Technical Report R

Number 109

Computer Laboratory

Hardware verification of
VLSI regular structures

Jettrey Joyce

July 1987

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1987 Jetfrey Joyce

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Hardware Verification
of VLSI Regular Structures

Jeffrey Joyce
Computer Laboratory
University of Cambridge

Introduction

Many examples of hardware verification focus on hierarchical specification as a
means of controlling structural complexity in a design. This method hides internal
details of the implementation at each stage in the hierarchy. Iteration is another
method used to control structural complexity. For example, [Camilleri86] describes
the formal specification and verification of an n-bit adder using a primitive recur-
sive definition to specify the iteration of adder stages. This paper presents a third
method of controlling structural complexity in hardware specifications, namely,
the mapping of irregular combinational functions to regular structures such as
ROMs and PLAs.

Regular structures often result in solutions which are economical in terms of
area and design time. The automatic generation of a regular structure such as a
ROM or PLA from a functional specification usually accommodates minor changes
to the functional specification, for example, a last-minute change in the microcode
of a microprocessor, without any changes to the rest of the design. In addition to

_these well-known advantages, we suggest that the use of regular structures is an
advantage when proving the correctness of hardware designs.

The mapping of irregular combinational functions to a regular structure sep-
arates function from circuit design. This paper shows how this separation can
be exploited to formally derive a behavioural specification of a regular structure
parameterized by the functional specification. Furthermore, this separation of
function from circuit design shifts the focus of the verification task from the cir-
cuit design to the algorithm which maps the functional specification to an instance
of the regular structure.

To illustrate these ideas, we describe the formal specification and verification of
a ROM implemented by two NOR arrays. One of the NOR arrays implements an
n-bit decoder while the other NOR array stores the contents of the ROM. In sec-
tion 2 of this paper we informally describe the construction of a NOR array from
MOS level devices. Section 3 briefly describes the formal specification of hardware
in higher-order logic. This is followed by a simple model of MOS level behaviour
in Section 4. This low-level model is then related to boolean logic by abstraction
functions defined in Section 5. Section 6 outlines the formal specification of a NOR
array parameterized by a “placement function” which determines the placement

- VDD

INP 2

INP 1

GND
OUTO OUT1 OUT2 OUT3 O0uUT4

Figure 1: Symbolic Layout for a CMOS NOR. Array

of pulldowns in a NOR array. In Section 7 we describe the implementation of an
n-bit decoder from a NOR array and a placement function designed for this pur-
pose. Finally, a behavioural specification of a ROM parameterized by a functional
specification of its contents is derived from the behaviours of the n-bit decoder
and the NOR array.

2 MOS Implementation of NOR Arrays

Figure 1 shows an example of a MOS structure known as a NOR array [Weste85].
Horizontal polysilicon control lines topologically intersect vertical metal bit lines
to form an array of grid positions. “Pulldowns” may be placed at various grid po-
sitions in the array; the particular placement of pulldowns determines the function
implemented by the NOR array. Pulldowns are implemented by N-type transis-
tors connecting the bit line to Gnd. The gate of every pulldown is controlled by
the control line running horizontally through the row. Bach of the bit lines has a
pullup node which will drive the bit line high when none of the pulldowns in the
_column are selected. When one or more pulldowns in a column are selected, the
bit line will be discharged towards Gnd. When high and low are interpreted as
logical T and F respectively, each bit line is the logical NOR of those control lines
with a corresponding pulldown in the column.

2

Many of the details which must be considered in the implementation of NOR
arrays as fabricated integrated circuits, eg. transistor ratios, power dissipation
and ground strapping, cannot be modelled here without losing the focus of our
presentation.. A thorough discussion of NOR array implementations may be found
in both [Mead80] and [Weste85].

It is impractical to build a NOR array interactively using a graphics-based
design system. However, many CAD systems provide a programming interface
which allows “generators” to be written in a high-level programming language,
eg. ELECTRIC [Rubin83]. For example, a microcode assembler would assemble
a microcode specification into a bitmap which would then be used by a ROM
generator to place pulldowns in a NOR array implementation of the ROM. We shall
see later in this paper how formal verification can be used to correctly implement
generators of this kind.

