally the lookup table can
be updated in toto much faster than the graphics memory, precisely because it is so much
smaller. This feature is exploited in the technique known as colour table animation, where
the lookup table is used to make visible a sequence of pre-calculated images faster than
they could be regenerated.

Typical commercial colour terminals have four to eight graphics memory planes, feeding
into a 16 to 256-entry lookup table, which is itself anything from twelve to twenty-four
bits wide (eight bits each for red, green and blue). It has been suggested that a simple
assignment of an equal number of bits to each primary is wasteful, and a red: green: blue
ratio of 8:11:5 should be used, which corresponds roughly to their separate luminances

[(P. Robinson, private communication]. This has not, to my knowledge, been tried.

5.3 Image representation techniques

Strictly speaking, the term ‘raster graphics’ applies only to the method of displaying an
image, and not to the internal representation used to store it. In practice, however, the
demands of the display technique (a 25-70 Hz frame refresh rate, together with memory
bandwidths up to =700 MHz with strong serial addressing properties) tend to dictate the
way in which the image is stored. The result is the almost universal adoption of the frame
buffer, where only minimal processing (perhaps a pass through a lookup table) need be
performed on the output. Other schemes are possible, though, and some have found
favour in certain specialised applications. One example is runlength encoding, which can
dramatically reduce the amount of data needed to represent some types of image. Another
is the generation of a raster image on-the-fly from some higher-level representation such

as a vector or character-oriented data structure.
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5.3.1 Frame buffers

Frame buffers represent the logically simplest image storage technique: each pixel visible
on the screen is explicitly represented in memory. Needless to say, such simplicity does
not long survive an examination of the often conflicting requirements for a frame buffer,
which must be capable of outputting a pixel value every 15-60 ns for video generation while
simultaneously permitting rapid image update. The high output bandwidth'necessitates
considerable parallelism if VLS| semiconductor memories (with typical cycle times of
150-200 ns) are to be used. For some applications the parallelism introduced for video
generation is at odds with image manipulation; for example, image processing is usually
most simply performed one pixel at a time. Memory is getting cheaper all the time, but it is
not free. One effect is that customers want to be able to purchase minimally-configured
frame buffers that can be expanded at a later date by the addition of more memory units.
As might be expected, no one organisation or implementation is capable of meeting all
of these demands simultaneously. Some of the differences can be hidden in the hardware,
but many cannot, necessitating changes in software organisation, sometimes up to and
including the application level. Of these, probably the most pervasive is the way pixels are

laid out in the address space. There are three data layouts in common use:

Breadth-first schemes collect together the n-th bit from each of the pixels into
a plane. Each plane is z single-bit deep map of the complete image; there are
as many planes as there are bits in a pixel. With small numbers of planes (in
particular, one) this scheme allows a high degree of parallelism in
manipulations. The principle disadvantage is the difficulty of performing an
operation on a single pixel: it has to be assembled from its constituents, acted
upon, and (possibly) dispersed again. Algorithms that can be applied in parallel
to a set of adjacent pixels do not suffer from this problem, of course, but
cannot easily be constructed for a number of common cases (such as anti-aliased
line generation). The breadth-first organisation lends itself well to later
expansion: planes can be purchased and plugged in at any time, up to the limit
set by the display generator. This scheme is in common use in workstations:
systems that combine general processing power with a closely coupled display
that has multiple pixel planes for greyscale or, more commonly, colour (e.g. the
SUN, Apollo and Hewlett-Packard 9000 Series 500 [Beyers83] workstations).

Quantised depth-first organisations collect all the data for a single pixel
together in memory, aligning it on some addressable unit like a byte or word.
This is convenient for manipulating the individual pixels, but the potential
sparseness of the address space may compromise time efficiency. Space
inefficiency can be avoided by partially populating the memory system, leaving
rocom for later expansion. Most frame buffers designed for image-processing
applications adopt this scheme because of its convenient single-pixel access.
Processing power is either considered secondary to the task of image storage
{i.e. speed is not very important), or is provided through special-purpose
hardware. Such systems usually place heavy emphasis on memory system
flexibility, since different applications vary widely in their requirements.
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Unquantised depth-first schemes are similar to their quantised cousins, but do
not line up pixel boundaries with the memory system's other addressable units.
Instead, the pixels are packed contiguously into consecutive bits. This scheme
is very space efficient, but may suffer severe time penalties if pixels are not
convenient submultiples of the word length. As with the breadth-first layout,
good bit-field manipulation primitives are required in the graphics processor.
The unquantised depth-first organisation is well suited for use in ‘normal'
memory systems, since it does not rely upon depopulation for scalability or the
use of multiple simultaneous memory accesses (assuming that the raw memory
bandwidth is available, of course). The number of bits per pixel can sometimes
be put under software control because the display generator is effectively just
working on a single serial bit stream.
In the extreme case of single-bit deep pixels, the breadth-first and unquantised depth-

first organisations are indistinguishable unless an upgrade path to multi-bit pixels exists.

Frame buffer examples

Two reasonably sophisticated frame buffer systems are presented here as examples: the
GEMS system from the Cambridge Computer Aided Design Center [GEMS82], and the
Ramtek 9450 family [Ramtek81]. The GEMS system was designed specifically for image
processing applications, and its main emphasis is on the number of different configurations
it can support, together with a limited amount of high-speed image manipulation. Its
memory is constructed from up to sixteen modules, each of which is nine bits deep (of
which one is reserved for annotation) and 512 x 512 pixels in size. A fully configured
system can support a 1024 x 1024 array of (32 + 4) bit pixels. Several outputs can be active
at once (a colour display requires three), each with linear 20om and pan, a 256-entry
lookup table and a connection to one or more memory modules. Input data can be captured
in real time from a television camera and optionally merged with an existing image as it is
stored. Connection to the host is via a DMA channel, or through a small (16 Kbyte) window
mapped onto a portion of the GEMS memory. An LS1-11/23 is available as an optional extra.
The emphasis on image processing means that other graphics activities are not well
supported unless the LS!-11 is programmed to handle them; even then, it is not a
particularly fast processor. The on-board arithmetic units are largely dedicated to the task
of cleaning up images as they are being entered; they do not have the data paths to
accept two inputs from the GEMS memory.

A somewhat different emphasis, both in function and flexibility, is offered by the
Ramtek 9450 family, a low-cost subset of the 9000 series. There are a number of models,

which correspond to different combinations of spatial resolution (from 640 x 480 to
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1280 x 1024), pixel size (four to eight bits), and video output generator ('general
graphics’, "high-resolution imaging', and ’'sophisticated graphics’). A proprietary 16-bit
graphics processor provides display primitive generation (there is no direct access to the
frame buffer memory), and a Z80 microprocessor controls the operation of the unit as a
whole. The host interface is through a 16-bit parallel bus with DMA sequencing logic. A
small amount of RAM (12 Kbytes) is available to hold downioaded programs, - display list
subpictures and founts. By comparison with GEMS, there is no support at all for image
capture but image generation is much better handled: there are operations to draw lines,
rectangles, conics, filled polygons, characters, and raster data. In addition, the display

processor will handle clipping, pan and zoom.

5.3.1.1 Manipulating bitmaps

The techniques that must be used to manipulate memory-mapped raster image
representations are very different from those that have been developed for handling
vector-oriented displays. Before raster graphics could become widely used, algorithms that
could exploit its particular properties—and cope with some of its idiosyncracies—were
needed. The invention of RasterOp' was a very important step in this direction
[Newman79, Ingalls81, Thacker81]. Since then, virtually every computing engine with a
memory-mapped raster display has incorporated some form of RasterOp support in hardware
or microcode. The RasterOp notion combines two things: a convenient interface for
handling bitmap images (specified in terms of operations that combine source and
destination image areas in various ways), and, by implication, a high-speed implementation.
It is the latter that gives it many of its interesting properties, without which it would be
relegated to the status of ‘just another’ image handling technique. Methodologies for using
RasterOp have become more widespread after the pioneering work of Xerox PARC on bitmap
image manipulation (e.g. [Guibas82]), and the work on windowing schemes that grew from
the Flex engine [Kay69] and the Smalltalk group at PARC [Smalltalk81, Tesler81,
Goldberg83].

Most of the work performed to date with RasterOp has been with single-bit pixels.

About the only function that is equally useful for multi-bit ones is copy. There are two

1 RasterOp was originally termed BitB/t, after 'Bit Block-Transfer'.
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difficulties observed in practice with using RasterOp on multi-bit pixels. Firstly, most
RasterOp implementations do not scale in performance with the number of bits per pixel,
and carrying out operations on an n-bit deep image takes roughly n times as long as on a
single-bit deep one. Secondly, RasterOp implementations perform as well as they do
because they can operate in parallel on several pixels at a time (typically sixteen). They
do not, however, provide the necessary hardware to handle several ml.;lt,i-bit pixels
correctly, and algorithms that wish to preserve reasonable semantics (i.e. not simply
bitwise combination) have to resort to pixel-at-a-time access with a major decrease in
performance. The result is poor dynamic performance with greyscale and colour, which
tends to discourage the use of anti-aliasing.

There are two main research directions to be pursued here: improved handling of
single-bit deep images, and the development of methods that will allow the performance of
multi-bit pixel image manipulation to approach that for the single-bit deep case. Given that
the former is still required, it would seem that increased use of parallelism is a necessity
if the latter goal is to be achieved. Something other than a simple increase in raw
processing power will be necessary if the desirable attributes of greyscale and colour

images are to be supported with the same fluency as black and white ones.

5.3.2 Other representation techniques

For many pictures the memory required to represent them in a frame buffer is very much
greater than it would be if some other representation were to be used. For example, an
image consisting of straight line segments can usually be stored much more economically as
a set of lines rather than a bitmap of the resulting picture. Although memory prices are
falling and the economic incentives for using logic circuits in place of memory are
receding, speed of update is still an important argument in favour of specialised image

representation techniques.

5.3.2.1 Runlength encoding

Runlength encoding is a compromise between minimising storage requirements and the cost
of decoding necessary to produce an image quickly. Instead of recording all the pixels in

an image, a runlength system remembers only the transitions between one shade and the
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next: the usual representation is a contiguous sequence of {shade, width} pairs for each
line on the display. Runlength encoding is at its best when representing large areas of
block colour with few colour changes across a line. It becomes more memory intensive than
a frame buffer when the number of transitions exceeds a certain threshold (dependent
upon the number of bits needed to represent each one and the number Qf pixels in a
scanline). In practice it will generally prove unacceptable before this point because of
decoding overheads. It is particularly bad at representing small images like characters and
pictures with subtle shading in greyscale or colour. The encoding is difficult to update,
and really only suitable for images that do not change often (such as a background for a
screen) or for images that would be impossibly expensive to represent in a frame buffer
(such as a high-resolution digital fount). The former application is somewhat specialised,
the latter rarely encountered on graphics terminals, but runlength encoding has still been

used by a number of systems.

The Sussex tactical display

One example of a runlength-based system is a tactical display produced at the University
of Sussex [Watson81]. It uses a compact spline representation for the background map
(mostly contours) and a bitslice processor to convert these into runlength form. To
provide anti-aliasing, the display hardware expands this runlength data into pixels in a
frame buffer. The principal advantage cited is the reduction in storage space (and hence
retrieval time) for the static contour information. The combination of runlength encoding
and a full frame buffer decouples image generation from its display, reducing the

performance constraints on the former considerably.

The ITN VT80

Particularly interesting is the VT80 display of Independent Television News, which is aimed
at supporting live television graphics [McKee81]. Its designers wanted a system that could
display several images in quick succession with limited animation capability for each, while
retaining the image quality that could be produced by conventional graphic arts
techniques. They reasoned that updating a frame buffer in real time was out of the

question because of the amount of data movement involved, and opted instead for a scheme
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with on-the-fly expansion of runlength-encoded symbols. The VT80 is controlled by a
display file that specifies where instances of up to 1024 different symbols should be placed
on the screen; each symbol can be displayed as many times as required. This display file
is very compact, and so can be updated extremely quickly by the host processor (a
VAX-11/780), allowing rapid changes in the displayed picture.

There is no restriction on the size or complexity of a symbol, save only that it must
be all the same shade (24 bits of output selected via a 9-bit lookup table index). A symbol
is assigned one of eight priorities: higher-priority symbols obscure lower-priority ones that
they overlap. Together, these properties allow construction of a wide variety of images.
For example, multi-toned or anti-aliased graphics can be constructed by combining several
symbols, each defining one shade.

The symbol data are stored in a high-speed memory with an effective 50 ns cycle time.
As each output raster line is being generated, a hardware display controller extracts the
runiength representations of the symbols that the line intersects. These are sorted into
eight line buffers—one for each priority. The speed of this hardware, coupled with the
symbol memory access time, dictates the number of symbols that can be displayed on a
line. As might be expected, the very high speeds required lead to considerable complexity,
with heavy use of pipelining and lookahead techniques. The display controller's
performance remains the major restriction on the complexity of the image that can be
displayed. One consequence of the high speed required is that almost all of the display
must be constructed from components with low levels of integration; the resulting large

amount of electronics has considerable cost (roughly £60000 in 1981).

5.3.2.2 The QMC text terminal

A text terminal built by a team at Queen Mary College, London, is noteworthy for the
explicit hardware support it provided for windowing [Page79]. It was designed to offload
some of the interaction-intensive processing from a central host in an office automation
environment, and supported one or more rectangular pages of text on the surface of a
large desktop. The terminal contained a general-purpose 8-bit microprocessor (a Motorola
6800), and a special-purpose register-transfer engine that was used as a display
processor. The 6800 handled host communication (via a 9600 baud RS-232 link) and the

input tools (keyboard, mouse and keyset), and built the data structures that the display
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processor interpreted. The latter was microcoded, with a 400 ns cycle time and 256 20-bit
words of microcode memory. A hardware video generator read alternately from one of two
line buffers, each of which held eighty 16-bit characters, to generate the screen image.
Eight bits for each character served to identify its foreground and background colours and
which of four display founts to use.

The main software data structure was a priority-ordered vector of poi'nters to page
descriptors. Each descriptor contained the size, colour and position on the desktop of its
page, together with a list of pointers to the rows of characters the page contained. The
display processor used the ‘painter’'s algorithm’ to construct the data for the video
generator. The line buffer not being displayed from was first cleared, and then each page
clipped in turn against the line's position on the desktop. Characters from higher-priority
pages overwrote and obscured lower priority ones; the vector of page descriptor pointers
prevented any two pages from being at the same priority. So that each page would
correctly overwrite everything underneath it, all of its lines had to be explicitly filled out
with blank characters.

No performance figures were published for the terminal, but it is unlikely (given the
slow display processor) that more than about twenty pages could have been accommodated
in the main control structure. It seems to have been moderately successful as an
experiment, but its designers have since moved onto a completely different approach (of
which more below), for a number of reasons. The main problem was the inability to adapt
the architecture to cope with graphics. The use of a standard commercial PROM-based
character generator in the video stage simplified much of the logic, but meant that only
fixed-width founts could be used and viewport edges were forced to lie on character
boundaries. There was no support for windowing: viewports were always maps of a
complete page, except where clipped at the screen boundary. The number of characters
that could be displayed was no better than on an ordinary vdu, although the use of
different colours and founts helped to distinguish pages from one another. The standard
vdu limitation of slow update from the host applied. As with the VT80, the performance
constraints imposed by video refresh rates fell onto parts of the architecture that could

not easily be replicated to relieve the load.
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5.3.2.3 Vector displays in raster mode

An unusual approach is to take a conventional vector refresh system and cause it to
behave like a runlength-encoded raster ‘display. The Evans and Sutherland PS300
[Callan81] has been used in this way. Capable of displaying up to 95000 short (less than
0.1 inch) vectors, its vector generator is at its best when consecutive vectors are drawn
following on from their predecessors and roughly parallel to them, because- it can take
advantage of the reduced settling time needed by the analogue circuitry. The PS300’'s
vector representation allows it to display 64 greyscale shades on a monochrome display, or
up to 120 hues with sixteen different saturation levels on its colour one.

More normally, a vector image representation is combined with a frame buffer that
decouples image generation from its display. By this means, the regeneration rates needed
for animation drop to about 10-12 frames per second rather than the 25-70 Hz needed to
avoid flicker. Such systems seem to be becoming the mainstay of the traditional vector-
graphics market: they combine the advantages of a high-level image representation with the
lower cost that results from reducing the demands on the graphics processor. The Megatek
Whizzard [Megatek79] was a fairly early example of this technique. It uses a fast bitslice
processor pipeline to convert a high-level vector-oriented display file into a frame buffer
image, with hardware assistance for common operations (for example, straight lines are
converted at the rate of 150 ns per pixel). Facilities like on-the-fly polygon filling are
available (it will cope with non-planar polygons, which implies that a complete intermediate
2D outline is stored). Two frame buffers are used to decouple image generation from
display even further. Unfortunately, only four planes are provided in each, limiting the
picture to sixteen colours, and there is no way to combine them to form 8-bit deep pixels
if high performance is not crucial.

Clearly, the rate at which the high-level image representation can be converted into
raster form is the major performance metric of such a system. As with traditional vector
refresh devices, pipelining is a commonly used technique. The Geometry Engine is an
implementation of such a pipeline in VLS| [Clark82]. A complete system is built out of ten
or twelve chips; each one performing one step in the process of converting world
coordinates into raster ones. The Geometry Engine has recently been incorporated in a

commercially available display, Silicon Graphics’' IRIS [IR1S83]. In this machine, the final
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stage (conversion of vectors to pixels) is still the responsibility of a separate back-end
graphics processor, based on an AMD 2903 bitslice processor. This processor turns out to
be the limiting factor in the overall performance, even though the Geometry Engine pipeline
is currently only achieving about one-tenth of its expected final speed.

{[Roethlisberger79] reports on an architecture that performs line drawing, character
generation and polygon fill in separate processors so that they can procee.d. in parallel.
Contention over the frame buffer is minimised by dividing it into several different banks,
with the video generator given access via a second port. When microprocessors were used
as low-speed pixel-generation devices, little contention was observed with only three
memory banks. (Concurrent accesses from the video generator were handled by temporarily
inhibiting it, resulting in short flashes of black on the screen.) With hardware pixel
generators, however, memory bandwidth proved a problem and there was essentially no
opportunity to exploit the parallelism available. Roethlisberger suggested using cache
memories between the generators and the frame buffer to remedy this, but remarked that
this would probably result in bottlenecks elsewhere. It would seem that the benefit to be
gained from using such a technique is small, particularly when the additional complexity of
arbitrating between multiple processors, programming them, and allocating tasks to them is

taken into account.’

5.3.2.4 On-the-fly rasterisation

There exist a few examples of display systems powerful enough to convert high-level image
representations (plane polygons, solid objects outlines, vectors) into a raster image in real
time. Most of them were designed to support simulations of one sort or another; all contain
enormous quantities of very high speed hardware. Performance—almost regardless of
cost—is their driving metric, which puts them somewhat out of the mainstream of current

raster graphics activities, and hence of only peripheral interest for this discussion.



Terminal domains 61

5.4 Host : image-representation coupling

Another design dimension for raster graphics systems is the degree of coupling between
the host and the image store. There are really two components to this: the coupling
between the general-purpose host processor and the display system, and that between the
graphics processor and the image representation.

Low degrees of coupling between host and display are common—the tra&itional text
terminal is a classic example. Early systems were largely aimed at replacing storage tube
displays, and remained classified as ‘graphics terminals’ for a long time (e.g. the
Tektronix 4025 and HP 2647/8). Nowadays, there are several vdu types that have been
extended with a simple graphics capability, either by their original manufacturers or by
other companies willing to supply upgrade kits to a standard product (e.g. DEC vT100,
HP 2623, IBM 3277 graphics attachment). Such an environment forces the use of a
reasonably high-level image representation (such as vectors and characters) because of the
low bandwidth available. In turn, the representation requires local processing power to
interpret, typically in amounts over and above what a simple 8-bit terminal controller can
provide. Normally, the solution is to add a small amount of hardware assistance for common
operations like line drawing, but sometimes enough extra hardware is provided that the
result is more of a standalone workstation than a terminal. One such example is the
HP 2700, which contains a 68000 processor as well as a high-performance vector-to-raster
conversion engine [Mead83]. All of the 2700's graphics functions are accessible to a host
through an extended terminal protocol, although the machine is capable of operating
entirely on its own, supporting a large range of plotters and display devices as well as
mass storage peripherals like disc drives and tape units.

Direct memory access |/O connections between hosts and displays are relatively common
in the mid-range of graphics device performance; they can typically provide one or two
orders of magnitude greater bandwidth between host and image memory than a serial link.
However, it is not until image representations are accessed directly through backplane or
memory buses that a qualitative change in the style of interaction occurs. One potential
difficulty of this memory-mapping technique is a reduction in overall throughput because
the cpu cycles that used to be provided by a display processor must now be supplied by
the host. Furthermore, the instruction sets of many general purpose computers are not
particularly well suited for carrying out operations on bitmaps; operations that need bit

(rather than word or byte) alignment tend to be especially troublesome. The usual result
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is that some form of display processor is provided with this approach too. It can be
physically and logically distinct from the general-purpose cpu, sharing access to the same
memory, or take the form of extensions to the functionality of the cpu itself. The former
requires contention resolution for simultaneous memory accesses, the latter for processor
cycles. In practice, most systems of minicomputer stature and above are memory access
limited rather than processor bound, which is what makes the integrated. .approach so
attractive. Nevertheless, separate display processors are the more widely observed in

practice.

5.4.1 Separate display processors

Towards the low end of the graphics processor scale single-chip display controllers like the
NEC uPD7220 [Wise81] can be found. This particular device supports a single memory
plane, although several controllers can be operated in parallel, subject to the usual
difficulties with pixel-at-a-time operations. The display memory can be segmented, but only
in horizontal bands. The chip will handle simple vector drawing and arc generation,
although the control parameters for the on-chip digital differential analyser must still be
calculated externally. Since each plane is handled by a controller that has no knowledge of
any others, operations like anti-aliasing receive no support from the built-in display
generators, and the ordinary 'by steam' methods have to be used. A growing number of
low-end graphics systems are appearing based on this chip, which seems to be fast
approaching the status of an industry standard.

A number of personal workstations use a separate frame buffer memory with a small
amount of processing power on the same board. Examples include the Apollo Domain
processors, the MIT Nu-machine and the Stanford SUN terminal. By coincidence, the early
versions of all these machines were based on Motorola 68000 processors. The Apollo has a
simpie RasterOp unit for the graphics memory that provides only copying operations; it can
also operate (at a lower speed) in the main processor’'s memory, or between the two. The
MIT Nu-machine has a separate graphics controlier with a limited ability to carry out
windowing into the graphics memory: it was designed to make vertical scrolling easy to
accomplish. The display hardware is divided into a control board (based on an AMD 2910

microsequencer) and display logic; one controller can drive up to four displays.
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The Stanford SUN terminal provides a more flexible graphics board capable of all the
boolean RasterOp functions as well as supporting a range of display options {screen
resolution, scan speed, aspect ratio). The RasterOp unit operates synchronously with the
main processor, handling one 16-bit word at a time under the latter's direct control. The
68000 is responsible for address calculation, function selection and cycling the unit, which
then performs memory fetches and the necessary bit-twiddling. The cost of.the resulting
unit is not high because most of the logic is provided by a single custom LS| ECL chip,
and so it is replicated on each display memory board in a multi-plane system. Greyscale
or colour support is thus reasonably affordable, given a suitable video generation unit.
One drawback is the lack of pixel-at-a-time operations: each plane functions without
knowledge of {or connection to) the others, and so multi-plane image generation remains a
relatively slow operation.

The experimental IBM 925 workstation [Selinger82] is built around multiple 68000s, each
with its own local memory and peripherals, connected via an internal backplane bus. An
explicit goal of the project was to experiment with varying degrees of functional
dedication: assigning one processor to just a single task such as display bhandling,
secondary storage management, network communication, and so on. A 'top of the line’ 925,
which is meant as a high-performance personal computer, would contain five processors,
1 Mbyte of memory, a bitmapped display (1024 bits square), a local disc and miscellaneous
communication options. The basic model is like a powerful text-only vdu, with the various
software components all running on a single processor. The emphasis to date seems to have
been on simplicity of construction rather than innovation in hardware. (For instance, the

graphics processor was initially designed with off-the-shelf commercial frame buffers.)

5.4.2 |Integrated display processors

The best known example of the integrated host and graphics processor approach is almost
certainly the Xerox Alto. The Alto is based around a microprogrammed cpu that has
sixteen fixed-priority microtasks. One or more microtasks are assigned to each peripheral
controller (the disc uses two, the display four, the Ethernet one) with the lowest-priority
microtask reserved for a macroinstruction emulator. Wakeup signals indicate when a
microtask should be running, but microtask switches only take place on explicit action by

the microcode.



