Technical Report A

Number 125

Computer Laboratory

An operational semantics for Occam

Juanito Camilleri

February 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1988 Juanito Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

An Operational Semantics for occam

Juanito Camilleri
University of Cambridge
Computer Laboratory
New Museums Site
Pembroke Street
Cambridge CB23QG

Abstract

occam is a programming language designed to support
concurrent applications, especially those implemented on
networks of communicating processors. The aim of this paper is
to formulate the meaning of the language constructs of occam
by semantic definitions which are intended as a direct
formalisation of the natural language descriptions usually
found in programming language manuals [Inmos 3]. This is
done by defining a syntax directed transition system, where the
transitions associated to a phrase are a function of the
transitions associated to its components. This method is by no
means novel. The concepts used here were introduced in [Plotkin
8] and are applied in [Plotkin 9] where an operational semantics
for CSP [Hoare 2] was presented. The operational semantics for a
subset of Ada is defined in [Li 6], where tasking and exception
handling are modelled. For simplicity only a subset of occam s
defined. Timing, priority, replicators and BYTE subscription are
omitted. Other features of occam which deal with the
association of components of an occam program with a set
of physical resources (i.e. configurations) are also omitted
since they do not effect the semantic interpretation of a
program.

Contents

1. The syntactic categories.

2. The syntax of the language.

3. The definition of a transition system.

4. The definition of the static semantics.

5. The definition of the dynamic semantics.

6. Conclusion

7. An Appendix to define certain notations used in the

paper.

1 The Syntactic Categories.

1. numbers Num ranged over by N.
2. variable identifiers id oo

3. locations Loc oo I

4. channel identifiers Chid oo chi.
5. channels Chan oo ch.
6. abstractions Abs o abs.
7. integer expressions lexp oo a.

8. boolean expressions Bexp oo b

9. conditional commands Ccom oo cc.
10. guarded commands Gcom oo gc.
11. commands Com o C.
12. declarations Dec oo d
13. actual parameters Acts oo acts.
14. formal parameters "~ Forms oo forms.

2 The Syntax.

We assume that the syntactic categories Num, Id, Chid are given. Id is an infinite
set of variable identifiers while Chid is an infinite set of channel identifiers.
Locations (Loc) can be thought of as "abstract addresses”. Channels (Chan)
_can be viewed as "abstract channels” via which communication takes place. We
do not wantto commit ourselves to any machine architecture, but, only to the
needed intuitive properties. A better way to think about locations or channels, is
as entities which have a lifetime (or extent); they are created by a declaration
and they continue to exist throughout the execution sequence, unless their
existence is terminated by block exit. Finally an abstraction (abs) takes the form
Aforms.c which is a syntactic representation of a set of formal parameters
together with the body of the abstraction c.

Notation
Suppose S issome syntactic class with typical element s then s ‘denotes a finite

list (possibly empty) of elements of S. Therefore s = (s,...,5sn) where for all
1=i=n, s € 5. Note ()denotesthe empty list.

The following rules illustrate the nature of the syntactic categories (7-14).

lexp

a.=NIXla+ala-ala*al..

Bexp

b::=TRUE I-FALSEl a =al bORb I NOTb IbANDbla<=ala>=al..
Ccom |
ccii=b—wclcec|] cc

Gcom

gc:i=chi?X —»clgcflge

Acts
acts :: =

o
1<

Com

cu=skiplstopiX:=alc;clcllc IIFcciWHILE b ¢l ALT gc |
chi? X1 chitald;cl X(acts)

Dec

d::=DEF X =al VAR X | CHAN chil PROC X(forms) cl1d;d

Forms

forms :: = VALUE X, VAR X, CHAN chi

For ease of presentation the occam syntax has been altered in this paper. For
example:

SEQ PAR
co; ¢t denotes o and colicy denotes o
€1 <

We are replacing n-ary combinators with binary ones and have altered the
syntax of alist of parameters so that VALUE, VAR and CHAN parameters occur
in that order.

3 Definition of a transition system

Definition 1: Atransition system is a triple <T', T, -->> where:
Tisthe set of configurations.

T C I'isthe set of terminal configurations.

--> C I'? isthetransition relation such that V€T VB €T — (B --> B.

