Technical Report A

Number 12

Computer Laboratory

HASP “IBM 1130” multileaving
remote job entry protocol with
extensions as used on the University

of Cambridge IBM 370/165

M.R.A. Oakley, P. Hazel

September 1979

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1979 M.R.A. Oakley, P. Hazel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

This document brings together most of the information required to
design, write and operate a HASP Remote Job Entry Terminal program.
Most of the document describes facilities available using any host
computer supporting the HASP protocols. The remainder of the document
describes improvements to these facilities which have been made on the
University of Cambridge IBM 370/165 in order to enhance the reliability
of the system, to make it easier to run, and to provide for a wider
range of peripherals than the basic system.

M.R.A. Oakley
P. Hazel

September 1979

Contents

1. Introduction
2. General Overview

1 Signon

2 Data Transmission
.3 Stream Control

4 Signing Off

3. Transmission Blocks

locks Not Containing Data
locks Containing Data

1 beb

2 fes

.3 Data and Control Records
2.3.1 Record Control Byte
2 srcb

2,3.3 Character Strings

y

e
w W w
°
n

. Cyclic Redundancy Check
Some Special Control-only Blocks
Data Records for Plotters and Paper-tape Punches [Cambridge only]
4,1 Control Records for Paper-tape Punch,
4.2 Control Records for Plotter.
4,3 Control Records and Restarting
b, Design of Workstation Programs
Description of Processes
Line Driving Process
Block Packing Process
Block Unpacking Process
Operator Console Input Process
Card Reader Process
Paper-Tape Reader Process [Cambridge onlyl]
Operator Console Output Process
Line Printer Process
Card Punch Process
Plotter/Paper<tape Punch Stream Control Process [Cambridge only]
Plotter Process [Cambridge only]
Paper-tape Punch Process [Cambridge only]
plementation Notes
Buffer Numbers
Currently Known Problems
HASPGEN
Design Bugs Observed in Workstation Programs
Implementation Bugs Observed in Workstation Programs
General Remarks

o o o e @
N — 0D

°
°

— e °
VT WD =5 2w w0~ uU W

N - O

5. References, Acknowledgements, etc.

APPENDIX A -- Detailed Specification of Paper-tape Input Logic
APPENDIX B == Calculation of Block Check Characters

APPENDIX C -~ Detailed Specification of Plotter Data Records

APPENDIX D —- Details of HASP Operator Commands Available at Workstations

1.0 Introduction

This document describes the communications protocols used to connect
an "intelligent" Remote Job Entry (RJE) workstation terminal to a
mainframe host computer for the purpose of submitting jobs to the host's
job stream and receiving output produced by such a job. This output is
directed to one or more peripheral devices attached to the workstation.

The protocol described is the IBM/1130 workstation protocol, together
with a number of extensions available in general only on the Cambridge
370/165. The original program is supplied by IBM as part of the Houston
Automatic Spooling Priority (HASP) system which runs on many IBM 360 or
370 computers in conjunction with the OS/MVT or other IBM operating
systems. Note that other protocols (e.g. IBM/2780) exist within HASP
but are outside the scope of this document.

Other computers can be operated as workstations by emulating the
IBM/1130 interface. Machines currently connected in this way to the
Cambridge system include other IBM/370's, GEC 2050's and 4o070's,
INTERDATA-70's, PDP-11's, a CTL Modular One and a Honeywell (RXDS)

Sigma=6.

Information in this document is derived from several sources which are
listed in the reference section below. Some familiarity with
communications protocols, possibly from such a reference, is assumed

throughout this document.

2.0 General Overview

Communication between a workstation and the host mainframe is carried
out by transmitting blocks consisting of control and possibly data
information from one computer to the other. There is effectively a
shuttle in which a block is transmitted in one direction, and an
acknowledgement of successful or unsuccessful receipt of this block is
transmitted back to the original sender. A negative acknowledgement
causes the block to be retransmitted. A positive acknowledgement allows
the sender to proceed to the next block, and in addition may contain
data passing in the opposite direction. Thus the protocol can be used
on either a full duplex or a half duplex communication line,

Blocks are sequence-checked and checksummed to avoid loss of data. If
the sender does not receive any acknowledgement within a fixed time
(usually 3-10 seconds) the block must be retransmitted. This is called

a "timeout".

2.1 Sighon

Before transmission of any data can commence the workstation must
identify itself to the host computer. The workstation announces its
presence to the host by sending an initialisation block. When a
positive acknowledgement is received, a signon block identifying the
workstation is sent and when this gets a positive acknowledgement,

signon is complete.

2.2 Data Transmission

Once a workstation has signed on it can transmit operator console and
reader input, and must be prepared to receive output. Before sending
input from a reader however, it must request permission from HASP by
sending the appropriate control record and waiting for the reply. This
does not apply to operator console input which may be transmitted at any
time. Once a permission-to-send control record has been received for
this device, the reader concerned will be "ACTIVE" until an end-of=file
(null) record has been sent, at which point it reverts to its original
"INACTIVE" state. Permission-to-send must be requested again before
transmitting further records. An end-of-file is normally sent at the

end of each job.

Similarly, when the host wishes to send printer, punch or plotter
output from a job to the workstation, it will send a control record
asking permission to start sending to the device, will await a
permission-to-send in reply before starting to send the output, and will
eventually terminate this output with an end-of-file. Again, this does
not apply to operator console output which may appear at any time and is
never terminated by end-of-file.

Physical transmission blocks may contain records from more than one
device and control records interleaved. Construction of such a block

should be terminated however when a control record or operator console
input record is encountered, to ensure this is transmitted and acted

upon as soon as possible,

At present, blocks sent by the host to workstations contain records
for one device only to facilitate stream control by the workstation.
Most existing workstation programs utilise this fact, which may be a
dangerous thing to do.