Terminal domains 64

Sharing the hardware of the cpu in this way leads to a number of interesting
properties. The amount of random logic needed to impiement a peripheral controller is kept
small by building intelligence into microcode rather than the hardware. Most peripheral
controllers consist solely of sufficient buffers to absorb processor latency and the
necessary driver circuitry to interface to the outside world. Because software rather than
hardware is responsible for most of the peripheral control, more elaboréte protection
mechanisms and control algorithms can be devised. (A good example of this is the disc
controller, which takes considerable care to prevent hardware or software malfunctions
from corrupting the disc layout.) Access to the cpu also makes the full memory bandwidth
available to a device controller, subject to latency considerations and possible rescheduling
to a higher-priority microtask. The use of a single processor shared by several
microprograms is not new—it had been used on:the I1BM 360/50 nearly ten years before the
Alto was designed—but it remains an effective technique when memory bandwidth or
latency are the limiting factors on performance. Maximising the amount of common hardware
was an important issue in the period when the Alto was designed, and will remain so until
the economic benefits of VLS| are readily available for high-speed logic.

Similar conclusions were reached by the designers of the Three Rivers PERQ and the
Lilith—both of which are largely copies of the Alto implemented with AMD bitslice
processors [ThreeRivers79, Wirth81]. A slight variant is used in the Xerox 8010
(Dandelion) workstation and the earlier Wildflower processor: instead of dynamically
allocating processor cycles to microtasks according to demand, the cycle allocation is fixed
in advance, except that the emulator task is allowed to take over when a cycle would
otherwise be unused. This removes the problem of variabie processor latency and simplifies
the microtask arbitration logic. It offers quite an elegant midpoint between hard-wiring
dedicated processors for each task and performing late-bound dynamic resource allocation,
although one could argue that most of the mechanisms necessary for the latter have to be
provided to achieve it.

What are the drawbacks of this integrated approach? The most important is that it does
not expand gracefully to cope with greyscale or colour because the desigh is essentially
serial: there is only one processor, so operating on an n-bit deep anti-aliased image takes
roughly n times as long as on a single-bit deep one. The only way to compensate for this
is to improve the performance of the whole system, which may be more costly than simply

attacking a small part of it. Doing more than one RasterOp operation at a time would
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require replicating the entire processor, even though much of the control logic {which
made such good use of a general purpose cpu in the first place) need only exist once: it
is only the data handling parts that are in need of replication. A much higher bandwidth
memory structure than the Alto used is also necessary. This need not be explicitly
constructed as separate bit planes, but it should be able to perform at least as well as if
it had been—careful interleaving may achieve this, as with the Dorado [CIarké]a].

The second major drawback of the integrated display processor approach is that
refreshing the display may consume an appreciable fraction of the available memory
bandwidth and processor cycles. For example, driving a full bitmap screen on an Alto
consumed roughly 60% of the memory bandwidth, and the macrocode emulation ran
correspondingly slower. This is, admittedly, less of a problem in the Dorado because of its
extremely high memory bandwidth and very careful pipelining, although these are achieved
at a not-inconsiderable cost in complexity [Pier83]. Nevertheless, even an 8-bit deep image
corresponds to about a third of the memory bandwidth (=160 MHz), and a full 24-bit deep
colour image would require the entire memory bandwidth to display, even though it would
consume only 25% of the processor cycles. The slowdown in macro-instruction emulation that
results from such overheads is particularly noticeable on a personal computer because there
is usually no redress to computing power elsewhere.

One way in which the Alto tried to minimise the cost of refreshing the display was
through the use of a segmented display bitmap. Through a combination of microcode and
controller hardware it was possible to omit those portions of the bitmap that were blank,
provided they occurred at the beginning or end of a line. The Bravo editor [Lampson79a)
made heavy use of this facility, which was reported to reduce memory requirements by
about 30% for an ordinary page of text, and by more still for program source. The memory
and processor cycles consumed by the display were reduced in about the same ratio.
Despite this, the organisational difficulties of the technique prevented any wide scale use,

most applications preferring simply to allocate a complete screen’s worth of bitmap.

5.4.3 Distributed intelliigence

Conventional frame buffers are largely constrained in their structure by the high data rate
needed by the video generator to which they are attached. In order to accommodate it they

generally adopt a word-oriented memory structure, giving simultaneous access to a set of
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consecutive pixels along a scanline. This immediately means that algorithms that access the
memory have to understand (and take advantage of) this organisation to be efficient.
Every time an update crosses a word boundary another transfer is required; greater
parallelism (and hence speed) can be achieved only if many pixels can be updated for each
transfer. This can be done by increasing the word length, but it is usually better, given
a fixed-width memory path, to provide efficient access to a square array of. pixels. This
optimises many more drawing operations because it provides area-locality, and thus helps
updates that cross scanlines (which is most of them) rather than just the ones that lie
along them.

The Carnegie-Mellon 8x8 display is an implementation of this idea [Gupta8la,
Sproull81]. It contains a square array of sixty-four 16 Kbit memory chips, together with
addressing logic, two video line buffers, and two delightfully named units for doing two-
dimensional rotations of an eight by eight pixel array called swizzles. The memory
addressing is time-multiplexed over an 8-bit bus and arranged so that different chips can
receive different addresses. This takes three address cycles for each access (rather than
two), but means that an arbitrarily aligned square can be read or written in eight memory
cycles rather than sixteen. Both the input and output of the memory array contain swizzles
to realign a row of eight bits into (or from) a canonical external form, which can be
operated upon by a bitslice processor to provide the RasterOp combinatorial functions.
Since the pixel processor is eight bits wide, it takes eight cycles to move a square of
pixels through it for the RasterOp operation. With various overheads, the prototype
managed this in 4.2 ys—a pixel transfer rate of about 4.6 MHz. Line drawing can be
achieved by calculating a set of eight by eight segments, each containing a fragment of the
line, and then using them repetitively. The smaller the number of segments, the greater
the error in the slope of the overall line, but the higher the speed: calculating the
segments rapidly becomes more time consuming than writing them into the memory.
Implementing the 8 x 8 display took four boards and 300 components. Although much of the
control logic could be shared for a greyscale version, the expensive parts of the design
(memory, video buffer multiplexing, swizzles) could not.

The next step with this kind of structure is to provide local processing power at each
of the nodes, to put back the parallelism that was lost through the use of an external
pixel processor. In extreme form, a processor could be attached to each pixel; practical

implementations adopt a time-multiplexing technique and allocate several pixels to each
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processor. Some interesting algorithms then become possible. For example, a straight line
could be drawn by broadcasting the start and end points to all the processors, which
would then compute the perpendicular distance between the line and each of the pixels for
which they were responsible. Greyscale images could be handled in three ways: by
providing each plane with a separate set of processors, by multiplexing one set between
them, or by changing the number of bits per pixel stored at each node..The first is
probably easiest to package, which may compensate for its otherwise greater cost.

A similar idea underlies the '‘Disarray’ display project undertaken at Queen Mary
College, London, as the successor to their text terminal [Walsby80]. A Disarray frame
buffer is made up of a square array of sixteen by sixteen processing elements. These
processing elements each contain 16 Kbits of memory and some fairly simple random logic
constructed from high-speed Schottky TTL. They cycle in 40 ns unless they are doing a
memory read or write, which takes just over 400 ns; all processors obey the same
instruction simultaneously. The array is connected in a rectangular grid, so that each
processor is attached to four neighbours, as weil as to an open collector output bus (one
per column), a video access path and a pair of row and column strobe lines. A separate
control unit handles instruction sequencing, host computer interfacing, the scanning of
host-provided display files and various miscellaneous housekeeping functions. By
replicating the complete array, new bit planes could be built and colour or greyscale
supported; there need only be a single controller and video unit. Since all the arrays
would cycle simultaneously, writing a multi-bit pixel value would take no longer than a
single-bit one, but the lack of interconnections between layers means that there is
essentially no support for anti-aliasing. It seems that the Disarray would be operated
normally in a double-buffered mode, with one image being displayed as another was
created; a similar mechanism for handling viewports to that used on the text terminal has
been suggested—apparently without regard to the cost of image generation as compared to
copying.

The Carnegie-Mellon group has also suggested this multiple processor approach, and is
currently implementing it in VLS| [GuptaBla]. Their scheme is similar to the Disarray,
except that more interconnections are provided between the processors, which are much

more powerful. A simulation of the design suggested that an eight by eight RasterOp
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operation would take 1.2 us, and line drawing by calculating perpendicular distances Sus
for each eight unit square along it. Some thought seems to have been given to anti-

aliasing and low-level image processing tasks.

5.5 Conclusion
What lessons can be learnt from these systems?

* Attempting to economise on memory is a waste of time, unless factors of two or
more in size are involved.

* A powerful display processor is needed in order to provide a reasonable update
rate, and it must have a high-bandwidth path to the image store, particularly if
anti-aliasing or colour are to be used.

* The ability to replicate processing elements as well as memory planes is
important if a design is to be scalable in performance over a range of pixel bit-
depths. Economic constraints still prevent the use of a processor that is capable
of high-quality greyscale or colour to support one or two bit deep displays:
scalability in an architecture would allow the cost to be tailored to the
application.

* The complexity of systems with replicated components should be reduced by the
sharing of as much logic between them as possible.

* Any approach that attempts to carry out operations on-the-fly (as video output
is being generated) needs to be carefully thought out so that only the minimum
amount of hardware needs to run at video speeds.

* The RasterOp function provides an extremely useful primitive for many
operations,

* There are still difficulties in producing an implementation of RasterOp that is
capable of multi-plane operation in timescales of the same order as a screen
refresh. One reason for this seems to be the reluctance to replicate the
(relatively expensive) RasterOp processor for each plane of a greyscale or
colour display. Another is that merely replicating a RasterOp engine on each
plane does not do enough to help operations that work on several planes as a
unit—such as merging and averaging two greyscale images.
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6. Terminal domain software

The main role of the terminal domain software is to provide a set of abstractions derived
from the underlying hardware base. These abstractions typically include location
transparency, device type independence, multiplexing a single physical resource to present
multiple virtual ones, and various degrees of early binding of response’ to input for
increased efficiency. An alternative approach might be simply to link clients a‘s directly as
possible to the raw hardware through the available communication media, and let them
choose the interaction metaphors most appropriate to their own operation, rather than be
constrained by the limited set of options imposed by the system. However, there are a
number of reasons why this approach is neither much used nor of general applicability:

1. Binding device specificities and resource addresses into client programs reduces

their usefulness by limiting their portability.

2. The end-to-end signalling delays may be unacceptable for tasks like character
echoing.

3. The input signalling rate may be too large to handle on the client’'s host
machine, and pre-filtering necessary to prevent it from being swamped.

4. The raw device interface is frequently at an inconveniently low level for
applications that wish to use a simple serial byte-stream abstraction. Forcing
each client program to include device-dependent code to support this
abstraction will inevitably result in inconsistencies, duplication of effort,
errors, and lowest common denominator functionality.

5. lnefficiences at the terminal domain boundary may militate against crossing it
too frequently, and some form of blocking may be desirable or necessary to
achieve adequate performance.

As usual, the advantages to be gained from commonality of function and code are not
without their costs. Hiding the true nature of the underlying hardware may mean that some
of its facilities are difficult or impossible to use to full advantage. If a client has to
circumvent an ill-advised choice of interface it may take more effort, rather than less, to
achieve a particular effect. Finally, generality of operation may only be bought at the cost
of some inefficiencies in the form of greater elapsed or processing times, storage
consumption or 1/0 rates. However, many of these difficulties appear to result in practice
from poor system design, not intrinsic disadvantages of the approach, and a well-designed

terminal domain can contribute substantially to the effectiveness, consistency, and usability

of a system.
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6.1 Physically distributed terminal domains

One of the aims in designing terminal domains is to optimise the physical segmentation of
their functionality. This is particularly true of distributed systems, where communication
costs may form a major portion of the total terminal domain overheads. By dispersing the
functions (and hence the need for processing power and storage) so as to minimise the
requirements for high end-to-end bandwidth and signalling rate, both the thr.oughput and
responsiveness of the system can be improved. Note that the use of raw network
bandwidth is rarely a primary concern for all but the lowest-speed connections, and it
should usually only be optimised subject to the need for end-to-end performance, and then
only if it is a scarce resource. Network bandwidth is usually in plentiful supply in most
local area networks, and the performance limitations on terminal domains come largely from
protocol and operating system overheads—particularly delays. Optimising for network
bandwidth by trying to avoid ‘unnecessary’ protocol turnarounds may result in
unacceptable real-time delays and a reduction in facilities (e.g. the inability to support
single-character interaction) because signalling rate has been ignored. For example, it
used to take nearly thirty task switches for a screen editor running in a Tripos system to
reflect a character from the CDS terminal concentrator. This was more a reflection on the
‘convenient’ use of the operating system's message sending primitives in a layered-protocol
environment than inherently poor protocol or editor design [Clark82a, Clark82b]. Popek
found that an implementation of the ARPANET data transfer protocols ran an order of
magnitude more slowly than those of the LOCUS operating system on the same hardware
[Popek81]; he has since indicated that the ratio is nearer two orders of magnitude than
one [private communication]. These are signalling rate problems, not bandwidth ones.
Given the wide variety of clients that a general-purpose terminal domain must support,
the usual approach taken is to offer a small, fixed set of services at the terminal domain
boundary in the clients’ host machine. Any physical distribution takes place entirely
within the terminal domain, and is largely transparent to its clients. An alternative
approach might be to permit each client to select a physical partitioning for both itself and
the terminal domain components it makes use of. Nevertheless, the usual scheme is not too
bad a compromise for the majority of applications, which cannot afford the cost of selecting
and constructing special-case solutions for their needs. Hamlin discovered that an
intuitive physical re-partitioning of an existing application—even by its authors—may be

considerably worse than one deduced from a careful study of module bindings [Hamlin75].
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Furthermore, he suggested that the best performance is likely to be obtained when
information about the predetermined splits chosen by the terminal domain implementers is
made available to application designers. Nevertheless, it is frequently useful to aliow the
segmentation of an application to be decided after the initial design phase, particularly if
the physical distribution of terminal domain functionality may change.

The partial failures that occur in almost all distributed systems need careful attention.
In addition to having the terminal domain provide some way of signalling their occurrences,
it needs to be aware that there may be modes of failure that were simply not anticipated
by applications originally written for single node systems. For example, few screen editors
(particularly those that make extensive use of the terminal to do local editing) cope
gracefully with the physical detachment of a terminal from their local host, and yet the
loss of connection to a remote device is not an uncommon event in many networks. In
distributed systems, ‘soft’ failures (which are rectified after a while) are quite common,
whereas they are almost never encountered within a single node. Unfortunately, recovery
may require action on the part of the application, as that is often the only thing that
understands enough about the semantics; this is a variant of the end-to-end argument of

[Saltzer81].

6.2 Terminal independence

Almost all existing general-purpose terminal domains provide a limited form of device
independence, in that they support a fairly wide range of terminal types as simple byte-
stream (scroll-mode) serial devices. Most will allow their clients to control whether input is
reflected immediately or not, and many will grant essentially raw device access if
requested. Very few yet support standard ways of accessing highlighting options, multiple
character sets or any form of graphical capabilities, and there are often fundamental
differences between the ways in which page-mode-only and mixed-mode devices must be
programmed. Any client wishing to make use of these facilities must contain its own device-
specific code; despite this, there may be no way for it to discover the type of device to
which it is connected. The wide range of device operations, coupled with a bewildering
variety of idiosyncracies particular to individual models, makes the writing of such device-

specific code very difficult: it should not have to be supplied by each application.
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To illustrate some of the issues involved | shall concentrate here on text-oriented vdus
that converse with their host through some sort of serial protocol. Standardisation efforts
for such devices are more widespread than for the much greater variety of graphics-
oriented ones, whose functionality and hardware interfaces are much more diverse. There
seem to be three main approaches for coping with different vdu types: providing a
standard subroutine package, using a standardised terminal protocol, and avoiding the

issue altogether by constraining support (and purchases) to just one terminal type.

6.2.1 The subroutine package approach

This method makes use of a subroutine package that can be built into application programs
to drive many different terminal types. Two models have evolved: hard-coded routines for
particular terminal types, and table-driven routines that support a range of protocols at
the expense of greater execution overheads.

The former approach was taken for a full-screen editor (SSE) developed by
D.W. Singer and myself [WilkesAJ80]. SSE uses a code module specific to each terminal
type, and selects and loads the appropriate one at initialisation time. The module fills out a
table structure used by the common shared code, and also indicates which actions should
cause execution of a function in the terminal-specific code. This allows the common base to
cope with most operations without modification for the majority of new terminal types.
Operations such as cursor positioning can be handled efficiently without the need for the
common code to interpret all the different cases. An SSE terminal module also interprets
terminal-specific escape sequences and control characters on input, converting them into
values in an extended common character set. (A single keystroke by the user can cause
the discharge of a (possibly varying) number of characters at the editor.) The module’s
final job is the provision of a help page to display the chosen mapping between keystrokes
and editor functions, which has to vary somewhat between terminals.

A particularly successful example of the table-driven approach is the termcap facility
of Berkeley UNIX [Joy81], which provides compact, textual descriptions of a wide range of
terminals. Several table-driven subroutine packages have been constructed to interpret the
termcap database (e.g. curses [Arnold81], the Maryland Window Library [Torek83], and
the display handler of Gosling’s Emacs [Gosling81]). Internally, these packages maintain a

virtual screen that can be changed through subroutine calls from the client. The physical
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screen can be updated to correspond to the virtual one on request. Most of the termcap-
based packages support output only, even though the database contains the data needed to
describe keyboard input.

Sometimes a combination of the two techniques is used, as in Gosling's Emacs: terminal
types that are expected to be particularly common have hard-coded routines of their own,
while the general case is handled through a termcap-based set of routines. The effect is to
minimise overheads most of the time (and to produce' very good update sequences) without

sacrificing the generality and wide coverage of terminal types afforded by termcap.

§.2.2 Using a standard protocol

The second approach is to design {and hope for widespread adoption of) a standard
terminal driving protocol; the ANSI X3.4 standard is one such example [ANS!79]. For such
a protocol to be widely acceptable, a number of compromises have to be made (e.g.
extended character sets are unlikely to be usable), and this may result in performance
limitations that some users will find irksome. Some balance must be struck between the
desire for standardisation and the need for extensibility: new facilities and capabilities are
continuously being provided as increasingly powerful processor hardware is built into
terminals, and there must be a way to accommodate them. ANS! provided for this by
defining some terminal-specific escape sequence roots (prefixes that themselves act as
starting points for further escape sequences). Extensions can thus be incorporated in a
standard way, although there is no mechanism to prevent clashes between different users
of the same extended sequences.

Some protocols have had such widespread use or emulation that they have achieved the
status of de focto standards. Examples include the VT52 and VT100 protocols from DEC;
the Tektronix Plot-10 protocol for the 4010 series of storage tube graphics terminals; and
the 1BM 3270 data stream.

[Sproull74] proposed a set of text manipulation primitives as part of a complete
graphics protocol. To be useful for applications like text editing, they required
considerable network bandwidth with low end-to-end delays. Nevertheless, they formed the
basis for a system in which an Alto acted as a front-end to a host with which it
communicated via an Ethernet [Teitelman77, Sproull79]. Sproull’s protocol was an example

of a network virtual terminal protocol (VTP) that was designed to encompass graphics as
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well as text. Most other VTP implementations started with support of scrolling text-only
vdus as their basis [Day80}: the ARPANET Telnet protocol [Davidson77] and the VTP used
in the CDS [Ody80a] are two such examples. In a VTP-based system, the terminal domain
presents some fictitious virtual terminal to its clients and arranges to map it somehow onto
the real terminals that it supports. The difference between this approach and the previous
one is that it is the VTP codes rather than the terminal-specific ones that are transmitted
across the network, and so processing power must be available at each end to interpret
the VTP. Most modern terminals contain at least one microprocessor that might be capable
of this, but they are programmed by their manufacturers to support only one or two
protocols, and it is usually difficult or impossible to add another.

A common difficulty with VTP-based schemes is their inability to take advantage of
increased functionality at the terminal end. Many remain restricted to scroll-mode text;
those capable of full-screen working usually support only a subset of the functions
provided by the terminals themselves. This is partly because of the diversity of vdu
protocols, and partly because of the inertia that is embodied in a VTP specification by
virtue of its widespread use. The current state of affairs requires a negotiation phase
when a VTP connection is being established so that the two sides can agree on a set of
facilities, such as screen size or number of display attributes, during which the lowest
common denominator is usually chosen [Schicker78]. Each end then builds a model of the
terminal: any changes made by the client to the model at its end which require a visible
effect at the other cause VTP activity to make it occur. The negotiation phase is often
tricky and protracted, and there may simply be no way to map a client's requests onto the
available hardware [Tanenbaum81].

The final objection to the VTP approach is that the demands upon the network or
terminal bandwidth may be greater than if a (well-designed) terminal-specific protocol had
been used. The latter might have been able to represent more compactly the operation set
provided than could be managed in a more general VTP. This is not usually a problem for
LANs, where bandwidth is plentiful, but it can cause difficulties for any network in which

the VTP has to pass through a low-speed link.
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6.2.3 Evading the problem

The third solution is to avoid the problem altogether by choosing to support (and
purchase) only one particular model of terminal. Sometimes, other manufacturers’ terminals
emulate the chosen one sufficiently closely to be acceptable substitutes; considerable care
is needed to verify this. Although conceptually simple, this approach suffers from built-in
hardware obsolescence and non-portability of application software. All the term.inals have to
be equally intelligent (and thus expensive) or simple (and therefore limited in capability).

IBM has been its most successful proponent.

6.2.4 Which to choose?

None of the three is an ideal solution; the best seems to be to adopt a procedural
abstraction as a client interface and hope that increased bandwidth will make the problems
noted with using a standard protocol less severe. The use of a procedural instead of a
byte-stream interface allows for simpler optimisations in the implementation of the terminal
domain to specific circumstances without requiring any changes to client applications. Of
course, some form of serial protocol will be almost inevitable if physical dispersion of host
and terminal is to be supported, but this can be hidden entirely within the terminal
domain, leaving the precise form an internal implementation option, not a client-visible
specification.

Sadly, the result of the present state of affairs is too often a proliferation of poor-
quality user interfaces. Many applications would benefit greatly if a simple scheme for
making better use of current terminals could be made commonly available. Unfortunately,
there needs to be much wider support for a VTP with adequate primitives before the lowest
common denominator can be raised above its current miserable level. As any reader of a
UNIX termcap file will discover, the difficulties in just describing a subset of the available
terminal protocols are immense; generating even moderately efficient update sequences is

worse. Making each application replicate such effort is absurd.
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6.2.5 Output optimisations

Most terminals are attached through relatively low-speed serial lines, so optimising the
update of the physical screen can reduce response times considerably. Such optimisations
can range from redrawing just those lines that have changed to computing a near-minimal
update sequence. The task is complicated by the diversity of update mechanisms supported
by different terminals, which lead to device-specific tradeoffs: a sequence that is optimal
for one may be near-pessimal for another. Worse, the implementations of a single protocol
by different manufacturers may not have the same performance tradeoffs.

Rather than have changes reflected immediately on the screen, most optimisation
packages will batch them up, decoupling the logical updates from what is sent to the
terminal. Since it is simply a subroutine package, curses requires an explicit call from the
client before it will do any pending updates, which it then carries through to completion.
SSE and Gosling's Emacs use a slightly different display technique, which results in better
responsiveness to user actions. The editors are logically split into two coroutines: one
responsible for the screen display, the other for carrying out the editing actions. When
the editing coroutine has nothing else to do it passes control to the display handler, which
attempts to make the screen a true reflection of the internal state. If any input arrives
while it is active, the display handler relinquishes contro! to the editing side. The effect
is that the screen refresh can be interrupted by an editing action, which will be obeyed
almost immediately. The display handler will then be reinvoked and begin once again to
display the new screen state, which may well be radically different from the one it was
working on before. Browsing through a file can proceed at high speed if only a few lines
from each screenful need to be seen: the display handler does not waste the user's time by
continuing to refresh a portion of the screen that is not of interest. (Of course, the
domain boundary crossings into and out of the terminal domain must be cheap enough that
excessive blocking factors are not required. Also, display update needs to be the limiting
factor in response time if signific‘ant benefit is to be achieved.) Should the display
handler complete the screen refresh and the edit coroutine still have nothing to do, the
editor puts itself into a semi-dormant mode waiting for the next user input. In practice, it
spends most of its time like this.

