Technical Report R

Number 116

Computer Laboratory

Domain theoretic models
of polymorphism

Thierry Coquand, Carl Gunter, Glynn Winskel

September 1987

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1987 Thierry Coquand, Carl Gunter, Glynn Winskel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, England

1

: Jea,n-Yves.Girardv preSented his discovery of the polymbrphic A-calculus in the
paper [7] His motivétions_ came from proof-theory and his use of the calculus
to rep.resent proofs in second-order arithmetic. Later, in [20], John Reynolds
rediscovered the calculus thoﬁgh his motivation was different, being to provide a

~formal basis to certain polymorphic type disciplines in programming languages.
In designing the calculus, Girard and Rejrnolds extended the typed A-calculus to
allow a form of parametric polymorphiém; Types include universal types which
are types of polymorphic terms, thought of as describing those functions which

are defined in a uniform manner at all types. Terms can be applied to types and

DOMAIN THEORETIC MODELS OF
POLYMORPHISM

Thierry Coquar;d, Carl Gunter and Glynn Winskel

The main point of this paper is to give an illustration of a construction use-
ful in producing and describing models of Girard and Reynolds’ polymorphic

A-calculus. The key unifying ideas are that of a Grothendieck fibration and

~ the category of continuous sections associated with it, constructions used in

indexed ciategory theory; the universal types of the calculus are interpreted
as the category of continuous sections of the fibration. As a major example
a new model for the polymorphic A-calculus is presented. In it a type is in-
terpreted as a Scott domain. The way of understanding universal typés of
the polymorphic A-calculus as categories of continuous sections appears to be
useful generally, and, as well as applying to the new model introduced here,
also applies, for instance, to the retract models of McCracken and Scott, and
a recent model of Girard. It is hoped that by pin-pointing a key construc-
tion this paper will help towards a deeper understanding of models for the

polymorphic A-calculus and the relations between them.

Introduction.

1

in this sense can be par#meterised by types.

In more detail, type variables a are introduced into the typed A-calculus so,
for instance, Az : a.z should be thought of as the identity function on the type
denoted by a. The polymorphic identity function, the term which denotes the
* identity function on any type, is denoted by the term Aa.)\z oz, It has a
universal type denoted by Ila.a — a. Given a type o, a term Aa.t of universal
type Ila.o; can be instantiated to a term [03/a]t which then has type [01/c]oa,
and so, for instance, the polymorphic identity above instantiates at type o to the
identity Az : 0.z of type o — 0. o

While the pioneering work of Girard contains most of the results on the syntax
of the calculus, an understanding of its models and semantics has developed more
slowly and is still incomplete. There is a trivial model got by interpreting types
as either the empty or one-point set. While from a proof-theoretic view there g
may be some use in this when the one-point set i'epresents true and the empty set
false (e.g. to prove consistency as in [24]), it is clearly inadequate as a model of
polymorphism. In essence, the difficulty of providing nontrivial models arises from
the impredicative nature of the calculus; in the abstraction of a universal type la.o
the type-variable a is understood to range ovér all types including the universal
type itself. This makes it impossible to interpret types as nontrivial sets in a
classical set theory (see [19]) although, lately, Pitts has shown how polymorphism
can be interpreted set theoretically in a constructive set theory [17]. Until recently
the only nontrivial models known werer either term models or, follbwing ideas of
McCracken [16] and Scott, models based on a universal domain in which types
are coded-up as particular kinds of retracts. The latter are models for stronger
calculi with a type of types and so are not taylored directly to the requirements
of polymorphic A-calculus and do not in themselves suggest a general definition of
‘model for the calculus. In his paper [8], Girard produced an interesting new model
in which tyj;es of the polymorphic A-calculus are represented as certain kinds of
objects called qualitative domains, work which was extended in [4]. Unfortunately,
from the point of view of traditional domain theory, the categor)} of domains used

in [8] and [4] is not the usual one taken in denotational semantics—in particular the

2

morphisxﬁs are functions which are stable in the sense of Berry and not just Scott
continuous. The work left open the question of whether or not a similar model
to Girard’s could be found in the more traditional category of Scott domains and
continuous functions. .

One achievement 6f this paper is to present such a model for the polymorphic A-
calculus. It can be viewed as doing with Scott domains and continuous functions
-what Girard did with qualitative domains and stable functions. Types will be
interpreted as Scott domains. Although Girard’s work provided inspiration, the
construction of domains to denote universal types is different.

We have taken trouble to expose the abstract construction of which our model
is an instance. A key unifying idea is that of a Grothendieck fibration and the
category of its continuous sections. The universal types are interpreted as the cat-
egory (in this case a domain) of continuous sections of of the fibration. Looked at
in this way, Girard’s construction, the retract models of McCracken and Scott and
the construction here are all baséd on instances of a common idea, that ﬁniversal
types are interpreted as continous sections of a Grothendieck fibration.

We briefly outline the paper. The following section, section 2, introduces the
Ba.sic ideas of domain theory and category theory on which.we shall rely. Section 3
contains a treatment of the key idea of Grothendieck fibration and its continuous
sections, instances of which are given for domains; taking the base category to be
a domain we obtain constructions to represent the dependent sum and product
ﬁypes as used in e.g. Martin-Lof type theory while taking a suit.a,ble categofy of
domains as the base category we get a construction we sha.ll-use later as the de-
notation of universal types; For interest, we show how the construction can be
carried out in the framework of information systems—an elementary representa-
tion of domains. Our first application of fibrations and sections occurs in section 4
where we show how the traditional domain models of polymorphism of McCracken
and Scott using retracts can be cast in this light (very similar ideas appear in the
thesis work of Taylor, [28]). There follows the rather technical section 5 concerned
with establishing those operations and properties we require to present and prove

elementéry pfoperties of our semantics. Section 6 gives the syntax of the polymor-

phic A-calculus with its equé.tional rules and secfion 7 its dendtationé.l semantics
a.cconipa.nied by proofs of the soundness of the rules. Finally in the conclusion we
present our views on the state of the art of models for polymorphism.

As we have already stated the work of Girard has been a guiding influence
on this work. We .have received encouragement and é.dvice from a numbér of
people whom we thank; ‘we are grateful to Martin Hyland for pointing-out that a
cohstruction we produced could be based on a Grothendieck fibration, to Eugenio
Moggi for the remark that this conétruction applied to Girard’s model as well, and
to Pino Rosolini for valuable discussions. The significance of fibrations in modelling
polymorphism has been anticipated in the thesis work of Paul Taylor (see [28])
who gave a category-theoretic analysis 6f the 'concept of a type of types using
indexed category theory (but exclusively, it seems, considering domains indexed

by partial orders and not as here by categories of embeddings).

2 Categories and domains.

In this section we review basic éoncepts from category and domain theory. Its
purpose is largely to establish notation and terminology. We assume the reader
has some familiarity with these topics. A knowledge of the results in [27] would
be a good starting point; most of the proofs for results stated in this sectioﬁ can
be found there. , ‘

Let (I,<) be a partial order. We say that I is directed if it is nonempty and,
for any ¢ and 7 in I, there is a k € I such that { < k and j < k. A partial order
(D,C) having a least element 1 is said to be complete (and we say that D is a
complete partial order, abbreviated to cpo) if every directed subset M < D has
a least upper bound V D. A point z of a cpo D is said to be finite if, for every
directed collection M < D such that z < V M, there is a y € M such that z < y.
Let Bp denote the collection of finite elements of D. The cpo D is algebfaic if,
for every z € D, the set M = {zo € Bp | zo Slz} is directed and z=VM. A

cpo D is bounded complete if every bounded subset of D has a least upper bound.

We call bounded algebraic cpo’s Scott domains or just domains. In a domain least

upper bounds of finite sets of finite elements are finite, when they exist.

A function f : D — E between cpo’s D and E is monotonic if it is order
preserving, t.e. if z < y then f(z) < f(y). A monotonic function f : D —
E between cpo’s D and E is continuous if f(V M) = V f(M) for any directed
M C D. Domains with continuous functions form a category D which is very
important for denotational semantics. It is cartesian-closed. Let D and E be two
domains. Their product is the domain D x E consisting of pairs of elements ordered
coordinatewise, with the obvious projections. Their function space D — FE consists
of the continuous functions from D to E ordered pointwise, sometimes called the

Scott, or extensional, order, i.e.
f<giff vde D. f(d) < g(d).

A pair of continuous functions (f, g), with f: D — E and g : E — D between
cpo’s D, E, is said to be an embedding-projection pair if gf(d) = d, for all d € D,
and fg(e) < e, for all e € E; then f is called the embedding and g the projection.
We shall use the following notation to pick out the embedding and projection parts
of an embedding-projection pair h = (f, g)" let kY = f and h® = g. We remark
‘that as embedding-projection pairs are an example of an adjunction, in this case
, between very simple partial order categories, it follows that an embedding de—
termines its accompanying projection umquely and vice versa. The category of
domains with embedding-projection pairs as morphisms will be of central impor-
tance to us. We call the category DEF, and write h € D¥¥(D, E) to mean k is an
embedding-projection pair, with em’bedding part a function Al : D — E. We take
the composition of two embedding-projection pairs k = (hf, k%) € DEP(D, E) and
k = (%, kR) € DEP(E, F) to be kh = (k*h¥, h*kF) € DF (D, F). The identity of
a domain D in this category is the pair (idp,idp).

A partial order (I, <) forms a category in which the objects are the elements
of I and the set of morphisms from point z to point y, written D(z,y), is a one

point set when z < y and is empty otherwise. A directed family in DEP consists

of a functor from a directed set I,< to DEFP; as such it provides an indexing of a -

family of objects D; € DFP, for ¢ € I, and morphisms f;; € DEP(X;, X;), for i < 7,
so that f; = idD; and fi = fix fij whenever.i <Jj < k. A cone for such‘ a directed

-5

family is a family of morphisms (p; € DEP(D;, D))ies, for a domain D, such that

pi = p;fij for all 1,5 € I. Note that because embeddings are monic the morphisms

fi; of the directed family are uniquely determined by the cqlie. And in future we

shall most often speak of a cone for a directed family without troﬁbling to mention

the directed family of which it is a cone; this will always be understood to be thati

uniquely determined directed family with morphisms f;; = pfp,-l‘, fort,7€l. A

directed colimit is a cone for a directed family (p; € D¥F(D;, D))icr, where D is a

domain, with the universal property that for any other cone, (o} € DE®(D;, D) Yser,
there is a unique mediating morphism h € D®F(D, D') such that p} = p;h for all
t € I. In general, we say that a category C is directed complete if it has colimits
- for-all directed families. So, in particular, a cpo is directed complete regarded as

a category.

