Technical Report R

Number 134

Computer Laboratory

Correctness properties of
the Viper block model:
the second level

Avra Cohn

May 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1988 Avra Cohn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-134

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-134

Contents

Introduction
The Scope and Limitations of the Proof

The Design of Viper
3.1 Viper Instructions e e e e e e

3.2 Design Featuresof Viper oL

The HOL System

4.1 An Outline of the HOL System
42 ThelLogic v v v v v i i e e
4.3 The Framework for Expressing the Block Model in HOL
44 Proof in HOL

The Plan for Verification

Representing the Problem

6.1 TheHighLevel i

6.2 TheBlock Level . . . v v v v vttt e

6.3 AnExample. o e
6.3.1 Representing the Whole Block with the Latch
6.3.2 Joining Blocks oo oo

Using the Representation: The Minor State Transitions

7.1 Lemmas about the Thirty-Six Lines
7.2 Lemmas about Sub-Blocks
7.3 The Progression of the Registers
7.4 The Individual Minor State Transitions
7.5 Composing the Minor State Transitions
7.6 Lemmas for the Composed Transitions
T7 Remarks . . v . v v v v v e e e e e e

Using the Representation: The Major State Transitions

8.1 The Major State Transition Conditions
8.2 The Major State Tree v oo
8.3 Major State Transitionso oo

8.4 Conclusions about the Major State Transitions

10

14
14
15

16
16
17
20
22

23

26
26
30
31
35
45

51
52
55
58
62
65
70
72

9 Speculation on the Rest of the Proof 84
10 Lessons and Conclusions 90

11 Acknowledgements 97

12 Appendix: The HOL Viper High Level and Block Level Defini-

tions 99
12.1 The High Level Specification 99
12.1.1 The Types . . .« v v v v v i i e e e e 99
12.1.2 The Definitions « v v v v v v v v v v v 100
12.1.3 The High Level State Transition Function 102

12.2 The Block Definitions v o i 102
12.2.1 Minor Block Types« v v v v v v v v 102
12.2.2 Major Block Types v v v v v v v v i 102
12.2.3 Timeout Block Types oo 102
12.2.4 Timing Block Typeso v v v oo oo 103
12.2.5 BandStop Block Types. oo 103
12.2.6 Decoder Block Types 103
12.2.7 ALU Block Types v v v v v v v vt i oo 103
12.2.8 Datareg Block Types. . . . v v v v v v v v v v oo e 103
12.2.9 FSelect Block Types . . . « v v v v v v v v v i e 103
12.2.10 External Block Types o o v v v v v v 104
12.2.11 Memory Block Types« o v v v v v v 104
12.2.12Minor Block oo 104
12.2.13Major Blocko 104
12.2.14 Timeout Block« .« . oo oo 104
12.2.15Timing Block o oo 104
12.2.16 BandStop Block oo 105
12.2.17Decoder Block o oo 106
12.2.18ALU Block o o e e 108
12.2.19Datareg Blocko 109
12.2.20FSelect Block e 110
12.2.21External Block oo oo 110
12.2.22Memory Blocko o oo 110
Index 111

Table of Figures

Figure 1 ..o i 32

BIgUre 2 ottt e e 37

BagUre B oot 80
/

1 Introduction

This report describes the partially completed correctness proof of the Viper ‘block
model’. Viper [8,9,10,11,22] is a microprocessor designed by J. Cullyer, C. Pygott
and J. Kershaw at the Royal Signals and Radar Establishment in Malvern (hence-
forth ‘RSRE?) for use in safety-critical applications such as aviation and nuclear
power plant control. To this end, Viper has a particulary simple design about
which it is relatively easy to reason using current techniques and models.

The designers, who deserve much credit for the promotion of formal methods,
intended from the start that Viper be formally verified. Their idea was to model
Viper in a sequence of decreasingly abstract levels, each of which concentrated on
some aspect of the design, such as the flow of control, the processing of instructions,
and so on. That is, each model would be a specification of the next (less abstract)
model, and an implementation of the previous model (if any). The verification
effort would then be simplified by being structured according to the sequence of
abstraction levels. These models (or levels) of description were characterized by
the design team. The first two levels, and part of the third, were written by them
in a logical language amenable to reasoning and proof. The top level model was a
simple, direct state transformation function — a conditional expression specifying
the effect on Viper’s registers of processing each class of machine instructions (see
[8] and [5]). The lowest level model in the sequence was the circuit structure itsel,
expressed in the hardware description language ELLA; and there were several
levels in between. ,