The update algorithm used by SSE starts at the line on which the cursor is to be
found and works outwards, in the belief that the user is most likely to be interested in

that area of the screen. Changes in the vicinity of the cursor are immediately confirmed
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and there is no need to wait for the rest of the screen to be corrected before continuing.
(Terminals on which the character insertion point can be decoupled from the visible cursor
are ideal.)

As with any mechanism that involves decoupling, there is a danger that too much
information will be hidden by the interfaces. Nevertheless, simplification qf both sides
often results: this was certainly the case with SSE. The calculation necessary -to determine
the best possible way to refresh the screen is expensive, and some compromises are
usually needed to avoid excessive computational overheads. SSE was designed to run on
locally attached terminals connected via 9600 baud lines, and its algorithms are noticeably
less satisfactory at lower line speeds. By contrast, Gosling’'s EMACS goes to considerably
greater lengths to minimise the terminal traffic needed to generate a screen update, and so
does a correspondingly better job on lower speed lines. The price is in host processing

overhead, which may not be a good tradeoff in an era of generally increasing line speeds.

6.3 Screen management

The user interface portion of physical terminal management can itself be divided into two
parts: that for handling output to a display, and that which is concerned with the input
tools that a user may have access to. Clearly, the two must interact. This is most obvious
when visible asynchrony is introduced into user interfaces, better to match human
capabilities. People perceive the world as containing many essentially independent objects,
each performing its own actions or behaviour separate from their own. In a computer, such
an environment is typically modelled as a set of processes executing apparently in parallel.
For the model to be perceived as a good one, it must be possible to switch attention back
and forth between each of the processes with no loss of context. Regrettably, few command
systems or terminal domains acknowledge the ability of the operating system on which they
run to support concurrent operations; most go to some lengths to hide it, even when the
action of a break or attention key is discussed. Many of the systems that do acknowledge
asynchrony tend to make a poor job of separating output from processes executing in
parallel, allowing intermingling at the access method buffer or even character level. The
latter is particularly troublesome if the stream switching boundaries may be part way

through an escape sequence. Poor input handling is equally reprehensible: arbitrary
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redirection of a user's attention from one process to another can be more than a little
disconcerting, particularly if the new process is one with a concise command set (such as

an interactive debugger).

§.3.1 Temporal output manogement schemes

The simplest approach to handling output in a terminal domain is to allow possession of a
user's physical resource (the screen) to be swapped between one process and another. The
owning process can choose to have exclusive control, or it can allow other processes to
share access to the resource. The latter is only really viable when some extra discipline is
imposed, such as a scrolling vdu and line-at-a-time output. In some systems, two forms of
output are defined: normal output, which is blocked when another process has exclusive
access, and breakthrough or expedited output, which always gets through. The latter is
intended for relatively rare ‘important’ operations—such as sending a message to the user
of the terminal. Clearly, the value of the distinction would be lost if expedited output were
used too often. Equally clearly, forcing non-essential output onto users who do not want
it is undesirable. Some method for distinguishing expedited from normal output is
necessary; without it messages may be lost by being overwritten, or get intermingled with
normal output containing terminal escape sequences.

One scheme is to enter a special mode when expedited output arrives: the screen state
is saved (assuming this is possible), other output suspended, the expedited output
displayed, and the user asked to confirm that it has been seen. This approach is used by
the session manager for IBM's Time Sharing Option (TSO) [McCrossin78]. The difficulty
with this approach is that the expedited output is normally unexpected: any typed-ahead
input has to be discarded (interpreted or not). People who fine-tune their interactions to
the system's response time (especially common with the half duplex interfaces provided by
3270s) may have anticipated a different response, thus potentially losing or corrupting the
expedited data.

Either the applications or the user can control which process owns the screen. The
former allows programs like screen editors to arrange that their output is not overwritten
by normal output from other processes; the latter allows users to make the decision about
what they are willing to accept. The first is correct in the vast majority of instances, but

inflexible; the other is often wrong (a common default is to allow shared access all the
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time) but gives the users control if they really want it. This dilemma can be resolved by
choosing to apply the ’principle of non-preemption’: control of the user interface should
never be in the hands of the system [Deutsch80, Tesler81}. (The difficulty with the TSO
session manager arises because it violates this rule.) However, providing no assistance at
all is almost equally bad. It seems very difficult to build a good non-preemptive system for
an environment where programs completely take over the screen.

Wholesale allocation policies are an unfortunate necessity imposed by the pitifully small
sizes of most current vdu screens. Twenty-four lines of eighty characters is a very poor
substitute for a double spread of line printer listing. Because of this, each process using
a terminal is likely to use its own scheme for best managing the limited resources at its
disposal. Unfortunately, a process cannot know how a user will rank it in importance with
respect to other ones; nor indeed what other processes there are.

A compromise is perhaps in order: it is unexpected preemption that causes difficulties,
rather than changes that the user is anticipating. Programs should be allowed to acquire
exclusive control over the screen if they wish, but only when granted this privilege by
another that already has it, or by the user. A typical example is the invocation of a
screen editor by a command language processor: the latter can delegate its exclusive
access to the former for the duration of the editing session. (The command language
processor would not normally invoke its exclusive access rights, thus allowing messages
and the like to intermingle with its own output.) The main benefit of this scheme is that
such transitions are (almost) invariably initiated by the user, directly or indirectly, rather
than by an asynchronous event elsewhere in the system. The Berkeley 4.1BSD UNIX
distribution includes a form of ‘job control’ with some of these properties [Joy80].

Expedited output remains a problem since it is possible for an urgent message to be
suspended for a considerable period. One possible solution might be to reserve a portion of
the screen for the terminal domain’'s use, including notification of pending expedited data.
Unfortunately, this would require the terminal domain software to filter application output
to ensure that it was not overwriting this area, and would reduce the screen area available
for application use. Another approach might be to send the expedited data to the
application that currently owns the screen, making it handle the display, but this is likely
to lead to a proliferation of non-uniform user interfaces to the same function. The model of
screen output about to be proposed largely bypasses these issues, but some similar ones

.

recur when ownership of input tools is considered.
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6.3.2 The windows model

If the device supports it, a spatial, rather than temporal, separation of output can be
used. Instead of giving each process in turn complete access to the one physical screen,
they can each be granted control over a private virtual screen, some or all of which are
mapped onto the physical one. This approach has a number of immediate advantages. There
is no longer any need for a user to poll each process explicitly to see how i{ is doing—it
can be left to proceed on its own. Clues as to the content, importance and readiness of
different interaction threads can be provided by the shape, background texture, contents
and spatial interrelationships of the virtual screens. This approach is called the windows
model, and seems to have originated on the FLEX system [Kay69]. It has been widely
adopted, precisely because of its effectiveness and logical simplicity. lts main disadvantage
is that it requires the use of more sophisticated terminals or displays than is the current
norm. Ordinary vdus are inadequate—their screens are too small, they are too slow, and
they do not provide essential functions like scrolling fragments of the screen locally
[Jordan81]. Additionally, the potentially increased display bandwidth and the common use
of non-standard virtual screen sizes may cause some problems.

The term window is somewhat misleading, because it has been applied in the past both
to the object on the physical screen and to the subset of the logical entity onto which it is
mapped. To prevent total confusion in the midst of a linguistic fog, | will henceforth use
the term window to refer to a selection (usually rectangular) from some logical image such
as a bitmap or the screen of a virtual terminal; a viewport will be the result of mapping
such a window onto a screen. In theory, scaling or other transformations could be carried
out in this mapping; in practice, this is not often done when the window maps onto an
image already in bitmap form. (The commonest exception is a simple zocom that expands
each image pixel linearly to an integral number of pixels for display. This is normally done
in hardware and affects all of the screen or none of it.) One viewport can be completely or
partially obscured by another—some form of ranking is needed for this, such as assigning
priorities to the viewports, or positioning them in an ordered list. It is possible to carry
out similar mappings inside a virtual screen: for example, Smalltalk-80 has virtual screens
constructed from one or more panes, which are arranged in the same way as viewports are
on a real screen. lndeéd, arbitrarily nested hierarchies can (and have been) supported.
For simplicity, the unqualified term screen will hereafter always be used to refer to the

physical display device.
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Varieties of windowing schemes

There are four basic types of windowing systems. They differ in the management of the
image representation in memory and in the level of that representation.

The first sort use the display refresh memory as the primary instance of the image
data, allocating spill areas elsewhere whenever two images overlap. The Blit software uses
this approach [Pike83]. It has the advantage of minimising the amount of mem.ory required
to represent the images—important in low-cost configurations—but suffers from
fragmentation of the off-screen areas. In turn, this means that applications must clip their
drawing activities against a number of different areas of bitmap, and the management of
the fragments can itself become a significant overhead.

The second scheme is similar to the first in that it records the images as bitmaps, but
it treats the display refresh area as simply a copy of the real images, which are maintained
elsewhere. It needs one screen image more memory than the previous scheme for the same
set of images. The MIT Lisp machines and their descendents have used this approach
[Moon81, Weinreb81a]. One advantage is that image generation can now occur in
unfragmented images, but some scheme is still needed to ensure that the image and its
displayed version remain in step. One way to do this is to tag areas of the image that
have been updated, and perform explicit copying operations onto the screen using
RasterOp. The terminal domain software can do this asynchronously with the applications;
given a virtual memory system with page-reference bits, it may even be possible to do it
without any explicit action by the applications. Another approach is to sacrifice some of
the simplicity of image generation and carry it out twice: once in the real image, and once
in the display copy. Performance optimisations are possible by having the window manager
provide hints to its clients about the areas of their virtual screens that are visible.
Provided these are treated correctly, they can help to reduce needless regeneration of
obscured virtual screen areas. Since it is the user, not the client, who gets to decide
which—and how much of—the virtual screens are visible, the hints are best disseminated
by asynchronous notification, rather than by having the clients poll for them.

The third scheme differs from the preceding pair primarily in its use of a high-level
intermediate representation that the window manager understands. This representation is
usually at the level of vectors, polygons, splines, and characters, with coordinates
expressed either in a (pre-transformation) world space or as positions on the virtual

screen. Several text-only display systems wuse this approach (e.g. [Lantz79,
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Meyrowitz81]); it has long been used for graphical interfaces on vector refresh devices,
and (more recently) with physically remote bitmap systems (e.g. [Lantz83]). A major
advantage is that the high-level image representation is normally very much more compact
than a bitmap (although there may be pathological cases where the reverse is true).
Unfortunately, the display image has to be regenerated every time it becomes visible, not
just when it changes, and this is on the critical response time path for many window-
manipulation operations. (Optimisations are possible inside the window manager by trading
memory for speed, of course.) Additionally, the image types that can be handled are
restricted by the representations supported by the window manager. Protection can be
more readily enforced with this scheme because the image representation is almost the only
point of contact between clients and the window manager, and the cost of passing it across
protection domain boundaries is small because of its compactness.

Finally, a variant of the third scheme is to have the applications maintain whatever
high-level representation they find convenient, and for the window manager to direct them
to redraw areas of the screen that it chooses. The Xerox Vista package and its successors
do this [Vista80]. Close coupling between the window manager and its clients is required
because the redrawing operation m‘ust occur synchronously with screen layout changes.
This approach has the advantage that the form of the image representation is not
constrained by the window manager, but it retains the speed penalties of having to
regenerate images rather than copy them, unless the application caches the bitmap form
itself. Vista provides BitmapUnders to achieve essentially this by implementing the first of
the four schemes described here for selected virtual screen portions, but they do not seem
to have been widely used. (They are largely reserved for the special case of a small object
that can move around the screen rapidly.)

Only the second and third methods are really suitable for applications working in an
environment where they are prevented from corrupting data areas not their own. Indeed,
to date the first and last schemes seem only to have been successfully applied in 'open’
systems, where this sort of protection is not an issue. The second one is the only one not
subject to the (potentially large) overheads of dynamically clipping images as they are

being generated into several non-overlapping fragments.
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6.4 Input tool handling

The range of physical input tools is immense: it includes keyboards, mice, tablets,
switches, dials, joysticks, tracker balls, voice recognisers, light pens, and touch-sensitive
and pressure-sensitive surfaces. A major terminal domain function is to present its clients
with a virtual input tool interface abstracted from the physical tools available at a
workstation. One way to do this is to support a number of virtual input tool-classes, and
arrange to map the actual ones present into one or more of the virtual ones [Wallace76]. A

typical classification might be:

keystroke generators (transition events)
e.g. keyboards and switches

« valuators (one-dimensional variables)
e.g. dials-

¢ locators (multi-dimensional variables)
e.g. joysticks, tracker balls, mice, tablets, position and rotation sensors

» pickers (entity selection devices)

e.g. light pens
Any one device might contribute to more than one class; some virtual tools might
themselves be used as generators of other virtual input event types. For example, a light
pen—normally a picking device—can be used as a locator or valuator when used with a
tracking box, and as a keystroke generator with ‘light-buttons’ that emit text when
selected. Such virtualisations can take place at a number of levels, from inside the device
itself (e.g. mice that map coordinate changes into character sequences) all the way up to
the application. A commonly used technique to achieve efficiency and timely interactions is
early interpretation inside the terminal domain—event filtering, local echoing, and
restricted data acquisition associated with an event—with the effect that raw client access
is restricted, thus imposing a certain degree of inflexibility. Whatever is done, some
important properties need to be preserved:

Ordering is important if the proper interpretation of input data is to be made:

events should be delivered to an application in the order in which they are

received by the terminal domain. This must be achieved whether or not the

implementation chooses to store different input events on separate internal

queues.

Atomicity guarantees that each event appears to occur instantaneously, not

intermingled with fragments of other events. For example, an event that is

mapped into several other virtual events should trigger them all contiguously,
not intermingled with input from other event generators.
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Timeliness is a measure of how soon events can be processed by an application.
Human psychology and physiology provide some absolute values for timeliness in
an interactive environment; in other applications {such as process or device
control), mechanical, electrical or other timing constraints that are much more
stringent may be imposed. Unfortunately, if flexibility is to be maintained,
timeliness often conflicts with efficiency, to which the early binding of input
and its interpretation is often an important contributor.

Filtering, although not functionally necessary at lower levels, tends to be
operationally important as a mechanism for reducing system overheads. An event
such as a small movement in a locator can often be handled locally, and does
not need to be passed all the way up to an application. Many devices lend
themselves naturally to this, especially when they are being controlled by
humans. One technique that is used to reduce event generation rates is to
require some minimum value change or elapsed time between events. For
example, a mouse movement might not generate an event unless it exceeded
some minimum size or some time period had elapsed. If the filtering parameters
are chosen with care, a user will have difficulty detecting that the sampling is
not continuous.

§.4.1 Early interpretation and type-ahead

The main reason for moving input handling (such as keyboard echoing and line editing)
out of the client program and into the terminal domain is speed—the closer it can be done
to the device, the shorter the delays are likely to be. (It can be viewed as a variety of
input event filtering.) Benefits also accrue from standardising these functions and the
ways that they are invoked across many client programs.

Line editing requires a buffered pipeline between the user and the client to hold the
current contents of a line (or screen) whilst it is being edited. One consequence is that
the unit in which the client program receives terminal input naturally becomes the unit of
editing. Another is that the fine-grained control available with character-at-a-time
interaction may be lost. For example, client programs frequently cannot arrange for only
part of a unit to be reflected, which is useful when reading passwords. (The user can be
given a mechanism to do it as part of the echoing and line editing function, of course, but
only at some cost in interface friendliness and input character set.)

Some decision is needed on how to handle data that is already in the pipeline when a
status change command is given (e.g. desist from echoing). All is well only if no
interpretation has taken place for any typed-ahead characters. Otherwise, unless the
changes are reversible, the interpreted input data must be discarded. This can be avoided
by echoing or interpreting the characters only when they are removed from the pipeline to
satisfy a client's read request, which specifies the front-end processing required of the

terminal domain. This may mean that input is not always reflected immediately, which can
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be disconcerting for non-experienced users, and requires even experienced ones to have
considerable faith in their accuracy if much type-ahead is to be done. There will always be
circumstances when it is desirable to flush the pipeline—after an error, for example—and
the resulting race conditions are essentially unavoidable.

The system-provided code responsible for the first-level interpretation of input can
provide only a limited range of options. A common consequence is that some applications
need complete, transparent access to their device (graphics programs, for instance). Many
terminal domains provide this, albeit frequently in a rather ad hoc manner. Some keyboard
keys or escape sequences are usually reserved for communicating with the terminal domain
software itself—for generating an attention for example.

It is usually more efficient for terminal domains to satisfy each read request by
returning several characters, rather than one at a time. For example, extended end-to-end
delays are a common property of long-haul networks, and even when (as on most LANs)
point-to-point bandwidth is plentiful, the processing power to handie the protocol
overheads may not be. Unfortunately, this desire for efficiency leads to pre-interpretation
of characters in the wrong mode; early binding for improved performance is at the expense
of flexibility. The problems mostly arise when a single logical channel is used in several
different modes: such multiplexing would be fine if there were no buffering in the terminal
domain, but the decoupling between mode changes at the client and the interpretation point
introduces errors or imposes restrictions.

The terminal concentrator used by the Cambridge Distributed System provides a good
example of some of the tradeoffs that may be made. The software architects of one of the
first systems to be connected to the ring (the CAP [Wilkes79a]) soon made clear their view
that the overheads of supporting single character interaction with the terminal concentrator
were too great. As a result, facilities for line editing in the terminal concentrator were
made available. The virtual terminal input protocol used requires a host to send a line
request to the concentrator, indicating how much character interpretation (e.g. echoing,
line editing) is to be done. The request is satisfied (and the characters returned) when
the conditions are met—such as the user finishing a line with the return key, the
requested number of characters being typed, or, in some modes, when certain control keys
are used.

The CAP operating system chooses to have user input interpreted only when it is

about to be acted upon, which means that type-ahead is not reflected until it is about to
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be obeyed. This usually works very well: the request for the next set of characters is
only sent out when the manner in which they should be interpreted is known. Another
client of the terminal concentrator, the Tripos operating system [Richards79), adopts the
policy of reflecting characters as soon as they are typed [Knight82]. To do this, the
Tripos terminal handler always maintains an outstanding request for a line-edited reflected
fine. The interpretation mode can only be changed by first cancelling the ou‘tstanding fine
request, thus discarding any characters buffered by the terminal handler or terminal
concentrator. This means that no type-ahead can be done during the loading of a program
that will effect a mode change when it starts up, such as a screen editor. In the context
of the original Tripos implementation this was not usually a problem because load times
from local discs were reasonably small. However, this condition is not satisfied by the
current CDS hardware: program loading frequently takes several seconds, leading to
irritating periods of enforced inactivity on the part of the user.

There seems to be no general solution if there is a separation between a client program
and the point in the terminal domain where character interpretation is carried out. The
best that can be done is to minimise as far as possible the amount of pre-interpretation
that occurs. One way is to eliminate buffering after interpretation by the terminal domain
{which leads to the non-reflection of type-ahead), a second is to avoid the need by using
separate streams for each different activity (although selecting the appropriate one to use
has similar problems to changing modes), and a third is to move more of the end-to-end
delay-sensitive client program functions into the terminal domain. A final alternative is
(regrettably) adopted by several systems: avoiding the question of how to deal with type-

ahead by permanently prohibiting it and running the user interface in half duplex mode.

Other input tools

The main difference between the handling of keyboards and other input tools is the limited
number of standard front-end interpretations appropriate for the latter (other than local
cursor handling and menu selection)—apparently because of the diversity of physical tool
types. Pre-filtering is commonly applied to valuators and locators, and may also be used

with certain classes of picking devices (e.g. light pens).



Terminal domain software 87

6.4.2 Asynchronous input handling

Terminal domains often lack suitable communication methods for passing asynchronous input
events to a running program. This lack is particularly acute in interactive graphics
applications because there are many classes of such events. Most graphics packages
attempt not to make use of multiprocessing at the client level, choosing instead to generate
an event queue that has to be polled (e.g. the Siggraph CORE system [GS@’C?Q] or the
proposed GKS standard [GKSdraft84]). By refusing the client program timely access to its
state when an event occurs, anything it might have wished to record at that point (such
as a set of coordinates to be associated with a keystroke or mouse button click) is lost.
N. E. Wiseman has proposed instead that the asynchronous nature of the events not be
hidden, and that a client program should be allowed—indeed encouraged—to make use of
multiprocessing [Wiseman77, Wiseman79]. One of the claims made is that this more often
simplifies than complicates the logic of interactive programs. Of course, it is likely that the
asynchrony inherent in the terminal interface will have to bg hidden at some stage, if only
to allow normal sequential operation of the bulk of an application's code; few production
languages make provision for any form of asynchronous event handling. The last reason
notwithstanding, completely forbidding a program access to such events is certainly a
mistake.

Instead of providing a client with timely access to input events, most terminal domains
choose to record a standard set of state values (e.g. cursor position, switch values,
timestamp) with input events in the hope that this will provide sufficient information for
the client. In an environment such as an open operating system there is no reason why the
- client should not be allowed to snapshot the state it is interested in itself, subject to
suitable guarantees about processing time and potential deadlocks.

There are basically two ways of handling input events that are not processed
immediately. In the first, the state snapshot at the time of the input event contains all the
information necessary for the client to determine what was intended by the user. This
logical state must normally be acquired by some application-supplied code at the time the
physical event is detected. This method allows users to respond to what they see in front
of them; for example, if an icon is visible, it may be selected. The second scheme records
only the physical state at the time of the event, and the application interprets the input in
the context that pertains when it is finally processed. This requires the user to guess

where an icon will be when it finally appears in order to work in advance of the system.
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Both schemes will occasionally require the user to wait for the system to quiesce to avoid
race conditions; the first is probably preferable if the set of selectable objects changes
frequently, the second if it is relatively static. A system capable of implementing the

former can be used in the latter mode, but the converse is not true.

6.4.3 Multiplexed input tools

In an environment with multiple virtual screens or viewports, some way must be found to
map a single input device like a keyboard into multiple virtual devices. The classic way to
achieve this is to allow just one virtual screen to be active at a time, and to bind all the
physical tools present to its virtual ones. This binding should normally be left under the
control of the user, who must communicate somehow with the terminal domain to indicate
desired changes. One way to do this is to reserve some keystroke sequence to mean
connect to the terminal domain, and then to support some form of command language
interface at that point. This has the slight disadvantage that the communication may be
rather clumsy (because it is either too concise for the newcomer, or too slow for the
experienced user), but it does mean that the full power of the terminal domain software
can be exposed.

Another technique is to use an implicit signalling mechanism to cause the rebinding,
such as attempting to generate a keystroke or mouse button event when the cursor has
been moved into a different viewport. With this scheme, applications should normally be
prevented from 'owning' the cursor or from being able to direct its movements, in order to
prevent it from becoming trapped inside one window. (Sometimes this is desirable, of
course, such as in an editor that will scroll text into a window to keep the cursor visible.
Either the application must be trusted, or some escape must remain, as in the first
approach.) In any case, some portion of the input tool vocabulary must be reserved to the

terminal domain—an escape sequence in the first case, cursor movement in the latter.
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6.5 Existing terminal domains for LAN systems

There is a growing number of production and experimental systems embodying approaches
from the set outlined above. A number of these are discussed here to give some substance
to the observations made in this chapter. The systems that have been chosen as examples
are those with particular relevance to the design of a LAN-based terminal domain suitable

for incorporation in the CDS.

6.5.1 The CDS terminal concentrator

Economic constraints were the first reason for interfacing more than one terminal to the
Cambridge Ring via a single station, and the initial aim of the terminal concentrator
described in [Gibbons80] was simply to act as a multiplexor. It became obvious, however,
that the real power of the terminal concentrator lay not in its multiplexing functions, but
rather in the screen management and virtual terminal facilities it could support.

The current CDS terminal concentrator can handle several concurrent host sessions for
each attached terminal [Ody80, Ody80a). Using a simple command interface, the user can
establish and close connections (virtual terminals), switch the keyboard between them, and
either grant one connection exclusive control over output to the screen or allow them all
equal access. In addition, the terminal concentrator supports local and remote echoing,
single-character and line-editing modes, and a number of different ‘line’ terminator
characters.

There is no attempt to supply any form of device independent VTP; furthermore,
clients cannot determine the type of a terminal from the concentrator. Neither graphics nor
full-screen working are supported other than by allowing raw access to the terminal,
although efforts are underway to rectify the latter deficiency. Hardware limitations such as
polled terminal and ring interfaces, and the small buffer sizes used by the underlying byte
stream implementation, mean that output speeds of considerably less than 960 characters

per second are the norm.
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6.5.2 BRUWIN

The Brown University Window manager BRUWIN [Meyrowitz81} runs on a single processor
system, not in a networked environment, but is interesting for its screen management
facilities. It presents multiple virtual terminals (DEC VT52 emulations) to its clients, and
maps these onto rectangular (potentially overlapping) windows on a real display. The
emphasis is on using existing programs in the UNIX environment in which BhUWIN runs:
the VT52 was.chosen because it is widely supported. A combination of the termcap
mechanism and statically-bound terminal-dependent code handles a range of character
displays and one graphics one; UNIX pipes are used to link the emulator to its client.