2.3 BStream Control

During transmission, data streams may be operating for several
different devices at a time., Workstation programs typically do not have
much available bufferage for data directed at each device and may find
it necessary to suspend transmission of data for one or more devices for
short periods until backlogs have been cleared. To facilitate this, a
pair of bytes in the header of each block are designated as function

control sequence (fcs) bytes.

One bit in this sequence is allocated to each device. The receiver of
the stream may set this bit to zero to suspend transmission of data for

or from this device, and set it on again later to allow continuation.
One bit in the fcs (the WAIT-A-BIT bit) is used similarly to suspend
transmission for all devices in cases of, for example, general buffer

shortages.

Note that there are two logical sequences - that sent by the host to
the workstation, and that sent by the workstation to the host. After
receiving a block with WAIT-A-BIT set, only blocks containing no data
records may be transmitted until a block without WAIT-A-BIT is received.
Normal transmission may continue in the other direction.

2.4 Signing Off

There is no direct equivalent to the signing-on sequence. When a
workstation wishes to terminate a connection to the host, it may either
transmit a single record from the principal reader containing just
' /#SIGNOFF' and await the completion of all current output documents
before breaking the connection, or it may simply just stop transmitting,
in which case the host will timeout the workstation and sign it off
within a minute or so. [The workstation can adopt a similar attitude to
a long host timeout, by assuming the connection broken and attempting to

sign on again.]

[Cambridge only:] An alternative to the /#¥SIGNOFF card from the reader

is the operator console $SIGNOFF command. This has the advantage that
it is operative at all times; the /*SIGNOFF card will not be read if the

reader concerned is drained or otherwise inoperative.

As a result, an attempt to reconnect before the previous connection
has timed out may not succeed on a dialled line as this will appear
engaged (busy) with the workstation still active.

3., Transmission Blocks

Here follows a list of all the possible types of block which may be
transmitted, with comments on their use. Blocks consist of a sequence
of control characters intermixed with the actual data characters. The

values of the principal control characters (in hex) are

SOH 01 STX 02 DLE 10
ETB 26 ENQ 2D SYN 32
NAK 3D PAD FF

All blocks start with two or more SYN characters and end with a PAD
character (omitted below). In practice four or five SYN characters are
recommended to give the host time to turn the transmission line round
and start receiving. Blocks containing data are of two types - e
transparent and non-transparent. Transparent blocks begin with DLE STX
and subsequent control characters must be preceded by DLE to be
recognised. A data DLE is then transmitted as two successive DLE
characters. Non-transparent blocks begin with SOH STX, and control
characters are recognised anywhere. All data is transmitted in EBCDIC
code. Redundant SYN characters (or, in the case of transparent blocks,
DLE SYN pairs) may occur anywhere in the block, and should be ignored.
They are often inserted by the communications multiplexor to fill in
time. These characters can cause the number of bytes in a block to be
greater than normal, and this should be allowed for by any workstation

program.

3.1 Blocks Not Containing Data

a) Initialization Block

o sy e b o e e v e

This block is the first block sent by the workstation when it wishes to
sign on to the central system. The only valid response is an ACKO

block.

b) ACKO Block

s i e e e T A S e D

This is a general positive acknowledgement, sent whenever there is no
data block to send, or when the receiver has requested a temporary hold
up of data blocks ("wait-a-bit"). Sending ACKO implies that the
wait-a-bit state for the ACKO sender is reset.

c) NAK block

This is a negative acknowledgement. The last block sent that was not
itself a NAK should be re-transmitted.

3.2 Blocks Containing Data

Blocks containing data consist of the data bytes themselves and a
number of structured control bytes. These are as follows:

beb - block control byte. This is used to maintain a cyclic sequence
count of blocks so that sequence errors, missed or repeated blocks
can be easily detected.

cre - cyclic redundancy check (two bytes). This is used to checksum
each block transmitted so that transmission errors within a block
can be detected,

fes - function control sequence (two bytes). This is used to control
the flow of data to and from each device stream.

The most significant bit in each of these bytes is always set to one,
Any control byte with a zero in this bit is due to an error - the block
should be faulted (see 3.3 (c)).

Two formats are used for data blocks

i) non-transparent

{SOH |STX |beb }fecs |fes |data & control records| 00 !ETB |erc !crc |

ii) transparent

{DLE |STX jbecb |[fcs |fes |data & control records) 00 !DLE |ETB |ecrc jcrc |

The non-transparent form is used by HASP only for blocks which do not
contain data records. The current maximum length of data blocks is 400
bytes. This count includes all bytes from the bcb to the zero byte
indicating end of block, but without any necessary DLE characters for

purposes of transparency.

3.2.1 beb

The bits in the block control byte (bcb) are used as follows

1 OXXXCCCC
0 = 1 (must always be on)
XXX = control information
= 000 normal block ,
= 001 bypass sequence count validation
= 010 reset expected sequence count to CCCC
CCCC = modulo 16 block sequence count

The block sequence count starts at 0 at signon and is incremented
(modulo 16) by one for each non-retransmitted block containing a beb
thereafter. All stations must be prepared to receive the same block
twice (ignoring it the second time) to cope with the case of a garbled
acknowledgement.,

3.2.2 fes

The bits in the function control sequence halfword (fcs) are used to
control the flow of data streams from or to individual devices as
follows:

| OSRRABCD |OTRRWXYZ |

0 = 1 (must always be on)

S = 1 suspend ALL stream transmission (WAIT-A-BIT)
= 0 normal state

T = remote console stream (input and output)

R = reserved

A,B,C... = normal print or input streams

Z,Y,X... = normal punch or plotter streams

A bit on => continue transmission; a bit off => suspend transmission.

The assignhment of individual bits to device streams is by mutual
arrangement between the workstation staff and the host staff.