To give due credit all around, all of the design work for Viper was carried out
by the RSRE team. So also was the plan for verifying Viper and for structuring
the verification effort, as well as the design, into a sequence of abstraction levels.
The RSRE team produced the first two levels of specifications of Viper (and part
of the third) in a logical language suitable for verification purposes. Further, J.
Cullyer carried out a (more-or-less correct) informal paper-and-pencil correctness
proof up to the second abstraction level [9]. Viper was not designed in any part
or aspect by the Hardware Verification Group at Cambridge University, despite
what one reads or hears in the media. The task of formally and mechanically
verifying the Viper design (up to register-transfer level) was sub-contracted by
RSRE to members of the Hardware Verification Group at Cambridge University,
for a period of about two years (see Acknowledgements), during which time the
manufacture of the chip was already underway or indeed completed at various

U.K. sites. The mechanical verification task was therefore the full extent of the

4

Cambridge University participation in the Viper project; and the task was carried
out during and after the manufacture of the chip.

Verification was intended to be done in HOL (Higher Order Logic) [2,14,15],
a theorem-proving system derived from R. Milner’s LCF system (Logic for Com-
putable Functions) [12,21] and based on higher order logic as set out by A. Church
[3]. HOL was implemented by M. Gordon at Cambridge University and is cur-
rently in use by the Hardware Verification Group at Cambridge University and at
various sites throughout the world. ‘Verification’ was understood by the designers
(as by the LCF and HOL communities) to mean complete, formal, logical proof in
an explicit and well-understood logic. That is, it means proof in the usual math-
ematical sense of a sequence of inference steps, and not just simulation or some
other non-formal process. Proofs of this sort are constructed interactively in HOL
with machine assistance and user-guidance, and not (usually) fully automatically.

A case study in the methodology for the Viper proof was carried out by the
author and M. Gordon in 1986; this treated a simple hardware device (in fact, a
component of Viper) at several abstraction levels down to and including gate level
[4]. The first level of the Viper correctness proof was carried out by the author in
1986-7 [5]. (As mentioned, an earlier informal proof had been done by J. Cullyer.)
The formal proof, fully completed, confirmed that the second level of description,
the ‘major state machine’, with certain corrections made, faithfully implemented
the top level specification of Viper (again, with certain corrections made). The
major state machine was designed to implement each top level state transformation
(i.e. the processing of each instruction type) by a sequence of lesser steps, each of
which determined the nezt step or else indicated the end of a sequence. The steps
were called ‘major states’. The major state model concerned itself only with the
flow of control in Viper, and not with arithmetic or logical computations. That
proof, assisted by the HOL system, consisted of about a million primitive inference
steps! and took about six person-months to complete. As mentioned, it revealed
errors (which were subsequently corrected) in both the major state model and in
the top level specification, as presented. These errors, however, did not manifest
themselves in the actual Viper chips, so that although the major state model was
intended to be a useful link in the chain of abstraction levels, it was of no direct
concern to the fabricators of Viper chips.

The block model, described here, is of concern to the manufacturers because

it directly relates to the circuit design. The block model can be previewed in

10n the issue of counting inference steps, see the footnote on page 23.

Figure 1 (page 32); it is a partly pictorial and partly textual (and functional)
model consisting of ‘blocks’ (such as Viper’s instruction decoder, its ALU and and
its memory), with information passing between blocks, and to/from the outside
world, at fixed clock cycles. The functional specifications concern the internal
combinational logic of the various blocks, but not their time-behaviour, nor the
connection between separate blocks; the pictorial specification fills in the rest of
that information. Much as at the major state level, the concept of single instruction
types being processed by sequences of steps (major states) is built into the block
model; specifically, one of the blocks is a counter representing the major state.
In addition, several minor states implement each major state in the block model;
another block is a counter for minor states. Thus there is a yet-finer time-scale at
the block level than at the major state level.

The first task in the verification effort is to derive a functional expression of
the block model in a formal logic which is suitable for reasoning and proof. This
is necessary because it is difficult to reason formally about a schematic diagram
indicating the transfer of information to and from its sub-units simultaneously?.