The BRUWIN screen model assumes the use of fixed-pitch non-overlapping characters
on a rectangular grid, and so cannot support graphics. Whereas the standard UNIX
terminal interface is particularly rich in functionality, pipes can do no more than carry the
VTP byte stream; the published description does not address how these differences are
reconciled. BRUWIN determines that there is data for it to process by polling every few
seconds for pending input or output—presumably a decision forced by UNIX's relatively
poor interprocess synchronisation mechanisms and lack of asynchronous 1/0 capabilities.
The penalties of trying to provide virtual terminal support without getting entangled inside
what is basically an unsympathetic operating system are obviously severe. The work is not
aided by the apparent emphasis on minimising the use of programming and hardware

resources, rather than on presenting the best possible user interface.

6.5.3 Rochester's Intelligent Gateway

The Rochester Intelligent Gateway (RIG) software runs on separate minicomputers with
their own local storage domain (a pair of Data General Eclipse systems) [Lantz79]. RIG was
designed to provide local text editing and other non-cpu-intensive support services for
several remote hosts, to and from which explicit file transfer is used. There is no support
for graphics; on text-only terminals a viewport is always the width of the screen.

The most important RIG facility is a disc-based structure called a pad, which
represents the store of a virtual terminal. A pad behaves like a full-screen terminal with a
built-in screen editor that can perform string searches and substitutions, movement of text
into and out of pads, cursor movement by words and pages as well as characters and

lines, and the selection of arbitrary portions of text. There can be one or more windows
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(with associated viewports) onto a pad, with the position of each controlled by a separate
viewing cursor. |f the pad’'s update cursor is attached to a viewport, the viewing cursor
can be made to move with it to produce an automatic scrolling effect. A criticism of this
scheme is the inability of RIG to support standard stream-oriented applications, which
reduces its generality of application considerably. The wealth of functionality provided by
a pad proved more often a liability than an asset to existing screen-oriented programs
[Lantz83].

Screen space is managed by a hierarchy of viewports, regions and images to represent
physical allocation, and by windows and superwindows, which are the logical counterparts
of viewports and regions. Configurations specify the logical to physical mappings; they
seem to be essentially static objects. Both temporal and spatial separation of virtual
screens are used on ordinary vdus, while the Alto incarnation uses only the spatial
variety.

In some ways RIG is a major improvement over both the CDS terminal concentrator,
which is heavily line-oriented and has no device independence, and the BRUWIN system,
which provides simplistic, low performance support for just one host. It is, perhaps
inevitably, considerably more complex than either. As a front-end terminal domain, its lack
of emphasis on interacting with its hosts—preferring to provide a powerful local editing
service instead—means that it has a somewhat different flavour than the other systems

described here.

6.5.4 The Programmer's Assistant

The Programmer's Assistant is probably the best known example of an Alto providing
virtual terminal support to a remote host (a remote DEC-10 equivalent supporting a highly
interactive Interlisp system) [Teitelman77]. The two processors were connected via an
Ethernet using a protocol derived from the proposed ARPANET graphics protocol
[Sproull74, Sproull79]. The Alto was responsible for providing a high-quality user
environment—multiple viewports onto different processes, editing functions, tool
handling—while the mainframe provided the bulk of the support for the rather demanding
Interlisp system. An innovation was the ability to select items from the display and feed

them as input to a process as if they had been retyped at the keyboard.
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Sproull’'s technique has not been used to partition other applications that were
originally written for Altos over the network. The principal reason is the very tight
coupling to the Alto display hardware assumed by such programs, encouraged by the Alto's
open operating system. It has proved almost impossible to interface such applications to
any form of VTP without major effort [Thacker81]. Unfortunately, the same restriction is
largely true today. This is a pity, because one obvious application of such. a technique
would be to use a smaller machine as a front-end to a basement Dorado, with the Ethernet
as the communication medium instead of a specially laid piece of video cable. For this to be
possible, some higher level of abstraction than bitmaps would have to be used for the

communication between the front-end and back-end machines.

6.5.5 The Alto as Terminal

Carnegie-Mellon have also used Altos as front-end terminals to a remote host—in this case,
a VAX-11/780 running UNIX. The Alto as Terminal system was intended to help prototype
the Spice display management facilities [Ball80). The machines communicated across an
Ethernet via a remote procedure call mechanism that allowed pipelining of operations: only
when a result was needed did the pipeline have to be drained. Commands could be
timestamped, and a group of them sent and then executed as a series to provide a limited
animation facility. The Alto software supported a number of image generation commands
locally to reduce the link bandwidth requirements.

When client programs connected into the Alto, they asked to be allocated a drawing
area and a window (and corresponding viewport) onto it, indicating the maximum and,
optionally, minimum extents of the viewport. Each viewport had two components—its
header and content parts. The Alto software allowed viewports to be nested to arbitrary
depth, and coped with the refreshing of the screen when a viewport was moved or its
priority changed. Clients were not notified when the size or position of a viewport
changed; indeed, no way for asking about these values was provided. Input tools (mouse
and keyboard) generated events that could be handled locally (e.g. by moving the cursor)
or sent to the VAX; the binding was under client control. Unfortunately, the lack of a
suitable software interrupt mechanism in UNIX meant that input events had to be polled for

by the client. Clients had to manage their own viewport structure; a malicious or
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erroneous program could take over complete control of the screen and cursor. These
problems aside, the impression given is of a carefully designed attempt to make the Alto

usable as a high-quality front end with a flexible programmatic interface.

6.5.6 Stanford's Virtual Graphics Terminal System

Work is underway at Stanford to develop some of the ideas from RIG and the Alto as
Terminal to provide a workstation that can be used as an intelligent front end as well as a
personal computer [Lantz83]. It is based around the definition of a procedurally-oriented
Virtual Graphics Terminal Protocol (or VGTP) that clients use to communicate with the
display management software, whether they are executing locally or remotely. A remote
procedure call protocol is used to provide location transparency where necessary. The first
implementations are based on different variants of the SUN and (RIS workstations
[Bechtolsheim80, IR1S83].

The VGTP is designed to support object-based descriptions of images in the front end
that may be manipulated and redrawn without host intervention. For many applications this
reduces the image storage requirements considerably, at the expense of image regeneration
costs and potentially reduced representation flexibility. Some initial results were quite
positive—they allowed an application that previously had been memory-limited on the SUN
workstations to be split between the workstation and a back-end VAX-11/780. However, the
choice of a high-level representation meant that support for bitmaps (including more than
character fount), circles and splines had to await a subsequent round of development
work. Planned future work includes the investigation of a more general division of labour

between workstations and hosts.

6.5.7 Bell Laboratory's Blit terminal and the BBN Bitgraph

The Blit terminal, currently being marketed as the Teletype 5620, was designed explicitly
to act as an intelligent front-end bitmap display for UNIX systems [Cargill83]. The BBN
machine was designed as a general terminal, with no particular ties to any existing

operating system [Fortier82].
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Both machines minimise manufacturing cost by limiting the options and expansibility of
the basic system. Both have a display with a resolution of roughly 768 x 1024 single-bit
pixels, and support a mouse as an optional extra. The software inside both terminals
supports multiple virtual screens, each with just one window/viewport pair, and allows a
limited amount of application-specific code to be downloaded from the host.

Support for Blit-style virtual terminal handling was added to a terminal handler for
UNIX System V, which was released at the beginning of 1983. It multiplexes multiple
virtual terminal connections over a single physical terminal line transparently to existing
UNIX software. The later System V.2 release includes a type of ‘job control’ that appears
to be tailored specifically for use with a Blit-like front-end. (For example, an application
is not told when it is suspended or resumed, which means that a program like an editor
has no way of knowing when to restore the screen state or to reset the terminal driver
mode. )

Discussions with one individual who had used a Blit for some time suggested that, as
with earlier vdu cluster controllers, careful use of link bandwidth provided 'acceptable’

performance for almost all character-oriented activities [J. Mashey, private communication].

6.6 Summary

Terminal domains are particularly important components of computer systems because of the
influence they have on subjective judgements and the utility of the whole. Their
implementations are subject to several conflicting requirements, and different tradeoffs
between these have resulted in a wide range of approaches. Some of the more desirable
features for a LAN-based terminal domain would seem to be a low-overhead device-
independent procedural client interface; a separate virtual terminal for each concurrently
executing process or group of processes; intelligence in the front-end workstation to
accommodate more than the most trivial of protocols; and the use of windows and viewports

on a reasonably high-resolution raster graphics display capable of greyscale and/or colour.
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7. The Rainbow Workstation

The subject of the remainder of this thesis is an experimental terminal domain
implementation: a personal workstation supporting high-quality raster graphics in a
distributed system. Known as the Rainbow Workstation (from the name of the research
group that developed it), it was designed with two primary aims: to act as a front-end
interface to remote computing power accessed via a local area network, and to experiment
with a new method for supporting window management in hardware. This chapter presents
the goals of the project and an overview of the resulting hardware. The latter is described
in more detail in the next two chapters, and is followed by an outline of the first software
constructed to control it. Finally, an evaluation of the project examines how well it met its
goals, some of the experience gathered during its execution, and proposes some future

research directions that could be taken.

7.1 Goals

The work described here was motivated by an interest in the use of interactive graphics as
a3 presentation medium in a program development environment based on an underlying
distributed system. The construction of a graphics display was seen as but a preliminary
step towards working on the software issues, motivated largely by the local lack of suitable
devices. As it turned out, the design and construction of the Rainbow Workstation
consumed a large portion of the available time, and came to dominate the work described

herein.

7.1.1 A distributed terminal domain

One of the goals was to investigate ways of partitioning task responsibilities (and hence
software and hardware) between the kind of machine that could be placed in front of a
user and the resources that a local area network would allow it to communicate with. The
model to be used for the resource management was that of the Cambridge Distributed
System (figure 7.1); that for the user’'s front-end machine was a display processor with
sufficient power to provide an almost self-contained terminal domain. It was hoped that
separating the time-critical interactions that were seen as the province of the terminal

domain from the longer turnaround computations they gave access to would permit the
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Figure 7.1. The Rainbow Workstation in the Cambridge Distributed System

construction of a system that performed both functions better than the existing CDS
implementation permitted. The Rainbow Workstation was never intended to be a personal
computer in the Xerox sense—it was to be viewed, rather, as an intelligent interface to
the processing power, storage facilities and services available elsewhere on the network. In
the context of the CDS its role would be to provide a replacement for a vdu and its
terminal concentrator port. A number of different functions would be needed for this to
become a reality:

1. Multiple virtual terminal connections to external resources, together with
appropriate screen management (i.e. some form of windowing system).

~

Session management: basically, the maintenance of authentication and identity
information. Users would then need to authenticate themselves only once per
session, not every time they requested a resource.

3. Input tool management. To encourage experimentation, it was envisaged that a
wide variety of input tools would be supported in addition to a keyboard and a
mouse, including graphics tablets, foot pedals, various pointing devices, and
voice input and output.

4. Immediate feedback for most 'trivial’ user interactions, including more general
ones than keyboard input echoing.
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5. Sufficient flexibility to allow a range of different task partitionings to be
experimented with—from simple vdu emulation to very high-level application-
oriented interactions. The latter would require at least part of the application
to run in the workstation.

In order to be capable of all of these things the workstation would need to contain a
reasonable quantity of computing power. One of the 68000 systems being acquired by the
Computer Laboratory for use in the processor bank was chosen as a basis on which to
build. One consequence was that the Rainbow Workstation ended up somewhat more

powerful than the processor bank machines it provides access to; this reflects the status

of the local CDS implementation as a mode/, not necessarily its ultimate instance.

7.1.2 Graphics support

The basic minimum graphics capability began as that necessary to support a windowing
system, multiple text founts, and simple diagrams. A memory-mapped raster graphics frame
buffer was selected as a suitable implementation. There were two reasons for not choosing
a simple single-bit deep display: a desire to support limited greyscale (2-4 bit pixels), and
an interest in doing some research in the process of constructing the display hardware.
The first arose from the observation that effective resolution can be increased much more
cheaply by adding levels of intensity than by increasing the number of pixels. Some
experiments suggested that four bits per pixel would be ample for anti-aliased characters
[WilkesAJ82a]). The second desire led to consideration of support for hardware windowing:
selecting and mapping disparate images onto the screen during the video generation
process. A number of potential benefits of providing such support were perceived:

1. The dynamic aspects of window/viewport management would become considerably
simpler. Screen management could be almost completely divorced from client
applications. (This assumed that the clients would create largely static virtual
screens appropriate to their needs, rather than continually respond to the
displayed shape of the viewports onto them. This model seemed well fitted to an
environment based on overlapping viewports.)

2. The normal tight binding between image generation and display could be
relaxed, which would result in easier image generation. Clients would not need
to handle bitmap fragmentation, nor need they invert their execution structure
to allow image generation activities to be invoked by the window manager.

3. Memory management hardware (were it to become available on the control
processor) could be used to protect the images of one client from the actions of
another. This could be done without imposing restrictions on how or where

those images would be displayed on the screen, and without the screen manager
continually having to copy bitmap data to keep the display correct.
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4, Better memory utilisation would result because the output mapping could select
just the relevant bit planes from those available. Image size could then scale
with the size of the memory rather than the number of full-depth pixels.

5. Overlapped images could be combined in a number of different ways without
impacting image generation. Cursors could be of arbitrary size and complexity;
transparent overlays could be separated from the images they were placed onto,
simplifying image update considerably.

6. Image generation hardware performance would not be consumed simply shifting
bits around a screen image. Furthermore, screen management for greyscale and
colour images would be no more expensive than for single-bit deep images.

The idea developed of testing a hypothesis: that explicit support for windows and
viewports in the hardware of a display could simplify applications and image generation.
The workstation hardware and software would be solely responsible for providing timely
responses to screen management operations, including moving viewports, changing their
visibility and size, and windowing their contents onto the screen (e.g. for scrolling). If
the hypothesis proved correct, application-level clients would not have to concern
themselves with the internal details of screen management, and they would be able to use
simple, direct access to images in the display memory.

Finally, it was hoped that the display might serve as a prototype of a line of cheap
workstations—cheap enough, that is, so that it might be replicated in reasonable numbers.
The danger inherent in possessing but a single instance of a device like the Rainbow
Workstation was well understood: its availability would be too low to be relied upon. In

turn, because its facilities could not be assumed by clients, the lowest common denominator

would prevail in a continuation of the existing text-oriented, scroll-mode user interfaces.

7.1.3 Goal evolution

As with many such endeavours, the initial goals were modified over time to accommodate
perceived realities and opportunities. A major factor in this evolution was the design
process itself, largely as a result of learning what could and could not sensibly be
achieved. The first change has already been mentioned: adopting a greyscale display
instead of a binary one. The second was extending this from 4-bit to B-bit pixels so that
the display architecture would be able to cope with more elaborate image types in the
future, in the belief that the incremental cost was largely that of populating the extra
memory boards. (Indeed, the decision to change the design was taken some time before the

one to build and use the extra capacity it allowed.) Similar reasoning lay behind the
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decision to upgrade the design to allow for colour. (In this case, the extra expense was a
wider lookup table and more video generation circuits.) tnitially, only one of the viewports
was to be arbitrarily aligned rather than fixed to 16-pixel horizontal boundaries; that
restriction was lifted once a suitable mechanism had been worked out.

1t became clear during this process that the first Rainbow Workstation would not be a
straightforward prototype of a low-cost implementation. Accordingly, rathe.r‘ than going
back to the beginning and starting the design afresh, it was decided to accept an
ambitious first iteration and let experience with its facilities help determine future work. It
was felt that determining the benefits of a particular item of hardware would be best done
by using it, rather than trying to predict the effects of adding it to an existing system.

The device that resulted from all this is the Rainbow Display; coupled with a 68000
processor system it forms the Rainbow Workstation. To achieve rapid display manipulation,
it holds each image in a separate portion of graphics memory, and constructs the displayed
raster picture by switching the video generation circuitry to read from different pieces of
memory ‘on the fly'. Moving a window around an image, or a viewport around the screen,
is accomplished by changing a control structure, and the change appears on the screen
effectively instantaneously. The display can support translucent images—such as cursors
or alignment grids—whose visual effects depend on the viewport underneath them. A
relatively large locokup table supports the provision of several different output mappings,
selected on a per-viewport basis. Finally, there is some microcode image generation

software to augment the display capabilities.

7.2 Hardware overview

The workstation consists of three processors together with some special hardware, as
shown in figure 7.2. The main processor is a Motorola 68000 with half a megabyte of
memory, which handles some of the higher-level communication protocols, constructs the
data structure describing the viewports to be displayed and deals with various input
devices. A subsidiary processor based on a Motorola 6809 handles communication with the
local area network at and below a byte-stream level. An AMD 2801-based bitslice processor
controls the data paths through the special video generation hardware and a megabyte of

display memory that is also mapped into the address space of the 68000.
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Figure 7.2. Rainbow Workstation overview

As a picture passes through these processors, the time associated with an operation
being performed decreases. Transactions with a remote host usually take tens of
milliseconds or more, picture manipulations in the 68000 take milliseconds, viewport
boundaries are handled by the 2901 in microseconds, and pixels are passed around the
video generator in nanoseconds. The use of remote hosts allows access to considerably
greater processing resources than could be incorporated in a personal machine, while
including a general-purpose microprocessor for high-level control! functions means that
operating system software and high-level language support is readily available. In turn,
this meant that design effort could be concentrated on the display-specific aspects—for
example, by removing the need for general-purpose macroinstruction emulation in the 2901.
Purpose-built hardware was essential to support pixel manipulation in the video pipeline:
here, generality was sacrificed almost totally for speed.

The basic format of the display processor is that of a video generation chain leading
from the graphics memory units to the display, with the 2901 acting as a controller. The
2901 does not itself handle any image data since its cycle time is large compared to the
time available to generate a pixel. Instead, it intervenes at window boundaries to update
the control registers that define the manipulations performed by the video chain. When
pixels are being output the 2901 acts largely as a timing generator, arbitrating the passage
of data along the memory-to-slice unit bus (obus) and sending control information along

the master system bus (rbus). The display generates a standard 625-line U. K. broadcast-
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standard television signal so that it can be videotaped and displayed on readily-available
monitors. (In practice, the high data bandwidth at the video output makes high-fidelity
videotaping difficult.)

The fundamental clock in the display runs at 32 ns, and is divided down to give the
64 ns pixel rate and the 128 ns instruction cycle of the 2901 processor. Each 2901 cycle is
termed a tick; rbus and normal obus transfers take one tick, display memc;ry reads and
writes take three.

The whole display is controlied by the 2901. To achieve low-latency responses to
external events, and to simplify the microcode, the 2801 processor has eight ‘concurrent’
microtasks, with hardware priority arbitration. Microtask switches take place between ticks
with no performance degradation; they can be forced or inhibited under microcode control.

A 68000 interface unit serves a number of roles. It allows the 68000 to load the
microcode RAM, and to control and monitor the bitslice processor’'s execution. It also
provides a path to the display memory by activating 2901 microtasks on 68000 read and
write cycles targetted to a range of the 68000 physical address space.

A RasterOp unit was planned and designed in outline, but has not been constructed.

7.2.1 Physical construction

The Rainbow Display is built on wire-wrapped double-height Eurocards, and occupies one
19 inch wide card cage, with a custom twisted-pair backplane serving to link the display
boards. A second, similar card cage holds the associated 68000 processor with its memory,
ring and peripheral interfaces together with a board that connects the display to the 68000
bus. About half of the 68000 rack is empty; that holding the display has precisely one
spare slot, nominally reserved for a RasterOp unit. Power supplies are external to the two
racks, which consume 50 A at 5V and a few hundred milliamps at 15V. All the units sit on
a desk by the side of a monitor. In front of this are a keyboard, a mouse, a tracker ball

and a tablet, all of which plug into a small junction box connected to the peripherals

board.
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7.3 Chronology

The project was begun in November 1980 and the display’s general architecture was settied
by March of the following year. Detailed design took a further five months. The boards
were wire-wrapped on the Laboratory’s semi-automatic Pointing Machine by Julia Parsley,
and the construction was essentially finished by the end of 1981.

The display was commissioned by using the bitslice processor as a test vehicle for the
remaining units. A microcode support system—assembler, linker, loader—was written so
that software development could proceed in parallel with the commissioning of the
hardware. As each new unit was being tested, a small microcode program would be written
to exercise it. Software debugging used a logic analyser attached to the microcode RAM
address lines to trace program execution.

A combination of hardware and microcode that was capable of displaying images from
the graphics memory worked in time for the display to make its debut at the Computer
Laboratory's Open Day in May 1982. A second generation of microcode to exploit the
hardware windowing capability was developed in parallel with further bitmapped raster
graphics libraries and window management software for the 68000, and full hardware
windowing became operational during August. Subsequent activities concentrated on
improving performance and the facilities provided.

This dissertation reports only activities up to the end of October 1982—further work is
being carried out with the Workstation, particularly in the area of control software and

microcode, but that will be left for others to describe.
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8. The Rainbow Display video pipeline

The overall organisation of the video chain is that of a pipeline, with each stage sending
its output on to the next for further processing (figure 8.1). The performance of the
whole is largely dictated by the adoption of U. K. standard 625-line television for the video
output. This has 576 visible lines, displayed twenty-five times a second in two interlaced
fields. On a standard monitor with a 3:4 aspect ratio, a line must contain 768 pixels if
each one is to be square. A line takes 64 us to display, of which 14 us are taken up by
line flyback.

As a raster scanline is being output, up to eight bits of information for each pixel are
extracted from the graphics memory. These could come from a single 8-bit deep viewport,
or from one 4-bit and two 2-bit viewports, or any such combination, subject to the
limitation that each memory unit can only cycle once per pixel. So that the memory cycle
time is of manageable proportions data is extracted in parallel from each of the eight planes
in runs of sixteen consecutive pixels. These are passed along obus to eight slice units via
a fast-transfer mechanism at the rate of one 16-bit word every 32 ns. The slice units are
selective 16:1 multiplexors that emit an 8-bit pixel to the context unit every 32ns.
Because the software decides which pixels are to be extracted from any given set of
words, viewports and windows that do not align with 16-bit word boundaries can be

handled. The context unit expands each pixel to twelve bits using data associated with the
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viewport, and passes them into a 1024-pixel circular buffer, which allows the rates of pixel
generation and consumption to be evened out over two complete line times. in the middle of
a viewport, pixels are generated every 32 ns, but every viewport boundary causes a delay
while new control information is loaded into the pipeline. Similarly, the video output stage
consumes one pixel every 64 ns during a scanline, but none at all during line and frame

flyback. The final stage before video generation is a 4096 x 24 lookup table.

8.1 The graphics memories

There are eight 64K x 16 graphics memories, all of which operate in parallel lock step
under the guidance of a single memory controller (figure 8.2). In addition to the memory
chips themselves, each unit contains buffers for the memory address and input data
(MemAddr, MembData), sixteen 16-bit registers used mostly for addresses (the
AddressVectors, or AVs), an output latch and interface buffer for obus (the Obuslatch),
and an intermediate holding register (MemHold) that has access to the output from an on-
board 16-bit full adder. The input to each unit comes from rbus; the output is placed on
obus when the ObusLatch is output-enabled during a fast transfer or when a data value is
being read by the 68000 interface unit or the 2801. Buffer enables, latch loads and various
other control signals come from the memory controller board, except for the ObusLatch
output-enable signal, which is deduced from the ObusSource signal and a 3-bit value on a

header unique to each unit.
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A modified depth-first memory organisation was chosen to simplify the dynamic selection
of pixel depth on a per-viewport basis. The parallelism it offers allows the design to be
scalable in the maximum pixel depth; list-following and pixel-addressing logic are replicated
on each unit for the same reason. The 2901 could have handled these tasks, but only at
the expense of forcing each memory plane to have the same image layout. instead, each
memory unit contains hardware for indirection, list following and address ;:alculation, so
that an image may reside at different locations in any set of planes and be of any pixel
depth (up to the maximum eight bits). The only restriction is that an image may not have
two of its planes in the same memory unit. (Strictly, any set of images to be displayed
jointly at a given screen location must obey this rule.) The hardware necessary to perform
these operations consists of the AVs, the MemHold latch and the full adder. Sixteen AVs
are provided so that several pointers can be manipulated at a time. In an early design the
AV to use was selected by an AV address register loadable from rbus, but this was
discarded in favour of encoding the AV address directly in the microcode when the
performance implications were realised. The MemHold latch was introduced because timing
problems caused by the data paths meant that the AVs could not be both read frem and
written to in the same tick. The adder is necessary to calculate the start address of pixel
data in a window, since only a part of an image need be selected for display. It also
simplifies the handling of the video interlace.

