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Miriam Ellen Leeser
Queens' College
Cambridge University

Abstract

The structure of circuits is Spécified with Prolog; their function and timing behavior is
specified with interval temporal logic. These structura’ and behavioral specifications are
used to formally verify the functionality of circuit elements as well as their timing
characteristics. A circuit is verified by deriving its behavior from the behavior of its
components. The derived results can be abstracted to [unctional descriptions with timing
constraints. The functional descriptions can then be used in proofs of more complex

hardware circuits.

Verification is done hierarchically, with transistors as primitive elements. Transistors are
modeled as switch-level devices with delay. In order to model delay, the direction of signal
flow through each transistor must be assigned. This is done automatically by a set of Prolog

routines which also determine the inputs and outputs of each circuit component.

Interval temporal logic descriptions are expressed in Prolog and manipulated using PALM:
Prolog Assistant for Logic Manipulation With PALM, the user specifies rewrite rules and
uses these rules to manipulate logical terms. In the case of reasoning about circuits, PALM
is used to manipulate the temporal logic descriptions of the components to derive a temporal

logic description of the circuit.

These techniques are demonstrated by applying them to several commonly used
complementary metal oxide semiconductor (CMOS) structures. Examples include a fully
complementary dynamic latch and a 1-bit adder. Both these circuits are implemented with
transistors and exploit 2-phase clocking and charge sharing. The 1-bit adder is a
sophisticated full adder implemented with a dynamic CMOS design style. The derived
timing and functional behavior of the 1-bit adde: s abstracted to a purely functional

behavior which can be used to derive the behavior of an arbitrary n-bit adder.
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Chapter 1

Introduction

1.1 Motivation

The increasing complexity of integrated circuits has generated interest in new methods
for the computer aided design of these circuits. One such method is formal hardware ver-
ification — using techniques based on mathematical logic to formally prove that a circuit
correctly implements its behavioral specification. This technique is applicable at many
different levels of implementation and specification. For example, it can be proved that
a correctly connected group of combinational gates implements an adder; that an adder,
registers, and control logic implement an arithmetic logic unit (ALU); and that an ALU,
memory busses, registers, microprogram section, and control logic correctly implement a
central processing unit. Research has been done into behavioral verification at these levels.
Investigations have also been done into relating the various levels with abstraction, and
into formally describing the relative timing of signals. Recent research, however, has not
concentrated on implementation details of concern to real designers. These details include
the implementation of logic gates with transistors, and the timing considerations due to
delays through these transistors. My research addresses the issues of formal verification
applied to this low level of the design hierarchy: relating transistor level implementations
of circuits to their functional specification, and formally deriving the timing behavior of

these circuits.




1.2 SPECIFYING HARDWARE

1.2 Specifying Hardware

I am interested in specifying and verifying hardware at the level of implementations of
cells in a complementary metal oxide semiconductor (CMOS) design library. These cells

are then used as building blocks when constructing larger integrated circuit designs.

Typically, the behavior of such cells is speciﬁed informally in English, their implementa-
tion given by a layout, and their timing specified with equations and timing diagrams. I
describe their behavior and timing using interval temporal logic (ITL) and their imple-

mentation using Prolog.

I assume that hardware is described modularly and hierarchically. A chip is made up
of a series of functional blocks which in turn are made up of functional blocks, and \so
forth, until the transistor level description is reached. Each level need not contain circuit
elements all of the same type. For example, adders and transistors may be mixed at the

same level of description.

This hierarchy does not imply that a designer is constrained to use a top-down refinement
design style. Design is usually a combination of top-down refinement and bottom-up
composition. No matter how the design is attacked, the design can be described in a

hierarchy of design levels, and each adjacent pair of levels can be related formally.

1.3 Why Formal Hardware Verification?

Formal hardware verification has several advantages over conventional methods such as
simulation for verifying circuits. With formal verification, signals are manipulated sym-
bolically. By proving that an implementation meets its specification, the designer is sure
that it has that behavior for all cases; in simulation the designer can only be sure of the
behavior for the cases tested. Another advantage of verification is the ability to exploit
modularity. A functional block such as an adder need only be proved once no matter how
many times it is used in the circui(';. In addition, a portion of the design can be proved
to meet its specification before the rest of the design is complete. Thus errors can be

caught early in the design process. Modularity also allows small changes to a design to be
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1.4 ADDING TIMING ANALYSIS TO FUNCTIONAL VERIFICATION

handled easily since only those portions of the design which have been altered need to be

reverified.

These advantages do not imply that formal verification will replace simulation. Formal
verification can be viewed as another tool in the designer’s tool box which gives added
confidence in the correctness of designs. A drawback of verification is that one can never
have complete confidence in the specification. It is useful to simulate a specification to

check that it exhibits the required behavior.

A circuit is verified by showing that its behavior can be derived from the mathematical
models of the behavior of the components which make it up. If the mathematical model
does not capture a physical reality of the circuit, that physical reality will not be captured
in the proof. For example, a proof system whose primitives are combinational elements
without delay cannot derive delay characteristics of a circuit. Similarly, if charge-sharing
is not modeled, charge-sharing bugs will not be detected. In these cases other tools such

as timing analyzers and design rule checkers are required.

1.4 Adding Timing Analysis to Functional Verification

Existing tools for timing analysis do not use formal techniques. The advantage of using
formal methods for timing is that they allow timing models to be related to the higher level
behavioral models of circuit elements using abstraction. The same descriptions of circuit
implementations can be used to do timing as well as other analysis, and different levels
of description can be related formally. The designer, therefore, has increased confidence
that various aspects of the design are correct, since different tools are all working on the

same representation of the design.

I derive low level timing details such as delay and set-up and hold times from interval
temporal logic (ITL) [Mos83] descriptions of circuit components. The timing analysis is
done in conjunction with behavioral verification since delay, for example, depends on the

function of the circuit as well as the timing characteristic of its components.




1.5 SYNCHRONOUS CMOS CIRCUITS

In addition, I express constraints on the behavior of inputs and outputs of a circuit compo-
nent in interval temporal logic. These constraints, which express such conditions as when
the inputs must be stable, are verified using the same formal techniques. They are verified

when the component is composed with other components to form a larger functional block.

1.5 Synchronous CMOS Circuits

The techniques for reasoning about circuits presented in this thesis can be applied to a
wide range of technologies and design styles. My examples are restricted to synchronous
Complementary Metal Oxide Semiconductor (CMOS) circuits [WE85]. I chose this class of
circuits for several reasons. CMOS has become an important commercial technology. MOS
lends itself to switch-level analysis. In many CMOS designs, the ratios of transistor sizes
is not important as it is in nMOS. (This is not the case with such designs as RAM cells; I
do not consider these.) Synchronous circuits lend themselves to a hierarchical, systematic
design style, and avoid many of the problems which are associated with asynchrony. In
addition, it is easier to reason about synchronous systems formally, and to formulate

timing constraints.

I do not consider, in detail, the design and timing issues which arise from layout. Layout
is an important aspect of VLSI design, and a significant proportion of delay in CMOS
circuits is due to interconnect. The methods for deriving the timing behavior of a circuit
can be extended to model circuits whose delay characteristics are derived from information
extracted from the layout. A wire can be modeled as a simple case of a combinational

element with delay.

The circuits discussed are synchronous CMOS circuits where all feedback loops are broken
by clocks and there are no reconvergent branches in combinational logic. There are many
practical VLSI designs which fall into this class of circuits. Within this framework I
consider several different CMOS design styles, including full complementary CMOS and
dynamic CMOS.




1.6 CONTRIBUTIONS

1.6 Contributions

The main contributions of this thesis are:

e Automatically deriving characteristics of a circuit from the schematic. These char-
acteristics include direction of signal flow through transistors and direction of ports

of components. The direction of a port may be i, out, or bidirectional.

e Extending ITL to model capacitive effects which arise in MOS circuits. One such

capacitive effect is charge storage on an undriven node.

e Using extended ITL to reason formally about the timing properties of circuits at the
transistor level. The behavior of a transistor is modeled in ITL as a switch with an
associated delay. These delays are used to derive the length of the different cycles

in clocked circuits.

e Expressing and reasoning about constraints in ITL. Constraints include set-up and

hold times, and constraints on when a signal must be stable.

1.7 Organization

In the next chapter, I present related work in hardware validation. I discuss languages and
systems for specifying and verifying circuit behavior. I present both informal and formal

approaches, and emphasize methods which model timing behavior.

Chapter 3 demonstrates how to specify circuit schematics in Prolog, as well as presenting
tools for manipulating these Prolog specifications. These tools use the structure of the
circuit to derive characteristics such as which ports are inputs and which are outputs.

These characteristics are then used when proving other properties of the circuit.

Chapter 4 gives an introduction to interval temporal logic (ITL). Chapter 5 describes how
ITL descriptions are used in verifying function and timing of circuits as well as reasoning
about circuit constraints. In Chapter 6, I describe my Prolog system for rewriting logic

equations, and show how this system is used for manipulating ITL equations.




1.7 ORGANIZATION

In Chapter 7, I present several examples including a complementary CMOS dynamic latch
and a 1-bit adder. Both these circuits are implemented with transistors and exploit 2-phase
clocking and charge sharing. The 1-bit adder is a sophisticated full adder implemented
with a dynamic CMOS design style. I use ITL and the system presented in Chapter 6 to
derive the function and timing behavior of these circuits and to reason about constraints.
In addition I derive constraints on the duration of the different clocking phases. I also
show how the function of the 1-bit adder can be abstracted, and how the abstract behavior

can be used in a proof of an n-bit adder.

Finally I present conclusions. I summarize the salient aspects of my approach, discuss
issues and improvements, and consider how my approach could be incorporated into a

computer aided design system for VLSL




Chapter 2

Related Work

In this chapter, I present languages and systems which have been developed to aid designers
in specifying and verifying their hardware designs. The emphasis is on tools which give
designers information about the timing behavior of their circuits. First the current tools
available for design validation are presented. These include simulators and timing verifiers.
These tools have several drawbacks in that they do not exploit hierarchy and only validate
behavior for specified inputs. Recent advances in these informal methods attempt to

redress these drawbacks.

Formal verification methods for hardware overcome the drawbacks of simulation. In ad-
dition, they provide a means to formally relate the different levels of detail at which a
circuit is described, and allow for incremental, hierarchical validation. Thus, a designer
has more confidence that the design being validated is the same as that being fabricated. I
discuss several representations and systems for formally reasoning about hardware. Here I
emphasize systems which use higher-order logic or temporal logic to reason about circuits,

and compare the advantages and disadvantages of these two formalisms.

2.1 Current Methods for Hardware Validation

Two widely used methods for validating a design are simulation and timing verification.
In simulation, a designer validates the behavior of a design by specifying the inputs and
checking that the resulting outputs exhibit the desired behavior. In MOS timing verifi-
cation, the timing of a circuit is derived by assuming that all transistors are conducting
and then calculating the path with the longest delay through the circuit. These tech-

niques usually operate on circuit descriptions which are flat rather than hierarchical. One
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2.1 CURRENT METHODS FOR HARDWARE VALIDATION

advantage of these approaches is that they are widely used. As a result of being used
with real designs, circuit models tend to be accurate and algorithms used are efficiently

implemented.

2.1.1 Simulation

Most simulators used to verify VLSI circuits are either switch-level or mixed-mode. With
switch-level simulation [Bry81], large networks of transistors are modeled as nodes con-
nected by switches which have an associated conductance strength. Logic states on nodes
are represented by signals which are modeled as values and strengths, A circuit is simu-
lated by applying inputs specified by the designer to a model of the circuit and calculating
the resulting outputs. When a steady state is reached, the result is reported and a new set
of inputs is driven through the circuit. Every transition in the simulation takes one unit of
time. This use of timing makes computation easier, but bears little relation to the time a
circuit actually requires to settle. In addition, simulation only models the behavior of the
circuit for the inputs specified. In general, the number of input combinations required to
fully simulate a circuit is exponential in the number of inputs. Thus, simulating a circuit

completely is often impractical, even for simple circuits.

Mixed-mode simulators are capable of simulating circuits which are described at several
different levels of detail. A commonly used mixed-mode simulator is MOTIS [AB*80],
[CL*84], which simulates circuits described at the transistor level, logic gate level and
functional level. MOTIS also handles several different timing models including unit delay,
multiple delay and low level timing. With a multiple delay model, different delays are used
for different circuit components and for propagating rising and falling pulses. With a low
level timing model, voltages are treated as continuous and time is modeled as a sequence
of discrete time steps. Mixed-mode simulators exploit some hierarchy in the description

of circuits, but still require the user to provide inputs and interpret the outputs.

2.1.2 Timing Verification

Two widely used MOS timing verifiers are TV [Jou83] and Crystal [Ous83|. These timing

verifiers are similar to switch-level simulators in that they operate on a transistor level
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2.1 CURRENT METHODS FOR HARDWARE VALIDATION

description of the circuit and model transistors as ideal switches. The difference is that
simulators simulate the behavior of a circuit for a given set of inputs, while timing verifi-
cation is independent of input values. The object of timing verification is to identify the
slowest paths through a circuit and to determine the maximum possible clock speed. First
the direction of signal flow through each transistor is determined; then the delays through
paths in the circuit are calculated assuming that all transistors are conducting. Direction
of signal flow is determined either automatically or from hints from the designer. TV and
Crystal differ in the way paths are traced through a network and in the way delays are
calculated. T'V uses breadth-first search to exhaustively search the entire circuit, and sep-
arately calculates minimum and maximum propagation delays. Crystal uses a depth-first
search algorithm and provides an average propagation delay. Both handle different phases

of clock cycles by specifying that different clocks cannot be active at the same time.

These timing verifiers report the slowest or n slowest paths to the user. A problem with
timing verification is that it is frequently difficult for the user to identify how to improve
the behavior of these slowest paths. Since the circuit structure is flat, timing verifiers
do not recognize bottlenecks that affect several paths. Such bottlenecks would be more
obvious from a hierarchical circuit structure. In addition, if several parallel paths exhibit
the same timing behavior, they will all be reported. Another problem is that the entire
circuit must be re-analyzed if a portion of the design is modified to improve the timing
behavior. Jouppi [Jou87] presents an interactive timing assistant (IA) to help alleviate
some of these problems. IA proposes design changes and provides incremental timing

analysis.

A further drawback of timing verification is the separation of timing from function. The
slowest paths predicted may never arise in practice. These paths would not be detected
if timing and function were considered together. In addition, certain errors cannot be
identified. For example, the relation between signals on different clock phases is not
checked. Thus, timing problems which arise because signals do not behave according
to certain timing constraints are not identified. In order to find these, some form of

verification which incorporates timing and functional verification must also be done.




2.2 FORMAL HARDWARE VERIFICATION

2.1.3 New Directions in Simulation and Timing Verification

New systems for design validation address some of the shortcomings discussed above. The
most common changes are allowing symbolic inputs to simulators, and exploiting hierarchy

in design validation.

MOSSYM [Bry85] is an extension of Bryant’s switch-level simulator which allows the
user to specify inputs symbolically as well as with boolean variables. An advantage of this
approach is that the user can choose between conventional simulation, symbolic simulation

or a hybrid. A disadvantage is that the user has to interpret the outputs.

Lin and Mead [LM86] present a hierarchical timing simulator. This approach is used to
model synchronous circuits similar to those presented in this thesis. They assume that
input and output ports of components have been determined before simulation begins, and
assume that an input may only change once in a given clock period. These assumptions
are not checked. Functional and timing behavior is validated. This involves simulating a
component, and then replacing that component with its derived behavior. The behavior
can be derived analytically as well as through simulation. One drawback is that design
validation must be bottom up. In other words, a designer cannot specify a component at
a high level, later give a more detailed representation, and show that these two represen-

tations are equivalent.

2.2 Formal Hardware Verification

In the previous section I presented some commonly used design validation techniques and
discussed their advantages and disadvantages. I also presented some new techniques which

redress some of these disadvantages.

In this section I describe formal methods for design verification. These methods address
many of the disadvantages mentioned above. Hierarchical design is supported, and differ-
ent levels of description can be formally related. Localized changes to the circuit require
that only the altered components be re-verified. Inputs and outputs are represented sym-

bolically rather than by values. Assumptions about designs can be expressed formally and
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2.2 FORMAL HARDWARE VERIFICATION

verified along with verification of behavior. The major drawback of these systems is that
they have not been widely used to verify real designs. As a result, the models of circuit
behavior are not as well developed. In addition, some of these approaches have not been

mechanized, which limits their acceptance by designers.

Since I am interested in the timing as well as the functional behavior of circuits, I discuss
the way time is modeled. Specifically, I present formal methods which use higher-order
logic and those which use temporal logic, and I discuss the relative merits of these two
approaches. I also present other formalisms for specifying and verifying hardware, espe-
cially those which represent time or deal with low level details of circuit operation. First,

I discuss two systems which use first-order logic.

2.2.1 First-Order Logic

Several approaches to formal hardware verification have been based on first-order logic.
The approaches presented in this section, [Bar84], [Hun86|, automate hardware verification
and have been used to verify complex hardware designs., Drawbacks in the use of first-
order logic include difficulty in expressing timing in a detailed manner, and difficulty in
expressing abstraction between different levels of description. Systems which use higher-
order logic do not experience these difficulties. Two such systems are presented in the

next section.

Verify

Verify [Bar84] is a Prolog system which attempts to automatically prove that the behavior
of the implementation of a digital system is equivalent to the specification. Verify uses
Prolog as a hardware description language. The behavior of a component is specified as
a finite state machine with next state and output equations. There is an implicit clock;
at each clock tick the state variables and outputs are updated. Timing at a more realistic
level is not considered. With Verify, circuits can be described and verified down to the
transistor level. The transistor model employed is a simple unidirectional, switch-level
model. Different levels of description can be related in a limited manner, but abstraction

functions cannot be defined by the user.
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2.2 FORMAL HARDWARE VERIFICATION

Boyer-Moore Theorem Prover

Hunt [Hun86] uses the Boyer-Moore theorem prover to prove correct a 16-bit micropro-
grammed microprocessor implemented at the register-transfer level. The behavior of com-
binational circuits is described by recursively defined functions. Sequential circuits are
modeled using self-recursive functions which have an explicit clock argument. These func-
tions call themselves recursively once each clock tick. Thus time is discrete and behavior
at any given level is related to the representation of a single clock. The theorem prover
is mechanical; its operation is guided by heuristics. Since the logic used is first-order and
there are no quantifiers, Hunt has difficulty formally relating clocks at different levels of
description of the microprocessor. He overcomes this difficulty by using oracles: functions
which guess the exact number of time steps a low level representation needs to execute to
be equivalent to the next higher level specification. Such oracles cannot be represented
in first-order logic. If higher-order logic is used as the specification language, abstraction

between levels can be expressed directly, and such oracles are not required.

2.2.2 Higher-Order Logic

Higher-order logic provides several advantages over first-order logic, including a more
direct way of expressing abstraction and a more elegant way of representing time with
signals modeled as functions from time to values. I describe two important systems which

employ higher-order logic to reason about hardware.

HOL

The HOL (Higher-Order Logic) system was developed by Mike Gordon for specifying and
verifying hardware [Gor85b]. HOL is being used by many people at Cambridge Univer-
sity as well as elsewhere [CGMS86]. Several large examples from real designs are being
verified, including the VIPER microprocessor [Coh87]. My work has been influenced by
the approach taken by HOL. A hardware component is described in HOL with a logical
formula, components are composed by anding them together, and internal connections
are hidden using existential quantification. Verification proceeds by showing that a struc-

ture correctly implements a specification. This involves expanding the structure by the
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behavioral description of its parts, and deriving a description of behavior which implies
the specified behavior. The HOL system mechanizes some aspects of the verification of

circuits.

A major difference between my approach and the HOL approach is the way time is mod-
eled. In temporal logic, time is implicit in the logical operators. In higher-order logic,
time is usually represented by an explicit time variable. For example, the behavior of an

inverter with input In and output Out and delay m is expressed in HOL by:
invert(In,Out,m) =qer Vt.0ut(t +m)=-In(t)

The same inverter, described in ITL, has the behavior:
invert(In,Out,m) =g Olenm D (=In— Out)

Note that in HOL, the signals In and Out are functions from time to values.

Herbert [Her86] uses HOL to verify the timing and function of digital circuits. Primitive
components are gates with propagation delay such as the inverter described in HOL above.
The proofs proceed by verifying the function and timing of a circuit using these timing level
models, and then abstracting to a synchronous level model which expresses function only,
subject to constraints on the timing behavior of the signals. The synchronous behavior of

the inverter in HOL is:
invert(In,Out) =qer VE.0ut(t) = —In(t)

The constraints are that In and Out are stable around ¢. Herbert uses this approach to
derive the timing constraints on the inputs and outputs of a d-type flipflop built up from
nor gates. Since the primitive components of his proofs are logic gates, Herbert doesn’t
congider the special requirements of verifying the timing of transistor level descriptions of

circuits.

Dhingra [Dhi87] uses HOL to formally describe and verify the rules for combining compo-
nents with the CLIC design style, a successor of the NORA design style [GDMS83]. This
work complements that done in my derivations since the components of the adder pre-

sented in Section 7.2 fit into the framework of the CLIC design style. Dhingra formally
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proves that well-defined inputs will produce well-defined outputs provided that compo-
nents are connected according to the rules of the design style. He does not however model
low level timing details of circuits. For example, his transistor models do not have delay.
He introduces time into his descriptions by describing two-phase non-overlapping clocks
where each phase has duration of unit length, and assumes the duration is long enough

for correct circuit operation. This is a coarser level of detail than that which I use.

VERITAS

Hanna and Daeche also use higher-order logic to specify and reason about circuits [HD86a].
Their theory of time includes formalizations of time instants, durations and intervals,
where an interval starts at a time instant and has a specified duration. As in HOL, time
is explicitly part of the behavioral specification, and signals are functions from time to
values. In [HD86b|, a d-type flipflop similar to that presented by Herbert is verified, and

similar timing constraints are formally derived.

2.2.3 Temporal Logic

Temporal logic has been used for specifying software, hardware and communications pro-
tocols. One of the earliest papers on using temporal logic for hardware [Boc82] describes
specifying and manually verifying an implementation of a self-timed arbiter. In this ex-
ample, temporal logic is used to specify the sequence rather than the relative timing of
events. In the following, I discuss examples of temporal logic applied to circuit design in
cases where the relative timing of events is modeled or where the verification technique

has been automated.

ITL and Tempura

Moszkowski uses ITL to specify and reason about digital circuits [Mos83]. Since my
work was motivated by his, the circuit descriptions are similar. A major difference is
that the primitive components he uses to describe the behavior of larger components are

delayless combinational elements and memory elements, while mine are MOS transistors
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with delay. Moszkowski presents a definition of pass transistor behavior, but does not
model its detailed timing behavior and does not show how this description can be used
in larger MOS circuits. Also, Moszkowski does not reason about different signal strengths
in ITL. Another difference is the way constraints are handled. Moszkowski includes such
constraints as set-up and hold times as part of the behavioral definition. His descriptions

generally have one clock signal, so he does not relate the behavior of different clocks.

Tempura is an executable programming language based on a subset of ITL [Mos86]. The
Tempura interpreter simulates this subset by finding values for the Tempura variables
which result in the temporal logic formulas being valid. Moszkowski shows how this
approach can be used to simulate ITL descriptions of circuits. Such simulation is useful
for checking that the specification does in fact describe the desired behavior of the device.
Modifying Tempura to handle my extensions to ITL, described in Section 4.4, would

provide a useful tool for simulating my ITL specifications.

CTL and SML

A propositional temporal logic called CTL (Computation Tree Logic) has been used to
specify the behavior of asynchronous and sequential circuits [BCDMS86], [DC86]. The
behavior of a circuit is specified in CTL and compared with the expected behavior of a
gate level representation of the circuit. EMC (Extended Model Checker) checks the CTL
specification against a finite state graph which represents the behavior of the gate level
description of the circuit. In the case of asynchronous circuits, this finite state graph is
generated by a preprocessor which combines flow-table models of the behavior of gates to
form the state graph of the circuit being verified. No quantitative timing parameters are
used; gates are assumed to have arbitrary delay. In the case of sequential circuits, there
are two techniques for generating state graphs from the circuit. The first is to simulate the
circuit using a mixed gate and switch-level simulator similar to MOSSIM [Bry81]. The
simulator uses a unit delay model for all elements. The second is to compile the state
graph from a hardware description language representation of the circuit. The language
SML (State Machine Language) was developed for this purpose. These SML descriptions
can also be used to generate different regular hardware structures such as PLAs, PALs or

ROMs.
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The main advantage of this approach is that it is mechanized. A major disadvantage is
that the finite state graph which is generated is not hierarchical so its size grows rapidly
as the complexity of the circuit grows. In addition, temporal logic is used only to specify
the sequence of events. Thus the delay models used do not realistically capture the timing

behavior of the circuits modeled.

LTTL and Tokio

LTTL (Linear Time Temporal Logic) is used to specify hardware at the register-transfer
level and above [FTM83]. As with CTL, the examples presented use temporal logic to
reason about the functional and sequential behavior rather than the low level timing be-
havior of circuits. Temporal logic assertions are made about a circuit, and these assertions
are checked against a Prolog description of the operation of the circuit. This verification
proceeds by expanding both the temporal logic and the Prolog description into behaviors
of the current state and the next state; and then comparing these descriptions. Verifica-
tion is done automatically. In addition, the logic programming language Tokio [FKTM&86]
executes LTTL specifications. The result is a simulation of a specification similar to that
provided by Tempura. However, the underlying model of execution for Tokio is logic pro-
gramming. Advantages and disadvantages of this work are similar to those for CTL. This
approach has the additional benefits of exploiting hierarchy in circuit design and providing
a tool to simulate the temporal logic specification. Disadvantages include the fact that

low level timing considerations are not modeled.

