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Formal Verification of Basic Memory Devices

John Herbert
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG

Abstract: Formal methods have been used recently to verify high-
level functional specifications of digital systems. Such formal proofs
have used simple models of circuit components. In this article we de-
scribe complementary work which uses a more detailed model of com-
ponents and demonstrates how hardware can be specified and verified
at this level.

In this model all circuits can be described as structures of gates, each
gate having an independent propagation delay. The behaviour of digi-
tal signals in real time is captured closely. The function and timing of
asynchronous and synchronous memory elements implemented using
gates is derived. Formal proofs of correctness show that, subject to
certain constraints on gate delays and signal timing parameters, these

devices act as memory elements and exhibit certain timing properties.

All the proofs have been mechanically generated using Gordon’s HOL
system.
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‘1 Introduction

Conventional design tools deal mostly with behaviour modelled at the register
transfer level. However it is also necessary to check the timing of the implemen-
tation to determine the maximum speed and find timing bugs and critical paths.
Timing analysis programs are used for this purpose in a conventional CAD system.

Formal methods are usually applied to the register transfer behavioural level and
the more detailed timing of a design is ignored. However timing is an important
part of a design, especially in integrated circuits where speed is often a major
reason for integration. We have developed formal techniques for reasoning about
circuit behaviour at a detailed timing level. In this article we demonstrate the basic
techniques and use them to verify the function and timing of simple asynchronous
and synchronous memory devices. (Another article [Herbert88b] deals with the
problem of verifying efficiently the function and timing of complete designs.)

All specifications and proofs of correctness are mechanically generated using the
HOL system [Gordon85a] [Gordon85b]. The HOL language and system are not
described in this article; full descriptions are available in the references just cited.

2 Primitive Device Models

Large scale synchronous digital designs have been successfully specified and verified
using the HOL system [Camilleri85] [Cohn87] [Herbert88a]. The proofs are based
on simple models for the primitive components (combinational devices such as
gates and memory elements such as flip-flops). The combinational devices have
no delay and memory elements introduce unit delay. This behavioural level is
usually called the register transfer level but we will also refer to this level as
the synchronous level to avoid any unintended association with register transfer
languages. The synchronous level is characterised by a time scale where the basic
units correspond to the period of an implicit synchronous clock.

The simple models which ignore timing provide a tractable basis for the verifica-
tion of high-level functional specifications. However the behaviour of the physical
component depends on lower level timing constraints. For example, real memory
elements do not work if the clock period is too short or the data signal is not stable
long enough for the device to store its value. We introduce a more detailed model

of components which captures more closely the behaviour of the physical device.
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Figure 1: NOR gate

2.1 Primitive Component Model

A new model is introduced where the primitive components are propagation delay
gates and signal behaviour over real time is modelled closely. The only primitive
components in this model are gates with arbitrary, fixed propagation delay. Other
components, such as asynchronous and synchronous memory elements, are built
from gates and, in turn, larger circuits can be constructed from these components.

2.1.1 Example: NOR gate

The behaviour of a two input NOR gate (Figure 1) modelled as a propagation

delay device is:

Vit. out (t + del) = = (in0 t V inl t)

This may be paraphrased as:

for all times, the output del units after a time is the nor of the inputs
at that time.

A gate takes a fixed time del to compute its output, and each individual gate may
have a unique delay.

The time scale for this model is a repreéentation of real time. For example, the
propagation delay del might be 55, representing 5.5 nanoseconds if the units of
the time scale correspond to 0.1 nanoseconds of real time. We describe the level
of behaviour in the delay model of digital devices as the timing level. The timing
level is characterised by a fine time scale where the basic units can be chosen to
represent any interval of real time. (In contrast, the time scale at synchronous
level is derived from an implicit clock and the time units correspond to the clock

period in real time.)




3 Reasoning at the Timing Level

We describe in this section some of the methods we devised to reason in HOL
about digital systems at a detailed timing level.

3.1 Describing Timing Behaviour in HOL

We are concerned with describing and reasoning about timing behaviour. The
value of a signal changes in time and some statements about a device may be true
at some times and false at others. The natural numbers (of type num) are used
to represent time in HOL. Statements whose truth-value depends on time can be
expressed in HOL as functions of type num — bool. We model digital signal
values as booleans, and signals as functions from time to boolean (f.e. of type num
—+ bool). The natural numbers can represent multiples of the smallest significant
unit of real time. This provides a granular time-scale of sufficient precision for the
user. For example, if 0.001ns is regarded as the smallest significant unit of real
time then the number 500 can represent 0.5ns.

As well as instants of time we also need to reason about intervals of time. We
choose to describe behaviour over half-open intervals. The expression

'Vt.'(t'l.<t)/\(t_<_t2)=>Pt

states that the predicate P is true over the half-open interval (t1, t2].

3.2 New higher-order functions

Two new higher-order functions, ALWAYS and DURING, provide a simple basis for
descriptions of timing level behaviour. We deduce theorems involving these higher-
order functions which can be used in many proofs.

These are defined as:

ALWAYS P = Y t.P ¢
DURING (t1, t2) P = Vt. (81 < t) A (£ < t2) = P t

ALWAYS P simply states that at all times, t, the term P t is true.
DURING (t1, t2) P states that P t is true for all times, t, in the half-open interval
(t1, +2].

The type of P is the same in both definitions and so similar expressions can
correspond to P in both definitions. The lambda abstraction mechanism allows ar-
bitrary expressions involving a variable which corresponds to time to be rewritten
in the form P t.



As stated previously, the behaviour of a NOR gate can be described as:
Vt. out (t + del) = -~ (in0 t V inl t)
This can be expressed using the higher-order function ALWAYS as:
ALWAYS (At. out (t + del) = -~ (in0 t V inl t))
If a signal out is low from time t1 to t2 this can be described as:
Ve, (81 < t) A (t £ t2) = (out t = F)
Using the higher-order function DURING this can be expressed as:
DURING (t1, t2) (At. out t = F)

All descriptions of timing behaviour use the higher-order functions ALWAYS and
DURING rather than standard logical form. Special techniques are developed to
manipulate terms involving these higher-order functions.

3.3 Special Theorems and Rules

We develop a set of theories on which to base the proofs at the timing level. For
example, we have a theory MAX_MIN in which functions MAX and MIN are defined,
and theorems stating useful properties of these functions are proved. The theory
named DURING contains a number of theorems which allow us to reason about
intervals.

Some of these theorems are:

simp_extend:
DURING (t1, t2) P A DURING (t2, t3) P
=> DURING (t1, t3) P
extend:
DURING (ti, t2) P A DURING (t3, t4) P A (t3 < t2)
=> DURING (ti1, t4) P
extend_or:

DURING (t1, t2) PO A DURING (t3, t4) P1 A (%3 < t2)
=> DURING (t1, t4) (Xt. POt V P1 t)
overlap: ‘

DURING (t1, t2) PO A DURING (t3, t4) P1

=> DURING ( MAX(t1,t3), MIN(t2,t4) ) (At. POt A P1 t)
narrow.

DURING (t1, t2) P A (t1 < t3) A (t4 < t2)

==> DURING (t3, t4) P

We construct a number of rules which use these derived theorems. For exam-
ple, OVERLAP_RULE (of type thn — thm — thm ) can be applied to two theorems




whose conclusions are expressions of the form DURING (t1,t2) P.
This rule

o forms the conjunction of the theorems,
e deduces a new theorem by using theorem overlap, and
e simplifies the final theorem using S-conversion.

Example:

thm_1: DURING(t1,t2)(At. in0O t = F)
thm_2: DURING(t3,t4)(At. out(t + del) = —in0 t)

OVERLAP_RULE thm_1 thm_2
yields:

DURING(MAX(t1,t3) ,MIN(t2,t4)) (A t. (out(t + del) = —in0 t) A (in0 t = F))

These special purpose inference rules allow us to reason about timing at the
level of the higher-order functions ALWAYS and DURING. We do not need to expand
ALWAYS and DURING into more standard logical form. This eliminates much tedious
manipulation. The rules make the proof efficient — a standard theorem is used
by matching rather than repetition of inference steps.

4 An Asynchronous Latch

A model of component delay has been introduced. The behaviour of a simple RS
latch is now deduced using this model. The latch is a good example because its
correct operation depends on gate propagation delays and the timing of its input
signals. A detailed timing model is therefore required to deduce its behaviour
accurately. The latch forms a sub-structure of synchronous memory elements
built from gates and so its behaviour can be used in proofs of synchronous memory

elements.

4.1 NOR Gate behaviour

A latch is built using NOR gates. The model of a NOR gate at a detailed timing
level is that of a propagation delay device computing the nor function of its inputs.
Using the higher-order function ALWAYS, the behaviour can be defined as:

NOR2 (inO, in1, del, out) =



do

gbar
d1

Figure 2: Latch
ALWAYS (X t. out{t + del) = ~(in0 t V ini t))

This definition may be read as follows:

The predicate NOR2 is true of signals in0,in1,out and delay del if and
only if the output out at time t+del is always equal to the nor of the
inputs in0 and in1 at time t.

4.2 Definition of Latch

A latch is built from two primitive NOR gates as deplcted in Figure 2.
The predlcate LATCH, defined as

LATCH (a, b, q, gbar, 40, d1) =
(NOR2 (a, qbar, 40, q) A NOR2 (b, g, d1, gbar))

describes a latch consisting of cross-coupled NOR gates of delay d0 and d1i.

A latch can exhibit different types of behaviour depending on its environment.
For example, a narrow input pulse may result in some oscillation on the latch
outputs. The behaviour that interests us is when the latch acts as a simple mem-
ory element. To permit this desired behaviour the input signals must satisfy
constraints which depend on the latch gate delays. Before beginning the formal
description and proof of the latch, we form a statement of the required behaviour

for the device. The behaviour we wish to demonstrate is:

If some data and its inverse are presented on the two latch inputs for
a certain length of time and both inputs are then low until the next
data is presented, then the data and its inverse are available on the
latch outputs from a time after the data was presented to the latch

until some time after the next data is presented.




The latch acts as a memory because the data is available on its outputs for an
indefinite period after the data becomes unavailable on the inputs and while new
data has not yet been presented. Note that we regard a low signal as corresponding
to the absence of data. We refer to data without stating the particular data value.
We could have formed a more detailed description of behaviour which mentioned
the data value. The data independent statement of behaviour provides a simpler

basis for proofs which use the latch result.

4.3 Proof of Latch Behaviour

The proof of the latch behaviour is chosen to illustrate the methods used when
reasoning about behaviour at the detailed timing level. In Appendix 1 we give the
full commented code for this proof in HOL.