The 16-bit word size was a result of the addressability requirements of the 64 K chips
and the 16-bit word and bus architecture of the 68000. Widening the data paths (to 32
bits, for example) would have run into immediate difficulties because of limits imposed by
the backplane. In addition, it would have required changes throughout the design to
accommodate wider counters and latches and their associated data and control paths. For
example, some of the current 4-bit control values would expand to five bits; in turn, this
would require the control paths of the whole machine—including the 2901—to be widened so
that values could still be packed four to a word, or it would necessitate more register
addresses (wider microcode) and load cycles (more time).

The MemData and MemAddr latches free the AVs for other calculations during the three
ticks needed to complete a memory cycle. The constants zero and one are frequently
required, so the input to the memory unit generates zero unless it is the target of an rbus
cycle. One is then available by asserting the adder's increment signal. The path back from

the output of the AVs to the second adder input allows an AV register to be copied,
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incremented or added into MemHold, with the other operand being zero, the previous
MemHold contents, or the value on rbus. Finally, a direct path from rbus to MemData is
provided so that 68000 write cycles can be handled as quickly as possible.

Since all the memory units are cycled in parallel, a way of selecting a subset of them
to respond to a8 write operation is needed. Three schemes were considered. The first was
to provide eight write-enable signals in the microcode—one for each unit. 'l;his was ruled
out by the relatively high perceived cost of microcode and its inaccessibility to the 68000
interface unit. Secondly, just one memory unit could have been selected by a 3-bit
microcode field, but this would have meant that only a single unit could be written to at a
time. Finally, an 8-bit distributed MemoriesActive register was chosen and arranged so that
write cycles on a memory unit are honoured only when the associated MemoriesActive bit is
asserted. The register is loaded across rbus and affects both the pixel memory and the
AVs. This has worked well, except that it should have been made readable as well as
writable from the 2901.

Thirteen control signals are needed to drive the memory units. Rather than putting
each one in the microcode, a relatively small number of useful combinations is encoded into
a pair of 32 x8 PROMs on the memory control board, with the microcode providing a 5-bit
index to select the desired operation. So far two PROM sets have been made. The first one
was put together as an interim version for testing out the hardware. The second one was
designed in parallel with the hardware windowing microcode, and its operation set optimised
for certain critical portions of that code. The limitation to thirty-two operations has not, in
practice, proved a restriction: the second PROM set has a spare operation slot despite
supporting several functions that are strictly unnecessary.

Memory refresh is controlled by the microcode to avoid contention with the video chain.
The memory circuitry is arranged so that reading from successive addresses refreshes
consecutive rows on the chip; the line-flyback microtask (see below) is used for this
purpose. Each time it is activated (once every 64 us) it reads eight consecutive locations.
In fact, the memory chips are much more tolerant than their specifications (a worst-case
refresh time of 2ms) would suggest, and will retain their state for several hundred

milliseconds without a refresh.
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There are two memory units per board to conserve rack space, with a separate board
for the common control logic. Unfortunately, there was no rcom left for the provision of
memory parity. Indeed, two units could only be squeezed together by the internal use of
inverse logic for addresses and data. So far, the lack of parity has not proved a problem,

although it is clearly undesirable for anything other than a prototype.

8.2 The slice units

The slice units take 16-bit data words from the memory units eight at a time and convert
them into sequential 8-bit pixels at the rate of one pixel every 32 ns. At the same time
they handle windows that do not coincide with word boundaries: each slice unit can be told
where in the 16-bit input word to start taking pixels, and how many to emit. Each slice
unit is controlled independently so that 'transparent’ viewports are permitted. Finally, they
can reorder the planes of an image as they come out of the memory units. The last
function allows the different logical planes of a multi-bit deep image to be distributed
amongst the memory units without regard to the bit positions they contribute to the pixel
data. This simplifies graphics memory allocation and the software that handles the context

unit and lookup table.
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Figure 8.3. A slice unit (first version)
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To allow arbitrary window and viewport alignments, the slice units must be able to
extract a subfield of a 16-bit word with a different alignment at each of the eight slice
units. They must do this with a minimum of assistance from the 2901 since the critical loop
in the microcode for pixel generation is only four microcode instructions long. The first
idea was to load the data into a parallel-in, serial-out shift register, discard any unwanted
data, and then proceed to shift out pixel bits. This would have required shift cycles to
get to the first bit of interest, which would have taken too long, as well as being
somewhat expensive in package count. It was noticed that a multiplexor controlled by a
loadable counter could perform essentially the same bit selection operation with little or no
initial overhead for the unwanted bits, and so this approach was adopted (figure 8.3).

All eight slice units can be loaded from the memory units across obus by the fast
transfer mechanism in 256 ns (two instruction times). Each memory unit is output-enabled
in turn for a 32 ns period, during which it gates a 16-bit data word onto obus and
identifies itself with a 3-bit open collector ObusSource signal. Each slice unit contains a
4-bit SliceComparator register, which is checked against the value on ObusSource. If the
signal Belnterested is asserted (which is true only during a fast transfer) and a match is
found between the SliceComparator and ObusSource, the slice unit locads the word on obus
into its pipeline. (Note that a slice unit will never load if the top bit of its SliceComparator
is set.) Any memory unit can load any slice unit—or even several of them. The
SliceComparator registers need only be reloaded at viewport boundaries.

If eight different images are being combined, each one aligned on a different bit
boundary, the slice units will need to start using the next stacked word in the pipeline
every other pixel on average—once every 64 ns. Whilst this is an extreme case, the
performance costs of having to suspend pixel generation even once per word to wait for
the next one to arrive across obus would be intolerable. To minimise the effects of such
misalignment the slice units contain a two-stage pipeline. Data can be loaded into the first
stage while the second one outputs pixels; the cost of switching between stages in the
pipeline is arranged to be much lower than that of fetching a new word over obus.

Two forms of pipeline were constructed. The first version consisted of a pair of 16-bit
latches in series. The second latch was loaded from the first by asserting the signal
LatchDown when no more pixels could be clocked out and the first stage had already been
reloaded with fresh data; otherwise, pixel generation would be suspended until this

happened. Unfortunately, the pixel clock had to be inhibited while the transfer was taking
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place. This difficulty was overcome in the second design by output-enabling the two
latches alternately into the multiplexor, rather than loading one from the other (figure
8.4). The switch happens sufficiently quickly that pixel generation can continue without
interruption.

To control the start position for selecting bits in the incoming data, each slice unit has
a 4-bit BaseCounter that can be loaded from rbus. Four values are packed .into a 16-bit
rbus word so that setting all eight counters requires only two rbus cycles. The counters
are tied to the address lines of a 16-to-1 multiplexor; as each pixel is clocked out, the
counters increment in unison to point at the next pixel. When a BaseCounter wraps around
to zero, the other latch in its pipeline is output-enabled. If it has already been loaded,
pixel generation continues immediately; otherwise, all the slice units wait until new data for

it arrives. The microcode attempts to keep the slice unit pipeline preloaded so that the
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Figure 8.4. A slice unit (second version)
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maximum possible speed is obtained. Having the BaseCounters wrap around means that in
the middle of a viewport (which is most of the time) they need not be reloaded, since they
reset themselves every sixteen pixels.

The BaseCounters cope with overlapping viewports with differently aligned pixel data,
and with omitting bits from the beginning of the first word in a window, but an extra
mechanism is needed at the ends of windows to prevent overrun. It is suppl-ied by a 4-bit
counter known as the BoundaryCounter, which is common to all the slice units. This is
loaded with a count of the number of pixels to output, at which point it enables the pixel
clock onto the BaseCounters and counts down as each pixel is generated until it reaches
zero, at which point it disables the pixel clock again. Only one BoundaryCounter is needed
because the width of the current viewport on the screen is the same for all the slice units.
The BoundaryCounter is so arranged that loading it with zero causes sixteen pixels to be
output, and this is usually all that the 2901 needs to do each time around its pixel
generation loop. Only when there are less than sixteen pixels to go before the next
window or viewport boundary need some other value be loaded, the computation of which is

conveniently combined with the test for the end of the loop.

8.3 The context unit

The context unit has two functions. The first is to mask out those slice units that are not
in use because an image coming from the graphics memories has less than eight stored bits
per pixel. The second is to supply the top bits of the lookup table address on a per-
viewport basis. The unit has a single operation code register (the ContextRegister)
containing two 8-bit masks that is loadable from rbus. The first is anded with the incoming
data from the slice units, and the second supplies the top four of the twelve output bits
and can force the middle four bits to ones (figure 8.5).

Together, the two masks serve to select the part of the lookup table that a viewport is
to use; different sections contain the visual effects corresponding to particular viewports
or sets of overlapping viewports. (The latter includes the special case of cursors, which
can be of arbitrary pixel depth given suitable combination rules.) The size of the lookup

table dictates the number of effects that can be supported. If each effect were to be
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applied to full-depth (8-bit) pixels only sixteen different combinations would be available,
but most images use fewer bits per pixel, so many more effects and combinations are
possible.

The context unit provides considerable power at very low cost: only a handful of chips
are needed. |t is effective because its control bandwidth is low compared to the amount of
information it adds to the pixel stream. As well as removing the need for more memory
planes and the slice units to accommodate them, it provides a fast way of changing the
visual effect associated with the display (certainly by comparison with updating large
amounts of pixel data). Furthermore, the context unit supplies this data on a per-viewport
basis, so that different views of the same data can have different appearances. However,
the context unit is only useful given the existing support for performing actions at
viewport boundaries. In a display without hardware windowing, the same effect might be
achievable by designing a runlength encoding for the context unit data and interrupting

pixel generation momentarily while the data is loaded into the unit.

8.4 The line buffers

The line buffers provide the buffering needed to decouple the pixel generation stages from
the video output. There were three places this could have been done:
1. Just before the context unit. This is an 8-bit wide data path except for the

context unit control data, which would have required considerable extra logic to
handle.
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2. Between the context unit and the lookup table (twelve bits wide). Although
the hardware would be relatively simple, the amount of lookup memory would
not be scalable to reduce costs with a monochrome-only display.

3. After the lookup table—an 8-bit wide path for monochrome, but twenty-four for
colour. The path width here would be lower than the previous alternatives with
a monochrome display, but larger than either with colour. The lookup table
would also have to run at pixel generation rates (a pixel every 32 ns) rather
than at video output speed (a pixel every 64 ns).

The first solution was rejected as being too complex, the third as requiring too short a
cycle time for the lookup table, and so the second was adopted. Some effort was then
devoted to devising a suitable implementation. The first attempt used a segmented circular
buffer with the memory divided into four segments, each 256 pixels long. The logic to
arbitrate over the ownership of each segment, together with that needed to suspend the
pixel generation if it ever caught up with the video output, was designed in outline. The
idea seemed attractive: less memory would be needed for the same performance than two
complete line buffers, and the necessary wakeup and suspend signals for the 2901 were al!
derivable from the state machine in control of each segment. Unfortunately, this scheme
turned out to be impractical because the chips it relied upon existed only by virtue of a
catalogue misprint.

The need to handle a 32 ns pixel generation rate complicated the problem considerably,
because it effectively ruled out a straightforward solution, 32 ns being shorter than the
cycle time of any TTL-compatible memories then available. An arrangement was suggested
in which the buffers were heavily interleaved, but abandoned as being too memory-
intensive. Finally, a serial-to-parallel conversion was introduced to lengthen the available
cycle time (figure 8.6).

The design uses an 8-bit shift registers to accumulate pixel data from each of the
twelve lines coming from the context unit. Once filled, these write their contents in
parallel into 256 x 8 memories. At the other end, eight pixels are read out at a time and

converted back into a serial bit stream. Since pixel generation can potentially run at twice

the speed of pixel consumption, the memory is timesliced in a four tick sequence:
* pixel write ¢ video read * pixel write ¢ idle

Each tick lasts for 128 ns. The memory can be viewed as a pair of line buffers, but it is
somewhat more flexible than this since it is effectively a cylindrical buffer with a

granularity of eight pixels, rather than a complete line. Sadly, the Rainbow Display is
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Figure 8.6. The line buffers

unable to make much use of this since it corresponds to lengthening the time over which
stoppages at window boundaries are averaged from one line to two; only a one-line

viewport would benefit.

8.5 The lookup table

The lookup table is quite conventional, save only for its size (4096 entries). Speed is
achieved through the use of high-speed Inmos 4K x4 static RAMs with a cycle time of
55 ns. Since the cost of the lookup table is a small fraction of that of the whole system, it
was not felt worthwhile to supply less than the full height. The board was laid out for the
full width (twenty-four bits), but only enough chips for a monochrome display were
purchased at first. It was fully populated later.

The lookup table is loaded from rbus by writing the address to the LookupMAR (lookup
memory address register) latch, followed by sending the data to the rbus destination
LookupData. An error occurs if this is attempted while the video is active. The lookup
table hardware needs to be initialised at start of day, and this is achieved by running a
program in the 68000 to load a default lookup table with the aid of the 2901. It is possible

to use the lookup table for fine-tuning the video gamma correction curve.
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8.6 Video circuitry

The last element of the video pipeline is the composite video generation unit. This has two
main components: timing circuitry (based on a Ferranti ZNA134J chip) and one or more
digital-to-analogue converters (DACs). The initial design called for 4-bit deep greyscale
output, but this was soon expanded to eight bits, and then to twenty-four- to cope with
colour. Because the lookup table is positioned after the line buffers, the last change only
required widening the lookup table and adding two DACs. The DACs themselves are hybrid
circuits with 25 ns settling times; a three-slope gamma correction is applied.

One of the original aims was to allow the use of an external video synchronisation
signal, and so a phase-locked loop circuit was constructed to derive a 32 ns clock signal
from the video line-flyback pulses. Unfortunately, the phase-locked loop introduced
excessive jitter to the clock, so it was replaced by a simpler crystal oscillator, thereby
sacrificing the external synchronisation capability. This 32 ns signal acts as the master

timing source for the system, all other clocks being derived from it.
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9. Non-video display hardware

9.1 Bus structure

The two main buses in the display are rbus, which is used for control information, and
obus, which is mainly used for the high-speed transfer of pixel data between the memory
and slice units (figure 9.1). As with any bus structure, a tradeoff ha.s.to be made
between the degree of sharing that occurs and the likelihood of bus contention. In the
case of the Rainbow Display, there is no danger of physical contention since all bus
transfers are initiated explicitly by microcode; no hardware bus arbitration unit is needed.
Logical contention (a transfer having to wait to use a bus) remains a design issue,
however. The task of bus structure design becomes one of minimising the likelihood of
such logical contention, subject to cost and complexity considerations.

An analysis of the data flows in the display demonstrated the need for a special-
purpose, very high-performance bus between the memory and slice units. Obus satisfies
this need by being able to transfer a 16-bit word in 32 ns, and permits the output from
any memory unit to be fed into any of the slice units. Obus is also used for normal-rate
data transfers to the 2901 and 68000 interface units (one word per tick). A design

constraint was that the display should use TTL rather than ECL circuitry throughout if at
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Figure 9.1. The display's bus structure
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all possible, since it was felt that ECL would overly complicate the power supplies,
physical layout and interface circuitry. The first obus design used open-collector gates
since the switching times of different units could be overlapped, but it was reworked to
use Fairchild FAST logic, which performed better and consumed less board space. The
fast-transfer logic was the source of several teething troubles, but these were largely
rectified by applying more careful power and ground distribution (a somewhat tedious job
on wire-wrapped boards).

Further down the video chain the data paths are narrower, special-purpose links from
one unit to the next. The extra logic needed to handle the addressing structure and
multipurpose nature of obus is not needed here. The choice of bus structure for the
control data was less clear, since there are several different commonly-used paths: from
the memories and 2901 to all the other units, and back and forth between the memories,
2801, 68000 interface and the RasterOp unit. Rather than aim for maximum performance by
using many separate buses, it was decided to make the 2901 the arbiter for all the
transfers from the memories since it already had the logic necessary to interface to obus.
The principal sacrifice with this scheme was the ability to carry out a calculation with the
2901 in the same cycle as a data transfer, but the reduction in complexity it introduced
more than compensated for this. The only other special-purpose data path that was
retained was from the memory units to the 68000 interface along obus.

The bus structure design seems to have been reasonably effective. In critical portions
of the microcode, improvements could be obtained by providing a fast transfer from the
memory to the control registers, but this would be an expensive addition. In many cases
bus cycles are not the limiting factor, and so having only two main buses has not proved

particularly restrictive.

9.2 The bitslice control processor

The bitslice control processor (commonly referred to as ‘the 2901') is probably the single
most complex part of the display. More time was devoted to its design than to any other
component, and its physical realisation occupies two of the display's eleven boards. At its
heart are four 4-bit wide 2901A-1 bitslice processors, together with a 2902 carry look-
ahead chip. Around them are a one-stage instruction pipeline, the microtasking circuitry

and various input and output interfaces. The display’'s control program is held in a
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1024 x 48-bit microcode memory constructed from 1K x4 static RAMs with a cycle time of
85 ns. The whole processor cycles once every 128 ns, regardless of microtask switching or

the different sorts of instruction sequencing.

9.2.1 Instruction sequencing

Early in each tick the circuitry responsible for deciding the value of the program counter
for the next instruction (the NextPClogic) enables its computed value (NextPC) onto
PCbus, which feeds the microcode memory address lines (figure 9.2). The microcode
memory then begins a read cycle that completes in time for the next instruction. Just
before the end of a tick, the 2901 condition codes become available, and these are stored
so that they can be interpreted in the following instruction. At the start of the next tick,
the new instruction word from the microcode RAM is gated into the IR (instruction

register) from where it is decoded, fed into the various units, and obeyed.
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Figure 9.2. The microcode instruction pipeline
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One section of the microcode instruction word is used to control the NextPClogic. The
normal flow of execution is sequential, but the NextPClogic can generate conditional and
unconditional branches if so directed. The conditional branch instructions test the
condition codes output by the 2901 in the previous cycle: this is a consequence of the
pipelining, and seems a small price to pay for roughly doubling the instruction execution
rate. Twelve conditional and two unconditional branch types are supported: essentially the
PDP-11 set with the omission of a few of the less useful unsigned comparisons. Limitations
on the microcode width mean that branch instructions only supply seven of the ten bits of
an address; furthermore, in order to keep to a 128 ns tick, there is only time to replace
the bottom bits of the unincremented program counter with the new values. The result is
that the microcode RAM address space is divided up into 128-word pages, and branches
must be to an address in the same page. In practice, this restriction has not proved
troublesome because most microcode segments are smaller than a page.

There are two other inputs to PCbus beside the NextPC register: the VariableBranch
register and the constant zero. The 2901 can write to the VariableBranch register via
rbus; two instructions later, its contents are gated onto PCbus in place of NextPC. This
mechanism was designed to support instruction-emulation dispatching as well as arbitrary-
displacement branches. PCbus is forced to zero in one special circumstance: when a new
microtask is activated that has never been executed before. Each of the eight microtasks
has an associated flip-flop that is set when the 2901 is started up. If the flip-flop of the
target microtask is set after a microtask switch, PCbus is forced to zero for one
instruction and the flip-flop cleared. Starting at location zero in the microcode RAM is a
sequence of instructions that reads the CurrentTaskID field in the DisplayStatus register,
constructs the address of the initialisation code for that microtask, and then dispatches to
it using the VariableBranch register. This combination of hardware and software was
chosen because it appeared to be the least hardware-intensive of the schemes examined;

almost any other scheme would have worked as well since initialisation is not time-critical.

9.2.2 Microtasking

The microtask model is based on that of the Alto: each microtask has a unique hardware-
assigned priority, and the control logic always tries to run the highest priority one it can.

Each microtask has a separate SavedPC register in which are preserved its program
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counter and 2901 condition codes. The hardware writes the NextPC and the 2901 status
bits back to the SavedPC register of the current microtask at the end of every tick so
that microtask switches can occur after every instruction. Microtask switching in this
fashion is completely transparent to the microtask that is executing, with one exception:
the VariableBranch register is always enabled onto PCbus two ticks after it is written. To
cope with this case, and another much more common one—graphics memory .cycles, which
take three ticks—a microtask can disable the arbitration logic so that no higher priority
microtask can take over the processor. In practice, the microcode assembler assumes that
this signal is on and allows it to be overridden explicitly at 'safe’ points. There was some
concern that the effect of this would be to reduce the responsiveness of the micromachine
to external events. To alleviate this somewhat, a bit (TimeGentlemenPlease) was introduced
into the DisplayStatus register to indicate whether there is a higher-priority microtask
waiting to run but being prevented from doing so. The intent was that long-running
sequences of operations that are best executed without interruption should test this bit
periodically. If it is on, they should tidy up and allow the other microtask to run. It has
not found much use in practice, since the expected client—the RasterOp unit control
software—does not yet exist.

In practice, the default inhibition of microtask switches does not seem to have been a
problem. It simplifies microcode writing by putting the switch points under the explicit
control of the programmer so that many of the usual difficulties of writing multitasking
code are avoided. Many of the operations that the 2901 performs are limited by main
memory cycle time, and little would be gained by allowing finer-grained microtask
switching. Microtask switches need to be enabled as frequently as possible (usually every
five or six instructions) to minimise the latency of higher-priority microtask activations,
but this has not proved to be a great burden so far.

Each microtask can be active or blocked. When blocked, it does not compete for the
processor. The only way a microtask can be released from the blocked state is for its
associated enable signal to be asserted, which is the principal signalling path from the
hardware to the microprogram. Most microtasks do a particular operation (such as generate
a line of pixel data) and then block themselves until they are next awakened by the
hardware. Each wakeup signal is tied to a particular microtask, and since this affinity is

built into the hardware, it largely defines which microtask does what.
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Priority 7: the error microtask

The wakeup signal for the error microtask is a logical conjunction of all the bits in a
distributed ErrorRegister. This ErrorRegister contains bits for pixel memory parity (were
it to be provided), line buffer overrun, and attempting to load the slice unit counters or
lookup table while they are active. Giving the error microtask the highest priority means
that it can sometimes correct the condition causing the error and then allbw the main
microtask to continue. For example, if pixel generation is overrunning because there are
too many window boundaries on the current line, the error microtask can instruct the
video microtask to abandon the current line and start on the next by resetting values in
the video microtask’s registers. This facility has yet to be used: the first error handler
written ignored all errors (to simplify microcode debugging); the second one treats them as
fatal and enters a tight loop after reporting their presence in the display's 'front-panel’

lights.

Priorities 6 and 5: the 68000 read and write microtasks

These microtasks service 68000 accesses to the graphics memory, which is made to appear
as a megabyte of ordinary memory in the 68000's address space. There are two microtasks
to minimise setup overheads, so each one is very small: five instructions for the read

microtask, six for the write one.

Priority 4: the video microtask

The video (or pixel generation) microtask drives the video chain by interpreting a data
structure that describes the windows and viewports to be displayed. Its wakeup signal is
the start of line flyback. Upon being activated, the microtask commences pixel generation
for the next line but one, to take full advantage of the line buffers. In conjunction with

the field microtask, the video microtask arranges to ignore lines that are part of the pre-

picture or post-picture porches, or that occur during field flyback.
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Priority 3: the line-flyback microtask

This microtask is activated when the video microtask issues the VideoDone microcode signal
to indicate that it has finished generating a line of pixels. Its main purpose is to refresh
the graphics memories, which it does by issuing read cycles to consecutive addresses.
Since video generation is more important than memory refresh (and contributes to it in any
case), the latter is interruptible after each memory cycle so that it may be preempted

quickly.

Priority 2: the field microtask

The field microtask is awakened at the start of each new field. It reads the per-field data
structure held in one of the memory units, establishes whether it is in the odd or even
field for interlace purposes, and sets up a counter to indicate how many scanlines should
be ignored by the video microtask before pixel generation is begun. In the future, it may
be used to perform actions that need to be synchronised to the start of a field or frame,

such as lookup table updates.

Priority 1: the assist microtask

The assist microtask takes advantage of spare 2901 processor cycles—principally during
line and field flyback—to provide microcoded assist functions to the 68000. These functions
initially included loading the lookup table and clearing pixel planes, and have since been
extended to encompass image generation operations such as anti-aliased line drawing and
character painting. Since this microtask is of lower priority than the display ones, it can
be preempted by any of them. Its wakeup signal is the only one to originate outside the

display hardware: it is one of the bits in a display control register accessible to the 68000.