Note that there are two logical sequences - that sent by the host to the
workstation, and that sent by the workstation to the host. After

receiving a block with the WAIT-A-BIT bit set, only blocks containing no
data records may be transmitted until the WAIT-A-BIT bit is reset or an

ACKO is received.

3.2.3 Data and Control Records

Records containing data consist of the data bytes themselves and a
number of structured control bytes. These are as follows

reb - record control byte. Describes the type of record.

srcb- sub-record control byte. Provides additional information
particular to the individual record type.

scb - string control byte. Describes the internal structure of the data
in the record.

The most significant bit in each of these bytes is always set to one
(unless the whole byte is zero - see below). Any non-zero control byte

with a zero in this bit is due to an error - the block should be faulted
(see 3.3 (c)).

The format of data records is:

lreb !srcblscb ldata|seb |data}scb | ! 00 |

= e s o o g e

Control records begin with an recb in the same way, but the data format
thereafter depends on the control record type (see sections 3.2.4 and
3.3). A control record must be the last record in the block.

3.2.3.1 Record Control Byte

The bits in the record control byte (rcb)'are used as follows:

A zero rcb indicates logical end of transmission block.

0 1 all other valid rcb's
ITI stream identifier if TTTT ~= O (starts at 1)
III control information if TTTT = O

001 request to initiate stream transmission (prototype rcb in srcb)
010 permission to start stream transmission (prototype recb in srcb)
110 beb error indication

111 general control record

L1 S TN R I 1 I 11

TTTT record type identifier

0000 control record

0001 remote operator console output record
0010 remote operator console input record
0011 normal reader input record

0100 print record

0101 card punch record

1101 papertape punch record [Cambridge only]

1110 plotter record [Cambridge only]

L 1 TR N | IS [1}

Thus the commonly encountered rcb's are:

93 input record from reader 1

A3 input record from reader 2

92 remote operator console input record

91 remote operator console output record .
oL output record for printer 1

95 output record for punch 1

gD output record for papertape punch 1 [Cambridge only]

9E output record for plotter 1 [Cambridge only]

90 request to send (control record)

AO permission to send (control record)

3.2.3.2 srcb
The sub-record control byte (srcb) is used as follows::

a) For request-to~send and permission-to-send control records, the srcb
contains the rcb for the device for which permission is being requested
or granted.

b) For a general control record, the srcb can only have the following
value

C1 initial terminal signon record
No other general control records are currently implemented.

¢) Format of print record srcb:

jOMCCCCCC
0 1 normal print record
M 0 always

Ccccceee carriage control information

1000NN space (linefeed) immediately NN spaces
TINNNN skip immediately to channel NNNN
(channel 1 is top of page - channel 12 is bottom
of page and used for printing job trailers.)
OOOONN space NN lines after print (NN=00 for overprinting)
OINNNN skip to channel NNNN after print.

L1 B T I I I T

d) Format of card punch and input record srcb:

{ OMMBRRRR |
0 = 1 normal record
MM = 0 always
B = 0 record is translated
= 1 record is column binary and not translated [Cambridge only]
RRRR = 0 reserved
e) Format of papertape punch record srcb: [Cambridge only]
| OMMBRRCF |
0 = 1 normal punch record
MM = 0 always
B = 0 Data part of the record requires code translation
and may require termination.
= 1 Data part of the record is binary. It requires no
translation or termination.
RR = 0 reserved
C = 0 The record is a data record.
= 1 The record is a control record and restart marker.
F = 0 Record is to be terminated with newline if not binary.
= 1 Record is not to be terminated
f) Format of plotter record srcb: [Cambridge onlyl
! OMMBRRCF |
0 = 1 normal plotter record
MM = 0 always
B = 0 Data part of record requires translation (not used at present).
= 1 Data part of the record is binary. It does not require
translation.
RR = 0 reserved
C = 0 The record is a data record.
= 1 The record is a control record and restart marker.
F = 0 Terminate current picture before processing record.

The new picture has its origin beyond the highest

point used in the current picture.
Continue the existing picture.

3.2.3.3 Character Strings

Data records are compressed by detecting strings of duplicate
characters, and splitting the record into a sequence of string control
bytes (scb) and strings. The scb is used to indicate whether the string
is a string of blanks, another duplicated character string, or a string
of distinet characters. The bits in the scb are defined as follows

A zero scb indicates end of record.
= 1 all other valid scb's
K = 0 duplicate character string
L = 0 duplicate character is blank
= 1 duplicate character is non-blank and follows scb

JJJJJ = duplication count
K = 1 non-duplicate character string follows scb
LJJJJJ = length of character string following scb

Input records must always contain at least one data character (i.e. a
blank if the record is empty). A null record (a record with the first
scb zero) indicates end of file on input or output. When reconstructed,
input records must not be longer than 80 bytes.

3.2.4 Cyclic Redundancy Check

The two cyclic reduncancy check (crec) bytes at the end of each
transmission block containing data act as a checksum for the block. An
algorithm for computing the 16-bit crc word is discussed in appendix B.
For non-transparent blocks, all bytes between STX and ETB inclusive (but
excluding any SYN's) are included in the checksum; for transparent
blocks all bytes after STX up to and including ETB are included, with
the exception of non-data DLE's (i.e. the first DLE's in DLE/something
pairs) and SYN's immediately following a DLE. The checksum is
transmitted with the least significant byte first.

Note that values corresponding to DLE and SYN may occur in crc bytes,
and that these are not escaped even in a transparent block. This
implies that one may not pad with SYN characters when a crc is due to be
sent, and that such pad characters should not be ignored when a crc is

due to be received.