3 Hardware Specification in Higher-Order Logic

[Gordon86| argues that many aspects of digital systems can be formally represented
in higher-order logic and that specialized hardware description languages are not
needed. Furthermore, the inference rules of higher-order logic provide a practical
means of proving systems correct.

The representation of higher-order logic in a computer system is described in
[Gordon87]. Several large and interesting examples of hardware verification have
been developed using the HOL system including aspects of a proof of correctness
for the VIPER microprocessor which involved over one million primitive inferences
[Cohn87].

In this paper we use the machine readable notation of the HOL language except
for quantifiers where we use the standard logical symbols “v” and “3”. We also
use “e” and “A” for Hilbert’s choice operator and function abstraction respectively
instead of the machine readable symbols. Appendix 1 summarizes the notation of
higher-order logic as it is represented in the HOL system.

[Camilleri86] describes how the structure of a hardware design can be repre-
sented by a predicate in higher-order logic. Conjunction and existential quantifi-
cation are used to model composition and internal signal hiding in a hierarchical
specification. For example, Definition 1 specifies the implementation of a CMOS
inverter from MOS primitives outlined in the next section. Iteration can also be
used to describe the structure of hardware devices such as n-bit adders.

Definition 1:
F INV (inp:~“wire,out:“wire) =
d wi w2 w3 wd.
vdd (wi) /\ Ptran (inp,wi,w2) /\
Join (w2,w3,out) /\ Ntran (inp,w4,w3) /\ Gnd (w4)

The behaviour of a hardware design can also expressed in higher-order logic
by describing a relation between inputs and outputs. In many cases, this will only
be a partial specification since it may be unreasonable to describe the behaviour
of the device in some conditions, eg. invalid inputs. For example, the following
theorem describes the behaviour of the CMOS inverter in terms of logical negation
when the input is well-defined. The predicate Def and the abstraction function
BoolAbs are defined in Section 5.

Theorem 1:
F V inp out.
INV (inp,out)

Def inp ==> Def out /\ (BoolAbs out = ~(BoolAbs inp))

4 MOS Level Primitives

The behavioural primitives used in this paper are based on a four value logic with
values for high impedance Zz and error Er in addition to low Lo and high Hi
[Dhingra87]. The four value logic is modelled in the natural numbers; the formal
theory includes an axiom that each of the four MOS values are distinct but their
actual value in the natural numbers is left unspecified. The values are ordered to
form a lattice with a “top”, Er and a “bottom”, Zz as shown in Figure 2. Definition
2 defines the least upper bound function based on this ordering.

Definition 2:
FxUy=(x=y)=>x1] (x=22) =>y | (y = 2z) => x | Er)

Lo Hi

Figure 2: Lattice of MOS Values

The style of hardware specification described in [Camilleri86] models inputs
and outputs as time-varying signals. However, in this paper we are concerned
only with combinational circuits and so we model inputs and outputs as time-
independent values. For example, a wire in the implementation is modelled by
a MOS value and a bus is modelled by a function from positions to MOS values

(in effect, a vector of MOS values). When necessary, we can ensure that an n-
bit bus is modelled uniquely by forcing all bit positions greater than n — 1 to
some arbitrary but fixed value; the same effect is achieved in [Bowen87] using
partial functions with domains restricted to values between 0 and n— 1. Similarly,
a vector of boolean values, fe. an n-bit word, is modelled by a function from
positions to boolean values. The following abbreviations (using ML variables and
anti-quotation) summarize these conventions.

ML Variable HOL type Description

val “:num” MOS value

posn , “:num” position

wire “:~val” MOS wire

bus “:“posn->“wire” n-bit MOS bus
word “:"posn->bool” n-bit boolean word

A small collection of MOS primitives represents the only assumptions made
about physical devices in this paper. Vdd, Gnd and Float model constant sources
of a particular MOS value. The Node primitive models a connecting wire which is
useful when an input is connected directly to an output at some stage in a hier-
archical specification. The transistor models are uni-directional; even though real
transistors are bi-directional they are usually used with a specific orientation that
can be determined algorithmically [Clocksin86]. The Join primitive determines the
result of merging two wires by taking the least upper bound. Finally, a PullUp
primitive models a weakly charging source of Vdd.