4 Static Semantics

The aim of the static semantics is to distinguish the well-formed commands from
those commands which are not well-formed. A command is not well-formed if:-

(a) it consists of two processes running in parallel such that they both can
write to a common variable. Forexample y:= 10 Il y:= 5.(None the
less two processes can read from a common variable).

(b) there are two communicating processes which do not conform with the
concept that a channel is a unidirectional and indivisible means of
communication. That is

i. A channel should not be used for input and output by the same
process.

ii. The same channel cannot act as an input (or output) to more
than one process.

(c) it contains a call to a process such that the actual parameters do not
conformin nature and number to the formal parameters.

Since a call to a process must conform to its declaration we require a command to
be well-formed relative to some static environment SEnv which associates
process names with their declarations as defined hereafter. Let

SEnv, = | —> Abs where | C. Id then we candefine

2 SEnv, (=Id—>fi Abs)

1C W
fin

SEnv

We shall use a to range over SEnv.

We need to define a transition system <Tstat, Tstat, -~ >stat> Which elaborates
the static environment whenever a procedure declaration is encountered. We
extend Dec by adding the productionrule:

di:=a
What this means is that the abstract syntax of declaration configurations

includes static environments; it does not mean that the abstract syntax of
declarations does so.

{<d>}
{<a>}

Lstat

I

Tstat

~>stat © Tstat % Tstat

Rule
a = <PROC X (forms)c > -->gat < a[X+—> Aforms.c] >
The above rule is read — Given the static environment a the definition of the

abstraction PROC X (forms) ¢ is well-formed and yields the augmented
environment a[X —> Aforms.c].

Let the property of being well-formed be denoted by .

For example a = ¢ means that ¢ is well-formed relative to the static
environment a.

Before defining I on the structure of the syntax let us define the following
functions which will be required in the definition of .

RI(c) — isthesetof read variables of command c.

Wi(c) — isthe set of write variables of command c.

INCH(c) — isthesetof channel identifiers being used for inputin c.
OUTCH(c) — isthesetof channelidentifiers being used for outputin c.

We also need to formalise the meaning of actual parameters conforming in
nature and number to formal parameters. Consider the command X{acts) such
that a(X) = Aforms.c. Note that acts is a list of actual parameters and forms is
a list of formal parameters. These two lists should have the same length (say n).
Then for all 1= i =n, the nature of a; € acts must conform to the type
expected by fi € forms. We use = actsfforms to denote that the actual
Earamﬁeters conform to the corresponding formal parameters as defined
ereafter.

EOT0 where () isthe empty list.

E=afVALUE X' where a is an integer expression and X' is a VALUE
parameter.

=XTVAR X" where X is an identifierand X' is a VAR parameter.

= chi T CHAN chi’ where chi is a channel identifier and chi' is a CHAN
parameter.

= (a,, act) 7 (f,, form)

The following is a definition of RI, WI, INCH, OUTCH by structural induction,
expressed in tabular form, instead of using the format of rules, to keep the
definitions concise.

For integer expressions

RI & {x} RI(ao) U Ri(a,)

whereop € {+, - ,*, ..}
WIi(a), INCH(a), OUTCH(a) are all .

For boolean expressions

ap relop a,

RI %) RI(b) RI(bo)U Ri(b,) | Ri(ac) U RI(a,)

where t € { TRUE, FALSE }
relop € {=, <= ,>=, ..} and bop € { AND,OR}

Wi(a) , INCH(a), OUTCH(a) are all &.

For conditional commands

cCo [l cc
RI RI(b) U RI(c) Rl(cco) U Rl(cc,)
Wi Wi(c) Wi(eco) U Wilec,)
INCH INCH(c) INCH(cco) U INCH(cc,)
OUTCH OUTCH(c) OUTCH(cco) U OUTCH(cc,)

For quarded commands

chi?X —» ¢ gcollgc,
- —
RI Ri{gco) U RI(gc,)
Wi I {X} U Wic) Wi(gco) U Wi(gc,)
INCH I {chi} U INCH(c) INCH(gco) U INCH(gc,)
OUTCH I OUTCH(c) OUTCH(gco) U OUTCH(gc,)