ETL

Fusaoka et al. [FST84] use ETL (Extended Temporal Logic) to describe and reason about
VLSI circuits. ETL, first presented by Wolper [Wol82], extends propositional temporal
logic with operators for regular expressions. VLSI circuits are modeled down to the tran-
sistor level. The transistor model is unidirectional and specifies how the drain voltage
behaves as a function of the source voltage when the gate signal rises or falls. Low level
timing details modeled include the different delays associated with a rising pulse and a

falling pulse being propagated through an inverter. A temporal logic description of the
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behavior of a circuit is derived by composing temporal logic descriptions of the behaviors
of the components. The behavior of a circuit is validated by verifying that the specifica-
tion of the input signals anded with the temporal logic description of the circuit implies a
specification of the output signals. Note that the user must specify the inputs and outputs,

so the result resembles simulation more than formal verification.

As an example, a dynamic latch circuit similar to that discussed in Section 7.1.3 is pre-
sented [FST84]. Their circuit uses only one clock and charge storage is not modeled. The
latch is modeled as having unit delay, and low level timing details of the components are
suppressed. In addition, the specification of the input signals is not related to the state of
the clock signal, even though the specified behavior is only true if a clock signal begins at
the correct time. Some timing information about the output is derived in this example,

but it is not very detailed and is also not related to the behavior of the clock.

2.2.4 Comparing Temporal Logic and Higher-Order Logic

Temporal logic and higher-order logic are formalisms which have been used to specify and
verify hardware. Each formalism has certain advantages and disadvantages. In temporal
logic there are no explicit time variables; time is implicitly part of the temporal operators.
As a result, the specifications of behaviors are more succinct. In addition, there is no
need to express such information as an order over time variables. In higher-order logic
descriptions, time variables are explicit and signals are functions from time to values.
Behavior specifications are frequently more complex. The advantage of higher-order logic
is that it is not necessary to have special proof rules to deal with the temporal logic

operators, so the proof system may be less complex.

Temporal logics can be embedded in higher-order logic. Gordon and Hale [GH87] have
shown how ITL can be embedded in HOL. There are several advantages in doing this,
including the ability to mix a temporal logic description of behavior with explicit time
representations. In [Sub86al, timing behaviors are described by such a mixture of temporal

and higher-order logic formalisms.
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2.2.5 Other Formalisms for Verification

I discuss a few other systems for formally reasoning about systems. Specifically, I discuss
systems which model low level characteristics of hardware. Such low level considerations

include timing of combinational elements, geometric layout, and transistor level modeling.

Circal

Milne uses Circal to specify the structure and behavior of circuits [Mil86a]. Structure can
be specified hierarchically. A component is specified by a name and a set of ports. Circal
supports parallel composition of components and hiding of ports. When components are
composed, similarly labeled ports are joined. Behavior is described by sequences of events
on ports. The behavior of each component is specified as a finite state machine. Time may
either be expressed implicitly or explicitly. If time is explicit, then the time variable must
have a port at each device. In this case, input and output events may only occur when
a time tick or time event occurs. Different grains of time may be modeled and these can
be formally related. Specifications of behavior in Circal tend to be lengthy. For example,
the behavior of a wire with an explicit representation of time and a one unit time delay
requires four lines of description. Verification of device behavior proceeds by specifying
the behavior of a device at an abstract level, specifying the behavior of the components

of the device at a lower level, and proving that the two are equivalent.

uFP

pFP [She86|, [She83] is a VLSI design language based on the functional programming
language FP which captures both behavioral and geometric information about a circuit.
The circuits described are regular array circuits whose behavior is either combinational
or can be defined by a finite state machine. The u operator introduces memory into the
functional descriptions of circuits. Circuit behavior is described by functions from streams
of inputs to streams of outputs. Circuits are manipulated hierarchically. A behavioral
description of a circuit is transformed by applying algebraic laws. The resulting layout is

therefore correct by construction. uFP successfully combines reasoning about the function
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and low level implementation details. However, the class of circuits which can be modeled
is restricted since only synchronous circuits can be described. In addition, the model of
time used is discrete, and all clock signals must be related to the same underlying clock.

Thus, low level timing considerations are not expressed,

A Compositional Model of MOS Circuits

Winskel describes a compositional model for MOS circuits [Win87a). This formal model
is based on Bryant’s lattice of voltage values which have different resistive and capacitive
strengths. Circuit behaviors are modeled as static configurations where a static configura-
tion is the set of steady states a circuit can adopt. A static configuration is characterized by
voltage values and strengths, internal voltage sources and signal flow information. These
- static configurations place constraints on the way ports can interact with the environment.
Two circuits can be composed if the ports which are connected in the process impose con-
sistent constraints on the environment. In [Win87b|, Winskel shows how his model can be
formally related to Gordon’s switch-level model which does not take into account resistive

and capacitive signal strengths.

Winskel does not deal with time explicitly. Time may be introduced by viewing it as a
sequence of static configurations where each static configuration has an associated time
variable. The assumption is made that all input signal durations and clock periods are

sufficiently long for the circuit to settle into a steady state before the environment changes.

Silica Pithecus

Silica Pithecus is a system for verifying the digital behavior of synchronous systems
[Wei86]. Weise is mainly concerned with verifying low level aspects of the behavior of
nMOS circuits. Verification proceeds by calculating the analog behavior of a circuit im-
plementation, abstracting that behavior to the digital level, and comparing the result to
the specification provided by the user. The system uses a bidirectional transistor model,
and models resistive and capacitive strengths. Signals are functions from time to voltages

and strengths. The system can detect charge sharing bugs, ratio bugs, threshold drops,
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and races and hazards. It does not handle capacitive coupling and general feedback in
circuits. Timing verification is also not handled. The assumption is made that a circuit
settles into a steady state before the inputs change. This system reasons about constraints

on the behavior of signals in a manner similar to that which I use.

2.3 Conclusions

In this chapter, I have discussed informal and formal methods for reasoning about circuits.
By using formal methods to validate a hardware design, several advantages are gained
over informal methods. These advantages include the ability to control the complexity of
verification through hierarchical analysis, and the ability to formally relate the different
levels of description. With experience and further research, formal methods may also
gain the advantages currently exhibited by informal methods: maturity and widespread

acceptance.

My research differs from previous work in the level of hardware designs verified. I specify
and verify function and timing of circuits built from MOS transistors modeled at a detailed

level. This research complements much of the work described above.

In the rest of this thesis I describe how Prolog and ITL can be used to specify and
formally verify the timing and functional behavior of CMOS circuits. In the next chapter,
I describe how to specify circuits using Prolog, and how the specifications can be used to
derive characteristics of these circuits. I then go on to describe how these specifications

are used in formally reasoning about circuit behavior.
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Chapter 3

Prolog for Circuit Specification
and Manipulation

Circuits can be specified, simulated and reasoned about using logic programming. In
this chapter I describe the use of the logic programming language Prolog to represent the
structure of circuits. These Prolog descriptions directly reflect the structure and hierarchy
of a circuit as shown in a circuit schematic. Furthermore, important characteristics of

circuits can be automatically derived from these specifications.

First I define some terminology and give a brief review of Prolog. Next I describe the
specification method and present an example. I then describe tools I have written for
manipulating these circuit descriptions. These tools include programs for automatically
deriving the direction of signal flow through transistor networks and deriving port direc-
tions from the schematic. Finally I discuss related research into Prolog tools for hardware

design.

3.1 Terminology
3.1.1 Specifying Circuits

A circuit is composed of a set of components. Components can be composed hierarchically,
where components are specified in terms of constituent components. At the bottom of the
hierarchy are primitive components. I describe CMOS circuits; the primitive components
are n-type and p-type transistors and power and ground sources. There are no strict rules
about the levels of hierarchy. One component may be made up of primitive as well as

non-primitive components.
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Each component has ports for external connections. A port may be an input, an output, or
bidirectional. A node is a junction of ports. Nodes which are ezternal to a component are
formed by connecting one of the ports of that component to one or more ports of other
components. Nodes which are internal to a component are formed by connections of the

ports of the constituents of that component.

3.1.2 A Brief Review of Prolog

Logic programming is based on the Predicate Calculus. An introduction to Prolog (PRO-
gramming in LOGic), a widely used logic programming language, is given in [CM84]. In
this section I present some key concepts and terminology, especially those used to specify

and manipulate circuits. I use Edinburgh Prolog syntax.

In Prolog, terms are constant symbols, variables or compound terms. Constant symbols are
either integers, or written with an initial lower case letter, or a string of non-alphanumeric
symbols. Variables are written with an initial upper case letter. An n-ary compound
term is written as f(t1,...,t,) where f is a constant symbol called the functor, and each

t; (1 <1 < n)is a term called an argument.

A list is another commonly used compound term with special Prolog syntax. A list of
length 0 is written []. A list of length n is written [t1,...,%,]. ¢1 is called the head of the
list, and ¢g,...,t, are elements of a list called the tail. The list having head k and tail {

can also be written [h|l].

Formulas are written as Horn clauses, a subset of the formulas of Predicate Calculus. The

Horn clause:
P:- QI)Q%"';Qq

is equivalent to the Predicate Calculus formula:

V21, ... m (3t U Q1 A Q2 A .. AQ) D P

where P and the Q; (1 < ¢ < g) stand for compound terms, the z; (1 < j < m) are
variables appearing in P and possibly in the Q;, and the y; (1 < k < n) stand for variables
appearing in the @; and not in P. P is the head of the Horn clause, the Q; are the body.

A clause with no body is called a unit clause.
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Clauses are used as a program to which questions (or goals) can be posed. The strategy
used by Prolog for the execution of goals combines a simple backtracking strategy together
with a pattern matching algorithm known as unification. Two terms are matched accord-
ing to the unification algorithm if there is a most general substitution for the variables in
the terms such that the terms may be made equal. In logic programming, unification is a
general purpose feature used for passing input and output parameters and for incremental
construction of data structures. When using Prolog as a hardware description language,

unification is used for propagating signal values through a circuit.
3.2 Specifying Circuits in Prolog

Clocksin [Clo87] presents and compares three different methods of specifying circuits in
Prolog. These are the functional method, the extensional method and the definitional
method. I give brief descriptions of the first two methods, and describe in more detail the

method which I employ: the definitional method.

The Functional Method

In this method, a functional representation of circuits is used. An output of a component
is described by a function applied to arguments which are the inputs to the component.
These arguments may in turn be functions. For example, the component halfadd shown

in Figure 3.1 is described as:

xor(A, B).
not(nand(A4, B)).

This method has two disadvantages. First, only acyclic circuits can be specified. This
excludes many practical circuits. Second, a separate expression must be used to repre-
sent each output of a circuit. In addition, functional specifications quickly become very

complex, even for simple circuits.
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o

Figure 3.1: The Component halfadd

The Extensional Method

The extensional method represents each component and connection with a separate clause.
Prolog constants are used to name connections. For example, the halfadd in Figure 3.1
component can be described using the relations component and connect. The arguments
of component are the name of the component, a list of inputs and a list of outputs. The

binary predicate connect describes connections between ports:

component(xor,[a, b], [c]).
component(nand,|a, b], [c]).

component(not, [a, b]).

connect(a,xor(a)).
connect(b,xor(b)).
connect(a,nand(a)).
connect(b,nand(b)).
connect(nand(c),.not(a)).
connect(xor(c), s).

connect(not(d), c).
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This method does not have the same drawbacks as the functional method. However,
disadvantages arise since modules are not represented as a single term. It is therefore
difficult to do certain kinds of circuit manipulations. In addition, hiding internal lines is

cumbersome so expressing modularity is not straightforward.

The Definitional Method

In this method, a circuit is represented as a set of Horn clauses. A component with n ports
is represented as a predicate of arity n whose head represents the component being defined.
The body of the predicate is a composition of the constituent components which define
the component. Constituents are composed with the comma connective, The order of the
components in the body is not important. The ‘: —’ connective of Prolog is reinterpreted
to mean ‘is defined by’. A node is represented by a unique, like-named variable. A node

which is named by a variable not appearing in the head of the clause is an internal node.
The component halfadd depicted in Figure 3.1 is specified as:
halfadd(A, B, 8,C) : — xor(A, B, S).nand(A, B, T).invert(T,C).

The variable T' defines the ‘hidden’ node between the output of the nand gate and the input
of the inverter. Figure 3.2 shows the definition of the nand gate in terms of primitive
elements. A transistor is specified as trans(X,G, A, B) where X specifies the type of
transistor (either n or p); G is the gate and A and B are the channel nodes (source and
drain). Component nand is specified as:

nand(4, B,C) : —

pwr(P).trans(p, B, P,C) trans(p, A, P,C).
trans(n, A, C, T).trans(n, B, T, G).gnd(G).

Note that the ports of these components do not have directions specified.
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<
&

Figure 3.2: The Component nand

Advantages of the Definitional Method

Specifying circuits in this manner has several advantages. The descriptions directly reflect
the structure and hierarchy of a circuit as shown in a schematic, and are therefore easy
to write, These descriptions also lend themselves to easy modular specification for several
reagons. The component name is explicitly part of the specification. Internal connections
are named by variables which do not appear in the head of the clause and are effectively
hidden. In addition, the definition of ports of components is inherently non-directional.
This is important for specifying components, such as pass transistors and transmission

gates, which have bidirectional ports.

Another advantage is that the specifications can be manipulated or directly executed
by Prolog systems. Clocksin [Clo87] describes how Prolog specifications of circuits can
be directly executed. In the next section I describe other tools for manipulating these

specifications,
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3.3 Tools for Manipulating Prolog Circuit Specifications

I have written several Prolog procedures for manipulating descriptions of MOS circuits.
These tools analyze the circuits hierarchically. Examples of such tools include code to
automatically determine the direction of signal flow and the direction of ports of compo-
nents in hierarchically specified MOS circuits. In the next subsection I describe this code.

Then, I describe work others have done in developing Prolog tools for circuit design.

Other procedures I have written identify all the components directly connected to a given
node in a circuit and identify all the primitive components directly connected to a given
node. I have also written routines to extract circuit components from a network of cir-
cuit elements. These tools are used with the techniques described in this thesis; their

implementation is not described further.

3.3.1 Automatic Determination of Signal Flow through MOS Transis-
tors Networks

Determining the signal flow through transistors is often a necessary precursor for further
circuit analysis. For example, both Crystal [Ous83] and TV [Jou83] require flow analysis
before they can proceed with timing analysis. Many formal methods for circuit verification
[Bar84] and design simplification [Clo87] depend on signal flow being specified in advance.
Some design verification methods do not require preliminary flow analysis, but proofs are
easier to compute if the results of flow analysis are available [Gor85a]. One way to provide
signal flow information is to manually specify the input and output roles of components’
ports. Some systems [Bar84],/Ous83] rely on manual specifications entirely. However,
automatic signal flow determination can reduce the designer’s workload, particularly for
the case of MOS transistors, which, due to the symmetry of source and drain nodes, are
capable of conducting in different directions at different times. TV [Jou83] automatically
determines signal flow in nMOS transistor networks free of bidirectional transistors and
specification errors. TV uses nine rules to determine the direction of transistors. In
addition to the general Kirchoff current law, TV uses information about the types of

circuits used in the design methodology.
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Figure 3.3: A CMOS inverter

The method described in this section was originally presented in [CL86]. It is intended
for hierarchically specified MOS transistor networks that contain bidirectional transistors,
and where there is no information about any particular design methodology. The method
is data independent; it does not use knowledge of the values of inputs to a circuit. The
analysis is static; it is only dependent on the circuit topology. In essence, we are de-
termining the flow of information through a network assuming all transistors are turned
on. Although it is unlikely that this configuration will occur in practice, we are able
to determine those transistors whose direction will always remain the same. Transistors
which can support signal flow in either direction are labeled bidirectional. Clearly we
label some transistors bidirectional which, due to the inputs provided, will only propagate
signals in one direction in practice. However, the algorithm is guaranteed to correctly find
all bidirectional transistors, and will not incorrectly label any unidirectional transistor.
This procedure will be able to determine the direction of a large percentage of transistors
in most circuits. It will not provide much useful information about a design that relies

heavily on bidirectional transistors; however, such designs are unusual.

Signal flow may be viewed as the propagation of logic levels, either high or low, through a

network. Power and ground connections are viewed as sources of signal flow. Inputs to a
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component and outputs from a component are sources and sinks of signal flow, respectively.
Note the difference between signal flow and the more traditional view of current flow where
power acts as a source of current flow and ground acts as a sink. For example, consider the
CMOS inverter in Fig 3.3. The dotted arrows show the direction of current flow through
the transistors; the solid arrows show the direction of signal flow. Using the definition of
signal flow we can derive the input node and output node of the inverter. This will be

shown later.

The Method

The input to the direction finder is a circuit specification. Primitive components are p-
type and n-type transistors and power and ground supplies. Ports of components may be
sinks or sources of signal flow or both. The task of determining the direction of signal
flow can be viewed as a consistent labeling problem [Mak77]. To solve the problem, it is
necessary to associate with each transistor a label drawn from the set {right, left}. Refer
to Figure 3.4. If the two non-gate terminals of a transistor are arbitrarily named A and B,
the label right is assigned to a transistor for which terminal A is a sink of signal flow and
terminal B is a source of signal flow. The label left is assigned to a transistor for which
terminal A is a source of signal flow and terminal B is a sink of signal flow. For a circuit
consisting of m transistors, the number of unconstrained labelings is 2™. The problem is
to assign labels to transistors such that a constraint is met: each node of a circuit must
be connected to at least one sink and at least one source of signal flow. Moreover, if a
node is directly connected to power or ground, then at most one source of signal flow (the
power or ground itself) is allowed. This constraint is called the Signal Law. The Signal
Law is a consequence of Kirchoff’s current law. For a circuit containing bidirectional
transistors, multiple solutions to the consistent labeling problem are admitted. In other
words, there may be more than one possible labeling of a circuit that satisfies the Signal

Law. A bidirectional transistor will be labeled right in one solution and left in another.

The direction of ports (whether they are used as inputs or outputs) is an additional
constraint on the solution. With this method there is a choice of whether to attempt to
derive the direction of ports automatically (at the risk of obtaining a weak solution) or to

use a specified direction of ports to constrain the search for labelings of transistors.
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Figure 3.4: Transistor Labelings

Implementation

The method is implemented in Prolog, using depth-first search through the hierarchical
circuit specification to exhaustively enumerate the directions of transistors. The method
compounds the direction finding of transistors with establishing the direction of ports of
non-primitive components. Unlike previous approaches [Jou83], the whole circuit is not
flattened into a set of primitive components. First, the outermost component is decom-
posed into its constituents, then the direction of the ports of each of these components
is established, and finally it is confirmed that the hidden nodes of the circuits obey the
Signal Law. If a component is not primitive then the direction of its ports is established

recursively.

The direction of ports of primitive components, in this case n-type and p-type transistors,
are determined as follows. Transistors have three ports: gate, source, and drain. A
transistor’s gate terminal is always a sink of signal flow. If a transistor, specified as
trans(n, A, B, C), is assigned the label left then B is its source and C is its drain. Similarly,
if it is assigned the label right then B is its drain and C is its source. A transistor source is
a source of signal flow; its drain is a sink. Either the label left or the label right is assigned
to a transistor. This is a nondeterministic choice which may be reversed subsequently if it
is found that the original choice leads to a violation of the Signal Law. Power and ground

connections are always sources of signal flow.

At any level of the hierarchy we can identify the set C' of components that make up the

component at the next higher level of the hierarchy. Labels taken from the set {in, out}
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are associated with each port of each component in C. The label in corresponds to the
associated port acting as a source of signal flow to a node outside the component; the label
out corresponds to the port acting as a sink of signal flow. The labels of ports connected
to a given node are collected into a list associated with the node. A hidden node obeys the
Signal Law if (a) its list contains at least one in and one out, and (b) if the node directly

connects to a power or ground node, then it must contain only one in.

Only the hidden nodes of the enclosing component must satisfy the Signal Law; its ports
are checked when the enclosing component itself becomes a component of a larger circuit.
If at any level of the hierarchy a node list does not satisfy the Signal Law, Prolog will
automatically backtrack to find a direction of the components which satisfies the Signal

Law.

The effect of this procedure is to try both directions of all transistors until the Signal
Law is satisfied. Further backtracking will find all possible solutions. Transistors whose
directions are the same in all possible solutions are unidirectional, the remaining transistors
are labeled bidirectional. When all solutions are found, each port of each component has
an associated list of 1ns and outs. If all elements on the list are ins, then the port is an
output; if all elements on the list are outs then it is an input. Otherwise, it is bidirectional.
In addition, the number of elements on the list is the number of primitive components
connected to that port. This information may be useful in subsequent analysis of the

circuit for determining the capacitive loading of a node.

The hierarchy of the circuit specification can be exploited further. Once the directions
of ports have been found for a type of component, the result can be stored in a library.
This library would be consulted for each component when the procedure is invoked. Thus,
direction setting needs to be determined only once for each type of component. In this
context, trying both possible directions for all transistors in a circuit becomes reasonable
for circuits with very large numbers of transistors. For example, suppose we wish to include
a CMOS inverter in the library. Running the procedure on the inverter circuit once will
set the direction of both transistors and establish the input and output. This result will
then be stored, and each additional time an inverter is encountered, the input and output
nodes are looked up in the library. Instead of four possible labelings for each inverter,

only one is considered. The benefits become greater as the library and the complexity of
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the components in that library grow.

Examples

I will now show the result of applying this procedure to a few simple examples. These
include a CMOS inverter, a static register which illustrates constituent components defined
at different levels of hierarchy and the utility of a library, and a full adder which has

bidirectional transistors.
Example 1. A CMOS inverter (Figure 3.3). This circuit is specified as:
invert(A, B) : — pwr(P), trans(p, A, P, B), gnd(G).trans(n, 4, B,G).

Since any connection to power or ground is an input, it is clear that the n-type transistor
would be labeled right, and the p-type transistor would be labeled left. This corresponds to
the arrows for signal flow shown in Figure 3.3. The resulting node list for A is [A, out, out],
telling us that A is the input to the component. The resulting node list for B is [B, in, in]

so B is the component’s output. Backtracking would not find further solutions.

Example 2. A static register (Figure 3.5). This circuit is specified as:

sreg(A, B, Load) : —
trans(n, Load, A, X).invert(X,Y),invert(Y, B),
trans(n, Z, B, X).invert(Load, Z).

This simple component illustrates several key aspects of this approach. Internal connec-
tions such as nodes X,Y, and Z are hidden through use of Prolog variables which do not
appear in the head of the clause. In addition, a circuit may be made up of constituent com-
ponents described at different levels of hierarchy; here we mix primitive and non-primitive
components. This example also illustrates the utility of a library of components. If the
directions of the ports of the inverter are stored in a library, then only the direction of
the two pass transistors need be considered. Thus only four possible label assignments are

investigated.

From the method presented so far, it is impossible to ascertain a unique direction for the

two pass transistors. There are three ways to deal with this problem. One is to leave the
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Load D)—

Figure 3.5: A Static Register

direction specified as bidirectional until the register is used in an enclosing component.
Another is to use specifications of the directions of ports. For example, in the static
register, the specification that A is an input leads to the solution of the direction of the
transistor directly connected to it. However, the specification that B is an output does
not imply a single direction for the other transistor. Another approach is to incorporate
additional rules which recognize commonly occurring structures. I use a combination of
these approaches. For the static register, both the direction of ports are specified by the

user and additional rules are used.

Two additional rules are used by the direction finder. One recognizes that two transistors
with gates which are the complements of one another and which each have a channel
connected to the same node have the same direction with respect to that node. This rule
explicitly recognizes a 2-to-1 multiplexer implemented with transistors, a configuration
frequently found in designs. The second rule recognizes that both transistors in a trans-
mission gate have the same direction. Note that the register is not implemented in fully
‘complementary MOS. This can be rectified by replacing the pass transistors by transmis-
sion gates consisting of p-type and n-type transistors with the complementary gate and
the same channel connections. The transmission gate rule ensures that such a circuit is

analyzed the same way as that shown in Figure 3.5.
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Exploiting hierarchy is still advantageous for a component which has several possible
labelings of its ports. All of the different labelings are stored in the library when the
circuit is analyzed, and the labeling which satisfies the constraints of the environment in
which the component is used becomes the labeling for that component. Note that two
instances of the same component in a circuit may have different labelings. In any case,

the direction finder is applied to this component only once.

Example 3. A full adder. Figure 3.6 shows a full adder circuit built out of two compo-

nents, a sumpart and a carrypart. Each of these components is itself built out of transistors.

The top level specification of the adder is:

adder (A, B,C, Sum,Carry) : —
sumpart(A, B,C, NCA, Sum),
carrypart(A, B,C, NCA, Carry).