Definition 3:

F Vvdd (o:"wire) = (o = Hi)
Definition 4:
 Gnd (o:"wire) = (o = Lo)

Definition 5:
F Float (o:"wire) = (o = Zz)

Definition 6:
F Node (i:"wire,o:"wire) = (o = i)

Definition 7:
F Ptran (g:“wire,i:"wire,o:"wire) =
(o = (g =Lo) =>1i | ((g = Hi) => Zz | Er))

5

- Definition 8:
I Ntran (g:“wire,i:"wire,o:"wire) =
(o= (g=Hi) => i | ((g = Lo) => Zz | Er))

Definition 9:
F Join (ii:"wire,i2:"wire,o:"wire) = (o = (ii U i2))

Definition 10:
F PullUp (i:"wire,o:"wire) = (o = ((i = 2z) => Hi | 1))

5 Relating MOS Behaviour to Boolean Logic

Informally, MOS designers use boolean logic as an abstraction of voltage values. In
this paper, we approximate voltage values with a four value logic. This abstraction
consists of mapping the MOS values Lo and Hi to the boolean values false F and
true T. This informal mapping from MOS values to boolean values is only partial
since the other two possible MOS values, Zz and Er, are ignored. Since all functions
defined in higher-order logic must be total, we partially specify a total function
where the values Zz and Er are mapped to fixed but unknown boolean values.
In particular, BoolAbs may be defined as any function which satisfies Theorem 2.
For example, we can define BoolAbs using Hilbert’s choice operator, €, as shown
in Definition 11 . Tt is also possible to define BoolAbs using a logical constant for
a fixed but unknown boolean value. The corresponding abstraction function for
n-bit words simply applies BoolAbs to each bit.

Definition 11;
F BoolAbs =¢ef. (f Lo = F) /\ (f Hi = T)

Theorem 2:
F (BoolAbs Lo = F) /\ (BoolAbs Hi = T)

Definition 12:
I WordAbs (b:"bus) = Ap. BoolAbs (b p)

BoolAbs and WordAbs are used to specify the behaviour of digital devices in
boolean logic. For instance, we would like to prove that the inputs and output of
a CMOS AND-gate are related by the logical AND function when the inputs and
output are viewed abstractly as boolean signals. However, the AND function only
describes the behaviour of a CMOS AND-gate when the inputs are well-defined,

l4ex ,P[x]” may be read as the value x satisfying P[x] if such a value exists; otherwise the
term denotes an arbitrary value of the correct type. The above definition of BoolAbs illustrates a
general method for partially specifying a total function using Hilbert’s choice operator.

6

that is, Lo or Hi. The predicate Def is proposed in [Dhingra87| to describe this
condition. We also define Defn which is the n-bit analogue of Def.

Definition 13:
 Def (w:"wire) = (w = Lo) \/ (w = Hi)

Definition 14:
t (Defn 0 (b:"bus) = T) /\ .
(Defn (n+i) (b:"bus) = Def (b n) /\ Defn n b)

Another level of abstraction is used to map n-bit words to the natural numbers.
The abstraction function WordVal interprets an n-bit word as the unsigned binary
representation of a number. The definitions of BoolVal and WordVal are based on
an example in [Camillerig6).

Definition 15:
F BoolVal (b:bool) = (b =>1 | 0)

Definition 16:
F (WordVal O (w:“word) = 0) /\
(WordVal (n+1) (w:"word) =
((2 EXP n) * (BoolVal (w n))) + (WordVal n w))

6 Formal Specification of a NOR Array

Both hierarchical decomposition and iteration are used to formally specify the
implementation of a NOR array. Hierarchically, a NOR array is implemented
by bit columns. In turn, bit columns are implemented by pulldowns and MOS
primitives.

As illustrated in Figure 3, the formal specification of a pulldown consists of
a N-type transistor, a Gnd node and an instance of the Join primitive. The Join
primitive is included in the specification of the pulldown so that it has both an
input and an output signal.