For commands

sk.ip stop | chi? X | chi!a Co i C
RI %) %) %) Ri(a) . Rl(co) U RKc,)
Wi & %] {x3 & Wi(co) U Wi(c,)
INCH l @ o | iy | o INCH(co)U INCH(c,)
OUTCH l %) %) %) {chi} | OUTCH(co)UOUTCH(c,)

RI RI{co) U RI(c,) Ri(cc) RI(a)
Wi Wi(co) U Wi(c,) Wi(cc) {x3}
INCH INCH(co) U INCH(c,) INCH(cc) @
OUTCH OUTCH(co) U OUTCH(c,) | OUTCH(co) @

| WHILE b ¢ VALTgc d;c
RI Ri(b) U RI{c) Ri(gc) Ri{c)
wi Wi(c) Wi(gc) Wi(c)
INCH INCH(c) INCH(gc) INCH(c)
OUTCH OUTCH(c) OUTCH(gc) OUTCH(c)

To define INCH(c), OUTCH(c), RI(c), Wi{c) when ¢ is a call to a process P:
Suppose a(P) = Aforms.c where the list of formal parameters

forms = VALUE X', VAR X", CHAN chi'.
The call to the process P should take the form P(acts) where the list of actual

parameters acts = n, X, chi conforms in nature and number to the
list of formal parameters (ie. = acts T forms as discussed previously).

P(a, X, chi)
R RICC [X / X'T)
wi Wi [X/ X"T)

INCH | INCH(c [chi / chi'l)

OUTCH I OUTCH(¢ [chi / chi'l)

Finally we can define a ¢ by structural induction.

We assumethat al-a and ab b hold foranyinteger or boolean expression.

For conditional commands

akc a kceg alcq

akb —» ¢ akcepl] ceq

For quarded commands

aklc a k- gc a b gq

a bk chi?X —» ¢ a bk ge] ga

For commands

a Fskip a Fstop ak-X:ii=a a b chi 72X al-chila
afkcc akc abgc akcy abkcy
a IFcc a —WHILEDb ¢ ab ALT gc ak ¢y ;
at-cg atc¢y
if (Wi(co) U Rl(cg)) N Wi{cy) = &
abcoll 1 and (WIi(c1) U Ri(c)) N Wil(ceg) = @
and INCH(cg) N OUTCH(¢p) = &
and INCH(c;) N OUTCH(c) = ©

and INCH(cg) N INCH(cp) = &
and OUTCH(cg) N OUTCH(c;) = @

al d-~->¢ata adlc

ak d;c

................ i a(X) = Aforms.c and k= acts 1 forms
a - X(acts)

5 Dynamic Semantics

Semantic Domains

Given the syntax and syntactic categories defined earlier the following semantic
domains can be constructed to be used in the dynamic semantics. The first
semantic domain represents that section of the environment which associates
a finite set of identifiers with numbers, locations or abstractions. Let

LEnv, = | — (Num + Loc + Abs) wherel C__Id then we can define

=fin

LEnv = X LEnv, (=Id —fin (Num + Loc + Abs))

Ic id
tin

We shall use p to range over LEnv.

The next semantic category to be introduced represents the remaining section of
the environment which associates channel identifiers with abstract channels. Let

CEnvg, = CH — Chan where CH C. Chid then we can define

=fin

CEnv = X CEnv,, (= Chid —fn Chan)

CH C_ Chid
Tn

We shall use y to range over CEnv,

The semantic domain which represents the store is defined as follows:

Storesp = L —> Num where L C, Loc then we candefine

fin

Stores = X Storesy (= Loc —>fi5 Num)

L(_;‘" Loe
We shall use 0 torange over Stores.
The semantic domains LEnv and CEnv give the notion of an environment when
paired to form the semantic domain Env as used hereafter.
Let Env = (LEnv, CEnv)then Envis made up of:

1. the associations between a finite set of identifiers (found in LEnv), with
either locations, numbers or abstractions.

2. the association between a finite set of channel identifiers (found in CEnv)
with abstract channels.

Env is ranged over by (p, y) with the understanding that p ranges over LEnv
and y rangesover CEnv,

10

In the above model of an environment the distinction between channel
identifiers and variable identifiers is explicit (i.e channel identifiers and
identifiers are syntactically distinguished). One can adopt a different model
where any identifier falls under one class hence:

Env = Id —>fj5 (Num + Loc + Abs + Chan)
In this case an identifier must be “tagged” with a type (i.e whetheritis

associated with a channel or otherwise) and “type checking” isrequired.

