Technical Report R

Number 113

Computer Laboratory

The representation of
logics in higher-order logic

Lawrence C. Paulson

August 1987

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1987 Lawrence C. Paulson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Contents
1 Introduction

2 Intuitionistic higher-order logic

2.1 SYNtax . . v . e e e e e e e e e e e e e
2.2 Syntactic conventionso L
2.3 SemantiCs . . » v v v v e e e e e e e e e e e e e e e e
2.4 TInferencerules v . v i i i i i e e e e e s

3 Representing intuitionistic propositional logic

4 The development of backwards proofs

4.1 Partial proofs as derivedrules o000
4.2 A formalization of partial proofs,
4.3 Formalizing the use of assumptions
4.4 Deriving rules in an object-logic. 0000
4.5 Deriving rules for forwards proof o000

5 Representing quantifiers

6 Extending resolution to quantifiers

6.1 Lifting over universal quantifiers
6.2 Unification 0 i e e e e
6.3 Basic examples involving quantifiers00

7 An alternative for quantifiers: Skolemization

7.1 Hilbert’s e-operator.o o e
7.2 Replacing Hilbert’s € by Skolem constants
7.3 Sample proofs using Skolem constants
7.4 Lifting versus Skolemization

8 An implementation

9 Related work

> b W oW

o]

14

16
17
18
19

20
21
22
22
23

24

26

1 Introduction

The theorem prover Isabelle is based on the idea of composing inference rules to
yield derived rules [17]. (See also de Groote [8].) Isabelle regards an inference
rule as a proposition about the premises and conclusion, not as a function from
premises to conclusion (like in LCF). Isabelle supports backwards proof — working
from goals to subgoals — representing each state by a rule whose premises are the
current subgoals and whose conclusion is the original goal.

" The concepts are general enough to allow this one program to handle many
logics. Isabelle has been applied to Martin-Lof’s Constructive Type Theory, in-
tuitionistic first-order logic, and a classical sequent calculus with ZF set theory.
Most of its power comes from derived rules. A rule may require 100 steps to derive

. but can be applied as a single inference. Reasoning about a defined constant like

N does not appeal to its complicated definition but to derived rules like

a€c A a€ B
a€c ANB

Isabelle is under constant development. A stable version, Isabelle-86, imple-
ments a naive calculus of proof trees. It is good at proving a desired theorem, not
s0 good at deriving a desired rule. A rule is derived by starting with a conclusion
and attempting to reduce it to exactly the desired premises. It would be easier to
prove the conclusion taking the premises as assumptions.

Furthermore, it should be possible to assume a rule. In Martin-Lof Type
Theory, for example, it makes no sense to prove a theorem about the product type
[Toea B(z) without assuming'the axiom 4 type and the rule

a€ A
B(a) type

Higher-order logic (HOL) is a precise, well-understood formalism that can rep-
resent the inference methods of Isabelle-86 and extend them with hypothetical
rules. A logic is represented by translating each of its rules into higher-order logic.
A few familiar logical connectives suffice: implication handles entailment and as-
sumptions; quantification handles schematic rules and general premises; equality
handles definitional equality. In Martin-Lof’s terminology, implication forms a
hypothetical judgement while quantification forms a general judgement [14].

2 Intuitionistic higher-order logic

Higher-order logic (HOL, also known as simple type theory) is described by An-
drews [1]. Several theorem provers use it to advantage [2,7]. HOL is based on the
typed A-calculus [10]. Here is a brief sketch of the fragment required to represent
other logics.

2.1 Syntax

Types are sometimes called arities, following Martin-Lof, to avoid confusion with
MI types or object-level types. Let the Greek letters o, 7, and v denote types.
The types consist of basic types and function types of the form o — 7. /

The ezpressions are those of the typed A-calculus — constants, variables, ab-
stractions, combinations — with the usual type constraints. Let a, b, and ¢ denote
expressions, and z, y, and z denote variables.

The basic types and constants depend on the logic being represented. But they
always include the type of propositions, prop, and the logical constants of HOL.
A proposition is an expression of type prop. Let the script letters A, B, and C
denote propositions. The logical connectives are proposition-valued functions. The
implication A = B means ‘4 implies B’. The universally quantified proposition
A z.A means ‘for all z, A is true’. The equality of @ = b means ‘a equals .

The symbols =, A, and = have been chosen to differ from symbols of object-
logics: those to be represented in HOL. In predicate logic, implication would be
D, the universal quantifier would be V. As A, B, and C denote propositions, 4,
B, and C would denote formulae. But A, B, and C are meta-variables denoting
propositions of HOL, while A, B, and C are object-variables.

The universal quantifier is represented by A-abstraction. There is a constant
Ao of type (¢ — prop) — prop for every type o. The proposition A z.A, where =
has type o, abbreviates A,(Az.A). In particular, A z..A(z) is equivalent to A,(A)
by n-conversion.

Abstraction also handles quantifiers in first-order logic, as we shall see in Sec-
tion 5. The formula Jz.A is represented by 3(Az.A), where T is a constant symbol
of type (term — form) — form.

2.2 Syntactic conventions

The apf)lica,tion of a to the successive arguments by, .. ., b, is written a(bs, ..., bn):
a(by,...,bn) abbreviates (---(aby)-:-bn)
Implication associates to the right:
A= = A, =B | abbreviates A; = (- = (4, = B))

Let the script letters F, G, and H denote lists of propositions. If G is the list
[Ai,..., An], then

gv = B abbreviates Ay = (- = (A = B)--)
and also

[A1,...,An] = B abbreviates A; = (-++ = (A, => B))

One quantifier does the work of many:

/\ Zy...2,. A abbreviates /\ Ti.... /\ T A

The scope of a quantifier extends as far as possible to the right:
ANz A= b=c abbreviates Ae.(4d= (b=c))

A substitution has the form [a;/z1,...,ax/zs], where wy,.. .,z are distinct
variables, and ay, ..., a; are expressions. If b is an expression and 6 is the substi-
tution above then b6 is the expression that results from simultaneously replacing
every free occurence of z; by a; in b, for i = 1,..., k, renaming bound variables to
avoid capture.

Note that the combination a(b) denotes the application of a to b, not substitu-
tion. The law of - reductlon, namely (Az.a)(b) = a[b/ z], handles substitution at
the object-level. Read a[b/z] as ‘a putting b for 2.” Substitutions are used in the
discussion; they are not part of HOL itself.

2.3 Semantics

Higher-order logic was developed to formalize the foundations of mathematics. Its
consistency is proved by interpreting it in set theory, where every type denotes a
non-empty set. The interpretations of the basic types must be given; that of o — 7
is the set of functions from ¢ to 7. The type prop denotes a set of truth values:
classical logic would use {T,F}; an intuitionistic interpretation is also possible.

A closed expression of type ¢ denotes a value of the corresponding set. The
logical constants A,, =, and =, have standard meanings.