The procedure is applied to this circuit. The sumpart consists of twelve transistors, six
of whose direction cannot be established and are thus labeled as bidirectional. All of the
transistors in the carrypart are unidirectional. The procedure also establishes that A, B,
and C are always input ports and Sum and Carry are always output ports despite the

different possible internal configurations.
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sumpart(A,B,C,NCA,Sum) Vad

xon —|

NCA —

Carry

Figure 3.6: A Full Adder
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Discussion

Signal flow detection is able to recognize certain classes of specification errors. Circuit
specifications that do not admit any labeling of transistor directions must be suspect as
incorrectly specified. Such specifications contain at least one internal node which contains

either all sinks or all sources of signal flow, an impossible situation in practice.

Techniques exploiting combinatorial enumeration are always suspect as being inefficient.
I have already mentioned the use of hierarchical specification of circuits to reduce the
number of configurations to be examined. The number of different kinds of components
in the circuit becomes the important factor instead of the total number of transistors.
The following experiment illustrates the improvement in efficiency realized by hierarchical

analysis. This is the case even when an improved backtracking algorithm is used.

A version of the signal flow analyzer was implemented which uses a dependency directed
backtracking algorithm developed by M. P. Shanahan [Sha87]. This algorithm was com-
pared with Prolog’s built-in backtracking algorithm by running each on two versions of the
full adder circuit shown in Figure 3.6. One version of the adder was flattened into primitive
components; the other version was described hierarchically. The results of these experi-
ments is shown in Table 3.1. The numbers were obtained using the statistics command

available in C-Prolog run on a DEC Microvax II.

These experiments show that the dependency directed algorithm was much faster than
Prolog’s built-in backtracking algorithm at finding an assignment of transistor directions
if a circuit was first flattened into its primitive components. The dependency directed
backtracker was slightly slower in finding the first solution than the built-in backtracker

for circuits which were analyzed hierarchically.

The results for the circuit analyzed hierarchically are much faster than for the flattened
circuit, irrespective of the backtracking algorithm used. This illustrates the efficacy of

hierarchical analysis.
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1) FLAT CIRCUIT ANALYSIS

a) Built-in backtracker:
one solution: 151.50 seconds
all solutions: 748.53 seconds

b) Dependency directed backtracker:
one solution: 22.07 seconds
all solutions: 323.53 seconds

2) HIERARCHICAL CIRCUIT ANALYSIS
a) Built-in backtracker:

one solution: 453 seconds
all solutions: 41.00 seconds

b) Dependency directed backtracker:
one solution: 10.81 seconds

all solutions: 22.93 seconds

Table 8.1: Performance Results of Signal Flow with Different Backtracking Algorithms
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3.3.2 Related Work: Prolog for Circuit Design

Many tools have been written which employ logic programming for computer aided de-
sign of electronic circuits. In this section I describe such tools which do not use formal
methods. Work on formal methods applied to hardware design is discussed in Chap-
ter 2. Here I discuss the application of logic programming to symbolic simulation, design
transformations and automatic test pattern generation. These tools operate on gate level
descriptions of circuits. I also discuss a silicon compiler project which employs transistor

level descriptions.

Several researchers have implemented symbolic simulators which operate on Prolog spec-
ifications of circuits [Bat83], [Clo87], [Gul85], [Suz85]. All of these use the definitional
method of specification, and all simulate circuits down to the gate level. The simulations
by Gullischen [Gul85] can be run forward or backward but only operate on combinational
circuits. Batten [Bat83], Clocksin [Clo87], and Suzuki [Suz85] simulate sequential circuits
by manipulating streams of values. A stream of values on a wire is represented as a list.
The next state and the outputs are represented as functions of the current state and the
inputs. Suzuki uses a parallel implementation of Prolog to explicitly exploit the paral-
lelism which occurs in a circuit. A global clock is explicitly modeled, and simulation is

event-driven based on the value of that clock.

Clocksin also presents algorithms for gate assignment, circuit rewriting, and component
specialization. All of these tools manipulate gate level descriptions of circuits. The pur-
pose of gate assignment is to map a circuit onto a set of commercially available products,
and then to estimate the cost of the resulting assembly. With circuit rewriting, a cir-
cuit is transformed into a different implementation with the same functional behavior.
Specialization automatically removes redundant components from a circuit. Redundant
components arise when a designer is designing with a standard design library. Special-
ization automatically adds cells to the library to customize that library for the current
design. Another tool for design transformation of Prolog circuit specifications is presented
by Shiu-Kai Chin [Chi86] in his PhD thesis. Chin shows how multiplier specifications can
be automatically synthesized using equivalence transformations implemented in Prolog.

The resulting synthesized circuits are gate level implementations of multipliers.
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Logic programming has been used by Gupta [Gup86] and Svanwzs and Aas [SA84] to
automatically generate test patterns. Both of these approaches employ the definitional
method to describe circuits at the gate level. Test pattern generation exploits simulation
of descriptions of circuits. Faults are injected into a circuit and the result of simulation of
the faulty circuit are compared to the results of simulation for the correctly implemented
circuit. Gupta uses a hierarchical description of circuits where components which do not
meet their functional behavior are expanded by their implementations. Horstmann [Hor83]
uses Prolog in an expert system for design for testability. The system applies rules to check
that certain criteria are met. If a rule fails, the circuit is transformed by adding circuitry

to the original circuit. Horstmann specifies circuits with the extensional method.

All of the tools described above manipulate gate level descriptions of circuits. The Ad-
vanced Silicon Compiler in Prolog (ASP) project at the University of California at Berke-
ley manipulates transistor level descriptions of circuits. The aim of the ASP project is
to implement a silicon compiler on a parallel machine which runs Prolog [DPS*87]. One
module of ASP is the Prolog Timing Analyzer (PTA) [PD86] which calculates the delays
of all nodes using a lumped RC delay model. PTA exploits a hierarchical description
of the schematic. Another module, MOST, uses information from PTA and a simulated

annealing algorithm to assign sizes to transistors in a VLSI schematic.

3.4 Conclusions

I have shown how Prolog can be used to specify and manipulate the structural represen-
tations of MOS circuits. I go on to describe reasoning about the behavior of circuits. In
the next chapter I will introduce interval temporal logic. Subsequently I will show how
temporal logic can be used to specify the behavior of circuits and how Prolog structural
descriptions can be manipulated to derive the behavior of a circuit from its structure and

the behavior of its components.
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Chapter 4

Interval Temporal Logic

Interval temporal logic (ITL) is a development of classical linear time temporal logic due
to Moszkowski [Mos83]. In this chapter I present a subset of ITL used to specify and

reason about hardware.

Temporal logic is a formalism for reasoning about time which has been used for specifying
and proving properties of software and hardware. Classical temporal logic adds operators
for reasoning about time to the usual logical operators: A (and), V (or), D (implies), —
(not). Temporal operators are used to express properties about events in the future: O

(always), O (next), and ¢ (eventually). !

First I give an informal introduction to ITL. Formal definitions of some ITL operators
are given in Section 4.2. Then I present more operators. Finally, I present my extensions
to ITL. Moszkowski [Mos83] models circuits using boolean logic; I extend this approach
by adopting a more detailed switch-level model. In this model, signals are described as
pairs of booleans. The first member of the pair denotes the logical value of the signal and
the second denotes the strength of the signal. I present operators for manipulating these
signals. The operators presented in this chapter are summarized in Table 4.1. In the next
chapter I use signals and the ITL operators presented here to specify and reason about

the timing and logical behavior of circuits at the transistor level.

1The temporal logic operator © does not appear again in this thesis. I specify necessary requirements
for the behavior of a circuit; such requirements are specified using (1. Fairness statements, as well as other
statements which employ the © operator, are not considered.
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Figure 4.1: A Rising Bit Signal

4.1 An Informal Introduction to ITL

In linear time temporal logic (LTTL), time is a single, linear sequence of discrete events.
ITL is a development of LT'TL which allows reasoning about intervals. An ITL formula
describes behavior on an interval of time. ITL operators include O (always), O (next),
and ; (chop). An intuitive description of these operators is given below. Their syntax and

gemantics are given in the following section.

An interval is a non-empty sequence of states. (The notation () is used to delimit inter-
vals.) A state can be viewed as an instantaneous snapshot of a system. The length of
an interval is one less than the number of states it contains. An interval of length O is
called an empty interval; it has one state and is just an instant of time. For example, in

Figure 4.1, (s, 81, 82, 83) and (s3) are intervals. The state (s3) is an empty interval.

Formulas are assigned truth values with respect to intervals. A formula w which contains
no temporal operators is true on an interval if it is true in the first state of that interval.

In Figure 4.1, the formula X = 0 is true on the interval (s, s1, 82, 83)-

Ow (always w) is true on (so, 81,...85) if w is true in every subinterval which finishes in

the final state. In Figure 4.1, ] X = 1 is true on the interval (sy, 83, 8g).2

2Moszkowski has 8 always operators in ITL,[3, (1, and [d. I use [] to stand for (4, and do not use the
others, [1 corresponds directly to [J in LTTL.

41




4.2 FORMAL DEFINITIONS OF SOME ITL OPERATORS

Similarly, O w (next w) where w is a formula, is true on an interval (80,81, -y 8n), if w
is true on the sub-interval (s1,...,s,). In Figure 4.1, the formula O X = 1 is true on the

interval (s, s1, 82, 53).

The chop operator (;) allows an interval to be broken in two. The formula w; ; wz can be

read as wy followed by wy. wy ; wq is true on an interval (80,81, ..., 5n) if there exists an
intermediate state s; such that wy is true on the interval (sq, s1,. .., $;), and wy is true on
the subinterval (s;, ..., sp).

The formula skip is true of any interval of length one. It is frequently necessary to use
skip in formulas employing the chop operator. For example, the signal X in Figure 4.1

rises from O to 1. The temporal logic formula
(X = 0; skip; (X = 1)

is true on the interval (sg, s1, s2,s3). The chop operator splits an interval into two sub-
intervals which share a common state. It is impossible for the signal X to be both 0 and
1 at the same time, so it is necessary to use skip to represent the interval of length one

where X is changing. Here skip represents the interval (sg, s1) which has length one.

Temporal operators for expressing such concepts as temporal equality and delay can be
built out of formulas using the operators described above. In the next section I give formal

definitions of the operators already described. Then I present more ITL operators.

4.2 Formal Definitions of Some ITL operators

4.2.1 Syntax

Legal ITL formulas are either atomic, or they are formed by combining other legal for-
mulas or expressions. Expressions are composed of variables and function applications.
In the following, upper case characters (A, B,C,...) are used to stand for variables, and
(w, wq, ws) stand for well-formed formulas. Most variables represent bit signals, having

value either O or 1.
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Here are some of the operators with which formulas and expressions can be combined:

e Operators from classical logic: These include negation (—~w), conjunction (w3 A wa),

and implication (wy D ws).
e Existential and Universal quantifiers: 34.w and YA.w are well-formed formulas.

o Predicates: p(ey,...,ex) where k > 0 and ey,..., ey are expressions. Equality, e; =

€2, is one of the most commonly used predicates.
o Always: Ow.
e Next: Ow.

e Chop: w; ; wa

Parentheses are used in formulas when the binding of logical operators is ambiguous or
different from the default. I assume the following defaults for the binding of classical and
temporal logic operators. The most binding are the unary operators -, len, stb, weaken
and strengthen. The next most binding are the binary operators A, V, and join, Less
binding is =. Less binding still are the binary operators —, D , and . The least binding
are the unary operators[J], O, T, and |. Some of these operators have not been introduced

yet. They will be presented later in this chapter.

4.2.2 Semantics

In this section, I present a more formal way to express what is meant for a formula to be

true on an interval,

A Model is a pair (£, M) consisting of a set of states X = {s,t,u,...} together with an
interpretation or meaning function M. M maps formulas and states to truth values. For
example, M,[(X = 1)] = true signifies that the formula (X = 1) is true in state s. In

other words, the value of variable X in state s is 1.

The function M can be extended to mapping formulas and intervals to truth values. Note
that a state is a special case of an interval: an interval with length zero. A formula is

either true or false on an interval. If formula w is true on an interval o, M, [w] = true,
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then o satisfies w. This is written ¢ = w. If w is true on all intervals then it is a valid

formula. This is written |= w.

The semantics of the operators which were described informally are now given using the

meaning function.

Non-temporal Operators

The negation of a formula —w, is true in an interval if and only if w is false in that interval:

Mag..on ["W] = true iff Mgg...o, [w] = false

The conjunction wy A ws is true in an interval if w; and w; are both true in that interval:

Mog..spn[wi A we] =true iff Mg, 4, [w1] = true and M,,..q, [ws] = true

Other non-temporal operators such as implication ( O ) are interpreted similarly.

Temporal Operators

The formula [Jw is true if w is true in every subinterval which finishes in the final state:

Mop.on [Dw] = true iff M, o, [w] =trueforalli <n

The formula O w is true on a non-empty interval if w is true from the next state on:

M. s [Ow] =true iff n>1and M, 6, [w] = true

The formula wy ; wy is true in an interval iff the interval can be partitioned into two sub-
intervals which share a common state s;, such that w; is true in the first sub-interval, and

wy is true in the second:

Mag...on w1 wa] = true iff M., [wi] = true and My, s, [w2], for some 4,0 <4 < n.

The formula len n is true on an interval whose length is exactly n :
Mag..on llen n] = true iff m=n
Similarly, the formula len > m is true on an interval whose length is greater than m.
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4.3 More ITL Operators

The operators presented so far can be combined to define more ITL operators. Moszkowski
[Mos83] defines many of these. The operators frequently used in my hardware descriptions

are defined below.

Temporal Equality
Two signals A and B are temporally equal in an interval if they have the same values in
all states. This is written A ~ B, and is defined:

A B  =gef OA=B

For example in Figure 4.1:

(81,82, 83) & (X ~ 1)

Temporal Assignment

The formula A — B is true for an interval if the signal A’s initial value equals B’s final
value. To define this I need the ITL construct fin(w) which is true if w is true in the last
state of an interval, and false otherwise. In this definition, ¢ is a static variable; its value

does not change on the interval:

A—> B =gg Ve((A=c)D fin(B=c))

Temporal Stability

A signal A is stable in an interval if its value does not change in that interval. This is

defined using the static variable c:

sth A =q 3Je.(Awmc)
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Delay

These operators can be used to state that one signal is a delayed version of another. In
addition, quantitative information about that delay can be specified. The ITL formula to

express signal B is signal A delayed by m unit intervals is:

Adel™ B =g Olenm > (A— B)

4.4 Extension of ITL

Up to this point I have described ITL as presented in Moszkowski’s PhD Thesis. In order
to facilitate description of circuits at the transistor level, I have changed the definition of
signals and extended the logical and temporal operators to handle them. In this section I

discuss these changes.

4.4.1 Variables

I have intentionally refrained from specifying variable types. Moszkowski presents several,
including static variables and signals. The type of a variable is usually obvious from
context. Most of my variables are signals, which are described below. Variables which
range over the natural numbers include m in len m. Static variables are only used for
definitions and are explicitly described as static. A static variable is a signal whose value

does not change on an interval.

4.4.2 Signals

I describe signals as {value,strength} pairs. Each of the fields value and strength can
have value O or 1. The value field represents the boolean logic value of a signal. The
strength field represents the strength of a signal which may be either capacitive (0) or

driven (1). The use of the strength field is explained in the next chapter.
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4.4.3 Operators for Signals
The Logical Operators

All the logical operators described so far examine the value field of a signal only. For
example, A A B is true if the value of A is 1 and the value of B is 1. This applies to the
operator ¢ = ’ as well. I use the symbol ¢ ¢ ’ to denote equivalence of signals. A & B
iff the value fields of A and B are equivalent and so are the strength fields. Thus the

following statements are true:

~ Most temporal logic operators have the same semantics as described earlier. The exception
is the temporal assignment operator, which is defined using ¢ instead of =. Temporal

assignment assigns both strength and value. The new definition for — is:
A—B =g VYe.((A&c)D fin(B & c))

Here c is a static signal variable. Its value and strength fields have the same value through-

out the interval.

The Functions weaken and strengthen

The functions weaken and strengthen operate only on the strength field of a signal. The
weaken function takes a signal and returns a signal with the same value field whose strength

is 0. The strengthen function is described similarly:

VS. weaken {V,S} = {V,0}
VS. strengthen {V,S} = {V,1}

Note that, in general, weaken and strengthen are not the inverse of each other:

—Va. weaken(strengthen(a)) < a
—Va. strengthen(weaken(a)) & a
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The Join Operator

Signals are combined at a node using the join operator (L). The result of joining two
signals of different strength is a signal with the same value and strength as the stronger
signal. The result of joining two signals with the same value and strength is a signal with
equal value and strength. Note that joining two signals with different value but the same

strength results in an error. The following properties are true of the join operator:

V,1}u{W,0} & {V,1i
w,0}u{v,1} & {V,1
AUA & A

A New Property for Temporal Assignment

Temporal assignment allows one signal at the beginning of an interval to be assigned to
another signal at the end of the interval. I extend this to allow more than one signal to
be assigned to another signal. When this occurs, the join of the two signals is assigned to

the resulting signal. This can be described in ITL:

(8i...sn) F((A— B) A (C—B)> (AU C — B))

Note that this is logically inconsistent with the semantics of — given above. There the

property implied is:
(8i...sn) E((A—B) A (C—B)D A& 0) (4.1)

I do not however exploit this inconsistency. As will be seen in Chapter 6, the system I use
to manipulate temporal logic formulas has its rules listed in a rule database. Equation 4.1
is not part of that database, In addition, I check that all formulas of the form A — B
are considered when determining the value of B. All such formulas which are true on an
interval with the same final state, s,,, may effect the value of B in that state. The new
property for the join operator implies that the value of a node can always be changed by
another signal contributing to that node. Eventually a node becomes hidden in a circuit

description, so the number of signals which contribute to that node is limited.

48




4.4 EXTENSION OF ITL

In essence, I am combining the join function with temporal assignment. Others [Joy87),
[Dhi87] have used explicit join components in their circuit representations. I decided not
to use this approach for several reasons. First, join components must be represented in
the circuit description so this description no longer directly reflects the structure of the
circuit. Second, there is an explosion of signal names. For example, with my description

joining two signals can be described by:
(A-B)A(C—B) > (AuC)—B

An equivalent description with an explicit join component would require five signal names

instead of three:
(A—) Bl) A (C - Bg) A (B = (Bl | Bz))

Finally, if join components are added to nodes which are not yet hidden, additional signals
may later be connected to the join component which would change the value of the output.
This is equivalent, in my description, to needing to ensure that all contributing signals will
be taken into account. The problem arises as a result of modeling circuits which may not

be completely specified and not as a result of the way the join function is implemented.

4.4.4 Another Interpretation for Signal Strengths

The description of signals allows modeling of the capacitive effects of circuits. The two
strengths, 0 and 1 can be viewed as capacitive and driven strengths, respectively. This is
based on Bryant’s more general lattice model [Bry81], which allows an arbitrary number
of signal strengths. My signals can be extended to be equivalent to Bryant’s lattice model
by allowing natural numbers as strengths and by appropriately modifying the weaken and

strengthen functions.
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The lattice for two strength values is shown in Figure 4.2. Here values are taken from
the set {1,0,X}. An X signal results when two signals of the same strength but different
values are joined. Z signifies the null signal. The figure shows a partial ordering on signals.
The strength of signals can be viewed as a vertical chain which has the weakest strength at
the bottom. The partial ordering on values is specified by the following equations, where

a C b means a precedes b in the ordering:

I

1CX
oCX
My descriptions do not make explicit use of X and Z. If a join occurs which would result in
an X value, the corresponding formula cannot be simplified. As a result, I cannot detect

the effects of propagating X and Z values through a circuit. I can however detect designs

which will cause nodes to go into the X state provided that the inputs are well defined.

4.5 Conclusions

In this chapter I have presented an extended subset of ITL for transistor level circuit
description. The constructs which have been introduced are summarized in Table 4.1. In
the next chapter I will use this extended subset of ITL to specify and reason about the

behavior of circuits at the transistor level.
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{X') 1}
{0,1} {1,1}
X, 0}

{0,0} {1,0}

~_

Figure 4.2: The Lattice Model for Signals
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Operator Name

always
next

chop

fin

length

skip

temporal equality

temporal assignment
temporal stability

delay

signal equivalence

weaken
strengthen

join

4.5 CONCLUSIONS

Formula

Ow

Wy, W2

stb A

Adel™ B

{Vi,81} & {Va, 52}

weaken{V, S}
strengthen{V, S}

Viu Vo

Interpretation/Definition

Meg.osn [Ow] =true iff My, q, [w] = true
forallt < n

Msp..sn [QOw] = true iff n>1and
Ms, o0 [w] = true

-Mso...s,, ﬂwl; wz}] = true iff

Msq...s;[wi] = true and

Ms;..s, Jwz] forsomes 0 <7< n
M30‘--3n [[fin w]] = true iff Msn II'LU]] = true
My,

[lenn] =true iff m=n

w8
skip =gt lenl
Ax B =44 UO(A=B)

A— B =4 Ve.((Aec)D fin(B&c)

for c static

sthA  =qe Je.(Amec)
for c static

Adel™ B =g Olenm > (A— B)

(V1,51 & {V2,5:} =det
Vi= Va A 51 = Sz

weaken {V, S} & {V,0}
strengthen {V,S} & {V,1}
{Vl, 1} L {VQ,O} & {Vl, 1}

{Vo,0}u{Vy,1} & {V1,1}
ALUA & A

Table 4.1: Extended ITL Operators
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Chapter 5

Using ITL to Reason about the
Behavior of Circuits

In Chapter 3 I discussed how Prolog is used to specify the structure of circuits. In Chap-
ter 4 I presented some constructs of extended ITL. In this chapter I show how extended
ITL is used to model the behavior of circuits, and show with examples how these models
are manipulated. First, I discuss my models for the behavior of circuit elements. These
models were chosen to satisfy the following criteria:

o Expressibility in ITL

e Ability to express characteristics of hardware

e Ease of manipulation

The models describe two types of information:

e The dependence of outputs on inputs (function and timing)

e Constraints on the inputs

Constraints ensure that the model accurately captures the behavior of the device. If
the constraints hold, the function and timing information is valid. Constraints include
such timing information as set-up and hold times. The implicit form of the correctness

statement for the behavior of a circuit is:

constraints on inputs A circuit structure >
circuit behavior A constraints on outputs

Constraints are described and reasoned about with the same logic used for the timing
and functional behavior of circuits. However, constraints on the outputs of a circuit are

considered separately from behavior.
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I consider a restricted class of CMOS circuits. These are synchronous circuits where all
feedback loops are broken by clocks and there are no branches in combinational logic which
merge together again. As I shall show, many timing constraints are satisfied by this class

of circuits.

In the first section I discuss how behavioral models are used in hierarchical verification.
Then I present models for circuit elements. These include combinational elements, transis-
tors, and memory elements. Examples are provided which illustrate how these models are
manipulated in reasoning about circuit behavior. Note that the term gate is used some-
times to refer to the electrode of a transistor and sometimes to refer to a combinational

element. The term’s meaning should be clear from context.

5.1 Hierarchical Verification

I use ITL to reason about the function and timing behavior of circuits. In this chapter I
present temporal logic models for the behavior of circuits, and show with examples how
these behaviors are manipulated. Specifically, I show that the formula describing the im-
plementation of a circuit logically implies the formula describing the specification. This
approach was inspired by [Gor85a] and [Bar84]. In general it proceeds as follows. A circuit
implementation is described as the composition of circuit elements. These elements are
composed with the logical operator A (and). The elements are expanded by their behav-
joral descriptions. These descriptions are then manipulated using rules of mathematical
logic to show that the implementation implies the specification of the behavior of the

circuit.

This verification is done hierarchically. The behavior of a circuit component is verified
by checking that it is implied by the composition of the behavior of its components.
The verified behavior is then used as the description of the circuit component when that

component is used later in the design process. This is called behavioral abstraction.

One advantage of hierarchical verification is that a circuit component needs to be verified
only once, no matter how many times it is used in the circuit. A component is reused
simply by renaming its ports to their connections. I use Prolog predicates to describe

behavior, thus renaming happens automatically as a result of unification.
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When components are composed hierarchically, internal lines are hidden. In the Prolog
specifications, a variable is hidden if it appears in the body of a clause but not in the head

of that clause. These variables are effectively ezistentially quantified.

In addition, I describe constraints in temporal logic. These constraints are composed and
reasoned about in a similar manner to behavioral specifications. When a circuit element
is composed with others to form a larger circuit component, some of its ports may become
inaccessible to other parts of the circuit. Constraints on these ports must be met. Other

constraints which are not met become constraints of the larger component.

In the next few sections I describe how different circuit elements are modeled, and use
examples to show how these models are used in hierarchical verification. Composing circuit
elements, renaming, hiding external lines, and abstracting the behavior of components are
all used in these examples. For each example, I show how constraints as well as behaviors
are manipulated. These examples employ Prolog notation. Upper case letters denote
Prolog variables. Lower case letters denote logical variables. The Prolog notation ‘_’ is

used for anonymous variables.