Definition 17;
F PullDown (cntl: wire,i:"wire,o: wire) =
1 wi w2. Join (i,wi,o) /\ Ntran (cntl,w2,wl) /\ Gnd (w2)

A single column in a NOR array is constructed by placing either a connect-
ing wire or a pulldown at each position in the column. The formal specification
of a column in a generic NOR array is parameterized by a placement function,
“f”, which indicates whether a wire or a pulldown is placed at each position in

7

i cntl

NTRAN |« GND

A

JOIN

Figure 3: MOS Primitives used to construct a Pulldown Node

the column. A connecting wire is modelled by the Node primitive. It is conve-
nient to use primitive recursion to iterate positions in the bit column due to the
interconnection of one position to the next position.

Definition 18:
F (NORColumn O f (inp:“bus,node:”wire,out:“wire) =
PullUp (node,out)) /\
(NORColumn (n+i) f (inp:Tbus,node:"wire,out:"wire) =
Jw.
((f n) => PullDown (inp n,node,w) | Node (node,w)) /\
NORColumn n £ (inp,w,out)) ¢

As shown in Definition 18, a 0-bit column is simply a pullup node. An n+ 1-bit
column is constructed from an n-bit column by the addition of either a connecting
wire or a pulldown according the value of the placement function at this position.

A NOR array is constructed by iterating bit columns. In this case, it is easiest
to use universal quantification to iterate bit columns because, from a circuit point
of view, there are no interconnections from one column to the next column. As
shown in Definition 19, it is necessary to “cap” each bit column with a floating
node.

Definition 19:
I NORArray n m f (inp:“bus,out:"bus) =
Vi. (1 < m) ==
dw. Float (w) /\ NORColumn n (f i) (inp,w, (out i))

As before, we have parameterized the formal specification of a generic NOR
array with a placement function, “f”, which supplies the placement function for
each column in the array. In this case, “f” is the curried form of a bitmap function

8

fij: ,NP3Q Q. Q@ Q 9
i\ 0 1t 2 3 4 INP 2
3|TFTFT
2| F F FTF
T\ TTFTF

oFF‘TFT mmlmﬁ

OUTO0 OUT1 OUT2 OUT3 O0UuT4

INP 1 ! , 1

INP O ‘ [,

Figure 4: Placement Function and Corresponding NOR Array

which maps array indices to boolean values.

Figure 4 illustrates the construction of a 4 by 5 NOR array from a placement
function “f”. In contrast to the symbolic layout suggested in Figure 1, the pullup
nodes (represented by small boxes in Figure 4) have been moved to the bottom of
each column in the formal specification of the NOR array. Our simple model of a
pullup makes it necessary to position the pullup device at the output end of the
bit column. If none of the pulldowns in the column has discharged the bit line,
then the pullup will output the value Hi; otherwise, the pullup will simulate the
dominant effect of a discharging pulldown by producing the value Lo as output.
With a more complicated model of MOS behaviour with multiple strengths for Lo
and Hi, it would be possible to more closely follow the symbolic layout shown in
Figure 1.

In section 2 we summarized the behaviour of the NOR array by observing
that ‘when high and low are interpreted as logical T and F respectively, each bit
line is the logical NOR of those control lines with a corresponding pulldown in
the column’. We can formalize this description by proving the following theorem.
This theorem also takes into account the condition under which this behaviour
holds, namely, that the inputs must be well-defined. Two logical operations, the
logical OR-ing of all the bits in a single word and the bitwise AND-ing of two n-bit
words, are also defined below.

Definition 20:
F (ORBits O (w:"word) = F) /\
(ORBits (n+i) (w:"word) = (w n) \/ (ORBits n w))

Definition 21:
F ANDWords (wi:“word,w2:"word) = Ap. (wl p) /\ (w2 p)

Theorem 3:
FVnnf.
V inp out.
NORArray n m f (inp,out)
Defn n inp ==
Defn m out /\
Vi, (1 < m) ==>
(WordAbs out i =
“(ORBits n (ANDWords (WordAbs inp,f i))))

Theorem 3 illustrates one of the major claims in this paper, in particular, that
the separation of function from circuit design in regular structures can be exploited
to formally derive a generic behaviour parameterized by a functional specification.
We have seen how the placement function is used to guide the construction of
a particular instance of a NOR array. The placement function also serves as a
functional specification for the NOR array. Theorem 3 shows that the behaviour
of a particular instance of a NOR array can be determined entirely from its inputs
and its functional specification, te. the placement function, without any reference
to a circuit implementating the NOR array.

