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Distributed Computing with RPC: the Cambridge Approach

J M Bacon

University of Cambridge Computer Leboratory, Corn Exchange Street, Cambridge CB2 3QG, UK
K G Hamilton

Digital Equipment Corporation, 100 Hamilton Avenue UCO-2, Palo Alto, CA 94301 - 1616, USA

The Cambridge Distributed Computing System (CDCS) is described and its
evolution outlined. The Mayflower project allowed CDCS infrastructure, services
and applications to be programmed in a high level, object oriented language,
Concurrent CLU. The Concurrent CLU RPC facility is described in detail. Itis a
non-transparent, type checked, type safe system which employs dynamic binding
and passes objects of arbitrary graph structure. Recent extensions accommodate a
number of languages and transport protocols. A comparison with other RPC
schemes is given.

1. Background: The Cambridge Distributed Computing System

CDCS [Needham82]is a heavily used heterogeneous research environment based on
the Cambridge Ring local area network and employing the "pool of processors”
approach to distributed computing. Infrastructure is provided by a number of small
service nodes and supports processor bank management and invocation of
common services by heterogeneous processor bank systems. The major research
issues of its development were the distribution of system functions and their
underlying communications support. Typical usage of CDCS is for a user, via a

terminal server, to ask the Resource Manager for a processor from the processor bank.

The user specifies a software system to be loaded into the acquired processor and then
runs applications on this single machine. Although the user is free to acquire more
than one machine, CDCS originally provided virtually no support for users to spread
task across a number of machines.

1.1. Evolution of CDCS

CDCS is now implemented on three bridged Cambridge Rings. The program

a

development environment provided through the processor bank and file server, which

for practical reasons were small research systems, was augmented by two Vax
UNIX™ systems, with local discs, and a number of Ethernet-based MicroVax2s. Sun
and Xerox distributed systems also use the Ethernet [fig.1]. The advent of the
Cambridge Fast Ring gives potential for a unified approach.
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1.2. CDCS design overview

A processor bank may contain heterogeneous hardware and software systems and each
system may have its own implementation of naming, protection, reliability, etc. An
aim of CDCS was to allow such systems to share common services such as printing and
- disc storage.

System and dialogue structure

The system software is partitioned and distributed. A request-response protocol was
provided for remote service invocation and a simple byte stream protocol supports the
connection of terminals to processor bank systems.

Naming of services ‘

Each service has a flat text string name which is mapped to a network address
together with information needed for service invocation. This mapping is carried out
by a name server at a fixed network address. This is the only address which may be
embedded in software.

Naming and protection of objects

The file storage service (CFS) is the only CDCS service that functions as an object type
manager. This "universal file server” is designed to be used by any number of
different file directory servers, each with its own text naming conventions and access
control policies. ‘

Authorisation for Service Use

Each processor bank system carries out its own user authentication but must register
its current user with a CDCS authorisation server, the Active Name Table manager
(ANT). ANT issues a session key, with a random component, which, together with
information on the category of the user, functions as a capability for service use, in
that a server may check with ANT that a request comes from an authenticated user.
Reliability

Each service may take its own independent approach to reliability, for example, CFS
provides atomic transactions on special files. The infrastructure was designed for
rapid rebooting through the boot server. The network interfaces and node software
provide facilities for remote control and debugging. A dead man's handle technique is
used to monitor allocated processor bank systems.

Summary

A major advantage of the processor bank approach is that new systems may be made
available to users as technology evolves without any change in the underlying system.
Also, the model of independently managed subsystems sharing common services is
widely applicable.




2. The Mayflower Project

The Mayflower group was set up in 1982 to provide an environment for developing and
running distributed applications and services. It comprises a language, Concurrent
CLU, a communications protocol, RPC, integrated into the language system, and an
operating system, the Mayflower supervisor.