5.2 Modeling Combinational Elements

My main objective is to model timing as well as functional behavior of circuit elements. I
model the timing behavior of all combinational elements as delay. Breuer and Friedman
[BF76] present many hardware delay models, and Moszkowski [Mos83] shows how several
of these can be expressed in ITL. I will use Breuer and Friedman’s transport delay, which
Moszkowski has defined in ITL. Note that Moszkowski does not use delay to model com-
binational elements. The definition of transport delay in ITL was given in the previous

chapter:
Adel™ B = def Olenm D (A — B)

Combinational elements with several inputs (4, B,...) and one output (X) have the gen-

eral form:

f(A, B,...)del™ X
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5.2 MODELING COMBINATIONAL ELEMENTS

A = \ .
B — f(A,B,C) del™ (AABACQC)del™X
C —__J

Figure 5.1: Model of a 3-Input and Gate with Delay

Here f(A, B, ...) is a function of the inputs which contains no temporal operators. This can
be generalized for a combinational cell with several outputs (X,Y,...), which is described

by composing similar descriptions:

f(A, B,...)del™ X A
g(A,B,..)del*Y A ...

For example, the 3-input and gate shown in Figure 5.1 is described by:

(AN B A C)del™X

The delay is viewed as being lumped at the output. Note that m represents the worst
case delay from inputs to output for this gate. A more accurate model may represent the
delay as being between the two extremes of best and worst case. This can be expressed
in ITL:

Avardel™™ B =4 dIm<i<n(A del’ B)

For simplicity, I will use transport delay rather than variable delay.

ITL transport delay has several useful properties. For example, it is camulative:

Adel™ B A Bdel*C D> Adel™"C

In my descriptions, the output receives a delayed function of the inputs; Moszkowski refers

to this as functional delay. Functional composition applies:

f(A)del™ B A g(B)del"C > g(f(A)) del™" ©

This delay model is valid subject to the constraint that the inputs are well-behaved. A
signal is defined as well-behaved if it does not glitch. A glitch is a pulse of duration less
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than g, where g is a characteristic of the technology being used. This property is also

expressed in ITL, where g is a global constant:

well-behaved(A) =qef
O(tL AD len>g) A
Ot A D len > g)

t] Aand |l A are ITL predicates which are true of intervals which contain a rising pulse

and a falling pulse, respectively:

LA =Zae (Am{0,_});skip;(Am{1,_}); skip;(A= {0, })
1A =ae (Am{1,_}); skip;(A={0,-}); skip; (A~ {1,-})

Transport delay transfers this well-behaved property from its inputs to its output, with a
time shift:

well-behaved(A) A Adel™ B >  O™(well-behaved(B))

Here O™ is an abbreviation for m O operators applied in sequence. This can be defined

recursively:

Olx = Ox
omx = O™ 10x

Note that the definitions above rely on the assumption that all unit intervals have the

same duration. I assume this throughout the thesis.

5.3 Modeling Transistors

I use switch-level models [Bry81] to describe circuit primitives: n-type and p-type tran-
sistors. A bidirectional model without delay for the n-type transistor shown in Figure 5.2

is:
oc¢={1,_}>(S & D)
The ‘_ is a Prolog anonymous variable. Since the ‘=’ operator only examines the value

field of the gate signal, it does not matter what the strength field is. This formula expresses

that when the value of the voltage on the gate is high, the source and drain are connected.
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S—"'r_—L'—'D

trans(n,G,S,D)

Figure 5.2: An n-type Transistor

There is no distinction between source and drain. The formula says nothing about the

behavior of the switch when the gate is low. The similar model for a p-type transistor is:
O0G={0,-}>(S & D)

From now on, I will only present models for n-type transistors. The models for the

complementary p-type transistors are analogous.

I extend the simple switch-level model with timing information. In order to do this I also
must specify directionality. Directions of transistors are derived using the Prolog program
described in Section 3.3.1. When the gate of the transistor is high, the signal flows from
source to drain. Source and drain nodes are not symmetrical. If the model is constrained
such that the source is stable when the gate changes, the delay, m, from source to drain

can be expressed in ITL:
ntrans(G, S, D,m) =qe¢ (G ={1,-}) A lenm D (S — D)
This model is subject to the constraints:

O(G =~ {1,_} > sth S) A
well-behaved(G)

5.3.1 Example 1: a CMOS Inverter

As a simple example, consider the CMOS inverter shown in Figure 5.3. Its behavior is

specified in ITL by:
invert(In,Out,m) =gt lenm D ((strengthen —In) — Out)
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Vad

| 5o —— Y Out

Figure 5.3: A CMOS Inverter

Here strengthen specifies that the output of the inverter is always driven. This is true
whether or not the input is driven. Note that I use Prolog variables for the node names.
When this behavior is used as the definition of a component of a cell, these nodes are

instantiated to the names of the wires to which they are connected.

The implementation of the inverter is specified in ITL by:

invert-struct(In,Out,m) =qef
ntrans(In, {O 1},Out, m) A ptrans(In, {1 1},0ut, m)

Here {0, 1} represents a connection to ground and {1, 1} represents a connection to power

or Vya. For convenience, I assume equivalent delay on the two transistors.

I proceed by logically manipulating the implementation to derive the behavior. The PALM
(Prolog Assistant for Logic Manipulation) system described in Chapter 8 was developed to
mechanize these manipulations. The outline of the derivation of behavior for the inverter
is given below. The output of the PALM system for this example is given in Appendix B.1.

First I derive the behavior of the inverter, then I derive the constraints.
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Deriving Behavior

The first step is to expand the parts ntrans and ptrans by their behavioral specifications:

e P R

Next, using the inverse distributive property of 0: (Oa) A (Ob) =0a A b:

O(In={1,-}) Alenm > ({0,1} = Out) A
(In={0,-}) A lenm > ({1,1} = Out)

Exploiting the associative property of A to rearrange the order of the len m and In = X
statements, applying the rule (a A b > ¢) = (a D (b D ¢)) twice, and applying the rule
(@ad>b) A (adc)=(aD (b A c)) yields:

Olenm D (In={0,_} > ({1,1} = Out)) A
(In = {1,-} > ({0,1} — Out))

The next step is to use case analysis on In. Since In is a signal, it has four possible
values corresponding to the cross product of the boolean value and strength fields. Only
the boolean value field is examined because of the definition of ‘=’, so these four values
are covered by the values on the list [{0,-},{1,-}]. Replacing In with {0, _}, replacing
{0,_} = {0, _} with true and {0,_} = {1,_} with false, and applying the rules

(false D X) = true, (true DY) =Y and Z A true = Z, where X,Y, and Z stand for

arbitrary logical formulas, results in:
OIn={0,_} D (len m > ({1,1} — Out))

This is true when In = {0, _} in which case {1,1} can be replaced with strengthen —In:
OIn={0,_} D (len m O ((strengthen =In) — Out))

Similarly for the case In = {1, _}:

OIn={1,_} D (len m > ((strengthen —In) — Out))
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5.3 MODELING TRANSISTORS
Combining the cases results in the behavioral description:
Cllen m O ((strengthen —=In) — Out)

This equation is the same as the definition for behavior given at the start of the section. I
have shown that the specified behavior for the inverter can be deduced from its structure
and the behavior of its components. Note that in this derivation I used case analysis in a
temporal formula. In general, case analysis will not work in this framework. Case analysis
over any variable in a temporal logic formula would require enumerating all possible values
of that variable in all possible states. If infinite intervals are permitted, this is clearly
impossible. I therefore restrict the temporal logic formulas to which I apply case analysis.

These restrictions are discussed in Section 6.1.1.

Deriving Constraints

Constraints are reasoned about in a similar way to behavior. The constraints for the
inverter are derived by composing the constraints of the components. In the case of the
inverter, the constraints which arise from the n-type and the p-type transistors are simply
anded together (and the duplicate predicate well-behaved is removed):

O(In =~ {0,_} D stb{1,1}) A

O(In~ {1,_} D stb{0,1}) A
well-behaved(In)

Since stb{1,1} and stb{0, 1} are always true, this reduces to the single constraint for the

inverter:

well-behaved(In)

5.3.2 Pass Transistors and Transmission Gates

The circuits I reason about include steering elements as well as combinational elements. In
steering logic, the steering element is used as a switch to conditionally connect two nodes
together. Steering logic is appropriate when the logic function can be conceptualized as

signals being conditionally steered through a network. Steering elements include nMOS
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En En
—1
A — X A X
En En
a) schematic b) logic symbol

Figure 5.4: A CMOS Transmission Gate

pass transistors and CMOS transmission gates. A pass transistor has neither channel
node connected directly to power or ground. In CMOS a p-type and an n-type transistor
are connected with common source and drain connections to form a transmission gate as

shown in Figure 5.4.

Whenever the n-type transistor of the transmission gate is on, the p-type transistor is on
as well. Due to threshold drops, the transmission of a logical ‘1’ is degraded when passed
through an n-type device, while the transmission of a logical ‘0’ is degraded when passed
through a p-type device. Both types of devices are used in a transmission gate so that both
0’s and 1’s can be transmitted without degradation. My model for a transistor does not
represent threshold effects. In this model, a transmission gate behaves equivalently to an n-
type pass transistor and is treated as such. The p-type transistor is considered redundant.
The model used is therefore the same as the n-type transistor model presented earlier.
Note that the models used by Bryant [Bry81] and Weise [Wei86] also do not represent
threshold drops.

5.4 Modeling Charge Storage

The transistor model used above does not specify the behavior of the output node when
the transistor is off. Because of the capacitance in MOS circuits, nodes which become
isolated as a result of transistors turning off retain their previous driven value for as long

as several milliseconds. I refer to this phenomenon as charge storage. There are many
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Figure 5.5: A CMOS Shift Register with Explicit Capacitances

sources of capacitance in a MOS circuit including capacitance due to interconnect and

capacitance on the gate and channel nodes of transistors.

Charge storage is frequently exploited in MOS circuit design. Circuits which make use of
this phenomenon include the CMOS shift register in Figure 5.5. The charge storage in
this circuit is largely due to the input capacitance of the inverters. This in turn is due
to the gate capacitance of the transistors which make up the inverter. This capacitance
is shown explicitly in the diagram. The shift register shifts the value of the input charge
stored at node A to the output at node B as follows. When the first transmission gate
turns on, the input capacitance of the first inverter (at node C) is charged. When the
transmission gate turns off, that charge is isolated from the source of the transmission
gate at node A. The capacitance at node C retains its charge until it is discharged or leaks
away due to leakage currents. This charge can drive the input of the inverter but has lower
drive capability than a driven node which is not isolated from power or ground. When the
second transmission gate is on, the inverter drives the source of that gate at node D, and
the charge is switched through to the input capacitance of the second inverter on node E.
The charge on node E drives the input of the second inverter. Thus the output is driven

at node B.

When the first transmission gate is off and the second is on, the second part of the of the
circuit is isolated from the input. When the second transmission gate is off, the output
(node B) is isolated and retains its value until the next time the input capacitance of the
second inverter is charged, or until the present charge leaks away. Due to the 2-phase

clocking scheme (described in Section 5.5) the two transmission gates are never on at
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S __ 1

-

Figure 5.6: A Pass Transistor with Explicit Capacitance

the same time. The charge is stored on the gates of the transistors which make up the
inverters; isolation of the charge is a result of having a transmission gate connected to

those gates.

I model pass transistors and transmission gates using the temporal logic equations pre-
sented in the previous section. I model charge storage by connecting an explicit ‘ideal
capacitance’ to the drain node of the transistor as shown in Figure 5.6. As in the shift
register example, this capacitance is largely due to the gates of the transistors being driven.
However, the effects I am interested in modeling only influence the circuit when a node is
isolated. This in turn only occurs when a switch is open. Therefore, I model this capaci-
tance on the drain of a transistor. I assume the drain drives a capacitive load. In actual
fact, this load usually arises from the capacitance on the gates of the transistors being

driven.
The capacitor is described in ITL by:
cap(D) =gef Olen 1 D (weaken D — D)

This ITL formula states that for any interval of length 1, the signal D at the end of the
interval is a weakened version of the signal D at the beginning of the interval. The two
versions of D have the same value. In other words, a capacitor connected to node D
always retains its last logical value, but weakens the strength of the signal. The complete

specification of an n-type transistor with capacitance is:

O(G={1,_}) Alenm > (S — D)) A
Olen 1 O (weaken D — D)

This states that m time units after the transistor turns on, node D is driven. If the

transistor is on and S is a strong signal, then this overrides the memory due to the
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capacitor. When the transistor is off, the memory due to the capacitor retains the last
driven value on the node. Note that the overriding effect is due to the property of temporal

assignment discussed in Section 4.4.

This capacitance is ideal for two reasons. First, no capacitive value is assigned to it. Two

ideal capacitances on a node have the same effect as one capacitance on the node:
cap(D) A cap(D) = cap(D)

Second, I assume that charge never leaks away. This assumption is valid provided that
the charge gets refreshed at least once every r units of time, where r is a global constant
of the technology. This in turn occurs if the transistor connected to the node turns on at
least once every r units of time. Expressing that node G turns on at least once every r

units of time in ITL:
Ot G) o (len < )
Note that I assume G falls and rises at least once.

A transistor with a capacitor on its drain thus has two constraints on the signal on its gate
node: the constraint above, and the requirement expressed by the well-behaved predicate.

These constraints are combined in a single predicate, called control:

control(G) = well-behaved(G) A
OU1G) D (len<r)

In summary, the behavior of an n-type transistor with gate source and drain nodes labeled
G, S and D respectively, with delay m from source to drain, and with explicit capacitance

on the drain node is specified:

O((G = {1,-} A lenm) D (S — D)) A
Clien 1 > (weaken D — D)

The constraints on this behavior are:

control(G) A
OG~{1,_} DsthS
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&

Figure 5.7: 2-Phase Non-overlapping Clocks

From these constraints, it can be inferred that the drain node is well-behaved. Note that
the capacitance is modeled on the drain node of all transistors. The examples presented
in this thesis have been simplified so only capacitance which is significant is considered.
For example, the capacitance on the output node of an inverter is not considered because

that node is always driven,

5.6 Clocking

Various clocking strategies for CMOS circuits are discussed in section 5.4 of [WE85]. The
circuits presented in this thesis employ a 2-phase clocking strategy with non-overlapping
clocks. This is referred to in [WEB85| as pseudo 2-phase clocking because in reality four
different clock phases are used by the circuit. These phases (<I>1,?§1, @2,52) are shown in

Figure 5.7.

&, and P, are non-overlapping; it is never the case that ®; and ®, are both high at the
same time. This is expressed in ITL by:

Py ~ {1,_} D (g = {0,_} A

O(®s ~ {1, _} D (®1 ~ {0,_}

For simplicity I will assume that ®; is always equal to =®;, and similarly for @,.
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Figure 5.8: A CMOS Clocked 2-to-1 Multiplexer

In the class of circuits considered, clocks are used to control transmission gates. Thus ®;

and ®; must satisfy the requirements of the control predicate:
control(®1) A control(®3)

These properties of clock signals only need to be established once. Whenever a transistor
is encountered which is gated by a clock, it can be assumed that the control constraint on
that transistor is automatically met. In the restricted class of circuits under consideration,
pass transistors are gated either by clocks, or by signals anded with clocks. In the latter
case, the control constraint simplifies to establishing that the signal is stable when the

clock is true.

5.5.1 Example 2: a Clocked 2-to-1 Multiplexer

In this section I derive the behavior and constraints of the CMOS clocked 2-to-1 mul-
tiplexer shown in Figure 5.8. This circuit behaves like a 2-to-1 multiplexer when the
clock(®) is high, and retains its previous value when the clock is low. The example makes

use of charge storage and clocking models discussed in previous sections.
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Deriving Behavior

The behavior of the multiplexer is described in ITL as:

two-one-mux(G, 4, B, X, ®,m) =aqer
O@={1,-}) A lenm>
(if G ={1,_} then (A — X) else (B — X))) A
(Olen 1 > (weaken X — X))

This behavior definition uses the conditional:

ifathenbelsec =gt (aDb) A (maDe)

The full derivation of behavior using the PALM system is given in Appendix B.2. An
outline of this derivation follows. As usual, it begins with the description of the imple-

mentation of the circuit.

two-one-mux-struct(G, A, B, X, ®,m)  =qef
A D

trans-gate((G ), 4, X, m) A
cap(X) A

trans-gate((—G A @), A, X,m) A
cap(X)

Next, replace the components with their definitions. Note that the model for a transmis-
sion gate is the same as the model for an n-type transistor. One of the capacitances is
removed since cap(X) A cap(X) = cap(X):

DgggG A®)={1,_}) Alenm D (A— X)) A

O(((-G A ®)={1,_}) Alenm > (B— X)) A
Olen1 D (weaken X — X

Using straightforward manipulations of logical formulas, the first two conjuncts are ma-

nipulated to the form:
O@={1,_}) A lenm>

(G={1,_}> (A= X)) A
(~(G={1,-}) > (B~ X))

Using the definition of the conditional given above, and anding with the capacitive behavior

results in the behavior for the multiplexer given at the start of this section.
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Deriving Constraints

The constraints for the multiplexer are derived by composing the constraints of the parts.
The constraints of a transmission gate are the same as those for an n-type transistor. The

constraints of the parts are:

control(G A @)

OW(G A @)~ {1,_}) Dsth A
control(=G A @)

O((-G A @) = {1,_}) > sth B

b oS

These constraints simplify under the assumptions about clocking. It is assumed that any
clock, ®, in the system meets the requirement control(®). The first and third constraints
can be simplified. In fact, I only need to show that the gate signals are well-behaved,
and that the output node X is driven often enough. These requirements are met by the
stronger constraint [1® D stb(G). This is stronger since it can be shown that:

(O(® > stb G) A control(®)) D

well-behaved(G A @) A
well-behaved(—G A P)

This stronger constraint states that if G is stable whenever @ is true, then the resulting
signal is well-behaved. I still need to show that X is driven often enough, This is a
direct consequence of the stronger constraint since, when @ is true either G or =G is true.
Thus, the output is driven once every clock cycle. The remaining two constraints are the
constraints 2 and 4 above. Thus the constraints for this device are:
two-one-mux-constraints(G, A, B, X, ®) =qer
(O® > sthG) A

O((G A @)~ {1,_}) > stb A) A
O((~G A @)~ {1,_}) D stb B

5.6 Conclusions

I have shown how Prolog and ITL can be used to derive the behavior of a circuit from its
implementation and to reason about constraints on that behavior. These derivations were
done by manipulating the behavior of the components of the circuits using the PALM
system. PALM is described in more detail in the next chapter.
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Chapter 6

PALM: Prolog Assistant for
Logic Manipulation

PALM (Prolog Assistant for Logic Manipulation) is a general purpose rule rewriting sys-
tem which provides several facilities for proof checking. The user can use the system
interactively, or she can write a script to run a series of manipulations. The operations
described below are available in either mode. In both modes, the user specifies which

operations to apply.

PALM manipulates terms, rules, and definitions. A term is a logical formula, and is
represented as a Prolog term. The system maintains a stack onto which the user can push
and pop terms. Rules are schemata for rewriting terms. Prolog variables in rules are
matched to sub-formulas of terms using the unification algorithm. Rules are provided by

the user. Definitions are abbreviations; these are also provided by the user.

This chapter gives an introduction to PALM. Figure 6.1 gives a brief summary of com-
mands available in PALM. The next section discusses these PALM comands in more detail.

In the following section I discuss the PALM rules used to reason about circuits,.

6.1 General Purpose Features

PALM provides commands which allow the user to manipulate terms, rules, and defini-
tions, apply rules to terms, and do more complex manipulations. These commands are
described below. PALM also provides other aids to the user such as the commands help,

halt, and undo.
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The PALM commands for manipulating terms are:

enter-term
disp-term
push-term

pop-term

split-term

swap-term
and-term
swap-top

list-terms

Enter a new term which becomes the current term.

Display the current term.

Save the current term on the stack.

Pop the top term off the stack, and set it to the current term.

The current term must be in the form A A B. (If not an error message is printed.)

The current term is split into two terms, A and B. The current term is set to A
and B is pushed onto the stack. The user is asked where the term should be split.

Swap the current term with the top of the stack.
Pop the top term off the stack and and it with the current term.
Swap the top two terms on the stack. Does not affect the current term.

List all terms on the stack.

The PALM commands for manipulating rules are:

enter-rule
disp-rule
op-rule

list-rules

Enter a new rule. The user is prompted for the rule name and the rule. The new
rule is asserted in the database.

Display a specified rule. The user is prompted for the rule name.

List all rules in the database whose main logical operator is Op. The user is

prompted for Op.

List all rules in the database.

The PALM commands for manipulating definitions are:

enter-def

disp-def

list-defs

expand-def

expand-all

shrink-def

Enter a new definition. The user is prompted for the name and the definition. The
new definition is asserted in the database.

Display a specified definition. The user is prompted for the name.
List all definitions in the database.

The user is prompted for the definition name. The first occurrence of this name is
replaced with its definition in the current term.

All occurrences of names which have been defined are replaced by their definitions
in the current term.

The user is prompted for the definition name. The first occurrence of the definition
is replaced with its name in the current term.

Figure 6.1: PALM Commands (continued on next page)
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The PALM commands for applying rules to terms are:

apply

rec-apply

suc-apply

Apply named rule to the current term. The user is prompted for the name of the
rule.

Same as apply, but finds all the possible ways a term can be rewritten with the
named rule. Displays the possibilities one by one, and the user chooses which
displayed term becomes the current term.

Same as apply, but applies the same rule successively. The user is prompted for the
number of times to apply the rule,

The compound PALM commands are:

replace

end-replace

dnf-rep

case-anal

next-val

end-case

Replace every occurrence of an expression in the current term with a new expression.,
The user is prompted for the expressions. The system creates a sub-goal of proving
the two expressions are equivalent. The current term is saved on the stack.

If the current term is the constant true then pops the top of the stack and sets it
to the current term. This is the term with replacements. If the current term is not
the constant ¢rue, an error message is printed.

Replace an expression in the current term with its disjunctive normal form.

Perform case analysis on an expression in the current term. The user is prompted for
the variable to which case analysis is applied and the possible values that variable
can have. The current term becomes the term with the case analysis variable
assuming its first value.

The current term becomes the term to which case analysis is being applied with the
case analysis variable assuming its next value.

Combine the results of case analysis to form the new current term. If all cases have
not been considered an error message is printed.

The miscellaneous PALM commands are:

help

call

undo

halt

List all PALM commands.
Call a Prolog predicate. The user is prompted for the predicate.
Undo the last PALM command,

Exit the PALM system and return to Prolog.

Figure 6.1: PALM Commands
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Manipulating Terms

PALM provides commands for manipulating terms and saving them on a stack. The
current term is the term being manipulated. Initially, the current term is set to the empty
list: ‘[]’. A user can enter a new term or display the current term. She can list all the
terms on the stack, push the current term onto the stack, and pop the top term off the
stack to make it the current term. The current term may be swapped with the top of the

stack, and the two top terms on the stack may be swapped.

PALM also provides two compound commands which allow the user to save part of the
current term on the stack. The current term is split into two parts; one will become the
current term and the other will be saved on the stack. This split will only occur if the
current term is of the form A A B where A and B are themselves terms. A becomes
the new current term and B is pushed onto the stack. In general, the current term is of
the form A; A Az A ... A A,, where the A; are terms. The command split-term
queries the user where to split the current term. The first part of the term becomes the
new current term, and the second part is pushed on the stack. The command and-term
does the reverse of split-term. The top term is popped off the stack and ended with the

current term to form the new current term.

Manipulating Rules

Rules are schemata for rewriting terms. A Prolog variable in a rule stands for a term.
PALM exploits Prolog unification to match rules to terms. Rules are asserted in a database
which is manipulated by the system. There are no built-in rules; all rules are provided by
the user, The PALM commands described in this section show how rules are entered and

examined. Applying rules to terms is described in a later section.

Each rule has a name associated with it in the database. The user enters a rule by
specifying the name and the rule. She can display a rule of a certain name or display all
rules in the database. All rules with the same main logical operator can also be displayed.
For example, rules in the database which have have = as their main logical operator are

shown in Figure 6.2. Note that I use {1,_} and {0,_} to represent the truth values true
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and false respectively. This is done for convenience, in order to have fewer rules in the
database,

option : op-rule.

operator : = .

rule and-true is: (A A B={1,_})=(A={1,-}) A (B={1,_})
rule falsity is: ({0,_} ={1,-}) ={0,-}

rule identity is: (A= A) = {1,_}

rule comm-equals is: (A= B) = (B = A)

rule equals-false is: (A= {0,_}) =-4

rule equals-true is: (A= {1,_})=A

Figure 6.2: Rules for the Equals Operator ‘=’

Manipulating Definitions

Definitions are abbreviations provided by the user. These are asserted in a definition
database. Definitions are similar to rules in that Prolog variables stand for terms and

unification is used to match definitions to terms. A definition is identified by a name.

The user can enter a new definition, display a named definition, or list all definitions in
the database. The expand command allows the user to replace the head of a definition
with its body. Prolog unification is used to match variables in the definition. The user
can either specify the name of the definition to be expanded, or can ask for all definitions
whose head matches part of the current term to be expanded by their bodies. A user can
also ask that the body of a named definition be replaced by its head. This is carried out

only if the body can be unified with a sub-term of the current term.

I use definitions for circuit elements and for temporal logic operators. Definitions for the
circuit primitives ntrans (n-type transistor), ptrans (p-type transistor), and cap (capacitor),
and the definition of the temporal logic operator del (delay) are shown in Figure 6.3. These

are equivalent to the definitions discussed in Chapter 4.