2.4 Inference rules

The constant symbols include, for every type o,

= ! prop — prop — prop
(o0 — prop) — prop
=, 1 0— 0 — prop '

Higher-order logic is usually formalized in Hilbert style. Natural deduction
rules are more convenient. These are derivable; for example =>-introduction cor-
responds to the deduction theorem [1]. :

Implication:
[A]
B . .
Yy (introduction)
A= 1133 A (elimination)

Universal quantification:

Aly/<]

m—— | (introduction)
Az. A Y
Afb/a] (elimination)

These are also called generalization and specialization. The generalizatioh rule is
subject to the proviso that y is not free in the assumptions or A.
Equality:

a=a (refleztvity)

Zi Z (symmetry)

@= — b=c (transitivity)
a=c

Az.a = My.a[y/z] (a-conversion)

The a-conversion axiom holds provided y is not free in a.

(Az.a)(b) = a[b/=) (B-conversion)
g(%z—i—g-@—)— (extensionality)
iz
ea=b c=d (combination)

a(c) = b(d)

The extensionality and abstraction rules hold provided y is not free in the assump-
tions, a, or b.
A rule giving logical equivalence from equality is

A=B A
B

Every expression has a unique normal form, where a = b if and only if a and b

have the same normal form [10].

3 Represehting intuitionistic propositional logic

To represent the syntax of intuitionistic propositional logic (IPL), introduce the
basic type form of formulae, the object-variables 4, B, C : form, and the constant
symbols

L ¢ form
AV D form — (form — form)
true : form — prop

Object-sentences are enclosed in double brackets [] for emphasis. The propo-
sition [A] denotes true(A) and means that A is true. The constant ‘true’ converts
a formula to a proposition. Letting [A] denote A would require the types form
and prop to be the same, confusing formulae of the ob ject-logic with propositions
of the meta-logic.

~ The natural deduction rules of intuitionistic logic correspond to the follow-
ing axioms, called the IPL axioms. Outer universal quantifiers are omitted. For
example, the axiom for A-introduction is really

N\AB.[A] = [B] = [A A B]

Congunction:
[A] = [B] = [A A B] (introduction)
[A A B] = [4] [A A B] = [B] (elimination)
Disjunction:
[A] = [A vV B] [B] = [AV B] (introduction)
[AV B] = ([4] = [C]) = ([B] = ch =[] (elimination)
Implication:
([A] = [B]) = [A > B] (introduction)
[A D B] = [4] = [B] (elimination)
Contradiction: '
[L] = [4]

To interpret the new symbols, let the type form denote a set of truth values
such that the logical constants A,V, D, L have their intuitionistic meanings. The
axioms are true under this interpretation: for example, if A is true and B is true
then A A B is true. Each axiom formalizes the justification of the corresponding
rule. This observation is obvious, but fundamental; I am grateful to Martin Hyland
for it.

Meta-level implication, =, expresses the discharge of assumptions. The O-
introduction axiom says that if the truth of A implies the truth of B, then the
formula A D B is true. An obvious question is whether this is a faithful represen-
tation of the object-logic in HOL.

Definition 1 A set of axioms G faithfully expresses an object-logic when the
following holds: there is an object-proof of B from Ajy,..., A, if and only if there
is an HOL-proof of [B] from [44],...,[An] and G.

Particularly important is soundness. If [A4],..., [An] imply [B] in HOL, then
Aq,...,Ap imply B in IPL because the axioms are true of IPL, and the rules
of higher-order logic are sound. A better proof is by induction on normal proof
trees in HOL. A normal proof tree consists entirely of the application of axioms
to elimination rules (representing application of the corresponding object-rules)
followed by introduction rules (representing the discharge of assumptions). Here
is a summary of the concepts as described by Prawitz [19,20]. For simplicity,
let us ignore equality rules, identifying expressions that are equivalent up to A-
conversions.

Every proof tree in higher-order logic can be normalized: modified such that
no elimination rule immediately follows the corresponding introduction rule. A
branch in a proof tree is obtained by repeatedly walking downwards from the first
premise of a rule to its conclusion; this process terminates when the conclusion
is not the first premise of another rule. In a normal proof, every branch begins
with an assumption or axiom, then has a series of eliminations, then a series of
introductions. During the eliminations the formulae become smaller and smaller
until they reach a minimum; during the introductions they become larger again.

Observe that [B] is an atomic HOL formula. A normal proof tree can be put
into ezpanded normal form, where every minimum formula is atomic [20, page
254]. For example, if a minimum formula is A = B, then the following can be
spliced into the proof, reducing the minimum formula to B:

A= B [/4]
_B
A= B

Theorem 1 (Soundness) If there is an HOL proof of [B] from [A4],...,[An]
and the IPL azioms, then there 1s an IPL proof of B from Ay,...,A,.

Proof: By induction on the size of the expanded normal proof tree. Since [B] is
atomic, the branch terminating with [B] cannot contain introduction rules, and
cannot discharge assumptions. The branch must consist entirely of ehmlna‘tlon
rules. If it is just [B], then B is one of Ay,...,An,, and is trivially provable.
Otherwise the branch contains elimination rules, so its first formula cannot be
atomic. It must consist of an axiom, followed by elimination rules, reducing it to
B. There is one case for each axiom.

For the A-introduction axiom, B is C A D for some formulae C' and D. The
proof begins with two A-eliminations, replacing the universal variables by C and D.
Then two =>-eliminations, applied to proofs of [C] and [D] from [44],..., [4n],
prove [[C A D]. By the induction hypothesis, there are IPL proofs of C' and D from
Aq,...,An. Applying A-introduction gives an IPL proof of C' A D.

7

For D-introduction, B is C' D D. The proof begins with A-eliminations for the
formulae C' and D. Then =-elimination, applied to a proof of [C] = [D] from
[Ai],...,[Am], proves [C D D]. Since the tree is in expanded normal form, the
proof of [C] = [D] must consist of a proof of [D] followed by =-introduction,
discharging the assumption [C]:

[{c1]

[D]
[C] = [D]
By the induction hypothesis, there is an IPL proof of D from Ay, ... , Am, C, and

D-introduction gives an IPL proof of C' O D from Ay, ..., Ap.
The cases for the other axioms are similar. O

Theorem 2 (Completeness) If there is an IPL proof of B from Aty Am,
then there is an HOL proof of [B] from [Ai],...,[Am] and the IPL azioms.
Proof: By induction on the size of the proof tree with root B and assumptions
Ay, ..., Am, we can construct a proof of [B] from [44],...,[Anm] in HOL.

Suppose the last inference of the IPL proof is D-introduction, and the conclusion
is €' D D. Then the rule is applied to an IPL proof of D from C. By the induction
hypothesis, there is an HOL proof of [D] from [C], and =>-introduction concludes
[C] = [D]. Then axiom for D-introduction proves [C' O D], discharging the
assumption [C1].

The cases for the other axioms are similar. O

To summarize:

Theorem 3 (Faithfulness) The IPL azioms faithfully ezpress IPL.

4 The development of backwards proofs

It is often natural to construct a proof backwards. The reduction of the goal
A to the subgoals A;, ..., A, corresponds to the derived rule Ay A/ A,
Higher-order logic represents this as the implication A; = +++ = A —
A. A resolution rule for HOL combines such implications. This implemention of
backwards proof is unusual, but has unique advantages.