The category DEP is another example of a directed complete category, and we

shall often be concerned with calculations involving its directed colimits. It will be
useful to relate embedding-projection pairs into a common domain D via certain

morphisms in DEF(D, D) which correspond to the images of the embeddings in D.
Lemma 1 Let X,Y, D be domains. Let f € DF¥(X, D) and g € DEF(Y, D). Then
("0 f%, 7 og") eDF(XY) if F1 1 <g'g" 1

Theorem 2 The category DEP is directed complete. A cone (p; € DEP (D.,D)),EI
is a directed colimit iff {pFpl|i € I} is directed in D — D and

dp = \/{of's{’li € I}
Theorem 3 Let D be a domain. Then
{fEfRif e D®F(X, D) for some finite X}
15 a directed subset of finite elements in D — D and |
| dp = \/{fi‘lef € DFP(X, D) for 3omek finite X} 4

- By virtue of Theorem 2 we see Theorem 3 implies that a domain is the colimit
of the finite domains which embed into it. From the fact that the set in the

theprem is directed we deduce the following:

6

Lemma 4 Let fo € DEF(X,, D) and fl € DEP(X;,D) where Xo, X1 are finite
dohaim. Then there is a finite domain X and ¢ € DEP(X, D) so that go =
(gRfE, fRg") € DPF(Xo,X) and g1 = (g*fF, fRg") € DFP (X1, X) with fo = ggo
and f1 = gg1. 1

From the fact that the elements in the set in Theorem 3 are finite we deduce:

Lemma 5 Suppose (p; € DEF(D;, D))ier ts a directed colimit in DEF, If X s a
finite domain and f € DEF(X, D) then there is some 1 € I and h € DFF(X, D))
such that f = p;h. } ‘

Given categories C and C', we define the product category C x C’' to be the
category which has as objects pairs (C,C') where C and C' are objects of C and
C' respectively. The arrows are pairs (f,g) where f € C(X,Y) and g € C'(X,Y)

with the obvious composition and identity.: There are also projections

Fstcc:CxC'— C
Sndcc:CxC' = C'.

When understood from context, the subscripts will usually be dropped. If
Fi1:C—-C; and F,:C — C; are functors, then there is a unique functor
(F1,F) : C = Cy X C; such that Fst o (F;,F;) = F, and Snd o (1, F,) = F.
In particular, the diagonal functor A:C - Cx C is (-Idc-, Idc). _ KfF:C;— ‘Cz
and F' : C} — C; then we define |

FXG=(FO FSt,GOSﬂd) :CIX02—*C’1 X.C'Z‘

We write 1 for the terminal category which has one object and one arrow and 1¢
for the unique functqr from aAcategory' C to.l. Given a category C and a number
n > 0, we define the n’th power C" of C by taking C° =1 and C**! = C* x C.
More generally, we define the multiary product of a list of categories by setting
x() =1 and x(Ci,...,Cns1) = (X(C1.+.,Cn)) X Cps1.

A functor F : C — C' between directed complete categories C and. C' is
continuous just in case it it preéerves directed colimits. A continuous function is

thus an example of a continuous functor on categories which are partial orders. It

7

is easy to check that a functor F : C; X C; — Cis continuous iff it is continuous
in each of its arguments individually. As our categories C will often have the form
(DEF)™ the problem of verifying continuity Qve often reduce to the problem of
whether or not functors F : DEP — DFEPare continuous. To verify the conﬁnuity

of such a functor it is very useful to employ the following:

Lemma 6 A functor F : DEP — DEPs continuous iff whenever X is a domain
and there is a family of domains X; and functions f; € DEP(X;, X), such that
{7F o fRli € I} is directed and V; ff o fF = idx, then Vi FL(f;) o FR(f;) = idr(x)-
I | |

The product operator X on categories cuts down to a continuous functor

X : DEP x DEP — DEP,

When D and E are domains, we write idp, fstp g and sndp g rather than Idp,
Fstp,e and Sndpg. The function space operator — is also a functor on DFP.
Suppose f GiDEP(X, X') and g € DEP(Y,Y"). Then we define f — g € DEP(X —
Y, X' — Y') by setting

(f = 9) (k) =g"oho f®

for h € D(X,Y) and _
(f = 9)F(h) =g ok o s*

for k' € D(X',Y'). '

When functors on DEP take several arguments we can make their manipulation
a little tidier by intfoducing the following notation. Given a functor F : C — DEP,
we define a fuﬁctor FL:C — D as follows. The action of F¥ on objects of C is
the same as F. Given a function f € C(X,Y), we define FL(vf) = (F(f)L €
D(F(X),F(Y)). We also define a functor F®: C® —» D by taking the action of -
FE on objects to be that of F and defining F2(f) = (F(f))® € D(F(Y), F(X)).
| In our semantic treatment of type expressions we will have to cope with the
presence of free type-variables and a type expression will denote a functor whose
arguments provide an environment associating values with these va.riab]esv. It is

convenient to define generalisations of the product and function _space functors

8

on DEP to cope with these extra parameters. Given functors F : C — DEP and

G : C — DFEF we define
F#G=x0(FxG)oA:C— DFP
F=3G=—0(FxG)oA:C— DFP

We also define a multiary version of the # operation by taking #() to be the functor
1c into the trivial domain and setting #(Fi,..., Fat1) = #(F1y. .. s Fp) # Fri1.

Given functors Fj,...,F, and numbers n > ¢ > 1, we define 1’th projection
p¥ : x(Fi(X),..., Fu(X)) = F(X)
by taking

p.-,,. _ { St (Fy (X)ooFom1 (X)), Fn(X) © p}"" ifit<n

SNAx(F,(X),...Fae1(X)),Fa(X) otherwise.

To keep the number of parentheses to a minimum in the calculations we make, it
is helpful to introduce some binding conventions. We will assume that association
is to the left, so an expression such as fzy or f(z)(y) will be parsed as (f(z))(y).
This convention also holds for the application of a section to an object; so f(t)x
parses as (f(t))x. However, we read an expression such as tg(x) as ¢(g(x)) so that
fte(x) parses as (f(t))(¢(x)). We assume that application binds more tightly than
composition; so F2(f) o F%(g) parses as (FF(f)) o (FF(g)) and f o tx parses as
f o (tx). For functors, we assume that # binds more tightly than =, so that
Fy # Fy = F parses as (F, # F;) = F. We assume that II™ (introduced in section
3) binds more tightly than either # or =>. Application will bind more tightly than
X or —, so that F(X) x G(X) parses as (F(X)) x (G(X)).

3 Fibrations and sections.

In our approach types will be domains and our treatment of polymorphism will
hinge on the construction of “variable types” and the demonstration that these are
indeed domains. The construction we use is based on one traditional in category

theory, that of sections of the Grothendieck fibration of a functor. _

9

Let F : C — Cat be a continuous functor from a category C to the category
of all categories. Define the Grothendieck fibration of F' to be the category LF

consisting of
e objects which are pairs (X,tx) where X € C and tx € F(X), and

e morphisms (X,tx) — (Y,ty) which are pairs (f,) where f: X - Y in C
and a: F(f)(tx) — ty in F{Y) ‘

with the composition of two morphisms (f,a) : (X,tx) — (Y,ty) and (g,5) :
(Y,ty) — (Z,tz) given by

(9.8) 0 (f,) =(go f,B o F(g)(a)).

Then I F is a category with the identity morphism on (X, tx) being (idx,id:,).
The projection p : EF — C is defined to be the functor which takes (f,a) ¢
(X,tx) = (Yity) to f: X = Y. |
We remark that our. definition of Grothendieck fibration is not quite standara as
it is traditional to work with opposite categories and, for instance, have the functor
F take arguments in a category C°?; for our purposes this would be inconvenient.
The construction IIF has continuous sections as objects. A section of LF
is a functor s : C — X F such that po s = id¢, and, of course, a continuous
section is such a functor which is continuous. Taking sections as objects we form a
category by taking morphisms to be cartesian natural transformations, s.e. those
natural transformations which project under p to identity morphisms in C. A
typiéal morphism between sections is a natural transformation v from a section s
to section s’ consisting of a family (vx)xec of morphisms vy : s(X) — §'(X) in ZF
where p(vx) = idx for all X € C. Of course, each component vy of such a natural
transformation must have the form vx = (idx,ax) with ax : tx — t% where
8(X) = (X, tx) and &'(X) = (X, t'). Being a natural transformation ensures that
forall f: X — Y we have vy o s(f) = §'(f) o vx. The category ILF is defined to .

be the full subcategory of continuous sections.

10

3.1 Families indexed by a domain.

We shall be concerned with such constructions solely for the case in which the

functor F takes values which are domains. Then for special forms of base category

C the structure IIF, in general a category, will be isomorphic to a domain. A

simple example arises when C is a domain itself and the functor F goes from

~the domain to the category of domains with embeddings; in this case not only is

IIF a domain but so is ZF. We shall call these constructions dependent product
and dependent sum, following the terminology in Martin-Lof type theory [14], [15].
(The constructions seem to be well-known and appear in the exercises of [18].)
Let C be a domain regarded as a category so there is a unique morphism from
T to y precisely when z < y. Let F : C — DEP be a continuous functor to the
category of domains with embedding-projection pairs. The functor F provides a
domain F(z) for all elements z of C and embeddings F(z,y)r : F(z) — F(y) for
z < yin C. These sétisfy the functor laws so F(z,z)* =idpz) and ifz <y < z
then F(z,2)t = F(y,z)* o F(z,y)t. In this case the category LF has objects
(z,t.) where z € C and t, € F(z). A morphism (z,t;) — (y,t,) arises when and

only when z < y in C and F(z,y)%(t;) < t, in F(y). It follows that the category

L F is isomorphic to a partial order defined on objects of LF by

(2,t2) < (v,t,) iff £ < y and F(z,5)5(t.) < t,,

Itis easy to check this relation is a partial order, and, perhaps not surprisingly, it

is a domain too.

.Proposition 7 Let C be a domain. Let F : C — DEP be a continuous functor.

Then X F 1s a domain. In this case the projection functor is a continuous function

p:ZF — C between domains.

