Technical Report A

Number 13

Computer Laboratory

Resource allocation and job scheduling

Philip Hazel

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

SUMMARY

The mechanisms for sharing the resources of the Cambridge IBM 370/165
computer system among many individual users are described. File store is
treated separately from other resources such as central processor and
channel time. In both cases, flexible systems that provide incentives to
thrifty behaviour are used. The method of allocating resources directly to
individual users rather than in a hierarchical manner via faculties and
departments is described, and its social acceptability is discussed.

CONTENTS

Introduction

The Cambridge 370/165 system
The scheduling system

Disc space control

Resource allocation
Conclusion

Acknowledgements

References

Appendix A: Historical summary

Appendix B: Resource unit formula

Appendix C: Statistics
Appendix D: Improving users'
E

Appendix Job descriptions

programs

18
21
25
26
26
27
30
32
36
38

INTRODUCTION

"Have ye not known? have ye not heard? hath it not been told you from

the beginning?"
(Isaiah)

The IBM 370/165 system was installed in Cambridge at the beginning of
1972. At that time the 1BM operating system contained no mechanisms for
sharing computing resources amongst a community of users, and the
Computing Service had therefore to develop its own. Some versions of some
of the systems that were developed have been described previously [1,2]1;
however, there have been many changes during the lifetime of the machine.
This paper describes the two resource allocation systems, for processing
resources and for disc store, as they were at the end of 1979. Appendix A
contains a historical summary of the development of these systems.

The work of designing the algorithms for resource control and
implementing them within the existing operating system has involved many
members of the staff of the Computing Service. The present author has had
little to do with this aspect of the system, and is acting here as
raconteur only.

The existence of mechanisms for sharing resources means that
administrative procedures for allocating resources amongst the users must
exist. University Computer Centres in the U.K. are supported on public
funds, largely by earmarked grants. A University, having made a case for,
and subsequently purchased, a given computer system, must then share out
the resources by whatever means it believes is best. The decoupling of
Computer Centre funding from resource allocation introduces a degree of
flexibility in that the use of real money as a means of control can be
avoided. In many universities resource allocation is done by a
hierarchical series of committees, which divide the resources between
faculties, departments, sub-departments, and so on, down to the
individual wuser. At Cambridge, in contrast, resources are allocated
directly to individuals by Computing Service staff, after consultation
with the user's department.

The next section contains brief descriptions of the 370/165 system, the
facilities it provides, and the user population. The following two
sections describe the mechanisms for sharing out processing resources and
disc store respectively. These are followed by a discussion of the
resource allocation procedure.

THE CAMBRIDGE 370/165 SYSTEM

"To give an accurate description of what has never occurred is not
merely the proper occupation of the historian, but the inalienable
privilege of any man of parts and culture."

(Oscar Wilde)

The hardware configuration of the Cambridge 370/165 is shown in figure
1. The system runs under OS/MVT release 21 with HASP. A number of
modifications have been made to improve the performance and facilities of
the system.

Time-sharing is provided using the basic framework of TSO, but with
many modifications. The command interpreter has been replaced in order to
provide the Phoenix command language, which is also available as an
alternative to IBM's JCL in batch jobs. Thus three modes of access to the
system exist: Phoenix sessions, Phoenix jobs and JCL jobs. Up to 120
simultaneously active Phoenix sessions are supported, in five swapping
regions. The regions are necessarily small, to keep down the time spent
swapping so that response times remain good. The main limitation on the
number of simultaneous sessions is swap load; the current limit of 120 is
made possible by local improvements to the swapping software, of which the
most important is the use of spare main store for temporary swapping
space.

The terminal user normally has around 34K bytes of store available in
which to run interactive programs. The usual set of system utilities
normally found in time-sharing systems is provided within this limit,
including Jjob submission, job queue interrogation, output collection,
file store management and text editing. In some cases the programs are
permanently resident in store, and the 34K swapped region is used purely
as work space. The running of interactive user programs is severly
inhibited by the smallness of the swapped regions, and in practice only a
very few, specially written user programs are run interactively.

A local modification to TSO has been implemented to enable a
time-sharing user to acquire a second, non-swapped region from the general
pool of main store in order to run programs such as compilers that require
more than 34K bytes of store. In order to minimize the real time that such
store is in use, interaction with the terminal is normally forbidden to
programs running in the second region. All input must be set up in disc
files before the program is run. Output for the terminal is automatically
spooled on disc by the Phoenix system, and copied to the terminal when the
second region has been released. By this means, programs which require up
to 250K bytes of store and 60 seconds of CPU time can be run directly from
a terminal without impacting on the swap load. A very small number of
privileged users are permitted to interact with programs running in a
second region. Use of this facility can make main store unavailable for
long periods of real time, which affects system throughput. Hence it is
strictly controlled.

mmﬂu OPERATORS
: PRI L1 CONSOLE
: yie

AMS [-5us
MAIN MEMORY

. eight
[} 9 track

] 1600/800
bpi TEN

o MAGNETIC - TAPE
7otrack DRIVES (3420-3, 34201-5)

selector

subchannels

u:_.umi_n:_:m s 556/800
; bpi
, 8 Kbhytes 80 nsec
! BUFFER MEMORY control units 12540 | CARD READER/ PUNCH
_‘:c_n_v_mxo‘. NmN_IN . >=wlz._
370/165 IE:c 1 f ! ONE LINE PRINTER

m channel -

L Cal

p CENTRAL PROCESSOR B Calcomp

o 904 | 1136] PLOTTER

|.|||I_ _ controller plotter

o o o N . . e
i Vo) — block multiplexor channels h contral unit
. — i " |
S| [2880 2880 “ 2821-5(—{1403-N1] TWO
3 ~ I X TR LINE PRINTERS M
H (28] _ - _ !
7 control units “ USER AREA ! o
, a0 ‘ | “ 3501-82] CARD READER
; o e '
by Twm ; | ECMA 34| CASSETTE DRIVE
M ey . 1 _Benson
| 8 string. switching ! PDP 11/34 [1330] PLOTTER
g i
M, 0 | TREND | PAPER-TAPE READER /PUREH
w < 3333 3333] [TREND | .
; B~ [e e e
{ .
i - _.:S . 3330disc units 1.384
; aisc un A
M ® : — fIsc um TREND| PAPER-TAPE READER/PUNCH
i 3
h &0
o S
; b _:S-m_
: Pttt Jerjeddetd |

o PDP 11/45
SYHTEM DISC FOURTEEN DISC DRIVES and Vector

GRAPHICS SYSTEM

v FLETYPES, VISUAL LISPLAY

POP General display

| 11/20

| m v J0B ENTRY - ;
W PDP ; REMOTE JOB ENTRY TERMINALS
1 1/40

1 e ey

> Ll

The philosophy adopted for resource control is based on the premise
that it is only necessary to ration that which is scarce. Some resources,
such as disc store, are always scarce. Others, such as CPU time, are more
scarce at certain times of day when demand for them is high. Some
resources are not scarce at all, and need not therefore be controlled. It
has not been found necessary to control the use of consumables such as
cards and printer paper (other than by exhortation), nor the connect time
for Phoenix time-sharing sessions. The maximum number of simultaneous
sessions has for the most part been kept greater than the maximum demand,
and so a logged-on user who is not consuming any resources causes no
detriment to anybody else. However, if a session consumes no resources for
a continuous period of ten minutes, it is logged off, a warning being
given after five minutes. This prevents Phoenix session slots from being
held by unattended terminals.

Resources are allocated to users in two categories: permanent disc
space and processing resources. The latter include central processor
(CPU) time, channel time, main store occupancy, and other items related to
the running of programs. These are handled in combination, and the cost of
running a program is measured in a derived unit called a Resource Unit.
Appendix B contains a description of the formula used to calculate the
number of resource units used by a job or session.

Disc space is treated separately for a number of reasons. It is not a
wasting resource in the same way as CPU time is, and the cost of using it
(in terms of detriment to the rest of the community) is not directly
related to processing. In addition, there are entities to whom disc space
but not processing resources are to be allocated, and vice versa.