AAND
AAB C

ANBDCDANC 1 _ CDAANC ANG |
ANB>CDAAC ANBDCDOANAC ANBSCDAAC

. AAB
AANB AANB AANB C
C C C A
Al A C asm A AE A
—

ANBOCOAAC AABOCHAAC AABOCOAAC

B8 AABODCDAANC

Figure 1: The steps of the construction of the proof tree

4.1 Partial proofs as derived rules

The method is illustrated by an example: a proof of AA B D (C D AAC). The
proof tree:
[A A B]
A
ANC
CDODAANC

AANBD(CDAANC)

A backwards proof is found by working upwards. Every partial proof is repre-
sented by a derived rule whose conclusion is the ultimate goal, here AAB D (C D
A A C), and whose premises are the current subgoals; its internal structure, which
has no further role to play, is suppressed. The initial partial proof is represented
by the trivial rule whose premise and conclusion are the ultimate goal.

[C]

Figure 1 shows the sequence of partial proofs. The initial partial proof is
combined with D-introduction, which gives rise to the assumption A A B. A
second D-introduction adds C to the assumptions. Then A-introduction splits in

two the goal, namely A A C. The full proof tree at this point is

AANB ANB
C C
A c

ANC

COAANC
AANBD(CDAAC)

AANBD(CDAANC)

The second subgoal, C, holds trivially by assumption. Then A-elimination splits
the assumption A A B, solving the first subgoal. The derivation ends with the
theorem AAB D (C D> AAC).

Isabelle-86 represents backwards proof similarly but does not handle assump-
tions for natural deduction. If the object-logic allows the discharge of assumptions,
it must express this through a sequent formulation.

4.2 A formalization of partial proofs

This proof tree construction can be formalized in higher-order logic. Horizontal
lines, used in Figure 1 to indicate object-level inferences, now indicate meta-level
inferences; object-level inferences are expressed using =. The initial proof state
is the trivial theorem C = C; a state of the proof with n subgoals is represented
by the theorem
’ [le-“aBn]:’c

The proof state with zero subgoals is the theorem C.

A partial proof is a theorem. It holds even if the goal or some subgoals are
false. Devising a representation of partial proofs that works regardless of the truth
of the goals has been difficult — particularly for quantifiers, as we shall see.

Each proof step uses a resolution rule, like in Isabelle-86. In the simplest form
of resolution, the substitution § must match A against B, namely A0 = B. The
conclusion is put into normal form:

[As, ..., An] = A F=B=C (1)
f@[Alﬂ,,AmG]zic

The notation avoids some subscripts by letting F stand for a list of propositions.
Here is the same rule again, writing out the lists in full. If A8 = B; then

[y A= A [Byy..., B = D
[Bl,...,B,'_.I,.Alg,...,Am0,8{+1,...,3n] =D

This shows more clearly how the rule acts on a proof state: the subgoal B; is

replaced by A44,. .., A,9.

10

The first premise is an object-level rule and the second is a proof state; the
conclusion is a new proof state:

object-level rule proof state

new proof state

The general form of resolution will involve the unification of A with B;, so the free
variables of the object-level rule should be distinct from those of the proof state.
In the examples, variables will be renamed by subscripting.

Resolution is easily derived from the rules of higher-order logic. Using both
quantifier rules k times derives an instentiation rule,

A
Alar /w1, ., ar/zk]

provided that z;,...,z; are not free in the assumptions. Resolution consists of
the instantiation of its premises followed by reasoning about implication.

4.3 Formalizing the use of assumptions
Let us return to the sample proof of AA B D (C D AAC). The first step in the
formalized version is the resolution

([A1] = [B1]) = [41 D B} [AANBD(CDAANC) = [AABD(CDAANC)]
MAANBl= [CoAACD) = [AABD(CDOAANC)]

The D-introduction axiom is resolved with the initial proof state, instantiating
the variable A; to AA B and B; to C D AA C. The new state has one subgoal:
to prove C D A A C from the assumption A A B.

The next step requires a new rule to handle assumptions. The resolution rule -
expects a theorem of the form --- = ([A A B] = [C D A A C]) as its first
premise. One way to obtain this is by ‘lifting’ an object-level rule, represented by
the implication [Ay,...,An] => A, over a list of assumptions H:

[A1,...,An] = A
[H=>A1,...,H:>Am]=:>(H=>A)

The lifting rule is derived by the implication rules of higher-order logic.
Combining the lifting rule with the earlier resolution rule (1) gives a form of
resolution that handles assumptions in subgoals:

Ay .., An] = A F=>MH=B)=C @)
F=H= Ab,.... H= A0 =C

The rule holds provided 46 = B. It replaces the subgoal H = B by H ==
Aq8,...,H = A,,0: the assumptions of B are passed to the new subgoals.

For an example of this new rule, let us resolve the D-introduction axiom with
the current proof state, namely

([AAB] = [C D AAC]) = [AAB D (CDAAC)]

11

Lifting the axiom over the assumption A A B yields

(ﬂAz]] = [B;]) = [A; D Bs]
(AAB = [4;] = [B:]) => (AAB = [4; D B;])

Resolving the conclusion with the proof state instantiates A, to C and B, to AAC.
The new state is '

([AAB] = [C] = [AAC]) = [AAB > (C 5 AAC)]

The next step is resolution with the axiom of A-introduction, lifting over the
assumptions A A B and C. Since the proof state takes up too much room, let
us omit it when necessary: ‘current proof state’ refers to the conclusion of the
previous resolution.

[As] = [Bs] = [A3 A B3] current proof state
(IAAB] = [C] = [A]) = ([AAB] = [C] = [C]) = [AA B > (CD>AANQ)]

The variable instantiations are A3 to A and Bs to €. Observe how the assumptions
are copied to both subgoals.

The next step, using assumption C in the second goal, takes place by resolution
with the HOL theorem [A A B] = [C] == [C].

[AA B] = [C] = [C] current proof state
([AANB] = [C]=[A]) == [AAB > (C D AAC)]

Next comes resolution with A-elimination. We have no rule that can use the
assumption 4 A B to produce a new assumption 4, so we must deviate from the
earlier proof. The goal A is instead reduced to the subgoal A A B. Since the goal
does not determine B, the proof uses a particular instance of the A-elimination
axiom, lifted over A A B and C':

[A A B] = [A4] current proof state
([AAB] = [C] = [AAB]) = [AAB>(C > AANC)]

Unification can determine the necessary instance of B. But a better treatment of
A-elimination is given in Section 4.5.

The next step uses the assumption A A B in the goal, by resolution with the
theorem [A A B] = [C] = [A A B].

[AAB] = [C] = [ANA B] current proof state
[AABD>(CD>ANAC)

This concludes the proof of AAB D (C' D AAC), representing each step of
the object-level proof by a use of resolution. It is not hard to see that every proof
in the current object-logic can be represented by a resolution proof like the one
above.

12

4.4 Deriving rules in an object-logic

To derive a rule, its premises are taken as assumptions, and finally discharged
via =>-introduction. Our example of proving an implicative theorem is easily
changed to that of deriving the rule

AANB
COANC

The first step is resolution with the axiom of D-introduction., instantiating A, to

C and By to AANC:
([A1] = [B4]) = [41 D Bi] [COAAC]=[CDAAC]
(ICl=[AAC]) = [C D AAC]
Next comes resolution with A-introduction, lifting over the assumption C'
[Az] = [B2] = [A2 A B:] ([C]=1[AANC])=[CDAAC]
([Cl=[AD) = ([C1=[C]) = [C > AAC]
The next resolution uses the assumption C to solve the second goal:
[€] = [C] ([Cl=[AD) = ([C]=[C]) = [C D AAC]
(ICl=[A]) = [C D> AAC]
The next resolution uses A-elimination, lifting over C':
[A A B] = [4] ([C]=[A]) = [C D> AAC]
(ICl=[AAB])=[CDAANC]

Here we diverge from the previous proof. The subgoal does not mention the
assumption AA B. Instead, this assumption is made at the meta-level. We resolve
with A A B, lifting over C.