Proof: It has a least element (L, J‘.>F(1))- Suppose V = {(z:, ;)]s € I} is a directed
subset of ZF. Then {z;|¢ € I} is a directed subset of C and so has a least upper
bound z = Vier zi in C. 1t is easy to see the set {F(zi,z) (t;)]i € I} is directed.
Taking t = Ver F(zi,z)%(t;) we show that >(:c,t) is the least upper bound of V' in

TF. Clearly it is an upper bound and supposing (zi,t;) < (2',1'), for all 1 € I, we

see z < z' and F(z.-,z')"(t.-) < t' for all § € I whence
F@)) = Fle)V Flen) ()
i€

=\ F(z,2')t o F(z;,z)E (%) by cohtinuity
sel i

=V F(z:, 2)5(t:)

iel
<t _
which makes (z,t) < (2',t'). Hence IF is a cpo.
A routine argument shows IF is bounded complete. Let W = { (z;,t})[i €I}
be a set with upper bound (y,u). Then because z; < y for all ¢+ € I there is a
least upper bound z = V;¢; z; in C. Because F(zi,y)L(t;) < u for all £ € I we see’
F(z;,z)5(t:) = F(=z,y)" o F(zi,y)*(t;) < F(z,y)?(u) for all i € I in F(z). Hence
their least upper bound ¢ = V;¢; F(z;,) (t;) exists in F(z). It follows that (z,t)
is a least upper bound of W.
The cpo LF is also algebraic thh finite elements of the form (e, f) where
e € B¢ and f € Bp(,). Such elements are certainly always a finite by the followmg
argument. Suppose (e, f) < VV where V is a directed subset of LF, assumed to
be of the form V' = {(z;,t;)|{ € I}. As we have seen such a directed set V has
least upper bound (z,1) where £ = Vjerz; and t is the least upper bound of the
directed set {F(z;, z)E(t;)|¢ € I}. Because e < V,e; 7; and e is finite there is some
j € I for which e < z;. Because F(e,z)%(f) < Vier F(zi,z)%(t;) and F(e, z)%(f)
is finite, being the image under an embedding of a finite element f, there is some

k € I such that F(e,z)X(f) < F(zs,z)*(ts) and z; < z;. From
F(zx,)t o F(e, 2}t = F(e, z)*,

we see F(e,zx)l = F(z,z)F o F(e z)t. Hence F(e,zi)L(f) <A F(zy,z)® o
F(ze,z)E(te) = tx so (e, f) < (z4,ts). Thus (e,) is indeed finite.
Let (z,t) € ZF. Consider the set

-V ={(e,f) < (z,t)|e € B¢ and f € Bp(,}-

If (eo, fo),(e1,f1) € V then, as we saw when showing T F is bounded coniplete,
their least upper bound has the form (e, V €1, F(eo, €0 V e1)(fo) V F(e1,e0V el)(fl)),v :

12

and this is an element of V' using the fact that least upper b6unds of finite elements
are finite. Thus V is directed. From the fact that F is continuous we now éhoﬁv
V has least upper bound (z,t). Certainly, the set {e < z|e € B¢} is directed
with least upper bound z. We are assuming that Ff is continuous, t.e. that it
preserves directed colimits, so the colimiting cone {(e,z)le < z and e € B¢} in C
is sent to the colimiting cone {F(e,z) : F(e) — F(z)|e < z and e € B¢} in DF,

By- Theorem 2, this ensures
t =‘\/{F(e,z)L o F(e,z)®(t)|e < z and e € B¢}.
But now we see | |
t = \/{F(e,z)*(f)|e < z and e € B¢ and f < F(e,z)"(t) and f € Bp(,}.

This makes (z,t) =VV. A
Now we can see directly that any finite element (z,t) must be such that z € B¢
and t € Bp(s); because (z,t) is finite and the lub of a directed set of elements of
this form it must be equal to one such element. And, of course, any element of
X F is a least upper bound of finite elements;_ Clearly the set of finite elements is
countable. This completes the proof that L F is a domain.
It is easy to see it comes equipped with a continuous projection function p :

YF—-C.|

Now we turn our attention to IIF when F is a continuous functor C — DFEF
from a domain C. Its elements are continuous sections. A secfion is a functor
8§:C — XF such that pos =idc. Bearing in mind the nature of TF we take the
image of z € C under s to be s(z) = (z,t;). As both categories C and TF are

partial orders, s being a functor amounts to monotonicity, t.e.
z < y implies s(z) < s(y),
i.e. z <y implies (z,t;) < (v,,),
t.e. z <y implies F(z,y)(t;) <ty (1)
forall z,y € C. Sections thus correspond to families (¢,),ec which satify (1). Con-
tinuous sections correspond to families which satisfy the monotonicity condition

13

(1) and) v R ’

| tyv =V F(v,VV)(t) - (2)
_ vev v

for any directed set V of C. We call such families continuous. Two continu-
‘ous sections s,s' correspond to continuous families t = (t;)zec and t' = (t.).ec
respectively. A morphism between them corresponds to a family of morphisms
(az : tz — t.)sec but each such component a, sirhply amounts to an ordering
t, < t.. Hence, a morphism s — s' between sections corresponds to a pointwise
ordeﬁng '

t<tiffvzeC.t, <t

between the corresponding families. _
Not surprisingly, to show IIF is a domain it is convenient to work with the
isomorphic category of continuous families with morphisms given by the pointwise

order. Clearly this category is a partial order, and, as we now show, it is a domain.

Proposition 8 Let C be a domain. Let F : C — DEP be a continuous functor.

| Then ILF 3s a domatn.

Proof: There is a least family with each con:iponent consisting of L p(;) for'a: eC.
Let {t®)]: € I} be a directed set in IIF. Define the family t = (V,;t¥))z € C.
Clearly it satisfies (1). Let V be a directed subset of C. Then

tVV — V-t(i)V
=V V Flv,V V)2)
€I veV o
= \G/V l/IF(v,VV)L(t.‘,"),
-V F(v,VV)'L(L/I)
= V F V))

so t satisfies (2) and is therefore a continuous family. Thus IIF is a cpo.
'To show IIF is bounded complete, assume {t()|i € I}, a set of continuous

families, has upper bound u. As F(z) is a domain and so bounded complete for

14

all £ € C we can define a family t = (V;e;t9))z € C. It satisfies (1) above. Let V

be a directed subset of C. Then, to show (2), we notice

tVV = v ts)v

= \e/:yv F(v,\V V)E(D)
= v\e/h_e\/IF(v,VV)L(tSf)),
=V F@V V)L(.EV, i)
= \64 F(v,\/ V)E(t.)

where we have used the fact that embeddings preserve least upper bounds.
Let e € B¢ and f € Bp(,). Define the family [e, f] to have component
F(e,z)L(f) ife<z,
&, 1] = { Lr(z) otherwise,
for z € C. It is easy to check [e, f] satisfies (1) and (2) and so is a continuous

family. Consider a family ¢, obtained in the following way as the least upper bound

of a finite number of such families,
‘ t = [elafll VieerV [emfn]-

We show ¢t finite. Suppose t < VYV where V is a directed subset of C. Then for
anyi,withlSiSn,wéget , , ’
i<ty (VW)= V ves

vev
the least upper bound of a directed set. As f; is finite, f; < vg) for some v € V.
But then [e;, f;] < v0). As V is directed there is some v € V which dominates each
v foro0<i<n which ehsures t < v. This shows t is finite.

~ A continuous family ¢ is easily seen to be the least upper bound of the directed

. set

{ew A1V -V lem Foll s < tode - &efa <1},

where we are assured that the least upper bounds mentioned exist because they |

are bounded above in a bounded-complete partial order. It follows that any family

15

which is a finite element of IIF must have the form [e,, fi] ,V. *++V [en, fn)- Clearly

such elements form acountable set. Hence IIF is a domain. |

3.2 Families indexed by a category of domains.

Our other important example arises when F : DEP — DEP is a continuous functor.
In this case, as we shall see, while F can only be considered as a category, IIF
is isomorphic to a domain when both are viewed as categories. |
Assume F : DEP - DEP is a continuous functor. In this case, LF is a category
with objects pairs (X,tx), where b € DEP and tx € F(X), and morphisms
(X,tx) — (Y,ty) correspond to morphisms f : X — Y for which (Ff)‘tx < ty.
Note, LF ca.nnbt be a partié,l order—it simply has too many morphisms. We
need to consider the form of colimits in £F. A directed family in ©F corresponds
to a-directed set I,< indexing a family of pbjects (X,-,t,-) in ¥F and morphisms
fij € DPP(X, X;) so that (Ffi;;)bt; < t;, for < 5. A colimit for such a family
corresponds to a pair (X, t) with a collection of morphisms {g; : X; — X}ie!
making a colimiting cone in DEP and so that t = V;(Fg;)%t;. '
As in the earlier case, when F : DEF — DEP the category ILF of continuous
sections can be seen‘ as consisting of certain kinds of continuous families ordered
pointwise. As before, sections correspond to families (tx)xeper, where tx € F(X),

which are monotonic in that they satisfy
f € D®®(X,Y) implies (Ff) tx < ty (1)

for any f. Continuous sections preserve directed colimits. Thus if {p; : X; —
X)ier is a directed colimit then (sp; : sX; — $X)er is a directed colimit in TF.

Considering the form of directed colimits in LF, it follows that continuous sections

correspond to families which satisfy (1) and also the requirement that for such

directed colimits (p; : X; — X)ier in DEF we have tx = V,;(Fp;) tx,. Recalling
Theorem 2 we can write this condition as follows. For any cone (p; : X; — X)ier

we have

{pFopflieny is directed and \/ pf o pf = idx implies tx = V(Fp)rtx,.. (2)
‘ T o : ‘

16

We call families satisfying (1) and (2) continuous. As before, morphisms between
continuous sections correspond to their associated families being ordered pointwise,
.e. '
t<t'iffVX e DFP. ty <ty
where ¢t and t' are two continuous families. A ‘
At this point it is tempting to conclude that IIF is a partial order and press
on with the demonstration that it is a domain. Unfortunately, it is not quite,
as its objects, the continuous sections, are not small. However it is true that
IIF is isomorphic to a domain when both are viewed as categories; even though
the elements of IIF are classes they can be put in 1-1 correspondence with the
elements of a suitable set. To see this, take S to be some countable subcategory of
domains equivalent to the full subcategory of all finite domains with embedding-
projection pairs as morphisms. Then any continuous section is determined by its
restriction to the standard domains S. Ordered pointwise these restrictions are in
1-1 order preserving correspondence with IIF. This is the idea in showing that
IIF is isomorphic to a small category which can in turn be shown to be a domain.

Details are given in the proof of the following theorem.

Theorem 9 Let F : DEP — DEP be g continuous functor. The category ILF is

isomorphic to a domain.

Proof: Take IIgF to be the parti:il order consisting of families (tx) xés which are

monotonic in the sense that
f € DFP(X,Y) implies (Ff)th <ty,

for all X,Y € S, ordered pointwise. It is clear that IIsF is a set because S is. Now
we show that IIF ahd IIsF are isomorphic as categories, and, later, that IIgF is
a domain. | | |

Clearly, any continﬁous section ¢ € IIF determines, by restriction, an element of
rest € IIgF. Copversely, any element of ¢ € IIsF can be extended to a continuous

section ezt t by taking
(ezt t)p = V{(Ff)*tx|X € S&f € D**(X, D)},

17

for any _domaixi D. This must be checked to be well-defined however.

- We note the set {(Ff)itx|X € S&f € D*P(X, D)} is directed so that the
least upper bound rea.ily does exist. To show this, take two elements of the set
vo = (Ffo)tx, and y1 = (Ffy)’tx, arising from morphisms f, € DEP(Xo, D)
and f; € DEP(XI,D) where Xp, X; are finite domains. By Lemma 4 there is a
- finite domain X and g € DEP(X, D), go € DEP(X,, X) and ¢; € DP(X;, X) with
fo = gg90 and fi = gg1. Because t is monotonic it follows that yo,y1 < (Fg)*tx,
an element of the set. Hénce the set is directed, and the definition abové does at
least yield a family. It remains to show that the family is continuous. Firstly, to

show the family is monotonic, assume g € D®F(D, E) and notice

(Fg)%(ezt t)p =(Fa)* V{(F1)"tx|X € S&f € D (X, D)}
=V{(Fg)"(Ff)"tx|X € S&f € D* (X, D)}
=V{(Fgf) tx|X € S&f € D¥*(X, D)}
<V{(Fh)itx|X € S&h € DFP(X, E)}
=(ezt t)z. |

This shows monotonicity. Suppose now that (p; € DEF(D;, D))icr is a directed

colimit. To complete the demonstration of continuity we require that
(ezt t)p = V{(Fpi)“(ezt tp,)]i € I}.