The generation of a NOR array from its functional specification is trivial be-
cause the placement of pulldowns in the regular structure corresponds exactly
to the functional specification, fe. the placement function is just the functional
specification. In general, the generation of a regular structure from its functional
specification is more complicated. For instance, one would need to write an algo-
rithm to generate a placement function for the AND and OR planes of a PLA from
its sum of products equations. Similarly, the implementation of an n-bit decoder
by a NOR array depends on the correct design of an algorithm for the placement
of pulldowns in the NOR array. From these observations, we tender our second
major claim in this paper that the separation of function from circuit design in
regular structures shifts the focus of the verification task from circuit details to the
correctness of the algorithms used to map a functional specification to an instance
of the regular structure. '

7 Formal Specification of a Decoder

An n-bit decoder can be implemented by a 2n by 2" NOR array and n inverters.
The n wires of the n-bit word and their complements produced by the n inverters
are inputs to the NOR array. The placement of pulldowns in the NOR array is

10

Hi

Hi

Lo

Figure 5: A 3-bit Decoder with the input value “6”

designed to ensure that the ith bit of the output word is high if and only if the
input word is the n-bit representation of the number 1.

Figure 5 illustrates how the placement of pulldowns by DecoderFunction in a
3-bit decoder has discharged all but the seventh bit line when the input is the
value “6”. Discharging pulldowns have been shaded in Figure 5.

The placement function for an n-bit decoder, DecoderFunction, is defined in
terms of BinRep which is a function that produces the binary representation of
number. The definitions of EVEN, EXP, DIV and MOD are given in Appendix 2.

Definition 22:
- BinRep n p =
“(((n - (n MOD (2 EXP p))) MOD (2 EXP (p+1))) = 0)

Definition 23:
I DecoderFun i j =
(EVEN j) => (BinRep i (j DIV 2)) | ~(BinRep i ((j-1) DIV 2))

The decoder interface produces 2n outputs which alternate between bits of the
input word and their complements. The ordering of output bits is tightly coupled
with the definition of DecoderFunction. The specification of the decoder interface

11

and the decoder constructed from the decoder interface and a NOR array are
shown below.

Definition 24:
I DecoderInterface n (inp:~bus,out:“bus) =
Vi. i < (2*%n) ==
((EVEN i) =>
INV (inp (i DIV 2),out i) |
Node (inp ((i-1) DIV 2),out 1))

Definition 25:
F Decoder n (inp:“bus,out:"bus) =
db: “bus.
DecoderInterface n (inp,b) /\
NORArray (2*n) (2 EXP n) DecoderFun (b,out)

The derivation of a behavioural specification for the n-bit decoder depends on
a relationship between the functions WordVal and BinRep. WordVal and BinRep
are not quite inverses of each other since WordVal only looks at the first n bits of a
binary representation. Nevertheless, the two functions are related by the following
theorems.

Theorem 4: .
F'Vnp.p<n==>Vw BinRep (WordVal n w) p = w p

Theorem 5:
FVmn. m<2EXP n==> (WordVal n (BinRep m) = m)

From these two theorems and the behaviour of a NOR array we can prove the
following theorem about the behaviour of the n-bit decoder.

Theorem 6:
F Vn.
V inp out.
Decoder n (inp,out)
Defn n inp ==
Defn (2 EXP n) out /\
Vi. i < (2 EXP n) ==
(WordAbs out i = (WordVal n (WordAbs inp) = i))

We can paraphrase the above theorem as follows. When the MOS values of the

12

input word are interpreted as booleans values and then as the n-bit representation
of a number, the boolean interpretation of the ith output bit will be T if and only
if the input is the number ¢. This behaviour is constrained by the condition that
the inputs must be well-defined. In short, under this condition, the input value 3
selects the sth output bit.