The resources allocated for running programs are not divided between
bateh and time-sharing use in any way. The user is free to choose whether
to do his work at a terminal or to submit Jjobs, subject to the resource
control mechanism, and to the maximum size limits in either case. No job
may use more than 20 minutes of CPU time or one megabyte of main store,
while no time-sharing step may use more than one minute of CPU time or 250
kilobytes of store. There is no limit, however, on the duration of a
time-sharing session, other than the automatic log off after ten idle
minutes.

In practice, most users use a mixture of Phoenix sessions and jobs, the
mix depending on their type of work. Over 90% of jobs are submitted from
Phoenix sessions.

With very few exceptions the users of the 370/165 are doing academic
work, and the major part of the workload consists of research computation.
However, a large number of student teaching jobs are also run, both for
Computer Science students and for students in other disciplines.
Administrative work is not in general run on this machine.

THE SCHEDULING SYSTEM

"All men are created equal and independent"
(Thomas Jefferson)

v ..but some are more equal than others."
(George Orwell)

The scheduling system is the mechanism by which the sharing of
processing resources is controlled. We give first an informal, narrative
description before going into the details. The system is described from
the user's point of view and rigorous specifications of the scheduling
algorithms are not included. These are to be separately documented.

From the point of view of the resource sharing scheduler, outstanding
batch work is kept as a queue of jobs which is processed from the top down.
In practice; multi-programming means that several jobs can be executing at
once. Although in principle these should be the top jobs on the queue,
resource conflicts may prevent this from being the case. For example, if
there are eight tape decks available, there is no point running three Jjobs
which each require three decks. The choice of which jobs to run from the
top of the queue is handled by the machine dependent scheduler. This is
not deseribed in this document, and its existence is largely ignored in
what follows.

Narrative Overview

"If it be done now, 'tis not to come; if it be not to come, it will be
now; if it be not now, yet it will come: the readiness is all."
(Shakespeare)

The scheduling system works on the principle of controlling a user's
rate of work, rather than the total amount. This is done by giving a
longer turnround to the work of those users who have had more than their
share of resources. The nature of the user population is such that there
is virtually no work with fixed deadlines run on the 370/165. What little
there is is dealt with in an ad hoc fashion. On the other hand, users do
expect reasonable turnround for their work, and they also require to know
when their work will be run.

Strictly speaking, processing resources are allocated to projects
rather than users. One project may have many users, and one user may have
access to more than one project. However, in the majority of cases there
is a one-to-one correspondence between users and projects.

In early versions of the scheduling system, the turnround given to Jjobs
for a particular project increased continuously as the amount of recent
work on the project increased. While this system is attractive on paper,
it neglects the human factors concerned with the way people work. A person
is normally content to wait for a job that returns in 10 minutes, or maybe
half an hour, but if the turnround is as long as an hour he tends to go

away and start some other activity which may take several hours. The
machine might then just as well run the job in three hour's time as in one
hour's time.

The current system aims to maximize the number of jobs which are given
immediate turnround. A time-sharing session is treated as a Jjob with
immediate turnround; details of session scheduling are given in a later
section. The general behaviour of the scheduler 1is to continue to give
immediate turnround to a project's work, in the absence of any user
request to the contrary, until the project becomes overworked. The
turnround then increases discontinuously, normally to around three hours
in the first instance.

More than 85% of all jobs submitted are scheduled for immediate
turnround, and are termed fast jobs. About 30% of the CPU time delivered
to jobs is consumed by fast jobs. By and large, therefore, fast jobs tend
to be the smaller jobs, as one might expect. Large production work is
typically scheduled to run at off-peak times, but can be run immediately
if the project's allocation can sustain it. About 80% of fast jobs begin
execution within one minute of submission. At first sight this figure
might be thought to imply that the machine 1is underloaded. The following
simple example illustrates the concept of maximizing immediate turnround,
and shows that the implication does not hold.

Consider a uni-programming system which runs for 24 hours. Jobs arrive
at the rate of one per minute for the first twelve hours. Thereafter the
machine simply runs off the backlog (scheduling overheads are assumed
negligible). Each job requires 2 minutes of CPU time, and hence the
machine is fully loaded. Now consider two different scheduling
strategies:

In the first strategy, jobs are scheduled on a first come, first served
basis. The first job is run immediately, the second job receives a one
minute turnround, the third a two minute turnround, and so on up to the
last job, which has a 12 hour turnround. The average turnround is 6 hours,
and out of 720 jobs, only the first 60 are run within an hour of
submission.

In the second strategy, jobs are alternately scheduled for immediate
running or 12 hour turnround. The average turnround is still 6 hours, but
now 360 jobs, half of the total, are run immediately they are submitted.
The remainder are delayed for 12 hours. This scheduling strategy is only
sensible if it is known that the submission rate varies. It relies on a
reasonable prediction of future submissions. As will be described below,
the Cambridge scheduler also works on the basis of future load
predictions. In passing, it should be noted that no scheduling strategy is
much use if the submission rate is constant at all times. 1n these
circumstances the queue will either grow without limit or diminish to
nothing, except in the unlikely case when the submission rate equals the
processing rate.

The fact that there are many users competing for processing resources
is incorporated in the scheduling system by the use of a unit price for
processing resources which varies according to the demand on the machine

as well as according to the amount of work the project has recently run.
This price is not related to monetary values, either real or artificial,
in any way. It is simply a factor for converting resource units into
charging units. (The word priority, which is a misnomer, is used in other
Cambridge documentation for historical reasons.) The unit price of a job
always lies in the range 1-255 inclusive.

The price for processing a unit of work for a given project at a given
time depends not only on the current level of demand for resources, but
also on the amount of work recently run on the project. Thus an
underloaded project may be able to run very cheaply even in prime shift,
whereas an overused project will find any computing whatsoever relatively
expensive. The details of how this is achieved are described in the next
section.

Technical Description

"Merely corroborative detail intended to give artistic verisimilitude
to an otherwise bald and unconvincing narrative."
(W.S. Gilbert)

All jobs submitted to the 370/165 begin with a group of statements
called a Jjob description. This contains information about the job such as
the user identifier under which it is to be run, the magnetic tapes it
uses, and so on. A complete description is given in appendix E; we shall
consider here the three parameters which relate to job scheduling. These
are as follows:

Cl - CPU limit for the job in seconds

The job may not use more CPU time than this limit, which may be specified
in seconds or in minutes. A default of five seconds is assumed if no value
is given.

Pl - unit price limit for the job

This value, which must lie in the range 1-255, specifies the maximum unit
price the user is prepared to pay for the job. If it is not specified in
the job description a default value is used which varies inversely with
the size of the job according to the formula

P1 = 1275/Cl

within the limits 1-255. By specifying a maximum unit price, the user is
able to indicate to the system the relative urgency of particular jobs.
The default formula assumes that large jobs (probably production runs) are
less urgent than small ones (probably tests).

The third scheduling parameter is the turnround requested for the job.
The user may specify this in a number of ways such as

TURNROUND 2 HOURS
TURNROUND BY 1700

A common request is OVERNIGHT, which is a synonym for BY 0600. The user
may specify turnround AT a particular time, even though this may cost more
than turnround BY the same time. Use of this facility is not however
encouraged, and in any case, there is never any guarantee given. The
default turnround, which may also be explicitly requested, is

TURNROUND NOW

The basic action of the scheduler is to compute a unit price for the job,
and this depends on the turnround requested, the current or expected load,
and the amount of recent work on the project. The following general rules

apply:
. The larger the project's allocation, the lower the unit price

. The greater the recent usage of the project,) the
The greater the load on the system,) higher the
The bigger the job,) unit price

When a job is scheduled for 'immediate turnround' it is placed at the
end of the so-called 'fast queue', which exists at the head of the main
job queue. Most jobs on this queue begin execution within one minute of
submission (see appendix C).

In the case of a turnround request relative to the time of submission
or a request for turnround by a given time of day, the job is scheduled to
run at a time between the time of submission and the requested turnround
time which results in the lowest price. If this is achievable at a number
of times, the earliest is chosen. Users can inspect the turnround
estimates for jobs in the queue by means of a Phoenix command or from
workstation consoles. When it schedules jobs for future running, the
scheduler modifies the expected load estimates to take account of changes
in the load from previous days.