Note first that the set is directed because ezt t is monotonic. Again by monotonic-

ity we obtain . _ |
(eat t)p > V/{(Fpi)*(ezt tp)]i € I}.

According to its definition (ezt t)p is the least upper bound of elements (Ff)rtx
for X € S and f € DFP(X, D). Consider such an element. By Lemma 5, there is
some 1 € I and h € DFP(X, D;) such that f = p;h. Now we see

(Ff)itx = (Fpih) tx = (Fp)*((Fh):tx) < (Fpi)-(ext tp,).

It follows that (ezt t)p < Vi(Fp:)E(ezt tp,), and now the equality required for

continuity is obvious.

18

Now, it is easy to see that the two operations restriction res : IIF — IIgF and

extension ezt : IIsF — ILF preserve the order relation. For ¢t € IIgF, we certainly

have ty < (ezt t)y for Y € S—consider the identity morphism on Y—and by the

monotonicity of t we see
(res ezt t)y = \V{(Ff)’tx|X € S&f € DPF(X,Y)} < ty.

Hence res ezttt =t for t € IIgF. For X € S we have (res t)x = tx, so from the

definition of ext and res we see
(ezt res t)p = \V{(F[f)*tx|X € S&f € D**(X, D)},

for a domain D. However, because t is continuous and D is the colimit of finite

embeddings in the sense of Theorem 3, we also have
tp = V{(Ff)*tx|X € S&f € D**(X, D)}.

Hence ext rest = t, for all t € IIF. We conclude that res : IIF — IIgF and
ext :IIgF — IIF form an order isomorphism.
We now show IIgF is a domain. It has a least element, the family (Lx)xes.

Suppose {t0)|¢ € I} is a directed set in IIsF. Define the family ¢ by taking
-V,

for all X € S—the least upper bound exists because the set {t9|i € I} is directed

because {t)|¢ € I} is. It is monotonic because, supposing f € D*P(X,Y), we see
(Ff)*(tx) = v ®)=VEN) <V,

using the fact that (Ff)L is continuous. A very similar argument shows that

IIgF is bounded complete though in this case the argument uses the fact that

~ embeddings preserve all existing least upper bounds.

Let [X, €], for X € S and e finite in FX, denote the monotonic famlly such -

that, forY € S,
(Fflte f f: X =Y,

ly otherwise.

(X, ely = {

19

Any least upper bound which exists of the form
[Xlsell VeV [Xn:en]’ '

where e; € FX;,--+,e, € FX,, is a finite element of IIsF. The remaining argu-

ment, showing that any element of IIsF is the lub of such elements and that all

.finite elements have this form, echoes that in the proof of Proposition 8, and we

omit it. Having chosen S to be countable it follows that the finite elements form

a countable set, and hence that IIsF is a domain isomorphic to ILF. |

Thus although strictly speaking the category ILF is not a partial order because
its objects are classes it is nevertheless isomorphic to a domain. Because of this,
in future, we shall treat IIF as a domain, in fact as the domain with continuous
families as elements, and not fuss about this problem with foundations. The
more fastidious reader can after all replace our construction of ITF with the small

category Ilg F isomorphic to it provided in the proof above.

3.3 II with parameters.

In the discussion later we will often need to use the II operator with parame-
ters. If F : C x DEP — DEP is continuous, then we write [ICF : C — DEP for the
continuous functor defined as follows. The action of IICF on objects is given by

(TICF)(C) = II(F(C, -)). Given f € C(C, D), we define
(I°F)(f) € D¥((MCF)(C), (I°F)(D))

by taking
(MCF)*(f)(s)z = F*(f,idz)(sz)
(MCFY*(£)()z = F*(£,idz)(¢2)
for each section s € (II°F)(C) and t € '(HCF)(D). -
Of course, we must show that this definition makes sense. First of all, let us
check that (TI°F)%(f)(s) € (II°F)(D). Suppose s € (II°F)(C) = I(F(C, .))
and let tx = (IICF)L(f)(s)x = FX(f,idx)(sx), we wish to show that tx €

20

T(F(D, .)). Suppose g € DEP(X, Y). Then
F*(idp, 0)(tx) = F(idp,) (F*(f,idx) (sx))
= F%(f,idx)(F*(idp, g)(sx))
< FE(f,idx)((sv))
= ty.
This proves monotonicity. To prove continuity, suppose g; € DEF(X;, X) and the
functions gF o g¥ form a directed collection such that VV‘- gk o gF = idx, then
V Ft(idp, g)(tx.) = V F*(idp, ;) (F*(f, dx.) (sx.)
=\ F!(f,idx)(F*(idp, g:) (sx.))
i _
= F*(f,idx)(V F*(idp, g:)(sx.))

= F(f,idx)(sx)
=tx
so (TICF)X(f)(s) € (TCF)(D).

- Now suppose ¢ € (IICF)(D) = II(F(D, -)) and let sx = (TICF)?(f)(t)x =
FR(f,idx)(tx). We wish to show that s € (II°F)(C) = I(F(D, _)). Suppose
g € DFF(X,Y). Then

sx = F®(f,id)(tx)
S FR(f,id)(F®(id, g)(tr))
= F"(id, g)(F*(£,id)(t,))
= FR(id,g)(sv)

This proves monotonicity. To prove continuity, suppose g; € DEP (X.-,X) and the

functions g¥ o g¥ form a directed collection such that V; gf o gF = idx. To keep

the notation simple, let |
¢: = F(f, idx,) e D**(F(C, X:), F(D, X))
o = F(idp, g:) € D¥*(F(D, X;), F(D, X))
8; = F(ide, g) € DP(F(C, Xi), F(C, X))
¢=F(f, idx) € D(F(C, X), F(D, X))

21

Note that/ _
ﬂ'R o ¢R o af‘ = FR(idC,gl') ° FR(fa |dX) ° FL(idngl')
= F*(f,idx,) o F"(idp,g:) o F*(idp, 9:)
= FR(f,idx,)
= ¢%.
Since V; af o aff = idr(p,x) and V; Bf o BF = idp(c, x), we have
= (VBE o8P o 4o (V of o)
—\/BEo (R o4moad) ool
= Vﬂ{‘ d(¢fz) o af
Now, let sx = (ICF)R(f)(t)x = ¢*(tx) and Sx; = (ICF)®(f)(t)x; = ¢%(tx.)-

Then
‘ 8x = oF (tx)

(V B o (470 aR)(V o (tx.))
= V(BF o (47))tx)
= VﬁsL(sX.)

That is, sx = V; FL(idc, g:)(sx;) and therefore s € (IICE) (C) =1I(F(D, .)).
" We have now shown that the definitions of (TICF)L(f) and (IICF)®(f) make
sense. The proof that (IT°F)(f) € DEP((IICF)(C), (I F)(D)) and the proof that

IICF is a continuous functor are both routine.

Notation: Later we shallbe concerned with functors F : C x DEP — DEP and
the associated II€ in the case where C = (DEF)™, In this case we shall write II™

for II€.

3.4 Information systems.

The inspiration for our work came originally from Girard’s paper [8]. There he

uses a representation of qualitative domains with morphisms stable functions and

22

rigid embeddings to give a model for the second-order A-calculus. For domains,
we can use the representation of information systems in a similar way to bgive an
interesting, elementary contruction of IIF for a functor F on domains. We give
a sketch of the approach based on the presentation of information systems in [12]
following [22]. Because the proofs are straightforward and not essential for what
follows we omit them.

Recall the definition of an information system:

- Definition: An information system is defined to be a structure (A, Con,), where
A is a countable set (the tokens), Con is a non-null subset of finite subsets of A
(the consistent sets) and | is a subset of Con x A (the entaslment relation) which

satisfy:

e XCY€ Con iinpli&sXEC’on

a € A implies {a} € Con

X} a implies X U {a} € Con

X €Con and a € X implies X - a

(X, Y€Conand VbeY. X+ band Y | ¢) implies X | c.
"An information system determines a domain:

Proposition 10 The elements of an information system (A, Con,t) are defined

to be those subsets = of A which are satisfy:

e X C z implies X € Con for any finite set X,

e XCzandXI—aimplicsaez.

Ordering the elements by tnclusion we ob_tain a domain |A| with finite elements

precisely the sets {a € A|3X CY. X | a}, obtained from X € Con.

A domain determines an information system:-

23

~ Definition: Let D Be a domain. Define ID = (Bp,Con,t) where Bp is the set

' of finite elements of D and Con and I are defined as follows
XeConiff X C Bp and X is finite and X is bounded,
Xteif XeConande<\/X.
Proposition 11 Let D be a domain. T hen ID is an information system with
domain of elements|ID| isomorphic to D. The isomorphismv pair 18
0 D— |ID| given by 0 : d — {e € Bple < d},
|ID| — D given by g:z— \/z.

As is well-known a continuous function f between domains is determined by
its action on finite elements and so by the relation f° between finite elements that

it 1nduces, a relation defined as follows.

Definition: Let f : D — E be a continuous function between domains. Define

f°={(d,e) € Bp x Bgle < f(d)}.

Embeddings between domains correspond to the following kinds of mappings

between their associated information systems finite elements.

Proposition 12 Let f: D - E be a cont:'nuoue function between domains D and
E. The function f is an embedding iff | |
e f°is a 1-1 function Bp — Bg,
e XE€Conpsff fX€ C’onE, Jor all ﬁm"te ‘subscts X of Bp, and
o XFpdiff fX Fe f(d), for all elements d and finite subsets X of Bp.
. To define the mformatxon system of IIF of a contlﬁuous functor on domains, as

earlier, we use S, a countable category equivalent to the full subcategory of finite

domains with embedding-projection pairs.

Definition: Let F : DE¥ — DFP be a continuous functor on domains. Take T+
to consist of those pairs (X, b) where X € S and b € Bp(x). For W a finite subset
of T +, define

W € Con iff VY € S. {(Ff)*b|3X. (X,b) € W& f € D®®(X,Y)} € Conpy. -

24

Define the tokens T to be those elements (X,b) of T for which {(X,b)} € Con.
For W € Con and (Y,c) € T, define

Wk (Y,¢) iff {(Ff)%b[3X. (X,b) € W&f € DFP(X,Y)} Fry b.
Finally, define II; F to be (C,Con,I).

Theorem 13 Let F : DEP — DEP be a continuous functor on domains. Then
(1) ILF is an information system.
(1) ILF = |I[; F| with isomorphism pair 0 : IIF — |ILF| and ¢ : |[II;F| — IIF
given by
8(t) = {(X,b)|b < tx and b € Brix)},
#(z) = (ty)yeper where
ty = {(Ff)“|3X. f: X > Y and (X,b) € z}. 1

4 A model of Type:Type.

There are two purposes of this section. Firstly, we want to illustrate the notion of
a family of domains indexed over a domain with the example of domains over a
universal domain. Secondly, we want to explain how the ﬁnifary projection model
of [1] relates to our model. In order to illustrate the first point, we shall actually
.show that the finitary projection model is a model for a more powerful type system
~ than second-order tjpe system, namely a type system with a type of all types. A

more categorical description of this model may be found in [28].