[IAAB]] ([C]==[AAB])=>[CDAAC]
[CDAAC]

Finally =;:>-introduction discharges the assumption [A A B], yielding
[AAB] = [CD>AAC]

This completes the proof.

It is also possible to assume a rule. Adding the double negation law

(A>l)ol
A

to intuitionistic propositional logic gives classical logic. We can investigate the
consequences of adding this rule; it is represented by the proposition

NA.[(AD1)D 1] = [4]

The double negation law implies the excluded middle, a fact represented by the
following theorem:

(ANAJ(ADL)D L] =[A]) = AB.[BV (B > 1)]

13

4.5 Deriving rules for forwards proof

The A-elimination rules typically work in the forwards direction, producing a new
theorem (or assumption) from an existing one:

AANB AANB

A B

In backwards proof, it is strange to reduce the goal 4 to the subgoal 4 A B.

We could derive a meta-rule to give forwards proof using the assumptions of a
subgoal. But there is another version of A-elimination better suited to backwards
proof. It fits the standard pattern of elimination rules, such as those for disjunction
and existential quantifiers [21]. It applies to any goal C, reducing it to the subgoal
of proving A A B and the subgoal of proving C assuming A and B:

[4, B]

ANB
C

In higher-order logic, the rule is
[4A Bl = ([4] = [B] = [C]) = [C]
It is easily proved by ==-introduction, =-elimination, and the axioms
[AA B] = [4] [A A B] = [B]

It is best proved directly — the techniques of the previous section seem cumber-
some — because it is not a proof in the object-logic, but about the ob ject-logic.

"The inference rules of LCF’s object-logic are given as functions from theorems
to theorems. This provides forwards proof. For backwards proof, an LCF tactic
maps a goal to a list of subgoals paired with a validation function, which maps
theorems to theorems [18]. An invalid tactic is one that promises more than it
can deliver. It reduces a goal A to a set of subgoals that do not imply 4. The
error may not be noticed until the end of the proof, when the validation function
fails to produce the expected theorem.

Representing the goal tree by a derived rule in a meta-logic eliminates the
danger of invalid tactics. Later we will see another advantage: it allows goals
containing variables, instantiated by unification. But Isabelle may need LCF-style
tactics for reasoning in higher-order logic, to derive the conjunction rule given
above. Isabelle must support both object-level proof and meta-level proof.

5 Representing quantifiers

Adding quantifiers to the previous object-logic gives intuitionistic first-order logic
(IFOL). Let us introduce the basic type term of terms, variables ranging over

14

terms, and propositional functions. By convention, primes indicate the arity of a
symbol: A’ is a function taking one argument, A" takes two, etc. But we can often
be causal about this, for in A(z) clearly A must have function type.

Introduce the type term, the variables

tyu,z,y,2 : term
A,B',C" : term — form

and the constant symbols
V,3 : (term — form) — form

Let us write Vz.A for V(Az.A) and Jz.4 for I(\z.A4). The IFOL axioms consist
of the IPL axioms, for propositional logic, plus the following axioms, for quantifiers:
Universal quantification:

(Az.[4'(2)]) = [Vo.4'(z)] (introduction)
[Vz.A'(z)] = [4'(t)] (elimination)
Egistential quantification:
[A'(#)] = [Fz.4'(x)] (introduction)
[Fo.A'(2)] = (A = [4'(z)] = [B]) = [B] (elimination)

'To see why these are true requires a semantics of first-order logic. The type
term denotes a set of individuals; the quantifiers have standard meanings. The
axiom for V-introduction simply asserts one direction of the basic property of the
universal quantifer: A'(x) is true for all z if, and only if, Vz.A'(z) is true. The
axiom for V-elimination asserts the converse. The axiom for 3-elimination states
that if A’(z) implies B for every «, then Jz.A'(x) implies B. This is correct because
if dz.A'(z) is true then there is an such that A/(z) is true, and so B is true.
Each axiom formalizes the standard justification of the object-rule.

The proof that these axioms faithfully represent first-order logic is similar to
that for propositional logic.

Theorem 4 (Soundness) If there is an HOL proof of [B] from [Ai],...,[Am]
and the IFOL azioms, then there is an IFOL proof of B from Ai,..., An.

~Proof: By induction on the size of the expanded normal proof tree. The branch
terminating with [B], if it is non-trivial, consists of an axiom followed by elimina-
tion rules. '

For the J-introduction axiom, B is Jz.C'(z). Two A-eliminations replace the

universal variables by C' and u. Then =-elimination is applied to a proof of
[C'(u)] from [A4],...,[An]. By the induction hypothesis there is an IFOL proof
of C'(u) from 4,..., A, and J-introduction proves 3z.C'(z).

15

The hardest case is 3-elimination. The proof contains ==-eliminations applied
to proofs of [Jz.C'(¢)] and Ax.[C'(z)] = [D] from [A4],...,[An]. Since the
tree is in expanded normal form, the latter proof consists of a proof of [D] followed
by ==-introduction, discharging the assumption [C'(y)] — for some y not free in
[Ai],...,[An] — followed by A-introduction:

[IC'(»)]]

D]
[CW] = ID]
AwlC @I = D]

By the induction hypothesis, there are IFOL proofs of D from Ay,..., An,C'(y)
and of 32.C'(z) from Aj,...,A,. The J-elimination rule gives an IFOL proof of
D from A;,...,An.

The cases for the other axioms are similar. [

Theorem 5 (Completeness) If there is an IFOL proof of B from Ay, ..., An,
then there is an HOL proof of [B] from [Ai],...,[An] and the IFOL azioms.
Proof: By induction over an IFOL proof tree with root B and assumptions
Ay, ..., An. The hardest case is when the last inference is J-elimination. Then
the rule is applied to an IFOL proof of 3z.C(z), and to a proof of B from C(y),
where the variable y is not free in the other assumptions:

C(y)

Jz.C(z) B
B

By the axiom for J-elimination, it is enough to prove the theorems [Jz.C(z)]
and Az.[C(z)] = [B]. By the induction hypothesis, there is an HOL proof of
[3z.C(2)], and also a proof of [B] from [C(y)]. By ==- and A-introduction, since
y is not free in the assumptions, we have Ay. [C(y)] = [B]. O

To summarize:

Theorem 6 (Faithfulness) The IFOL azioms fasthfully ezpress IFOL.

6 Extending resolution to quantifiers

So far we have considered propositional logic. Quantifiers complicate the situation
by introducing universal goals and free variables in goals.