4.3.1 Derived Rules

In the code listing we describe briefly the special rules used in the proof. Two
rules used widely in the proof are PROPAGATE and SHIFT_RULE.

The function PROPAGATE is of type (thm — thm — thm); it is applied to two
theorems. The first theorem has a conclusion which is a DURING expression, the
conclusion of the second is a DURING or ALWAYS expression. The first theorem asserts
that a signal (the source signal) has some value over an interval; the second theorem
relates this signal to another (the destination signal). PROPAGATE deduces a new
theorem asserting the value of the destination signal over some interval.

For example,
Given
thm_1: DURING(t1,t2)(At. in0 t = F)

thm_2: DURING(t3,t4) (A t. out(t + del) = —in0 t)
thm_3: ALWAYS(A t. out(t + del) = = in0 %)

PROPAGATE thm_1 thm_2
yields: DURING(MAX(t1,t3) ,MIN(t2,t4))(At. out(t + del))
PROPAGATE thm_1 +thm_3

yields: DURING(t1,t2)(At. out(t + del))

The function SHIFT_RULE is of type (thm — thm). It can be used to “shift” the
interval of a DURING expression which forms the conclusion of the theorem. This
rule is often used after PROPAGATE to deal with the delay introduced by a gate.



t1-a t2-a tnext-a
t1-b t2-b tnext-b

Figure 3: Latch input waveforms

For example,

Given
thm_1: DURING(t1,t2) (A t. out(t + del))

SHIFT_RULE thm_1

yields: DURING(t1 + del,t2 + del)(At. out t)

4.3.2 Description of Proof

We now describe the steps taken in the proof of the latch behaviour. (The code
for the proof is given in Appendix 1.)

Starting Assumption

We begin by assuming that a predicate LATCH is true for some signals and delays,
that data and its inverse are presented on the two latch inputs for some duration,
and that both inputs revert to low afterwards.

This assumption is formally stated by the conjunction:

LATCH (a, b, q, gbar, d0, d1) A

DATA_AVAILABLE (a, (—~d), t1_a, t2_a, tnext_a) A
DATA_AVAILABLE (b, d, ti_b, t2_b, tnext_b)

The predicate DATA_AVAILABLE is defined as:
DATA_AVAILABLE (signal, data, t1, t2, tnext) =

(DURING (t1, t2) (At. signal t = data) A
DURING (t2, tnext) (At. signal t = F) )

(t.e. data is available on the line from t1 to t2 and absent from t2 to tnext)
The input waveforms are represented in Figure 3.
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Propagation of Input Signals

From the definition of the latch structure and the behaviours of its component
NOR gates, the relationships between the inputs and outputs can be deduced. The
assumed input waveforms can be propagated to the outputs using these relation-
ships. We do not assume any particular value for the data presented on the latch
inputs, just that some data value d and its inverse - d are presented. In practice,
we prove the behaviour for the two possible data values T and F and then combine
the results, This does not double the proof; the symmetry of the latch allows us
to transform the result for one data value into the result for the other.

We assume d = F and propagate the input signal a through the top gate to out-
put q. Since q feeds the other NOR gate, we propagate the resultant signal through
this gate. As we propagate through the lower gate the signal is combined with the
input signal b. Since the timing parameters of the two external signals are inde-
pendent, the resultant signal depends on the relative values of these parameters.
The behaviour of gbar is deduced as:

DURING

(MAX(t1_a + dO,t1_b) ,MIN(t2_a + dO,tnext_b))
(At. gbar(t + d1))

The comparison of timing parameters results in a number of branches in the proof. -
These branches correspond to different orderings of the timing parameters and are
eventually combined. There is a single main proof path and the other branches
follow trivial orderings. For the above expression, the main proof branch follows
- the condition (t2_a + d0) < tnext_b. Our main concern is to show that data
is stored in the latch for an arbitrary long interval until new data arrives. The
alternative branch, where tnext_b < (t2_a + d0), follows a trivial case when new
data arrives at input b very shortly after data disappears from input a.

Latching of Data

Having propagated the input data through the latch components, the next con-
cern is to demonstrate that the data is stored in the latch when the inputs revert
to the no-data value (F). We call the condition that ensures that input data is
latched the latching condition. Figure 4 presents some waveforms which illustrate
the latching condition.

The input a presents a value T from time t1_a to t2_a and this forces signal q
to have value F. After t2_a, signal a is low and so from that time the signal gbar
determines . We require that from t2_a the signal qbar should present T and thus

11
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Figure 4: Latching of data
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maintain q with value F. We have deduced (by propagation) that gbar goes high
initially at time MAX(t1_a + d0,ti_b)+ d1. The condition that the data is latched

is therefore:
(MAX(t1_a + d0,t1_b)+ d1) < t2_a

In terms of our formal proof, we can prove that q is high over a certain interval
due to input a and also high during another interval due to propagation via signal
gbar. To deduce that q retains its value throughout a longer interval including
both of these we must prove that the intervals overlap. To do this we need to add
the assumption that the lower limit of the second interval is less than or equal
to the upper limit of the first interval. This corresponds exactly to the condition

mentioned above.

Induction

By introducing the condition for latching of data we have deduced that data
. is initially latched, f.e. that the outputs are maintained immediately after the
forcing input signal reverts to low. We need to prove that the output signals are
maintained for an arbitrary length of time until new data appears at one of the
external inputs; this is done by induction.

We form a suitable statement of the desired behaviour involx}ing the variable n
which will be the induction variable. We prove that this statement is true for all
n by proving the base case (n = 0) and the step case (if it is true for n then it is
true for n+1).

The base case can be proved immediately by the theorem stating the initial
latching of data. Proving the step case again requires the latching condition and
also necessitates the introduction of a new condition, namely that the gate delay
do is non-zero. (If we look again at the theorem stating the initial latching of data
we see that the upper limit of the deduced interval is greater than t2_a only when
d0 or d1 is non-zero. So data is maintained after t2_a only when at least one of
the gate delays is non-zero.)

The introduction of a requirement that the latch delays are non-zero is not
surprising. Delay is necessary for memory. The need for capacitance, which in-
troduces delay, to allow cross-coupled circuits to store information is discussed in
[Seitz80].

The theorem proven by induction is an implication; we specialise n to the maxi-
mum value which keeps the antecedent true. This value asserts the longest interval
of stability for signal q.

13



We have proved the desired behaviour for signal q following the main proof
branch. We now deduce similar behaviour for the trivial proof branches and com-
bine the theorems of behaviour, eliminating the conditions associated with the
branches.

We can deduce the behaviour of signal gbar in a straightforward way, using
propagation, from the behaviour deduced for q.

Using Latch Symmetry

We have derived a theorem stating the behaviour of g and gbar for the case when
d = F. The symmetry of the latch allows us to prove the d = T case directly from
this theorem. To do this we interchange signals a and b, the timing parameters for
a and b, signals q and gbar and delays 40 and di. We also replace d by its inverse
- d. The theorem deduced in this way for d = T needs a little manipulation to
get it into a form similar to that of the theorem for d = F. For example, we must
transform LATCH(b,a,gbar,q,d1,d0) into LATCH(a,b,q,qbar,d0,d1).

We must also prepare both theorems so that they can be easily combined to
deduce the behaviour for an unknown value of d. The latching conditions for 4
high and low are, respectively:

(MAX(t1_b + d1,t1_a)+ d0)
and (MAX(t1_a + dO,t1_b)+ di)

< t2_b

< t2_a

We devise a more general condition which ensures that either a high or low data
value is latched.

This latching condition is:

((MAX(t1_a,t1_b)+ d0)+ d1) < MIN(t2_a,t2_b)

Deduced Output Behaviour
The behaviour of the outputs for any data value of d is deduced by combining
the results deduced for d = T and d = F. The deduced behaviour of q and gbar is:
DURING
(((MAX(t1_a,t1_b)) + d0) + di,(MIN(tnext_a,tnext_b)) + dO)
(At. gt =d) A
DURING

(((MAX(t1_a,t1_b)) + d0) + di,(MIN(tnext_a,tnext_b)) + d1)
(At. gbar t = = d)

The outputs q and gbar present the data and its inverse over certain intervals.
The theorem of behaviour for the latch is described in detail in the next section.

14




4.3.3 Deduced Behaviour of Latch
We arrange the theorem of behaviour for the latch into the following form:

delay_and_timing_conditions =
latch_implementation —
input_output_behaviour

This makes clear that under certain delay and timing conditions, the implemen-
tation of the latch achieves the desired input-output behaviour. In this form the
theorem of behaviour is:

0 < d0 A
0 <dil A
(((MAX(t1_a,t1_b)) + d0) + d1) < MIN(t2_a,t2_b) =—>

LATCH(a,b,q,qbar,d40,d1) =>

(DATA_AVAILABLE(a,(—d),t1_a,t2_a,tnext_a) A
DATA_AVAILABLE(b,d,t1_b,t2_b,tnext_b) —>
DURING
(((MAX(t1_a,t1_b)) + d0) + di,(MIN(tnext_a,tnext_b)) + d0)
(At. gt =d) A
DURING
(((MAX(t1_a,t1_b)) + d0) + di,(MIN(tnext_a,tnext_b)) + d1)
(At. gbar. t = = 4d))

The delay and timing conditions are:

0 <do A
0 < dl A
(((MAX(t1_a,t1_b)) + d0) + d1) < MIN(t2_a,t2_b)

The gate delays must be non-zero and the constraint which ensures that the input
data gets latched (the latching condition) must be satisfied.

The latch implementation is described by:

LATCH(a,b,q,qbar,d0,d1)

The input-output behaviour is:

DATA_AVAILABLE(a,(—d),t1_a,t2_a,tnext_a) A
DATA_AVAILABLE(b,d,t1_b,t2_b,tnext_b) —>
DURING
(((MAX(t1_a,t1_b)) + d0) + di, (MIN(tnext_a,tnext_b)) + dO)
(At. qt =4d) A
DURING
(((MAX(t1_a,t1_b)) + d0O) + d1,(MIN(tnext_a,tnext_b)) + d1)
(At. gbar t = = d)

15
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Figure 5: Input-output behaviour of the latch

Figure 5 depicts waveforms which meet the input-output behaviour. Data and
its inverse must be presented on the input signals a and b. If this is true and
the other conditions hold, we can deduce that the output behaviour is achieved.
The data and its inverse are available on the outputs q and gbar over an interval
starting d0+d1 after MAX(t1_a,t1_b), the first time when both inputs are presented
simultaneously with suitable data, and finishing at, respectively, d0 and di time
units after MIN(tnext_a,tnext_b), the earliest time when one of the inputs receives
some new data.