4.1 A reformulation of Type:Type

‘It is important to note thatA we shall not give a model for the original Type : Type
system of P. Martin-Lof [14] directly, but instead for a system in which it is possible
to interpret Type : Type. The situation is similar to the one of the untyped A-
calculus: in order to give a semantics of this calculus, we have first to translate it
in a typed A-calculus where there is a type D, such that D is a retract of D — D.

The system we propose to use is an extension of intuitionistic type theory [15]

25

1 where we add one universe, but With, a slight change in the axioms for type
equalities [15]. »

- We suppose that we have a special tjpe U of type of indices for types, and an
operation T over the element of U, which is nothing other than a dependent type
over U. We suppose that there exists an element u of type U such that T'(u) = U, |
that is, a name for the type of all types. | _ '

We suppose furthermore that there is an “intema.lisation” of the product op-

eration of dependent types. Namely, there exists
o m: Ly.(T(a) IR U)-U,
o App : ow.Myp(a)—v-T(7(a, b)) = (I,.x(a)-T(b(z))),
e Lambda : Ha;U.Hb;T(a)gu.(H:;Tta).T(b(Z))) — T'(n(a, b)).

We ask that these operations are inverses, that is Lambda o App = td, and
App o Lambda = id ? The ordinary formulation [15] is with a type equality rule
T((a,b)) = IL;.7(s)- T (b(z)), but this rule does not seem to square with a “stan-
dard” semantics. For our purpose, the “weaker” system with only isomorphisms
is sufficient. It is sig1r1iﬁca.nt that the Type : Type system, even with this weaker
form of equality, can still be interpreted syntactically in oﬁr formalism.

Rather than to describe in full formal details this sYntactic translation, let us
give some examples. The universal type of second-order A-calculus Ila.a — «
is first translated by Ila : Type.llz : a.a in the Type : Type system. Then, it
becomes T'(m(u,Az.7(z,Ay.z))). And so, if M is of this type, and N is of type
~ T(u) (that is N is a type), then we can form the application of M to N by
App(d, Az.7(z,Ay.z), M, N). In the same way, the type Ila.a will be interpreted

INotice that it should be possiblé, from the interi)reta.tion of the dependent produét and sums
over a domain outlined in the previous section, to give an interpretation of intuitionistic type
theory in terms of Scott domains. We shall not develop this here, since the preciée verification
that it is indeed a model is similar to checking that we get a model for second-order type theory,
and we shall give this verification in full details. _

21t is interesting to mote that this system is that obtained by representing the Type : Type |
calculus in the LF-framework [10], and also that it may be seen as a providing a syntactic condition

for what it means to be a model of Type : Type following the ideas of [3].

26

by T (n(u,¢d)). Since App and Lambda are inverses, the 8-n-conversion rules will |

be satisfied.

4.2 Semantics in domain theory

We can point at once to one important difference between the finitary projection
model and our categorical model. In if, types are not interpreted directly as
domains, but as finitary projections of a>single universal domain. So, for the
construction of this model, we must first pick a ddmain D so tﬁa‘t D—- Dis
embedded into D by the pair (®, ¥). It is important to noté that there are more
than one such domain, there is nothing canonical in this choice, and the influence
of this choice over the model is not clear. This is, however, the only part that is
“non canonical” in the construction.

Let D be a domain so that there exists an embedding-projection pair (®, ¥) of |
[D — D] into D. An element p € D — D is called a finitary projection if, and only
if, p < 1d, po p = p, and the image of p is a domain withrespect to the restriction
of the order on D. It is known that the partial order of finitary projections (f(;r the
extensional ordering) is a domain, thatbwe shall write Fp, and that this domain
is embedded into D — D[21]. We obtain an embedding-projection pair (®o, ¥o)
from Fp into D, from the composition of this embedding-projection from Fp into
[D — D] with (®, ¥). We now take for the interpretation of the set U the image
of ®o, which we again call U. This should cause no real confusion, and notice that
we do not interpret U by the “universal” domain D.

" In the sequel, it will be convenient to use the “curry” notation “f(z,y)” for
“f(z)(y)”. If a € U, then a defines a finitary projection ¥y(a) and hence a subdo-
main of D, namely the image of this finitary projection T(a) ={z€ D/ To (a)(z) =
z}. Notice that T'(a) is a sudomain of the “universal domain” D if a € U, and
that if a < b in U then T'(a) is a subdomain of T(b). The family T(z),z € U,isa
good example of a continuous family of domains over a domain.

Each T(a), for a € U, is embedded into the “universal domain” D, where the
embedding is the inclusion map, and the projection is defined by z > ¥o(a, z). If

be T(a) = U,since D — D is embedded into D, there is a “canonical” embedding

27

of IL,.7(s)-T(b(z)) into D. Explicitly, the embedding is defined in the following
way: let f € IL.7(a).T(b(z)), then the image of f by this embedding is defined
by £ — f(¥o(z,a)). The definition of the projection is: For f € D — D, the
image of f under the projection is defined by z — Wo(b, f(z)). This embedding
will define an element of Fp, hence an element of U by &, that we shall write
as 7(a,b). Explicitly, we have 7(a,b) = ®(Az.®(Az. ¥(b(¥(a,2)), ¥(z, ¥(a, 2))))).
By construction, we have that T(n(a, b)) is isomorphic to IL,.r(,).T'(b(z)) and App,
Lambda are nothing else but the explicit writing of this isomorphism. We find that,
if ¢ € T(r(a,b)), and d € T(a), then App(c,d) = ¥(c,d), andifc e M..7(s)-T(b(z)),
then Lambda(c) = ®(Az.c(¥o(a, z))).

We can then check the desired equalities. If ¢ € T(r(a,b)), then we have

¢ = ®(¥(c) o (¥o(a))). Indeed, we have '
¢ = Y(r(a,bd),c)
= &(Az.¥(b(¥(a, 2)), ¥(c, ¥(a, 2)))),
hence ¥(c) = Az.¥(b(¥(a, 2)), ¥(c, ¥(a, 2))) and ¥(c) o ¥o(a) = ¥(c) since ¥(a) o
¥o(a) = ¥(a), because a € U, so that
Lambda(App(c)) = ®(¥(c) o Yo(a))
= &(¥(c))
=c. \
" For the other equality, we suppose that ¢ € IL;.r(,). T (b(z)), and then
App(Lambda(c)) = ¥(®(c o (¥o(a))))
= co ¥y(a) |
= c.

Finally, we build an element v € U so that T'(u) = U. We take u = Qo(ioo\llo).
Since ® 0 ¥ € Fp, we have v € U. And z € T(u) if, and only if £ € D and
$o(¥o(z)) = =, hence-.if, and only if, z € U. By definition of equality of domain,
we get T(u) =U.

Since one can interpret second-order A-calculus in this calculus, we do get a
model for second-order /\-cé.lculus’ (and the reader‘cah check that what we get by

this way is indeed the model described in [1}).

28

4.3 An example

As an example, we shall show that, in general, the interpretation of Ha.a, that is
here T'(7(u,3d)), is a non-trivial domain. This will be important in order to show
~ that we get another model with the categorical approach, since in this approach the
" interpretation of ITe.a will be the trivial domain. Since T'(7(u, 1d)) is isomorphic to
II,.v.T'(z), it is enough to show that Il..;y.T(z) is not trivial if U is not trivial (that
is if D is not trivial). Let a € U be an element different from 1. Then, if z € U, we
have ¥(z,a) € T(z), by definition of T'(z). It results that Az. Y(z, a) € N,.pv.T(z),
~ and we have A\z.¥(z,a) # L since a # L.

| The intuition behind this model w.r.t. our categorical model is that we restrict
buréelves to domains that are finitary projections of a given “big” domain, and
the only morphisms we allow are inclusions (and not arbitrary embeddings). We
get thus a small category that is isomorphic to the domain Fp(U) of finitary
projectiohs over U. This category is a subcategory (but not a full one) of the
category DEP via the inclusion functor 5. A dependent type becomes.a: continuous
function f from Fp(U) into itself which defines, by composition with ¢ a dependent
domain over the domain U. We can then see that the general definition of the
product of a dependent domain given previously will specialise itself to T'(x(u, f)).
This explains why the interpretation of Ila.c is bigger: when we consider Fp(U)
as “the” categorj of domains, we forget that there are morphisms that are not
inclusion (for instance, non-trivial automorphisrﬁs). In a sense, the categorical -
model is a refinement of this model where we take into account embeddings that

are not inclusions.

5 DBasic combinators.

We return to the framework of section 3, concerned with functdrs dn the category
DEP, Suppose Fi,...,F, are continuous functors from (DEP)™ into DEP. We
claim that p' is a section of #(F,...,F,) = F;,. To check this, suppose f €
(DEP)™(X,Y). Then ,

(#(Fry ey Fa) = B)R() (04) (21 20)

29

= (FE(f) o by 0 #(Fry- - Fu)E (1)) (215 - -, Z0)
= F(N)(F(f)(=:))
= py(T1y...,Tn).

It is clear that p* will be a continuous section.

Let P, F,G : (DF*)™ — DFP be continuous functors. Suppose s is a continuous
section of the functor P = (F = G) : (DF®)™ — D*P and t is a continuous section
of the functor P => F : (D®P)™ — DEP, We define a continuous section apply(s,t) -
of P = G by the equation

apply (s,)x(z) = (sx(2))(tx())
- where z € P(X). To show that apply(s,t) really is a section, suppose fe
(DEP)™(X,Y). Then |
(P = G)H() (apply (s,)x)(2)
= (GH(f) o (apply(s, 2)x) o PR(1))(2)
= GH(1)((apely (s,) (P*(£)(2)))
= G () ((sx (PR(£) () (tx (PR(£)(2))))
< G NF = GYF(f)(sv (@) (F(N)tr ()
= GE()((G™(f) o (sr (2)) o FE(A(FR(f)(tr (2))))
< (s (2))(tr (=))
= apply(s, t)y(z).
To see that apply(s,t) is continuous, suppose f; € DFP(X;, X) and the functions

fE o fR form a directed collection such that V; f£ o fR idx, then
VP = 6 (RGrly(s0x)(@)
= VGL(f-)((sx (PR) ex (PR)
= VG"(f' JU(F = ORU(P = (F = Q- (R) ex) @ EFR (P = FY(f) tx,) ()
= vGL F)((F = G () (sx (D) (F(£)(tx(=))) | |
= v< G(fi) o G"(f))(Sx(Z))((FL(f) o FR(f))(tx(x))
= apply(s t)x (). -

30

Let P: (D)™ — DEP, F:(DPP)™ x D® — DFP, and G: (DEP)™ — DEP

be continuous functors. Suppose t is a continuous section of the functor
| P = II™F : (DF?)™ — DEP,
We define a continuous section Apply(t, G) of the functor
P = (F o (id(pepym, G)) : (D¥P)™ — DFF

by the equation

| Apply(t, G)x(z) = tx()arx) |
where z VE P(X). We check that Apply(t,G) is indeed a section; suppose f €
(D¥F)™(X, Y), then |