16

6.1 Lifting over universal quantifiers

A universal goal has the form Az;...z,.A. It arises from trying to prove a uni-
versal premise, like that of V-introduction or 3-elimination. Consider a proof of
Vz.A(z) V B(z) from Vz.A(z):
V. A(z)
A(z)
A(z) vV B(z)
Vz.A(z) V B(x)

Working backwards, the first inference is V-introduction. The first resolution

step of the formalized proof instantiates A} to Az.A(z) V B(z):

(Az.[A1(z)]) = [Vz.Al(z)] [Vz.A(z) V B(z)] = [Vz.A(z) V B(x)]
(Az.[A(z) V B(2)]) = [Vz.A(z) V B(z)]
The goal A(z)V B(z) is universal: it must be proved for arbitrary z.
The next resolution step can take place by lifting an object-rule over the uni-
versal variable z. This lifting principle (A-lifting) resembles the one for lifting an

object-rule over assumptions (==-lifting). The case of an implication with one
free variable ¢ and one antecedent A(c) is

A(c) = B(c)
(Az. A(c(z))) = Az.B(d(z))
The implication A(c) => B(c) reduces B(c) to A(c) for any expression c,

including one of the form ¢'(z). To show B(c'(z)) for all z, it suffices to show"
A(c'(z)) for all z. The formal derivation in higher-order logic is

Alc) = B(c)
Az Alz) = B(z) [\=z.A(d(=))]
A('(2)) = B(<(2)) A(d(2))

B(c'(z))
N\ z.B(c(z))
(A z.A(d () => \=.B(d(z))
Lifting generalizes in the obvious way to allow any number of universal variables
T1,..., Tk (abbreviated), free variables ¢y, ..., ¢, and antecedents Ay, ..., Any:

[Ai(er, .. yen)y ey Amler, o yen)] = Aer, .o vyen)
[AZ AL()(F), - n(@)) oo AE Am(el(E), - .o, (@))] = AZ A(4(E), . .., c(E))

Ezamples: The V-introduction axiom has free variables A and B. Lifting it
over the universal variable ¢ produces a theorem with new free variables A’ and
B’, functions of z:

[A] = [AV B]
(Az.[A(2)]) = Az.[A'(z) V B'(z)]

17

The F-introduction axiom has free variables A’ and ¢. Lifted over , it obtains free
variables A” and t':

[A'(®)] = [3="A(=)]
(Ae.[4"(e,#(2)]) = Az.[3y.4"(, y)]

To avoid collision, the inner bound variable is renamed from to y. Renaming a
bound variable does not affect the meaning of an expression.

We can now resume the backwards proof of Vz.A(z) V B(x) from Vz.A(x).
Recall that the proof state after the first step was

(A= [Ax) V B@)]) = [Ve.A(z) V B(z)]

Resolution with the A-lifted version of the V-introduction axiom simplifies the
general subgoal, A(z) V B(z):

(Az[45(2)]) = A2.[43(=2) V By(2)] (Aw.[A(2) V B(z)]) = [Va.A(z) v B(z)]
(Az.[A(2)]) = [Vz.A(z) V B(x)]

The instantiations are A} to A and B}, to B.

Recall that when deriving a rule, its premises may be taken as assumptions.
The assumption [Vz.A(z)], by the axiom of V-elimination, proves [A(#3)], where
13 is a {ree variable for resolution. Lifting over = gives the theorem A z. [A(, ()],
where t3 is a free function variable. In the final resolution, #, is instantiated to
Az.z, and so tj(z) = (\z.z)() = o

Az [AE@)] Az [A@®)]) = [Vo.A(x) V B(z)]
Ve A() V B(@)]

This use of function variables is typical. In Az. A(t'(z)), instantiating the
function variable t' can replace the expression #/(z) by an expression involving z. In
Az. A(t) the variable t may not be replaced by an expression containing « free, for
the quantifier would capture that free variable. In A zy. A(#(z)), instantiating t
can replace t'(z) by an expression containing « free but not y. The general variables
of the goal define a context. An expression like #' (z), through the variables in its
argument list, states precisely its dependence on the context.

6.2 Unlification

Unification is essential for reasoning involving quantifiers. We prove that an al-
gorithm runs in linear time by proving that if its input has size n then it runs
in Kn seconds, for some K. We prove a < b by proving a < ¢ and ¢ < b for
some c. We use the fact Vz.P(z) V Q(z) for case analysis by saying that either
P(a) or Q(a) is true, leaving a unspecified. Each of these examples involve goals
containing unknowns: terms that must eventually be stated to complete the proof.
In backwards proof, unification instantiates variables in goals. Sokolowski’s proof
of the soundness of Hoare’s logic is an example of unification in practice [23].

18

The present approach to backwards proof, using derived rules, easily handles
goals containing unknowns. We simply extend the resolution rule (2) to instantiate
both its premises, the object-rule and the proof state. The new resolution rule is
applicable when 6 is a unifier of A and B. Variables in goals, including the final
goal, may be instantiated: C becomes C8.

If A8 = B then

Ay, ..., Ap] = A F=H=B)=C
FO = [HO = A4,..., HO = A,.0] = C§

(3)

A resolution rule could incorporate A-lifting, but how could we write it down?
The examples continue to show the A-lifting steps separately.

6.3 Basic examples involving quantifiers

To see how unification is used, try proving Jz. A(z) V B(z) from Jz. A(f(z)).
To exercise all the quantifier rules of first-order logic, prove Vz.3y.A(z,y) from
Jy.Vz.A(z,y), and understand the syntactic restrictions that make the converse
impossible to prove. Here we will work two simpler examples.

Consider first-order logic with equality, where = in particular is reflexive: we
have the axiom [t = t]. A proof of Vz.3y.z = y will be contrasted with an
attempted proof of Jy.Vz.z = y, illustrating the effect of the provisos of the
quantifier rules.

A successful proof

A first-order proof of Vz.dy.z = y is

T=2z
dy.z=y
Vedy.z =y

The topmost inference is the reflexivity axiom.
The first resolution in the backwards proof of Vz.dy.z = y involves the V-
introduction axiom, instantiating A to Az.3y.z =y

(A2J4(@)]) = [Vo.4(=)] [Vody.o = y] = Va.dy.o = 4]
(Az.[Fy.z =y]) = [Ve.Fy.z = ¢]

Next we resolve with the F-introduction axiom, after lifting it over the universal
variable z:

(A= [45(z, t5(2))]) = Az.[By.45(z,)] (Az.[Fy.z =y]) = [Vedy.z = yj]
(Az.Jz =t3(z)]) = [Vz.3y.z = 9]

The variable A} is instantiated to Azy.z = y, so the normal form of A}(z,t,(z))
is ¢ = th(x).

19

We can see that putting Az.z for t} solves the subgoal, Az.[z = t5(2)], by
reflexivity of =. In the formal proof, this happens by resolving the proof state
with the lifted form of the reflexivity axiom:

Aolts(e) = @] (Azle = t(2)]) = [VoTy.o = 4]
Vz.3y.z = y]

Consider the steps of higher-order unification [11,17]. The initial disagreement

pair is

(A=lts(2) = t3(2)], A\wle = ti(a)])
It reduces to the pairs (Az.tj(z),Az.z) and (M\z.ty(e), Az.ty(z)). The first pair
forces t5(x) to be Az.z; the second forces t}(z) to be Az.z. So the common instance

is Az.[z = z].