Applying Rules to Terms

PALM provides three commands for applying rules to terms. The command apply applies

a rule to the current term to yield the new current term. The command rec-apply finds
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definition ntrans is:

ntrans(A, B,C,D) =g O(A={1,_}) A len D D> (B—C)
definition ptrans is:

ptrans(A, B,C,D) =g O(A={0,_}) Alen D D> (B—C)
definition cap is:

cap(A) =gqef len 1 D (weaken A — A)
definition del is:
del(4, B, C) =4 Olen AD (B—C)

Figure 6.3: Some Definitions

all the possible ways of applying the rule. The new terms are displayed and the user
specifies which one to use. The command suc-apply successively applies a rule to the

current term. The user specifies the number of times to apply the rule.

A rule in PALM is a schema for rewriting a term. Rules consist of a left-hand side, a
right-hand side, and an operator. The operator should be =, &, or O (implies), although
PALM does not enforce this. If the operator is = or ¢ then rewriting is equivalent to
the rule of inference of substitution for equality. Most rules in my database fall into this
category. The operator D corresponds to substitution for implication. This is valid due

to the monotonicity of implication. It is not, however, reversible.

Internally, the left hand side and the right hand side of a rule are represented as binary
trees. The root of the tree is an operator and the left child and right child are sub-terms
corresponding to the first and second operands. Operators are either unary or binary. For
a unary operator, the second operand is represented as the empty list([]). For example,
my rule database has two rules for the associativity of the binary operator A . Figure 6.4

shows the trees for the left and right-hand sides of the rule assoc-andl:

AANBAC=AAN(BAOQ)

The Prolog representation of these trees are also shown. In Prolog a tree is represented as
a list of three elements whose first element is the root of the tree and whose second and
third elements are the left and right children respectively. Each element is itself either a

tree or a simple term, which represents a leaf node.
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ANBAC AN(BAC)
A AN

/\ /\

A C A A
/\ /\
A B B C

[N, IN, A, B C] [AA N B,Cl]

Figure 6.4: Trees which Represent the Rule assoc-andl

PALM represents terms internally as trees in the same way as it represents rules. When
the user applies a rule to a term, the system tries to match the left-hand side of the rule
to a sub-tree of the term using unification. If a match is found, the matching sub-tree is
replaced with the right-hand side of the rule with the appropriate substitutions. The term

is related to the new term by the operator of the rule.

6.1.1 Compound Commands

In addition to simply applying a rule, PALM provides commands which may have several
effects. Examples of such commands are the split-term and and-term commands de-
scribed above. These commands alter the stack as well as the current term. Other complex
commands are described in this section. These commands allow the user to replace part
of one term with another, apply case analysis or replace part of the current term with its

disjunctive normal form.
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Replacements

When manipulating logic equations, the user frequently wishes to replace one expression
with another. PALM facilitates this by providing two commands, replace and end-
replace. The replace command is used to specify that every occurrence of an expression
in the current term (Ezprl) be replaced by another expression (Exzpr2). PALM does
these replacements and then pushes the new term onto the stack. A new goal is formed
to prove that the two expressions are equivalent. Thus the new current term has the
form: Ezprl = BExpr2. The command end-replace checks to see if the current term
is the logical constant true. In other words, it checks that the terms being replaced are
equivalent. If so, the top term is popped off the stack, making the term with replacements

the new current term.

Case Analysis

Case analysis is a useful technique in hardware verification. It allows the user to consider
all the terms which result from a variable in the current term being instantiated to all of

its possible values.

The PALM system provides three commands, case-anal, next-val, and end-case, to
facilitate case analysis. The command case-anal queries the user for the name of the
variable to do case analysis over, and for its possible values. Since PALM does not have
types associated with variables, the system does not check that all possible values are
included. If the current term is Q and the variable over which case analysis is being done
is a, then PALM generates a term for each possible value of a. Suppose a is boolean
and its possible values are taken from the set {true, false}. Then PALM generates two
terms, saves one and sets the new current term to the other. The new current term in

this example would be:
(a = true) D Q[true/a)

where Q[true/a] denotes @ with every occurrence of a replaced by true.
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The command next-val saves the current term and makes the new current term the next

term generated by case analysis. In our example the current term would become:

(a = false) > Q|[false/a]

next-val continues to generate terms as long as there are more values of a to consider.
The command end-case puts together the terms generated by case analysis, as described

below.

The logical justification of case analysis follows. Consider a boolean variable a which has
possible values taken from the set {true, false}. Assume the current term is Q, and that

Q contains no temporal operators. Since a is boolean, the following equation is true:
((a = false) V (a = true)) = true

For a variable @ which is not boolean, it is easy to construct a statement analogous to
the one above over all the possible values of a, provided that the variable can only take a
finite number of values. Any formula @ is equivalent to the implication: true O Q. Using
the inference rule of substitution for equality we can replace true in this implication with

the left-hand side of the equality above. This yields the formula:
((a = false) vV (a =true)) D Q

This is equivalent to:
(a = false) > Q) A ((a=true) > Q)

The PALM system gives the user these terms one at a time split at the A. The user then

performs logical manipulations on them, to derive:

((a = false) > Q") A ((a = true) D Q")

The command end-case takes the various terms from case analysis and ands them to-
gether. If the two resulting formulas Q' and Q" are equivalent, then PALM does the

following.
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First the rule or-introl, (A > B) A (C D B) = ((AV C) D B), is applied to yield:
((a = false) V (a = true)) D Q'

The rule or-bool tells us that the left hand side is equivalent to ¢true. The resulting term
is true D Q'. Since (true D Q) = Q, we can derive Q'. PALM automatically applies these

rules when the command end-case is invoked.

The discussion above assumes that the formula @ contains no temporal operators. I wish
to do case analysis over temporal formulas. Case analysis over any variable in a temporal
formula would require enumerating all possible values of that variable in all possible states.
In general this is very complex. For a logic which allows intervals of infinite length, it is

impossible.

Case analysis is only permitted for temporal formulas of the form [1Q, where Q contains
no temporal operators, and only if certain other conditions hold. The formula describes
an interval of time. Case analysis may be done over a variable a if it is only examined in
the first state of the interval described by the formula. For example, in the inverter circuit
presented in Section 5.3.1, I do case analysis over the variable In which is only examined
in the first state of the interval. Thus I only need consider possible values of In in that

state. Case analysis is not done for other temporal formulas.

Disjunctive Normal Form

PALM can replace a subterm in the current term with its disjunctive normal form. This
is frequently convenient when working with complicated logical formulas. The command
dnf invokes a series of Prolog predicates and does not use rewrite rules. This command

illustrates the ease with which the user can interface Prolog packages to the PALM system.

In the 1-bit adder example discussed in Chapter 7.5, dnf is invoked to replace the expres-

sion:

—la/\b)/\(—l(a/\c)/\—!(b/\c))v
—(—a A —=b /\—\c)/\ '1(—10/\~1b/\—|a)
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The disjunctive normal form returned is:

a AbAcv(aA-bA =)V (naAaA bV
-a AaA=c)V(-aAaA-bA-c)V
—|a/\b/\-10)\/ —1a/\—1b/\b)v(—-‘a/\—»b/\c)\/
-1a/\—\b/\b/\-wc)v(ﬂa/\—nb/\—\c/\c)v

—a A =c Ac)V(=bAbA=ec)(nbA-cAec)

The resulting formula is longer but much easier to manipulate than the original formula.
Note that the dnf commands sorts variables into alphabetical order and removes dupli-

cates. It does not, however, remove terms in the form A A —A.

6.1.2 PALM Could be More Rigorous

I have described the general purpose features of PALM, a tool for manipulating logical
formulas. PALM remembers formulas, automatically applies rules, and handles other
bookkeeping tasks. The aim in developing PALM was to provide a tool which allowed the

user to quickly explore the results of manipulating formulas.

There are several ways in which the PALM system could be more rigorous. For example,
PALM could start with a small set of axioms and require that additional rules be derived
from these. At present, a user can enter any rule she wishes. If the user enters an incorrect

rule, the results derived may not be valid.

In addition, a type system could be added. Variables in PALM do not have types, so there
is no type checking. As a result of a lack of types, case analysis cannot automatically
generate the possible values of a variable. With a type system, case analysis would be

more soundly based.

Systems which provide a more formal approach to logic manipulation include HOL [Gor85b)
and VERITAS [HD86a]. My approach is not inconsistent with the approach used by these
more formal systems. For example, the rules I use to rewrite formulas can be checked for

consistency by generating them from a small set of axioms.
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6.2 Rules for Reasoning about Circuits

In this section I discuss the use of the rule database of PALM for reasoning about circuits.
The rules are divided into four categories: basic logic rules, rules for signal strengths, rules
for interval temporal logic, and rules for combining circuit elements. These rules are listed

in Appendix A.

Basic logic rules examine the value field of a signal only, and are familiar from boolean
logic. These include rules such as the commutativity and associativity of the operator A
(and), and DeMorgan’s laws. Most variables are signals. For convenience, I represent the

truth values true and false as the signals {1, _} and {0, _} respectively.

Rules for signal strengths examine the strength field of a signal only. These include rules for

strengthen and weaken, and properties of the LI (join) operator described in Section 4.4.2.

Very few rules are required for temporal logic operators:

A— B) A (C— B)=(AuUuC — B)
OA) A (OB)=(JA A B)
OA A B)=(OA) A (OB)

The first rule is the property of the temporal assignment operator discussed in section 4.4.
The last two rules are properties of the 0 operator from linear time temporal logic (LTTL).

These and many similar rules are proved from an axiomatization of LTTL in [MP83].

Rules for Combining Circuit Elements

The temporal logic equations for describing the behavior of logic elements and transistors
all have the same general form. For example, an element with input X, output Y, and

enable A has the form:
O(((A={1,-}) A len M) D (strengthen(X) —Y))
A similar clocked element with clock @ has the general form:

O(((A={1,3) A @={1,_} A len M) D (strengthen(X) —Y))

81




8.2 RULES FOR REASONING ABOUT CIRCUITS

’ B

a) two transistors in series b) two transistors in parallel

£
g_r_ 1.

Figure 6.5: Transistor Configurations

Frequently the element is also modeled with an ideal capacitance on the output:

O(len 1 > (weaken Y — Y))

I have explicit rules for combining these formulas. These rules are based on the composi-

tionality of the ITL delay operator, and on properties of temporal stability.

Figure 6.5 shows two transistors connected in series and two transistors connected in

parallel. The rule for connecting two unclocked transistors in series is:

O((A A len M D (C — D)) A

(E Alen ND>(D—G))A

(len 1 O (weaken D — D))) D
O(A A E A len(M+N)D (C—G))

The rule for connecting two unclocked transistors in parallel is:

O((A A len M D (C— D)) A
(E A len N D (C — D)))
) D

D
O(AV E A len maz(M,N) > (C — D))
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A Do k {>o_._-—-c

Figure 6.6: Two Inverters in Series

The rule for connecting an unclocked and a clocked logical element in series is:

O((len M > (B—C)) A
(@={1,-}) A len N D> (C — G))A
(len 1 O (weaken C — C))) D
O((® = {1,-}) A len N > (BU weaken C — G))

ITL delay has the property that functional composition applies. Since Prolog does not

implement higher order unification, functional composition is not automatically handled.

To get around this [ replace the functions in question with explicit function names, apply

a rule which uses those names, and then replace the names with the original functions.

For example, suppose a circuit has two inverters in series as shown in Figure 6.6.

The behavior of such a circuit is that the output C' is the input A delayed by the sum of

the delays of the components. In Section 5.3.1, the behavior of the inverter is shown to

be:
O((len N) O (strengthen(—In)) — Out)

Composing the behavior of the two inverters results in the equation:

O((len M) D (strengthen(—A)) — B) A
((len N) O (strengthen(—B)) — C)

The rule to apply is:
O((len M D (funci(B) — C)) A

(len N O (func2(C) — E))) >
O(len (M + N) D (func2(funcl(B)) — E))
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In order to apply this rule to the behavioral equation, first I must replace strengthen(—A)
with funcl(A) and strengthen(—B) with func2(B), then apply the rule, and then replace

funcl and func2 with strengthen —. The result is:
O(len (M + N) > ((strengthen — strengthen (—A4)) — C))

Using rules to commute the strengthen and — operators, and the rules:

strengthen strengthen A < strengthen A and ——A = A results in:
(len (M + N) D (strengthen A — C))

This is the temporal logic description of the expected behavior for this component.

6.3 Conclusions

I have provided a general introduction to the PALM system and discussed PALM rules used
to reason about circuits. In the next chapter I present several examples which illustrate

how PALM is used to derive the behavior of circuits.
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Chapter 7

Examples

In this chapter, I present several examples of reasoning about circuits using the methodol-
ogy introduced in the previous chapters. I show how the function and timing behavior of
a circuit is derived from the behavior of its components and how constraints are reasoned

about.

In the first section I discuss the derivation of behavior of several fully complementary
CGMOS circuits. These include a shift register and a dynamic latch. Both these circuits

are composed of shiftstages as well as other components.

In the second section I discuss the derivation of functional and timing behavior of a
dynamic 1-bit adder. This circuit was designed using the NORA design style [GDM83],
and is built out of dynamic and clocked CMOS logic blocks. I show how the derived
behavior of this adder can be abstracted to a purely functional behavior, and how the

abstract behavior is used in a proof of an n-bit adder.

7.1 Examples using CMOS Complementary Logic

I will show how the behavior of the CMOS shift register described in Section 5.4 and a
CMOS dynamic latch can be derived from their components using PALM. A component
of both these circuits is the shiftstage shown in Figure 7.2. First I discuss the derivation
of behavior of the shiftstage, then I show how this behavior can be used to derive the

behavior of the shift register and the dynamic latch.
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Figure 7.1: An Element which Employs 2-phase Clocking

The shift register and dynamic latch both employ a 2-phase clocking scheme. A general-
ized element using such a scheme is shown in Figure 7.1. The following rule is used for
connecting elements which are clocked on different clock phases.
O(((®1={1,-}) A (®@2={0,-}) > (len M D (funcl(A) — B))) A
(@1 = {0, ) A (8= 1{0,}) > stb B) A

(®1={0,-}) A (@={1,-}) D (len N D (func2(B) = C)))) 2
O((®2 = {1,-}) A lenN D func2(funcl( latched(®;, 4)) — C)

Note that the case (®1 = {1, -}) A (@2 = {1, -}) does not arise.

This rule states that if two elements are connected in series, with the first element clocked
by ®; and the second element clocked by ®;, and the node between them is modeled with
an ideal capacitance, then the behavior of the combined circuit element is the composed
functional behavior of the two elements. The value of the input is latched on ®;. This
is specified by the function latched(21, A)), which returns the value A had when ®; was

{1, _}. The delay is the delay from @, characteristic of the second element.
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A So s

Figure 7.2: A shiftstage

7.1.1 A shiftstage

The behavior of a shiftstage, shown in Figure 7.2 is described in ITL by:
shiftstage(A4, B, 8, M) =qes

(O®=(1,-} D (len M > (strengthen -A — B))) A
O-@~1{1,)) > (stbB))

There is one constraint on the behavior of the shiftstage:
(@ {1,-) o (sthA))

This behavior and constraints have been derived from the behavior and constraints of
the components of shiftstage using the PALM system. The derivation is presented in

Appendix B.4.
7.1.2 A Shift Register

A CMOS shift register, shown in Figure 7.3 is made up of two shiftstages:

shift-reg-struct(A, B, ®1, B2, M)  Zqet
shiftstage(4, ¢, 1, n) A shiftstage(c, B, D2, p)

Here M is the time after ®; becomes true that the output of the shift register is valid. It is
straightforward to show that the behavior of the shift register, derived from the behavior

of the shiftstage given above is:
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Figure 7.3: A Shift Register

1,_}) A lenp O strengthen latched(®1, A) — B) A
{1,_}) D stb B) A

This behavior is derived by expanding the behavior of the shiftstages, and applying several
rules including the rule for elements with 2-phase clocks given above. Note that the input

A is latched on clock phase @;.

The constraints from the two shift stages are:

O((®1~{1,-}) > stbA)
O((®; ~ {1,-}) D sthe)

The behavior of the first shift stage implies:
O((—® =~ {1,-}) > stbe)

A property of the clocking scheme is:
O((®:~ {1,-}) > (®1~{1,-}))

The second constraint can be derived from these two implications using the rule:
(A>B)A(BDC)) > (A4>DC)

Thus the second constraint is always satisfied. Therefore, the constraint for the shift

register is the constraint on the behavior of the input A.
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7.1.3 A Dynamic Latch

Figure 7.4 shows a CMOS dynamic latch. This circuit is a clocked version of the dynamic
register discussed in section 3.3.1. The operation of this frequently used CMOS structure
is described in Section 5.4 of [WE85]. The latch uses 2-phase clocking similarly to the
CMOS shift register. When the latch signal L is high during ®;, a new value is stored in

the latch. Otherwise, the previous value is saved.

The temporal logic description of the behavior of the latch is derived from the behavior
of its parts. The full derivation is given in Appendix B.5. A sketch of the derivation is

given below,

The structure of the latch is:

dlatch-struct(L, D, Q, @1, P2, R) =qer
invert-mux(L, D,Q, ®1,y,m) A
shiftstage(y, @, @2, p)

Here invert-mux is a clocked multiplexer composed with a static inverter. This module is

indicated in Figure 7.4. Its behavior, derived from the behaviors of its components, is:

invert-mux(4, B,C,®,D,m) =qe
@@={1,-}) Alenm >
(¢fA={1,_} then (strengthen —B — D)
else (strengthen -C — D))) A
(®={0,_} > stbD))

To derive the behavior of the latch, we first expand the behaviors of the parts, and then
apply PALM rules. Once again, the 2-phase clocking rule is used. It is straightforward to
show that the behavior of the components implies the behavior of the latch, given in the

following definition:

dlatch(L, D,Q, ®1,P3, R) =qet
@ if L ={1,_} then
((®2={1,_}) A lenp > strengthen latched(®;, D) — Q)
else((®; = {1,_}) A lenp O strengthen latched(®1,Q) — Q)) A
(O = {1,_}) > st Q) A
(B =p)
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The constraints of the parts for the dynamic latch are:

1. 0((L A &)~ {1,-}) D> stb D

2. 0((~L A @)= {1,_}) Dsth@

3, O(®; ~ {1,-}) Dstb L

4, O(®; ~ {1,_}) D stby

The first three constraints are the constraints from the 2-to-1 multiplexer of the invert-mux
component, and the fourth constraint is due to the shift stage. The constraints we wish
to have for the dlatch state that the load signal L is stable when ®; is high, and that the
input D is stable when it is being loaded into the latch. These are expressed in ITL:

O(((L A @)~ {1,-}) D stb D)
u§§¢>l ~ {1,_}) D stb L)

These two constraints are identical to the first and third constraints above. Constraints
9 and 4 can be eliminated by manipulating the behavioral equations of the parts of the
latch. Constraint 4 is true if the input to the shiftstage is stable during ®2. This in turn
is true if the delay through the invert-mux is less than the length of ®; plus the separation
between ®; and P;. Constraint 3 is true if the output @ is stable during ®;. This in turn
is true if the separation between ®2 and @3 is longer than the delay through the inverter
which drives Q. These requirements put additional constraints on the relative timing of

the different clock phases.
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inv-mux

>

shiftstage

[ I

Figure 7.4: A CMOS Dynamic Latch
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7.2 A Dynamic CMOS Full Adder

The examples discussed in the previous section employ a fully complementary CMOS de-
sign style. Many other logic structures, such as dynamic and clocked CMOS, are used
in actual designs. These structures combine the low power advantage of complementary
OMOS circuits with the area advantage of nMOS technology. For a more thorough dis-
cussion of the advantages and disadvantages of different design methodologies see Section

5.2 of [WE85].

In this section I describe a one bit adder circuit which makes use of the NORA design
style [GDM83]. The adder circuit is shown in Figure 7.5; an earlier version was presented
in [Mur84]. The top level Prolog specification of the adder is given below. A " over a

term indicates the negation of that term.

adder-struct(A, B, C, Carry, Sum, @1, @3, X) : —
ccmos-invert(®1, A, @, 1),
ccmos-invert(®4, B, b, ),
ccmos-invert(®y, C, T, z3),
sumpart(@, b, ¢, e, 9, By, x4),
carrypart(g, b, , €, ®1, zs),
ccmos-invert(®z, e, Carry, ze),
ccmos-invert(®g, g, Sum, 7).

First I give a brief introduction to the NORA design style and describe how the adder
operates. Next I discuss the results of running the direction finder on the adder. Then I
describe how the function and timing of this component is reasoned about using the PALM
system. I show how this behavior can be abstracted, and how the abstract behavior is

used in a proof of an n-bit adder. Finally I discuss issues raised by this example.
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Figure 7.5: A Dynamic 1-bit Adder
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Figure 7.6: A C?MOS Inverter

7.2.1 Operation of the Dynamic Adder

The dynamic adder shown in Figure 7.5 is built out of dynamic CMOS and c2MOS
(Clocked CMOS) structures. Dynamic and C?MOS components use clock signals to pro-
vide separate phases of operation. The inverter, shown in Figure 7.6, is an example of a
C2MOS circuit. When @ is high the circuit operates similarly to a static inverter, When
® is low the output of the inverter is isolated from its inputs, and the output retains its
previous value. Thus the inverter works as a combination inverter and latch; its output

changes when @ is high, and is latched when @ is low.
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Figure 7.7: Dynamic CMOS Logic

Examples of dynamic CMOS structures are the carrypart and sumpart of the adder. Gen-

eral forms of n-type and p-type dynamic logic blocks are shown in Figure 7.7.

An n-type logic block consists of a logic structure built out of n-type transistors whose
output node is precharged to power by a p-type transistor and conditionally discharged
or evaluated by an n-type transistor connected to ground. In the p-type logic structure,
an n-type transistor precharges to ground, and the p-type logic block is evaluated by a
p—type transistor connected to power. Dynamic logic operates subject to the constraint
that any input transition occurs at most once during the evaluation phase. For an n-type

logic block, this transition must be from 0 to 1. For a p-type block, the transition must

be from 1 to 0.
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Figure 7.8: One Cycle of Operation of the Dynamic Adder

In NORA, logic functions are implemented using n-type and p-type dynamic CMOS and
C?MOS blocks. NORA provides rules for combining these blocks. The adder circuit
shown in Figure 7.5 is made up of O2?MOS inverters, and n-type and p-type dynamic logic
blocks composed according to the NORA rules. This circuit employs the 2-phase clocking
scheme presented in Section 5.5. The following description of the operation of the adder
is illustrated by the annotated timing diagram in Figure 7.8. The diagram shows clocks
®; and ®; only. The complementary clocks ®; and ®; have been omitted for clarity.

Numbers in parentheses in this discussion correspond to labels in the figure.

The inputs A, B, and C are latched by C?MOS inverters which evaluate when ®; is high
(1) and latch when @1 is low (2). The carrypart is an n-type dynamic logic block which
precharges when ®; is high (1) and evaluates when ®; is low (3). The sumpart is a p-type
dynamic logic block which precharges and evaluates on the same phases of the clock as
the carrypart. The outputs of the sumpart and carrypart are signals e and g respectively.

These signals are in turn inputs to two C2MOS inverters which are clocked by ®2. Thus

the outputs, Sum and Carry, are evaluated when ®; is high (4), and are latched when @,
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is low (5). Note that the output of the carrypart, signal e, is also an input to the sumpart.
NORA permits the cascading of two levels of logic which operate on the same phase of
the clock provided that one block is of type n and the other is of type p. The clock period

must be long enough to allow for the slowest such combination to evaluate.

7.2.2 Setting the Direction of Signal Flow

The direction of signal flow through transistors in the adder is set in the customary
preprocessing step. This is done using the signal flow algorithm described in Section 3.3.1.
Establishing the direction of signal flow through the transistors in the C2MOS inverter is
straightforward. The only set of directions which satisfies the Signal Law is that shown

in Figure 7.6.

The signal flow algorithm has difficulty with the carrypart and sumpart components of the
adder. Dynamic CMOS design styles do not lend themselves to this type of analysis. The
algorithm is only able to set the direction of the precharge and evaluate transistors. The
remaining transistors are labeled bidirectional and are set by hand. I use the convention
that all signal flow is toward the output nodes. The resulting labels are shown in Fig-
ures 7.9 and 7.10. The signal flow analysis program was used to check that the assigned

labels do not violate the Signal Law.

7.2.3 Reasoning about Function and Timing: the Components

In the next two sections I give a brief presentation of the derivation of the behavior for

the dynamic adder.

Deriving the function and timing of the adder proceeds hierarchically and consists of
reasoning about behavior and reasoning about constraints. In this example there are two
levels of hierarchy. The bottom level consists of structure of transistors which implement
the C?MOS inverter, and the sumpart and carrypart. These components are then composed

in the top level of the hierarchy to form a 1-bit dynamic adder.

PFirst I present the bottom level derivations. I use the same transistor model to describe

and reason about NORA circuits as that used for fully complementary CMOS circuits.