(P = (F o (ldpery=, G))) = (f) (Apply (t, G)x)

= (FX(£,G(1)) o Apply(t, G)x o P*(f))(z)

= FY(£,6(N))((tx o P*(f))(=)ex)

= F*(f,G(N)(@™F)*(f) o (T"F)*(f) o tx o PR(£))(z)e(x)

=FYf,GUN(MI™F)R(f) o (P = I™F)(£) (tx)) (z)ex))

< FH£, GO F)R(S) o ty)(z)ew)

= FY(£, G(N)((I™ F)*(f) ¢ty (z))ex))

= FX(£,G(1)(F*(f,deqx) (tr (2)own))

= (F(idy, G(f)) o FE(f,idax)) o F*(f,ids(x))) (ty (€)e(x)

< Fi(idy, G(£))(tr (z)ewx)

< (tr(2))e(r)

= Apply(t,G)y.
where the penultimate step follows from the fact that ty(z) is a section of F(Y, _)
and G(f) € D*(G(X),G(Y)). To see that Apply(t,G) is continuous, suppose
fi € DPP(X;, X) and the functions ff o fR form a directed collection such that
V; fE o f® = idx, then |

: V(P = (Fo (ld(perym, G)))L(ﬁ)(Apply(t, G)x,)

31

= VF"(fnG(ﬂ))(((H'"F)R(ﬁ) o (P = II™F)"(fi)(tx,))(z)a(x)
= VFI‘ o GU(I™ FYR(£:) o tx)(2)erxn)

= V idx, G(f:)) o FE(fi, idexy) o FF (foridorxy)) (tx (2)ocxy)

= VF L(idx, G(f:)) (tx (2)acx;))

= (tx(z))a(x)

= Apply(t,G)r.

Let P, F,G : (DFP)™ — DEP be continuous functors and suppose ¢ is a con-
_ tinuous section of the functor P# F => G : (DE?)™ — DFP. Then we define a
continuous section curry(t) of the functor P = (F => G) by setting

curry(t)x(z)(y) = tx(-'t, y)

for £ € P(X) and y € F(X). To see that this does define a section, suppose
f € (DFF)™(X,Y). Then

(P = (F = G))(f)(curry (t)x) (=) (v)

= ((F = G)*(f) o (curry(t)x) o PR(1)) (=) 4)
= (G*(4) o ((curry ())x) (PR (£)(2))) © F*(1))(v)
= GX(£)(tx (P*(f) (=), F*(1)(v)))

= (P#F = G ()(tx)) (=,)

< ty(z,v)

= cyrry(t)r(x) (v).

To see that curry(t) is continuous, suppose f; € DEP(X;, X) and the functions
fFofFforma directed collection such that Vi f¥ o fR = idyx, then

VE=F= GYE() cury (1)) (=)0
=V(P#F = & (R)tx))(=)

= t.x(z,y) | -

= curry(t)x (z) ().

32

Let P : (DFF)™ — DEP, F : (DEF)™ x DEF — DEP and suppose ¢ is a contin-
uous section of (P o Fst) = F. Let X € (D*)™ and z € P(X). We define
Curry(t) x(z) to be the continuous section of F(X, -) given by the equation

Curry(t)x(z)z = t(x,z)(=)-
This makes sense because ¢(x,z) is a continuous functor in Z. We wish to show

that Curry(t) is a section of P => II™F. In other words, we want to show that
(P = II™F)*(f)(Curry(t)x) < Curry(t)y
where f € (DEF)™(X,Y). Let z € P(X) and suppoose Z € DEF. Then

(P = I F)*(f)(Curry (t)x)(2)z
= ([F)*(f) o Curry(t)x o P*(f))(2)2
= (II™F)"(f)(Curry (t)x (P*(f)(2))) 2
= FL(f,idz)(Curry (t)x (P*(f)(2))2)
= F(f,idz) (t(x,2) (P*(f)(2)))
= FX(f,idz)(tx,2)((P o Fst)*(f,idz)(z)))
= ((P o Fst) = F)*(f,idz) (t(x,2)) (=)
< ty,z)(2)
= (Curry(t)y (z))z.
To see that Curry(t) is continuous, suppose f; € D®F(X;,X) and the functions
fE o fP form a directed collection such that V; f¥ o f® = idx, then
V(P = I FYH(5) (Curry(2)x) (2)2
= _/((P o Fst) = F)%(£;,idz) (t(x.,2)) (=)
= t(x,z)(2)
= (Curry(t)x(z))z.
Notation: Suppose P : (DEF)™ — DE?, F : (DEF)m — DEP, G : (DEP)™ — DEP
are functors. Given continuous sections
s€T(P#F = G)
t (P = F), |

33

we .deﬁne a continuous section
[t]seI(P = G)

by setting
([t]s)x(z) = apply(curry(s), t) = sx(z,tx(z)). 1

We will need the following Lemma later:
Lemma 14 1. If t'(p,b) = tx(p) and s (p,b,a) = sx(p,a,b) for every X, p,
a and b, then curry([t']s') = [t](curry(s)).
2. If tix.y) = tx, then Curry([t']s) = [t](Curry(s)).
3. apply([t]r,[t]s) = [t](apply(r,s))-
4. Apply([t]s, G) = [t](Apply(s, G)).

Proof: 1.

curry([t']s")x (p) (8) = ([¢']s)x(p,)
= s (p, b, t%(p, b))
= sx(p,tx(p), b)
= curry(z)x(p, tx(p)) (b)
= ([t](curry(s)))x () (b).

Curry([t']s)x(-’v)y = 5(x,v)(Z, t{x,r) (%))
= s(x.v)(z, tx(z))y

= [t](Curry(s))x(z)y-

apply([t]r, [t}s)x (=) = ([tlrx(2))([t]sx(z))
= (rx(=,tx(2))) (sx (z,tx()))
= appiy(r; 8)x(z,tx(z))
= [t](@pply(r, 5)) x ().

34

Apply([t]s, G)x (=) = ([t]s)x(2)arx)
= sx(z,tx(2))e(x)
= Apply(s, G)x(z,tx(z))
= [t](Apply(s, G))x(z). 1

Notation: Suppose P, K : (DFF)™ —» DEP and and F:(DFF)™ x DEP , DEP

are continuous functors and
t € II((P o Fst) = F),
then we define a continuous section
[K]t € (P = (F o (ld(pee)m, G)))
by sétting | |
([K)t)x(z) = Apply(Curry(t), K)x(z) = t(x,g(x))i(z). 1
We will need the following Lemma later:

Lemma 15 1. curry([K]t) = [K](curry(t)).
2 If tixzy) = txy.z) for each X, Y and Z, then Curry([K o Fst]t)) =
[K](Curry(2)). |
3. apply([K]s, [K]t) = [K](apply(s,?)).
4 Apply([Kt, H o (Id, K)) = [K](Apply(z, H)).

Proof: 1.

curry([K]t)x(z)(v) = ([K]t)x(s,y)
= t(x,x(x))(Z,¥) o
= curry () x,k(x)) (=) (v)
= [K](curry(t))x(z)(y)-

- 35

Curry([K o Fst]t)x(z)z = Curry([K o Fst]t')(x.z)
= t'(x,z,G(X))(‘C)
- =tx,ex)2)(z)
= Curry(t) (x,c(x))(z) z
- [K)(Cumy()x =)z

apply([Kls, [K]t)x(z) = (([K]s)x () (((K]t)x (2))
= (S(X,K(z)) (2)) (tx.xx)(2)
= (apply(s,t)) (xx(x)) (%)
= [K](apply(s, t))x(z)-

Apply([Kt, H o (id, K)) = ([K]t)x(2)axkex)
= txxx) (2 mx.a(x)
= Apply(t, H)(x x(x))(z)
= [K](Apply(t, H))x(z). 1

6 Syntax of the polymorphic A-calculus.
The types of the polymorphic A-calculus are gii}en by the following abstract syntax:
L0 u= 01=>§2 | a | Ha.&
and the terms of the éalcﬁlﬁs are described as follows:
M=z | Az:o. M | Mi(M;) | Aa. M | M{a}

We distinguish a subcollection of well-typed terms 6f_ the calculus to be those

* terms M for which M : o is derivable from the typing rules listed below. The

36

.sequent.s in the typing rules are of the form H sy M o where H = z; : 01,...0,
is a (possibly empty) list of typings for variables which must include all of the free
term variables of M, and ¥ = oy,...,a, is a list of type variables which must
include all of the free type variables that appear in 01,...,0, and M. We use
-y M as an abbreviation for H Fy M where H is the emptyllist and H+ M as
abbreviation for H b5 M where X is the empty list.

Typing iules for the polymorphic A-calculus.

projection: . Hy, z:0, Hybgz:o

H z:00Fs M:o, _
HbgAz:01. M :01 = 0,

= introduction:

Hbp aM:0o
Hblzs Aa. M :Ila. o

IT introduction:

H"'EM110’1=>0'2 HlFs M;:0q
H |'}_*, Ml(Mz) L 09

= elimination:

HlFg M:1a. oy
- H kg M{0,} : [02/a]oy

II elimination:
Restrictions:
o In the projection rule, the variable z does not appear in H1‘ or H,.

e In the II introduction rule, there is no free occurrence of « in the type of

any variable in H.

37

The terms of the calculus (in particular, the well-typed terms) are taken to
satisfy a collection of equational rules of the form H Fy M; = M; where H and
Y are lists of variable typings and type variables as descibed above. Again, we
assume that H lists all of the free term variables that appear in M and ¥ includes
all of the free type variables that appear in H and M. The rules are given as

follows:
Equational rules for the polymorphic A-calculus.

reflexivity: Hy,z:0 Hylgz=z:0

H, z:00ts My =M;:0,

< HFglz:00. My=Az:0. M;:0, =0,

t ¢ HI—E,aM1=M2 1o

ype & Hly Aa. M; = Aa. M'~', :MMa. o
congruence: HrsMi=M;: 0, Hbtg Ms=M,;:01 =0,

H I‘z Ma(M;l) = M4(Mz) 109

H}‘z M1=M2:Ha. (5]
H f"g M]_{O’z} = Mz{dz} . [0’2/&]0’1

type congruence:

It is not difficult to see that from these rules, a lambda expression M satisfies
H bty M : o if and only if it satisfies H Fx M = M : 0. Thus, for the remaining

axioms, we use H s M : 0 as an abbreviation for HFrs M =M : 0.

H‘f‘g M1 =M2 1o
Hfg My =M, :0

symmetry:

Hl"}:M1=M2:0' HI’2M2=M3:0'
‘ Hi’ng:Ms:.O’

transitivity:

38

H,z:00x M;: 02 H.I-ngzal‘

ﬂ:: - , H Fs (Az: 01. Mp)(My) = [My/z|M; : 0,
. . Hbg o M:o0y
type 4: . HFs (Ra M){os) = [oa]a]M : [os]alor.