We can simplify the expression describing the input-output behaviour to get an
interval when both q and gbar are stable.

This is:
DATA_AVAILABLE(a,(—d),t1_a,t2_a,tnext_a) A
DATA_AVAILABLE(b,d,t1_b,t2_b,tnext_b) —>

DURING

(C(MAX(t1_a,t1_b)) + dO) + di, (MIN(tnext_a,tnext_b)))
(At. (@t =d) A (gbar t = - d))

This simpler statement of output behaviour is used in the proofs of some higher-
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level components.

4.3.4 Behaviour as a Memory Element

The latch is described as displaying the behaviour of a memory element because
under certain conditions it retains data for an arbitrary length of time after that
data is no longer available on any of its inputs. If the latching condition holds
for the input signals a and b then the outputs q and gbar retain the latched data
values after both inputs have lost the data value and gone low. The outputs
continue to retain their values until after the next input change occurs. This is
true irrespective of how long it is until the next change.

The latch is an asynchronous memory element because it is sensitive at all times
to its inputs, and the stored value can thus be changed at any time.

The behaviour of the latch as a memory element depends on propagation delay
and the precise timing of its input signals. We have shown that we can model
these concerns in HOL and can deduce this behaviour. Timing constraints have
been introduced in the course of proving the correct behaviour.

5 Master-Slave Flip-flop

In the previous section it was established that an RS latch can provide a simple
asynchronous memory element. A latch is not sufficient for most applications
involving memory; for example, a shift register with a single latch per bit will not
work. Edge-triggered, synchronous flip-flops are commonly used memory elements.
The behaviour of a positive-edge triggered master-slave flip-flop is now derived.
The master-slave flip-flop is implemented using propagation delay NOR gates
and has clock and data inputs and data and inverse data outputs (Figure 6).

5.1 Specification

An informal description of desired behaviour is:

If the clock signal rises and the data input signal has been stable over
an interval of time around the clock rise, then the input data and its
inverse will be available on the master-slave outputs some time after
the clock rise and will persist on the outputs until some time after the
next rising edge.
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Figure 6: Master-Slave Structure

We do not present a formal specification of the desired behaviour of the flip-flop
because we do not devise one before we do the proof. The timing conditions which
form part of the behavioural specification of the master-slave are not known and
therefore a precise specification is not possible. These conditions are introduced
as the proof progresses. The proof of behaviour is a forward one which proceeds
from an assumption about the master-slave structure and the form of the input
signals. Although the informal specification guides the creation of the proof, it

would be misleading to present a formal specification as a starting point.

5.2 Implementation

A master-slave flip-flop is built from NOR gates and inverters (cf Figure 6). The
inverter is a primitive component whose behaviour is described by the predicate
INV, defined as follows:

INV(in, del, out) = ALWAYS(At.out(t + del) = —in t)

There are two large sub-blocks (the master and the slave) which comprise four
gates each. Within each sub-block two gates form a latch and the other two gates
are used to control the latch inputs. We define a new predicate GATED_2NOR to

describe a structure of two NOR gates which share a common gating signal:

GATED_2NOR(a,b,clk,ga,gb,d0,d1) = NOR2(a,clk,d0,ga) A NOR2(b,clk,di,gb)
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clk:

t£-0 tr:0 tf-1 tr-1
d = data :

B S e R

setup - hold

Figure 7: Timing Diagram Example

5.3 Proof of Behaviour

The proof is a forward one which proceeds from an initial assumption to ultimately
derive the desired behaviour of the flip-flop. As the proof progresses certain con-

ditions are introduced.

5.3.1 Starting Assumption
The assumption on which we base the proof of behaviour is:

INV(d,dbar,d0) A
INV(clk,clkbar,d3) A
GATED_2NOR(d,dbar,clk,a_0,b_0,d1,d2) A
LATCH(a_0,b_0,qa,qb,d5,d8) A
GATED_2NOR(qa,gb,clkbar,a_1,b_1,d4,d47) A
LATCH(a_1,b_1,q,qbar,d8,d9) A
DURING(tf_ 0, tr_0)(At. clk t = F) A
DURING(tr_0, t£_1)(At. clk t = T) A
DURING(tf_ 1, tr_1)(At. clk t = F) A
At. d

DURING(tr_0 - setup, tr_O0 + hold)( t = data)

The first six conjuncts are the predicates which correspond to the master-slave
components; the final four describe the assumed behaviour of the clock and data
signals. The timing diagram (Figure 7) presents typical clock and data waveforms.

The times t£_0, tf_1, tr_0 and tr_1 correspond to what we would usually
think of as times of falling and rising edges. Although the timing diagram conveys
accurately our intuitive ideas about the waveforms, it also contains implicit as-
sumptions about relationships between the various instants of time. No ordering
of timing parameters is assumed in the formal description of the signals.

The parameters setup and hold are the lengths of time a data signal must be

stable before and after an active clock edge to ensure correct operation of a memory
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element.

5.3.2 Proof Structure

We base the proof of behaviour on the hierarchical structure of the master-slave
device. A repeated sub-block of the master-slave consists of two NOR gates with
a common gating signal and a latch (cf. Figure 6). In deducing the behaviour of
this sub-block the theorem of behaviour of the latch is used. Since certain timing
conditions are included in the latch theorem, the use of the latch result entails the
introduction of appropriate conditions.

Two instances of the gated latch sub-block and two inverters, form the highest
level of structure in the master-slave. The final part of the proof is to deduce the
overall behaviour of the master-slave. More constraints are introduced when we

do the final composition of sub-components.

5.4 Deduced Behaviour of Master-slave

We arrange the theorem of behaviour into the form:

delay_and_timing_conditions =
master-slave_implementation —-
input_output_behaviour

The theorem of behaviour of the master-slave is presented in Figure 8.

5.4.1 Input-output Behaviour

The clock is low, high and low during the intervals (t£_0,tr_0], (tr_0,tf_1] and
(tf_1,tr_1] respectively. Data is presented on the input d for some interval around
time tr_0, the first rise time.

If the input signals behave in the above manner then the data is available (along
with its inverse) on the outputs q and gbar from (43 + (48 + (d9 + (MAX(d4,d7)))))
time units after the first rise time, tr_0, until (43 + (MIN(d4,d7))) after tr_1, the
second rise time.

5.4.2 Delay and Timing Conditions

There are a number of conditions relating to the gate delays of the flip-flop. The
delays of the gates used in the latches, d5, d6, d8 and d9, must be non-zero and
the condition d3 < (MIN(d1,d2)) (which is a constraint on the relative delays of
internal gates in the flip-flop) must hold.
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t1.

0 < (tr_0 - setup) A

(setup = (MAX(d1,d0 + d2)) + (d6 + d6)) A
(tr_0 + (d8 + (d9 + ((MAX(d4,d7)) - (MIN(d4,d7)))))) < tf_1 A

d3
db
de
ds
do

< (MIN(d1,d2)) A
>0 A
>0 A
>0 A
> 0 =

INV(d,dbar,d0) A

INV(clk,clkbar,d3) A
GATED_2NOR(d,dbar,clk,a_0,b_0,d1,d2) A
LATCH(2_0,b_0,qa,qb,d5,d6) A
GATED_2NOR(qa,qb,clkbar,a_1,b_1,d4,d47) A
LATCH(a_1,b_1,q,qbar,d8,d9) =

DURING
(tr_0 - setup,tr_O0 + hold)
(At. d t = data) A
DURING(tf_O,tr_0)(At. —clk t) A
DURING(tr_O,tf_1)(At. clk t) A
DURING(tf_1,tr_1)(At. —clk t) =
DURING
(tr_0 + (d3 + (d8 + (d9 + (MAX(d4,d7))))),
tr_1 + (d3 + (MIN(d4,d7))))
(At. (q t = data) A (gbar t = —data))

Figure 8: Theorem of behaviour of master-slave

There are also three conditions which relate to the external signals:

co:

Ci:

C2:

Co

C1

c2

tf_0 < (tr_0 - setup)
(tr_0 + (d8 + (d9 + ((MAX(d4,d7)) - (MIN(d4,d7)))))) < tf_1

setup = (MAX(d1,d0 + d2)) + (d6 + d8)

imposes a restriction on the minimum time the clock must remain low.
is a restriction on the minimum time the clock must remain high.

defines the minimum setup time.

Notice that there is no restriction on the variable hold. Therefore the master-slave

flip-flop does not have a hold time constraint.

There are two different types of constraint;

* Restriction on some internal parameters. (e.g. relative gate delays)
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e Restriction on the behaviour of external inputs. (e.g. setup time)

A master-slave flip-flop exhibits the desired behaviour of a synchronous memory
element if its implementation satisfies the internal constraints and the applied

input signals satisfy the external constraints.

6 Six Gate D Flip-flop

An alternative flip-flop to the master-slave is one built from 6 gates. This is also
edge-triggered and is the more usual implementation for a flip-flop because it uses
4 fewer components. In this section we deduce that the D flip-flop exhibits the

behaviour of a synchronous negative-edge triggered flip-flop.

6.1 Specification

We do not give a formal specification of required behaviour. The informal speci-
fication is identical to that for the master-slave flip-flop except that falling rather

than rising edges are the active clocking events.

6.2 Implementation

The circuit diagram in Figure 9 shows a D flip-flop built from NOR gates. The
structure can be divided into two parts - the front four gates and the final stage,
consisting of a simple latch. Although the front section contains two latches, the
extra coupling between the latches means that the resultant behaviour is compli-
cated and the behaviour deduced for a simple latch is not applicable.

6.3 Proof of Behaviour

The proof is a forward one which starts with an assumption of a D flip-flop struc-
ture and a pattern of input signals. There are no initial restrictions on gate delays
or the timing parameters of the input signals. As the proof pi'ogresses we introduce
these conditions as necessary. |

Starting Assumption
We begin by assuming an expression which describes the flip-flop structure and
the behaviour of the input signals ck and d. This is

NOR2(s4, 82, d1, s1) A
NOR2(s1, ck, d2, s82) A
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d5s
clk . q

) gbar

dé

Figure 9: Structure of D flip-flop

NOR3(s2, ck, 84, d3, s3) A

NOR2(s8, d, d4, s4) A
LATCH(s2,83,q,qbar,d6,d6) A
DURING(tr_O, tf_1) (At. ck t =T) A
DURING(tf_1, tr_1) (At. ck t = F) A
DURING(tr_1, ¢£.2) (At. ck &t = T) A
DURING(ti, t2) (At. d t = data)

We assume that the clock signal is high for a length of time then low and then
high again. We also assume that data is presented on the d input between certain

times.