CLU [Liskov81] was selected and extended by the Mayflower group. CLU is object
oriented in style and provides procedures for procedural abstraction, iterators for
control abstraction and clusters for data abstraction. Itis strongly typed and supports
user defined abstract types very well. It has separate compilation facilities and the
compiler generates and checks interface specifications. Parameterised clusters go
some way towards providing the facilities usually associated with a polymorphic
typing system.

CLU was originally extended with monitors, semaphores and a lightweight fork
primitive. Experience with Concurrent CLU showed that classical monitors unduly
restrict concurrency in large systems [Cooper 85] and a critical region construct, with
programmer specified locking, was added. Also, a conflict was shown between the
need for abstract interface specifications to handle the complexity of large systems and
the need for systems implementors to have knowledge of the concurrency behaviour of
modules. A methodology was developed to integrate these requirements.

Mayflower RPC is a type-checked, type-safe, language-level construct incorporating
dynamic binding under program control. Arbitrarily complex objects of practically
any type in the CLU language, including user-defined abstract types, can be passed in
arguments to RPCs. Mayflower philosophy is that RPC syntax should not be
transparent and the programmer has a choice of semantics; MAYBE or EXACTLY
ONCE. A detailed explanation of RPC semantics is given as an appendix. Mayflower
RPC also allows new representations of a data type to be incrementally introduced into
a distributed system without simultaneously halting and reloading every node.
During the upgrade period objects using both the old and new representations can co-
exist. Mayflower RPC operates through bridges and across a ring-ethernet gateway.
Details are given in section 3.

The Mayflower supervisor was designed for implementing high performance services
with internal concurrency. It therefore supports lightweight processes runningin a
shared address space (or domain) and a fork primitive is provided for dynamic process
creation within a domain. Resources are allocated to a domain and are shared by all
processes therein. Multiple domains per node may be used but inter-domain
communication is by (expensive) RPC. Language independence was seen to be
desirable but was not a major design focus.
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'FIGURE 2. Mayflower on CDCS

System development is carried out in Concurrent CLU on (Micro)Vaxes under Unix
and target code runs on processor bank MC68000s under the Mayflower supervisor
and, for preliminary testing, on Vaxes under Unix. CDCS infrastructure, services and
applications can be written in Concurrent CLU to run under Mayﬂo;iver and have RPC
interfaces [fig.2]. The CDCS authorisation server ANT was reimplemented and a new
processor bank manager is being developed. Several research projects have been
carried out under the Mayflower environment including a distributed compilation "
system [Wei87], a debugger for distributed concurrent programs [Cooper87] and
distributed directory services [Seaborne 87]. Applications in the areas of graphics an
multi media services have also used Mayflower.
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3. Mayflower Remote Procedure Call (RPC)

The philosophy of Mayflower RPC is not to hide from the programmer that certain
processing is remote. The peculiar semantics and overhead of remote operations are
made explicit. The language was therefore modified to add new syntax rather than
using the method of stub generation often associated with transparent RPC [Birrell
84].

3.1. Definition and Call Syntax

The definition of a procedure which may be called from a remote node contains the

keyword remoteproc replacing proc in the header. Other aspects remain the same.

a_remote_proc = remoteproc ( <args>)
returns (a_type)
signals ( problem )

end a_remote_proc

A new syntax, the call expression, is used for performing RPC's. The keyword call
precedes the invoked procedure's name and a number of control keywords (resignal,
zealously, timeout, at) may follow the invocation's arguments, eg.

v:a_type := call a_remote_proc (<args>) resignal problem

where problem is an exception signalled by the remote procedure, see also below. (A
CLU procedure, both when returning normally and signalling an exception, may
return an arbitrary number of results of arbitrary type). .