- 10 =

3.3 Some Special Control-only Blocks

a) Signon block

'SOH !STX | 80 |} 8F | CF | FO | C1 !signon card| 00 |ETB lere jerc |

beb fes fes reb srcb

This block is sent by a workstation after it has received an ACKO reply
to an initial SOH ENQ. Either another ACKO or a data block may be
received as positive replies to this block.

The format of the "signon card" is as follows; where nn denotes the
remote number assigned together with the workstation identifier by the
host computer administration. Data compression scb's are not used and
80 bytes of data must be sent.

COL
1 16 25
/#SIGNON REMOTEnn identifier

b) Wait-a-bit or fcs change block (transparent form shown)

'DLE !STX !beb |fes |fes | 00 |DLE {ETB jcre jcrc |

This block is sent

i) to set the wait-a-bit bit in the fcs when the sender has no

buffers left to receive data blocks, or
ii) to change bits in the fcs when the sender has no data

buffers to send.

One can of course do either of these activities as part of a normal data
block if there is actual data to send.

- 11 =

¢) Beb error indicator block (transparent form shown)

IDLE |STX | An {fcs {fes | EO | 8m | 00 | 00 {DLE {ETB jcrc jcrc |

beb reb srcb scb reb

This block is sent when an error in the beb of a received block is
detected. The becb setting An says "reset sequence number to n", while
the control record E08m indicates a becb error where m was the expected
sequence number.

The probable outcome of this is that the host will start ignoring the
workstation, which will eventually time out. After signing on again,
printer streams will restart backspaced a couple of pages, other output
streams will be restarted from the beginning, and any jobs on readers
will have been cancelled and must be resubmitted.

3.4 Data Records for Plotters and Paper-tape Punches [Cambridge only]

Data records for special devices can be either normal records (C=0 in
srcb) or additional control records (C=z1 in srcb). The format of these
is:

3.4.1 Control Records for Paper-tape Punch

0 Offset of start of data.
1 Flags XXXXXXX .
X'80" Restart request
Xr4o! End of phase
X'20! End of document
Xr1o0! Start of document
X108 Record to be followed by runout
Xtoy Runout, if present, is short
xto2!' Data has special status - normally data

to be ignored by simple stations.
Copy of SRCB bits B,C and F.
5 Restart Marker number
7 Job number in binary
Width mask X'FF'=8, X'7F'=7 and X'1F'=5 track
Code 0=ASCII, U4=zFlexowriter
O-end Reserved fields and data (may be null)

2
3
6
8
9
1

The total length of a control record will not exceed the total length
of the largest data record.

- 12 -

3.4.2 Control Records for Plotter

0 Offset of start of data.
1 Flags XXXXXXX o
X'80! Restart request
Xruo! End of phase.
X120 End of document.
X110t Start of document.
X'o8" Any picture termination to be followed by gap.
X'oyt Gap, if present, to be short.
X2 Data has special status - normally data
to be ignored by simple stations.
2 Copy of SRCB bits B,C and F.
3=5 Restart marker number
67 Job number in binary.
8-10 Picture width in increments.

11-13 Picture height (length) in increments.
14~end Reserved fields and data (may be null)

3.4.3 Control Records and Restarting

The continuous period during which a job is active on a particular
device is called a phase. Within a single phase, a number of distinct
documents may be transferred, possibly corresponding to the use of
different DD statements in the parent job. Documents within a phase
will normally have similar operator setup requirements (e.g. paper tape
width). A phase is terminated by either an end-of-phase control marker
or a change of job number. ’

The first record of the phase is a control record and is numbered 1.
For each subsequent record the number is incremented by 1, and inserted
in control records as they occur. The numbers of the data records
between control records should be maintained. If the transmission is
restarted or interrupted then some or all of the records will be
retransmitted, starting with a control record., Within a phase control
records of number lower than the highest already processed should
therefore be discarded, together with any following data records. The
receipt of control records of sequence number exceeding the number of
the current record by more than 1 represents an error. On receipt of a
control record with number equal to that of the highest already
processed, the appropriate number of data records should be counted off

and then output resumed.

Notwithstanding the above, if a control record is marked as a restart
request, then its restart marker should be taken as current and output
commenced immediately.

The structure of data records for a plotter is described in Appendix C.

- 13 -

4,0 Desigh of Workstation Programs

Workstation programs are often based on the original IBM/1130 program,
and consist of a number of semi-independent processes scheduled by a
simple round-robin coordinator. In such a program the following
processes may exist:

4.1.1 Line Driving Process

Transmits and receives blocks from the datalink, according to the
protocols described in section 3, maintaining the block sequence count
and setting the checksum and function control bytes for each block.
Blocks for transmission are taken from a first-in first-out chain
constructed by the block-building process (4.1.2). Received blocks are
placed on a chain ready for the unpacking process.

Recovers from transmission errors in both directions

a) If a read timeout occurs, transmits a negative acknowledgment (NAK).
Many successive timeouts usually mean that the host computer itself

has stopped. In this case the workstation may have to sign on again,
and reread from the beginning any uncompleted input jobs.

b) NAK received - retransmit the most recent block that was not NAK.

¢) checksum error, incomplete block read, overlength block read,
general garbage - transmit NAK.

In the event of the host sending WAIT-A-BIT, this process should
immediately stop sending data blocks, and send only fcs or WAIT-A-BIT
change blocks or ACKO. If this process runs out of receive buffers, it
should send WAIT-A-BIT to the host, but nevertheless be prepared to
accept null data blocks with fcs or WAIT-A-BIT changes. Any other data
in these circumstances should be rejected with NAK.

4,1.2 Block Packing Process

Collects buffers chained by the device-input processes and packs these
into 400-byte blocks for transmission to the host, in the format
described in section 3.2. A block is terminated and put on the chain
when

a) it is full (the next record will not fit), or

b) an operator console input record has just been inserted, or
¢) an end-of-file has just been inserted, or

d) a control record has just been inserted.