Proof Outline

The proof is confined to deducing the behaviour of the front four gates; the
behaviour of the final latch is that deduced previously.

While the clock signal is high the feedback loops in the front section are inactive
and the logic displays a combinational behaviour, We can use the derived rule
PROPAGATE to deduce the behaviour of the signals.

When the clock signal goes low different behaviour may occur depending on
the relationships between the timing parameters of the input signals and the gate
delays and also depending on the relative gate delays. We choose the conditions
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to generate the behaviour we desire — the latching of the data presented for an
interval of time around the falling edge of the clock. These conditions determine
the setup and hold times for the data signal.

The value of the data signal and its inverse are stored in the bottom and top
latches respectively (cf. Figure 9). We use induction to prove that the data values
are stored for an indefinite time until the clock signal goes high. The induction
follows a similar pattern to that used in the simple latch. This strategy is described
in section 8.1.

The output section of the D flip-flop is a simple latch. The theorem of behaviour
of the latch is used to derive the behaviour of the flip-flop outputs.

6.4 Deduced Behaviour of D Flip-flop

The theorem of behaviour deduced for the D flip-flop is presented in Figure 10.
The theorem is in the following form:
delay and timing conditions =—

D-flip-flop implementation —
input-output behaviour

6.4.1 Input-output Behaviour

The clock signal is high, low and high during the intervals (tr_0,t£_1] (tf_1,tr_1]
(tr_1,tf_2] respectively, and data is presented on the input d during the interval
(t1,%2]. .

The outputs q and gbar present the input data and its inverse for an interval
starting (MAX(d2,d3)) + a6 + d6 after tf£_1, time of the first negative edge, and
ending MIN(d2,d3) after tf_2, time of the second negative edge. Data which is
Jatched on a clocking edge is available (along with its inverse) for a length of
time starting some time after that clocking edge and enduring until some time
after the next clocking edge. This behaviour is characteristic of an edge-triggered

synchronous memory element.

6.4.2 Delay and Timing Conditions

We use two predicates, DELAYS_3_2 and DELAY_GT, to simplify the theorem of be-
haviour. A common rule of thumb used by digital hardware designers is the 3 for
2 law. This states that the delay through any 3 gates is greater than the delay
through any 2 gates. A predicate DELAYS_3_2 is defined which describes this 3 for
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di A

d2 A

d3 A

d4 A

ds A

dé A

DELAYS_3_2(d1,d2,d3,d4)) A

((tf_1 + x) < tr_1 A DELAY_GT x(d1,d2,d3,d4,d5,d6)) A
(tr_0 + (d3 + (d4 + (d1 + 1)))) < tf_1 A
(t1 + (d4 + d1)) < 2.1 A

(tf_1 + d3) < t2 =

COO0OO0OOO
AAAANAN

NOR2(s4,82,d1,81) A
NOR2(s1,ck,d2,s82) A
NOR3(s2,ck,s84,d3,s83) A
NOR2(s3,d,d4,84) A
LATCH(s2,83,q,qbar,d5,d6) —

DURING(tr_0,tf_1)(At. ck t) A

DURING(tf_1,tr_1)(At. =ck t) A

DURING(tr_1,t2_2)(At. ¢k t) A

DURING(t1,t2)(At. d t = data) =>
DURING

(t2_1 + ((MAX(d2,d3)) + (d6 + d8)),tf_2 + (MIN(d2,d3)))
(At. (g t = data) A (gbar t = - data))

Figure 10: Behaviour of the D fiip-flop

2 relationship for the gate delays in its argument. There are a number of similar
restrictions on the relationship between tf_1 and tr_1. These can be combined
into a single condition (tf_1 + x) < tr_1 if x satisfies the predicate DELAY_GT
x(d1,d2,d3,d4,d5,de). This restricts x to be greater than the sum of any two of
these delays plus the difference between d1 and d2.

The delay and timing conditions restrict both the internal delays and the timing
parameters of the input signals. The internal restrictions are that gate dela&s
must be non-zero and the 3 for 2 law must hold. The other conditions describe
relationships between the timing parameters of the clock and data signals, and
internal gate delays. These provide restrictions which must be satisfied by the
input signals if the deduced behaviour is to occur.

These restrictions are:

co: (2.1 + x) < tr_1 A DELAY_GT x(d1,d2,d3,d4,d5,d6)
C1: (tr_0 + (d3 + (d4 + (di + 1)))) < tf_1

c2: (t1 + (d4 + d1)) < tf_1

c3: (t£_1 + d3) < t2
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co is the constraint on the length of time the clock signal must remain low.

c1 is the constraint on the length of time the clock signal must remain high.
The 1 in the constraint can for practical purposes be ignored. By choosing
a sufficiently fine grain of time the 1 becomes insignificant.

c2 is the setup constraint on the data signal with respect to the clocking edge.
The setup time is d4 + di.

c3 is the hold constraint on the data signal with respect to the clocking edge.
The hold time is 43.

6.5 Related Proof

A formal derivation of the behaviour of a D ﬂip-ﬂob has also been done by Hanna
and Daeche |[Hanna85]. A different model of components is used and different
constraints are introduced in the proof of correctness. A comparison of that proof

and our work is given in [Herbert86].

7 External Timing Parameters

The proofs of the master-slave and D flip-flop ended when the behaviour of syn-
chronous memory elements was established. A lot of detail about structure and
internal delays remained in the derived theorems of behaviour. We now use the
master-slave flip-flop as an example to demonstrate how the internal details can
be hidden and the device characterised by the external timing parameters.

In dealing with clock timing parameters, we call the length of time a clock signal
is high the mark time, and the length of time it is low the space time.

7.1 Specification of Behaviour

The predicate POSITIVE_EDGE_FF is used to specify the behaviour of a positive edge-
triggered flip-flop.
POSITIVE_EDGE_FF is defined as follows

POSITIVE_EDGE_FF(d,clk,q,qbar,setup,hold,mark,space,start,finish) =
(Vdata t£_0 tr_O tf_1 tr_1.
DURING(tr_O - setup,tr_O + hold)(At. d t = data) A
DURING(t£. 0,tr_0)(At., = clk t) A
tf_0 < (tr_O - space) A
DURING(br_O,tf_1)(Xt. clk t) A
(tr_0 + mark) < tf_1 A
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DURING(tZ_1,tr_1D(At. —clk t) =
DURING
(tr_0 + start,tr_1 + finish)
(At. (q t = data) A (gbar t = —data)))

The predicate POSITIVE_EDGE_FF is true of signals d,c1k,q,qbar and timing param-

eters setup,hold,mark,space,start,finish if
for all data values and clock timing parameters,

whenever the data signal d satisfies the setup and hold times, setup and hoid,
and the clock signal c1k satisfies the minimum clock high and low times, mark

and space,

then signals q and gbar present the data from time start after the sampling
positive edge (tr_0) to time finish after the next sampling edge (tr_1).

The timing parameters setup,hold,mark and space have been defined earlier.
Start and finish are associated with the output changes. Data is guaranteed
to be stable on q and gbar a time start after the sampling edge, until a time
finish after the next sampling edge. Start and finish are sometimes called the
mazimum and minimum propagation delays respectively. We prefer to use the

term propagation delay solely for gate delay.

7.2 Specification of Master-slave Implementation

We define a predicate MASTER_SLAVE so that all the internal signals, gate delays and
internal delay conditions of the master-slave are hidden. The timing parameters
of MASTER_SLAVE are related to the internal delays and these relationships are also

included in the definition.
The predicate MASTER_SLAVE is defined as follows:

MASTER_SLAVE(d,clk,q,gbar,setup,hold,mark,space,start,finish) =
(d dbar d0 clkbar d3 a_0 b_0 di d2 qa gb d5 d6 a_1 b_1 d4 d7 d8 d49.
(setup = (MAX(d1,d0 + d2)) + (d5 + d6)) A
(hold = 0) A
(space = setup) A
(mark = d8 + (d9 + ((MAX(d4,d7)) - (MIN(d7,d4))))) A
(start = (MAX(d4,d7)) + (d3 + (d8 + 49))) A
(finish = (MIN(d4,d7)) + d3) A
INV(d,dbar,d0) A
INV(clk,clkbar,d3) A
NOR2(d,clk,di,a_0) A
NOR2(dbar,clk,d2,b_0) A
NOR2(a_0,qb,d6,qa) A
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NOR2(b_0,qa,d8,gb) A
NOR2(ga,clkbar,d4,a_1) A
NOR2(gb,clkbar,d7,b_1) A
NOR2(a_1,gbar,d8,q) A
NOR2(b_1,q,d9,qbar) A
MS_INTERNAL_CONDS(d1,d42,d3,d5,d6,d8,d49)

The predicate MASTER_SLAVE is true of signals d,c1k,q, gbar and timing parameters
setup,hold,mark,space,start and finish if there exist certain internal signals and

delays such that

the required relationships between internal signals hold
(e.g. INV(d,dbar,d0)).

the external parameters are related in a certain manner to the internal ones
(e.g. start = (MAX(d4,d7) + d3 + d8 + d9) ).

the internal conditions are fulfilled
(MS_INTERNAL_CONDS(d1,d2,d3,d5,d6,ds8,d9) is true).

The internal conditions are described by the predicate MS_INTERNAL_CONDS defined
by:

MS_INTERNAL_CONDS(d1, d2, 43, 45, 468, 48, 49) =
d3 < (MIN(d1,d2)) A

ds > 0 A
dé > 0 A
ds > 0 A
d8 > 0

7.3 Proof of External Behaviour

We prove that the master-slave implementation achieves the specified behaviour
of a positive-edge triggered device.
This theorem is:

MASTER_SLAVE(d,clk,q,qbar,setup,hold,mark,space,start,finish) —
POSITIVE_EDGE_FF(d,clk,q,gbar,setup,hold,mark,space,start,finish)

The theorem states that a master-slave implementation for which the predicate
MASTER_SLAVE holds, achieves the behaviour of a positive-edge triggered device
specified by POSITIVE_EDGE_FF.

We have formally deduced that a structure of gates with certain delays exhibits
the behaviour of a synchronous edge-triggered flip-flop. The internal structure and
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delays of the implementation can be ignored and its behaviour taken as that of a
“black box” synchronous flip-flop. Much unnecessary information is hidden and a
simpler statement of behaviour for the device can henceforth be used.