Priority O: the idle microtask

At the lowest priority of all is a microtask whose sole purpose is to soak up unused
processor cycles. It can never block itself: if it tries to, the hardware ignores it. A
secondary purpose (there being no immediate need for another microtask) was to use it as

a tool for evaluating the display's performance, by measuring how much of the time the
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2901 is idle. Monitoring in a system like the Rainbow Display is not easy because of the
need to streamline each instruction sequence as far as possible: instrumenting such a
sequence is likely to change its performance. It was hoped that using a separate microtask
for timing and data collection would minimise the disturbance to the code being measured.
Regrettably, no detailed performance measurements have yet been done, and this is

something which needs to be addressed in the near future.

9.2.3 Microcode

The microcode memory is forty-eight bits wide and 1024 words high (figure 9.3). These
figures resulted from the desire for parallelism (wide microcode) and a large address space
(many words of microcode), tempered by the cost of fast memory and the available board
space. Roughly half of the bits were decided in advance by the 2901 processor: three each
for ALU function, destination and source selection, and four bits each for the A and B
registers, plus a single-bit Carryln signal. (No more elaborate mechanism was felt to be
necessary for the carry bit because the processor was not intended for general purpose
computing.)

A number of single-bit signals were then allocated to particularly common operations:

one each for blocking the current microtask, preventing microtask swaps, and for starting

9 4 4 1 3 8 L 4 5 2 3
201 A | B |¢]] function | function | | memory | memory 2801 micro- misc.
operation | reg | reg *: type data operation | address input task function

4 selection | control bits
y
2901 control /. ! '\ Memory control Miscellaneous
’ ] \
’ ’ AN
/ / \
’ U4 \
/ / \
’ ’ \
S 3 7 a4 4
Rbus : Rbus .
0 saurce : destination FormatA: Rbus cycle
I 1 I 0 small constant I FormatB: Small constant
1 1: branch address Format C: Unconditional branch
huf‘g‘ op x: branch address FormatD: Conditional branch
3 [} 7

Figure 9.3. Microcode format
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a fast transfer. Since many microtasks perform operations unique to themselves, another
bit was used for microtask-specific functions, with the hardware decoding the microtask
number to decide whether to respond to it. This bit is used by the 68000 read and write
microtasks to signal the end of a memory cycle, and by the video microtask to indicate that
a complete line of pixels has been generated.

To allow the 2901 access to a number of different data sources, it‘was given a
multiplexed input bus controlled by a 4-bit microcode fieid. Eight of the sixteen addresses
correspond to the memory unit outputs on obus. Six more addresses are used for a small-
constants field in the microcode, rbus, two distributed registers (one for status bits, the
other containing bits to indicate which hardware units are present), the current microtask
number, and the SavedPC register plus the 2901 condition code bits from the last
instruction. The last of these is included so that microcode subroutines can be constructed
using the VariableBranch register. Encoding the memory units as 2901 sources into the
microcode minimises the overhead to access them, but it also means that microcoded assist
functions have to go through some contortions in order to read from arbitrary memory
units. An additional bit causes the bytes from the source selection to be swapped over
before being presented to the 2801. This allows many 16-bit constants to be constructed in
two instructions, and also allows single bytes to be extracted from the memory units
relatively easily.

The 4-bit memory unit AV number is supplied directly in the microcode because of the
heavy use that the AVs are subjected to. A further five bits index the memory controller
function PROMs to select the memory operation to perform.

There were strong incentives to keep the microcode width as small as possible: high-
speed microcode RAM is relatively expensive and has a relatively low level of integration,
leading to a high package count; the number of backplane connections was becoming a
limiting factor; and the 16-bit nature of the 68000 bus meant that spilling over a 16-bit
boundary would require more address decoding logic. A target of forty-eight bits was
chosen, leaving twelve for the three remaining functions: branches (conditional and

unconditional), rbus control, and small constants for the 2901.
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It was decided to keep one microcode bit in reserve until after construction, to cope
with any unforseen design defects. The remaining eleven function bits are divided into two
groups: one of three (the function type), the other of eight (the function data). The first
is fed into the address lines of an 8:1 multiplexor, whose inputs are the results of the
combinatorial expressions on the 2901 condition codes necessary for various branch tests.

One of the eight cases is treated differently from the others, and causes‘an rbus cycle
to occur, the second group of eight bits being used to define both the rbus destination
(four bits) and the source (four bits). A total of twelve rbus sources and eleven
destinations were identified (figure 9.4). The microtask-specific rbus destination is used in
a similar fashion to the microtask-specific microcode bit. At the moment, the only one
assigned is the 68000 SlugCounter, which can be written to by either 68000 microtask. Any
word written to Rd68kLights is latched and displayed in a set of light emitting diodes,
which proved very useful when debugging the early display microcode. (The first
microprogram to run successfully did nothing but obey a set of nested loops to display a
rotating pattern in the lights. The master clock for the display was then provided by a
signal generator, and the processor was able to run this program with the cycle time

reduced to only 100 ns—20% shorter than the design aim.)

RBUS sources

n=-7 (reserved for RasterOp collcctors)

8 Rs2901 2901 ALU output as RBUS source
9 Rs68kData 68000 data register

10 Rs68kHiAddr 68000 high address bits

1 Rs68kLoAddr 68000 low address bits

12 RsError Error register

13 .- (unassigned)

1 - (unassigned)

15 - (unassigned)

RBUS destinations

0 - (unassigned)

1 RdMemory Memory board input

2 RdlookupData logkup memory: data

3 RdMemAct ive MemoriesActive latch

iy RdS 1 iceCompA Slice units O-3: comparators

5 RdS) iceCompB Slice units 4-7: comparators

6 RdS | iceBaseA Slice units 0-3: base counters
7 RdS1 iceBasoB Slice units h-7: base counters
8 RidlookupMAR Lookup memory: address

9 RdlaskSpecific (task specific)
10 RdBranchReg Variable branch register
1 Rd68kLighLs 68000 status register and LEDs
12 RdS1 iceBound Slice unit BoundaryCounter

13 RdContext Context unit opcode

14 - {unassigned)

15 - {unassigned)

Figure 9.4. Rbus addresses
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If this is not an rbus cycle the three function type bits are combined with the top bit
of the function data group to define fourteen PDP-11 style branch conditions (figure 9.5);
the fourth bit controls the inversion of the multiplexor output. Should a successful branch
condition be obtained, the seven low order bits in the program counter will be replaced by
the remaining seven function data bits. If the branch operation is null, the same seven
bits can be used to hold a small constant in the range 0 to 127, which is made available as
one of the 2901 input sources. The ability to swap these bits into the upper part of a
word, combined with the 2901's shift operations and the carry bit, means that 25% of all
16-bit constants can be constructed in two cycles, and all of them in three. (The third
cycle could have been eliminated in most cases if the function bits had been left-shifted by
one bit before being presented to the 2901. This was an oversight in the design that
resulted from insufficient understanding of some of the finer points of the 2901's
internals.)

The final spare microcode bit was indeed used at the last minute: the design had
neglected the fact that the slice unit pipeline would need to be flushed at window
boundaries if only a part of a word had been consumed. The bit was turned into a
ForcelLatchDown signal which caused the lower-level latch in the pipeline to be reloaded or
the two multiplexed latches to change roles.

In retrospect, the overlapping of the rbus cycie control bits with those for small

constants and branches has proved somewhat less than satisfactory. There are a few places

] ] ] + 1
| Code | Invert bit | Multiplexor | Function data |
| i 0 1 i input | !
L ! ! ]

I L] 1 ) 1
| © | never never | (~INVERT) | RBUS cycle ]
i1 NOP BR | 0 | small constant |
| 2 | BEQ BNE i I bit | branch address |
| 3 | BMI BPL | N bit { branch address |
| 4 | BVS BVC ) V bit | branch address |
| 5 | BCS,BLO BCC,BHIS | C bit | branch address |
I 6 | BLT BGE | N xor V | branch address |
!-7 ! BLE BGT ! (N xor V) or Z ! branch address !

Figure 9.5. Conditional branch decoding
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in the microcode where valuable instructions could be saved if an rbus cycle could occur at
the same time as a branch or 2901 computation involving a small constant. The limitation of
branch addresses to seven bits has not yet proved a major embarrassment, but may do so

with a much more extensive set of microcoded assist functions.

9.3 Interfacing to the 68000

The interface logic between the display and its support processor—the 68000—has two
purposes. The first is to allow the 68000 to control the display hardware and initialise its
state (principally the microcode RAM). The second is to give the 68000 access to the pixel
memory in a convenient fashion.

The display control registers appear as a small set of locations in the memory-mapped
I/O address space of the 68000. One register contains a bit which the 68000 sets to cause
the 2801 to start running, together with a bit which forms the wakeup signal for the assist
microtask. Four other locations are used for loading the microcode RAM: three correspond
to the high, middle and low fields of the microcode word, and the fourth is used to
provide the address and cause a write cycle to occur. There is no microcode in PROM
because the display does not have to bootstrap itself: all the microcode RAM is directly
loadable from the 68000.

Two words of status information can be read by the 68000. One is a distributed
DisplayStatus register, which contains bits which indicate 'in line flyback', 'in odd field',
and so on. The other is the Rd68kLights latch, which can be written by the 2901. A bit is
set in the DisplayStatus register when the latch is written and unset when the 68000 reads
from it so that the 2901 can determine whether the information has been received. Writing
to the Rd6é8kLights latch will also cause a 68000 interrupt to be raised if the appropriate
bit in the display control register is on.

The other main role of the 68000 interface is to map the pixel memory into the physical
address space of the 68000. This it achieves by using the 2901 as a memory controller,
with read and write requests translated into microtask enable signals and thus into
microtask activations. When the 2901 is otherwise idle, the elapsed time for a memory
operation is roughly double that of the 68000 main memory. (Since most 68000 memory
accesses are to the instruction stream and non-graphics data, the net effect on throughput

is less than this would suggest.) Images can be built up directly in the graphics memories,
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rather than constructed by the 68000 in its local memory and copied across. Programming
is simplified because there are no special instructions to be embedded in programs, and the
same algorithms can be used for both main and display memory—all that changes is the
addresses of the data structures.

One alternative that was considered was to build a direct memory access (DMA)
controller and use it for bulk transfers of data between the main memory of fhe 68000 and
the display's graphics memory. This was rejected because emulating a DMA controller is a
substantially harder task than emulating a memory board; it is also much easier to make
the latter largely host-independent. Another alternative was to dual-port the memory units
so that they could be independently cycled by the 68000 and the 2901, but this appeared
too complicated, and the resulting non-deterministic nature of the 2901 memory access time
looked as if it could cause problems. There are some disadvantages of the scheme that was
adopted: the latency introduced when the 2901 is busy, the increased overhead for a bulk
transfer compared to a DMA controller which would amortise the setup time over several
words, and the reduced 68000 throughput that results from longer memory accesses.

Two microtasks are allocated to the 68000 memory emulation: one for reading and one
for writing. When the 68000 interface unit detects a read or write cycle directed at the
display memory it raises the appropriate enable line: line six for a read, five for a write.
The code of the two microtasks is shown in figure 9.6.' Upon activation, the read
microtask copies the low-order sixteen bits of the 68000 address into an AV register on the
memory units, and then starts a memory read cycle. Two ticks later, the data is read out
from the memory into the MemObus latch. The microtask-specific microcode bit is then
asserted to indicate to the hardware that the data is available, and the microtask blocks
itself, ready for the next cycle. During the same tick the 68000 interface unit puts the
middle three bits of the 68000 address onto ObusSource and does an obus cycle to extract

the data it wants from the correct memory unit.

! Code reading: a microcode instruction can potentially perform many operations in
parallel, so it is built up out of one or more fragments, each one of which is an
assignment, branch instruction, or microcode bit assertion. Fragments are separated by an
end-of-line or a semicolon; instructions are terminated by a full stop. Each fragment after
the first of an instruction is normally indented an extra tab stop. The order of operands
in an assignment expression, or of instruction fragments, is immaterial. Comments
commence with '//° and terminate at the end of the line.
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Figure 9.6. The 68000 read and write microtasks

;5 A simple READ/WRITE microtask pair
-MODULE ReadwriteTask2 // Read and write for ucode V2
.EXPORT ReadTask // BHandles for startup
\EXPORT WriteTask /7 code dispatching
LGET "MicHdr" // Genera!l machine manifests
.GEY "DisplayMdr2" // Specifiv Version-2 ones
//-- --------- L e L Serecmmmamn. cTecmem————- reecemm——- Seccmm——— LYY R epapipp LY Y e—
// The RCAD microtask
//-- ------- cesrcccmmcee cRemecmmmea. P - L cosammae LY R S e n--

// Apart from the slug counter, which is set to its 'non-video' state, the first
// eniry to the read task does nothing ...

ReadTask: RslugCounter := SlugCountOutsideVideo
TaskBlock, // Set the register for later
RAG8kSIug := RslugCnunter /7 and transfer to the
EnableTaskSwap, /7 siug counter itselr,

// The main entry point: we hang just before this instruction awaiting a

// 68000 read operation., Wwhen it comes, copy the low address part into the
// memory address register (it has to go via an AV}, and do the memory cycle,
// As this completes, signal to the hardware that it has done s0, and block
// awaiting the next operation. We even manage to write our |0 to the lights!

read68k: AViemp := Rs6B8kLoAddr, // Get the low address part
MemAddr:= AVtemp // Move it into memory address
MemCycle /7 & start the READ cycle.
Rtemp := (1 << 6}, /7 Get our task 1D
RA68kSIug := RslugCounter. // Slow down the worldt!
TaskBlock // Block after MemoryCycleDone
RA68kLights := Rtemp // Copy out our ID
MemObus := MemOut. 7/ Transfer out result to Obhus
MemoryCyc leDone // Indicate 'finished’,
EnabieTaskSwap // allow the taskblock and
BR readGBk. /7 branch back to get next.
Ry s sesmemomooe- R seemmmomoe- —eesmm---
/7 The WRITE microtask

// Again, the first entry is merely the startup sequencing logic having its
// little play.

WriteTask: TaskBlock, // The first time through is
EnableTaskSwap /7 purely spurious ..,
BR writeé8k. // When continued, goto loap top
// AMRITE is a little more complicated than a read: the main differences are
// that the high part of the address has to be copied into the MemoriesActive
// latch {which means that we must be able to restore the status quo -- the
// correct value is held in the register RmemActive), and the memory cycle has
// to have some data to be written, In addition, to get the Rbus cycles correct,
// the Branch back to the top of the loop has to come BEFORE the MemoriesActive
// latch is reset to its normal value, Hence the stightly strange shape of the
// loop ... for ease of understanding, start reading at the label 'write68k'.
topOfiLoop: RdMemActive := RmemActive // Reset the memory selection
EnableTaskSwap 77 'allow taskblock' and
. Memo ryCyc { eone., /7 'operation complete’,
writebsdk: RdMemACtive := Rs68KHiAddr. // Select just one memory
Aviemp 1= Rs68KLoAddr, // Copy the low 16 address bits
MemCycle; LdMem // To start the write cycle
MemAddr := Avtemp 114 -= with the new address
MemData :- Rs6BkData. /7 -- and data
Rd68kSIug := RslugCounter, // Slow down the world
BR topOfLoop // 0o the jump now so we can do
TaskBlock, /7 the stop on the next cycle



Non-video display hardware 129

A similar sequence of events occurs on a 63000 write cycle. The 68000 interface unit
supplies a decoded version of the middle three bits of the 68000 physical address as an
rbus source, and these are copied into the MemoriesActive register to select one memory
unit to participate in the write. Unfortunately, this register cannot be read from, and so
the only way to restore the status quo is to slave its correct value in a 2901 register.

One other feature remains to be discussed. When the 2901 is busy generating pixels it
should not be interrupted by continuous 68000 memory accesses, but in a less time-critical
section there is no reason not to carry out 68000 memory cycles immediately. One way to
do this would be to inhibit the 68000 from accessing the display memory at all whenever
the video microtask is running (for example, by giving it a higher priority than the read
or write microtasks). Unfortunately, this would mean that if video generation was
overrunning, the 68000 could be locked out for a complete field, which would cause it to
generate a bus error after timing out the memory access. Instead, the microcode puts the
minimum number of ticks which must elapse before a 68000 memory cycle will next be
acknowledged into a SlugCounter. 68000 accesses are only allowed when the SlugCounter
has counted down to zero. The value to be put into the SlugCounter is set to a large
value at the beginning of pixel generation for a line, and reset to zero at the end of it.
The current values were arrived at by trial and error with a display memory intensive
application program running in the 68000. The one for the pixel generation phase

corresponds to roughly 16 us, the normal state to no delay.

9.4 A RasterOp unit

The original display design included a RasterOp unit to provide hardware assistance to the
2801 in performing the microcode assist function. The basic idea was to use the slice units
to select and align image portions of interest, feed their outputs through some form of
dyadic function box, and assemble the resulting image fragments in a set of bit
collectors—essentially slice units in reverse. Three forms of such a RasterOp unit were
considered, differing mainly in the form of function box provided.
1. The bit collectors would accumulate the output from the slice units without
performing any operations on the data. This would provide fast access to
realigned data with the minimum of hardware investment, leaving the 2901 to

carry out the combinatorial functions. Two passes through the slice units would
be required to handle realignment of both source and destination data.
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2. A separate dyadic function unit would provide arbitrary boolean combinatorial
logic between fixed pairs of slice units, resulting in up to four outputs from
eight inputs. This scheme could not handle image blending, nor could it cope
with an image greater than four pixels tall in a single pass, even for copying
purposes.

3. Pixel-at-a-time operations would be performed by passing each set of eight bits
coming out of the slice units through a 256 x 8 function table (made from fast
memory: it would have to cycle once every 32 ns). This scheme would be able
to combine any set of images that did not need more than eight bits per pixel
in total, and it could use arbitrary blending rules, rather than be restricted to
plane-at-a-time manipulations. On the other hand, it would probably incur
considerable overheads in loading the function table.

All three schemes would have used shift registers tied to the output of the slice units as
bit collectors, which would only be active while the assist microtask were running. The
microtask-specific microcode bit would have caused the bit collectors to be copied into a
parallel set of latches so that collection could proceed in parallel with passing the next set
of bits through the slice units. The latches were assigned rbus addresses; their contents
would be copied back into the memory units with a simple rbus transfer specifying Memory
as the rbus destination. An rbus destination was tentatively reserved for the RasterOp
operation code that the second design would have used.

The design progressed no further than described above, and no RasterOp unit has
been built. Several factors contributed to the decision not to proceed with the
implementation:

1. None of the designs would have been capable of combining (or producing) full-

height images in a single pass. This was a direct consequence of the dyadic

nature of RasterOp, coupled with the existing limitation of only eight siice
units.

[

. It was felt that the limited personnel resources available would be better
utilised by concentrating on the hardware windowing aspects of the design.
This was probably correct given the timescale invelved.

3. RasterOp was seen as a ‘competing’ approach to hardware windowing systems.
In retrospect, this was clearly a mistake: RasterOp is an extremely useful image
generation technique, regardless of its use in managing screen layouts.

4. There was little local experience with RasterOp, and it was felt that 68000
software emulation would be a more flexible way to learn about its properties
than would the design of a piece of hardware. Besides, the hardware could
always be added later ...

| believe that the decision not to build the RasterOp unit was a geod one, even if some of

the reasoning used at the time was a trifle suspect. Its design would have materially
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affected progress with the rest of the display; further experience is still needed with
providing software and microcode support for image generation before a more hardware-
intensive solution should be applied; and it is unlikely that a suitable design for handling

multi-plane images could have evolved with the limited understanding available at the time.

9.5 The eccentric peripherals board

The last hardware unit is not strictly part of the display, but attaches directly to the
68000's backplane bus, and supports the Rainbow Workstation’s input tool set. The first
version provided connections for an encoded keyboard (key-up, key-down signals across
an RS-232-C line); a data tablet (16-bit parallel interface); and a mechanical mouse of the
Xerox or ETH variety (a pair of up/down counters for position information and a parallel
interface for the three mouse buttons). The board is connected to its input tools via a

small junction box into which they plug.
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10. Software for the Rainbow Workstation

A considerable amount of software is needed to enable the Rainbow Workstation to function
as a terminal domain. Some of this software is microcode for the 2901, controlling the
display hardware. The rest of it runs in the 68000, computing the data structures that
describe the screen layout, generating images in the display memory, handling the output
tools and communicating with remote processors. The microcode programs must be
assembled, linked and loaded into the display; the software that talks to external hosts has
to supply session management, virtual terminal support, and screen space and input tool
handling. These software components are discussed in this chapter, beginning with the
2901 microcode and its generation (assembler, linker and loader}, followed by image
management—the generation of bitmaps and the data structures that describe how they are

to be displayed—and input tool handling.

10.1 The Programming Environment
710.1.1 BCPL

The majority of the code described herein was written in BCPL [Richards63]; the rest in a
microcode assembly language developed specifically for the display. BCPL is not a typesafe
language, being based on the concept of using a machine-dependent cell as the basic unit
of manipulation. A cell can be treated as an integer, a pointer or a bit string. The
language also provides some support for character representations, strings and function
variables, as well as an extensive set of flow-of-control constructs. BCPL's non-typesafe
nature is both a great advantage and a considerable hindrance. It allows subroutine
packages to perform operations that would require compiler modifications in other
languages, but at the same time is a fruitful cause of programming errors. There is no
equivalent of the lint program that UNIX provides for C [Johnson78].

Compilers for BCPL are available for a large number of processor architectures, and
the language per se is highly portable, although programs written in it tend not to be,
because of widely differing semantics between implementations of the 'standard’ library.
This was particularly true of the BCPL runtime systems in use in the Computer
Laboratory. Since many of the programs to be described were first developed on a PDP-11

under RSX-11M and only later moved onto a 68000, | invested some effort in defining (and
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implementing one instance of) a BCPL runtime system to provide a 'virtual operating
system’ in the sense of [Reid81]. The package isolates the programmer from needless
dependence on character set, operating system (especially for 1/0), and the vagaries of
some of the existing runtime environments. It introduced exception handling to BCPL,
together with a definition of stream-1/0 that has since been adopted for a Modula-2 runtime
system developed by another group at Cambridge [M. J. Jordan, private communication]. A

full description may be found in [WilkesAJ82b].

10.1.2 Tripos

The other major components of the programming environment were a PDP-11/45 running
RSX-11M, and the prototype Cambridge Distributed System. The former was used for initial
development until the latter supported 68000-based systems, after which further work took
place under the CDS. The operating system available on the processor bank machines was
a variant of Tripos that had been adapted to use a shared fileserver and to operate in the
CDS environment [Richards79, Knight82, Richardson83].

Tripos was designed as a runtime system for small (16-bit address space)
minicomputers to support process control-like applications. As such it is very successful;
as a programming environment, less so. As with BCPL, many of the features that make
Tripos convenient for its target application—a single, shared address space; the minimum
number of facilities in the assembly-coded kernel to keep it small (and thus easily ported);
and a strong bias towards BCPL—are to its disadvantage when it is used to support
program development. Only one interprocess communication mechanism (message passing) is
provided, and depends upon the fact that sender and recipient share the same address
space; there are no software interrupts, so processes must poll or wait for event
notifications; debugging facilities are primitive; the file system unprotected. There is no
documentation of the internal interfaces to system components, which has resulted in a
tangled set of dependency links between them, particularly where the shared address space
has been used instead of message passing for intertask communication. Lastly, the Tripos
support environment (BCPL runtime system, compilers, editors, linkers, libraries and other

program development aids) has not received nearly so much attention as other aspects of

the CDS.
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10.2 Microcode for the 2901

By the end of 1982, two complete sets of microcode had been written for the Rainbow
Display. The first was designed to produce pictures as simply as possible by emulating a
frame buffer display. Only one window was supported, mapped onto a fixed part of the
graphics memory. The control registers in the video chain were loaded from the first few
words of Memory0 to allow some simple experiments with the slice and context units. This
microcode has long since been superceded and will not be considered further.

The second display microprogram was written a few weeks after the first, when some
experience had been accumulated and most of the misunderstandings between the software
and hardware designers (myself and T.R. King respectively) had been exposed. It tried to
make full use of the windowing capabilities of the hardware and to act as a testbed for the
next sequence of experiments, which were concerned with screen management: the first
stage along the path to making the terminal a usable application environment. The second
set of memory control unit PROMs was specifically tailored for this version of the

microcode.