3.2. Argument Passing

All objects in CLU are represented by pointers so that local variables merely contain
pointers into the heap. When a local procedure is called, it is given cobies of pointers to
the argument objects. Thisis known as call by sharing since any changes the called
procedure makes to the argument objects will be visible to owners of other pointers to
these objects. The argument passing semantics used for RPC are call by copy.
Arguments are copied into the remoteproc machine's heap and results are copied back.
Modified argument objects are not shipped back, for efficiency and semantic reasons.
Copying an argument to a remote machine and back (as a result) may cause it to cease
to be equal with its former self. The partial transfer of large objects, with fetch on
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demand of additional object components, was considered buf not implemented because
of its complexity.

3.3. Argument Marshalling and Unmarshalling

Primitive types, structured types and user defined types must be considered. Almost
all CLU types can be marshalled, with the exceptions of semaphore, monitor-lock, any
and proctype. The new type, remoteproctype may be used to transfer procedure names
between nodes. Arbitrary structures including pointers may be transferred and
sharing of subobjects and cycles within the object are preserved.

The standard CLU heap format for the representation of system types is used to
transfer all types except pointers. A special, detecfable, 32 bit format is used for
pointers which includes a 15 bit offset within the network buffer (a 32Kbyte limit on
the size of data transferred makes this possible). Objects are stored as contiguous
vectors of pointers which are buffer offsets. This is optimised for speed of conversion
from heap format rather than compactness.
User defined types must include marshal (and unmarshal) conversion operations
which are called to obtain representations, eventually in terms of system types,
suitable for transmission, for example:
thing = cluster ...
rep =
record [ v:thing value,

m: monitor_lock,
g: global info
]

marshal = proc (t: thing)
returns ( thing value)
return (t.v)
end marshal

unmarshal =
proc (tv: thing value)
returns ( thing)

end unmarshal

3.4. Run Time Binding

Compile time type checking is inadequate without runtime consistency checking. The
compiler generates a UID for every procedure interface including remoteprocs. This is
stored with the interface definition and the programmer must ensure that this
information is made available, as a library module, to the compiler when any call to

" this remoteproc is compiled. Recompilation of a procedure may cause {ts interface to




change, in which case a new UID is generated. At run time, the interface UID is
transmitted with the call, thus allowing the RPC facilities of the caller and the called
procedure to check that the exported and imported interfaces are still identical.
Currently, the programmer must find the network address of the called procedure, by
a name server lookup for example, and pass it to the RPC service.

carver: network address:= ...

t:a_type:= call a_remote proc( <args>)
atcarver

a_proc: remoteproctype := a_remote _proc

£= call a_proc ( <args>)
Work is in progress to improve naming, binding and configuration services.

3.5. Call Semantics

The CLU RPC programmer has a choice of call semantics. The default, used in the
above example, is the lightweight MAYBE. If the alternative "reliable” EXACTLY
ONCE (in the absence of node crashes, see Appendix for details) is required, the
keyword zealously is appended to the call.

call logger ("kernel running low on heap”) zealously

The keyword timeout, followed by an integer expression representing a time in
milliseconds may be appended to any remote call. For MAYBE calls, this represents
the time after which the call should be abandoned. For EXACTLY ONCE calls it
represents the recommended interval between retries.

If an error occurs during execution of a remote call, the RPC will signal either a hard-
error or a soft error exception, together with an error code. Soft-error is only signalled
» by the MAYBE call mechanism and indicates that an error has occurred such asa
timeout or apparent congestion at the remote node, but that a retry may succeed.
Hard-error is signalled by both the MAYBE and EXACTLY ONCE options and
indicates that an apparently unrecoverable error has occurred, for example, failure to

contact the server node or denial by the server node that the called remote proc is to be
found there. '
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An exception handler for the MAYBE protocol would have the form:
begin
i:.:.a_type:: call a_remote proc( <args>)
timeout 2000

enﬁ except
when problem ( p: problem ):

when hard_error (why:int):
% not worth retrying
when soft_error ( why: int ):
. % worth retrying a few times
end