The proof of this theorem illustrates how the verification task focuses on the
algorithm used to generate the regular structure. Arguing for an arbitrary output
bit, there are two cases to consider. In one case, the input word has selected this
output bit and we must prove that none of the pulldowns in this column of the
NOR array has discharged the bit line. In the other case, the input has not selected
this output bit and so we must show that at least one of the pulldowns in the bit
column has discharged the bit line. Whether or not a pulldown has discharged the
bit line depends on its position in the bit column with respect to the current input.
Hence, the proof is chiefly concerned with the specific placement of pulldowns in
a bit column by DecoderFunction.

8 Formal Specification of a ROM

The implementation of a 4-word, 5-bit ROM by an n-bit decoder and a NOR
array is shown in Figure 6. Since the NOR array produces the complement of the
addressed word, a row of inverters is included as interfacing logic. These inverters
would also restore logic levels and possibly amplify the strength of output signal.
Formal specifications for the interfacing logic and the n by m ROM are shown
below.

Definition 26:
I ROMInterface n (inp:~bus,out:“bus) =
Vi. 1 < n ==> INV (inp i,out i)

Definition 27:
F ROM n m f (inp:“bus,out:"bus) =
J b1 b2.
Decoder n (inp,bi) /\
NORArray (2 EXP n) m £ (bi,b2) /\
ROMInterface m (b2,out)

The behaviour of the ROM follows directly from the derived behaviours of
the n-bit decoder and the NOR array. The following theorem states that when
the input address is well-defined, then the output of the ROM will be the word at
location j in the ROM where j is the numerical value of the input and the contents
of the ROM are given by the function “f”.

13

B i O O
o S G
O] !
O_“ | i } |
O+ 1 |
INP 1 INPO OUTO OUT1 OUT2 OUT3 OUT4

Figure 6: A 4-word, 5-bit ROM implemented from NOR Arrays

Theorem 7:
FVnanmt.
VY inp out.
ROM n m £ (inp,out)
Defn n inp ==
Defn m out /\
Vi, i< m-==
(WordAbs out i = (f i (WordVal n (WordAbs inp))))

Summary and Conclusions

We have described how the use of regular structures such as PLAs and ROMs
provides another method for controlling the structural complexity in a hardware
specification. More complicated regular structures such as generic data paths
might also be used to control structural complexity.

We have also shown how the separation of function from circuit design in a
regular structure leads to a behavioural specification based entirely on its func-
tional specification. For example, Theorem 7 relates the behaviour of the ROM

14

implementation to a functional specification of the ROM contents. In short, for
any well-defined input, the output of the ROM can be inferred directly from its
functional specification.

The derivation of a behavioural specification for the n-bit decoder shows how
the focus of the verification task is shifted to the task of proving the correctness
of the algorithm used to generate a regular structure from a functional specifica-
tion. The most difficult and most interesting aspect of proving the correctness of
the ROM implementation is proving the correctness of the algorithm used in the
definition of DecoderFunction to place pulldowns in the NOR array of the decoder.

The generation of a PLA or ROM from a functional specification is a simple
case of silicon compilation. Hardware verification could be used to validate more
complicated silicon compilation techniques especially when a technique is based on
some form of regularity. For example, the MacPitts silicon compiler uses a generic
floor plan to compile a LISP-like behavioural specification [Siskind82]. Similarly,
formal methods presented in this paper could be used to validate aspects of the
system described in [Agrawal84] for the synthesis of mask layouts from high-level
descriptions of finite state machines. :

Finally, we observe that the simplicity of the MOS level primitives, eg. uni-
directional transistors, does not undermine the more important aspects of the
proof. For instance, the correctness of the algorithm used to place pulldowns
in the NOR array implementation of the decoder does not absolutely depend on
the accuracy of the underlying MOS. models. In other words, one of the more
important result of this exercise in formal proof is a specification of how to write
a program which generates an n-bit decoder through the programming interface
of a VLSI CAD system. This result has immediate practical application in a
traditional VLSI design context.

References

[Agrawal84] Agrawal, P. and M. Meyer. “Automation in the Design of Finite-State
Machines”, VLSI Design, Vol. 5, No. 9, September 1984.

[Bowen87] Bowen, J. “The Formal Specification of a Microprocessor Instruction
Set”, Technical Monograph PRG-60, Computing Laboratory, Oxford Univer-
sity, January 1987.