To implement the scheduling algorithms the system keeps the following
quantities for each project:

S - the number of shares

S is a number allocated by the management, and is a measure of the
proportion of processing resources available to the project. The
proportion is not relative to the total number of shares issued, but to
those belonging to currently active projects. Typical values for S lie
between 1 (for an undergraduate hobbyist project) and several hundred (for
a heavily used research project). For most projects S lies between 10 and
100.

U -~ the current usage

U is a measure of the current rate of work on the project. Whenever
processing resources are used, U is incremented by the product of resource
units times unit price, which is termed the charge for the job. 1In
addition, the system decays U with time, and so resources consumed in the
past have a smaller and smaller effect as time goes on. The decay takes

place only when the 370/165 is running, and is such that for an unused
project, U decreases by about 10% per day.

W - outstanding work

W records the estimated charge for outstanding work held in the job queue.
Whenever a job is accepted by the system, W for the relevant project is
incremented; whenever a job is run W is decremented, and the actual charge
added to U. The two quantities appear as U+W in the scheduling formula,
thus ensuring that outstanding work is taken into account when analysing
scheduling requests. The estimation of the size of jobs is very crude.
Users are required to specify CPU and main store limits for jobs, but not
channel time. Observation of the actual workload shows that, on average,
the number of resource units used by a job is very roughly equal to its CPU
usage in seconds. Hence the value of the CPU limit (Cl) is used as an
estimate of a job's resource usage.

V - resource use per share

V is a measure of the value a project is getting for its shares. It is an
informational quantity only, and does not appear in the scheduling
formula. V is incremented by the resources used (not multiplied by price)
for every job run, normalized by the number of shares. It decays in the
same way as U. A project which is used only in prime shift will have a
fairly low V, whereas an identical project with the same value of U used
only at night may have a much higher value. The value of V gives an
indication to the management whether a project is being used sensibly for
the work for which it was allocated. The values of S, U, W and V for the
relevant project are printed in the output for every job, and may also be
inspected from a Phoenix terminal.

In addition to the quantities described above, the system maintains a
value for the current demand for processing resources and a vector
containing the expected demand over a 24 hour period. This dimensionless
quantity is called N, and it has a granularity of 15 minutes. Linear
interpolation is used to obtain values of N within the 15 minute
intervals. The expected demand is based on recent history, and is modified
according to the actual demand encountered. A graph of typical N values is
shown in figure 2. From this it can be seen that most users' habits fall
within the social norm. They start work at about 9.30 a.m., take a coffee
break at 11 a.m., lunch from 1-2 p.m., really get into their stride in the
afternoon, but start going home soon after 5 p.m. This is to some extent
due to the fact that dedicated periods for system development occur fairly
regularly at 5.30 p.m. Some users return after dinner to work in the
evening.

In periods of very high overall demand the N values increase, but the
general shape of the curve remains the same. Average daytime values of N
in term time are around 20,000 to 30,000, peaking at times to 60,000.
Night time values are normally in the low thousands. The algorithm for
maintaining N takes into account work scheduled for the future, and the
amount of work previously delivered at given times of day. This historical

£ep JO B8wWI]

we €2 2z Lz 02 6L 8L LL 91 G nwL €L 2L L OL 6 8 U 9

poTJdad Jnoy-xZ B JIA0 N JO UOTJEBTJIEBA ¢ aJnITg

— 000G

00001
[~ 00061
[00002
00062
looo.om

[000°GE

10

data consists essentially of the amount of CPU time delivered to jobs in

each 15 minute period.
The unit price for a job is computed by the formula

100,000 * S

For jobs requesting immediate turnround, Np 1is the least value
predicted for N in a period starting from the time of submission, and
lasting the expected running time of the job, estimated as twelve times
the CPU limit. For other jobs, Np is the predicted value of N for the time
at which the job is scheduled.

If the formula yields a value of P which is greater than the unit price
limit (Pl), either as specified in the job description or defaulted, the
job is not accepted for the requested turnround, and an alternative
scheduling strategy is adopted, as described in the following section. if
the formula yields a value of P which is less than one, P is set to one.

The quantity k is a constant which currently has the value 50. Without
the k*S term a project that is very underloaded (small U+W) is unable to
attain anything other than immediate turnround (except by the use of
TURNROUND AT, which is discouraged) as the formula yields a unit price of
one for all times of day. Immediate turnround is not always wanted; a user
may wish to submit a job for overnight running which uses data files to be
created later in the day, for example.

Conceptually, the value of W is incremented to include the current job
prior to the computation of P. However, as the increment for W depends on
P, the scheduling formula is more correctly written as

100,000 * S

where W is now the previous value of W and Re is the estimated number of
resource units for the current job. Solving for P yields

(U + W + k¥S) * Np

100,000%S - Np¥*Re

Note the singularity in P for sufficiently large jobs. Its meaning is that
there are some jobs which should never be accepted; nevertheless they are
accepted, and given a very long turnround, as described below.

The revised formula for P also shows that a project can be in a state
where small jobs are accepted for running at a given time of day, whereas
large jobs are not. Another important feature of the formula is that jobs
for different projects running at the same time are not necessarily
charged the same unit price, because of the dependence on U+W and on S.
Both the general user demand for resources (N) and the project's own
recent usage relative to its shares (U/S) are taken into account.

11

For a project in continuous use, U is typically very much greater than
W and k*S, and Np*Re is very much less than 100,000%S. The formula then
approximates to

100,000 * S

Since U decays at a constant rate (approximately 10% per day), the rate of
charging that can be sustained by a project while keeping U constant in
the long term is proportional to U. Hence the rate of work, which is the
rate of charging divided by the unit price, is independent of U in a
steady state, but proportional to S/Np.

Turnround Alternatives

"If at first you don't succeed, try, try, again."
(W.E. Hickson)

If the result of applying the scheduling formula described above is a
value of P greater than the unit price limit (which itself cannot be
greater than 255), then an alternative attempt at scheduling is tried. The
default turnround request for this is 3 HOURS, but the user may specify
different values, for example

TURNROUND NOW OR OVERNIGHT
The default value of 3 hours is chosen because

(a) It is not a fixed time of day, such as OVERNIGHT (which was
originally used). .

(b) At most times of day there is a descending part of the N graph within
3 hours, and so there is the expectation that N will fall below its
present value.

(¢) It seems sensible from a human point of view.

If both attempts at scheduling fail, then the job is scheduled for the
earliest possible time at its price limit, that is, as soon as the value
of N is expected to fall low enough. Thus the statement

TURNROUND NOW OR NOW

can be used to get the best possible turnround at the given price limit.
If the job cannot be scheduled at all in the current 24-hour period, it is
given a multi-day turnround. Such turnrounds are not catered for directly
in the scheduling algorithm, and hence special mechanisms are provided to
deal with these cases, which are in general a small proportion of the
load. The maximum permitted turnround is 58 days, which coincidentally is
the length of a Cambridge Term.

One further turnround request is REJECT, which can be used to cancel a
job if the first turnround alternative cannot be met, for example

12

TURNROUND 45 MINS OR REJECT

This is the only circumstance in which jobs are not accepted by the
scheduler,

Summary of the Scheduling System for Jobs

For each project:

= number of shares

= current usage, decaying with time
outstanding work in job queue

= resources used per share, decaying with time

<=z c
"

For each job:

Re = estimated resources
R = actual resources
P = unit price (1 <= P <= 255)

Pl

unit price limit

The user specifies Re implicitly, via a CPU time limit (which defaults
to five seconds). Pl may be specified explicitly; if not it defaults
according to job size such that smaller jobs have a higher default unit
price limit. The user may also specify a scheduling request in the form

TURNROUND a OR b
where a and b are of the form

NOW

OVERNIGHT

n HOURS/MINS
BY time-of-day
AT time-of-day
REJECT

The defaults, which are independent of each other, are

TURNROUND NOW OR 3 HOURS

At All Times:

The current demand on the machine (N) is computed and used to update
the expected demand in the future. The amount of work delivered by the
machine is used to update the history data. Details of this process are
given in appendix F.

Projects' U and V values decay at the rate of about 10% per day. This is
how it appears to the user; in fact the values are only updated when they
are accessed.

13

At Job Submission:

A unit price P for the job is computed according to the scheduling
algorithm described above, and the job is scheduled for the appropriate
turnround. Re*P, the estimated charge for the job, is added to the value
of W for the project.