7.4 Example of External Behavioural Parameters

We illustrate the above result by deducing external behavioural parameters for a
gate-array implementation of the master-slave flip-flop.

Consider that we can obtain the structure and gate delays of the implementation
from some CAD tool. The structure must match that of the master-slave and the
internal gate delay constraints must be satisfied by the actual delay values. We
can then deduce that the predicate POSITIVE_EDGE_FF holds for the external signals
with timing parameters deduced from the internal delay values.

Gate delays are assigned using the bipolar gate-array data given in Appendix 2
and 0.1ns is taken as the basic unit of time.

The following theorem has been proved:

INV(d,dbar,d0) A
INV(clk,clkbar,d3) A
NOR2(d,clk,d1,a_0) A
NOR2(dbar,clk,d2,b_0) A
NOR2(a_0,qb,d6,qa) A
NOR2(b_0,qa,d6,qb) A
NOR2(qa,clkbar,d4,a_1)
NOR2(gb,clkbar,d7,b_1)
NOR2(a_1,gbar,d8,q) A
NOR2(b_1,q,d9,qgbar) A
(do = 48)
(d1 = B3)
(d2 = 53)
(d3 = 48)
(d4 = B3)
(d6 = 78)
(dé6 = 78)
(d7 = 53)
(d8 = 78)
(d9 = 78) —
POSITIVE_EDGE_FF(d,clk,q,gbar,2567,0,156,257,257,101)

A
A

oo
>>>>>>>>>

The implementation acts as a positive-edge triggered flip-flop with a setup time
of 25.7ns, Ons hold time, minimum high and low clock times of 15.6ns and 25.7n.s
respectively, and start and finish times after the rising edges of 25.7ns and 10.1ns.
Having deduced the external behaviour, the internal structure and delays of the
device can be ignored.
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8 Discussion

We present the main technique used to verify the behaviour of the memory devices

and present some conclusions about the work.

8.1 Strategy Used in Proofs

The proof of behaviour of the front section of the D flip-flop follows a similar
strategy to that used in the latch proof. The strategy involves using induction to
prove that, under certain conditions, while external signals remain stable all signals
remain stable. It is sometimes difficult to derive the asynchronous behaviour of
structures with feedback. This technique can be applied to structures containing
any configuration of feedback loops.

The following is an outline of the strategy.

o The induction variable, n, is chosen to be part of the upper limit of the
interval during which signals are proposed to be stable.

Stability over an interval corresponding to the base case is proven.

Assuming the behaviour over the n** interval, the rule PROPAGATE is used to
deduce the behaviour over a later interval.

This later interval is shown to include (n+1)** interval by proving that:

1. the lower limit of this later interval is less than or equal to the upper
limit of the base interval.

2. the upper limit of this interval is greater than or equal to the upper
limit of the (n+1)* interval.

Stability over an interval whose upper limit is parameterised on n can then
be deduced.

The first condition needed for the step case is fulfilled if the initial interval during
which signals are stable is longer than the maximum delay from input to output
of any component. The second condition is fulfilled if the component delays are
non-zero.

For an arbitrary structure of non-zero delay components, containing any con-
figuration of feedback loops, if one can deduce that all signals are stable over a
base interval greater than the delay of any component, then one can prove that
no signal will change until an external input changes.
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For a digital design the result of the strategy is a proof that the circuit has
settled. However, the proof strategy applies equally well to any other system of

computing agents.

8.2 Conclusions

We have devised new techniques for reasoning about detailed timing of circuits and
have introduced propagation delay gates as the primitive components of all digital
circuits. We have derived the behaviour of asynchronous and synchronous memory
elements constructed from propagation delay gates. The relationships between
external timing parameters and the internal gate delays have been derived.

The formal proofs about timing level behaviour may seem difficult in comparison
to simulation of similar devices. The formal proofs can be tedious, but the results
obtained have a wider application than the results of simulation. The formal
theorems of behaviour provide precise, unambiguous statements which can be
manipulated and related to other behavioural descriptions. The use of variables
for the delays and signals means that a formal theorem applies to a whole class of
circuits.

For example, the theorem relating the behaviour of a master-slave structure
to an external flip-flop specification is proved once, and is valid for all signal
and delay values. One can simulate a particular master-slave implementation
and determine its timing parameters. However, without knowing the symbolic
relationship between timing parameters and gate delays, any implementation with
different delays will again require simulation. While a formal proof can be more
difficult than simulating a particular flip-flop, the results are applicable to all

master-slaves and need never be repeated.
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Appendix 1

Source Code for Latch Proof

% The percent symbol encloses comments such as this one %

% “l"l‘.“““.“..."'.l.“‘.-'tll."".‘.‘il.‘.l‘“l‘.‘l.""‘l.."l-‘

COMMENTS are enclosed in boxes like this.

t‘-'Oll‘.'l"t.‘“‘.“t..l'tﬁ"l"‘!“'l'-ﬂ““t.-"t.“.l“.'.“.“‘.'. %

Some intermediate results of the proof are presented in boxes like this
The general form of a theorem is:

oo |- thm_A

This means that thm_A has a three hypotheses which for clarity are
not printed.

For example,
q_is_Tow = ., |- DURING(tl_a + d0,t2_a + d0)(\t. “q t)

new_theory "latch’;;
new_parent “shift’;;
% ‘-l“.‘ttiﬁﬁtii..‘..‘l““l“".“"t.".-‘..““l'.'-‘".!.“l‘l.t.tl’.

We create a theory called latch.
The immediate ancestor of this theory is theory shift,

Theory hierarchy:

jh_basics

I
f

time_t time_bools
|

time_ruies
|
DURING

|
shift

|
latch

t".l"‘.ll.““O""l"'t‘t.-.“"’!I.‘.Dl"-“."‘l-..‘ll‘.l"!l‘t--“ %



loadt "mk_latch_start™;;

x "“.-"I‘O"....‘.t'.“‘-.“l"'t“-‘*‘l".“"."‘-"‘.l'.'.“.l‘.““

The file latch_

start loads various theorems and defines rules which are
used in the proof,

The following rules and functions are not part of the basic HOL system

LEQ_TRANS

MIN of MIN_simp

CASES_RULE

POST_ADD

SIMP_EXTEND_RULE :

USE_INEQUAL

SHIFT_RULE

NARROW_RULE_TOP

NARROW_RULE_BOT

swap_x

swap_n

PROPAGATE

and are used in the proof,

(thm -> thm -> thm)
From [- x <=1y ana |-y <= z
Deduces |- x <- z

(thm -> thiwm)
Simpifies terms involving MIN
such as MIN(a. MIN(a.b))

¢ (thm -> thm -> thm)
From thms of form |- a ==> ¢ and |- (~a) ==> ¢
Deduces |- ¢

(term -> thm -> thm)
Adds the term to each side of an inequality in the theorem.
From “p" and |- n <= m

Deduce |- (n + p) <= (m + p)

(thm -> thm -> thm)
From |- DURING (t1,t2) P and |- DURING (t2,t3) P
Deduce |- DURING (t1.t3) P

¢ (thm -> thm -> thm)
Use the inequality in the first theorem
to simplify the second theorem.
The inequality can be of the form:
"a < h" ""(a < b)" "a<=Db" ""(a<l=b)"
t (thm -> thm)
Transforms a theorem of the form
"DURING (t1, t2) (\t. P(t + delta))"
into
"DURING (ti+delta, t2+delta) (\t. P t)"

t (thm -> thm -> thm)

From |- DURING (t1,t2) P and |- t3 <= t2
Deduce |- DURING (t1,t3) P

(thm -> thm -> thm)
From |- DURING (ti.t2) P and |- tl ¢= t3
Deduce |- DURING (t3,t2) P

: (term -> term -> thm -> thm)
Swaps the two terms if they occur in any
MAX suoterms of the theorem.

(term -> term -> thm -> thm)
Swaps the two terms if they occur in any
MIN subterms of the theorem.

(thm -> thm -> thm)
From a theorem which asserts that a signal
has a certain value over an interval
and a theorem wnich asserts the relationship
between & second signal and the first one
deduce a theorem for the behaviour of the second signal.
The second theorem can be an "ALWAYS” or "DURING"
predicate.
This can be used to. in effect, propagate signals,

PEBPENEFRAB ISR RSN RS RN E N ES R RN LI N E N AP R RS R R E AN R F A SRR PN RN AN RS RN A %




% EEELPBBUINDINSSINANSHUBF S AR R RN AN EI RSN NI VRSP A BN E A SRS RN AN RN R I NN R NN S

DEFINITIONS
We define the predicates describing a NOR gate and a latch.
We also define "DATA_AVAILABLE" which is used to describe data being
presented over an interval followed by the absence of data over a

succeeding interval,
LA A E R R AR EAS R R A RS RS R 2R R R R R R R R Y R R R R Y T T R R e L] %

let signal = ":num -> bool”;;

let NOR2 = new_definition { NOR2',
"NOR2 (in0:"signal, inl: signatl, del:num, out: signal)
= ALWAYS (\t, out (t + del) = “(in0 t \/ dinl t) )" )::

et LATCH = new_definition ( LATCH',
"LATCH (r:"signal, s:"signal, gq:"signal, gqbar: signal, del0O:num. dell:num)
= NOR2 (r, gbar, del0, q)
/N NOR2 (s, q, dell, gbar)");;

let DATA_AVAILABLE = new_definition ( DATA_AVAILABLE'.
"DATA_AVAILABLE (s:°signal, data:bool, til:num, t2:num, tnext:num )
= DURING (tl. t2) (\t. s t = data)
/\ OURING (t2, tnext) (\t. s t = F)");:

% BEEEPRBNEDEI LR AR R EE BRI R R R R E RSB EENE AR AR R SR E R R E XA RE R R R RN R R

STARTING ASSUMPTION

The basic assumption that we work from is a latch is presented with some
data and its inverse on its two inputs over certain intervals.
No assumptions are made about the relationship between the timing

parameters of a signal nor between the parameters of the two signals,
LA R R A E RS S S ER 2 R A RS R R R R R R R R R R R R R R RS R RN T %

Tet basic_ass = '
ASSUME “LATCH (a, b, g, gbar, d0, di)
/\ DATA_AVAILABLE (a, (~d), tl_a, t2_a, tnext_a)
/\ DATA_AVAILABLE (b, d, t1_b, t2_b, tnext_b)";;