An unsuccessful proof

An attempt to prove Jy.Vz.z = y in first-order logic is
Tz =1t
Ve.z =1
JyVe.z =y
The topmost formula is unprovable since z and ¢ must be distinct terms.

The first resolution in the attempted proof of dy.Vz.z = y involves the 3-
introduction axiom:

[Ai()] = [Bz.4i(®)] [ByVa.o =y] = [y.Ve.z = 4]
[Ve.z = t1] = [Fy.Ve. e =]
The subgoal contains a new variable, ;.
Resolution with the V-introduction axiom gives

(Az.[45(2)]) = [Vz.45(2)] Vz. 2 = 4] = [Fy.Vz.z = y]
(Azfz =4]) = [Fy.Ve.z = y]

We are stuck. The subgoal A z.[z = t,] is false; no term t; is equal to everything.
Resolution with the reflexivity axiom fails. The initial disagreement pair

(N z-lty(z) = ty(@)], Awfo=1])

reduces to the pairs (Az.th(z), Aa.z) and (Az.t4(x), Az.t}). The first pair forces
t3(z) to be Ae.z, reducing the second to (Ae.z, Az.t,), which has no unifier.

7 An alternative for quantifiers: Skolemization

Isabelle-86 does not use A-lifting; it enforces parameter provisos like ‘x is not free
in I'” literally. The V-introduction rule of the first-order sequent calculus is

I'FA®y)
I' - Vz. A(z)

20

subject to the proviso that y is not free in I' or A. Isabelle-86 reduces the goal
I' - Vz.A(z) to the subgoal I' |- A(y), representing the proviso as a directed
acyclic graph with arcs from y to I and A. The graph grows as schematic variables
of I" and A become instantiated. Isabelle-86 enforces the provisos by forbidding
instantiations that would introduce a cycle into the graph. During resolution, it
renames the variables of one of the premises to prevent clashes.

Here is a basic observation about universal quantifiers and implication. The
rule (on the left) is valid; the implication (on the right) is not:

Ay)
Ao Al A(y) = [\ z.A(z)

To eliminate universal variables in goals, we must replace y by a special expression
that makes the implication valid.

7.1 Hilbert’s e-operator

Church’s original higher-order logic includes Hilbert’s e-operator where ex.A(z)
is an expression provided A(z) is a proposition. If A(b) is true for some b then
ex. A(z) is b. Otherwise ez. A(z) has an arbitrary value: all types are non-empty,
so a member can be chosen using the Axiom of Choice. An axiom for the e-operator
is
N\ z.B(z) = B(ez.B(z))

Suppose that we extend our fragment of higher-order logic with classical nega-

tion. Then putting ~.A(z) for B(z) gives
Nz —A(z) = ~A(ez.~A(z))

Taking the contrapositive, and pushing the A z inwards, gives

Alez. ~A(z)) = A\ z.A(=z)

So our special expression is ez.—A(z), which is a value chosen to falsify A, if
possible.

The expression ez.—A(z) contains the same free variables as Az.A(z), as
can be seen when it is instantiated. For example, a theorem representing V-
introduction in first-order logic is

AA. [Alex. ~[A@))] = [Va.A()]

where the variable 4 is free in ez. ~[A(z)] but bound in the surrounding expression.
Specializing A to Az.a(z) = 0 gives the theorem

[a(ez. —[a(z) = 0]) = 0] = [Vz.a(z) = 0]
Specializing A to Az . B(z) D C(z) gives the theorem
[B(ezx. ~[B(z) D C(z)]) D C(ez. ~[B(z) D C(x)])] = [Vz.B(z) D C(z)]

21

In the resulting theorems, the expression ez.-[A(z)] produces two different ex-
pressions

ez. —a(z) = 0] and ex.—~[B(z) D C(z)]

7.2 Replacing Hilbert’s ¢ by Skolem constants

The e-operator is impractical because the expression ex. =A(z) grows to enormous
size. Is there something similar and less unwieldy? Consider adding to HOL the
axiom scheme '

Alya) = Nz Az) (4)

The intent is that, for each instance of this scheme, y4 is a unique constant
not free in A. In y, the variable A can be seen as part of the name, though
an implementation need not take this literally. Isabelle-86 generates a unique
name and associates it with the free variables of A through the graph mechanism
mentioned earlier.

Since y4 is a constant, it can only occur free, so its free variables must not
be bound in the surrounding expression. The generalization rule (A-introduction)
must be accordingly restricted. Recall the instantiation rule, B(z)/B(a). Previ-
ously derived by generalization and specialization, it must be taken as primitive if
we adopt Skolemization. In Skolem constants of the premise, every free occurrence
of z is replaced by a, an expression of the same type.

The Skolemized version of the V-introduction rule is

[Aly)] = [Vz.A(=)]

This cannot be generalized over A because A is free in the constant y4. However,
A may be instantiated. Instantiating the theorem instantiates the free variables
of A, creating a new Skolem constant. Instantiating 4 to Az.a(z) = 0 yields

[a(y.) = 0] = [Vz.a(z) = 0]
Instantiating 4 to Az.B(z) D C(z) yields
[B(ys,.c) D C(ys,0)] = [Vz.B(z) D C(z)]

The resulting theorems contain different constants y, and yp ¢, as though y 4 were
renamed in every use.

7.3 Sample proofs using Skolem constants

Let us return to the two quantifier examples from Section 6.3: the proof of
Vaz.dy.z = y and failed proof of Jy.Vz.2 = y. These examples illustrate how
provisos of quantifier rules are enforced; here Skolem constants and lifting differ.

22

A successful proof

The first resolution in the backwards proof of Vz.Jy.z = y involves the axiom of
V-introduction:
[Ai(xa)] = [V2.43(z)] [Vo.3y.z =y] = [Ve.3y.z =]
[FBy.x =y] = [Vz.3y.2 = ¢] |

The constant x in the conclusion has no subscript since A] is assigned Az.3y.z =y,
which has no free variables.

Next we resolve with the d-introduction axiom:

[43(t)] = [Fe.A3(=x)] [Fy.x =y] = [Ve.dy.z = y]
[x =t:] = [Vz.3y.z = y]

The function variable A is instantiated to Ay.x = y, so the normal form of A}(t)
is x = ts. ' ‘

Resolving the proof state with the reflexivity axiom sets t; to x, completing
the proof:

[ts = t3] [x =t = [Vz.3y.z = y]
[Va.3y.z = y]

An unsuccessful proof

The first resolution in the attempted proof of Jy.Vz.2 = y is the same as in
Section 6.3:

[4i(t)] = [Bz.4i(z)] [Fy.Ve.z =y] = [Fy.Ve.z =y]

[Vz. 2z = ;] = [Fy.Vz. 2z = 9]
Resolution with the V-introduction axiom gives
[Ay(xu)] = Vo dy()] Moo = 1] = [Fy¥o.o = y]
o = 4] = By Voo = 71

The instantiation of A} is Az.z = t;. Its free variable, t1, is the subscript of the

constant x;, in the conclusion. The subgoal [x;, = #1] cannot be solved because
the instantiation of ¢; to x;, would be circular; these expressions are not unifiable.