At Job Termination:

The number of resource units used by the job (R) is computed according
to the formula in appendix B. The charge for the job (R¥P) is added to the
project's U value; Re*P is subtracted from its W value, and R/(20%3) is
added to its V value.

Scheduling Time-sharing Sessions

"The beast with many heads butts me away."
(Shakespeare)

A time-sharing session is, broadly speaking, treated as a job with
immediate turnround for scheduling and charging purposes. The same share
allocation is used, and work done affects the turnround and/or unit price
of jobs. Equally, work done by jobs affects the unit price of time-sharing
sessions.

When a user attempts to logon to the system, the scheduler computes the
unit price that would be required for the project to run a job with a CPU
1imit of ten seconds and immediate turnround. If this is less than or
equal the maximum permitted unit price (255), the user is allowed to log
on at that unit price. Otherwise the logon attempt is rejected. The user
is permitted to specify a unit price limit less than 255 if he wishes;
this facility is rarely used in practice.

As the session proceeds, whenever ten seconds of CPU time have been
used, or 30 minutes of real time have elapsed, the resources used since
the last such occurrence are multiplied by the current unit price and
added to the project's U value. The session is then re-assessed by the
scheduler in the same way as at logon. This may result in an increase or a
decrease in the unit price, depending on the demand on the machine (and
the project's U of course). If the unit price has risen above the limit,
the user is given a warning message, and allowed a further three seconds
of CPU time or five minutes of real time before being logged off.
Resources used in this state are charged at the maximum unit price.

The reason for re-assessing the session every 30 minutes if less than
ten seconds of CPU time have been used in that period is to ensure that the
unit price for the session is kept approximately current. At some times of
day N increases or decreases substantially over this time scale (see
figure 2).

14

When a user logs off, the resources used since the last assessment are
charged to the project. If the logoff was forced by the unit price
reaching its limit, one last attempt is made to see if the session may
continue. At certain times of day, when N is decreasing rapidly, or after
a temporary peak in the value of N, this may succeed. In addition, the
user may have cancelled outstanding batch work on the job queue, and so
decreased W. The user is then told that his session has been reprieved,
and it continues at the new unit price.

The time-sharing user need not be aware of the scheduling activity
which occurs periodically during the session. However he may choose to be
told whenever the unit price changes to a value above a given limit.
Setting this 1limit to zero causes all changes of unit price to be
notified; the limit is initialized at the start of a session to a value of
100.

A user who has access to more than one project may request a change of
project in the middle of a session. If the usage on the new project is too
high to allow immediate turnround, the change of project is rejected, and
the session continues on the old project, possibly at a new unit price.
Otherwise, the resources used since last assessment are charged to the old
project, and a re-assessment takes place using the new project.

The current values of the unit price, CPU and channel time used,
resources used and total charge for the session may be inspected by the
user at any time.

Sustaining Scheduled Turnround

The turnround times allotted to jobs when they are submitted are not
arantees, but predictions. Like all predictions they are more accurate
if the future behaviour of the parties involved does not differ radically
from past behaviour. In the case of the job scheduler there are two
factors involved:

. the rate of submission of work
. the rate of processing work

The former is dependent on user behaviour, which has proved to be a
reasonably consistent function of time of day. Long term fluctuations,
related for example to terms and vacations, and variations within the
week, are less consistent. The rate of processing is more accurately
predictable (though not constant; it is higher at night) except in
unforseen circumstances such as a system failure.

The system monitors its own performance with regard to the accuracy of
turnround predictions, and makes adjustments to deal with unexpected
circumstances. A small overload or underload is handled by varying the
rate at which the predicted turnround times decrease. Thus a job which is
initially scheduled to run three hours after submission may have a
turnround estimate of two and a quarter hours one hour later if there has
been an unexpectedly heavy load in the meantime.

15

If the system finds that its predictions for immediate turnround have
become seriously wrong, then all jobs other than those in the fast queue
are re-scheduled. Jobs in the fast queue are those that were scheduled for
immediate turnround when they were submitted, together with those whose
allotted turnround time has expired. Allotted turnrounds for the
remaining jobs are thus lengthened, and some may be moved from the day
time into the night time, while others already scheduled for night time
running may be deferred for 24 hours. Such action is inevitable after
prolonged system failure; frequent occurrences when the system is running
normally would indicate a lack of tuning in the scheduler. In practice,
re-scheduling during normal operation is a rare event.

The scheduler takes special action to deal with certain expected
dramatic changes in the pattern of demand, such as occur at around 9.30
a.m. each day.

Scheduling Overheads

The scheduling system would not be practical if the cost of running the
algorithms were anything other than negligible. There are no figures
available for the cost of the scheduler itself, but the resources used by
the entire HASP system, which includes the scheduler, job management and
unit record spooling, are less than 5% of the total. It is estimated that
the scheduling overhead on the 370/165 is less than 1%.

Scheduling Problems

While the scheduling system in its current form has on the whole
succeeded in the task of sharing out processing resources, one or two
problems remain to be solved.

The major human factors problem is the rapidity with which U can
increase once the project becomes seriously overused. Time-sharing users
in particular tend to continue to log on while they can, even when paying
the maximum unit price, so that by the time they are thrown off their U is
very large and takes a long time to decay to a normal level. It is however
possible for the management to reset U manually. This is done from time to
time when the circumstances warrant it.

From the scheduler's point of view the problems are concerned with
maintaining accurate predictions of turnround times. The system is
sometimes rather slow to react to large fluctuations in user demand such
as occur at the start of an academic year or immediately before Christmas,
when there is a sudden drop in demand. In the former case unit prices are
too low and turnround predictions are too short, while in the latter case
the opposite is true. Users complain equally vociferously, whether the
predictions are over-pessimistic or over-optimistic. The system always
runs jobs from the head of the queue, whatever their predicted turnround.

A particular problem occurred when the Computing Service started
running a Saturday daytime shift. The scheduler keeps N on a 24-hour basis
only, so its predictions for Saturday are not accurate, since the pattern

16

of usage is not the same as on weekdays and there is no evening or night
shift to follow. It might appear that the way to solve this problem is to
keep N values for each separate day of the week. However, this would mean
that changes in the overall load would take much longer to feed back into
the history, and errors such as occur at the start of term would last for
weeks rather than days. The most ambitious proposal for improving this
area involves keeping a two-dimensional history of N in the form

H(day,time) = H1(day) * H2(time)

with H2 changing rapidly with variations in load, but H1 changing only
slowly. This scheme is not likely to be implemented in the near future.

17

DISC SPACE CONTROL p

"Annual income twenty pounds, annual expenditure nineteen nineteen
six, result happiness. Annual income twenty pounds, annual expenditure

twenty pounds ought and six, result misery."
(Charles Dickens)

The mechanism for sharing permanent disc storage amongst the user
population is entirely separate and unrelated to the scheduling system
described above. Separate allocations are made by the management, and
shares cannot be traded for disc space or vice versa. The system is a
flexible one which works on the principle of controlling average disc
usage, and providing an incentive for the removal of unwanted material
from the discs.

Under the OS/MVT operating system, disc space may be permanent or
temporary. Files in the former category remain in existence when the job
or session that created them terminates, whereas temporary files are
automatically deleted at the end of a job or session. The amount of
temporary disc space used by a Jjob or session is neither limited nor
accounted, except insofar as the use of channel time to access the disc
will add to the processing resources used by the project. The system
described below applies therefore to permanent disc space only, for files
in the public filing system. A very few individuals are permitted the use
of private disc packs (200 megabytes each) for particularly large amounts
of data. Such disc space is excluded from the normal control mechanism.

Allocations of disc space are made to notional entities called
filespaces. All the files in a given filespace have names beginning with
the unique filespace name. In many cases fillespace names are the same as
user identifiers, but there are also many filespaces that do not
correspond to an individual user, though every filespace has an associated
manager who is himself a user. A group of users may request the allocation
of a filespace for their communal use, as well as individual private
filespaces, and there are of course a number of library filespaces
containing files for the use of the public at large.

The 0S/MVT system contains no suitable facilities for file protection
among a large number of independent users. A local facility has been
implemented which prevents write access to any file in a given filespace
by users other than the filespace manager or those authorized by him. No
protection against unauthorized reading of files is provided by the
system.