10.2.1 The band structure

The goal of the video microtask is to direct the video pipeline in generating pixels into the
line buffers as quickly as possible. With no window boundaries in a scanline, the video
chain takes 36.8 us to generate 768 pixels. These take 64 us to display, including the line-
flyback time, which means that only 27.2 us (roughly seventy display memory cycle times)
are available for 'overhead' activities like window boundary and interlace handling. If the
number of window boundaries on a line is to be maximised, the 2901 should clearly do as
little processing as possible for each one.

The scheme adopted is to divide the screen into horizontal bands, in each of which
only vertical window boundaries occur (figure 10.1). In turn, a band is divided into a
number of non-overlapping rectangles, which together cover the entire screen width. A
band is described by a band head and one or more rectangle descriptors (figure 10.2).
The band head defines the height of the band and the number of rectangles it contains; a
rectangle descriptor contains the width of the rectangle, values to be copied into the
SliceComparators, SliceBases and ContextRegister, and the addresses of the words in each

memory unit that contain the pixel at the rectangle's top left corner. Rather than put the
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Figure 10.1. Splitting the screen into bands

descriptor data into consecutive words of memory, they are all assigned the same address
and stored in different memory units so that a single memory cycle gives access to them
all. Thus, in a band head, Memory0 stores the height of the band and Memoryl the
number of rectangles in it. Reading the rectangle descriptors takes only two memory
cycles: one for all the control data, the other for up to eight pixel pointers. Each address
goes directly into an on-board AV register from the memory, and never passes through the
2901. The control data precedes the pixel address information so that the video chain
registers can be loaded during the memory cycles that read the address data and the first

pixels.
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Figure 10.2. The band data structures

There is a minimum overhead of three memory cycles on each window boundary: one
each for the control data and pixel addresses, and one more to preload the slice unit
pipeline at the beginning of a rectangle (to cope with windows that are not word-aligned).
Even if the 2801 were able to overlap all its other computations with these three memory
cycles, no more than twenty-three window boundaries could be accommodated on a line. In
reality, of course, the number attained is lower than this because the 2901 has a
considerable amount of extra processing to do. The current microcode supports only ten to
twelve window boundaries per line before overrun begins to happen. This is not as bad as
it may seem at first sight. For a start, ten boundaries per line means 5760 of them in a
frame, which gives considerable overall flexibility. Also, the number of logical window
boundaries is constrained only by the number of physical boundaries they give rise to.
An experimental version of the microcode (due to T. R. King) that forced ali the planes to
maintain the same bit alignment was able to handle up to 17 boundaries per line, but only
by sacrificing the ability to handle 'transparent’ viewports.

if the video generation for a line does take too long, all that will happen is that the
ends of the overrun scanlines will not be displayed correctly—whatever was in the line
buffer from the previous line will appear. The overrun signal will wake up the error
microtask, which can direct the video microtask to move onto the next line. This mechanism
copes with any cause of overrun, such as too many 68000 memory cycles or a large latency
between the wakeup of the video microtask and its activation, and so is preferable to
enforcing a conservative limit to the number of window boundaries allowed in the band

structure.
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10.2.2 Interlace

U. K. standard television is interlaced with two fields per frame, so the 2901 must skip
alternate scanlines as it interprets the band structure.! Each time it is activated, the
field microtask tests the InEvenField bit in the DisplayStatus register, and sets a counter
to the negative of the number of scanlines in the pre-image porch. (lts value will be even
or odd depending upon the field being displayed.) The video microtask is activated on
every line flyback (even during the times when there is no image to display) to increment
this counter by two. When it reaches zero or one (which are easy to test for), the code
tests to see whether the second field is being displayed and, if so, skips over the first
scanline of the first band. Pixel generation then commences. From then on, a scanlines-to-
go count for the current band is decremented by two after each line is generated and a
new band is selected when the count reaches zero or minus one. The first line of the new
band has to be ignored if the previous count was minus one; this is straightforward unless
the new band covers only a single scanline, in which case the whole band must be
skipped. To minimise the startup time at the beginning of a line, band changes take place
at the end of pixel generation for the previous line; the video microtask thus starts off
with the largest head-start possible when it is activated. Even if the new band is going to
overrun anyway because it is too complex, this will allow more pixels to be generated for
its first line, which will remain in the line buffers until they are overwritten, which may
be useful during debugging. The video microtask signals ‘line complete’ (VideoDone) to
prevent the overrun error as soon as it has generated enough pixels; if the move to a new
band took place at the beginning of a line, it might cause that line to overrun when it

would not otherwise have done so.

10.2.3 Memory width

The microcode must be able to calculate the addresses of the second and subsequent lines
of pixel data in a band. Time constraints at the window boundaries dictate that this
algorithm be as simple as possible. The solution adopted is to assume that the pixel memory

has a fixed rectangular shape, so that a constant value (the width of the pixel memory)

! It would have caused considerable overheads in the image generation software to use
separate bitmaps for each field. Similarly, the screen mapping task would have been made
more difficult because the binding between bitmap and field would be viewport-specific.
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defines the distance between one scaniine and the next for all windows. All that remains is
to choose the aspect ratio for the rectangle. The width must be at least as large as the
physical screen if full-sized images are to be displayed without fragmentation. It was felt
that vertical scrolling of windows over tall images would be more common than horizontal
panning over wide ones, so the minimum such width (768 pixels) was chosen. Each memory
unit thus has a height of 1365 scanlines, equivalent to two full-screen bitmaps plus about

10000 words of control data.

10.2.4 The frame data structure

Rather than have the band structure start at a fixed location in memory, a data structure
called the frame head contains a pointer to it. Word 0 of Memory0Q points to the frame
head itself. The frame head structure is at the same offset in each memory unit; the band
structure need not be (although it is convenient in practice to make it so). It is a simple
matter for the 2901 to read the address of the band structure from the frame head and
broadcast it to all the memory units. This allows the 68000 software to flip the display
back and forth between two band structures by updating just one location. While one of
the band structures is being rebuilt, the other is used for display; when the new one is
complete, the roles are reversed. Synchronisation between the 68000 and 2901 is only
necessary if the band structure is updated twice in one field time (20 ms), which is easily
avoided by having the 68000 wait for the field-flyback bit in the DisplayStatus register to
undergo its next non-set -+ set transition.

The pointer to the start of the band structure is currently the only item in the frame
head, but anything that could usefully be synchronised to field or frame start could be
added to it. Examples include a short reverse-video blink (for use as a 'visual bell’), or
colour table animation—both techniques require lookup table updates synchronised to the

start of a frame.

10.2.5 Microcoded assist functions

The functions suggested for the frame head structure are specific examples from a much
wider class of microcoded assist functions. The primary rationale for microcoded assists is

to reduce the real-time requirements of certain common operations, such as line drawing
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and character painting. Minimising the number of processor cycles used in the 68000
contributes towards this goal, but it may also be possible to reduce the elapsed time by
having the 68000 sit idle waiting for the 2901 (because the latter can perform certain types
of operation better). There is quite a close parallel here with operations that require
timeout handlers for periods in the 10-100 us region, where the scheduling overheads of
setting up a separate timeout request are more costly than idling until the operation is
complete, especially if the timeout rarely goes off. Such a scheme can easily be improved
by having the 68000 enter its wait loop at the beginning of an operation (to ensure that its
predecessor has finished), rather than at the end (to wait for the current one to
complete). This allows the 68000 and 29071 to be executing useful work in parallel, and may
even result in the removal of locking altogether on occasions.

A very simple-minded mechanism was adopted for the communication between the 68000
and the 2901: the latter has a microtask that continually scans a linked chain of packets,
each of which contains a function word in a standard place. If the function word is zero,
the packet is passed over; otherwise, its value indicates an operation to be performed.
The 2901 zeroes the function word when it completes the operation, thus both indicating
completion to the application and ensuring that the packet will be skipped over if the
queue is rescanned. The packets are linked through their first words, and are held in
Memoryl so that they can easily be accessed by the 2901. The chain commences at word
zero and has its ‘end marked by a zero link word. |n this scheme, packets need only be
inserted into and removed from the chain at infrequent intervals: essentially when a new
68000 application starts up or closes down. Each packet is owned by just one Tripos task,
so that there is no synchronisation overhead in the 68000 for normal use. To invoke a
microcode assist, the 68000 task waits until any previous operation for the packet is
complete (usually by entering a spin loop), and then writes the parameter words (if any),
followed by the function word for the operation desired. |f the previous operation is known
to take some time—clearing a large area of memory, for example—the task can suspend
itself after arranging to poll the function word at suitable intervals or to be awakened
when the 2901 next causes a 68000 interrupt.

While the 68000 is adding or removing packets from the chain, the chain links must be
kept consistent (no update should be made that might cause the 2901 to wander off into
memory that is not part of the list), and only one task can be aliowed to update the chain

at a time. In Tripos, the latter constraint is most easily met by having a single 68000 task
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perform all manipulations that change the structure of the packet chain. The first
constraint is trivially satisfied when adding a packet (the link word of the new packet is
initialised before it is threaded into place), but removing a packet is somewhat more tricky
because of the need to synchronise with the 2901. This is achieved by making the 2901
unlink the packet through use of the Unlink function code, which takes the preceding
packet address as its only operand. The packet may be de-allocated once the 2901 has
signalled completion by zeroing its function code word. (The address of the predecessor in
the chain is supplied in order to reduce the amount of state saving needed in the 2901.)

it is desirable to have the assist microtask biock itself when it is has nothing to do,
so as to minimise latency of other microtask invocations, particularly 68000 display memory
accesses, and to allow the idle microtask to be used for performance monitoring. The
required constraint is that the assist microtask be active whenever there is a packet with a
non-zero function word in the chain. Simply having the 2901 block itself when it reaches
the last packet on the chain is inadequate: if the 68000 writes a function word into a
packet that the 2901 has already passed in its scan, the 2901 may get to the end of the
chain and block, unaware of the update. (Although the 68000 can ensure that the assist
microtask is active by setting the appropriate wakeup bit, it cannot cause it to rescan the
chain again so easily.) One approach might be to put a microtask wakeup into the wait loop
for operation completion, but this would still allow an operation to be left pending until the
next one was started, some indeterminate time later.

The solution adopted instead makes use of a binary semaphore in the graphics memory
(the be-active word). This word is zeroed by the 2901 when it starts scanning the chain
and made non-zero by the 68000 every time it sets a function word; its value is immaterial.
(The exact sequence is: write function word, set the be-active word, and then assert the
assist microtask wakeup signal.) If the 2901 reaches the end of the chain and the
semaphore value is still zero it may block; otherwise it should re-scan the list. The test
and decision to block must be a single atomic operation from the point of view of the
68000; this is easily achieved by inhibiting 68000 graphics memory cycles by disabling
microtask dispatching. The protocol is designed to minimise this interval since it aiso locks
out the video generation microtask. Sometimes, of course, the packet chain will be
rescanned to no effect: the packet may already have been met and dealt with. This
overhead is likely to be small since it is incurred only if the 2901 manages to perform the

requested operation between the time when its function code and the be-active word are
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written. It could be completely eliminated by using the be-active word as a counting
semaphore, but this would require support of read-modify-write cycles on increment
instructions, of which neither the 68000 nor the display’s host interface are capable.

The assist microtask initially provided support for only a few critical operations: Noop
(do nothing—function code 0), Unlink (as discussed above), and LoadlLookupTable. It is
gradually being extended to handle the filling of rectangles, line drawing (both normal and
anti-aliased), painting text from a greyscale fount in the graphics memory, and a form of
RasterOp. The assist microtask ignores function codes it does not understand (the packet
structure makes this easy) so that a 68000 task can be written to provide an assist
microtask emulator for them. This is useful for developing new assist functions: the only
effect when moving to microcode from BCPL is an increase in speed—not even relinking is
required.

Reading values from arbitrary memory units is a tedious operation with the current
design of the display: the memory unit source selection is bound into the microcode as part
of the 2901 SourceSelect field. Writing a value involves converting a memory unit number
into its corresponding bit in the MemoriesActive latch. This could either be done in the
2901 by a shift and count loop or in the 68000; the latter was chosen because it can use a
simple table lookup more easily. Every time, therefore, that a memory unit number occurs
as a packet argument, it contains both the unit number (in the low-order byte) and a
mask for the MemoriesActive latch (in the high-order byte). Operations that write to
several memory units at 2 time can be handled by setting more than one bit in the mask,
but their utility is fairly low because there is generally no address correspondence between
the portions of a bitmap in different memory units. Doing multiplication in the 2901 is not
easy, so the 68000 has been left to do this wherever it is needed (principally in

coordinate-to-address conversions).

10.3 Microcode support

During the development of the hardware architecture, several fragments of pseudo-
microcode were written to test out ideas for parts of the design. In particular, they were
used to get some feel for the amount of parallelism that could be made use of in the critical

video generation loop and for the speed at which operations like window boundary changes
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could be made. Two conclusions emerged: that an emulator would be useful to help debug
the final code (primarily because of the complexity resulting from its parallelism); and that
some form of assistance with the details of programming the 2901 was absolutely essential.
Work on an emulator was begun and then taken over by a Diploma student as a course
project [Munton82]. Although it was not completed until after the bulk of the second
display microcode had been written, the emulator did manage to show up a number of

timing flaws that would have been extremely difficult to detect by any other means.

10.3.1 The microcode assembler

A prototype microcode assembler was written by D.W. Singer; the production version is a
substantial rewrite of it. Rather than having to drive the 2901 via its encoded control
signals directly, the assembler allows simple assignment-like statements to be written, with
a syntax reminiscent of PL/360 [Wirth68]. The assembler models the hardware of the
Rainbow Display as a register transfer machine. Assignments from one part of it to
another are converted into the relevant bus transfers or source selection signals. The 2901
ALU output is included as part of this scheme and so allows the result of computed
expressions (including the contents of its registers) to be treated in the same way. Full
use of the idiosyncracies of the 2801 can be made transparent to the programmer.!
Relieving the programmer of the burden of selecting and encoding operations means
that it is possible to carry out extensive checks on their legality. Usually, this involves
ascertaining that no attempt is made to change a microcode bit once it has been assigned
(for example, by trying to do an rbus transfer at the same time as a branch). Multiple
attempts to set a bit to the same value are allowed since this is a common side-effect of
compatible operations. No checks are provided on multi-tick operations such as memory
cycles, since this would require the assembler to perform program flow analysis. The
checking facilities proved extremely useful in practice, catching many errors that might

otherwise have remained extremely elusive.

! For example, the assembler is able to recognise that a transfer from a 2901 register to a
memory board AV requires the use of ALU bypass mode (which uses a special fast-transfer
path from an A register to the 2901 output), thus fixing the register as the A input to the
ALU. In this mode, the 2901 ALU output is always written back to the register specified in
the B field. |f there is no otherwise useful result, the assembler arranges to copy an
arbitrary register harmlessly back to itself.
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Because the memory units are quite complicated objects in their own right they are
handled internally as a separate register transfer engine. The checks here can be more
rigorous than for the rest of the machine because the smaller number of interconnections
available considerably restricts the valid operation set. The operations available in a given
version of the memory board control PROMs are defined by a header file bound at compile
time into the assembler, a PROM programmer and the microcode loader. As a result, the
assembler can check that a putative memory board operation is included in the list of those
available. (Compile time rather than runtime binding was chosen to minimise the impact on
the speed of the assembler.) The linker checks that all the fragments of microcode it is
putting together are for the same PROM set, and the loader checks that the resulting
microcode load file is likely to be compatible with the set installed in the display.
(Unfortunately, there is no way for the loader to identify which PROM set is in actually

use, so some scope for confusion remains.)

10.3.2 The microcode linker

1t was decided early on in the design of the microcode support system to include a link
step in the process of getting from source to loadable microcode. Linking is a much slower
operation than loading because of the amount of file manipulation involved: the former
takes about a minute of elapsed time, the latter only a few seconds. In practice, microcode
loads are executed an order of magnitude more frequently than microcode links during
periods of intense microcode development. The ratio is even more favourable during normal
running.

The linker performs external symbol resolution, microcode memory allocation and branch
relocation. Relocation is used for short branches and the small constants that go to make
up a variable branch address. The linker also checks that branches do not cross page
boundaries. It is not bound to a particular memory board control PROM set, but does
check that all the PROM identifiers encoded in the input files agree. This catches the
obvious mistakes (reassembling all but one, or just one, file) but does not require the
linker itself to be altered when the PROMs are changed.

A form of automatic library scan for unresolved external symbols was designed, but
never implemented. Being able to provide different versions of modules with the same

internal (module) name proved useful for testing new microcode versions that were
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substantially similar to existing ones; this was most easily provided by passing a list of
file names to the linker. An algorithm was devised to allow the linker to reposition modules
in microcode memory automatically to avoid cross-page branches, but the design was not
implemented for lack of time.

The segmentation scheme adopted for the microcode uses a separate module for each
microtask, except for the 68000 read and write microtasks, which are impleﬁented as one
module. Although this causes occasional cross-module data dependencies, they are few in
number. (The prime example is the link between the field and video microtasks through the
lines to go count and the field data pointers, which are established by the former and
used by the latter.) At the end of 1982, the largest module was that for the video
microtask, with about 200 instructions (about six pages of source). Since then, the assist
microtask has overtaken it as more functions have been added to its repertoire. The source
for most other modules fits onto a doubie page spread of line printer paper. The small size
of the modules has so far prevented any problems with branches across page boundaries:

all but the two larger modules fit into page zero of the microcode RAM.

10.3.3 The microcode loader

Commissioning the display required loading microcode into it, but there was no 68000
system available at the time. Instead, a standard Type-1 Z80 system was programmed to
emulate the 68000 backplane (by waggling bus control lines sedately up and down while
putting values onto the address and data buses). The microcode loader program initially
ran on a remote PDP-11 running RSX-11M and communicated with the ZB0 via the ring
single-shot protocol [Ody79]. Al communication errors were treated as fatal; in practice,
they hardiy ever occurred. Eventually, the Z80 system was replaced by a real 68000, and
the microcode loader program moved onto it almost unchanged.

The loader provides commands to start and stop the 2901, and to set or unset various
other control bits (such as the assist microtask wakeup signal) in the display control
register. It is designed to be invoked automatically on system restart as well as

interactively for testing purposes.
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10.4 Image manipulation software

The image handling software comes in two parts: that which is responsible for allocating
the graphics memory and managing windows, viewports and the 2901 band structure; and
that which generates the images to be displayed. The distinction arises because the first
set of operations manipulate global data structures, access to which must be synchronised,
while the second work only in per-task image areas, and so can be used simultaneously by
several tasks. The image generation software is a simple reentrant subroutine package,
which allows it to execute with little overhead, while the code that manages the shared
state executes in a separate Tripos task (the display manager) so that it can serialise the
client requests. Each client is given a stub that isolates it from the details of

communicating with the display manager.

10.4.1 Image generation

The image generation software builds images in logically rectangular areas of the graphics
memory called bitmaps, which are from one to eight bits deep. It provides a fairly
standard set of graphics primitives: line drawing, polygon fill, character generation, and
reading and writing individual pixels. The first argument to each function is a bitmap
descriptor, which contains pointers to a bitmap's graphics memory areas, together with
information about the bitmap's extent and depth. (Note that the different planes of the
bitmap need not all be at the same offset within their respective memory units.) Although
the client interface of the package is very simple, its internals are not particularly so as a
result of the usual inelegancies that occur when clarity of code has to be sacrificed for
speed. The 32-bit nature of the BCPL implementation is somewhat of a handicap because
many of the operations are performed on 16-bit quantities (the 68000 reads and writes
memory in 16-bit words even though it contains 32-bit registers in the processor). Coding
in assembler or microcode is probably all that can be done to improve matters. (The client
interfaces are such that the use of microcoded assist functions is completely transparent.)

The display hardware is little-endian [Cohen81] (its bits are numbered from the least-
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significant end of the word), but the 68000 is mostly a big-endian machine.? The result is
that the 68000 cannot sensibly use 32-bit operations on the graphics memory. Some
experiments were carried out to see whether this was a limitation. In fact, the differences
between 16-bit and 32-bit working turned out to be minor, even favouring the former for

operations involving small objects such as characters.

10.4.2 Graphics memory allocation

As has already been noted, the graphics memory is treated as though it were a set of
768 x 1365-bit rectangles. Allocating bitmaps is not a trivial task if the best use is to be
made of the available space: the better the utilisation that is desired, the greater is the
cost of performing the allocation. A backtracking algorithm is used to find a suitably
shaped space to be allocated; if there is insufficient memory available on one unit, there
may be enough on another. With the memory divided into vertical strips and bitmaps
allocated only in integral multiples of the strip width, the cost/benefit ratio of the
algorithm can be adjusted simply by altering the number of strips. The current algorithm

is a trifle simplistic, and only has a single strip.

10.4.3 Virtual screens—pads and clusters

One of the main aims of the Rainbow Workstation is to support multiple virtual screens,
and so it seemed appropriate to try to provide facilities in the shared support software
tailored specifically to this activity. The physical screen serves as a viewport for a window
of the same size onto a virtual desktop (figure 10.3). The layout of the desktop is under
user control through the display manager task; the contents of the desktop are defined by
positioning viewports that map onto windows on virtual screens. A virtual screen, whose
layout is decided entirely by the application uéing it, is itself constructed by mapping
windows onto bitmaps.

Virtual screens are called clusters after they way they group together images. Part of
each cluster descriptor is a chain of pointers to rectangular pads specifying the cluster's

virtual screen layout. A pad defines both a viewport on the cluster and a window onto a

! Both the little-endian hardware designer and the big-endian software designer assumed
that the other would get it right, the correct behaviour being obvious to both parties.
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Figure 10.3. Mapping bitmaps onto the screen

bitmap as well as some property bits that indicate how the data is to be displayed (by
selecting the part of the lookup table to use). Pads are similar to the panes of Smalltalk’s
‘'windows' [Tesler81]. They can be used for pop-up menus and inverse-video headers as
well as for general graphics and text. More than one pad (in the same or different
clusters) can be mapped onto a single bitmap. Pads make it possible to perform operations
like indicating selections in a text editor without altering the stored image. (By mapping
pads with different property bits onto the selected portion of the image, and positioning
them in the same place on the virtual screen as the normal image). A special case is that
of a pad mapped onto a zero-depth bitmap, which allows a range of shades to be produced
by using the property bits without consuming any graphics memory.

Every cluster has a background pad to provide a neutral wash for those areas that are
not covered by another pad. This also speeds up the band structure algorithm marginally,
since it need not test continually for dropping off the end of the pad chain. Pads have
priorities to define how they behave when two or more overlap; the background pad is
given a nominal priority of zero. Pads and clusters may not be nested recursively. The
efficiency gains that result from this are considerable, particularly on a screen displaying
many clusters, each with many pads. It was hoped that the model of allocating to each
program its own virtual terminal would remove much of the need for a more general (and

expensive) structure.
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10.4.4 The physical screen—windows and viewports

In a similar fashion to the way that pads and clusters build up a virtual screen from one
or more bitmaps, windows and viewports describe the allocation of the physical screen to
one or more clusters. The prototype software supplied a client-level procedural interface
directly to the window and viewport management structure for testing purposes. In the
final system, the only software that will update the physical screen description will be the
terminal domain manager. Like pads, viewports have priorities. Unlike pads, they contain
no information on how they should be displayed—they simply show whatever the cluster
provides. Because the positions and priorities of viewports are expected to change
relatively infrequently compared to those of pads in their clusters, an intermediate (semi-
compiled) form of the band structure is maintained. This skeletal band structure is only
regenerated on explicit request, which allows a sequence of updates to be batched
together. It takes the form of a set of skeleton rectangles that define offsets into clusters
rather than bitmaps. It is designed so that it can be modified incrementally rather than
having to be rebuilt after each change, although the early implementations did not take
advantage of this. Recomputing the band structure from the skeletal form is faster by a
factor that depends on the relative complexity of the virtual and physical viewport
structures.

With four viewports on the screen, the band structure can be recalculated about eight
times a second. With ten, the rate drops to about three times a second. The result is that
changing the priority of a pad or viewport causes an effectively instantaneous change on
the screen. It is even possible to use these mechanisms (including complete recalculation of
the band structure from scratch each time) to move a cursor around, although it is a little
jerky. Using a pad in a cluster instead of a separate viewport for the cursor is more

responsive, but limits the range of effects that can be achieved.

10.5 Input tool handling

The Rainbow Workstation is endowed with a number of input peripherals, including a
mouse, tracker ball, keyboard and graphics tablet, attached via an interface board that
plugs into the 68000 backplane. Provision has been made for a number of more eccentric
ones (such as a keyset, function buttons or a coin in-the-slot machine for administering a

particular variety of resource control). Three sorts of input channel are provided: serial
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RS-232 lines (used by the keyboard), AClAs for parallel input (the graphics tablet) and a
special-purpose dual 16-bit counter for a mouse or tracker ball. Low-level support is
provided by assembly-language Tripos device drivers that map hardware actions into
packet-based interactions with the rest of the system.