% BESRENRFEEREIRERE R EEENEREARENNRERESNXIIBNERE S AR B SN RN EERAAE B REPFAE AR S RENS

Expand out the definitions in the basic assumption and

access the dindividual parts
BRSEIBERERNBEBREE AR AR T SRR BRI AR BB SRR N T AR RN LR RN E RGN R R RS R X %

let [q_output; gbar_output: a_is_NOTd: a_is_Tow: b_is_d: b_is_low] =
let ass_expanded = REWRITE_RULE [LATCH: NOR2: DATA_AVAILABLE] basic_ass
in
map (\n. CONJUNCT n ass_expanded) (upto i 6);:

% PERFEEANNEERR B RS RERE R R RN AR MR REN NP RN RS TR AN R R AN RN A MK IR R MK RN R

ASSUME that the data has value f

and Simplify the basic theorems
REFAEREERFINESER RS MR EEI R R RS R A RERE R R AR SN P E NS R A A R KR AR E R LR ER N AN RS R E AR LA

tet [a_is_T: a_is_F; b_is_F_0: b_is_F_1] =
Jet ass_d_F = ASSUME “d = F"
in
map (REWRITE_RULE [ass_d_F]) [a_is_NOTd; a_is_low: b_is_d: b_is_Tow]::

% L2 RS NS R RS RE R SRR SER ER RS R AR R R R AR R R R RS R R R SRR RV SRS 2

The signal "b" has value F in its active and inactive regions

Therefore we can concatenate into a single extended region
LA E RS R R R AR T RS RN RN R SR R AR R AR AR R R AR R RS R R R R R R SRR RN %

Tet b_low = SIMP_EXTEND_RULE b_is_F 0 b_is_F_1::




% LI AR RS SRS ERERRR RS LR R RS R R EER Y AR R R 2R N R R R RN SRR RS RE RN RS NS 4

PROPAGATE INPUTS

We now generate new assertions for the "q" and “"qbar" outputs by using
the assumptions about the inputs “a" and “"b",
We are in effect propagating the signals through the gates.
The three theorems generated state:
when "q" is low because of input signal “a"
how the signal "gbar” follows signal “q"
how the signal "q" follows signal “gbar"
These theorems will be used many times 1n the proof.

AL LS R S A A RS R R R R R R R A R R R R R Y R N R SRR SR PR ES RS SS 3 ) %

i

Tet q_is_low SHIFT_RULE (PROPAGATE a_is_T g_output )::

A e e e T T e L L L Lk TR
g_is_low = |- DURING(t1_a + d0.t2_a + dO)(\t. ~q t)
........................................................................ %
let gbar_fn_q = PROPAGATE b_low gbar_output:;
% ........................................................................
gbar_fn_gq = |- DURING({t1_b.tnext_b)(\t. gbar(t + di) = "3 <)
........................................................................ %
let g_fn_gbar = PROPAGATE a_is_F gq_output;:
% ........................................................................
g_fn_gbar = . |- DURING(t2_a.tnext_a)(\t. q(t + d0) = “zbar )
........................................................................ %

% *t“‘**'}“l"‘ll‘**.’l“""*)‘*“"t'lll‘**l.".“‘**‘*’i"'l‘*‘-"-“

Deduce the behaviour for "gqbar” from the assertion of "g" being low and

the relationship between "gq" ana "gbar".
¥R ERIREEF BB EF AR AR EEU BRI R LB E R LSRR R LIPS UBR A BRSNS AR O RASEINS SRSk ko %

let gbar_T_0 = PROPAGATE gq_is_low gbar_fn_q:;

.. |- DURING

(MAX(t1_a + d0,ti_b) ,MIN(t2_a + d0,tnext_b))

(\t. gbar(t + di))
........................................................................ %

% LA R 2 R RS R A R RS2 R RS RS R R R S 220 RS R AR R R R 2]

Since the timing parameters of the input signals are indepencgent
we do not know their relative magnitudes.
This results in a number of branches in the proof,
We will follow the main path at each branch and follow the trivial
paths later on.

L R Ty L

&

AR R L R e e LY

Follow first main branch corresponding to the assumption that:
"{t2_a + d0) <= tnext_b"

(32 E RS SRR RS N 2R R R R R R R R R R RS RS A E R RS EE AR E R R Y RS R RS RRS R RN %

let main_branch_1_ass = ASSUME "(t2_a + d0) <= tnext_b"::

let gbar_T_1 =
et t4 = USE_INEQUAL (main_branch_1_ass) gbar_T_0
in
SHIFT_RULE t4::




% ‘..'.'.*l‘.'.“‘..'..“‘""“‘.....".““.“.‘-..---U‘.“‘.-...“‘-‘-‘

LATCHING OF DATA

Deduce a theorem which states the initial latching of data.
Use latching assumption “((MAX(tl_a + d0,t1_b)) + dl) <= t2_a".
Follow second main branch corresponding to condition:
"((t2_a + d0) + d1) <= MIN(tnext_a,tnext_b)"
Reduce upper limit of interval of the theorem
from  "({(t2_a + a0) ~ d1) + aQ" to "(t2_a + d0) -~ di"
to fit in with the form of the ‘nductive proof later on.

‘..tIl".‘lt!*“Il"‘t“..“i"lll'"*“‘.'!U.l““'!ll*al*“l“-.U‘!#l' %

let Tatching_ass = ASSUME " ((MAX(ti_a + d0,tl_ b)) + dl) <= t2_a":;

let latching_thm =
Tet q_F_0 = PROPAGATE q_fn_gbar gbar_T_{

1;: q_F_1 = USE_INEQUAL latching_ass q_F_0
1;: main_branch_2_tm = "((t2_a « a0) - dl) <= MIN(tnext_a.tnext_b)"
1;: main_branch_2_ass = ASSUME main_branch_2_tm
and MIN_next_a = SPECL ["tneft_a:num": “tnext_binum"l (GEN_ALL MIN_less_1)
1e;n1eq_MIN = LEQ_TRANS main_branch_2_ass MIN_next_a
1;2 latch_0 = USE_INEQUAL leq MIN gq_F_1
1;2 Tateh_1 = SIMP_EXTEND_RULE q_is_low (SHIFT_RULE latch_0)
1;2 th_top = SPECL ["(t2_a + d0) + d1"; "d0"] LESS_£Q_ADD
1;2 latch_2 = NARROW_RULE_TOP latch_1  th_top
in

DISCH main_branch_2_tm latch_2::

latching_thm =
sevs |- ((t2_a + d0) + d1) <= (MIN{tnext_a.tnext_b
DURING(tl_a + d0,(t2_a + d0) + d1)(\t. ~

o|
F ~—



% “..‘..l“‘l"“‘l'..‘t‘.'l“.".““"'U-‘.“".".'.“.."".."‘.‘."

To allow us to do a proof by induction, we need to prove the step case.
(i.e. P n ==>P (n+1) )
We firstly assume some behaviour for "q" parameterised on "a" and then
deduce some resultant behaviour parameterised on "SUC n".
We assume the proposition is true for n:
"(((t2_a + d0) + di) + n) <= MIN(tnext_a,tnext_b) ==
DURING(t1 a + d0,((t2_a + d0) + d1) + n)(\t. "q )"
and deduce
"DURING(t1_a + d0,((t2_a + d0) + d1) + (SUC n))(\t. "gq t)"

First deduce "DURING(t1_a - d0.({(t2_a + d0) + d1) + n) + dO)(Mt. "q t)"
We need "SUC n" rather than “n+d0", ’

Must assume "0 < d0" to allow us to deduce the proposition for n+l,
(i.e. The behaviour as a memory from cycle n to n+l requires that the

gate delays are non-zero.)
ABAEARAEBRTNIBEE IR B AN RS R AR A S AR RSB EE RS AP RN R AR S R R RS F R SRR RSN AR REE R BN & 9/-

et SUC_n_thm =

Tet ass_n = ASSUME "(((t2_a + d0) + d1) + n) <= MIN(tnext_a.tnext_b) ==>
DURING(t1_a + d0.((t2_a + d0) + di) = a)(\t. "g t)"
in
let gbar_unwi
and n_cond
and MIN _next_b

PROPAGATE (UNDISCH ass_n) gbar_fn_g
ASSUME "(((t2_a + d8) + d1) + n) <= (MIN(tnext_a,tnext_b))"
SPECL ["tnext_a:num": “tnext_b:num"] (GEN_ALL MIN_less_2)

n onon

in
let b_next = LEQ_TRANS n_cond MIN_next_b
in
let gbar_unwl = USE_INEQUAL b_next gbar_unw0
in
let q_unwQ = PROPAGATE (SHIFT_RULE gbar_unwl) q_fn_gbar
in
let q_unwi = USE_INEQUAL 1latching_ass gq_unwO0
and top_n =
SPECL ["(((t2_a + d0) + d1) + n)": "tnext_a"; "d1"] (GEN_ALL MIN_RULE_1)
in
Jet q_unw2 = NARROW_RULE_TOP gq_unwl top_n
in
let amin = ASSUME "(((t2_a + d0) + d1) + n) <= (MIN(tnext_a,tnext_b))"
and MIN_next_a = SPECL ["tnext_a:num"; "tnext_b:num"] (GEN_ALL MIN less_1)
in
et 1_n = LEQ_TRANS amin MIN_next_a
in
Tet q_unw3 = USE_INEQUAL 1_n q_unw2
in

Tet thm_n_plus_d0 = SIMP_EXTEND_RULE gq_is_low  (SHIFT_RULE q_unw3)
in

jet ad = ASSUME "0 < d0"
in
tet ad_1 = REWRITE_RULE [LESS_EQ; ADD1: ADD_CLAUSES] ad
in
let get_n = (SPECL ["1":"d0";"((t2_a + d0) + d1) + n" ] o Sym o CONJUNCT 2)
LE_CLAUSES
in
let ineq = EQ_MP get_n ad_1
in
let thm_n_1 = NARROW_RULE_TOP thm_n_plus_d0 ineq
in
let thm_SUCn = REWRITE_RULE [Sym ADD_ASSOC: Sym ADD1]} thm_n_1
in
REWRITE_RULE [ADD_ASSOC] thm_SUCn:;
% ........................................................................
SUC_n_thm =

...... [- DURING(t1_a + d0.((t2_a + d0) + d1) + (SUC n))(\t. “q t)




% BSECEF SRR ENSBENRER SRS LSRN RSP N UGS IR PN ARSI A S SR ISR O EIE NN U S A AR NERS NG

Get into the form P n ==> P(n+1)