The smallest file that can be created is of length one track, which can
contain up to about 13,000 characters. File sizes may be specified in
tracks or cylinders (1 cylinder = 19 tracks); however, all accounting is
done in tracks.

Each filespace has associated with it two quantities determined by the
management, the Quota (Q) and the Limit (L). Both are in units of tracks.

18

The Quota is an allocation of an amount of disc space which the
filespace may not exceed on average. The Limit is an absolute limit on the
amount of disc space in use by the filespace at any time. For most
filespaces L is set equal to five times Q; however, a fixed allocation of
space can be achieved by setting L equal to Q. This is appropriate for
some system libraries.

For each filespace the system maintains the following quantities:

C - current disc use

This is the amount of disc currently occupied by permanent files in the
filespace. It is updated whenever files are created, deleted, extended or
compressed.

Re - current disc use ratio

This quantity is defined as C/Q, and is the proportion of the quota
currently in use.

A - average disc use

This figure is approximately the amount of disc space occupied on average
during the last 200 hours of running, that is, about 10 working days. It
is a function of time, defined formally by the integral

t
A(t) = 0.005 * | C(s)*EXP(-(t-s)¥0.005) ds
-infinity

where t measures Computing Service running time in hours. The value of A
is updated by the system whenever files are created, deleted or extended
in the filespace, and whenever the filespace parameters are inspected.

Ra - average disc use ratio

This quantity is defined as A/Q, and is the proportion of the quota used
on average during the last 200 hours of running.
Control is exercised over filespaces in two ways:

1. Any attempt to create or extend a file which would cause C to exceed
L is faulted. This prevents a filespace from monopolizing the
system.

2. 1If the average disc use ratio (Ra) becomes greater than 1.0, that
is, if A becomes greater than Q, the filespace is said to be
inhibited. In this state the creation, extension, or updating of
files in the filespace is prohibited. Files may still be read, but
the only permitted changes to the filespace are deletion and
compression.

The second control provides a continuous incentive to a user to remove
unwanted files from the disc as soon as possible, in order to keep down

19

the value of Ra. The lower the value of Ra, the longer the filespace may
exceed its quota without inhibition.

Once a filespace has become inhibited, files must be deleted or
compressed until the current use ratio (Re) is 1less than one. Then a
recovery period is necessary while the average use ratio (Ra) decreases.
When it has fallen to a value of 1.0 the filespace ceases to be inhibited.
The lower the value of Rc, the more quickly the value of Ra will fall. 1t
is possible for the management to reset Ra manually when special
circumstances require it.

Summary of Disc Space Control

Q = Quota, a limit for average disc usage
L = Limit, an absolute limit

C = Current use

Re = Current use ratio, C/Q

A = Average use over last 200 hours

Ra = Average use ratio, A/Q

C is never allowed to exceed L; the filespace is inhibited at any time
when Ra is greater than one.

20

RESQURCE ALLOCATION

"Take care of the pence, for the pounds will take care of themselves."
(The Earl of Chesterfield)

In this section we discuss the means by which resources are allocated
to individual users. The resources in question are processing resources,
allocated as a number of shares, and disc space, allocated as a quota of
tracks. There are, of course, other resources such as magnetic tapes,
punched cards and special output forms which must be allocated, but these
are not included in this discussion. Many of these are not scarce, and so
their use is not formally controlled.

The two resource control mechanisms were developed because of the need
to share computing resources amongst a large number of people in an
environment where the use of real money was not favoured. Much of the work
run on the 370/165 forms part of research projects for which it is very
difficult to specify future computing needs. A system which allocates,
say, a fixed number of CPU minutes per month, can be very unstable in such
circumstances, as many users would tend to use resources very sparingly at
the beginning of the allocation period and very profligately towards the
end. Unless a complicated scheme of overlapping allocation periods were
used, the demand for resources would become very uneven.

At Cambridge, processing resources are allocated as a rate of work
relative to the rest of the active user community, while disc space is
allocated as an average quantity. Controlling users' rates of work
relative to each other has other advantages over a fixed allocation scheme
in addition to stability. It means that a user can never run out of his
allocation; if he is over-using it he is slowed down, but not stopped. It
also means that unused allocations are not wasted.

Given the two control mechanisms, there must be administrative
procedures for allocating shares to projects and quotas and limits to
filespaces. In many universities resource allocation takes place in a
top-down manner, with large proportions being allocated to faculties, who
then subdivide into departments, and so on down. There are a number of
disadvantages in this approach:

(1) Someone has to do the allocation at each level; at the higher levels
it is likely to be a committee. Thus resource allocation can take on
a political aspect.

(2) The individual user is at the bottom of a hierarchy of allocators,
leading to potential delays.

(3) Individual users in one department may not receive the same treatment
as comparable users in another department.

(4) Since the high-level allocations tend to be made on the basis of past
use, computationally sophisticated departments continue to get the
major slice of resources, while departments for which computing is a

21

relatively new activity have difficulty in obtaining allocations.

(5) Allocations at the highest levels tend to be made at relatively
infrequent intervals, sometimes as long as a year. This means that
changes in requirements on shorter timescales cannot easily be
accommodated, and in addition there are undesirable discontinuities
when the high level allocations are adjusted.

In summary, errors made at a high level cannot easily be rectified;
there is a possibility of wastage, and the users can feel that they are at
the mercy of a bureaucracy.

A contrasting approach, which has been adopted at Cambridge, is to
allocate resources directly to the individual user, or in some cases to
small groups of users. This scheme has the following advantages:

(1) All users are subject to the same control, which is administered by
the Computing Service. Although this makes more work for the Service,
it has the benefit of keeping Service staff much more in touch with
what users are doing. It also does away with replication of effort in
many departments.

(2) Errors made in individual allocations are small in relation to the
total and can easily be adjusted. Users are encouraged to approach
the Service whenever they feel their allocation is inadequate. The
general policy is to begin by allocating small amounts of resources
and then to increase them later as necessary.

(3) Users from departments with no previous computing requirements are
accommodated without any special treatment.

We shall now describe some of the practical aspects of how bottom-up
resource allocation actually works. While in principle any potential
computer user may apply directly to the Computing Service for resources,
in practice he is expected to consult the User Representative in his
department (or other wuser group) first. User Representatives are
experienced computer users in the relevant academic disiplines, and can
advise as to whether what is being proposed is reasonable from the point
of view of that discipline. Some departments with a lot of users have more
than one User Representative, while on the other hand users from
non-computational departments may have to discuss their requirements
directly with the Computing Service.

A user's application for resources, having been approved by the User
Representative, is handled by the User Services staff of the Computing
Service. Many cases are straightforward, and the resources are allocated
forthwith; in other cases the user is invited to discuss his requirements
with Service staff, and technical advice from software experts is sought
if necessary. The ultimate authority for resource allocation 1is the
Director of the Computing Service, acting on behalf of the Computer
Syndicate, a management committee responsible to the University
Authorities. A user in dispute with the Service could in principle appeal
to the Syndicate, though this has never occurred in practice.

22

Most of the projects are connected with research, and at the start it
is not possible to predict what the ultimate requirements will be. The
approach taken is to allocate a small amount of resources, and encourage
the user to return if and when he finds his allocation inadequate.

Users do normally communicate with the Computing Service when they feel
they have inadequate resources. On the other hand, they are unlikely to do
so if they have received a larger allocation than necessary. This is not
however a serious problem, for two reasons. The first is that individual
allocations are small in relation to the total usage, and the second
(which applies to processing resources only) is that there is in practice
a steady inflation in the value of shares. This is due to the fact that
both the number of computer users and the total usage are continually
increasing, and that under-allocated users continue to request increases.
Thus the total number of shares in existence is increasing, lowering the
value of an individual share as time passes. Provided the rate is low
(which it is), share inflation is seen as beneficial to the community, as
it ensures that allocations that are in heavy use are regularly reviewed,
while those that are not in use slowly diminish in value. Note, however,
that the value of a share is not absolute, but relative to the resources
available. If the system is enhanced to provide more computing power, all
existing projects automatically benefit.