An exception handler for the exactly once protocol would have the form:
begin

i:.:'a_typezz call a_remote proc( <args>)
zealously

enﬁ except
when problem ( p: problem ):

when hard_error ( why: int ):
end

3.6. Multiple Transport Protocols

CDCS had started out with heterogeneity as a central design aim. The initial phase of
Mayflower produced a single language subsystem within CDCS; Concurrent CLU over
the Mayflower supervisor on 68000's. Recent work has extended the RPC system to
allow interworking between Concurrent CLU programs running on ring based
68000's over Mayflower and on Ethernet based Microvaxes over UNIX. RPC runs over
UDP (User Datagram Protocol) and IP (Internet Protocol) on the Ethernet and over
the Basic Block protocol on the Cambridge Ring.

The transport protocol required is selected at RPC bind time and the network address
now includes network type as well as a network specific address. RPC gateways can be
written in CLU and other networks are easy to add.

3.7. Multiple Data Formats

Some interworking was also seen to be desirable between programs written in

Concurrent CLU running over Mayflower and programs running on Xerox or Sun
workstations written to use Xerox Courier RPC and Sun RPC respectively. It was
found that a subset of the types supported by Concurrent CLU RPC, the builtin -
immutable types, are used in Sun XDR (eXternal Data Representation Standard) and’%
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the Courier data standard. CLU RPC was therefore extended to allow selection of any
one of these data representations.

CLU clients can access existing Xerox and Sun services, UNIX and Xerox XDE (Xerox
Development Environment) and Interlisp clients can access CLU servers and limited

support is provided for new multi language distributed applications.

4. Comparable Services

4.1. Loosely Typed Interfaces

A transmission representation may be defined for common language types and
network interfaces may be defined in terms of these types. A string, for example, may
be represented by a one-byte count followed by that number of character bytes. The
types required for any interface are only known by convention, however, and
interfaces cannot be type checked at compile time. Examples of systems with this style
of communication are Amoeba [Tanenbaum 85] and the Newcastle Connection
[Shrivastava 82] both supported by a set of C library routines. Type checking of
system types can be carried out at run time if an identifying tag is transmitted with
each type, but this increases transmission and processing overhead. The ISO
presentation layer standard, ASN.1 (Abstract Syntax Notation 1) defines such a
representation [ISO 85].

4.2. Language Level Solutions Based on Message Passing

Strong typing and typed checked remote interfaces may be incorporated into a
language which uses message passing for inter-process communication. In the Conic
system [Sloman 82] for example, typed messages are associated with typed input and
output ports for modules. The Conic module programming language is strongly typed
and the compiler can check that a message sent to an output port or received from an
input port corresponds to the type of that port. The configuration language checks for
type compatibility when linking an output port to an input port. There is no explicit
type identification in the transferred data.

4.3. Transparent Remote Procedure Call

Pioneering work in language level RPC was carried out at Xerox PARC for the Mesa
language [Nelson 81] and the Cedar language and environment [Birrell 84]. In his
Emissary design, Nelson aimed to make remote calls equivalent to local calls in all but
performance In fact, the problem of achieving argument passing transparency for
pomters and call by reference was not, solved Later, Birrell and Nelson developed an




efficient mechanism for Cedar in which a transparent syntax is used but which places
less emphasis on transparent semantics. The Cedar RPC system uses a preprocessor to
generate stubs; the compiler has no knowledge that certain calls are to remote
procedures. This method implies that any call-specific control information, such as a
request for an encrypted call, must be passed into the RPC mechanism as a call

argument.

4.4. Atomic Remote Procedure Call

The Cambridge and Xerox RPC systems provide a robust, type checked inter-machine
communications facility. They do not claim to recover from node crashes. The Argus
language [Liskov 83,84] embeds support for atomic actions within the language,
ensuring that the system is automatically resilient to node crashes. Itis reported,
however [Liskov 84] that Argus programs must be written with great care if both
atomicity and a high degree of concurrency are to be achieved and if deadlock is to be
avoided.