7.4 Lifting versus Skolemization

Let us compare A-lifting with Skolem constants by considering the abstract form
of a derivation. In each case, the final goal is B and each partial proof involves a
single subgoal.

lifting Skolem constants
Ala) = B ' Ala) = B
(Az.Ay(a,z)) = B Ai(a,x,) = B
(Az.Az(a,z,b(z))) = B As(a,%.,0) = B

(A zy.As(a, z,b(z),y)) = B As(a,X4,0,¥0p) = B

(/\ a:y.A4(a, T, b("’)) Y, C((L‘, y))) = B -’44(a)xaa ba Yab, C) = B

23

In the sequence of proof states new variables appear one by one: the free
variable a, the universal variable x, the free variable b, the universal variable y,
and the free variable c. Consider the final theorem:

lifting

The variable a can not be assigned
an expression containing z or y free
because bound variables can not be
captured.

The variable b(z) can be assigned an
expression containing z but not y.

The variable ¢(z,y) can be assigned
an expression containing x or y.

Skolem constants

The variable a can not be assigned
an expression containing X, or y.
because a is free in these constants.

The variable b can not be assigned
an expression containing y, s, which
contains b.

The variable ¢ can be assighed an ex-
pression containing X, or Y., for ¢

is free in neither.

Skolemization raises many questions. When is the name of a Skolem constant
significant? What is the scope of a Skolem constant? Does the axiom scheme (4)
entail classical logic or the Axiom of Choice? It is a conservative extension if every
proof of A(y4) can be transformed to a proof of A z..A(z), which is the converse of
Herbrand’s theorem [6], for higher-order logic. For further discussion, see Miller
[16].

With A-lifting the status of universal variables is clear. The name of a universal
variable in a goal is insignificant, by a-conversion. The scope of a universal variable
is limited to its goal. In

(A\z.A(z)) = (A y.Bly)) =C

the scope of -z is the first goal and that of y is the second; neither can occur in C.
Lifting does not extend the original logic.

A drawback of A-lifting is the increased number of function variables, which
places increased demands on higher-order unification. But higher-order unification
is already essential in the present approach.

8 An implementation

Isabelle-86 is concerned with object-rules of the form [A, ..., 4] = A. Implica-
tion cannot be nested such that the premises A; are themselves rules. Quantifiers
are not available, but schematic variables and Skolemization handle things like

Az (Ay-A(z,9)) = B(z)

Schematic variables allow rules to be instantiated. Skolem constants allow rules
with universal premises. I have outlined the ideas behind Isabelle-86 elsewhere

7).

24

Below the level of rules, Isabelle is concerned with terms, substitution, normal-
ization, higher-order unification, and also parsing and printing. Higher levels are
concerned with tactics and tacticals. Above basic Isabelle come the object-logics
with their special inference mechanisms.

I implemented a prover based on higher-order logic by modifying Isabelle-86.
Only the level of rules needed substantial change; the lower levels were slightly
modified and the higher levels hardly at all. The natural deduction rules of Sec-
tion 2.4 were represented by the corresponding sequent calculus, so theorems have
the form G | A. While object-rules have visible structure, meta-rules are repre-
sented like in LCF: by functions. The resolution rules were implemented directly;
deriving them from the primitive rules would be painfully slow.

The ==-lifting rule has not been implemented, so Isabelle does not yet support
natural deduction. But sequent calculi may be preferable. They are the natural
system for classical logic [20, page 245]. And in backwards proof they allow the
deletion of needless assumptions. Compare the conjunction and quantifier rules:

TVABEA. I,Vz.A(z), AQt) - A
IVAABEA Wz A(z) | A

In backwards proof, the assumption A A B is useless in the subgoal, while fur-
ther instances of Vz.A(z) may be required. The corresponding rules in natural
deduction do not make this distinction.

The Skolem constants of Isabelle-86 have been abandoned in favor of A-lifting,
but schematic variables have been kept. Unlike ordinary variables, they can be
instantiated without checking the assumptions. The meta-rules guarantee that the
HOL sequent G |- A has schematic variables only in \A. The instantiation rule is

Gl A
g I_ ‘A[al/mla s ,ak/mk]
where zi,...,z; are schematic variables — and therefore do not appear in the

assumptions G.

The sample logics of Isabelle-86 were implemented. Many of the standard
examples for Intuitionistic Type Theory worked unchanged. The largest Intu-
itionistic Type Theory example develops elementary number theory up to the
theorem

amod b+ (a/b) xb=ua

These proofs rely heavily on a rewriting tactic that works by resolution with the
equality rules of Type Theory.

A sequent calculus for intuitionistic first-order logic was made to work within
a week. Later, a classical sequent calculus was added. Most of the first-order logic
examples also worked, including automatic proof procedures based on an encoding
of associative unification via higher-order unification. These procedures are not
complete (they use quantified formulae only once) but can automatically prove
many theorems in either intuitionistic or classical first-order logic.

25

A few examples involved ambiguous use of a rule, where higher-order unification
produced multiple unifiers. Lifting caused the unifiers to be produced in a different
order. Changing the unification algorithm to reverse the order of projections [17]
allowed these examples to work again.

Equality (=) handles constraints and definitions. If higher-order unification re-
turns flex-flex disagreement pairs [11,17], say (a1, b1), ..., (am, by), then resolution
imposes equality constraints on the conclusion, returning a theorem of the form

m=bh = - =a,=b,=20C

The old definition mechanism has been replaced by one using equality reasoning.
A constant is defined by an equation like I = «, allowing the replacement of I
by a when desired. The examples involving definitions have been reworked.

Isabelle is written in Standard ML. I took the opportunity to adopt ML mod-
ules, and spent much time chasing compiler bugs that came to light. The new
version runs slightly slower than the old: partly due to lifting, and partly because
modules add a layer of indirection.

Producing the implementation was easy. This confirms that HOL is a straight-
forward extension of the meta-logic of Isabelle-86.

9 Related work

Related work includes AUTOMATH [12], the Calculus of Constructions [5], the
Edinburgh Logical Framework (LF) [9], and the work of Martin-Léf [15]. These
calculi have much in common but differ on practical and philosophical points.
They have different objectives: AUTOMATH and the Constructions, to formalize
mathematical reasoning; the others, to be a general representation for logics.

The other systems are all higher-order A-calculi using the interpretation of
propositions-as-types [13]. A proposition is represented by a type; proving the
proposition A means constructing a proof object of type A. Proof ob jects grow
with the length of the proof; storing them may be impractical. Nobody knows
whether proof objects of an arbitrary logic have any use, though Constable et al.
use those of Martin-Lo6f’s Type Theory as a functional programming language [4].

Propositions-as-types reflects the intuitionistic interpretation of the logical con-
nectives. The implication A = B and the quantification Az € 4. B (z) are both
expressed by the product Ilz € A. B(z). This view eliminates the difference be-
tween A-lifting and =-lifting. In HOL the constant A has a function type, while
the axiom for A-introduction uses implication:

Az form — (form — form) [A] = ([B] = [A A B])

Propositions-as-types represents implication by a function type, identifying — and
=,

The Edinburgh group have formalized a variety of unusual logics in their LF
[3]. Their formalization of modal logic reflects its ‘possible worlds’ semantics. To

26

Vz.A(z) Vz.A(z)
Az) A(0)
Jz.A(z) Jz.A(z)

(a) ()

Figure 2: Two proofs of Jz.A(z) from Vz.A(z)

handle the complex proviso of the necessitation rule, they are led to introduce two
forms of assertion: truth in this world and truth in a frame of related worlds. We
see that a meta-logic formalizes the semantic justifications of the object-rules; it
is often impractical to formalize the rules literally.