Going back to the original model, in the environment (p, y) an identifier X can
be associated with :-

(a) anumber — when X is defined to be constant., Therefore
pX) = n.
(b) alocation — when X isdefined to be a variable. Therefore p(X) = I.

Given a store 0 with domain L (denoted by o::L) such
that | € L then o(l) = n, where n isthevalue held
in location |I. However if | isintherange of p, but,
not in the domain of o ,then the dangling
reference problem is encountered. .

() anabstraction — when X isthe name given to a process of the form
PROC X (forms) c. Thatis p(X) is denoted by A forms.c.

On the other hand a channel identifier chi is associated with an abstract
channel. Thatis y(chi) =ch.

Before proceeding with the dynamic semantics it is useful to discuss the
declaration of constants, variables, channels and abstractions at this stage. A
declaration in 0ccam is used to introduce an identifier for use in the current
block. There are channel identifiers. These are introduced by a CHAN declaration
and associate a channel identifier with an abstract channel. There are also
identifiers which refer to locations (or constant values) which are introduced
by a VAR (or DEF) declaration. Finally there are named processes which are
introduced via a PROC declaration. When a new identifier X is declared
within a block, it has scope only within the block. If X already exists in the
environment outside the block of the new declaration then the latter
declaration hides the former one. Hence a gap is created in the scope of the
former declaration of X. We use the following notation to denote the above.

1"

Notation
Let BB meanthat B hasdomain B.

Forany By, B; and fo :: By, By ::B; wedefine § = Bo[B] :: BoU B, by:

puxy if (X €By)

Using the above definition we denote the updating of environment
(po» Yo) :: (To, Co) by (p1,y1) :: (T, C1) as (polp1 L yolyi]) (T UL, (CoUCy))

For each syntactic category we define a transition system.The transition relations
are relative to the environment. Therefore if s is an element of some syntactic
category we write

(p,y) + <s,0> -->5 <s',o'>

and read — In a given environment (p, y) one step in the execution of s in
store g yields s’ and store ¢’. For the purpose of keeping the rules concise, certain
rules deal with more than one possible outcome of an evaluation. For example

(p,y) H <s5,0> -->5 <s',0'>1 <s5",0">

isread — Inenvironment (p,y) one step inthe evaluation of s in store o can
eitheryield s’ and store ¢’, or, s and store ¢"'.

Note : In any of the transition rules that follow, failure
denotes failure to satisfy a boolean condition while abortion
denotes the explicit failure to reach a final state (i.e. the explicit
non-termination of a construct which leads to the abortion of a
program)

12

Integer Expressions

For integer expressions we have the transition system <I'5,Ta, —>4 > such

that
I'y = {<a,0>} U Z
Ta = Z

Evaluation of numbers.

(p,Y) = <N,0> -->; n

Evaluation of identifiers.

(P:Y) }_ <Xl o> ">a P(X)

(oY) <X, 0> >, o p(X))

Evaluation of binary operations

Sum

(p,y) F <ag, 0> -->5 <agp, o>

(p,Y) F <ag+aq,0>-->5 <ag' +a1,0>

(p.Y) - <aq,o0>->5 <ay’, o>

(p,Y) - <n+ajy, 0>-->5 <n + a1’, 6>

(p,Y)F<n4+m,o>->5 n+m

Similarly for - * e.t.c

13

where n is the number
representing the piece of syntax N.

if p(X) isanumber or abstraction

if p(X) = 1 and o{l) isanumber

Lists of Integer Expressions

For lists of integer expressions we have the transition system <Ta, Ta, -->a >
such that

s = {<a,o>}U Z
Ta = 2

(p.V)F <a,0>->5 <a,o> | n

(p.Y) - <(a,a), 0> -->a <(a’,a),0>1 (n,<a,o>)

(py) H<a,0>->a n

(P:Y)}—<(g:())/0> “>g . _g_

Boolean Expressions

For boolean expressions we have the transition system <I'y, Tp, -->p > such
that

I'y = {<b,o0>} U {true, false}
Tpb = {true,false}

Rules

(p, y) H<TRUE, 6> -->}, true

(p.y) = <FALSE, 0> -->}, false

14

Relational operators

(p,y) F <ag, 0> -->5 <ag’, 0>

(p,Y) = <ag=a1,0> —->p <ag'=ay, 0>

(p.Y) F <ay, 0> ->5 <ay,0>

(P/ Y) F<m=a1,0>-->p <m=a1',g>

(p,Y) -<m =n,o>-->p, true if m=n

(p,Y) - <m=n,o>-->, false if m# n

Similarly for >= <= et.c

Boolean operators.