HtFs M:0y=0,

Hbtgdz:01. M(z)=M:01=>0;
¢ . Hbts M :Ila. o
ype HtgAa M{a} =M :lla.c
Restrictions: |

o In the reflexivity axiom, the variable z does not appear in H; or H,.

In the type £ rule, there is no free occurrence of a in the type of a variable

“in H.

In the type B rule, there is no free occurrence of a in the type of a variable

in H.

In the n rule, the variable z does not occur free in M.

In the type 5 rule, the variable a does not occur free in M.

7 Semantics of the polymorphic A-calculus.

In this section we provide a detailed description of a semantics for the polymorphic
A-calculus, as described in the previous section. We end by showing that our model

interprets types differently from the models based on finitary projections described

“earlier and we show that the equational theory of our model is different from that

of any such model..

39

Im>:> 1>, then define P"'," : (DEP)™ — DEP to be the 1’th projection, s.e. the
continuous functor whose action on objects'is given by P*™(D,,...,Dy) = D; and

| whose action on arrows is PY™(fy,..., fm) = fi.
If Y =e0,...,an is a list of type vér.iables then Stz o] will be a continuous
functor from (DEF)™ into DEF. The semantic function S . | is defined inductively

as follows:
o Ira,,..am] =P
. 8Fg 01 = 03] = 8[Fg 1] = S[ts 02]
o X5 Ma. o] = I™(t5,a o])
We also assign a meaning to a sequent H Fy o by the equation:
loy,...,02 ko] = #(8[Fs au],. .., S[Fx 0n]) = Stz o]
Example: The type of the polymorphic identity is given as follows:

[+ Mo a = a] = Hl(%v[[l-a a = al)
= I (S o] = ta o)
— Hl(Pl,l = Pl,l) I

We now define the semantics of the sequents of the calculus. In general, the
value

[z1:01,...,Zn 0, g M : 0]
will be a continuous section of the functor
lo1y... 00 Fg o] : (DEP)™ — DEP_ |

.The semantic equations aré'given as'folld“.rs:

o [z1:01,...,7;: a.-,...,:c,;: op 3z T Lo = p'm

e [HtgAz:0:. M 1oy => dzll = cufry([[H, z:o:Fs M:oy])

o [Htz Aa. M :1a. o] = Curry([[H‘I-z, a M : a]]).

o [HIyg Mz(Ml) 02]] = aphly(ﬂH Fg M; : 0y = o], [H l"z’ Ml 101])

40

o [H g M{0:}:[02/a)o1] = Apply([H Fz M : Na. 01], [F5 o2])
To see that the third line makes sense, we note the following:

Lemma 16 If a does not appear free in the type o, then Stx, o 0] = Sfrs
o] o Fst.

Proof: Straightforward structural induction on o. i

Exampleﬁ The polymorphic identity function is the following continuous section
of IT'(P¥! = P11):
[FAa. Az: a. z: la. @ => o] = Curry([Fa Az: . z: a = a])
= Curry(curry([z : a t4 z : af))
= Curry(curry(p')). 1
Lemma 17 (Permutation) If we have
{1,...,n} = {i1,...,1,} and
{1,....m}={41,...,9m}
then

Hzl $01,...43Tp 0y |_ax,...,a,. M: a]](Xl‘,...,Xm)(pl’ s apn)

= [2i, : Oiyse ey Tin 1O Fay, ey, M o) x; X) (Pirs 5 i)
Proof: Easy structural induction on M.]
Lemma 18 (Substitution) Suppose Htx M, :0y and H, z:0, s M, : o3, then

apply(curry([H, z:01 g My : 03]), [H Fs My : 01]) = [H b [My/z]M;].

Proof: To help reduce the amount of notation needed for the arguments below,

let .
r= IIH ")3 [MI/Z]Mzﬂ

s=[H, z:01Fg M;: 05]
t=ﬂHF2M1:01]]‘

41

We must show that r = [t]s. Let n and m be the lengths of H and b i'espectively.
The proof is by structural induction on the term M;. There are six cases.

Case 1: M; =y # z. Suppose y is the i’th variable in H. Thenr =[H by y:

02]] —_ psn — [t](sn+1) =t
Case 2: M; = z. We have r —t and [t]s = [t](p*t1 ") =1¢, sor = = [t]s.
Case 3: Mz=,\y:a. M. Suppose that 0, =0 =>rsothat H, y:obx M : 7.

r=[HFg \y:o. [M/z]M: o]
= curry([H, y:0 g [M;/z]M : o]) | 7
=curry([[H, y:o g My:ai]|[H, y:0, z:01Fs M :0]) (hyp) -
= [t])(curry([H, z: 01, y:ots M:o])) (Lemmas 14.1 and 17)
= [t]s. ‘

Case 4: Mz = Aa. M. Suppose that o; = Ila. ¢ so that H Fg,a M:o.

r=[H Fg Aa. [M;/z]M : 03]
= Curry([H Fg, o [M1/z]M : o])

= Curry([ﬂH Fe,aMi:o]|[H, 2015, a M:0]) (hyp)
= [t](Curry([H, z:01Fg, o« M :0])) (Lemmas 14.2 and 17) -
= [t]s. |

Case 5;. M, = M(N). .Suppose that HFy M:o=>o0;and H+-y N:o.
r=[H Fz ((M/z]M)([M/2]N) : 3]
= apply([H tx [M1/z]M : 0 = az]], [H Fx [Ml/z]N a]])
= apply([t][H, z:01Fs M : 0 = 03], [t][H, z:01F5 N : a]]) (hyp)
= [t](apply([H, z: 01 Fc M :0 = 03], [H, z:0,Fg N :0]))
= [t]s.
Case 6: M; = M{o}. Supposé HiFg M:r1.
r=[H g ([Ml/z]M){a} : 03] |
= Apply([H Fx [My1/z]M : 7], [z o])

42

= Apply([t][H, z;01F5 M : 7], [Fz o]) (hyp)
= [(Apply([H, ziorFs Mi7], [Fso]) (Lemma 14.4)
=[t]s. 1 | |
Lemma 19 [F5 [02/a]o1] = [Fs o1] o (Id, [Fz o2])-
Proof: Structural induction on oy. I

Lemma 20 (Type Substitution) Suppose H by, o M : 01, and a does not dppear
free in H, then

Apply(Curry([H Fg, « M : 01], [Fs 02]) = [H F5 [02/a]M : 03/ a)e].
Proof: To help reduce the amount of notation needed, let
s =[H by [o2/a]M : [02/a)o]
t=[Hlg, o M:0i]
K= ![l‘g 02B.
We must show that s = [K]t. The proof is by structural induction on M. There
are five cases. |
Case 1: M = z. This is trivial.
Case 2: M = Ay :0. N. Suppose 01 = 0 = 7 so that N : 7.
s=[Htg Ay : [02/alo. [02/a]N : [02/(!}0’1]]
= curry([H, y: [02/alo Fg [02/a]N : [o2/a]r])

= cufTY([K][[H, y:okg o N:7]) (hyp)
= [K](curry([[}?, y:okg o N:7])) (Lemma 14.1)
= [K]t.

Case 3: M = ApB. N Suppose that o3 = IIB. o so that N 1o
s =[H bz AB. [02/]N : [02/a]or]
= Curry([H Fg, 5 [@/Q]N : o2/ a]o])

= Curry([K o Fst][H tx, g, o N : 01]) (hyp) |
= |[K](Curry([H F5, s N:c1])) (Lemmas 15.2 and 17)

= K]t

43

Case 4: M = N;(N:). Suppose that N, : 0 = 01 and N; : 0.

s = [H bz ([oz/ 2] N1)(lo2/ o] V2) : [02/ @]on]
= apply([H Fz [02/a|Ny : [02/a)(0 = a1)], [H Fz [02/a]N; : [02/e0])
= apply([K|[H 5, « N1 : (0 = 1)), [K]|[H Fg, o Nz :0]) (hyp)
= [K](apply([H Fg, o N1: (0 = a1)], [H F5, « N2 : 0])) Lemma 15.3)
= [K]t.

Case 5: N{c}. Suppose H -5 N : r.

s = [H Fz ((o2/alN){[or/ o} : [0/ o]
= Apply([H b [02/alN : [o/alr], [F [o2/alol])

= Apply([K][H Fz, o« N : 7], [z [02/c]o]) (hyp)
= Apply([K][H b5, a N:7], [Fs o]0 (,K)) (Lemma 19)
= [K](Apply([K][H Fz, « N : 7], [Fz o]) (Lemma 15.4)
=[K]t. 1

Lemma 21 Suppose H -y M : 01 = 03. If = does not appear in H, then
[Hy z:o1FgM:oy=>03]=[HtFg M:0, = 02]]‘ofst.
Proof: Bj structural induction on M. |
The following is a more dramatic version of Lemma 16:

Lemma 22 Suppose Hrs M :0. Ifa @ L, then[Hbg o M:0o]=[HtFz M:
Ila. o] o Fst.

Proof: By structural induction on M. |

We will say that an equation H -z M; = M, : o is satisfied by our semantics
just in case [H Fx M; : 0] = [H kg M, : 6]. We are now prepared to state our

central result:

Theorem 23 The semantic function [-] satisfies the rules for the polymorphic
A-calculus. '

44

Proof: There are eleveh rules altogether. Those whose proofs are non-trivial are

the rules B, type B, n and type 5. The 8 rule and type f rule are immediate from

the Substitution Lemma (18) and Type Substitution Lemma (20) respectively.
First we consider the 5 rule:

Hbtg M:0y = 03
HI—gAz:ol.M(:c)_:M:al=>02

This is subject to the restriction that the variable z does not occur free in M (and

hence does not appear in H). We have

[H Fg Az : 01. M(z) : 01 = 03]

= curry([H, z: 01 Fg M(z) : 02])

= curry(apply([H, z: 01 Fs M : 61 = 03], snd))

= curry(apply([H g M : 01 = 03] o fst, snd)) (Lemma 21)
=[HtFs M:01=0,]

We now prove the type n rule:

Htg M:lla. o -
Hlg Aa. M{a} =M :Ila. o

This is subject to the restriction that the variable & does not occur free in M (and

hence does not appear in I).

[Htg Aa. M{a} : NTa. o]

= Cury([H Fs, o M{a}io])

= Curry(Apply([H Fg, « M : . o], [Fg, « a]))

= Curry(Apply([H +5 M : T o] o Fst, Snd)) (Lemma 22)
=[Htz M:Ta o]. |

Example: We wish to compute the interpretation S[Ia. o] of the trivial type.
This will show that our model is distinct from the finitary projection model (and
also that the equational theories are distincts, since the equation Az : Ila.a. Ay :
Hay.z = Az : Ia.a.dy : May.y is valid in our model and not in the finitary

~ projection model).