When a user does request an increase in his allocation he is required
to justify the request. For small increases there is usually no problem;
however, large requests are scrutinized to ensure that the user is making
the best use of the machine that he reasonably can. This does not carry
any implication of blame for the user. Most of the users are not computer
professionals, and cannot be expected to be fully aware of all the facets
of computer programming. In a number of cases Computing Service staff have
been able to assist users to modify their programs so as to use
substantially fewer resources; one particular example is recounted in
appendix D. This benefits the community as a whole by freeing resources
for other users. Assisting users to improve the performance of their
programs can naturally be done with any allocation system. However, the
policy of allocating a small amount initially, coupled with the gradual
inflation in the value of shares, encourages regular reviews of large
projects.

Summary

Computing resources are allocated directly to individuals or small
groups, taking the advice of an experienced user in the academic
department, and of software personnel if relevant. Users are encouraged to
request increases if they feel their resources are inadequate, and this
triggers a review of their computer use. This iterative aproach is
appropriate in an environment where the actual resources required by many
projects are impossible to forecast in advance, and where the users are
not computer professionals. There is no attempt to allocate resources at
department or faculty level.

23

This bottom-up approach to resource allocation contrasts strongly with
the top-down strategy adopted in many other universities. The main points
of comparison are as follows:

A top-down approach, while apparently politically fair, has the
danger of becoming an issue amongst the politicians and being
influenced by extraneous considerations. At the higher levels the
decisions are big ones, and so require appropriate committees and
safeguards. Errors can have a large impact. The approach is also
inflexible.

A bottom-up approach is flexible for the user, and since all
decisions are small ones, they can be made relatively easily. Errors
do not have a large impact. This approach can only work, however,
where political considerations allow it.

It must not be assumed from the above that the bottom-up method of
resource allocation is without problems. With over 3,000 users to cater
for there are bound to be mistakes, and personality differences between
users mean that one may delay requesting an increase in his resources
until he is desperate, while another may request a large increase as soon
as he feels at all restricted. In particular, users familiar with top-down
allocation methods are often reluctant to request a review of their
resource allocation when it is needed. A tendency to accept the Computing
Service's initial allocation as unchangeable can give rise to the feeling
that the Service is inflexible, or that the system is more overloaded than
is in fact the case. Continued publicity is necessary to overcome this
problem.

No allocation system can ever be perfect, but it is felt that the
bottom-up method is fairer and more flexible, leading to a high level of
social acceptability.

24

CONCLUSION

"No society can surely be flourishing and happy, of which the far

greater part of the members are poor and miserable."
(Adam Smith)

We have described control mechanisms and an associated allocation
mechanism for sharing computer resources amongst a community of several
thousand university users. The important features which characterise this
environment are the lack of deadlined jobs and the unpredictability of
future demand on individual projects.

The control mechanisms do not use fixed allocations. Instead, control
of a project's rate of work in relation to other active projects is
maintained, while disc space is controlled on an average basis. It is felt
that these flexible systems, while appearing more complicated than
traditional schemes, are nevertheless more appropriate in the university
and similar environments. An important feature of the control mechanisms
is that they provide incentives and opportunities to the users to manage
their resources, for example by removing unwanted material from the discs
as soon as possible. This is very necessary in a community where most
users work as individuals' and are self-motivated, and where a formal
management structure is to a large extent absent.

The allocation of computer resources is handled directly by the
Computing Service at the individual user level. This contrasts with
similar installations where a top-down, hierarchical approach is often
taken. Because of the inherent unpredictability of a project's computing
requirements, allocation is essentially iterative, with the users
interacting with Service staff as their requirements change or become
better known. This provides an opportunity for professional computer
staff to give advice on the use of computing facilities.

Any schemes for resource allocation and control can only work in
practice if they prove acceptable to the majority of users. At Cambridge
we believe that social acceptance has been achieved to a high degree.
Frequent consultation with representative users has played a large part in
this achievement.

The results of two recent questionnaires confirm the acceptability of
the system. The first originated from the Government, and was concerned
with the possibility of introducing partial real money charging. This was
sent to all departments, who were also asked to give their opinions on the
existing arrangements for resource allocation. The Council of the School
of Physical Sciences, a body responsible for the major computer-using
faculties, reported that its departments 'considered the share system
superior to any departmental allocation scheme'.

25

The second questionnaire was circulated by the Computing Service to all
departments as part of an evaluation of future needs. One of the questions
asked the respondents to list those aspects of the present system they
would like to be retained in the future. A significant number of
departments included the job scheduler and the disc space control system
among their requirements.

ACKNOWLEDGEMENTS

I am very grateful to Judy Bailey, David Hartley, Barry Landy, Anthony
Stoneley and Chris Thompson for reading and re-reading early drafts of
this report. As well as pointing out factual errors and misconceptions,
their critical attention to the text enabled me to make numerous
improvements.

REFERENCES

[1] J. Larmouth, 'Scheduling for a share of the machine', Software -
Practice and Experience, 5, 29-49 (1975).

[2] J. Larmouth, 'Scheduling for immediate turnround', Software -
Practice and Experience, 8, 559-578 (1978).

26

APPENDIX A: HISTORICAL SUMMARY

"p11 the ancient histories ... are just fables that have been agreed

upon."
(Voltaire)

The resource control mechanisms described in the main body of this
document are the result of a number of years of evolution and
experimentation. The following is a brief summary of the sequence of
events which relate to resource provision and control on the 370/165.

Jan 1972: 370/165 commissioned; one megabyte IBM core store, one byte
multiplexer channel, two block multiplexer channels, 3330
discs.

Mar 1972: User service begun, batch only, continous turnround

increments, usage decayed once per day. File space control
based on Titan system (income, limit, bound) specified but
not enforced. Resource unit based on CPU time and store
estimates only.

Apr 1972: File space control enforced, daily accounting.

May 1972: PDP 11/20 installed as front-end for communications, both
synchronous and asynchronous; software to be developed
locally.

Jul 1972: Job store limit enforced.

Jan 1973: Experimental interactive service begun, Phoenix control

language, no resource charging or control, users restricted
to Service supplied programs (EDIT, SUBMIT, etc.).
Initially invited users only, limited schedule (day shift
only). Maximum simultaneous sessions 8.

Mar 1973: Actual resources used by jobs incorporated in scheduler
instead of estimated resources.

Jun 1973: Phoenix generally available, 100 connected lines, still a
limited schedule.

Sep 1973: Second megabyte of memory (AMS semiconductor) installed.

Oct 1973: Titan computer closed down. Phoenix schedule 08.30 - 23.59
daily. IBM 2305 fixed head disc installed.

Dec 1973: 34 simultaneous Phoenix sessions, Phoenix available
whenever Computing Service running. Third block multiplexer
channel installed, dedicated to the fixed head disc.

Feb 1974: Batch Monitor using Phoenix language in use for student
teaching jobs. Flat rate charge per Batch Monitor job.

27

Apr
May

Jun

Aug

Oct

Nov
Feb

Mar

Apr

May

Jun

Aug

Sep

Dec

Jan

Feb

Aug

Dec

Jan

1974
1974
1974:

1974

1974

1974:
1975:
1975:

1975:

1975:

1975:

1975:

1975:

1975:

1976:

1976

1976:
1976:

1977

TURNROUND statement introduced.
Optional passwords in job descriptions.

Batch Monitor available to all users, renamed Phoenix
Monitor. Restricted set of Phoenix commands, LIST, WATFIV,
EDIT, etc. Limited to jobs less than 120K and 2 sec CPU.
Still a flat rate charge per Phoenix Monitor job.

I1/0 timing implemented. Flat rate charge for tape deck use
added to resource unit formula.

40 simultaneous Phoenix sessions. Standard Phoenix jobs
introduced as an alternative to JCL jobs.

PDP 11/40 installed to enhance communications front end.
48 simultaneous Phoenix sessions.

I/0 time limit of 10 seconds imposed on Phoenix Monitor
jobs.

Automatic logging off of Phoenix terminals which are
unattended for more than 10 minutes.

Scheduling variable V implemented. Phoenix monitor CPU
limit raised to 3 sec. Restrictions on commands lifted - any
job using less than 120K, 3 seconds CPU and 10 seconds disc
i/o time can request processing via the Monitor.

Experimental fast turnround job class, available on user
request but charged at high rate.

Phoenix Monitor 1limits raised to 5 seconds CPU and 15
seconds i/o time. Phoenix jobs within these limits
automatically scheduled for Monitor processing.