NOT

(p,y) = <b,0> -->p true | false |l <b’,o>

(p, Y) = <NOT b, 0> -->p false | true | <NOTb’, o>

(p,y) F <bg, 0> -->} false | true | <bg’, 0>

(p,y) = <bpAND by, 0> --> false | <by, 0> I<bg' AND by, 0>

(p,) = <bg, 0> -->p true | false | <bg’, 0>

15

Conditional Commands

For conditional commands we have the transition system <D, Tee, ~>cc >
such that

Tee = {<cc, 0>} U {<c, 0>} U {failure}
Tee = {<c, 0>} U {failure}
Rules

(p,Y) - <b,a> -->p true | false | <b’,0>

(p,yY) F <ccg, 0> -->¢c <c o> | <ccp,o0>

(p,y) F <ceg [lcct, 0> > <c,0> | <ceo' [] ccq, 0>

(p,yY) F <ccp, 0> -->¢ failure

(p,Y) <ceollcct, 0> —->¢ <failure [} ccy, 0>

(p,Y) F <ccy, 0> > <co> | <cct', 0>

(p.y) F < failure[Jcci, 0> ->¢c <c, 0> | <failure [] cct’, 0>

(p,y) b <ccy, 0> -->(failure

(p,y) = <failure[] cc1, 0> -->(failure

Declarations

For Declarations we have the transition system < T4, T4, >4 >. We extend
Dec by adding the production:

d:i={(p, vy

As before this means that the abstract syntax of declaration configurations
gncludes environments; it does not mean that the abstract syntax of declarations
0es so.

I

Iy
Td

{<d>}

{<p.Y)>}

16

Rules

Constant declarations

(p,Y) F<a,o> -->, <a',o>

(p,Y) F<DEF X = n> >4 <(p[X+>nl, y)>

Variable declarations

(p, ¥) F<VARX> >4 <(p[X—>1],y)>

Channel declarations

(p, Y) = <CHAN chi> -->4 <(p, ylchi —> ch])>

Procedure declarations

(p, y) = <PROCX (forms) ¢> -->4 <(p[X > Aforms.c], y) >

Composition of declarations

(p, Y)]"—<do> ">d <d0’>

(P: Y) ‘—_<(90’Y0); d1> ">d <(P0,Yo); d1l>

(p, Y) =<(po, Yo ; (P> ¥)> —>d <(polp,], Yoly,)) >

17

In the case of commands and guarded commands, transitions must be labelled
to specify the direction of flow of information when a communication between
two parallel processes is taking place via a particular channel.

Definition 2: A labelled transition system is a quadruple <I', T, ®, -->>
where:

Tisthe set of configurations.

T C T'isthe set of terminal configurations.

® isasetoflabels.

-> C(I'x®xT)+(I'xI') isthetransition relation.
suchthat VBET VB'€T Vp€d —(B -fb> BY A (B --> 8"

Guarded Commands

For guarded commands we have the labelled transition system
<Tgc Tger Pge, - >gc>. In this case @g¢ = {chi 7 n | n € Num}. Note the presence
of a'label denotes t?lat a communication has taken place.