BASHSBAENGE RIS IBAS SR NEI A AN NEN AR NSO A NIBASNII NSNS PN AN IR OISR AL SRS EI RN IND IS D %

tet n_imp_SUCn =

Tet SUC_imp = IMP_TRANS (SPEC_ALL OR_LESS) (SPEC_ALL LESS_IMP_LESS_OR_EQ)
and n_tm = "(((t2_a + d0) + d1) + n) <= (MIN(tnext_a,tnext_b))"
and api_tm = "(((t2_a + d0) + d1) + (SUC n)) <= (MIN(tnext_a,tnext_b))"
in
Jet a_nl = ASSUME npl_tm
in
let a_n2 = REWRITE_RULE [ADD_CLAUSES] a_nl

in ’

Jet a_n3 = MATCH_MP SUC_wmp a_n2

in

Tet asil = REWRITE_RULE [a_n3] (DISCH n_tm SUC_n_thm)
in

Tet as12 = DISCH npi_tm asil

in

DISCH (element 4 (hyp asl2)) asl2::
% ........................................................................
n_imp_SUCn =

coo I ((((t2_a + d0) + d1) + n) <= (MIN(tnext_a.tnext_b)) ==>
DURING(t1_a + d0.((t2_a + d0) + di) + n)(\t. “g t)) ==>
{((t2_a + d0) + d1) + (SUC n)) <= {MIN(tnext_a.tnext_b)) ==>
DURING(t1_a + d0,((t2_a + dO) + d1) + (SUC n))(\t. -g t)

% FEXEFEREXNERBEARRAZAREPERRXEBERKARESRRAXSENEE RN AR B R R AL RN AR R AR AN R R KA R FERSE

Use the dinitial latching theorem to prove the base case, n = 0.
AFBXARSERRRSB AR ARG ARSI R IR R BRI RRARARR LR ER SR A IR R BN R ESY T A ERN R RS R ARI R E R %

set_goal ([, "((((t2_a + d0) + d1) + 0) <= (MIN(tnext_a.tnext b)) ==>
DURING(t1_a + d0,((t2_a + d0) + d1)-+ O)(\t. “q t)) ");

expandf (REWRITE_TAC [ADD_CLAUSES]):;

expandf (ACCEPT_TAC latching_thm);;

let base_case = save_top_thm "base_case';;

% BRAPEREXRRRXESERR AR R RN EARE RN AR SN RS A R AR S S ARSI RS AR A AR I AT RS RN I ERE R AP R B S

Prove by Inductien that “"q" retains its value for an arb1trary length

of time until the new input data arrives.
ttt“¥"tl"ttttt‘t‘tttt(‘altttt!*‘##t“-#t‘l#t"!*‘#‘#t!#‘tt‘t#*tttttt' %

set_goal ([T, "!n. ((((t2_a + d0) + d1) + na) <= (MIN(tnext a.tnext_b)) ==>
DURING(t1_a + d0,.((t2_a + d0) + d1) + a)(\t. “q t)) ")i;

expandf (INDUCT_TAC ):;

expandf (ACCEPT_TAC base_case);;

expandf (IMP_RES_TAC n_imp_SUCn)::

Tet induct_thm = save_top_thm "dinduct_thm’ :;
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se the maximum value of n which generates a true antecedent to get
the desired theorem of behaviour of "q" over an interval.

n extend the upper limit of this interval during which "q" retains its
lue by propagating the through both gates and using the latching

sumption,
t-l"-.t"ll!‘.tt'tlt‘l"‘#!t##ﬂ!t‘llt".‘-tt"“'tttt!.'i"‘l-lit“-“ %

ain_result =

a_swap = SPECL ["((t2_a + d0) + d1)™; "n"] ADD_SYM

thm_swap = (GEN “n:num” o SUBS[n_swap] o SPEC_ALL) dinduct_thm

as = ASSUME "((t2_a + d0) + dl) <= (MIN(tnext_a,tnext_b))"

simp = MATCH_MP SUB_ADD as

num_term = "(MIN(tnext_a.tnext b)) - ((tZ2_a + dgy - d1)"

spec_thm = SPEC num_term thm_swap

res = REWRITE_RULE [simp:LESS_EQ_REFL] spec_thm

prop_thl = PROPAGATE res gbar_fn_q

prop_th2 = SHIFT_RULE prop_thl

res_ex_0 = PROPAGATE prop_th2 a_fn_gbar

chop_di = (SPECL ["(MIN(MIN(tnext_a,tnext_b), tnext_b) "s"tnext_a":"d1i"]
o GEN_ALL) MIN_RULE_1

res_ex_1 = NARROW_RULE_TOP res_ex 0 chop_d1l

res_ex_2 = MIN_of _MIN_simo res_ex_1

res_ex_3 = USE_INEQUAL 1atqhing_ass. res_ex_2

_EXTEND_RULE q_1is_low (SHIFT_RULE res_ex _3):;

e . T

.7~ DURING(ti_a + d0,(MIN(tnext_a,tnext_b)) + d0)(\t. "q t)




% t.ut:tn-“.--‘ttt##.t----tt-att-n-'-QU.--t-a-t-tt‘.---t-..uttat‘un-tto"

First trivial branch corresponding to the condition:
‘ "7 {(r2_a + d0) <= tnext_b)"

“‘.‘.‘.".."‘l.““"“'.“"'..'l.“-.‘--..."."'.""..'....“"-“ %

let triv_branch_1
Tet branch_2_ass
in
let gbar_0 = USE_INEQUAL branch_2_ass gbar_T_0
and MIN_next b = SPECL ["tnext_a:num": "tnext_b:num"] (GEN_ALL MIN_ less_2)
in

ASSUME “~ ((t2_a + d0) <= tnext_b)"

let gbar_1 = NARROW_RULE_TOP gbar_0 MIN_next_b
in
let q_0 = PROPAGATE ao_fn_gbar (SHIFT_RULE gbar_:)
and min_elim =
Tet xm = (SPECL [“"tnext_a":"MIN(tnext_a.tnext_b)":"d1"] o GEN_ALL)
MIN_RULE_2
and min_of_min = GEN_ALL (MATCH_MP leq_imp_min MIN_less_eq)
in
REWRITE_RULE [min_of_min] xm
in :
let g_1 = NARROW_RULE_TOP a_0 min_elm
in
Tet g_2 = USE_INEQUAL latching_ass a_l
in

SIMP_EXTEND_RULE q_is_low (SHIFT_RULE q_2)::

% "I!t*ttt‘t'I‘i#t‘#?*llltt‘."l!t‘#!t"'!!ll‘tl'*t‘lt‘tttl&#‘tl"'tt‘l“
Second trivial branch corresponding to the condition:
"7 (((t2_a + c0) + d1) <= MIN(tnext_a. tnext_b)}"

‘l.l‘#l'#lttt*“#tt#'illttiii*:tl*t‘t‘#--“ltttlt##*t‘!lt**iltti#*‘t*tn* %

let triv_branch_2 =

Tet afF_M = ASSUME "~ ({{t2_a + d0) + dl) <= MIN(tnext_a, tnext_b))"
in '

Tet aF_M1 = REWRITE_RULE [Sym LESS_eq_NOT] af_M

in
Tet aF_M2 = MATCH_MP LESS_IMP_LESS_OR_EQ aF_M1
in
let gbar_M0 = NARROW_RULE_TOP gbar_T_1  aF_M2
in
let q_MO = PROPAGATE q_fn_gbar gbar_MO

aqd MIN next_a = SPECL ["tnext_a:num": "tnext_b:num"] (GEN_ALL MIN less_1)
1;: q_M1 = USE_INEQUAL MIN_next_a q_M0 '

1;2 M1 = USE_INEQUAL (ASSUME "((MAX(tl_a + d0.t1_b)) + d1) <= t2_a") q M1
S;;P_EXTEND_RULE q_is_iow (SHIFT_RULE M1);;

% *‘1.“*‘&!"!‘***'*%!*“**!“*U‘!'*l¥i*lktl"‘**#‘**‘!-‘Q*I'."l!i#**¥¥‘.*-

Comoine the results for the trivial brancnes with the main resuit.

tlsttisuvt-tttt**m*-t--:*;wtxttlttutlttttt-ntt:mtt:x':-ttta-#.t*tttt!t-tl* %

Tet q_thm =
Tet resT = DISCH "((t2_a + d0) + d1) <= (MIN(tnext_a.tnext_b))" main_resuit
and resF = DISCH ""((t2_a + d0) = d1) <= (MIN(tnext_a,tnext_b))"
triv_branch_2
in
let thm_0 = CASES_RULE resT resfF
in
Tet thm_0_T = DISCH "(t2_a + d0) <= tnext_b" thm_0
and thm_O0_F = DISCH ""(t2_a + d0) <= tnext_b" triv_branch_1
in

CASES_RULE thm_0_T  thm_0_f ::
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Can deduce the equivalent thm for “"gbar" by using the relationship
between "q" and "gqbar" in "gbar_fn_q".
We narrow the resultant interval so that the resultant theorem does not

reflect dependency on the value of “"d",
SESENRGERRENUABIRANBARER XA PSS FRAI LIRS RSN ENBENADES NS D EN NSNS P AN N SIS RS AR %

let gbar_thm =

let qbar_res PROPAGATE q_thm gbar_fn_q

and chop_d0 (SPECL ["MIN(tnext_a.tnext_b)";"tnext_b":"d0"] o
GEN_ALL) MIN_RULE_1

in

let gbar_res0 = NARROW_RULE_TOP gqbar_res chop_d0
in

let qbar_resl = MIN_of _MIN_simp gbar_res0

anda bot = (SPECL ["t1_a"; "d0"; "t1_b"] o GEN_ALL) MAX_RULE_1
in

let gbar_res2 = NARROW_RULE_BOT gbar_resl bot

in
SHIFT_RULE qbar_res2;;

gbar_thm =
|- DURING
(((MAX(t1_a.tl_b)) + d0) + d1,(MIN(tnext_a.tnext_b}) + di)
(\t. ghar t)

% REEXSEERESRAEREAREEZERRARARS A AR AN B R B ERE R E R R R R RIS FSAAIE S IR SRR AR R AL B RTINS

We now form a theorem stating the behaviour of "q" and "gqbar" for "d = F"

We introduce "d" and "~d" for the data values "T" and "F" on the outputs
"q" and "gbar".