45

Let (tx) be a continuous section of the identity functor. For all f € DEF(X,Y),
we get fL(tx) < ty. Given an arbitrary domain X , let us consider Y = X +X
(the coalesced sum), with the two morbhisms (that are left adjoints) inl: X — Y
and tnr: X — Y. Let fl (resp.fr) be the morphism in DEP corresponding to inl
(resp. inr). Then, we must have F(inl)"(tx) < ty and F(inr)E(tx) < ty which
entails ty =1, and then ty =_1. }

8 Questions and comparisons with related work.

We want first to describe why Girard’s model [8], [4] follows the same pattern
as our present model. The idea is to “relativise” all our definitions to the stable
framework of [2]. That is, instead of requiring the continuity of functors and func-
tions, we require further that pull-backs are preserved, a propérty called stability.
In place of the extensional ordering on functions, we take the stable ordering.
In place of natural transformations between functors we take cartesian natural
transformations. We can then work in the category DI [2,8], or in the full sub-
categories of qualitative domains or coherent spaces [8]. The relationship with the
work of J.Y. Girard is then explained by a general result due to E. Moggi, which

we state in the following special case:

Proposition 24 Let F be a stable functor from DIFY to DIF?, then a family
(tx)xepEr 18 G continuous and stable section of F if, and only if, it is uniform,
that is F(f)R(ty) = tx whenever f € DIFF(X,Y).

The key fact in showing this, is that if f € DIE?(X, Y) then we can always
find a domain Z and two morphisms u,v € DI®F(Y, Z) such that they form a
pull-back diagram. This fact is clear if we think in ferms of the representafion
using event structures of dI-domains [29], [30]. Let h be uo f = vo f. If (tx)x is a
continuous and stable section of F, we have F(h)!(tx) = F(u)L(ty) A F(v)E (ty),

46

by expressing the fact that (tx) preserves pu‘l'l-ba,cks.' We have also
F(RYE(F(f)R(tr)) = F(R)*(F(£)%(ty)) A F(R)X(F(£)"(tr))
= F(u)5(F(f)" o F(f)*(tr)) A F@)5(F(/)E o F(f)®(tv))
< F(u)*(tr) A F(v)%(ty)
= F(h)"(tx),
which implies F(f)®(ty) < tx, hence F(f)®(ty) = tx since (tx) is increasing.
The stable model leads to “smaller” interpretation. For instance, in all the
known stable models, the interpretation of Ma.a — a is the two-point domain. In
the model presented in this paper, this turns out to be infinite since it contains the
following “continuous” operations indexed by an integer n: fx(z) = z if z bounds
more thém n finite elements, and fx(z) =1 if z does not bound more than n finite
elements (these are exemples of “parametric” operations that are not uniform).
It is not clear whether or not these “non uniform” operations are interesting. It
seems that all the terms we get form the syntax of the second-order A-calculus
are uniform, and so the stable model may be helpful in producing fully abstract
models.
A question raised by the last example is whether or not the interpretation of
a given syntactic type is an effectively given domain [25]. We do not even know
actually what is the precise form of the intérpretation of Ila.a — a (are there other
elements than the ones given?). This question may be asked of the stable models
too ‘[8,4]. It was one of the motivations in introducing the notion of coherent
;iomain [8], since, in this case it is possible to give an “explicit” description of the
interpretation of the syntactic types. : |
An important general question is the connection between these “models” and
the general definition of a model for second-order A-calculus given in [3]. A sur-
prising point is that, strictly speaking, the present model, and Girard’s models as
well, are not models in the sense of Bruce and Meyer (this was pointed out to usv
by E. Moggi). Indeed, it seéms essential that the collection of types is interpreted
as a category, and ﬁot as a set. This cannot be done if we follow Bruce and Meyer
definition. This is to be contrasted with the finitary projection model of [1], which
is a model for Bruce and Meyef deﬁnitiqn. This adds weight to the proposa.l‘ of

47

Seely of a more general the definition of model [23,5], and, indeed, our construc-
tion is a model [5]) in his sense. It would be also possible to generalise slightly
the definition of Bruce and Meyer following the ideas developed in [2], so that this
definition becomes equivalent to Seely’s definition.

We may ask also what are the relationship with other known models for poly-
morphisms. For instance, the idéal model of [13], or models in the effective topos
(see for instance {11]). In contrast with the effective topos model [11], our model
is a direct extension of that commonly used in denotational semantics of program-
ming languages and it allows us to handle recursion at all types.

With respect to traditional domain theory, the main open problem seems to bve
the extension of our model to the SFP case, that is to the category with objects
directed colimits of finite cpo’s and morphisms, Scott-continuous functions ([26],
[9]) It is known, following the ideas of [9], how to extend the finitary projection
model of [1] to SFP. However, we have not yet been able to show that, if F is a
continuous functor from SFP to SFP, then the poset of continuous sections of F
is an SFP object. | |
 Another point is that, in our construction, we made the choice to use the
category of embedding-projection pairs rather than arbitrary left adjoints. The
constructions go through in the same way for with this category in place of em-
beddings. For instance, we get a simple model by taking complete algebraic lattices
and left adjoint, model where the interpretation of the polymorphic identity type
has only three points, as expected (see [5] for a brief descrption of this model). We
do not understand the relationship between this model and the one presented in
detail here. Notice that this choice does not appear in the stable case (as noticed
by A. Pitts)_, due to the folldwing remark: if a stable function f : D — D is greater
than tdp for the stable ordering, then, this function is equal to the identity. In-
deed, we have, for z € D, z < f(z) hence, by stability, z = f(z) A idp(f(z)), that
is, z = f(z). From this, we deduce that a left adjoint is, in the stable case, ah
embedding. | _ _

We have e‘xplainedAthe central role Grothendiek fibrations and continuous sec-

tions play in the interpretation of polymorphism. Our presentation has been dé—

48

liberately based on exemples, and on one quel in particular; a new model for
polymorphism has been worked out in considerablebdetail. From another point
of view, we have probably not been abstract enough. It is not yet clear what
.the‘right framework is in which to encompass and relate the full range of models,
and what techniques to use to home-in on the model appropriate to meet certain
requirements like full-abstraction. The final story on models for the polymorphic

A-calculus is yet to be told. We hope the work presented here makes a contribu-

tion.

49

References

[1]

(2]

8]

[4]

Amadio, R., Bruce, K. B., Longo, G., The finitary projection model for second
order lambdd calculus and solutions to higher order domain equations. In:
Logic in Computer Science, edited by A. Meyer, IEEE Computer Society
Press, 1986, pp 122-130.

Berry, G., Stable models of typed A-caleuli. In: Fifth International Collo-

quium on Automata, Languages and Programs, Springer-Verlag, Lec-

ture Notes in Computer Science, vol. 62, 1978, pp. 72-89.

Bruce, K. and Meyer, A., The semantics of polyrﬁorphz’c lambda-calculus.
In: Semantics of Data Types, edited by G. Kahn, D.B. MacQueen and
G. Plotkin, Lecture Notes in Computer Science, vol. 173, Springer-
Verlag, 1984, pp. 131-144. ‘

Coquand Th., Gunter C. and Winskel G., dI-domains as a model of polymor-
phism. To appear in the proceedings of the Third Workshop on the Mathe-

- matical Foundations of Programming Language Semantics, New Orleans, LA

(5]

[¢]
7]

8]

1987.

Coquand, T., and Ehrhard, T., An eqyational presentation of higher-order
logic. In the proceedings of the conference “Category theory and computer
science”, Edinburgh, September 1987, Springer Lecture Notes in Computer

Sc1ence

Fairbairn, J., Design and smplementation of a ssmple typed languagé based on
the lambda-calculus. University of Cambndge Computer Laboratory Technical
Report, no. 75, 1985, 107pp

Girard, J. Y., Interprétation fonctionelle et élimination des coupures
de I’arithmétique d’ordre supérieur. Thése d’Etat, Université Paris VII,
1972.

Girard, J. Y., The system F of variable types, ﬁftcen years later. Theoretical
Computer Science, vol. 45, 1986

50

[9] Guntéf, C. A., Universal profinite domains. Information and Computing,

vol. 72 (1987), pp. 1-30.

[10] R. Ha.rper, F. Honsell, G. Plotkin. A Framework for Defining Logics. LICS,
1987.

[11] Hyland, J.M.E. The Effective Topos. in The L.E.J. Brouwer Centenary Sym-
posium, North'—Holland, 1982,

[12] Winskel, G. and Larsen, K., Using information systems to solve recursive
domain equations effectively. In the proceedings of the conference on Abstract
Datatypes, Sophia-Antipolis, France in June 1984, Springer Lecture Notes in

Computer Science, 173.

[13] Macqueen, D., Sethi, R., Plotkin, G.D., An Ideal Model For Recursive Poly-
morphic Types. POPL, 1984,

[14] Martin-Lof, P., An Intustionistic Theory of Types. Unpublished manuscript,
1971.

[15] Martin-Lof, P., Intustionistic Type Thebry. Bibliopolis, 1980.

[16] McCracken, N., An Investigation of a Programming Language with a
Polymorphic Type Structure, Doctoral Dissertation, Syracuse University,
1979.

[17] Pitts, A., Polymorphism is set-theoretic constructively. In the proceedings of
‘the conference “Category theory and computer science”, Edinburgh, Septem-

ber 1987, Springer Lecture Notes in Computer Science.

[18] Plotkin, G.D., Complete partial ordcrs, a tool for making meanings. Lecture

notes for the Pisa Summerschool, 1978.

[19] Reynolds, J. C., Polymorphism is not set-theoretic. In: Semantics of Data
. Types, edited by G. Kahn, D.B. MacQueen and G. Plotkin, Lecture Notes -
~ in Computer Science, vol. 173, Springer}Verlag, 1984, pp. 145-156.

51

[20] Reynolds, J. C., Towards a theory of type structures. In: Colloque sur la
Programrmation, Springer-Verlag, Lecture Notes in Computer Science

19, 1974, pp. 408-425.

[21] Scott, D. S., Some ordered sets in computer science. In: Ordered Sets,
edited by I. Rival., D. Reidel Publishing Company, 1981, pp. 677-718.

[22] Scott, D. S., Domains for Denotational Semantics. ICALP 1982, Springer

Lecture notes in Computer Science, 140, 182.

[23] Seely, R., Categarical semantics for higher order polymorphic lambda calculus.
Manuscript, 1986, 33pp.

[24] Smith, J., Non derivability of Peano Azioms in Type Theory without Uni- »

verses. Unpublished manuscript.

[25] Smyth, M., Effectively given domains. Theoretical Computer Science, vol. 5,
pp. 257-274, 1977.

[26] Smyth, M., The largest cartesian—closed category of domains. Theoretical

‘ Computer Science, 1983.

[27] Smyth, M. B. and Plotkin, G. D, The category-theoretic solution of recursive
domain equations. SIAM Journal of Computing, vol. 11 (1982), pp. 761-
783.

[28] Taylor, P., Recursive domains, indexed category theory and poly-
morphism. Ph.D. Thesis in mathematics, University of Cambridge, 1987.

[29] Winskel, G., Events in Computation. PhD thesis in Computer Science,
University of Edinburgh, 1980. '

- [30] Winskel, G.,’ A representation of completely distributive algebraic lattices. Re-

port CS-83-154 of the Computer Science Department, Carnegie-Mellon Uni-
versity, 1983. | | - | |

52