I‘gc = {<gc,0>} U {<C,0>}

Toe = {‘<Cl 0>}

Rules

y(chi)?n
(p,y) = <chi?X —» ¢, 0> ~>gc <C o[p(X) —>n]>

y(chi)?n
(p.Y) F<gcg, 0> >4 <co'>

ylchi)?n
(p,y) F<gco [lgci, 0> —~>gc <co'>

y(chi)?n
(p,Y) F <gcy, 0> —->gc <co'>

y(chi)?n
(plY)l—— <gC0 [] gC1,0’> ">gC <Cl 0‘>

18

Commands

For Commands we have the transition system < T¢,Tc, ¢, > >
where @c = {chi?n I n € Num} U {chi!n | n € Num}. One understands the
execution of ¢g If ¢y as the interleaved execution of “grains of action” of ¢g and
¢1. For example when ¢p starts a grain of action, it completes it before c1 can
interrupt by interleaving. When two processes running in parallel synchronise to
communicate via some channel chi, (i.e. one process inputs from channel chi,
while simultaneously the other outputs to the same channel), this is considered
as an atomic (unlabelled) transition.

I'c= {<c¢,0>} U {<o>} U {abortion}
Te = {<o>} U {abortion}

(p, V) F<stop,o> -->, abortion

SKIP

(p,Y) F<skip,a> ->. <o>

Assignment
(p:Y) }_— <a, O> "'">a n ' <a‘, U>

(p,y) E<X:i=2a,0> —->¢ <o[pX)—n]> | <a',0>

SEQ
(p,Y) F <cp, 0> —->c <cg',o'> | <o'> | abortion

(p.Y)F<co; €1, 0> —->¢ <cg’; ¢1,0'>1 <cq,0'> | abortion

IF

(p.Y) - <cc, 0> > <, 0> 1<cd,0> | failure

(p,Y) - <IFecc, 0> —~->. <c 0> 1 <IF ¢, 0> labortion

19

(p,y) = <b,o> -->p true | <b', o>

{p,y) = <b, o> -->p false

(p,) F<WHILEDb ¢, 0> -->(<0o>

ALT

(oY) F <gc, 0> > <co'>

(p, V) F <ALTgc, 0> -->¢ <co'>

PAR

(i)
(p,y) <cg, 0> -->¢ <cg',0'> | <o¢'> | abortion

(p,Y) F<collcq,0> —->¢ <co'll ¢1,6'> 1 <c¢1,0'>1 <cy;stop, o>

(if)
(p.Y) F<cy,0> ->¢ <c1,0'> | <a'> | abortion

(oY) FE<coll g, 0> —->¢ <cgll ¢1',0'> 1 <cg, 0> | <co;stop',cr>

(iii)
y(chi)?n ylchi)!n
(p, V) F<cp, 0> —->¢ <cp',0'> (py) H<cy,0> —->¢ <cy', o>
(p,y) E<collcy,a> —->¢ <co’ 1l ¢1',0'>
(iv)
y(chi)’n y(chi)ln
(0, V) - <cg, 0> —->¢ <o'> (p,y) - <cf, 0> > <o>

(p,Y) F<cllcg, 0> —->¢ <o'>

20

(v)
y(chi)?n y(chi)!n
(p,Y) F<co,0> > <o'> (p, V) = <cq, 0> —->¢ <cy', 0>

(p,Y) F<collcg, 0> ~->¢ <ci',0'>

(vi)
y(chi)?n y(chi)in
(p, V) - <cg, 0> —-> <co',0'> (p,Y) F <cy,0> > <o>

(p,y) F <collci, 6> —->¢ <co,a'>

There are similar rules corresponding to rules (iii) - (vi) when cqg is performing an
output and c; is performing an input.

(vii)
y(chi)’n
(p.Y) - <cg, 0> —->¢ <cg',0'>

y(chi)?n
(p,Y) E<cogllcg,o0> —->¢ <cg'lley, 0'>

(viii)
y{chi)!n
(pl Y) - <cg, 0> -->¢ <Co', a>

y(chi)in
(p.Y) F<coll c1,0> —->¢ <cg'licy, 0>

(ix)
y(chi)?n
(p,Y) = <cg, 0> -->. <o'>

y(chi)?n
(p,y) F<collcy,o> —-> <cg,0'>

(x) _
y(ehi)!In
(p.Y) - <cg, 0> —~>¢ <o>

y(chi}ln
(p. V) F<coll ¢y, 0> > <c¢y,0>

There are similar rules corresponding to rules (vii) - (x) when c; is taking partin a
communication.