On top of the device drivers is a layer of software called the raw input package that
was initially designed to allow connection via the ring to a remote input device (a graphics
tablet service provided by a Type-1). This package converts the operations of physical
tools into two sorts of virtual actions: coordinate events and switch events. The former
occur whenever a coordinate input device (such as a mouse or graphics tablet stylus)
changes position by more than a specified amount (typically at or near the resolution of
the device). The latter are generated by any change in the state of an input tool (e.g. a
key being pressed or released, the tablet stylus being lifted off the paper, or a coin being
put in the meter).

The model envisaged is that illustrated in figure 10.4: low-ievel routines interpret
events as they occur and build queue entries, notify the client themselves, or pass the
event onto tool filters which provide more specific actions. Since screen layout and the
provision of virtual input tools are closely linked, it seems sensible to join the two
functions together into a single task to avoid needless synchronisation overheads.

A client provides the raw input package with a subroutine for each event type, to be
invoked asynchronously with the main program when an event occurs. The first version of
the package called a function in the same task as its parent, so that it shares the same
global vector and state. When raw event handling is moved into the display task for
greater responsiveness, the client will need to supply a full closure rather than just a
routine address. The event routine may either act on the event immediately (e.g. by
setting a global flag or updating a slaved coordinate set), or it may add a packet onto a
work queue to be inspected later by the main program. Careful use of synchronisation
primitives can allow both normal and expedited data streams to be constructed. Because the

event queues are generated by client-supplied pieces of code, the range of event types is

not artificially constrained in advance.

Two typical tool filters are the default ones for mouse clicks and keyboard events.
Both build queue elements, but the mouse filter includes coordinate data as well as the
switch number, while the keyboard filter handles auto-repeat, shift and control keys, and

n-key rollover. The mouse filter can also provide time-related actions, such as
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distinguishing between single, multiple and long-duration button clicks. The filter
structure is defined by the client, so that it can be tailored specifically to the particular
application, but a default one is provided that is hopefully adequate for the commonest
cases. This time orders all events by converting them into operations on an extended
virtual keyboard, and attaches coordinate data to each switch transition, much as was done
in ADIS [Sproull79]. The default filter structure also maintains the current locator
coordinates to aliow explicit (synchronous) polling by applications. It has been suggested
[Jordan81] that coroutines, rather than subroutines or processes, should be used to
provide an execution framework for such filters because they provide both local state and

fast context switching, but this has not yet been implemented for this package.
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11. Evaluation

The hardware of the Rainbow Display does what it was designed to do: support on-the-fly
hardware windowing of colour and greyscale images. However, before the experiment can
be adjudged a success, a closer analysis of the relative costs and benefits is in order.
This chapter offers such an appraisal.

In graphics hardware design, one target is a sensible tradeoff between host and
display processor functionality; another is a similar tradeoff between performance and
complexity in the display engine. Solutions are constrained to a large degree by absolute
performance requirements, not just simple minimum-cost metrics. Selecting and analysing a
single point in the multi-dimensional solution space is not a particularly good methodology,
but remains a limitation that most projects (including this one) must live with. This is not
to say that information cannot be gathered by such an approach—it can, and often to good
effect—just that predictions of future benefits must be treated with some care, unless the

mapping from current to potential implementations is obviously plausible.

11.1 Project goals

In the early stages of the project there was a confusion of roles between constructing a
vehicle for terminal domain software research and an investigation of hardware windowing
support for colour and greyscale images. It was resolved in favour of the latter at the
expense of the software aspects of terminal domain design, at least in the short term.

Creeping featurism was a major contributor to the complexity of the final machine.
Some of this was due to poor project management—trying to finish the design in too short
a time, with insufficient input from the overall goals into the low-level details. Part was a
consequence of introducing features simply because a mechanism to support them had been
devised. The original objective of a prototype for a line of cheap displays was abandoned
too readily in the face of requests for up-market graphics support. Regrettably, schedule
pressures precluded the construction of any hardware prototypes as a prelude to the full
machine; these might have led to a more careful re-examination of the tradeoffs that were
being made.

The inclusion of colour in the set of goals served to push the design towards greater
functionality, thus helping to redirect the aims away from provision of a terminal domain

research vehicle towards a graphics display. This was contributed to by the choice of
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building a complete display from scratch, rather than trying to adapt an existing design.
When the project began it was not obvious that any suitable base systems for the latter
approach existed; nevertheless, the result was to further change the emphasis of the
project towards graphics-oriented (rather than workstation-oriented) solutions.

One goal that should have been adopted, but was not, was to design a display
processor that could make good use of VLS| techniques in a future implementation. Some of
the hesitancy in accepting this came from a lack of faith in the local availability of VLSI
technology, some from a simple lack of knowledge of the opportunities and restrictions
associated with the medium. In any case, the first implementation had to tradeoff future
flexibilities against current realities in the form of board space and connector limitations.
The result of a more VLS!-oriented approach would almost certainly have been a less
capable first implementation, but the benefits would probably have outweighed the

disadvantages from the point of view of future designs.

11.2 Hardware
11.2.1 I!mage generation

Insufficient support was given to image generation. Reducing the rate at which images
have to be regenerated by the 68000 helps, but it is not enough: there remain many

activities where image generation is the critical response time path.

Pixel-at-a-time operations

A major oversight was support for pixel-at-a-time operations. The graphics memory is
presented to the 68000 as a set of single-bit deep planes, leading to considerable
overheads in handling multi-bit pixels, which must be manipulated largely by 68000
macrocode. The breadth-first structure was chosen to allow greater parallelism through
manipulating several pixels at a time, and to simplify the management of images with
different depths. It also offers great freedom in allocating the graphics memories, thus
contributing to increased memory utilisation. However, it is probably an inappropriate

host interface for a largely multi-bit pixel display memory.
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First order corrective action would be relatively simple, involving just a few changes
to the 63000 interface unit and the read and write microtasks. The easiest solution might
be to extend the address space recognised by the 68000 interface unit to, say, 8 Mbytes
(half the 68000's physical addressing range), and to dedicate separate fragments of this
address space to different pixel depths and/or memory planes. The 2901 microcode couid
use the high-order portion of the addresses to select an appropriate reéd/write code
fragment (this information is already available in an rbus source on the 68000 interface
unit). One disadvantage would be a somewhat reduced freedom in allocating images to the
graphics memories—the planes of an image might be restricted to similar addresses in each
memory unit, for example—but this is probably not a great loss. The lengthened
read/write cycles because of the initial case statements would be more than compensated for
by the reduced 68000 overheads; the degradation in simple cases would almost certainly

have a negligible effect on overall system throughput.

RasterOp

No RasterOp unit was provided. Although this was probably appropriate for the prototype
described here, it should be rectified in any subsequent implementation. Such a unit
should aim to provide effective support for the two most common operations with multi-bit
pixel images: copying data from one place to another, and merging two images via a pixel-
at-a-time blend operation. The former would be best served by hardware to help realign
data, while the latter would benefit more from assistance in converting back and forth
between depth-first and breadth-first pixel representations. Bitwise operations are of little
use with anti-aliased images, so the benefits to be gained from a traditional bit-oriented

RasterOp unit are not likely to be very great.

Memory access

The graphics memories were single-ported, forcing all accesses to go through the 2901. In
the context of the first implementation this seemed a reasonable compromise to reduce
overall system complexity, but it has significant disadvantages for future designs. A dual-
ported memory system would allow a separate image generation unit to be constructed, with

fewer compromises between its needs and those of the output side. Both could benefit from
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the resulting simplifications. The 2901 would no longer be the bottleneck for memory
accesses, allowing greater effective parallelism as well as potentially removing the need for
microtasking altogether (more on this below). Contention for memory cycles could be
alleviated with the use of wider access paths for video output so that fewer read cycles
would be needed, and by supplying a fifo for pending write cycles (as used, for example,

in the Tektronix 4115 [Doornink84}).

11.2.2 The video pipeline

Within the constraints of the overall solution that was adopted, the memory units have
proved a success. Encoding their control signals into PROMs saved microcode and
backplane space with no net performance loss: 32 operations proved sufficient for all the
requirements of the first three microcode releases. Roughly half of the AV registers have
been assigned functions, which leaves plenty of room for future expansion. The lack of
parity has not yet led to any detectable difficulties.

The slice units work, although it was a major mistake to separate them from the
memories. (The consequences are discussed in greater detail in the section on scalability
below.) The fast-transfer mechanism proved somewhat troublesome to get going; most of
the problems disappeared when the grounding on the slice and memory boards was
improved.

The context unit provides considerable return for the small investment in hardware it
represents. Most of its success stems from the large ratio between control and data
bandwidths it effects; almost as important is the ability to make use of a large lookup table
that can be segmented in an intelligent fashion (i.e. most effects require less than 256
entries to represent). Such segmentation is of particular importance when a set of disjoint
clients are sharing access to the display, since it allows each one to control a ’private’
lookup table that maps all of the image bits at its disposal. (The same effect could be
obtained in a more profligate fashion by reserving n bits of each client's image to indicate
which of the 2*n fragments of the lookup table to use. This is the only recourse available
in more traditional systems.)

The lookup table and video output stages were effective, if unexciting, save only for
the inability to support an external video synchronisation signal. That does not seem to

have been a great loss.
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The display was originally intended to offer limited (up to 4-bit) greyscale capability,
and colour was added only as an afterthought when the number of memory units had been
increased to eight. The move to colour was not inherently a mistake—indeed, there are
many interesting applications for a colour display with good depth resolution—but it did
have a number of unfortunate consequences. The most important of these was the loss in
effective spatial resolution. (High-resolution monitors capable of 1200 x 1000 pixel resolution
have become available only relatively recently, and remain quite expensive.) The result is
that the display can only handle about 27 lines of 80 characters on the colour monitor,
which is quite poor by comparison to commercially available monochrome vdus that can
manage 60 lines of 96 or 132 characters.

The benefits obtained from adopting U. K. television as an output standard were small:
it avoided further contention within the project as to what the output format would be; it
allowed cheap monitors and hard-copy units to be used (but note the effects mentioned
above); and it enabled a few video tapes to be made directly from the display. However,
the deficits seems to have more than outweighed these advantages:

* The 25 Hz refresh rate leads to noticeable flicker on the monitor, which becomes
objectionable after even a fairly short period of use. Monitors with longer
persistence phosphors help somewhat, but the effect is still irritating.

* The need to support interlace complicates—and slows down—the microcode.

* The display has ended up with an architecture that is not readily scalable to
higher refresh rates or resolutions (largely as a result of separating the slice
and memory units). This might not have been the case if the goals in this area
had been more ambitious to begin with.

* The spatial resolution is inadequate: the pixels are easily discernable by evye,
even on a monochrome monitor, and low-cost colour monitors create more
problems than they solve in this area.

* Videotaping can as easily be done indirectly with a camera, which would allow
selective zoom and pan to be applied independently of the displayed image. The
attempts to support external video synchronisation were largely wasted: no
interest has been expressed since the display’'s completion in combining it with
live-action video.

Providing support for ‘transparent’ viewports was a natural application of the prototype
display hardware. However, it served to increase band-structure calculation time somewhat,
and it meant that window boundary changes became more expensive. Transparent viewport
support is used primarily to support cursors, although a few applications have made limited
use of it for other purposes such as alignment grids. There are usually other ways to

achieve the latter effects without great cost, and future implementations might do as well

by providing special-case hardware support for a simple (1-bit deep, 16-pixels square)
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cursor; this would provide most of the benefits of the current scheme with few of its
drawbacks. In particular, cursor movement could then be bhandled independently of band-

structure manipulation, leading to much lower software overheads.

11.2.3 The 2901

The design of the microcontroller for the display does seem, on the whole, to have been a
success, although there are a few niggling infelicities in the microcode such as the overlap
of rbus cycies with small constant loads and branches, and the hard-coding of the memory
unit number into the source-select field. The decision to use the 68000 as the general-
purpose processor served to simplify the 2901 design considerably, and also helped to
focus activities on its controller functions. The 128 ns cycle time seems to be close to the
minimum achievable with 2901-based systems; this is especially gratifying given that this
was the first use of bitslice technology in the Computer Laboratory. The microtasking
hardware proved very convenient in helping to separate the various control functions that
the 2901 performs; and it did so without significantly impacting the performance of the
machine.

On the other hand, two full boards of logic seems rather a lot to pay for what is
essentially just a state sequencer. One reason for its size was the need to use small and
medium-scale integration random logic because the desired functions were not available in
LS| packages. Given the constraint of using the 2901 as the memory contention arbiter,
microtasking was probably necessary in order to provide the requisite performance. If,
however, some other mechanism had been provided to handle this task, it seems likely that
the machine would have performed nearly as well with a single program counter, a
microcode subroutine call stack, and a little hardware assistance to help the software
decide when a new activity should be attended to (e.g. by providing a fast way of polling

for the information).

11.3 Scalability

There are a number of dimensions in which it would be desirable to scale a system such as
the Rainbow Display. The most interesting ones from the point of view of this discussion

are the screen resolution, refresh rate, pixel depth, image size, and cost.



Evaluation 157

In the Rainbow Display, each bit of greyscale in a multiplane image requires the
presence of a memory unit and a slice unit. Reducing the number of such units would
indeed lower the cost of the display, in line with the lessened flexibility, and in theory
the design is configurable to support anything between one and eight units. In practice,
the incremental cost of memory units compared with the complete display is relatively small,
although not insignificant, and so the incentive to take advantage of this-scalability is
lower than it might be. Also, there is the need to store the control data required by the
video chain: lowering the number of memory units would reduce the parallelism available
for accessing this data, necessitating more memory cycles at window boundaries. (There is
an exception at four units, since only two words of slice unit control data need be
loaded.)

Non-interlaced displays with refresh rates in the 60-70 Hz region and up to 1200 x 1024
resolution appear to be the target of current-generation graphics systems. (Colour shadow
mask technology can now produce monitors with 0.25mm triad separation, which
corresponds to about 1200 pixels across the width of a typical 19 inch screen.) Some fairly
major changes would have to be made to the Rainbow Display to allow it to operate in such
a regime, which requires a new pixel for display roughly every 12 ns. The main problem is
the path between the memory and slice units: in the current design the data path is not
wide enough, and it takes too long to traverse. Observe, however, that the separation
between the two units is largely an implementation artifact. It resulted from a mistaken
insistence that the plane-oriented memory structure was too inflexible, and that it be
possible to cycle each memory unit twice for each set of pixels (i.e. an image with two bit
planes in the same memory unit). Yielding to this was an error: it complicated the design
considerably and constrained both the current performance and future expansion of the
machine architecture; the flexibility it allows has never been used. The only major benefit
was the ability to fit two memory units to a board, thus maximising the use of the available
rack space.

If the slice units were moved back onto the memory beards (where an earlier design
had placed them), they could be connected directly to the memories via on-board high-
bandwidth paths, which could be made 32 or 64 bits wide with no great difficulty. The
existing plane-reordering function could be provided much more simply by multiplexors on
the lookup table address lines, with each multiplexor’'s inputs connected to all the slice

units. Indeed, this mechanism could also be used to replace the context unit if two inputs
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on each multiplexor were tied to zero and one. Furthermore, there is no reason why the
line buffer memory should not be physically distributed by being associated with the
multiplexors rather than the video output stage.

Suddenly, the whole approach seems to be much more attractive: it has the necessary
bandwidth in the right places to expand gracefully to higher refresh rates and greater
resolution. The unit of replication becomes a memory/slice unit with one or two multiplexors
and their lookup memory (figure 11.1). Direct data paths from the memory to the control
registers of the multiplexors and slice units can be supplied on-board, eliminating the
serialisation over rbus of the previous scheme. Each board would tie its slice unit and
video data outputs to particular siots on the backplane, but allow its multiplexors to accept
input from any slice unit. Obus as a separate entity could disappear, and rbus would only

be required for external access to the memories and the lookup table.
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Given a 64-bit wide path between the memory and the slice units, the former would
probably be best arranged as a 64 K x 16 x 4 array to allow the use of 64K x 4 chips as they
become available. The slice unit would need a 6-bit base counter to index its 64 inputs.
With 16: 1 multiplexors, the plane-reordering units would need four bits to enable them to
select between zero, one and up to fourteen slice units. Two such multiplexor controls
and one 6-bit BaseCounter value fit conveniently into a single 16-bit word, with two bits
spare for future expansion or other local controls. With a 64K x 16 x 4 array, eighteen bits
of addressability are needed for 16-bit memory accesses. This should probably be scaled
up to twenty bits to allow for future expansion. (Also, most register files (as used in the
AV’'s) are packaged in multiples of four bits.)

The video pipeline would now consist of some number of replicated memory units
together with a controlier for them and a combined lookup table and video output board.
The non-scalable portion of the architecture would reduce to the latter two boards plus the
sequencing, host interface and image generation units. Note also that the difficult-to-scale
time-multiplexed fast transfer operation has been replaced by an easy-to-expand space-
multiplexed mechanism: the bus connecting ‘the output of the slice units with the bit-
reordering multiplexors. Furthermore, there is no reason why some of the high-order
lookup table address bits should not be supplied directly from per-viewport control values
held in a special memory, providing essentially unlimited lookup table address extensibility.
(This is similar to the role of the top few bits of the original context unit merge-mask.)

If the 2901 did not have to be interrupted on every host memory access, the need for
microtasking in the sequencing system would largely disappear. (This could be achieved
through the use of cycle-stealing on rbus, enforced micro-subroutine invocation, or dual-
ported memories.) The remaining functions would be served almost as well by software
polling, given a suitably easy test for pending activities. In turn, this would dramatically
reduce the complexity of the 2901 boards, and might even allow the use of an LS| state
sequencer such as the AMD 2910. The 2901s themselves should probably be retained since
they offer a low chip-count for the ALU operations they provide.

The design now looks more like an add-on to an existing graphics system, which is
nearer where it should have been pitched in the first place. Questions about image
generation, lookup table handling and the like can now be considered largely in isolation

from the video output pipeline.
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Would the new design be scalable up to a full 1200 x 1024 display refreshgd at 70 Hz?
To provide pixel generation at twice the video output speed (12 ns), a 64-bit wide slice
unit would have to be loaded only once every 372 ns—well within the reach of commercially
available memory chips. The very short per-pixel time entailed by such a scheme (5.8 ns)
would require the use of ECL in the slice units and subsequent pipeline stages. Some relief
could be obtained by dividing the 64-bit unit logically into two 32-bit ones, each of which
could operate in parallel up to and including the line buffers. This would effectively almost
double the time available per pixel; its major difficulties would be the extra backplane
space necessary and the extra control logic needed. The line buffers, as on the prototype,
would require a serial to parallel conversion on the incoming data. To preserve the current
4-click cycle allocation would require a 128 x 16 memory with a 46 ns cycle time, or a 64 x 32
one with an 92 ns cycle time. Either would store 2048 pixels, allowing a 70% overlap from
one line to the next.

Viewport boundary changes would be much cheaper than before: only a single memory
cycle would be needed to load all the slice unit base counters and the source multiplexors’
control registers, rather than the current ten ticks. With the right memory address
decoding scheme, this same cycle could feed the first pixel address into the AVs (via an
on-board adder to handle the vertical offset calculation). The setup overhead for the slice
units would essentially be nil, there being no need to wait for a two-tick fast transfer to
complete. As before, two slice unit input latches would allow overlap between one cycle and
the next—in fact, even more overlap time than in the prototype. The video pipeline need
not be quiesced while control registers further down the chain are loaded: everything
happens simultaneously, after which video generation can proceed immediately. One probiem
is of greater potential significance, however: the likelihood that viewport boundaries will
collide with a 64-bit memory transfer unit is much greater than it was with a 16-bit one.
Ten viewport boundaries per line would mean a worst case collision probability of about 0.5
(there are 19 B4-bit units across a line). If each collision resulted in the loss of part of
two 64-bit units (the worst case), and each viewport boundary had a one-cycle overhead
to handle the control data, the necessary memory bandwidth would be roughly double that
required to output pixels in a straightforward fashion. (This corresponds to a graphics
memory cycle of 365 ns. If the per-viewport-boundary overhead were two cycles, the cycle

time would reduce to 285 ns—still plausible with current 64 K dynamic RAMs.)
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Overall, the prospects for handling ten viewport boundaries per line look quite good,
even with such aggressive display requirements. Any relaxation of the constraints—refresh

rate, resolution, or memory cycle times—would serve only to improve the situation.

11.4 Software

Writing microcode turned out to be a reasonably pleasant experience, largely because of
the support environment that had been built up—especially the assembler. Hiding the
details of the microcode structure and 2901 programming behind a relatively sanitary
language meant that the complexity need be mastered but once (and could then be
forgotten), and yet allowed full use of the power of the hardware. Both linker and loader
perform satisfactorily, if a little slowly.

Ensuring that the maximum performance is elicited from the display means a new way of
thinking about software. Parallelism at and below the instruction level takes a great deal of
getting used to if full use is to be made of the hardware. Nevertheless, the current
microcode software has demonstrated that at least some of the performance goals are
achievable. There remains plenty of scope for further work, especially in the area of assist
functions, before the microcode will in any sense be finished.

The use of reasonably extensive support packages to hide the worst of the Tripos
environment saved a considerable amount of time, and simplified the task of porting
existing software onto it. A by-product is that these packages are now in use by other
members of the Laboratory.

The most obvious (and embarrassing) feature of the 68000 bitmap software is its
slowness. One reason is that it was a first implementation, with considerable scope
remaining for performance tuning: another is the need to cope with a variable number of
bit planes everywhere: loop control overheads are a considerable part of the total cost in
the single-bit deep case. The microcoded assist functions are designed to address precisely
this area and it is to be hoped that they will bring significant performance gains,
particularly for cpu-intensive activities such as painting characters.

The initial experiments suggested that the model adopted by the screen management
software was adequate for testing the display, but comparison with other, more mature,
packages indicates that considerable experience will be necessary before one that is more

generally useful will be developed. Cursor handling and band structure recalculation times
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both proved somewhat disappointing, but incremental techniques are showing promising
results. Until the screen and input tool managers are actually separated out into their own
task, the full power of the management technique will not become apparent—in particular,

use of the display will remain largely single-threaded.

11.4.1 Recent activities

By the end of 1982, the software for the Rainbow Workstation had reached a state suitable
for preliminary validation of the basic system components—hardware windowing, image
generation and simple input tool handling. Little had been done in the way of code
optimisation or terminal domain management. Since that time, other members of the Rainbow
research project have continued to work with the hardware in these and other areas.

There remains a considerable amount of work to be done before the Rainbow
Workstation is anything more than a single instance of a fancy graphics display, and
before the ideas that led to its development will have been fully tested. Nevertheless, the
work to date has provided a first-order validation of hardware windowing, in that there is
now an implementation of it in existence. The discussion presented here suggests that a
better-directed implementation could manage similar window management performance on a
much higher-resolution display at nearly three times the original refresh rate and nine

times the pixel output speed.
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12. Conclusion

The domain model has been used to describe some of the resource allocation issues in LAN-
based systems. It was shown how the different tradeoffs made between cost, sharing,
overall performance, and user responsiveness have provided the basis for a number of
different models of resource management. In many cases, the main choice: was between
centralising resources to achieve cost benefits through economies of scale or time
multiplexing of hardware, together with simplified data sharing; and a decentralised
approach that emphasised the responsiveness of the system to an individual user. The
growing availability (and understanding) of local area network technology, coupled with
increasingly inexpensive sources of processor cycles, is beginning to encourage the design
of systems that offer many of the merits of both the centralised and decentralised
approaches to resource management.

The entity model was presented as a way in which storage resources could be made use
of in a software development environment. Entities apply some of the techniques that have
hitherto only been available for short-term data in running programs to building an
extensible, typesafe long-term storage system. Their advantages appear to be many—it
remains to be seen whether it is possible to implement a completely entity-based
environment.

Finally, the area of terminzl domains was addressed, and an experiment in designing
the hardware of a display to support a particular model of interaction described. That
experiment seems to have been a qualified success: it showed that although the technique
used—hardware windowing in real-time—does have some limitations in the form applied, it
is a realistic approach. The provision of hardware windowing would seem to be particularly
appropriate in systems where several processes wish to manipulate one or more virtual
screens while remaining isolated from each others’ actions. Experience with the first design
has suggested a number of ways in which subsequent implementations could improve upon
it in quite substantial ways. The project has also produced a tool that is serving as a
vehicle for further research into the software aspects of terminal domain design for a local

area network.
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