Completed blocks are queued for the line driving process. The
received fcs bits are examined by this process, and records are not
accepted from a device with fes bit zero. The number of blocks queued
for transmission is usually limited by this process to prevent buffer
shortages and also prevent excessive amounts of data from being queued
ahead, which can make it difficult to decide which jobs to reread after

a restart.

- 10 -

Note that blocks already queued for transmission can hardly be
unpicked of records for such a device - the host will allow enough
overrun in such cases for this not to be a serious problenm.

'N.1.3 Block Unpacking Process

There is an unpacking process for each output device, and one for
control records (with most of the code usually as a subroutine common to
all such processes). This enables the system to cope with interleaved
data records in one block = if one process is halted for lack of output
buffers the rest can proceed.

Each process scans blocks in the received chain for records with the
correct address (rcb). As these are found they are unpacked into output
buffers and queued for the relevant device process. The control record
process interprets control records and sets various flag bits to be
interpreted by other processes. When each process has finished with a
block, it sets a marker in the block to indicate this, and when all the
markers are set, unchains the block and returns it to the free chain,

If a process must halt waiting for output buffers, it clears the
relevant bit in the outgoing fcs before halting in order to suspend
transmission of further data records for this device. When it
subsequently gets buffers again, it turns the bit back on. The outgoing
fcs is inserted into transmission blocks by the line driving process.

4,1.4 Operator Consocle Input Process

Reads input lines from the operator console (teleprinter); and, if the
line starts with '$' or ':', queues the buffer for transmission to HASP.
If not, it interprets the command as a workstation local command and
acts on it (used for controlling papertape readers etc.). This process
must be interlocked with the operator console output process as far as
control of the teleprinter is concerned.

A brief description of current HASP operator commands appears as
appendix D,

4,1,5 Card Reader Process

Watches its card reader until it becomes ready; queues a control
record containing request-to-send; waits on a flag until it is set by
the control record unpacking process to signify permission-to-send has
been received for the device; reads cards and queues the data buffers
for packing (handling any device errors appropriately); detects
end-of-file on the device and indicates this to the packing process.
(This may be effected by an EOF button on some card readers, or by the
reader running out of cards with the last card read /*anything or //<78
blanks> on others.)

- 15 =

4,1.6 Paper Tape Reader Process [Cambridge only]

Basically the same as the card reader process, with some extra logic
for handling warning sequences, binary tapes, etc (see appendix A). In
order to permit arbitrary binary data to be input, the HASP operator
command $T<reader name>,D (e.g. $TRM3.RD2,D) is provided. This causes
all records following a /¥DATA card until end-of-file to be treated as
data, i.e. cards starting with /* and // are not recognized. This
facility is clearly dangerous for real card readers, hence the
requirement to authorise it each time by operator command. In the
absence of authorization, /#DATA records are ignored. In the case of
paper tape readers, however, jobs cannot be stacked up, and there is no
danger of one job swallowing another as long as an end-of-file is sent
at the end of each job. When a remote workstation is generated in HASP,
it is possible to specify that certain of its logical readers are to be
permanently authorized for binary data -- these should correspond to
paper tape readers. The paper tape reader process must insert /¥DATA
when it switches to binary input.

4,1.7 Operator Console Qutput Process

- Types lines of output from the queue set up by the console output

unpacking process and by any other process that wants to output an
operator message. The use of the teleprinter is interlocked with the

console input process.

4}1.8 Line Printer Process

Prints lines of output from the queue set up by the line-printer
record unpacking process; provides suitable operator error messages.

4,1.9 Card Punch Process

' Punches cards from the queue set up by the card punch record unpacking
process and provides operator error messages and job identification.

4,1,10 Plotter/Paper-tape Punch Stream Control Process [Cambridge only]

This process dequeues records for the special output devices,
recognizes and records restart markers, and counts records between

restart markers. If it detects a restart request, it skips records in

an immediately retransmitted output stream and continues from the first
unrepeated record. Records containing data are queued for the relevant

special device process.

4,1.11 Plotter Process [Cambridge only]

Dequeues records from the queue set up the the stream control
process. Converts these into appropriate plotter movement and control

commands and uses these to drive the plotter. Provides suitable
operator error messages.

- 16 =

4.1.12 Paper-tape punch process [Cambridge only]

Dequeues records from the queue set up by the stream conhtrol process,
and punches the data from these on the papertape punch, performing any
necessary code conversion and end of record processing (e.g. adding
newline characters). Provides suitable operator error messages.

4,2 Implementation Notes

4,2.1 Buffer Numbers

Each device is observed to work fairly well with two buffers (double
puffering). Slow devices can manage with one with an occasional delay
between records. Fast devices such as lineprinters may run better with
three buffers in a system with many devices. The operator console
requires more buffers - five are often provided - otherwise error

messages from local devices can be delayed.

The number of transmission buffers of U400 bytes each depends on the
number of devices. One is generally needed for each output device, plus
one being filled by the packing process, plus one being transmitted or
receiving data, plus one queued for transmission. More are advisable if
space permits, although in fact most workstation programs will run with
fewer. The effect in such cases is for devices to run alternately in

'bursts' of a few records at a time at periods when several devices are
active.
If the process which receives data from the line does not remove

extraneous SYN or DLE-SYN characters, it must be prepared to receive
more than 400 characters in a block. It can either cope correctly, or

send NAK when U400 is reached to force a (hopefully shorter)
retransmission.

4,2,2 Currently Known Problems

a) There is a bug in the standard version of HASP which causes it not to
deal with a signon correctly if the workstation is already signed on.