97




7.2 A DYNAMIC CMOS FULL ADDER

The constraints, however, reflect the different design methodology. The requirement that
all clocks satisfy the control predicate presented in Section 5.5 remains. There are no
longer constraints on individual transistors. They are replaced by constraints on the ways
in which different types of logic blocks may be composed. These constraints correspond
‘to the rules for composing NORA blocks described in [GDMS83]. Dhingra [Dhi87] presents
a formal proof of the rules for this design style. For the adder circuit, the only constraints
which are considered here are that inputs to the n-type and p-type block are stable during
the evaluate phase, and that inputs to the inverters clocked on ® are stable on the falling

edge of P,

The C2MOS Inverter

The implementation of the C2MOS inverter is shown in Figure 7.6. The specification for

this structure is:

ccmos-invert-struct(®, In,Out, M) =get
ntrans(In, {0,1},pl, n1) A ptrans(In, {1, 1},p2,n2) A
ntrans(®, p1, Out, M) A ptrans(—(®), p2, Out, M) A
cap(pl) A cap(p2) A cap(Out)

The derivation of the C2MOS inverter behavior proceeds by expanding the component

behavioral descriptions:

O(In={1,-}) A lenn > ({0,1} = p1)) A
O(In={0,_}) A lenn > ({1,1} — p2)) A
O(®@={1,_}) A lenn > (pl — Out)) A
O(-® = {0,_}) A lenn D (p2 — Out)) A
Olen 1 > (weaken pl — pl)) A

(@len 1 > (weaken p2 — p2)) A

(@len 1 O (weaken Out — Out))

This term is split to save the last conjunct on the stack. The subterm:
(Olen 1 > (weaken Out — Out))
states that the previous value of the output is always stored. This specifies the latching

behavior of the inverter when the output is isolated from the input.
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The remainder of the term is manipulated to derive the behavior of the inverter when @ is
high. This is done using a combination of case analysis on In and straightforward logical
manipulations. The rule for combining an unclocked and a clocked transistor in series is
used:
O((len N > (A— B)) A
(@={1,_}) Alen M D> (B—C)) A

(len 1 O (weaken B — B))) D
O((®={1,-}) A len M > (AU weaken B — C))

This rule states that if an unclocked and a clocked transistor are connected in series with
signal flowing from the unclocked to the clocked, then the result is the same as having
one transistor with the delay of the clocked transistor and the input of the unclocked. A
constraint associated with this rule is that the input of the unclocked transistor is stable
when the clock is active. This will be reflected in the constraint on the input of the
inverter. The rule is used twice; once for the pullup portion of the inverter and once for

the pulldown portion.

The result of the logical manipulations is anded with the term saved on the stack. The

resulting behavior for the inverter is:
ccmos-invert(®, In,Out, M) =qef

(O((®={1,-}) A len M D (strengthen =In — Out)) A
(len 1 > (weaken Out — Out)))

This behavior specification states when @ is high the circuit behaves like a static inverter,

and the output always stores a weakened copy of the last driven value of the output.
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The carrypart

The carrypart of the adder is shown in Figure 7.9. The specification of this component is:

carrypart-struct(@, b,¢, 6,2, X)  =def
ptrans(®, {1, 1} d,m;) A cap(d) A
ptrans(a, d,gl,mz) A
ptrans(b, g1, e,ms) A cap(gl) A
ptrans(a, d, f, mq) A
ptrans(b, d, f, me) A
ptrans(g, f, e, ms) A cap(f) A
ntrans(®, {0,1},e,m7) A cap(e)

There are three aspects of the behavior of this component which need to be demonstrated.
The first is that the output is pulled down during the precharge phase. The second aspect
is the delay through the carrypart during the evaluation phase. The third is that the
output of the carrypart, signal e, has the value of the carry bit of the addition of the three
input bits. This value corresponds to the boolean logic formula (remembering that @, [3

and € are equivalent to —a, —b and —¢ respectively) :
Carry = (ma A —b) Vv (=@ A —T) v(ﬂE A —T)

We proceed by expanding the components with their temporal logic descriptions:

@@ = {0,-}) A lenmy D ({1,1} > d)) A
Olen 1 D (weaken d — d)) A

E O(@={0,-}) A lenmz D (d—g1)) A
0@ = {0,—}) A lenmg D Sgl —€)) A
Cllen 1 D (weaken g1 — g1)) A

(a—{O_})Alenm4D(d—> NA

@ = {0,-}) A lenmg D (d— f)) A

O( = {0,—}) A lenms O (f — ¢€)) A

Olen 1 D (weaken f — f)) A

0(@ = {1,-}) A lenmg D ({0,1} = €)) A
Clen 1 D (weaken e — €))
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Figure 7.9: The carrypart with Direction of Signal Flow Indicated
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Next we apply rules for combining transistors to simplify the behavior of the block of p-type
transistors into one sub-term. This involves applying the rules for combining unclocked
transistors in parallel and unclocked transistors in series discussed in Section 6.2. The
simplified behavioral description is:
(@ = {0,-}) A lenmy > ({1,1} — d)) A
(len 1 D (weaken d — d)) A

(@=1{0,-}) A B={0,-})v (@={0,-})Vv (={0,-}) A (€={0,-})) A
len maz(mg + mg, maz(ms, me) + ms) D (d — €)) A

(@ ={1,-}) A lenmy > ({0,1} — €)) A

(len 1 D (weaken e — €))

The derivation proceeds using case analysis on ®. The result of deriving the behavior

from carrypart-struct is the behavior specified by:

carrypart(a, b,%,¢,®, X) =def
@@ = {1,1} > (len my D ({0,1} = ¢€))) A
(@ = {0,1} D (len(m1 + maz(mg + ms, maz(m4, me) + mg)) D
(strengthen (=@ A =BV (=@ A =€V (=b A —0)))

— ¢)))

where X = (my + mag(mg -+ ms, maz(my, mg) + ms))

This specifies the three aspects of behavior mentioned earlier. When @ is high, signal e is
pulled down to ground. When @ is low, e has the value of the carry of the three inputs.
The argument of the len operator is the delay of the longest path through the carrypart.
The argument X of the carrypart is instantiated to this value, so the delay becomes part

of the top level specification.
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The sumpart

The sumpart of the adder is shown in Figure 7.10. The specification of this component is:

sumpart-struct(a, b,%,€,9,®,Y)  =qet
ntrans(®, {0, 1},¢,m1e) A cap(s) A
ntrans(e, ¢, h, mi2) A
ntrans(@, h, g, mo) A
ntrans(, h, g, m10) A
ntrans(¢, h,g,m11) A cap(h) A
ntrans(Z, 1, k, mis) A
ntrans(b, ,J,m14) A cap(k) A
ntrans(@, 5,9, m1s) A cap(s) A
ptrans(®, {1,1},9,ms) A cap(g)

The derivation of behavior for the sumpart proceeds similarly to the derivation of behavior

of the carrypart. Note that e, the output of the carrypart, is an input to this component.

As with the carrypart, there are three aspects of the behavior of this component which

need to be demonstrated. The first is that the output is pulled up during the precharge

phase. The second aspect is the delay through the sumpart during the evaluation phase.

The third is that the output of the sumpart, signal g, has the value of the sum bit of the

addition of the three input bits. This value corresponds to the boolean logic formula:
Sum = @AbA-TV(@A-DATGY

(—‘a, ADA C)V (—|a A —b A ~|c)
~(Carry A (@VbVE)V (T A b A ©))

]

Carry is the boolean function defined above.

The derivation proceeds by expanding the components with their temporal logic descrip-
tions. Rules for combining transistors are applied to simplify the block of n-type transis-

tors. The resulting behavior equation is:
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Figure 7.10: The sumpart with Direction of Signal Flow Indicated
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O((® = {1,-}) A lenmse D ({0,1} = )) A
(len'1 D (weaken § — 1)) A
(e={LNA
(@= {1,V E={L NV E={LN)V
(G (1) A G=1{L ) A (@=L} A
len maz(myz + maz(maz(mog, mio), mi1), mis + mig + mys) O
(= 9)) A
(@ = {0,)) A lenms > ({1,1} = 9)) A
(len1 > (weaken g — g))

The derivation proceeds using case analysis on ®. The result of deriving the behavior for
the sumpart is the behavior specified by:
sumpart(a, b,c,€,9,8,Y) =det
O(® = {0,1} > (lenms > ({1,1} = 9))) A
(®={1,1} >
(len (m1e + maz(myz + maz(maz(me, m1o), m11), M1s + M4 + mys)) D
(strengthen —(e A (@VBVE) V(T A b A 7))

— 9)))

where Y = (myq + maz(miz + maz(maz(me, m1o), Mi11), Mis + mis + mys))

This specifies the three aspects of behavior mentioned earlier. When @ is low, signal g is
pulled up to power. When @ is high, ¢ has the value of the sum of the three inputs. The
argument of the second len operator is the delay of the longest path through the sumpart.
The argument Y of the sumpart is instantiated to this value, so the delay becomes part of

the top level specification.

7.2.4 Composing the Components

In the previous section I showed how the behavior of the components of the adder are
derived from the behavior of their components. In this section I compose these components
to derive the behavior of the dynamic adder. Up to this point, characteristics of the
clocking scheme have not been entered into the derivation. When the components are
composed, the clocking scheme is taken into account. Constraints are also examined at
this level of the hierarchy. First the behavior of the adder is derived, and then constraints

are discussed.

106




7.2 A DYNAMIC CMOS FULL ADDER

Deriving Behavior

The specification of the structure of the adder shown in Figure 7.5 is:

adder-struct(4, B, C, Carry, Sum, ®;, 83, X)  =qet
ccmos-invert(®1, A, @, 1) A
ccmos-invert(®q, B, b, z3) A
ccmos-invert(®1, C, T, £3) A
carrypart(a, b, ¢, e, D1, 24) A
sumpart(a, b, ¢, e,9, (- ®1), 25) A

ccmos-invert(®g, g, Sum, z¢) A
ccmos-invert(®g, e, Carry, z7)

This circuit demonstrates the advantage of hierarchical analysis. The behavior of the
O?MOS inverter component, which is used five times in this circuit, only needs to be

derived once.

As usual, the derivation proceeds by replacing the components with their behavioral spec-

ifications. The specifications used are those derived in the previous section. The rule

latch, given below, is used to derive the value of the output of the C*MOS inverters used

on the inputs when ® is low. The rule states that when the clock, ®, is low, the output

of the inverter returns a weakened version of the function of its input, A, when the clock

was high. This rule is applied three times, once for every inverter clocked by ®1:
D(((®={1,-}) A len N D (funcl(A) — B)) A

(len 1 D (weaken B — B))) D
0((® = {0,_}) > D =weaken funcl(latched(®y, 4))

For convenience, the term latched(®y, A) is abbreviated to A; for the remainder of this

discussion. Bj and C; are similar abbreviations.

Most of the derivation consists of boolean logic manipulations. The dnf command is used
to simplify the boolean formulas for the carry and sum outputs. The rule which is used
to combine elements states that, for temporal logic formulas describing delays, functional
composition applies and the quantitative delays add:

a(((len M) D (funcl(A) — B)) A

((len N) > (func2(B) = C))) >
O((len (M + N)) D (func2(funcl(A)) — O))
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Reasoning proceeds by case analysis on ®; and ®;. There are three possible states for the
clocks. They correspond to the case when both clocks are low, and the two cases when
one clock is high and the other is low. The case where both clocks are high simultaneously

should not arise in practice and is not considered. The resulting behavior for the possible

states of the clock is:

(I.__]Ql = {0,1} A Py = {0,1} D
(len mygpyy D strengthen func2(Az, By, C1) — e) A
(len mgym O strengthen funcl(Ajy, By, C1) — g) A
(len1 > (weaken Sum — Sum)) A
(len 1 D (weaken Carry — Carry))) A

([:]@1 = {0,1} A By = {1,1} D
(lenwg D strengthen funcl(Ay, B1,C1) — Sum) A
(len 1 D (weaken Sum — Sum)) A
(len z7 O (strengthen func2(Ay, By, Cy) — Carry)) A
(len 1 D (weaken Carry — Carry))) A

(D‘I’l = {1,1} A @y = {0,1} >
(len my D ({0,1} — €)) A
(lenmg > ({1,1} = g)) A
(len1 > (weaken Sum — Sum)) A
(len1 D (weaken Carry — Carry)))

Here the functions funcl(Aj, B1,C1) and func2(Aj, By, C;) are abbreviations:
funcl(Ay, By, Cy) =
(A1 A By A C1V (AL A =By ACYy)
V(—-nA]_ A By A —|01)V (—xAl A =By A 01))

func2(Ay, By, Ch) =
-(A1 A B1V (41 A GV (B1 A C1)))

The abbreviations mgum and Mgy are the delays through the sumpart and the carrypart

respectively:
Meum = (m1 + maz(mg + mg, maz(mg, ms) + ms)+
(mie + maz(myz + maz(mo, myo, ma1), mis + Mg + mus)))
Mearey = (M1 + maz(ma + ms, maz(my, me) + ms))

The term which specifies the capacitance on the two outputs of the adder is:

O(len 1 D (weaken Sum — Sum)) A
(len 1 > (weaken Carry — Carry))
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This appears as a subterm for every possible state of the clocks, and is simplified into
a single statement. In addition, the behavioral equation is simplified by eliminating the

clauses which do not apply to the ports of the adder.

The derived specification of the behavior of the adder is:

adder(A, B, C,Carry, Sum, 1,83, X) =aef
(D Py = {1, 1} »l
(len z7 D strengthen func2(Aj, By, Cy) — Carry) A
(len xg D strengthen funcl(Aj, By,C1) — Sum)) A
(O(len 1 O (weaken Sum — Sum)) A
(len 1 > (weaken Carry — Carry))) A
X = max(zg, z7)

This states that the sum and carry outputs of the adder are calculated when @, is high,
and the outputs are latched when @, is low. The outputs exhibit the required boolean
behavior for the function. The argument X of the adder is instantiated to the longest

delay from the rising edge of ®3, which in this case is maz(ze, 7).

Deriving Constraints

In addition to requiring that all clock signals obey the control predicate defined in Sec-
tion 5.5 the NORA design style requires that the inputs to the dynamic logic be stable
during the evaluate phase. For the adder circuit this translates to requiring that @, b, and
T be stable when ®; is low. This is a direct consequence of the behaviors of the inverters
clocked on ®; provided that ®; is high longer than the delay through the slowest inverter.

If this condition is met, these constraints are satisfied.

My transistor model also requires that the inputs to the inverters be stable when they are
being evaluated. The constraints that A, B, and C be stable during ®; is imposed on the
environment. The constraints that e and g be stable during ®, places a constraint on the
duration of the clock signals. The time during which ®; and ®; are both low must be
longer than the longest evaluate delay during ®;. For this circuit, that time corresponds
to the worst case delay through the sumpart. This is the same as the restriction due to

NORA design rules.
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7.2.5 An n-bit Adder

An n-bit adder can be built by cascading n stages of 1-bit dynamic adders as shown in
Figure 7.11. Static inverters are used on the outputs as specified by the NORA design
style. The signals Carry; and C;1y are connected between stages through the inverters.
Signals Carry; and Ciiq are hidden from the remainder of the circuit, so their timing
constraints must be met. The input constraint of a stage is that signal Ciy1 is stable
when & is high. From the output behavior we can derive that Carry; is stable when ®
is low. Since @, is low when @ is high, the Carry, signal meets the input constraint of
Cit1. This signal is fed through a static inverter. If the time between the falling edge
of &5 and the rising edge of @ is longer than the delay of the static inverter, then the
constraints on the carry signals are met. This generates an additional requirement on the

relative timing of the clock signals.

In [CGMS86)|, the functional behavior of a 1-bit adder is used to derive the behavior of an
n-bit adder. The results of their proof are applicable to the dynamic n-bit adder provided I
can show that the functional description I derive of the dynamic 1-bit adder is equivalent
to their specification of a 1-bit adder. I do this by abstracting the function from the
derived behavior. Their approach can therefore be used to derive the functional behavior

at higher levels of description.

The derived behavior of the 1-bit adder specifies function and timing. The function can be
abstracted from this formula. Observe that the formula has the form of a clocked element
with delay, modeled with capacitors on its outputs. The behavioral equation of such an

element which has inputs A, B, ... and output X is of the form:

O(® A lenm > (f(A4,B,..)— X)) A
O(len 1 D (weaken X — X))

The functional behavior of this element is:
X=f(AB,..)

Similarly, from the derived behavior for the adder we abstract the functional behavior:

Carry=—-(A AN BV(AACV(B A C))A
Sum=—(AABACV(AA-BA-C)V(~AABA-C)V(~AA-BA C))
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A DYNAMIC CMOS FULL ADDER

a(n) b(n)

||

a(n-1) b(n-1) a(0) b(0)

||

||

cout <4 Add1

out(n) out(n-1) out(0)
a) the n-bit adder from [CGM86]
a(i) b(i)

v \ 4
Add1

A 1-bit B

dynamic adder
C <« (i)

Sum

cfi +1) 4——————04— Carry

b) implementing Add1 with the dynamic adder and static inverters

l

out(i)

Figure 7.11: An n-bit Dynamic Adder
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By composing this with the behavior of the static inverters, we derive the same functional
behavior as that used in the n-bit adder proof in [CGMS86]. Therefore the results of their

proof are applicable to the circuit shown in Figure 7.11.

7.2.6 Discussion

In summary, the behavior derived for a 1-bit dynamic adder is:

adder(A, B, C, Carry, Sum, ®1, B2, maz(ze, x7)) =det
0@, ={1,1} >
(len @y O strengthenfunc2(Ay, By, Cy) — Carry) A
(len @ D strengthen funcl(Ay, By, Cy) — Sum))) A
(O(len 1 > (weaken Sum — Sum)) A
(len 1 > (weaken Carry — Carry)))

Where funcl(Ai, Bi,Cy) and func2(Ay, By, C}) are abbreviations:

fu.ncl(Al, Bl,Cl) =
—1(A1 A By AN CiV (A1 A By A —|01)V
(mA1 A By A -Cy)V (RA1 A =By A CY))

func2(Ay, By, 1) =
'1(A1 A B]_V(Al A Cy V(Bl A Ol)))

From this equation we can abstract functional behavior subject to timing constraints on

the availability of the inputs and outputs. The function is:

Carry==(A A BV(AACV(BAQ))A
Sum=-(AABACV(AA-BA-C)V(mAA BA-=C)V(-A A-BAC))

The constraints on the inputs are that ®; and ®; exhibit the characteristics of 2-phase

clocks, and that A, B, and C are stable when @ is high. The circuit enforces the conditions

that the outputs Carry and Sum are stable when ®; is low. This abstracted behavior

can then be used in proofs of circuits where the 1-bit adder is a component.

Mike Gordon has proved the behavior of this same 1-bit adder in HOL using a unidirec-
tional transistor model [Gor87]. His proof works by exhaustive simulation on the inputs
A, B, and C. The proof would not run on a DEC Microvax II with 6 megabytes of mem-

ory due to insufficient memory. It took over 6000 seconds of CPU time to execute on an
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Atlas10 which runs HOL proofs approximately ten times faster than a Microvax. Seconds
of cpu time on a DEC Microvax II for my derivations are given in Table 7.1. All values
are approximations; the actual values were obtained using the Prolog statistics command.
My derivation runs much faster partially because it is less rigorous than the HOL one.
The improved performance also demonstrates the gains made by reasoning about a circuit

rather than simulating it exhaustively.

loading 25 seconds

CZMOS inverter 100 seconds
carrypart 150 seconds
sumpart 200 seconds
adder 450 seconds

Table 7.1: Performance Results for the One Bit Dynamic Adder

Development time for exhaustive simulation of the adder was very low. It merely required
the time to code and enter this approach. Development of the approach done with PALM
involving reasoning about the behavior of the circuit took considerably longer. There are
clearly trade-offs between development time and run time of these two approaches. There
are other trade-offs between understanding a design and simply exercising that design.
One advantage in understanding a design is that errors can be localized more quickly
and that small changes to the design are easily handled. Weise [Wei86| refers to this as
incrementality. When I first verified the adder, I incorrectly specified the structure of the
carrypart. This became apparent when trying to derive the function of this component

and the error was quickly rectified. If I had derived the behavior by exhaustive simulation

the error would have appeared as incorrect behavior of both the Sum and Carry outputs
would have been much more difficult to pinpoint since all primitive components would

have been suspect.
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7.3 Conclusions

In this chapter I have presented several examples of reasoning about circuits including a
fully complementary dynamic latch and a dynamic 1-bit adder. I have shown how ITL
and Prolog are used to derive the behavior of a circuit from its components and to reason

about constraints on the behavior of these circuits.

In the next chapter I present conclusions. I summarize the salient aspects of my approach,
discuss issues and improvements, and consider how my approach could be incorporated

into a computer aided design system for VLSL
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Chapter 8

Conclusions

I have presented an approach to hardware verification which uses temporal logic to reason
about MOS VLSI circuits at the transistor level. Specifically, I have extended ITL to
express a more realistic circuit model which includes capacitive effects of circuits. In
addition, I have implemented an interactive system to aid reasoning about the circuit

models. This approach combines the following features:

e Automatically deriving characteristics of a circuit from the schematic: The charac-
teristics derived are the direction of signal flow through circuit components and the

directions of ports of those components.

® Modeling low level details of MOS circuits: Signals are described as {value, strength}
pairs so capacitive effects of circuits can be expressed. Timing is treated at a detailed

level by modeling transistors and combinational elements with delay.

e Symbolically reasoning about circuit behavior: Circuit specifications include timing
and function. The specifications are manipulated hierarchically and incrementally.

The PALM system aids in the symbolic manipulation of these behaviors.

» Reasoning about constraints: Constraints on the inputs and outputs of circuit com-
ponents are explicitly stated, and are manipulated in the same way as the behavioral

specifications.

o Explicitly relating timing to the clock signals: A circuit may include more than one
clock signal; the relationship between clock signals is explicitly stated. Inputs and
outputs are explicitly related to the different clock signals. In addition to reasoning

about behavior, constraints on the different clocking periods are derived.
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I have demonstrated this approach by deriving the behavior of several examples from the
behavior of their components down to the transistor level. These examples included a
sophisticated 1-bit adder implemented with a dynamic CMOS design style. This adder
uses a 2-phase clocking scheme and exploits charge sharing. The properties derived include
the functional behavior of the adder, constraints on when the inputs must be stable, the
time at which the outputs are available, and constraints on the lengths of the different

clock phases.

In the remainder of this chapter, I discuss some unresolved issues with this approach and
some ways it can be improved. Finally, I consider how this approach could be incorporated

in a computer aided design system for VLSI,

8.1 Issues and Improvements

The ‘False Implies Everything’ Problem

Many approaches to hardware verification require that a specification be verified by show-
ing that it is equivalent to its implementation [Bar84], [Mil86a]. This requires that the
details of two different levels of description be the same. It is frequently desirable to have
the specification be logically implied by the implementation. This is the approach I use.
The specification can then be more abstract or hide some of the details of the implemen-
tation. Logical implication, however, introduces a problem. It is a property of implication
.that if the antecedent is false, the entire statement is true. A false antecedent arises if
an implementation is inconsistent. A simple example is a short circuit. Here power and

ground signals are directly connected:
{0,1} A {1,1} = false

An inconsistent circuit satisfies any specification. One way of alleviating this problem is by
checking that the implementation is consistent before verifying the circuit. This problem

is discussed further in [CGM86].

115




8.1 ISSUES AND IMPROVEMENTS

Initialization and Termination in ITL

I have not considered the behavior of circuits at initialization or termination of intervals.
Intervals in ITL may be finite or infinite. Since circuit behavior continues forever, I assume
intervals are infinite. Therefore, I do not consider termination. Initialization is more
difficult. I do not model the events which occur when power is first applied to a circuit.
Instead I assume that the circuit has already settled and that all signals are well-behaved
and obey the appropriate specifications. Frequently errors in hardware operation arise as
a result of a circuit getting into an undesirable state when it is first turned on. Such errors
will not be identified by this approach. Note that similar assumptions about the behavior
at initialization are stated in the circuit specifications presented by Moszkowski [Mos83]

and Herbert [Her86].

Improving the Transistor Model

There are several low level aspects of transistor behavior which my model does not capture.
For example, my model cannot express threshold drops. Thus, the need for pMOS as
well as nMOS transistors in CMOS transmission gates is not apparent in this model. In
addition, I cannot detect charge sharing bugs, races or hazards. Note that I have restricted
my examples to circuits in which races and hazards will not arise. These, as well as charge
sharing, are important aspects of incorrect MOS circuit behavior which will arise in a
more general class of MOS circuits. Consideration should go into incorporating them into
the model. However, there will always be aspects of behavior which are not captured in
a model. It is important that the user of a model be aware of these shortcomings. This

applies to models used in simulation as well as those used in formal methods.

Improving Delay Calculations

I consider delays of circuit elements at the transistor level, but use a simple model for com-
posing these delays. Delays of elements connected in series are added, and the maximum

delay of elements connected in parallel is used. This aspect of timing modeling should be
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improved. Ousterhout [Ous84] presents several switch-level delay models which could be

incorporated into my approach.

A simple improvement would result from taking into consideration resistive and capacitive

effects on delay. For example, the delay of a component could be modeled by:
intrinsic delay + Rroad * CLoad

Here Rp,qaq is a function of the output of the component being modeled and Cp,qq is
the sum of the capacitances of the devices being driven. Further improvements could
be gained by taking into consideration the waveform shape of the input waveform which
is dependent on the fan-out and drive capability of the preceding stage of the circuit.

Currently I assume that all waveform changes are instantaneous.

Since wires add an appreciable amount of delay in MOS technologies these should be
modeled, and the capacitance of the material of the wire should be considered. This has
not yet been done since this information is highly dependent on the actual layout of a

circuit.