[Camilleri86] Camilleri, A., M. Gordon and T. Melham, “Hardware Verification
using Higher-Order Logic”, From HDL Descriptions to Guaranteed Correct
Circuit Designs, Proceedings of the IFIP WG 10.2 International Working
Conference, Grenoble, France, 9-11 September 1986, D. Borrione, ed., North-
Holland, Amsterdam, 1987.

[Clocksin86] Clocksin, W.F. and M.E. Leeser. “Automatic Determination of Signal
Flow through MOS Transistor Networks”, Integration, Vol. 4, 1986.

15

[Cohn87] Cohn, A. “A Proof of Correctness of the VIPER Microprocesor: The
First Level”, VLSI Specification, Verification and Synthesis, Proceedings of
the Workshop on Hardware Verification, Calgary, Canada, 12-16 January
1987, G. Birtwistle and P. Subrahmanyam, eds., 1987.

[Dhingra87] Dhingra, 1.S., “Formal Validation of an Integrated Circuit Design
Style”, Proceedings of the Workshop on Hardware Verification, Calgary,
Canada, 12-16 January 1987, G. Birtwistle and P. Subrahmanyam, eds., 1987.

[Gordon85] Gordon, M., “HOL: A Machine Oriented Formulation of Higher-Order
Logic”, Technical Report No. 68, Computer Laboratory, University of Cam-
bridge, 1985.

[Gordon86] Gordon, M., “Why Higher-Order Logic is a Good Formalism for Spec-
ifying and Verifying Hardware”, Formal Aspects of VLSI Design, Proceed-
jngs of the 1985 Edinburgh Conference on VLSI, G.J. Milne and P. Subrah-
manyarn, eds., North-Holland, Amsterdam, 1986.

[Gordon87] Gordon, M., “A Proof Generating System for Higher-Order Logic”,
~ Proceedings of the Workshop on Hardware Verification, Calgary, Canada,
12-16 January 1987, G. Birtwistle and P. Subrahmanyam, eds., 1987.

[Mead80] Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, Reading, Massachusetts, 1980.

[Rubin83] Rubin, S., “An Integrated Aid for Top-down Electrical Design”,
VLSI ’83, Proceedings of the IFIP WG 10.5 International Conference on Very
Large Scale Integration, Trondheim, Norway, 16-19 August 1983, F. Anceau
and E.J. Aas, ed., North-Holland, Amsterdam, 1983.

[Siskind82] Siskind, J., J. Southard and K. Crouch. “Generating Custom High Pes-
formance VLSI Designs From Succinct Algorithmic Descriptions”, Proceed-
ings of the 1982 Conference on Advanced Research in VLSI, Massachusetts
Institute of Technology, 26 January, 1982.

[Weste85] Weste, N. and K. Eshraghian, Principles of CMOS VLSI Design,
Addison-Wesley, Reading, Massachusetts, 1985.

16

Appendix 1

The machine readable syntax of the HOL language is summarized below. There
are four kinds of terms in the language: variables, constants, applications (of a
function to a term) and function abstractions (lambda expressions).

Higher-order logic extends first-order logic by allowing variables to range over
functions and predicates. Such variables are called “higher-order” and can be
quantified. Functions and predicates can be arguments and results of other func-
tions and predicates.

Every term in the HOL language has a “type”. The use of types prevents
inconsistencies (such as Russell’s paradox) which would otherwise result from the
expressive power gained by allowing higher-order variables. Every type is either
atomic or constructed from existing types.

Certain features of the HOL language have a special syntactic status for im-
proved readability, eg. definition of infix functions such as EXP, DIV and MOD in
Appendix 2.

HOL Syntax Description

ix.t universal quantification
7x.% existential quantification
0x.t Hilbert’s choice operator
\x.t function abstraction

“b negation

bi /\ b2 conjunction

bl \/ b2 disjunction

bi ==> b2 implication

b => t1 | t2 conditional expression
(¢1, .., tn) n-tuple
fti .. tn function application

17

Appendix 2

The following is a synopsis of definitions and significant theorems used in proving
the correctness of the ROM (aside from those given in the paper). Proofs for
the well-ordered principle and the division algorithm theorem were supplied by
T.Melham. The remaining theorems were proven for this example.