4.5. Interface Specification Languages and Heterogeneous RPC

Interface specification and configuration languages are often provided within
programming support environments even when they are directed towards producing
single node programs within a single language system. They contribute towards the
management of large, multi module software systems by allowing inter module
dependencies to be expressed, and thus ensuring that strong typing is maintained
when modules are recompiled.

The techniques developed may be extended for distributed programs with
heterogeneous components. Accent and later Mach at CMU employ such a language,
Matchmaker [Jones 86] as does the HCS (Heterogeneous Computer Systems) project at
the University of Washington [Black 87].

5. Current Work, Summary and Conclusions

Some ten years of experience with distributed computing systems have shown that the
two functions provided by CDCS, processor bank management and support for service
invocation by heterogeneous, independently managed subsystems, form a good basis
for distributed system design. Although single user, diskless systems were originally
envisaged, a range of configurations may be accommodated. Special purpose hardware
may be included, several systems may be acquired to run a parallel application and a
range of operating systems may be made available to users.

11




CDCS had started out with heterogeneity as a central design aim. The initial phase of
Mayflower produced a single language subsystem within CDCS; Concurrent CLU over
the Mayflower supervisor on 63000's. Subsequent work has allowed a number of
transport protocols and data formats to be selected and work on naming, binding and
configuration is still in progress. The next phase is to port Mayflower to other
hardware.

After some years of experience with Concurrent CLU RPC we feel that non-
transparent syntax best reflects the realities of an environment comprising
distributed programs. Finer control over timeout and retry strategies than those
provided may be desirable. A fully type checked high level language facility is clearly
required. Research will continue on achieving heterogeneity with performance.
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Appendix: RPC Semantics

Fig. 3 shows a simplified view of system components that are invoked when a remote

procedure call is made. Bindingis not included and marshalling is shown as a single

activity. A request, reply, acknowledge (RRA) protocol is assumed. An alternative is

request, acknowledge, reply, acknowledge (RARA). In alocal procedure call, caller

and called procedures crash together. In aremote procedure call the following

possibilities must be considered (the node containing the call is referred to as the

client, that containing the called procedure, the server):

® Congestion: the network or server may be congested, causing the timeout at A to
expire.
In CLU RPC the MAYBE protocol does not retry, the EXACTLY ONCE protocol
retries a number of times.

¢ Client Failure: the client may fail after sending the request. The remote call will
go ahead (termed an orphan) as will any further related calls that it may make
(more orphans) but the timer at E will expire and no acknowledgement will be
received on prompting. The server may have made permanent state changés asa
result of the call. Some server operations may be made repeatable (idempotent), for
example, a file server operation that reads a file from byte n rather thannfrorn the
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current pointer, but this is not possible in general. The client, on being restarted,
may repeat the same call but the repeat will not be detected by the RPC service and
a new id will be generated.

The CLU RPC system aims to provide an efficient communications facility and
makes no attempt to exterminate orphans. Softwarz at higher levels may provide
atomic transactions with checkpointing and rollback facilities. The performance
penalties associated with such a service should not be made mandatory for all users.
Server Failure: the server may fail before the call is received or at several points
during the call (in all cases the client timeout at A will expire).

B - after the RPC service receives the call but before the call to the remote
procedure is made,

C - during the remote procedure invocation,

D - after the remote procedure invocation but before the result is sent.

In all cases the client might repeat the call when the server restarts. In cases C and
D this could cause problems since the server could have made permanent state
changes as a result of the call. Itis feasible that the RPC service could save
received RPC id's on stable storage or that a timestamp could be included in the id
so that the server could distinguish pre and post crash calls.

These cases are indistinguishable to the CLU RPC service. The MAYBE protocol
tries once then signals an exception to the caller, the EXACTLY ONCE protocol
makes repeated tries then signals hard error. Higher level software is assumed to
handle any required recovery in cases C and D.
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