8.2 Computer Aided Design with Formal Methods

I have described how to formally derive low level timing and functional behavior from
transistor level descriptions of hardware components. This only addresses one aspect of the
design cycle. This approach should be incorporated into a computer aided design system
which encourages designers to apply formal methods from design conception to layout.
A proposal for such a system is described below. Subrahmanyam [Sub86b] describes
an expert system for VLSI design which incorporates formal methods as well as more
conventional tools. This is an evolutionary approach. The system relates different levels
of description formally, but the designer can have the impression of using tools she is
familiar with. Milne [Mil86b] describes a more revolutionary approach, which does not
attempt to incorporate existing tools, where a system can be described at various different

levels from specification to layout and the different levels can be formally related.
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A computer aided design system should consist of an interactive workstation which in-
cludes layout tools as well as formal methods for reasoning about circuits. Such a worksta-
tion should provide tools for top-down and bottom-up hardware design. In addition such

a system should keep the various different levels of representation of a circuit consistent.

Top-down design should be facilitated. A specification should be simulated to ensure
that it does in fact capture the desired behavior. Synthesis tools which guarantee correct

behavior of implementations can also be incorporated into such a design environment.

Bottom-up design and verification will be aided by providing a design library of standard
cells. New cells may be added by the user. Cells provided include logical descriptions
of circuits as well as layout details. As a designer constructs a circuit out of these cells,
a logical description of the circuit is built up. The designer can chose to manipulate a

graphical or textual representation of the circuit.

Verification will be done at many different levels. This involves using mathematical theo-
rem proving techniques to determine that the design correctly implements the specification.
Tedious aspects of such techniques should be automated. When a designer completes the
design of a component, she can verify that the implementation of that component meets
its specification. When a set of components are interconnected, their specifications are
composed and checked against the specification of the larger circuit. The workstation
will support such verification in any order. The top-level design could be verified before
the components which comprise it are designed, the components could be designed and

verified first, or some combination of these strategies could be used.

This thesis described the derivation of timing and functional aspects of circuit components
from their transistor level implementations. Details of delay were handled symbolically.
In an integrated system, this level could first be done symbolically, and later quantitative

delay parameters could be extracted from the layout.

An advantage of such a workstation is that it keeps all the different representations of a
circuit consistent. This is accomplished by formally abstracting between different levels
of description. When a level changes, the system should alert the user to the changes

required to other levels to maintain consistency.

118




8.3 FINAL THOUGHTS

8.3 Final Thoughts

In this thesis, I described applying formal tools to one step in the design hierarchy: from
the transistor level to the gate level. I also discussed other formal methods which address
different levels of the design hierarchy. The advantages of using formal methods include the
advantages gained by hierarchical and incremental analysis, and by manipulating inputs
and outputs symbolically. In addition, formal methods allow different levels of description
to be related formally. By incorporating many levels of description into a design system
based on formal methods, errors which occur when one level is translated into another

will be detected. Such errors are not detected by current design tools.

There are many advantages to be gained by incorporating formal methods into the design
cycle. A design system should support many different levels of description, and provide
tools for simulating design specifications at a particular level and formally relating specifi-
cations at different levels. The emergence of such systems will make formal methods more

attractive for the development of real designs.
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Appendix A

PALM Rules

In this appendix I list the rules used by the PALM system for reasoning about circuits.
These rules are divided into“ four categories: basic logic rules, rules for signal strengths,
rules for interval temporal logic, and rules for combining circuit elements. Note that
the representation for true is {1,_} and the representation for false is {0,_}. Thus, all
rules deal with signals. The category ‘rules for signal strengths’ include those rules which

explicitly examine the strength field.

Rules are referred to by name. In the PALM system, a rule is applied to a term by selecting
option apply and specifying the name of the rule. Below, the rule name and the associated
rule are listed. Some rules have a version in which the arguments are commuted. Such
rules are listed on the same line. The name of the commutative version of the rule is the

name of the original rule with the suffix -comm added.
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A.l

Rule Name;
not-not
not-equals
not-one
not-zero
and-ident
or-ident
and-not
falsity
and-dup
and-false
comm-and
comm-or
assoc-orl
assoc-orr
assoc-andl
assoc-andr
and-intror
and-intror-inv
and-true
and-eliml
and-elimr
implies-ident
or-introl
demorgan-not-and
demorgan-not-or
demorgan-and-not
demorgan-or-not
distrib-and-or
if-intro

if-elim
identity
implies-true
implies-false
implied-true
comm-equals
not-equal-I
equals-false
equals-true
or-bool
import

export

Al

Basic Logic Rules

BASIC LOGIC RULES

Rule: Commutative Version:
A=A

(~A=B)=~(A=B)

-{1, 4} = {0, 4}

-{0,4} = {1, 4}

AN{L, }=A {1, } AN A=A
Av{o,_}=4 {0,-}vA=4
AA-A={0,_} -A AN A={0,_}
({o,-}={1,-})={0,-} ({1, -} ={0,-}) ={0,-}
ANA=A

A A {0, B} = {0, B} {0,B} A A={0,B}
AANAB=BAA

AvB=BVA

AVBVC=AV(BVCO)
AvV(BvC)=(AVB)vC
AANBAC=AA(BAC)

AAN(BAC)=(AANB)AC
(ADB)A(ADC)=(ADB A Q)
(ADBAC)=(ADB) A (ADC)

(4 AB={1:O})=(A={110}) A (B={1,C})
AABDA

AABDB

A> A)={1,}

(

(A>DB) A(CD>B)=(AvC D B)

-(A A By=-AV-B

—|(AVB)=—1A A -B

—-A A —13=—\(AVB)

—~AV-B=-(A A B)

AVC AB=AABV(C A B)

(AD> B) A (mA D C)=(if Athen B else O)
(4f Athen Belse C)= (A D B) A (A D C)

(A=4)={1,2)
({1, -} > A)= 4

{0,-}>4)={1,-}
A> {1, P ={1-}

A=B)=(B = 4)
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A.2 Signal Rules

Rule Name: Rule:

comm-join AUB & BLA

strengthen strengthen {4, -} & {A4,1}

weaken weaken {4, .} & {4,0}

weak-strong weaken strengthen A & weaken A

strong-weak strengthen weaken A <4 strengthen A

weak-weak weaken weaken A <> weaken A

strong-strong strengthen strengthen A <& strengthen A
inv-strengthen {A,1} 4 strengthen {4, _}

inv-weaken {4,0} & weaken {4, -}

not-weaken - weaken A 4> weaken —A

not-strengthen - strengthen A & strengthen -4

distrib-weak-and weaken A A weaken B & weaken (A A B)
distrib-strong-and strengthen A A strengthen B & strengthen (A A B)
inv-distrib-weak-and weaken (A A B) < weaken A A weaken B
inv-distrib-strong-and strengthen (A A B) 4 strengthen A A strengthen B
distrib-weak-or weaken A V weaken B & weaken (A V B)
distrib-strong-or ~ *  strengthen A V strengthen B & strengthen (A Vv B)
inv-distrib-weak-or weaken (AV B) & weaken A V weaken B
inv-distrib-strong-or strengthen (AV B) 4 strengthen A V strengthen B
join-strong-weak strengthen A Lt weaken B & strengthen A

A.3 ITL Rules

Rule Name: Rule:

and-yields-intro (A—=B)AN(C—B) > (AUC — B)
distrib-box-and (QA) A OB) & (OA A B)
inv-distrib-box-and (OA A B) & (OA) A (@B)

A.4 Circuit Rules

I assume the subformula below are embedded in a larger formula which is in the scope of

a [ operator, I therefore do not include the [ operator in these formulas,

Rule Name: Rule:
trans-unclock-phi (len N> (A— B)) A
(@~{1,-}) Alen M D (B—C)) A
(len 1 > (weaken B — BY))
D ((®=~{1,-}) A len M D (AU weaken B — C))
trans-combine (len M > (funcl(A) — B)) A

(len N D (func2(B) — C))
D (len (M + N) O (func2(funcl(4)) — C))
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Rule Name:
trans-cap-combine

trans-unclock-unclock

trans-or-unclock-unclock

trans-weak-strong

latch

pass-strong

pass-hot-strong

pass-weaken

pass-stbh-weaken

trans-unclock-funci

phil-phi2

Ad CIRCUIT RULES

(lenM D (funcl{4) — B))
(len N > (func2(B) — C)) A
(len 1 D (weaken B — B))
D (len (M + N) D (func2(funcl(4)) — C))

(GL Alen M > (A— B)) A
(G2 Alen N> (B— C)) A
(len 1 D (weaken B — B))
D (G1AG2Alen(M+N)D (A—C))
(GL A len M > (A— B)) A
(G2 A len N D (A— B))
D (G1V G2 A len maz(M,N) > (A — B))
(A AlenBD(C— D)) A
(E A len F D (weaken G — D))
D> (A A len B> (C— D))

((®~{1,-}) A len N D (funcl(C) — D)) A
(len 1 > (weaken D — D))
D (@ =~ {0,_} D D =weaken funcl(latched(®,C)))

(len N A AD ({1,1} — B))
& (len N D (strengthen A — B))

(A A len N D ({0,1} — B))
& (len N D (strengthen ~A — B))

(len 1 O (weaken A — A)) A
(® A len N D (A — B))
D (® A len N D (weaken A — B))

(len 1 D (weaken A — A)) A
(len N D (funcl(4) — B))
> OV sth B

(len M > (A — B)) A
(len N D (funcl(B) — C)) A
(len 1 D (weaken B — B))
D (len (M + N) D (funcl(4) — C))

(@12 {1,-}) A (22 ={0,_}) D (len M D (funcl(4) — B))) A
((®1 = {0,_}) A (@2~ {0,_}) D sth B) A
((®1 = {0,-}) A (P2 ={1,_}) D (len N D (func2(B) — C)))
D (P2~ {1,-}) A len N D func2(funcl(latched(®q, A))) — C)
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Appendix B

The Dynamic Latch Derivation

In this appendix, I present the derivation of behavior of the dynamic latch discussed in
Section 7.1.3. Derivation of behavior for the latch proceeds hierarchically by first deriving
the behavior of its components. The latch is made up of a shiftstage and an inverting
multiplexer. Components of a shiftstage are a pass transistor and an inverter. Components
of an inverting multiplexer are an inverter and a clocked 2-to-1 multiplexer. I present
derivations of behavior of all these components, starting with the simple components and
building up to the dynamic latch. When a component’s behavior is first derived, its ports
are named by Prolog constants. When that behavior is used as a component of a larger

circuit, the port names are generalized to Prolog variables to allow renaming.

All the derivations presented here were done using the PALM system. The text, including
the English explanation of each step, was produced by PALM. The output has been edited
to facilitate reading. These edits include typesetting to make formulas more readable, and

combining steps to reduce the length of derivations. Nothing has been added.

Note that the behavior derived for the inverting multiplexer and for the shiftstage involves
a term of the form: (O0—(® = {1,_}) D OF stb b). These terms are reduced to:

(O-(® = {1,_}) D stb b) when the behaviors are used in deriving the behavior of the
dynamic latch. This is true provided that ® was true long enough for b to stabilize p
units before ® became false. This puts an additional constraint on the length of the clock
cycle. Such reasoning about time intervals has not yet been mechanized in the the PALM

system.
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B.1 The Static Inverter

The current term is:
static-invert-struct(in, out, n)

Expand all definitions. The new term is:
npass(in, {0, 1}, out, n) A ppass(in, {1, 1}, out, n)

Expand all definitions. The new term is:
CGEn={1,-}) A lenn > ({0,1} — out)) A
(O(En = {0,-}) A lenn D ({1,1} — out))

Apply rule distrib-box-and : (0 A) A (OB) & (OA A B)
The new term is:
D((ifz ={1,_}) A lenn > ({0,1} — out)} A
((fn ={0,_}) A lenn D ({1,1} — out))

Rec-apply rule comm-and twice: A A B=B A A
Apply rule export twice: (A A BD C)=(AD> (B> C))
The new term is:
O(len n o (in = {1,-} D ({0,1} — out))) A
(len n > (in= {0, -} > ({1, 1} — out)))

Apply rule and-intror : (AD B) A (ADC)=(AD B A C)
The new term is:
Olenn > (in= {1,_} > ({0,1} — out)) A
(in=10,-} > ({1, 1} — out))

Start case analysis on ¢n with values [{0, -}, {1,_}] .
The current term is:
On={0,_} D
(lenn > ({0, -} = {1,-} D ({0,1} — out)) A
({o,-} ={0,-} > ({1, 1} — out)))

Apply rule falsity : ({0, -} = {1,-}) = {0, -}
The new term Is:
Oen={0,_} D
(lenn 2 ({0, -} D ({0,1} — out)) A

({0, -} = {0,-} o ({1,1} = out)))

Apply rule implies-false : ({0, -} > A) = {1,_}
The new term is:
Oéin={0,_} D
(lenn> {1,-} A ({0,-}={0,-} o ({1,1} — out)))

Apply rule identity : (A= A) = {1,_}
The new term is:
Oen={0,-} >
(lenn > {1,-} A ({1,—} > ({1, 1} = out)))
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Apply rule implies-true : ({1,_} D A) =4
The new term is:
Oin=1{0,_} >
(lenn D {1,_} A ({1,1} — out))

Apply rule and-ident-comm : {1,_} A A=A
The new term is:
Oin = {0,_} D (len n D ({1,1} — out))

Replace {1,1} with strengthen —in in current term.
First show:
tn = {0,_} D {1,1} =strengthen —in

Replace 2n with {0, _} in current term.
First show:
tn={0,_} Din={0,._}

Apply rule implies-ident : (4 D A) = {1,_}
The new term is:
{1,-}
The terms being replaced are equivalent
The new term with replacements is:
{0, _} = {0, _} o {1, 1} =strengthen ~{0, _}

Apply rule identity : (A= A) = {1,_}
The new term is:
{1,_} o {1, 1} =strengthen —~{0, _}

Apply rule implies-true : ({1,_} D A) =4
The new term is:
{1, 1} =strengthen ={0, .}

Apply rule not-zero : {0, A} = {1, A}
The new term is:
{1, 1} =strengthen {1, _}

Apply rule strengthen : strengthen {4, _} & {4,1}
The new term is:
{1,1} = {1,1}
Apply rule identity : (A = 4) = {1,_}
The new term is:
{1,-}
The terms being replaced are equivalent
The new term with replacements is:
Odn = {0,_} D (len n D (strengthen —in — out))

Do next case of case analysis.
The current term is:
Oin={1,_}D
(ten n > ({1, -} = {1,-} > ({0,1} = out))
({1,-} ={0,-} o ({1, 1} — out))

A
)
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Apply rule falsity-comm : ({1, -} = {0,-}) = {0, -}
The new term is:
Oin={1,-} D
(lenn > ({1, -} = {1, -} > ({0, 1} - out)) A
({0, 2} > ({1, 1} — out)))

Apply rule implies-false : ({0,_} > 4) = {1,_}
The new term is:
Oin={1,_} D
(tenn > ({1, —} = {1, -} > ({0, 1} — out)) A {1,})

Apply rule identity : (A= 4) = {1,_}
The new term is:
Oin={1,_} D
(fenn > ({1,} > ({0,1} = out) A {1,-})

Apply rule implies-true : ({1,_} > 4) = A4
The new term is:
Oim={1,_}D
(len n > ({0,1} — out) A {1,_})

Apply rule and-ident : A A {1,_} =4
The new term ls:
O¢n = {1,_} D (len n D ({0,1} — out))

Replace {0, 1} with strengthen —in in current term.
First show:
in = {1, _} D {0, 1} =strengthen —n

Replace in with {1, _} in current term.
First show:
in={1,_} Din={1,_}

Apply rule implies-ident : (A D A) = {1,_}
The new term is:
{1,
The terms being replaced are equivalent,
The new term with replacements is:
{1,_} = {1,_} o {0, 1} =strengthen ~{1, _}

Apply rule identity : (A= A4) = {1,_}
The new term is:
{1, -} o {0, 1} =strengthen ={1, _}

Apply rule implies-true : ({1,_} D A)=4
{0, 1} =strengthen {1, _}

Apply rule not-one : ~{1, A} = {0, A}
The new term is:
{0, 1} =strengthen {0, _}

Apply rule strengthen : strengthen {4, _} & {4,1}
The new term is:

{0,1}={0,1}
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Apply rule identity : (4 = A) = {1,_}
The new term is:
{1,-}
The terms being replaced are equivalent
The new term with replacements is:
Oén = {1,_} D (len n O (strengthen —in — out))

End case analysis.

The result of case analysis is:
(@O¢n = {0,_} > (len n O (strengthen —in — out))) A
(O¢n = {1,_} D (len n D (strengthen —in — out)))

Apply rule distrib-box-and : (DA) A (OB) & (OA A B)
The new term is:
O(in = {0, -} D (len n D (strengthen —in — out))) A
(in = {1,_} D (len n D (strengthen —in — out)))

Apply rule or-introl : (A D> B) A (C D> B)=(AVC D B)
The new term is:
O(n ={0,-}) v (fn={1,-}) >
(len n D (strengthen —in — out))

Apply rule or-bool : (A= {0,-})Vv(A={1,-})={1,-}
The new term is:
0{1, _} o (len n O (strengthen —in — out))

Apply rule implies-true : ({1,_} D A)=4
The new term is:
Olen n O (strengthen —in — out)

B.2 The Clocked 2-to-1 Multiplexer

The current term is:
two-one-mux-struct(g, a, b, z, ®, m)

Expand all definitions,
The new term is:
npass(g A ®,a,z,m) A cap(z) A npass(~g A ®,b,z,m) A cap(z)

Expand all definitions.

The new term is:
O(g A @2={1,_}) Alenm D (a—z)) A
(Olen 1 > (weaken z — z)) A
CO(-gA@={1,_}) Alenm>D (b—z)) A
(Olen 1 > (weaken z — z))
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Rec-apply rule comm-and: A A B=B A A
Apply rule assoc-andr: A A (B AC)=(AAB)AC
Apply rule distrib-box-and : (0 A) A (OB) & (OA A B)
The new term is:

O((-g A @={1,-}) Alenm>D (b —=)) A

((9 A @={1,-}) A lenm D (a—a))) A
(@Olen 1 > (weaken z — z)) A
(@Olen 1 D (weaken z — g))

Apply rule assoc-andl : A A BAC=AA (B A Q)
Apply rule distrib-box-and : (0 A) A (OB) & (OA A B)
Apply rule comm-and: A A B=B A A

The new term is:
(O(len 1 D (weaken z — z)) A
(len 1 D (weaken z — z))) A
O((~g A @={1,-}) Alenm D (b— 2z)) A
((9 A @={1,-}) A lenmD (a — z)))

Split current term.
The new term is:
O(len 1 D (weaken z — z)) A
(len 1 D (weaken z — z))
The term saved on the stack is:
O((-g A®={1,_}) Alenm>D (b—=2z)) A
(9 A @={1,_}) A lenm D (a — 2))

Apply rule and-dup : A A A=A
The new term is:
Olen 1 D (weaken z — x)

Swap current term with top of stack.
The new term is:
O((=g A @={1,-}) Alenm D (b— z)) A
((g9 A@={1,_}) Alenm>D (a— z))

Apply rule and-true twice: (A A B={1,C})=(A={1,C}) A (B={1,C})
Apply rule assoc-andl : A A BAC=AA (B AC)
The new term is:
O((-g={1,-D A ((2={1,_}) A lenm) D (b— z)) A
((9={1,3) A (@=1{1,_}) A lenm > (a— g))

Apply rule assoc-andl : A A BAC=AA (B AC)
Rec-apply rule comm-and: A A B=B A A
Apply rule export twice : (A A B> C)=(A D (B> C))
The new term is:
O(@={1,-}) Alenm> (~g={1,-} > (b—-2))A
(@=1{1,3) Alenm> (g={1,_} > (a — =)

Apply rule and-intror : (A > B) A (ADC)=(AD B A C)
The new term is:
O(@={1,-}) A lenm>
(rg={1,-} D> (b—3=) A
(9={1,-} > (a—2))
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Apply rule not-equals : (w4 = B) = ~(4 = B)
The new term is:
O@={1,-}) Alenm>D
(~le={1,- P > (b—a)) A
(g ={1,-}> (a - (L‘))

Rec-apply rule comm-and : A A B=B A A
Apply rule if-intro : (A D> B) A (A D C) = (if Athen B else C)
The new term is:
O(@={1,-}) Alenm>D
(if g ={1,_} then (a — =) else (b — g))

And current term with top of stack.
The new term is:
O@={1,_}) Alenm>
(if g={1,_} then (a — =) else (b — z))) A
(Olen 1 O (weaken z — z))

B.3 The Inverting Multiplexer

The current term is:
inverting-mux-struct(a, b, ¢, @, d, p)

Expand all definitions.
The new term is:
two-one-mux(a, b, ¢, z, &, m) A static-invert(z, d, n)

Expand all definitions,
The new term is:
@O@={1,-}) Alenm>
(4 a={1,_} then (b — z) else (c — z))) A
(@len 1 > (weaken z — z)) A
(Blen n > (strengthen -z — d))

Apply rule distrib-box-and 2 times : (D A) A (OB) & (0DA A B)
The new term is:
O((®={1,-}) Alenm>
(of a={1,_} then (b — z) else (c — z))) A
(len 1 o (weaken z — z)) A
(len n > (strengthen -z — d))

Apply rule if-elim : (if A then Belse C)= (A > B) A (mA D O)
The new term is:
O(®={1,_}) Alenm>
(a={1,} > (= 2)) A
(~la={1,-}) > (c—=2))) A
(len 1 D (weaken z — z)) A
(len n D (strengthen —z — d))

130




B.3 THE INVERTING MULTIPLEXER

Start case analysis on @ with values {{1,_},{0,-}] .
The current term is:
O¢={1,_}>
({53 ={1,)) A lenm>
(a={1,-} > (5 — 2)) A
(~(a= {1, ) > (= ) A
(len 1 D (weaken z — z)) A
(len n > (strengthen —z — d))

Apply rule identity : (A = 4) = {1,-}

Apply rule and-ident-comm : {1, _} A A=A

The new term is:

O0¢&={1,_}>o
(lenm > (a={1,_} D (b— z)) A
(~(a={L3}) > (c = a))) A

(len 1 o (weaken z — z)) A
(len n D (strengthen —z — d))

Start case analysis on a with values [{1,_}, {0,_}] .
The current term is:
Oa={1,} 5 (@={1,.}
(lenm> ({1,-}={1,-} > (b— =) A
(~((1, } = (1, ) > (c = a))) A
(len 1 D (weaken z — z)) A
(len n D> (strengthen -z — d)))

Apply rule identity 2 times : (A = A) = {1, _}
The new term is:
Oa={1,-}>(®2={1,-}>
(lenm> ({1,-}D(b—2))A
({1, -} > (¢ — 2))) A
(len 1 D (weaken z — z)) A
(len n D (strengthen -z — d)))

Apply rule not-one : ={1, A} = {0, A}
Apply rule implies-true : ({1,_} D A) =4
The new term is:
Oe={1,-}D>(®={1,-}>
(lenm > (b—2z) A
({0, } 2 (=) A
(len 1 D (weaken z — z)) A
(len n D> (strengthen —z — d)))

Apply rule implies-false : ({0, _} D A) = {1,_}
Apply rule and-ident : A A {1,_} =4
Apply rule assoc-andl : AA BAC=AA (B AC)
The new term is:
Oa={1,-}>(®2={1,-}>
(len m D (b — z)) A
((len 1 D (weaken z — z)) A
(len n D (strengthen —z — d))))
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Replace strengthen =X with funcl(X) in current term.
The new term with replacements is:
Oae={1,_}2>(®={1,-}>
(lenm > (b — z)) A
((ten 1 D (weaken z — z)) A
)

(len n D (funcl(z) — d)))

Rec-apply rule comm-and : A A B=1B
Apply rule assoc-andr : A A (B O’) (
Apply rule trans-unclock-funci :
(len M > (A— B)) A
(len N D (funcl(B) — C)) A
(len 1 D (weaken B — B))
D (len (M + N) D (funcl(A) — C))
The new term is:
Oae={1,_} 2> (®={1,-}>
(len (m+n) D (funcl(b) — d)))

Replace funcl(Y') with strengthen —Y in current term.
The new term with replacements is:
Oe={1,}>(®={1,-}>
(len (m+ n) D (strengthen —b — d)))

Do next case of case analysis,
The current term is:
Oae={0,_} 2 (®2={1,-}>
(lenm> ({0, }={1,-} > (b—2)) A
(~(0, -} = {1, ) > (e = =) A
(len 1 > (weaken z — z)) A
(len n D (strengthen -z — d)))

Apply rule falsity 2 times : ({0, -} = {1,-}) = {0, _}
Apply rule not-zero : {0, A} = {1, A
The new term is:
Oae={0,-}>(®={1,-}>
(lenm > ({0,_} D (b—2)) A
({1} > (c— 1)) A
(len 1 D (weaken z — z)) A
(len n D (strengthen -z — d)))

Apply rule implies-false : ({0,_} D A) = {1 -}
Apply rule implies-true : ({1,_} D 4) =
Apply rule and-ident-comm : {1,_} A A A
Apply rule assoc-andl : A A BAC=AA (B AC)
The new term is:
Oa={0,_}>(2={1,-}>
(lenm D (c — z)) A
((len 1 D (weaken z — z)) A
(len n D (strengthen —z — d))))
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Replace strengthen —Z with funcl(Z) in current term.
The new term with replacements is:
Oa={0,-}> (®={1,-}>
(lenm D (c — z)) A
((len 1 D (weaken & — z)) A
(len n D (funcl(z) — d))))
B A