64 simultaneous Phoenix sessions.

80 simultaneous Phoenix sessions, achieved by replacement
of TCAM by Parrot.

Revised job scheduler based on maximizing immediate
turnround. Third megabyte of memory (AMS semiconductor)
installed.

Phoenix Monitor jobs charged for resources they actually
use instead of a flat rate. CPU limits less than the maximum
(5 sec) enforced for such jobs.

Introduction of k*S into the scheduling formula.

90 simultaneous Phoenix sessions. File write protection
system introduced.

Charging for resources used in Phoenix sessions and logon
control as part of the share system. Online passwords.

28

Feb

Apr

Nov

Dec

Mar

Apr
May
Sep

Oct

Jan

Feb

Jun

Oct

Nov

1977:

1977:

1977:

1977

1978:

1978:
1978:
1978:

1978:

1979:
1979:

1979:
1979:

1979:

Removal of restrictions on programs run in Phoenix
sessions, UUK swapped region available for command system
data (typically 8-10K) and arbitrary user programs.

SAVE/COLLECT facilities introduced for moving jobs' output
from the spool disc to Phoenix sessions. New resource unit
formula incorporating a charge for I1I/0 time etc. Store term
f(x)=(x¥*%3)/20.

Two-region working for non-interactive steps run in a
Phoenix session. Restricted to 5 sec CPU time, 15 sec 1/0
time and 130K.

Phoenix Monitor disc limit raised to 25 sec.

Continuous decay of U and V instead of once per day. Phoenix
Monitor store limit raised to 200K.

Two-region working for Phoenix jobs.
Second region online limit raised to 200K.

IBM core memory removed; two additional megabytes of AMS
(now Intersil) memory added, bringing total to four
megabytes.

Processor speed-up (PSU) fitted giving approximately 20%
increase in CPU power. New filestore controls based on
average usage with continuous decay.

Store-to-store swapping, 100 simultaneous Phoenix sessions.

CPU limit for second region steps run in a Phoenix session
raised to 60 seconds, 1/0 limit removed.

Second region online limit raised to 250K.

110 simultaneous Phoenix sessions, store term in resource
unit formula changed so that f(x)=x/10+(x¥¥3)/40. Phoenix
Monitor obsolete - all Phoenix jobs now bypass JCL
interpreter, but special scheduling retained for jobs less
than 5 sec CPU and 200K, and I/0 limit of 25 seconds
retained for such jobs. Passwords made mandatory for all
access to the system.

120 simultaneous Phoenix sessions.

29

APPENDIX B: RESOURCE UNIT FORMULA

"What would life be without arithmetic, but a scene of horrors."
(Sydney Smith)

The formula used to compute the number of resource units used by a Jjob
or a Phoenix session is

R = 0.1 *2(10*01 + L¥Di 4+ 2%Ti 4+ Ei%*f(Si))
1

+ 0.1 % (H/100 + M¥E + 3I#PEE)
+ 0.1 ¥ X % (5% + J + A)

where the sum over i is a sum over all the steps of a job or session, and

Ci = CPU seconds used by step i
Di = channel seconds used by step i for disc access
Ti = channel seconds used by step i for tape access
Ei = 'execution time' for step i [1]
E = ZEi

i
Si = main store used by step i in units of 100K - [2]
f(x) = x/10 + (x¥*%¥3)/40 [2]
H = number of records spooled by HASP (input + output) £31
M = (number of tape decks used)/(total number

of tape decks) [4]
P = (number of private disc drives used)/(total number

of private disc drives) [5]
X = 1 if a JCL job, 0 otherwise [6]
N = number of JCL steps
J = JCL statement count, including procedure expansions, but

excluding comments

A = number of JCL DD allocations

Notes:

[1] 'Execution time' is notionally the real time a step would occupy
store in an otherwise empty machine. This is not measurable on the
370/165, and the value Ci+Di+Ti is used to approximate it. This
assumes no overlap of CPU and channel use within one job, which is

30

2]

[31]

[4]
(5]
(61

true for a large part of the load.

Store becomes more expensive as larger amounts of it are used, since
this cuts down the amount available to other jobs and may delay them
because of fragmentation problems. (The 370/165 is not a virtual
storage machine.)

Includes card and paper tape input, and card, paper tape, plotter and
printer output, whether to or from local devices or transmitted over
a network.

The total number of tape decks is currently ten.
The total number of private disc drives is currently two.

The resources used in JCL translation and interpretation are not
included in the CPU and channel time measurements for jobs. This term
is included to make the cost of running a program under JCL realistic
compared with running it in a session or as a Phoenix job. Phoenix
jobs bypass the JCL translation mechanism and use the Phoenix control
language, whose resource usage is included in the normal
measurements. Interactive sessions likewise make use of the Phoenix
language.

31

APPENDIX C: STATISTICS

"There are three kinds of lies: lies, damned lies, and statisties."
(Benjamin Disraeli)

This appendix contains a number of miscellaneous statistics concerning
the 370/165 system at the end of 1979. They pertain to a busy week near the
end of term, and are presented in order to give some idea of the number of
users involved and of the scale of computer operations. All the figures
are therefore rounded.

Users

Number of registered users 3,500
Number of users active in one week 1,500
Projects

Number of projects 3,250
Number of projects active in one week 1,300
Number of shares allocated 120,000

The average number of shares per project is a misleading figure, as the
distribution is very skewed. Some typical share allocations are

Hobbyist undergraduate 1-2
Undergraduate doing a computing course 5-10
Computer Science undergraduate 25
Research student 10-250
Research project : 100-300
Computing Service staff 100-250
Major research project with many users up to 1000

32

The distribution of shares to projects is as follows:

size number of projects percentage
with S >= size

500 10 0.30
400 23 0.70
300 49 1.49
250 65 1.98
200 125 3.81
150 174 5.30
125 182 5.54
100 337 10.26
75 389 11.84
60 L4622 14.06
50 696 21.19
40 971 29.56
30 1266 38.54
25 1355 41.25
20 1828 55.65
15 1919 58.42
10 2887 87.88
5 2934 89.32

2 3098 94,31

1 3285 100.00

33

File Store

Number of filespaces 2,900
Disc space occupied (tracks) 100,000
Allocated quotas 150,000
Allocated limits 500,000

These figures include both user and system filespaces. As in the case of
share allocations, the average quota has little meaning. Allocations vary
from 2-5 tracks for small undergraduate projects to several thousand
tracks for system libraries.

The distribution of file store quotas is as follows:

Ssize number of filespaces percentage
with Q >= size

3000 2 (system libraries) 0.07
2000 6 0.20
1000 16 0.54
500 Ly 1.48
250 82 2.76
200 122 L4.11
150 148 4,99
100 267 9.00
75 316 10.65
50 517 17.42
40 612 20.62
30 804 27.09
25 922 31.06
20 1408 7.4y
15 1599 52.53
10 2252 75.88
5 2759 92.96
1 2967 100.00

50% of all files are one track long, but they account for only 10% of the
total disc usage. On the other hand, only 4% of all files are greater than
or equal to one cylinder (19 tracks), but they account for about 50% of
the total disc usage.

34

Phoenix Sessions

Sessions per week
Maximum simultaneous sessions
Resource units used in sessions per week

Jobs

Jobs per week
Submitted from Phoenix sessions
Scheduled for immediate turnround

Of those scheduled for immediate turnround,
started within 1 minute of submission
started within 5 minutes of submission
started within 30 minutes of submission

Resource units used in jobs per week

Resource units used by fast jobs

35

12,000
120
175,000

25,000
90%
85%

80%
90%
99.9%

500,000
30%

APPENDIX D: IMPROVING USERS' PROGRAMS

"The object of teaching a child is to enable him to get along without

teachers."
(Elbert Hubbard)

The following extract from the Computing Service Newsletter number 51
(October 1977) describes in light hearted manner an actual instance of a
project's use of computing resources being drastically reduced as a result
of technical advice from software staff.

A Cautionary Tale

Although the program did no wrong
It embarrassed us by running long.
All afternoon it sat in core

The overdue grew more and more.
When by even 'twas not done

After software 'twas re-run.

Five hours and more it did reside,
400K it took beside;

Full twenty mins. it did compute
With three hours disc I/0 to boot.