In this case the host should reset all remote devices to INACTIVE, and
cancel any partially read jobs; in practice neither of these things

Thus if a workstation re-starts itself without previously
due to a crash in the workstation program) it
p with regard to the state of its peripherals,

occurs,
having signed off (e.g.
may find itself out of ste

and the following problems can arise

i) If a job was being read, HASP will have the reader ACTIVE, and

when a request to send (for another job) is received in this
state, it simply starts ignoring the workstation! The remedy is
to re-start a few times until the reader becomes INACTIVE.

- 17 =

ii) If a job was printing/punching, HASP will continue to send the
output without first asking permission. The workstation program
should be capable of dealing with this state. Many existing
workstation programs restart with their output processes
stopped, waiting for a request to send, which aggravates this
problem.

b) Error recovery in HASP is minimal, and if it receives something it
does not understand its response is either

i) to start ignoring the workstation altogether, or
ii) to send WAIT-A-BIT for ever more.

For example, sending a request to send when permission has already been
granted causes (i), while sending data before asking permission causes

(ii).

4,2,3 HASPGEN

For a workstation to be able to connect to a host computer, the
workstation must be configured into the host system as part of a HASPGEN
process performed by staff at the host site. This defines the
workstation together with which peripherals it may use and certain of
their characteristics (e.g. printer width etc.). Certain options, such
as plotters and papertape punches, are unlikely to be found other than
on the Cambridge 370/165.

4,2,4 Design Bugs Observed in Workstation Programs

a) Failure to cope with interleaved output blocks (noted above).

b) Failure to respond immediately to an fcs bit being reset (there
are usually buffers already on the output queue). This is
normally not a serious problem as HASP can cope with one or two

extra blocks.

e) Failure to cope with receiving data before a request to send
(noted above).

d) Assumption that any response other than NAK (including garbage!)
indicates block correctly received. (However, this is probably a
fairly safe assumption). ‘

4,2,5 Implementation Bugs Observed in Workstation Programs

a) Thcorrect action when NAK received. It should retransmit the
previous block that was not itself a NAK.

b) Failing to transmit NAK on a read timeout (usually retransmits
the previous block instead).

- 18 -

4,2.6 General Remarks

The following features have been found convenient in the operation and
debugging of some of the local workstations

i)

ii)

iii)

iv)

v)

vi)

vii)

5.0

1)

2)

3)

The coordinator causes the machine's console display lights to
count continuously, thus indicating at a glance that the system
is running.

Logging of line errors on the operator's console is useful for
debugging but a nuisance in general operation -- it could be
switched off by a handkey. The errors that need logging are NAK
in, NAK out, crc check, ENQ in (should never occur), beb check,
timeout, etc. Counts of NAK's in and out can also be displayed
on {another set of) console lights, so that even if the hardcopy
logging is off, a great burst of errors is noticeable.

The message ##WAIT typed after receiving a number of successive
wait-a-bit fes's (currently 3), followed by #¥CONT when the
walt-a-bit clears enables a permanent wait state to be easily
recognized. (These do occur at times -- see 4.2.2b.)

#TIMEOUT can be typed for each timeout -- after a certain number
in a row the system restarts itself.

If it is possible to switch the operator's console output to the
printer this is very useful for listing all the jobs belonging to
a workstation, which can take a long time on a teleprinter.

A testing version of the system in which all bytes sent and
received are stored in a large circular buffer is invaluable for

tracing obscure bugs.

A facility for running out large reels of paper tape which stop
in the middle (because of fault characters, for example) makes

life easier.

References, Acknowledgements, etc.

General Information - Binary Synchronous Communications.
IBM Form Number GA27-3004

Houston Automatic Spooling Priority System (HASP) - II manual.
IBM Form number 360D-05.1.014 is the Version 2 manual.

Many parts of this document are based on internal Computing Service
documents produced by Dr P, Hazel, Dr P.F. Linington, M.J.T. Guy and
possibly others.

- 19 -

APPENDIX A -— Detailed Specification of Paper-—tape Input Logic

This section applies to the Cambridge 370/165 only.

This logic implements the Cambridge paper tape input fa0111t1eS° for a user's
view, see the Cambridge IBM370 User's Reference Manual.

Variables:

S state switch for input program

B binary switch) logical variables,

P fault character don't fail switch (+++P)) taking only values .
E translated binary switch (+++E)) Oor 1 (i.e. true

ST stream mode switch (+++S)) or false)

T translation switched off switch)

D 'data only' mode (/%#DATA))

States are:

ignoring rest of line (after warning sequence or @6L)
after carriage return

after linefeed, formfeed, or vt

after buffer overflow

normal

after @

after '+' at start line

after '++!' at start line

after '+++' at start line

after @X

WO~V WM -0

Translated characters that are specially treated:

unassigned (fault) characters (includes wrong parity chars)
linefeed, formfeed, vertical tab (treated as synonymous)
significant shifts (flexowriter only)

backspace (bs)

carriage return (cr)

tab1 (ascii tab, giving at least one space)

tab2 (flexowriter tab, giving at least two spaces)

nul (runout and nhon significant shifts)

@

erase (rubout)

All others are 'normal' characters, as are all characters read when
translation is switched off (T=1).

- 20 -

Actions:

At the start of a job, S=2 and BzP=E=ST=T=D=0. When each character is
read, it is translated if T=0, and the action taken is determined by the
current state and the character, according to the following table

state\char|normal|fault |1f ete|shift | bs | er | tabl | tab2 | nul | @ |erase
0 0] 0 L0 SO 0 Co 0 0 0 0 0
1 N1 ER1 Lo S0 B1 Co T1 T2 0 A1 E1
2 N1 ER1 L2 S0 B1 0 T1 T2 0 A1 E1
3 N3 ER1 LO S0 B1 Co T1 T2 0 A1 E1
y Ny ER1 L2 S0 B1 clu T1 T2 0 A1 E1
5 N5 ER1 L5 S0 B1 Co E1 E1 0 A5 E1
6 N6 ER1 L2 S0 B1 Clu T1 T2 0 A1 E1
7 N7 ER1 L2 S0 B1 ch T1 T2 0 A1 E1
8 N8 ER2 ER2 S0 ER2 ER2 ER2 ER2 0 ER2 0
9 N9 ER3 ER3 S0 ER3 ER3 ER3 ER3 0 ER3 O

Details of actions:

'RTI' means 'return from interrupt routine to await next character!