Rec-apply rule comm-and : A A B = A
AC)=(AAB)AC

Apply rule assoc-andr : A A (B
Apply rule trans-unclock-funcl :
(len M > (A — B)) A
(len N D (funcl(B) — C)) A
(len 1 D (weaken B — B))
D (len (M + N) o (funcl(A4) — C))
The new term is:
Oa={0,_} > ((D= {L,-}>
(len (m+ n) D (funcl(c) — d)))

Replace funcl(W) with strengthen —W in current term.
The new term with replacements is:
Oa={0,-}>(®={1,-}>
(len (m + n) D (strengthen —¢ — d)))

End case analysis.
The result of case analysis is:
@ae={1,-}> (2={1,-}>
(len (m + n) D (strengthen b — d)))) A
Qa={0,}> (@={1,-}>
(len (m +n) D (strengthen —c — d))))

Apply rule distrib-box-and : (0 4) A (0D B) & (OA A B)
The new term is:
Ofe={1,-} > (®={1,-}>
(len (m + n) D (strengthen —b — d)))) A
(a={0,-} > (@={1,_} >
(len (m + n) D (strengthen —¢c — d))))

Apply rule import 4 times : (AD (B> C))=(A A BD ()
The new term is:
O((a={1,}) A (8={1,}) A len (m+n) >
(strengthen —b — d)) A
((a={0,_}) A (2={1,_}) Alen(m+n) D
(strengthen —c — d))

Apply rule assoc-andl 2times: A A B AC=A4A A (B A Q)
Rec-apply rule comm-and : A A B=B A A
Apply rule export : (A A BD C)=(AD (B> C))
The new term is:
O(®={1,-}) Alen(m+n)D
(@ = {1,_} D (strengthen —b — d))) A
(®={1,-}) Alen(m+n)D
(a = {0, -} D (strengthen —c — d)))
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Apply rule and-intror : (AD> B) A (ADC)=(AD B A C)
The new term Is:
O@={1,-}) Alen(m+n)D
(a = {1,_} D (strengthen —b — d)) A
(a = {0, -} D (strengthen —c — d))

Replace a = {0, _} with =(a = {1, _}) in current term.
First show:

®={1,-}>(a={0,_})=~(a= {1,-})

Apply rule equals-true : (A= {1,_}) =4
The new term ls:
25 (@={0,-})=-(a={1,-})

Apply tule equals-true : (A= {1,_}) =4
The new term is:
&> (a={0,-})="a

Apply rule equals-false : (4 = {0,_}) = -4
The new term is:
(I) D g = -1a

Apply rule identity : (4 = A) = {1,_}
The new term is:
o> {1,-}

Apply rule implied-true : (4 D {1,-}) = {1,-}

The new term is:
{1,-}

The terms being replaced are equivalent

The new term with replacements is:
O(@={1,-}) Alen(m+n) D

(a = {1,_} D (strengthen —b — d)) A
(—(a = {1,-}) D (strengthen =c — d))

Apply rule if-intro : (A D B) A (mA D C) = (if Athen B else O)
The new term is:
O(@={1,-}) Alen(m+n)D
(if @ = {1, _} then (strengthen —b — d)
else (strengthen —¢ — d))

Do next case of case analysis.
The current term is:
Oo=4{0,_}>
({0, = {1,_}) A lenm >
(a={1,_} > (b— o)) A
(~(a={1,-}) > (c = =))) A
(len 1 D (weaken z — z)) A
(len n > (strengthen —z — d))
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Apply rule falsity : ({0, -} = {1,-}) = {0,_}
Apply rule and-false-comm : {0, B} A A = {0, B}
The new term is:
O0&={0,_}>
({0,-}
(a={1,-} > (b= =) A
(~(a={L) > (¢~ 2)) A
(len 1 D (weaken z — z)) A
(len n D (strengthen —z — d))

Apply rule implies-false : ({0, _} D 4) = {1,_}
Apply rule and-ident-comm : {1,_} A A=A
The new term is:
Oe={0,_}>
(len 1 D (weaken z — z)) A
(len n DO (strengthen -z — d))

Replace strengthen -V with funcl(V) in current term.
The new term with replacements is:
O0&={0,.}>
(len 1 D (weaken z — z)) A
(len n D (funcl(z) — d))

Apply rule pass-sth-weaken :
(len 1 D (weaken A — A)) A
(len N O (funcl(4) — B))
> ONstb B
The new term is:
O¢®={0,_} > O"stbd

End case analysis,
The result of case analysis is:
C@={1,-}) Aen(m+n) D
(¢f a={1,_} then (strengthen —b — d)
else (strengthen —c — d))) A
(£®={0,_} > O"stb d)

Apply rule distrib-box-and : (JA) A (OB) & (OA A B)
The new term is:
O@®={1,-}) Alen(m+n) D
(%f a = {1,_} then (strengthen —b — d)
else (strengthen —c — d))) A
(®={0,_} o O"stb d))

B.4 The Shiftstage

The current term is:
shift-stage-struct(a, b, ®, m)
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Expand all definitions.
The new term is:
npass(®,a,c,n) A cap(c) A static-invert(c, b, p)

Expand all definitions,

The new term is:
Q@={1,-}) Alenn>d (a—c))A
(Olen 1 > (weaken ¢ — c)) A
(Olen p o (strengthen —c — b))

Apply rule distrib-box-and 2 times : (JA) A (OB) & (OA A B)
The new term Is:
O(@e={1,-}) Alenn>d (a—¢c)) A
(len 1 O (weaken ¢ — ¢)) A
(len p O (strengthen —c — b))

Start case analysis on ® with values [{1, -}, {0,_}] .
The current term is:
Oe={1,_}>
({5, 3 ={1,)) A lenn > (=) A
(len 1 > (weaken ¢ — c)) A
(len p D (strengthen —c — b))

Apply rule identity : (A= A) = {1,_}
Apply rule and-ident-comm : {1,_} A A=A
The new term is:
Oe={1,_}>
(lenn D (a—c)) A
(len 1 D (weaken ¢ — ¢)) A
(len p o (strengthen —¢c — b))

Apply rule assoc-andl : A A BAC=AA (B AC)
Rec-apply rule comm-and : A A B=B A A
Apply rule assoc-andr: A A (BAC)=(AAB)AC
The new term is:
Oe={1,_}>
(lenn D (a—c)) A
(len p O (strengthen —c — b)) A
(len 1 D (weaken ¢ — c))

Replace a with funcl(a) in current term.
Replace strengthen —X2 with func2(X2) in current term.
The new term with replacements is:
O¢={1,_}>
(len n > (funcl(a) — c)) A
(len p D (func2(c) — b)) A
(len 1 D (weaken ¢ — c))

Apply rule trans-cap-combine :
(len M > (funcl(A4) — B)) A
(len N D (func2(B) — C)) A
(len 1 > (weaken B — B))
D (len (M + N) D (func2(funcl(4)) — C))
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The new term is:
O¢é={1,_}>
(len (n+ p) D (func2(funcl(a)) — b))

Replace func2(X3) with strengthen —X3 in current term.
Replace funcl(a) with a in current term,
The new term with replacements is:

O0®&={1,-}> (len (n+p) D (strengthen —a — b))

Do next case of case analysis.
The current term is:
0&={0,-}>
(({0,} = {1,2) A lenn > (a—c)) A
(len 1 D (weaken ¢ — ¢)) A
(len p O (strengthen —c — b))

Apply rule falsity : ({0, -} = {1,-}) = {0, -}
Apply rule and-false-comm : {0, B} A A = {0, B}
The new term is:
0&={0,_}>
({6,03 > (a— 9)) A
(len 1 D (weaken ¢ — ¢)) A
(len p D (strengthen —c — b))

Apply rule implies-false : ({0, _} D A) = {1,-}
Apply rule and-ident-comm : {1,_} A A=
The new term is:
O®={0,_-}>
(len 1 D (weaken ¢ — ¢)) A
(len p O (strengthen —c — b))

Replace strengthen —c with funcl(c) in current term.
The new term with replacements is:
O0®={0,_}>
(len 1 D (weaken ¢ — ¢)) A
(len p D (funcl(c) — b))

Apply rule pass-stb-weaken :
(len 1 D (weaken A — A)) A
(len N D (funcl(A) — B))
> OV sth B
The new term is:
O®={0,_} o OFsthb

End case analysis.

The result of case analysis is:
O®={1,_} D (len (n+p) D (strengthen —a — b))) A
(O@={0,_} > OPsthb)

Replace ® = {0, _} with —(® = {1, _}) in current term.

First show:

((I) = {0, —}) = —‘((I) = {1) —-})

137




B.5 THE DYNAMIC LATCH )

Apply rule equals-true : (A= {1,_})=4
The new term is:
((I) ={0,_}) =@

Apply rule equals-false : (A = {0,_}) = -4
The new term is:
P = P

Apply rule identity : (A= A) = {1,_}
The new term is:

{1,-}
The terms being replaced are equivalent

The new term with replacements is:
@O®={1,_} > (len (n+p) D (strengthen =a — b))) A
@O-(®={1,-}) > OPstbb)

B.5 The Dynamic Latch

The current term is:
dlatch-struct(l, d, ¢, 1, Dz, r)

Expand all definitions.
The new term is:
invert-mux(l, d, g, ®1, =, m) A shift-stage(z, q, B2, p)

Expand all definitions.
The new term is:
@O(®1={1,-}) Alenm>D
(if 1 ={1,-} then (strengthen —~d — =)
else (strengthen ~g — z))) A
(9, ={0,-} D stbz)) A
(@ ={1,-}>
(len p D (strengthen =z — g))) A
(D "1(‘1’2 = {1,_}) D sth q))

Split current term.
The new term is:

O(®1={1,-}) Alenm>D

(if 1= {1,_} then (strengthen —d — z)
else (strengthen —g — z))) A
(®1 = {0,_} D stbz)) A

@®, ={1,_} D> (len p D (strengthen -z — g)))
The term saved on the stack is:

O~(® = {1,-}) > stb g
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Apply rule distrib-box-and : (JA) A (OB) & (OJA A B)
The new term is:
O@(®1={1,-}) Alenm>D
(if ! = {1, =} then (strengthen —d — x)
else (strengthen —q — x))) A
(®1 = {0, -} D stb z) A
(@2 ={1,-} O (len p D (strengthen -z — q)))

Start case analysis on @, with values [{0, _}, {1, -}]
The current term is:
0@y = {0, _} -
(@1 ={1,-}) A lenm D
(if 1= {1, -} then (strengthen —d — z)
else (strengthen —q — z))) A
(@, ={0,_} D stbz) A
({o,-}={1,}>

(len p D (strengthen -z — q)))

Apply rule falsity : ({0,-} = {1,-}) = {0,_}
Apply rule implies-false : ({0, -} > 4) = {1,-}
Apply rule and-ident : A A {1,_}=A
The new term is:
&, = {0, _} D
(21 ={1,-}) Alenm >
(1f 1= {1, _} then (strengthen —d — x)
else (strengthen =g — z))) A
(@1 = {0, -} D stb z)

Start case analysis on ®; with values [{0,_}, {1,-}]
The current term is:
0®; ={0,_} > (®2={0,_} D
(({0: -}={1,-}) Alenm>
(if 1= {1, _} then (strengthen -d — z)
else (strengthen —q — z))) A

({0,-} = {0,} > stb 2))

Apply rule falsity : ({0,-} = {1,-}) = {0,-}
Apply tule and-false-comm : {0, B} A A = {0, B}
The new term is:
ue, = {0»—} > (CI)Z = {O’—-} 2
({0,-} >
(if 1= {1,_} then (strengthen —d — )
else (strengthen =g — z))) A

({0, = {0,} > stb 2))

Apply rule implies-false : ({0,_} > A) = {1,-}
Apply rule and-ident-comm : {1,_} A A=A
The new term is:
Ue, = {0)'—} 2 (‘DZ = {0!-—-} >
({0,} = {0, _} > stb 2))
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Apply rule identity : (A = 4) = {1,_}
Apply rule implies-true : ({1,_} > A)= A4
The new term is:

06, = {0, _._} -2 (‘1’2 = {0,__} D sth fl:)

Do next case of case analysis.
The current term is:
0o, = {1,_} - (@2 = {0,._} -
({1, -} = {1,_}) Alenm>
(if 1= {1, -} then (strengthen —~d — z)
else (strengthen —g — z))) A

({1, -} = {0, -} > stb 2))

Apply rule identity : (A = A) = {1,-}
Apply rule and-ident-comm : {1,_} A A= A4
The new term is:
00, ={1,_}>(®:={0,_}>
(len m D (if | = {1, _} then (strengthen —d — z)
else(strengthen =g — z))) A

({1, -} ={0, -} > stb z))

Apply rule falsity-comm : ({1, -} = {0, _}) = {0, _}
Apply rule implies-false : ({0, -} D A) = {1,_}
Apply rule and-ident : {1,_} A A=A
The new term is:
0@ ={1,-}>(®2={0,_}>
(len m D (if 1 = {1, _} then (strengthen —d — z)
else (strengthen —q — z))))

End case analysis.
The result of case analysis is:
O®1={0,_} > (22 = {0,_} D stbz)) A
O = {1, > (82 = {0,} >
(len m D (4f 1 = {1,_} then (strengthen —d — z)
else (strengthen —g — z)))))

Apply rule distrib-box-and : (HA) A (OB) < (OA A B)
The new term is:
O(®; ={0,_} > (@2 = {0,_} D stb z)) A
(1= {1,-} > (&3 = {0,_} >
(len m D (4f 1= {1,_} then (strengthen —d — )
else (strengthen —g — z)))))

Do next case of case analysis.
The current term is:
O, = {1, __} -
(@1 ={1,-}) Alenm>D
(¢f L= {1,_} then (strengthen —~d — z)
else (strengthen —g — z))) A
(@1 ={0,_} D stbz) A
({1,-} ={1,_} o (len p D (strengthen —z — q)))
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Apply rule identity : (A= A4)={1,_}

Apply rule implies-true : ({1,_} D A) = 4

The new term is:

Oy = {1, __} >
(®r={1,-}) Alenm>D
(of 1= {1,_} then (strengthen —~d — z)
else (strengthen g — z))) A

(@1 ={0,-} D stbz) A
(len p D (strengthen —z — q))

Start case analysis on ®; with values [{0, _}]
The cutrent term is:
O0¢; ={0,_}>(®2={1,-}>
({0, } ={1,-}) Alenm>
(¢f 1= {1,_} then (strengthen —d — z)
else(strengthen ~q¢ — z))) A

({0,-} = {0,-} > stbz) A
(len p D (strengthen -z — q)))

Apply rule falsity : ({0, -} = {1,-}) = {0, _}
Apply rule and-false-comm : {0, B} A A4 = {0, B}
The new term ls:
O, = {0,_} ] (@2 = {1,_} 2
({0,} >
(¢f 1= {1,_} then (strengthen —d — z)
else (strengthen =g — z))) A
({0,-} = {0,_} > stb z) A
(len p D (strengthen =z — gq)))

Apply rule implies-false : ({0, -} D 4) = {1,_}
Apply rule and-ident-comm : {1,_} A A=A
The new term is:
O, ={0,_} > (®2={1,_} >
({0,-} ={0,_} o sthz) A
(len p D (strengthen =z — g)))

Apply rule identity : (A= A) = {1,_}
Apply rule implies-true : ({1,_} > A)=4
The new term is:
0o, = {0:-—} 2 (QZ = {1a—} 2
stbz A (len p D (strengthen ~z — ¢)))

Apply rule and-elimr: A A B> B
The new term is;
O06; = {0,_} D (@2 = {1,__.} -
(len p D (strengthen -z — g)))

End case analysis.
The result of case analysis is:
0%, ={0,-}>(®={1,-}>
(len p D (strengthen —z — g)))
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End case analysis.
The result of case analysis is:
(O(®1 = {0,-} > (B2 = {0,-} D stbz)) A
(@1 = {1,_} =2 (‘I)z == {0, ._} o
(len m D (ifl = {1,_} then (strengthen —d — z)
else (strengthen ¢ — z)))))) A
O ={0_}>(®:={1,-}>
(len p D (strengthen —z — q))))

Apply rule distrib-box-and : (D A) A (OB) « (OA A B)
The new term is:
O0(®, = {0,-} o (92 = {0,-} D stbz)) A
(@1 = {11—} 2 (¢2 = {0) —-} 2
(len m O (of 1= {1,_} then (strengthen ~d — z)
else (strengthen —q — z))))) A
(@1 = {0, ._..} D (@2 = {1,_} ]
(len p D (strengthen —z — g))))

Apply rule import 3 times : (AD (B> C))=(4A A B> C)
The new term is:
O((@: = {0,}) A (@ = {0,_}) > stb a) A
((@r={1,_}) A (®2={0,-}) D
(len m D (of 1= {1,_} then (strengthen —d — z)
else (strengthen —g — z)))) A
((21={0,-}) A (@2 ={1,-})>
(len p O (strengthen -z — g}))

Apply rule if-elim : (if A then Belse C)= (A D B) A (—A D O)
The new term is:
D((@ln;l{o, —}) A (D2 ={0,_}) D stbz) A
(21 ={1,-}) A (22 = {0, -} >
(lenm> (I={1,-} >
(strengthen —d — z)) A
(—(l = {1,-}) > (strengthen ~g — z)))) A
(@ = {0,-}) A (@2 = {1,.}) >
(len p D (strengthen —z — g)))

Start case analysis on ! with values [{0, _}, {1,_}]
The current term is:
Ol={0,-}>
(®1=1{0,23) A (@2={0,.}) > stb 5) A
(= {1,-}) A (@ ={0,}) >
(len m D ({0, _} = {1,} D (strengthen ~d — z)) A
(=({0, -} = {1,_}) o (strengthen =g — %)))) A
(1= 0,-}) A (@ ={1,_}) >
(len p D (strengthen —z — q)))
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Apply rule falsity 2 times : ({0, -} = {1,-}) = {0, -}
Apply rule implies-false : ({0, -} > 4) = {1,_}
The new term is:
Oi={o0,-}>
(@1 =1{0,-}) A (®2=
(@:={1,-}) A (2=
(lenm > {1,_} A
(={0, —} D (strengthen —q — z)))) A
(21={0,-}) A (®2={1,-}) D
(len p D (strengthen —z — q)))

0,_}) D stbz) A

{
{0,-})»>

Apply rule not-zero : —={0, A} = {1, A}
The new term is:
Ol={o0,_}>
(21 ={0,-}) A (22=1{0,_}) D sthz) A
((@1={1,-}) A (®2={0,-}) D
(lenm > {1,_} A
({1, -} > (strengthen =g — z)))) A
((@1={0,-}) A (22={1,-}) D
(len p D (strengthen —z — q)))

Apply rule implies-true : ({1,_} > 4) =4
Apply rule and-ident-comm : {1,_} A A=A
Rec-apply rule comm-and : A A B=B A A
The new term is:
Ol={0,_} >
(= {1,-}) A (@={0,-})
(len m D (strengthen =g — z))) A
((®1={0,_}) A (92 ={0,_}) D stbz) A
(@ = {0,-}) A (@2 = {1,}) >
(len p D (strengthen —z — q)))

Replace strengthen —q with funcl(g) in current term.
Replace strengthen -z with func2(z) in current term.
The new term with replacements is:
Ol={o0,_}>
(= {1,}) A (@ ={0,_}
(len m D (funcl(q) — =)))

( )

)
(21 ={0,-}) A (®2={0,-})
(24 3

o
A
D sthz) A
(@1 ={0,-}) A (22={1,-}) >

(len p D (func2(z) — g))

Apply rule phil-phi2 :

(@1~ {1,_}) A (@2={0,_}) D (len M D (funcl(4) — B))) A

(21~ {0,_}) A (P2 = {0,_}) D stb B) A

(@1~ {0,-}) A (@2 {1,_}) D (len N D (func2(B) — C)))

D ((®2 = {1,-}) A len N O func2(funcl(latched(®y, A))) — O)

The new term is:

Ol={o0,-} >

(@5 ={1,}) A lenp >
func2(funcl(latched(®q,q))) — q)
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Replace func2(X1) with strengthen = X1 in current term.
Replace funcl(X2) with strengthen—X2 in current term.
The new term with replacements is:
Ol={0,_}>
(22 ={1,-}) AlenpD
strengthen —strengthen —latched(®y,q) — q)

Apply rule not-strengthen : — strengthen A < strengthen -4
Apply rule strong-strong : strengthen strengthen A < strengthen A
Apply rule not-not : = —A= A
The new term is:
O!={0,-} >
(@2 = {1,-}) A lenp D strengthen latched(Py,q) — q)

Do next case of case analysis.
The current term is:
Ol={1,_}>
(81 ={0,-}) A (®2={0,_}) > stb a) A
((@1={1,-}) A (22={0,-}) D
(lenm D ({1,_} ={1,_} D (strengthen ~d — z)) A
(=({1, -} = {1,-}) > (strengthen ~g — z)))) A

(1 ={0,-}) A (®2={1,_}) D (len p D (strengthen =z — g)))

Apply rule identity 2 times : (4 = 4) = {1, _}
Apply rule implies-true : ({1,_} > A)=A4
The new term is:
Ol={1,_}>
(1 ={0,_) A (@2 ={0,.}) > stb 5) A
((@={1,_}) A (22={0,_}) >
(len m O (strengthen —d — z) A
(—{1, -} D (strengthen =g — z)))) A
((@={0,-}) A (22={1,-}) D
(len p D (strengthen —z — g)))

Apply rule not-one : ={1, A} = {0, A}
Apply rule implies-false : ({0, -} > A) = {1,_}
Apply rule and-ident : 4 A {1,_} =4
Rec-apply rule comm-and: A A B=B A A
The new term is:
Ol={1,-}>
(@r={1,-}) A (22={0,-}) D
(len m D (strengthen =d — z))) A
(21 ={0,_}) A (22={0,_}) O stb z) A
(@1 = {0,2}) A (@2 ={1,}) >
(len p D (strengthen —z — g)))
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Replace strengthen—d with func1(d) in current term.
Replace strengthen -z with func2(z) in current term.
The new term with replacements is:

Ol={1,-}>

(@1 ={1,-}) A (22={0,_}) >

(len m D (funcl(d) — z))) A
(8= {0, 3) A (@2 {0,) > ath 5) A
((®: = {0, ) A (@2 = {1, ) >

(len p D (func2(z) — q)))

Apply rule phit-phi2 :

(@1 {1,-}) A (@2 {0,_}) D (len M > (funcl(4) — B))) A

(81~ {0, 1)) A (25 {0,3) > stb B) A

(21~ {0,-}) A (@2m {1,_}) D (len N > (func2(B) — C)))

D (@2 {1,-}) A len N D func2(funcl(latched(®y, A))) — C)

The new term is:

Ol={1,-}>

(@2 ={1,-}) Alenp>D
func2(funcl(latched(®4,d))) — q)

Replace func2(X3) with strengthen —X3 in current term.
Replace funcl(X4) with strengthen—X4 in current term.
The new term with replacements is:
Ol={1,-}>
((22={1,-}) Alenp>
strengthen —strengthen —latched(®4, d) — ¢)

Apply rule not-strengthen : — strengthen A & strengthen —A
Apply rule strong-strong : strengthen strengthen A < strengthen A
Apply rule not-not ; = A=A
The new term is:
Ol={1,_}>
((22={1,-}) A lenp > strengthen latched(®1,d) — )

End case analysis,
The result of case analysis is:
@i={o, -}>
((®2={1,_}) Alenp D
strengthen latched(®y,q) — g)) A
@t={1, -}2
(P2={1,_}) Alenp>D
strengthen latched(®y, d) — q))

Apply rule distrib-box-and : (0A) A (OB) & (OA A B)
Apply rule comm-and: A A B=B A A
The new term is:
O¢={1,-}>
(P2 ={1,-}) A lenpD
strengthen latched(®y,d) — q)) A
(1={0,} >
((22={1,-}) A lenp >
strengthen latched(®4,q) — g))

Replace ! = {0, _} with =(I = {1,_}) in current term.
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First show:

(l = {0, —-}) = _'(l = {1, -}

Apply rule equals-true : (A= {1,_}) =4
The new term is:
(t={0,_}) =~

Apply rule equals-false : (A= {0,_}) = -4
The new term is:
~l = =]

Apply rule identity : (A= A) = {1,_}
The new term is:
{1,-}
The terms being replaced are equivalent
The new term with replacements is:
Ol={g,-}>
((@2={1,-}) AlenpD
strengthen latched(®1,d) — g)) A
(-(t={1,_}) >
(@2 ={1,_}) AlenpD
strengthen latched(®y, q) — ¢))

Apply rule if-intro : (A > B) A (A D C) = (if Athen B else O)
The new term is:
O4f 1= {1,}
then((®2 = {1,_}) A lenp D
strengthen latched(®1,d) — g)
else((P2 = {1,_}) Alenp>D
strengthen latched(®1,q) — q)

and current term with top of stack.
The new term is:
Odf i={1,}
then ((®2 ={1,-}) Alenp >
strengthen latched(®y,d) — q)
else (P2 ={1,_}) Alenp >
strengthen latched(®,q) — g) A
[@-(®2 = {1,}) > stb q)
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