Definitions of EXP, DIV, MOD and EVEN

g L L e L T y ———

EXP = |- (m EXP O = 1) /\ (m EXP (SUC n) = m * (m EXP n))
DIV=1|-nDIVm=20q. ?r. (n=(q *m) +r) /\ (r < m)

MOD = |- n MOD m = Qr. ?q. (n = (g * m) + r) /\ (r < m)
"EVEN = |- EVEN n = ((n MOD 2) = 0)

Arithmetic Theorems

WOP = |- IP. (?n, P n) ==> (n. Pn /\ (Im. m < n ==> ~P m))
DA =|-!'mn. (0<n) ==>7?2r. m=1(q#*n) +r) /\r<n
ADD_SUB = |- Imn. ((m +n) -n) =m

ADD_SUB_ASSOC =
[- 'mn. m <= n ==> lp, ((p+n)-m)=(p+(_n-m))

UNIQUE_QUOTIENT_THM =
|- Imnp. (m<n) /\ (p < n) ==>

'qg 8. (((@*n) +m) =((s8 *xn) +p)) ==> (q = 8)
UNIQUE_REMAINDER_THM =
I- 'mnp. m<n) /\ (p <n) ==>

'q 8. (((@*n) +m)=((8 *xn) +p)) ==> (m = p)

EXP_ADD_MULT =
I- Imnp. mEXP (n +p) = ((m EXP n) * (m EXP p))

18

Division Theorems

o o et e s s g e e e s e s

EXISTS_DIV =
I- im, 0O<m==>1In, 7r. (n = (W DIV m) #* m) + r) /\ (r < m)

DIV_THM =
- tmn. n<m==> 1k, (((k *m) +n) DIVm) = k

DIV_MULT_LESS_EQ =
|- im. 0O <m==>1In., ((nDIVm) #m) <= n

LESS_MULT_DIV_LESS =
I- im. 0 <m==>1Inp. (n< (p*m)==>((n DIV m) < p)

LESS_DIV_LESS_EQ =
|- Im. 0 <m==>tnp. (n<p)==>((n DIV m) <= (p DIV m))

Modulus Theorems

EXISTS_MOD =
I- Im. 0 <m==>1In. 7q. (n = (q *m) + (n MOD m)) /\ (n MOD m) < m

MOD_THM = |- 'm n. n < m ==> 'k, ((((k % m) + n) MOD m) = n)

MOD_ONE_THM = |- im. m MOD 1 = ©

LESS_MOD_THM = |- 'mn. n < m ==> ((n MOD m) = n)

MOD_LESS_THM = |- !m. O < m ==> In, (n MOD m) < m

MOD_LESS_EQ = |- 'm. O < m ==> In, (n MOD m) <= n

MULT_MOD_O = |- 'm. 0 <m ==> In, ((n * m) MOD m) = 0
MOD_MOD_THM = |- 'm. 0 < m ==> In. ((n MOD m) MOD m) = (n MOD m)

MOD_CONGRUENCE_THM =
i- Im, 0<\m==>Ink. ((k*+m) +n) MODm=n MOD m

19

MOD_ADD_THM =
- Im. 0 < m ==>
In p. (((n MOD m) + (p MOD m)) MOD m) = ((n + p) MOD m)

MOD_SUB_THM =
i- Imnp. (0O<m /\ p<=n MOD m) ==>
((((n MOD m) - p) MOD m) = ((n - p) MOD m))

MOD_2_EXP_SUC =
- Im n. (m MOD (2 EXP n)) <= (m MOD (2 EXP (SUC n)))

WordVal and BinRep Theorems

P e e e g y——

WordVal_ BinRep_MOD_THM =
- Im n. WordVal n (BinRep m) = (m MOD (2 EXP n))

WordVal_LESS_EXP = |- !n w. WordVal n w < 2 EXP n
WordVal_MOD_THM =
I- fnp, p <ne==

'w. ((WordVal n w) MOD (2 EXP (SUC p))) = WordVal (SUC p) w

WordVal LESS_OR_EQ_SUC = |- In w. WordVal n w <= WordVal (SUC n) w

20