0 RTI

N1 if char='+' then S:=6 else S:=4: N4

N3 S:=ls NUY

Ny store char in buffer: if buffer full then (transmit it; S:=3); RTI

N5 S:=l: if ~(known escape combination) then ER3;

if @C then (backspace one character in buffer; RTI)

if @L then (S:=0: if there is one, throw away current buffer; RTI)
if @X then (S:=9; RTI)

if @N then do nothing

else char:=escape replacement; Ny

N6 if char='+' then S:=7 else S:=4; N4
N7 if char='+' then S:=8 else S:=U; N4
N8 remove '+++' from current buffer:; if buffer empty then throw away else

(if ST then pad it with X'00' else pad it with X'40': transmit buffer);
if char=z'+' then treat as "+++Z'

if char~=(letter or digit) then (alter '+' to char, S:=0; RTI);
if warning sequence unknown then ER2;

switch on ws:-

+++B B:z1; D: +=0; RTI

S) E:=1: D hen as +++T

+++F T:=1: B:=1; Di=1; then as +++T

+++P P:=1; 3:=0; RTI

RS ST:=1; D:=1; S:=0; RTI

ot T S:=2: await start of next tape

+++2 terminate job

Pon

13 S
1: ¢

- 21 =

N9 if char~=zhexdigit then ER3; if first hexdigit then save in buffer,

else (compute new char value: N3)

ER1 if P then (char:=X'FF'; N3) else 'FAULT CHAR': kill job

ER2 'BAD WS's kill job

ER3 'BAD ESCAPE's kill job

LO S:=2; if B then T:=1; RTI

L2 S:=2; L2A

L2A if ST then (char:=X'15'; N4) else (fill out line with blanks; transmit):
RTI

LS S:=2; RTI

SO flip translation tables; RTI

B1 if ST then (char:=X'16'; N3) else ER1

Cco S:=1; RTI

cy S:=1; L2A

T1 if ST then (char:=X'05'; N3) else (S:=U: insert relevant number
of spaces; if buffer overflow then (transmit buffer; get new one)); RTI

T2 as T1, but at least two spaces |

Ai if (ST or E) then N3 else S:=5; RTI

A5 char:='@': N3

E1 if ST then (char:=X'07': N3) else RTI

- 22 -

APPENDIX B == Calculation of Block Check Characters

This is an extract from a note by M.J.T. Guy entitled "Rapid calculation
of block check characters",

The block check character for a message is calculated as the remainder
on dividing the message (considered as a polynomial with coefficients
modulo 2) by the constant polynomial

16 15 2
X + X + X + 1.

This division is conventionally performed as for integer division (but
in the opposite direction!), proceeding along the bits, and subtracting
the divisor whenever a one is encountered in the dividend, i.e. as an
alternating sequence of right shifts and conditional subtracts (where of
course subtract equals add equals exclusive-or, since there are no
carries). However, we can proceed equally well by shifting n bits at a
time and then cancelling out all the bits which have fallen off the end.
Since cancelling a bit only affects more significant bits, and since the
decision to subtract or not at each step depends on one of the overflow
bits, we can compute the total amount to be added into the block check
character as a function of the n-bit overflow, by simulating the
bit-by-bit process. If this function is precalculated and stored, we
can update the block check character very rapidly; for example, for n=8§,
with a 256 entry table, we use the sequence

add new -character into bcec

shift bee right eight places: let x=8 bit overflow

add f(x) into bce
where "add" always denotes exclusive-or!
If a 256 entry table is too bulky, a 16 entry table can be used, based
on n=U4, Two shift/add operations are then required per character. We
illustrate the calculation of the tables using n=l4. Since there are no

carries, the various bits do not interact, and we have the relationship

flx+y) = f(x) + £(y) ('+' denotes exclusive-or)

- 23 -

We also have the relationship obtained by interchanging a right shift

and an add
f(x/2) f(x)/2 if LS bit of f(x)=0

f(x)/2 + 'A001! if LS bit of f(x)=1

111

(constants are in hexadecimal). The second relation can be used to
compute successively

£f(8) = 'A001!
£f(4) = '"FOO1!
£(2) = 'D8OT!
£(1) = 'ccor!

and we can complete the table by addition, using the first relation:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 CCO1 D801 1400 FOO1 3C00 2800 E401 A001 6CO0 7800 B401 5000 9CO1 8801 4400

where the first row is 'x' and the second is f(x).

- 24 -

APPENDIX C -- Detailed Specification of Plotter Data Records

This section applies to the Cambridge 370/165 only.

The data part of plotter records is a sequence of control characters and
associated data. The data length is in each case implied by the control
character. Each control character is divided into two four bit digits XY.

IfF X=Y=0 The character is a pad and should be ignored.
If X < 10 and Y < 10 The character represents a position.
If X< 10 and Y > ¢ The character is undefined and should be ignored.
If X>9 The character is to be interpreted as
follows
X =10 Change state.
Y =0 Move
Y =1 Draw

The state is reset to move at the start of any
control record.

X =1 Set pen colour to Y
X > 11 Extended operation, followed by X'XY'-X'CO' bytes of
data.