Propositions-as-types requires a rich type structure, including indexed families
of types. These easily handle typed object-logics [9]: the type term(T) might
represent the set of terms of object-type T'. The representation of such a logic in
HOL involves the type term of all terms, including terms having no legal object-
type; propositions express object-level type checking rules. On the other hand,
the representation of first-order logic given above is similar to that of Martin-Lof
[15] and the Edinburgh group [9].

A subtle difference: HOL assumes that all types are non-empty, for an in-
terpretation where A is false and the type of z is empty falsifies the theorem
(Az.A) => A. Under propositions-as-types, some types must be empty, namely
those representing false propositions. Standard first-order logic assumes a non-
empty universe, and so Vz.A(z) implies 3z.A(z). HOL can represent the standard
proof, Figure 2(a). Avron et al. [3] suggest that deriving this in the LF formal-
ization of first-order logic requites a constant, say 0. The LF proof presumably
represents that of Figure 2(b).

Schroeder-Heister has devised a system of natural deduction with rules of
. higher levels [21,22]. Assumptions may be rules, not just formulae, and can be
discharged in the application of another rule. His system is complicated but seems
to use the same primitive concepts as everyone else: forms of meta-implication
and meta-quantification.

My theorem prover is designed, above all, to make full use of unification. Huet’s
unification algorithm for higher-order logic [11] has been shown to be useful by
myself and others [2,17]. Most of the other calculi have bound variables in types,
complicating the unification problem. Harper et al. claim to ‘have defined a logic-
independent search space that generalizes Paulson’s higher-order resolution’. Lack-
ing a unification algorithm, it is unclear what the authors could mean by this.

In higher-order logic the other connectives can be defined using = and A
by quantification over propositions, a standard construction [19]. The disjunction

27

AV B is equivalent to the proposition
NC.(A=C)= (B=0(C)=C

This is an impredicative proposition: it refers to all propositions, including itself.
A similar example is Leibniz’s definition of equality: = y means y has every prop-
erty of z, namely A A.A(z) => A(y). Careless use of impredicative propositions
- can lead to contradiction [24], but HOL allows them and is nonetheless consistent.
HOL can be made predicative by forbidding bound variables whose type involves
prop. The resulting system is much weaker but can still serve as a meta-logic: to
represent object-logics requires only quantification over object-formulae. Its theory
of proof normalization is much simpler, essentially the same as first-order logic.
Most of the other calculi are predicative and intuitionistic.

Acknowledgements. Thierry Coquand has made many invaluable contributions,
especially in normalization problems. Thanks also to Peter Dybjer, Martin Hy-
land, Brian Monahan, and the Edinburgh group. Dave Matthews has continued
to support Poly/ML. Funding and equipment were provided by the SERC /Alvey
grant GR/E0355.7.

.

References

(1] P. B. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof (Academic Press, 1986).

[2] P. B. Andrews, D. A. Miller, E. L. Cohen, F. Pfenning, Automating higher-order
logic, in: W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem
Proving: After 25 Years (American Mathematical Society, 1984), pages 169-192,

[3] A. Avron, F. A. Honsell, I. A. Mason, Using typed lambda calculus to implement
formal systems on a machine, Draft report, University of Edinburgh (1987).

[4] R. L. Constable, S. F. Allen, H. M. Bromley, W. R.. Cleaveland, J. F. Cremer, R.
W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panagaden, J. T.
Sasaki, S. F. Smith, Implementing Mathematics with the Nuprl Proof Development
System (Prentice-Hall, 1986).

[5] Th. Coquand, G. Huet, Constructions: a higher order proof system for mechanizing
mathematics, in: B. Buchberger, editor, EUROCAL ’85: European Conference on
Computer Algebra, Volume 1: Invited lectures (Springer, 1985), pages 151-184.

[6] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving (Harper & Row, 1986).

[7] M. J. C. Gordon, HOL: A proof generating system for higher-order logic, in: G.
Birtwistle, P. A. Subrahmanyam, editors, VLSI Specification, Verification and
Synthesis (Kluwer Academic Publishers, 1987, in press).

28

[8] Ph. de Groote, How I spent my time in Cambridge with Isabelle, Report RR 87-1,
Unité d’informatique, Université Catholique de Louvain, Belguim (1987).

[9] R. Harper, F. Honsell, G. Plotkin, A Framework for Defining Logics, Logic in
Computer Science (IEEE, Proceedings, 1987), pages 194-204. /

[10] J. R. Hindley and J. P. Seldin, Introduction to Combinators and A-calculus
(Cambridge University Press, 1986). o

[11] G. P. Huet, A unification algorithm for typed A-calculus, Theoretical Computer
Science 1 (1975), pages 27-57.

[12] L. S. van Benthem Jutting, Checking Landau’s ‘Grundlagen’ in the AUTOMATH
system, PhD Thesis, Technische Hogeschool, Eindhoven (1977).

[13] P. Martin-L6f, Constructive mathematics and computer programming, in: C. A. R.
Hoare, J. C. Shepherdson, editors, Mathematical Logic and Programming Languages
(Prentice-Hall, 1985), pages 167-184.

[14] P. Martin-Lo6f, On the meanings of the logical constants and the justifications of the
logical laws, Report, Department of Mathematics, University of Stockholm (1986).

[15] P. Martin-Lof, Amendment to intuitionistic type theory, Notes obtained from P.
Dybjer, Computer Science Department, Chalmers University, Gothenburg (1986).

[16] D. A. Miller, Proofs in Higher-order Logic, PhD. thesis, Carnegie-Mellon University
(1983). Also report MS-CIS-83-37, Department of Computer and Information
Science, University of Pennsylvania.

[17] L. C. Paulson, Natural deduction as higher-order resolution, Journal of Logic
Programming 3 (1986), pages 237-258.

(18] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF
(Cambridge University Press, 1987, in press).

[19] D. Prawitz, Natural Deduction: A Proof-theoretical Study (Almquist and Wiksell,
1965).

[20] D. Prawitz, Ideas and results in proof theory, in: J. E. Fenstad, editor, Proceedings
of the Second Scandinavian Logic Symposium (North-Holland, 1971), pages
235-308.

[21] P. Schroeder-Heister, A natural extension of natural deduction, Journal of Symbolic
Logic 49 (1984), pages 1284-1300.

[22] P. Schroeder-Heister, Generalized rules for quantifiers and the completeness of the
intuitionistic operators &, v, D, L, V, 3, in: M. M. Richter et al., editors, Logic
Colloquium ’83 (Springer Lecture Notes in Mathematics 1104, 1984).

[23] S. Sokolowski, Soundness of Hoare’s logic: an automatic proof using LCF, ACM
Transactions on Programming Languages and Systems 9 (1987), pages 100-120.

[24] A. N. Whitehead, B. Russell, Principia Mathematica (Paperback edition to *56,
Cambridge University Press, 1962).

- 29