We change the lower limit of the interval for "q" so that it will yield

a suitable value under symmetry,
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let gq_and_gbar(Q =

let q_d_thm, dbar_d_thm =

Tet gbar_T = (SYM o CONJUNCT 2 o SPEC "(qbar:’signal) (t:num)") EQ_CLAUSES
and q_F = (SYM o CONJUNCT 4 o SPEC "(q: signal) (t:num)") EQ_CLAUSES
and d_F = ASSUME "d = F"

in

Tet T_is:NOTd = (SYM o PURE_REWRITE_RULE[NOT_CLAUSES] o all_BETA_RULE o
AP_TERM "\t.” t ") d_F

and F_is_d = SYM d_F
in

let q_fn_d = PURE_REWRITE_RULE([F_is_d] q_F

and gbar_fn_d = PURE_REWRITE_RULE[T_is_NOTd] gbar_T
in

(PURE_REWRITE_RULE_1 [q_fn_d] gq_thm,
PURE_REWRITE_RULE_1 [gbar_fn_d] gbar_thm)

in

Tet ti_a0 = (SPECL["tl_a"; "t1_b"] o GEN_ALL) MAX_great_eq
in

let t1_al = POST_ADD "d0" t1_al

and add_th = SPECL["((MAX(t1_a.tl b)) + d0)": "d1"] LESS_EQ_AOD
1;: ar_th = LEQ_TRANS tl_al add_th

1;: q_d_thml = NARROW_RULE_BOT q_d_thm nr_th

Cgad g_d_thml gbar_d_thm::

q_and_gbarg =
| - DURING
(((MAX{t1_a.tl_b)) + d0) + dil,(MIN(tnext_a.tnext_b)) + d0)
(M., gt =d) /\
DURING
(((MAX(t1_a,ti_b)) + d0) + d1,(MIN(tnext_a.tnext_b)) + d1)
(\t. gbar t = d)
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USE LATCH SYMMETRY

We use the symmetry of the latch to deduce the converse theorem
for "d = T" .

This involves swapping "a" and "b", "q" and "gbar", "d0" and "d1",
“tl_a” for "t1_b" etc,

tt‘tl'tl'#tl“.‘“lt"ltttl.l.ltt-.tt-t"'l‘t‘U‘.t'ttt‘#‘t.ltt.‘#‘t.!"“! %

tet converse_thm =
let converse_thmQ =
(INST [("b pum->bool”,"ainum->bool”);("a:num->bool" . "b:num- >bool")] o
SPECL{"t1_b";"t2 _bUi"tnext_b";vtl_a";"t2 -a":"tnext_a"} o
GENL ["t1_a":"t2_a":"tnext_a";"t1_b";"t2_ _b"i"tnext_b"] o
SPECL["qbar"'"q"-"dl"’“dO"] )
GENL ["g":"gbar";"d0";"d1"] o
SPEC ""d" o
GEN "d") (DISCH_ALL q_and_gbarg)
in
tet latch_eq =
let ¢ = CONJUNCTS_CONV ("NOR2(a.abar.d0.q) /\ NOR2(b.q,d1,gbar)".
"NOR2(b.a.d1.gbar) /\ NOR2(a.abar.d0.q)" )

in
REWRITE_RULE[Sym LATCH] c
in
Tet th = SUBS [SYM latch_eq] converse_thmo
in

PURE_REWRITE_RULE [NOT_CLAUSES] th::

converse_thm =
-0 < dl ==
((MAX(t1 b + di,tl_a1) + d0) <= 12_b ==>
LATCH(a,b.q.qbar,d0.d1) /\
GATA_AVAILABLE(b.d.tl_b,t2_b,tnext_b) /\
DATA_AVAILABLE(a, d.t1_a.t2_a.tnext_a) ==
("d = F) ==
DURING
(((MAX(t1_b.t1_a)) + d1) + dO,(MIN(tnext_b,tnext_a)) + di)
(\t. gbar t = "d) /\
DURING
(((MAX(t1_b,t1_a)) + di) + d0, (MIN(tnext_b,tnext_a)) + d0)
(\t. gt = d)
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We now deduce theorems for both "d = 7" and "d = F",
The form of the latcning assumption differs for "d = T" and "d = F"
"((MAX(tl_a + d0,t1_b)) + dl) <= t2_a"
and "((MAX(tl1_b '+ dl,tl_a)) + d0) <= t2 _b"
8y assuming a more general condition:
"(((MAX(t1_a,tl_b)) + d0) + dl) <= MIN(tZ a,t2 b)"
we can have the same latching assumption in both theorems.
We also rearrange some terms in the theorem for "d = T" (deduced using

circuit symmetry)
EXEBTANBENIAEER DB ESRERFRB AR SRR RN EA SRS A IR B EUBEI S FI SRR A BN RN EER BN NS AN RN RS, %

let d_eq_T, d_ea_F =

let cont_dT, cont_dF =
let mx_mn_0 = ASSUME "(((MAX(tl_a,ti_b)) + d0) + d1) <= MIN(t2_a.t2_b)"

and min_a = (SPECL["t2_a"; "t2_b"] o GEN_ALL) MIN_less_1

and max_a = (SPECL{"t1_a”; "d0"; "t1_b"] o GEN_ALL) MAX_RULE_1
in :

let max_a0 = POST_ADD "d1" max_a
in

tet min_b = (SPECL["t2_a"; "t2_b"] o GEN_ALL) MIN_‘ess_2

and max_b = (SPECL["t1_b"; "di1": "t1_a"l o GEN_ALL) MAX_RULE_1
n

et max_b0 = POST_ADD "d0" max_b
in

let max_bl = (PURE_REWRITE_RULE[ADD_ASSQOC] o
SUBS [ SPECL["d1"; "d0"] ADD_SYM ] o
PURE_REWRITE_RULE[Sym ADD_ASSOC] o
swap_x "tl_b" “t1_a") max_b0
in
(LEQ_TRANS (LEQ_TRANS max_bl mx_mn_0) min_b,
LEQ_TRANS (LEQ_TRANS max_a0 mx_mn_0) min_a)

in

let Tthm_1 = PURE_REWRITE_RULE [cont_dTiIMP_CLAUSES] converse_thm

and Fthm_1 = PURE_REWRITE_RULE [cont_dF:IMP_CLAUSES] (DISCH_ALL q_and_gbar0)
in

let Tthm_2 = (PURE_REWRITE_RULE[ADD_ASSOC] o
SUBS [ SPECL["d1": "d0"] ADD_SYM ] o
AURE_REWRITE_RULE[Sym ADD_ASSOC] o
* swap_x "t1_b" "ti_a" o
swap_n “"tnext_b" "tnext_a" ) Tthm_1
in
(Tthm_2, Fthm_1);;

% ........................................................................
d_eq_T =
j-0 < dl ==
LATCH(a.b.g.qbar.d0.d1l) /\
DATA_AVAILABLE(b.d.tl_b.t2_b.tnext_b) /\ -
DATA_AVAILABLE(a, d.tl_a.t2_a.tnext_a) ==
('d = F) ==
DURING
{((MAX{tl_a.tl_b)) + d0) + ol.(MIN(tnext_a.tnext_b)) + dl)
(\t., abar t = “d) /\
DURING
(((MAX{tl_a.t1_b)) + d0) + d1.(MIN(tnext_a.tnext b)) + dO)
(\t. gt =4d)
d_eq_F =
j- 0 < d0 ==

LATCH(a.b.qg.gbar.a0.d1} /\

DATA_AVAILABLE(a. d.t1_a.t2_a.tnext_a) /\
DATA_AVAILABLE(b.d.tl_b,t2_b.tnext_b) ==>

(d:F) ==

DURING

(((MAX(t1_a.t1_b)) + d0) + di,(MIN(tnext_a,tnext_b)) + dO)
(\t. gt =d) /\

DURING

(({MAX(tl_a.t1_b)) + d0) + d1,(MIN(tnext_a,tnext_b)) + dl)
(\t. gbar t = "d)
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DEDUCED BEHAVIOUR OF LATCH

We combine the theorems deduced for "d = T" and "d = F" to prove

a theorem giving the behaviour of "g" and "gbar" for any data value "d"
We put the theorem into the form:

delay and timing conds ==
Tatch implementation ==>

input-output behaviour
“ttt!!#."".#‘.t't‘t.ttttt.ltttt't‘lt‘t‘.t‘t*ittt!tt‘tt.t.‘ttlttti!tttt. %

let final_thm =

Tet conds = "0 < d0 /\
0 < dl /\
(((MAX(t1_a,t1_b)) + d0) + d1) <= (MIN(t2_a,t2_b))"

and lat = "LATCH (a,b,q,qbar,d0,d1)"
and ins = " DATA_AVAILABLE(a,(' d).tl_a,t2_a,tnext_a) /\
DATA_AVAILABLE(b,d,t1_b,t2_b,tnext_b)"

in

let dT = (REWRITE_RULE (map ASSUME [conds; lat: ins]) o DISCH_ALL) d_eq_T
and sw1tch (\thm. CONJ (CONJUNCT2 thm) (CONJUNCT1 thm))
and dF = (REWRITE_RULE (map ASSUME [conds; lat; ins]) o DISCH_ALL) d_eq_ F
in

Tet d70 = (DISCH "d" o switch o UNDISCH) dT

in

let thm = CASES_RULE dT0 dF

in

(DISCH conds o DISCH lat o DISCH ins) thm;;

final_thm =

|- 0 < d0 /\
0 < d1 /\
(((MAX(t1_a,t1_b)) + d0) + d1) <= (MIN(t2_a,t2_b)) ==>
LATCH(a,b,q,gbar,d0,d1) ==>
DATA_AVAILABLE(a, d,t1_a.t2_a,tnext_a) /\
DATA_AVAILABLE(b,d,t1_b,t2 _b, tnext _b) ==
DURING
(((MAX(t1_a.t1_b)) + d0) + dil.(MIN(tnext_a.tnext_b)) + d0)
(M. gt =d) N
DURING
(((MAX(t1_a.tl_b)) + d0) + d1.(MIN(tnext_a,tnext_b)) + di)
(\t. gbar t = “d)

------------------------------------------------ LT T I Sy
save_thm ("final_thm*, final_thm);;

close_theory();;
quit():;



Appendix 2

Delay of Gates in Bipolar Gate Array

Typical gate delay in nanoseconds
as a function of fan-in and fan-out.

Fan-out ‘

4.8 7.3 9.8 123 | 149 | 174

53 7.8 10.3 | 129 | 154 | 179

8.1 10.7 | 13.2 | 157 | 18.2 | 20.7

Fan-in 87 | 112 | 137 | 16.2 | 187 | 213

115 | 140 | 165 | 19.1 | 216 | 24.1

120 | 145 | 171 | 196 | 22.1 | 24.6

149 | 174 | 199 | 224 | 249 | 275

VIN]OIVN] D] W|IN] ~—

154 | 179 | 20.4 | 229 | 255 | 28.0