Positioning information is interpreted in conjunction with a current
position and a pair of stored current line magnitudes, which are all
reset to zero (lower left hand corner) at the start of any control
record. Each piece of positioning information is relative to the
current position. The X and Y descriptors have similar form, each with
bits RNNS. 1If R is nonzero, then the magnitude of the relative
coordinate (line length) is given by the stored value. If R and NN are
both zero then the component is zero. If R is zero but NN is not zero
then a maghitude of length NN bytes follows the control character, X
before Y. This magnitude then becomes the appropriate stored value. In
all cases S gives the sign of the coordinate. An implementation should
suppress any occurances of pen raised followed by pen lower without any
intervening move, and must window all positioning requests to the
current picture size,

- 25 -

APPENDIX D ~- Details of HASP Operator Commands Available at Workstations

Commands that display information

$DA
$DF
$DF,r

$DJn
$DJIn-m

display first 30 or so active jobs in host queue.

[Standard HASP displays entire queue.]

display number of jobs with each forms type queued at the remote
issuing the command.

display number of jobs with each forms type queued at the specified
remote.

display status of job n.

display status of jobs with numbers in range n to m inclusive.

$DIn1[-n2]1[,n3[-nl1[,...]1] display status of list of job numbers or job ranges

$D'USER
$DQ,r

$DQ,r , PRT

$DN
$DN,r

$DN,r,P
$DLNEn

$DRMr
$DMr,'m

RT

'

(up to a maximum of 5 arguments).

display all jobs belonging to user. [Cambridge only]

display the number of jobs waiting on the queue for remote station r.
display the number of jobs waiting to print at remote r.

displays first 30 or so jobs in the host job queue.

[Standard HASP displays entire queue.]

displays first 30 or so jobs with any connection to remote r.
[Standard HASP displays entire queue.]

display by user identifier all jobs waiting to print at remote r.
display status of RJE line n and devices on the associated remote

if any.

display status of remote station r and all its peripherals.

display the message 'm' on the operators console at remote station r,
$DMO sends the message to the central operators.

Alternatives to PRT for printer in above commands are:

PUN
PLT
PTP
HOLD
XEQn
XEQ
$$- $ -

for
for
for
for
for
for

$$

card punch

plotter [Cambridge only]
papertape punch [Cambridge only]
Jjobs in 'HOLD' state

jobs awaiting execution in class n
all jobs awaiting execution

Commands that alter the status of jobs

$Cdn

$HJIn

$AJn
$PJn

cancel job n - this will not take immediate effect if the job is
actually executing. k

'hold' job n - do not start any new activity for job n, i.e. keep it
on the relevant HASP queue. Jobs should not be 'held! for long
periods without informing the 370 operators of the reason.

'allow! job n - remove it from held status.

'drain' job (cancel after current activity ends).

In the above four commands, the 'n' may be replaced by a general job list as in
the $DJ command.

- 26 =

$Rdev,JIn,RMr routes job 'n' output for the specified device to the specified
remote. The device may be PRT, PUN[, PTP, PLT Cambridge only], or
ALL meaning all device streams. [When routing to the Cambridge
central printer RM255 should be used instead of RMO.]

$TJIn,SAVE puts job n into 'SAVE' state [Cambridge only]

$TJn ,FREE releases job n from 'SAVE' state [Cambridge only]

The above commands only work on jobs which 'belong' to the remote station
which issues them. The owner of a job is determined by the current printer
routing of the job. The central operators have control over all jobs in the

host machine,

Commands that control the peripherals

Remote peripheral identifiers are of the form:-

RMr .RDn for readers;

RMr.PRn for printers;

RMr.PUn for card punches;

RMr .PPn for papertape punches [Cambridge onlyl:
RMr.PLn for plotters, [Cambridge only]

where 'r' is the remote workstation number, and 'n' is the logical number of
the device starting from 1. In what follows, 'p' stands for such a remote
peripheral identifier.

a. All devices

$Pp 'drain' peripheral p, that is, do not start anymore activity after
the current job has finished with the peripheral.

$Sp start peripheral p (the opposite of $P) - allow further jobs to use
the peripheral.

$Ep restart the current activity on peripheral p. In the case of a

printer the job is returned to the print queue hence another job may
be printed before the restarted one is repeated.

$Cp cancel the job currently using peripheral p. The job is actually
cancelled when the next record is read or printed.
$Np repeat the current activity on output peripheral p by placing the

output back on the queue when activity completes.

$Zp stop the current activity and do not start anything else. $Sp may be

used to continue from the point of suspension.

$$- $ 3%
b, Printers Only

$Ip interrupt the current activity - the rest of the print output for the

current job is returned to the print queue.

$Fp,n forward space the printer by n pages, or to the end of the job if
that is sooner. If n=DS the printer is forward spaced to the next
dataset in the current job if any.

$Bp,n backspace the printer with the same values of n as above.

Note that it is necessary to issue $P before $I or $E if you do not want the
printer to start printing again after interrupting the current job.

- 27 -

¢. Transfer of state

$TPoC=1

$Tp,DATA

$Tp,F=nnnn

$Tp,S=Y

S
H
N

where 'p' is a printer: causes all carriage control characters to be
replaced by a single newline for the duration of this job only.

where 'p' is a reader; causes all subsequent records in this job to be
treated as data (including those beginning /¥ and //).

[Cambridge only]

set forms type for device 'p' to ‘nnnn'.

[The following forms abbreviations are also available at Cambridge:

R reset S standard A auto

N narrow plot W wide plot 0 other (special) plot

Q wide other 5 5-trk ptp 7 T7=trk ptp

8 8-trk ptpl

set full headers and trailers for a printer. [Cambridge onlyl.
set full headers and single line trailers. [Cambridge only]
set headers only, no trailers. [Cambridge only]
set no headers or trailers. [Cambridge only]

Miscellaneocus commands

$SIGNOFF

$$- $ -$3

drains all active devices and terminates the datalink connection.
[Cambridge only]

st