21

Input

y{chi)’n
(p,Y) F <chi?X, 0> —->¢ <o[p(X) —n]>

Output
(p.Y) F <a,o>-—->5 <a',o>

(p,y) F <chita,o>-->¢ <chila',o

y(chi)ln
(o, Y) - <chiln,o> -—->¢ <o>

Block

Informally, to execute d; ¢ from o:
1. Expand d from o given (p,y) vielding (po,yo) andstore o'

2. Execute ¢ from ¢’ given (plpol, ylyol) yielding o" which is the result of the
execution.

(p,Y) F <d> >4 <d'>

(py)E<d; o> -->. <d"; ¢,o0>

(plpol, YIYol) - <¢, 0> -->. <c’,0'> | abortion

(plpol, ¥lyol) F <¢, 0> > <o'>

(PI y) <(PO,Y0); o> -->. <o'>

22

A call to a PROC

(p,Y) <a,o> -->a n I <a o>

(P:Y)l— <P(_a_=: _)_(____l _c_b_i.)l g=> —->c¢ <P(21)___(l S_h_i.)10> l <P(g‘r él S_b__i_)lg>

() F <P(n, X, chi),0>~>c <cln/XTIX/X"] [chi/chi'l,o>

where p(P) = A(VALUE X', VAR X", CHAN chi").c such that &= acts?forms as
discussed previously. Note: A PROC definition is non-recursive in standard
occam.

6 Conclusion

In this report an interleaving semantics of the main constructs of occam has
been presented. The addition of rules for replicators and BYTE subscription
should be straight forward. On the other hand it is the author's belief that in
order to define the semantics of priority alternation we may require various
changes to the model presented here. This point is currently being examined.

Acknowledgements

| express my thanks to Dr. Glynn Winskel for encouraging me to work on the
subject and for his advice and comments. | would also like to thank
Dr. Alan Mycroft for his helpful feedback. Thanks are also due to Trinity College
who are kindly supporting my stay at Cambridge.

23

7 Appendix

The aim of this appendix is to explain some notation used throughout this paper.

Let A and B be sets.

1. A UB denotes the union of A and B.

2. A+ B denotes the disjoint union of A and B.
3. A (—:f_in B denotesthat Aisa finite subset of B.

4. A —4, B denotes the set of all partial functions with domains which are
finite subsets of A.

5. A — B denotesthe set of all total functions with domain A.

Let A; besets (for 0=i=n) then 2 Ai = Ag + ...+ An

0=i=n

Substitution

f a=(ay..,a,) and b = (b,,..,b,) thenwe use
¢ [a/b] todenote ¢ [a,/b)], ... ,[an/ bnl

where c [aj/ bj] means substitute all free occurrencesofb; in ¢ by aj.

24

8 References

[Dijkstra 1]

[Hoare 2]

[Inmos 3]

[Jones 4]

[Khan 5]

[Li 6]

[Milner 7]

[Plotkin 8]

[Plotkin 9]

[Roscoe -

Hoare 10]

[Roscoe 11]

Edsger.W.Dijkstra. A Discipline of Programming. Prentice-
Hall international Seriesin Automatic Computation.

C.A.R.Hoare. Communicating Sequential Processes.
Prentice-Hall International Seriesin Computer Science.

INMOS Itd. occam Programming Manual. Prentice-Hall
International Seriesin Computer Science.

Geraint Jones. Programming in occam . Prentice-Hall
International Seriesin Computer Science.

Gilles Khan. Natural Semantics. Rapports de Recherche N°601
INRIA SOPHIA-ANTIPOLIS 06560 Valbonne France. Février 1987.

Wei Li. An Operational Semantics of Tasking and Exception
Handling in Ada. Department of Computer Science
University of Edinburgh. December 1981.

Robin Milner. A Calculus of Communicating Systems. Lecture
notesin Computer Science. Springer-Verlag series N°92.

Gordon.D.Plotkin. A Structural Approach to Operational
Semantics. Department of Computer Science, Aarhus
University Denmark. Sept 1981.

Gordon.D.Plotkin. An Operational Semantics for CSP.
Department of Computer .Science, University of Edinburgh.
Internal Report CSR-114-82.

A.W.Roscoe, C.A.R Hoare. The laws of 0ccam programming.
Oxford University. Technical monograph PRG-53.

AW .Roscoe. Denational Semantics for 0ccam. Lecture notes
In Computer Science. Springer-Verlag series N° 197.

25