And then, amid the wails and woes,
A mighty Service chief arose;
Full well for him the disc did turn,
At his behest the cores did churn,
Projects dear did he forsake,
This Augean task to undertake.
All day long the fray continued,
One by one the programs renewed;
Of disc I/0 the hours were slain,
All sorry some two mins. remain,
In company with c.p.u.

Also chopped to minutes two.

How was this mighty feat composed?
What monstrous follies thus exposed?
0 fie on manuals - such a way

The innocent to lead astray!

This user who in youth and keen

Some basic notions failed to glean.
Know ye then when numbers frisk
Twixt disc and core, and core and disc,
They go not freely on their own.
When one number flies alone

Enormous costs its pleasures blight,

36

But when it makes one charter flight
A thousand numbers are collected,
Great savings come to be expected.

The men who wrote the Fortran Guide
One great truth conspired to hide:
A Direct Access READ or WRITE
Incurs precisely one such flight.
DEFINE-ing FILE is also grim -

A thousand transfers reckon him!

Oh bitter irony to end on!

When purged of notions wholly wanton,
The user in the end conceded:

Direct Access was not needed.

37

APPENDIX E: JOB DESCRIPTIONS

"Give us the tools, and we will finish the job."
(Winston Churchill)

Every job sumitted to the Cambridge 370/165 must begin with a job
description. This consists of a series of statements which 1list the
resources required by the job, and identify the user and project for which
it is to be run. Job description statements are written in free format,
and consist of a keyword followed in most (but not all) cases by one or
more arguments. Except in the job title, upper and lower case letters are
synonymous. Job description statements are terminated by end of line or
comma.

In the description which follows, upper case words stand for
themselves, whereas lower case words indicate item types. Square brackets
are used to enclose optional items; a vertical bar separates alternatives
with underlining indicating a default. Numerical arguments which are
followed by an optional letter K may either be specified in units of one
or in units of 1024.

A job description begins with a JOB statement, which takes the form

JOB user-identifier project-number [titlel

and ends with one of the terminating statements JCL or PHOENIX (or PHX)
which take no arguments and which must be the last statement on a line.
All other job description statements are optional, and need only be given
when the defaults do not suffice. Thus an example of a minimal job
description for a Phoenix job is

JOB SPQR 1234, PHX

This specifies a null string for the job title. The project number may be
replaced by an asterisk to indicate the default project for the given
user. An example of a more complicated job description is

JOB ABCD ¥* Large Production Job
LIMSTORE 400K

COMP 6 MINS, TAPE9 ABCD99
TURNROUND OVERNIGHT

PRINTER 4000, ROUTE WESTCAM
JCL

We shall now describe the optional job description statements in
alphabetical order. In job descriptions they may appear in any order. In
all cases if a statement which requires arguments appears with none, it is
ignored. This facilitates the construction of job descriptions by
programs and Phoenix command sequences. Null job description statements
are also ignored.

BIGDISC

This statement requests the mounting of a scratch disc pack for use by the

38

job. The 3330 packs used on the 370/165 can contain up to 200 megabytes of
data. The user must have the necessary privilege in order to use this
facility.

BIGPHX

Phoenix jobs are run in a small control region of 22K bytes which holds
data for the Phoenix command processor; for each job step a second region
of the requested size is obtained. In a very few cases, where deeply
nested sets of Phoenix commands are used, the control region may be too
small. This statement requests a larger one; 4U4K bytes is currently given.

CHAIN

This statement marks the job "chained". Jobs for a particular user that
have the chain flag set will not be run simultaneously.

COMP n [MIN[S]|{MINUTE[S]!SEC[S1iSECOND[S]]

This specifies a limit for the computation (CPU) time for the job. The
default is five seconds, and the maximum permitted value is 20 minutes.
TIME is a synonym for COMP.

COND (value,comparator)

This statement is useful only for JCL jobs; it sets a COND parameter for
the job as described in IBM's JCL reference manual.

COPIES n

This statement causes n copies of the job's printer output to be produced.
The default value is one.

DECKS [719] n

This specifies the number of seven or nine track tape decks required by
the job. If omitted, the numbers are taken as equal to the number of seven
or nine track tapes requested respectively. Use of the DECKS statement is
mandatory if more tapes are to be used than there are decks permitted. Its
use is recommended whenever fewer decks than tapes are required, as it
enables the machine dependent scheduler to run tape jobs more efficiently.

DISC disc-name

This requests the mounting of a private disc pack for use by the job. The
user must have the necessary privilege in order to use this facility.

DISCIO

Phoenix jobs which request no more than five seconds of CPU time and 200K
bytes of store, and which use no private discs or tapes, are given
preferential treatment if they are scheduled as fast jobs. However, they
are limited to 25 seconds of channel time. (This state of affairs is a
result of a previous state where such jobs were processed serially by a
Batch Monitor system.) The DISCIO statement specifies that the job uses
more than 25 seconds of channel time, and hence is not eligible for

39

special treatment. Its use is rare.
LIMSTORE n [K]

This specifies the maximum region size of any step in the job, in units of
1024 bytes. Any user may run jobs up to 500K; with special authorization
up to one megabyte may be used.

MSGLEVEL (n,m)

This statement is only useful in JCL jobs. It sets the message level
parameters for the job as described in IBM's JCL reference manual.

NOTIFY [user-identifier]

This statement requests that a message be sent to the terminal of the
given user if he is logged on when the job finishes execution. The default
identifier is that under which the job is run.

PAGE n

This specifies the number of lines on the page for lineprinter output. The
default is 60. If zero is specified, the output spooling software inserts
no pagination.

PASSWORD password

This statement supplies the password for the user given in the JOB
statement. It is mandatory for jobs submitted externally through the card
or paper-tape readers or from remote job entry links. For jobs submitted
from other jobs, or from Phoenix sessions, this statement may be omitted
if the user identifier is the same as that of the submitting Jjob or
session, because the password has already been quoted and checked.

PLOTTER n[K] [RECORDS]

This specifies the maximum number of records of pen plotter output that
the job will produce. The default is zero, and the maximum permitted value
is 10K. Jobs which exceed this limit are cancelled by the system.

POST user-identifier

This statement is used to cause the output from a job to be delivered to a
user other than that for which the job is run. Several pseudo identifiers
are also used, for example POST MAIL is a request for the output to be
mailed to the user by reception staff.

PRINTER n[K] [LINES]

This specifies the maximum number of lines of lineprinter output that the
job will produce. The default is 500, and the maximum permitted value is
80K. Jobs which exceed this 1limit are cancelled by the system.

PRIORITY n

This statement, whose keyword is historical, specifies a maximum unit
price for the job. The value must lie in the range 1-255.

40

PUNCH n[K] [CARDS]

This specifies the maximum number of records or punch output that the job
will produce. The default is zero, and the maximum permitted value is 10K.
Jobs which exceed this limit are cancelled by the system.

ROUTE [device] destination

Output from jobs is normally routed to the output device associated with
the reader where the job was read. For jobs submitted from Phoenix
sessions the default routing is CENTRAL. This statement is used to change
the routing. The device may be one of

ALL
PRINTER
PUNCH
PLOTTER

and the destination one of the current routes. One special destination is
DUMMY, which causes the output to be discarded.

SAVE

This causes the output from the job to be saved on the spool disc instead
of being printed or punched. From there it may be copied to a user's file
by means of the Phoenix command COLLECT, enabling it to be inspected from
a Phoenix session. The user may also inspect a copy of the output, and may
release the saved job to be output as normal.

TAPE[7!9] name1[/access] [name2[/access]] ...

This specifies the tapes which are to be used by the job. It also
specifies the number of tape decks required implicitly, unless the DECKS
statement is also present. The access may be specified as R or W, for read
or write; this determines whether the tape is mounted with or without a
write permit ring. If the access is omitted, the tape is mounted in its
default state, which is fixed for each tape. An error occurs if W is
specified for a tape whose default state is 'never write'.

TURNROUND a [OR b]
The turnround requests a and b may be one of

NOW

OVERNIGHT

n [HOUR[ST1IMIN[S]IDAY[S]]
BY time-of-day

AT time-of-day

REJECT

The defaults, which are independent, are

TURNROUND NOW OR 3 HOURS

41