The second task is to analyze the behaviour of the block model using its func-
tional representation. What one ultimately wants to know is (for each instruction
type) how many minor and major steps must be cycled through before the instruc-
tion is fully processed, and what the accumulated effects are on the ‘state’ of the
block model after that number of cycles. These involve extracting from the formal
representation (i) the concept of the state of the block machine; (ii) the conditions
under which one state leads to another; and (iii) and the assumptions which must
be made about initial states and ‘normal’® behaviour in order to resolve the state
transitions. These concepts are implicitly determined once the functional repre-
sentation is constructed. It must also be shown that the state transition conditions
cover all logical possibilities, to ensure that no possible instruction types have been
omitted.

The third task is to deduce the results at the higher level for each instruction

type, under the same conditions that drive the block machine through its major

2Tt is possible to imagine doing this by reasoning about sequences of annotated pictures, but
the real problem is not so much the obvious awkwardness of such a method as the lack of a formal
semantics of pictures. The ‘proof’ would not be formal without a clear semantics; that is, we would
have to invent and justify a logical calculus whose terms were pictures.

3‘Normal’ behaviour means behaviour which is within the scope of the high level specification.
For example, we have to assume in the Viper block proof that no resetting signals come in from
the outside world during the course of the block-level processing of instructions; and that the block
machine’s timeout facility is never invoked. This is because the high level specification itself does
not treat these block level contigencies.

and minor steps for that particular instruction type. Then, case by case, the
results are compared at the two levels. This requires (i) relating the block level
state to the higher level state; and (ii) relating the conditions which drive the block
machine to the more abstract conditional choices at the higher level. Whether the
third task is achieved, as intended, via the major state machine, or is achieved
directly by comparing the results to the top level results, is a technical question
discussed in Section 10; in this case the latter seems less complicated.

The first task has been completed and is treated in Section 6: from the pictorial
and textual block information provided by RSRE we have derived a fully formal
expression of the block model from which we can logically infer the block model’s
behaviour on the various classes of Viper instuctions. This is done using techniques
now standard in hardware verification. This task is perhaps the most interesting
part of the analysis, and is an important achievement in itself. ‘

The second task has also been completed (see Sections 7 and 8): the functional
expression has been used to describe the state transition conditions of the block
machine, and then to logically derive the cumulative behaviour of Viper for each
instruction type. There are about 120 sequences of major state transitions to con-
sider, each requiring certain assumptions to be made concerning normal behaviour
and initial conditions. Every major state transition of the sequences comprises a
sequence of minor state transitions. The large number of major state sequences
includes all possible types of computation — additions, shifts, comparisons, and so
on — with elaborations such as indexed or looked-up operands, and so on. We have
also proved that among this multitude of cases no case has been omitted.

The development of the proof up to this point is not fixed in advance; rather,
the major and minor state transition conditions are determined by the various
block definitions. These are repeatedly unfolded (under the transition conditions
for each instruction type) to produce results not necessarily foreseen. This means
that the proof (up to this point) makes rather unsophisticated use of HOL; this is
the use indicated by the nature of the problem?.

The third task has not been completed, although some preliminary analysis has
been done which indicates that the block results are at least plausible. This is
discussed in Section 9. It has proved to be impractical to pursue the third task
at present in the absence of (i) better support in HOL for advanced reasoning

about intricate bit-string manipulations; and (ii) a better understanding on the

*Like LCF, HOL provides a repertoire of tools (and facilities for designing one’s own tool-set)
for proving conjectures by applying strategies in a subgoaling fashion.

part of the author of microprocessor architecture in general and of Viper’s design
in particular, in order to relate the differing computations at the high and low
levels.

In short, what we have achieved is to have proved some useful properties of the
block model, without having managed to prove the block model to be an adequate
implementation of the top level specification. By describing the cumulative effects
on the state of the Viper block model of each instruction class, we have essentially
symbolically ezecuted the block model (considered as a finite-state machine). This
in itself is valuable; the results of the symbolic execution could be used to build a
simulator able to jump (in a provably correct way) from result to result without
having to derive the minor and major transitions of the block machine again. Of
course, in proving that each derivation is correct and that all possible cases have
been treated, we have done rather more than a symbolic execution; and a symbolic
execution in itself was not the aim of the work. Nonetheless, the proof can be
considered as a kind of ‘quality control’ for the symbolic evaluation, assuring that
the results are dependable. Furthermore, the functional specification of the block
model could be used to prove properties of the Viper block model not manifest in
the high level specification; for example, we could infer from our representation
the consequences of a reset signal or of a ‘bad’ initial state.

The proof is very hierarchically structured, as one would expect. First the mi-
nor state transitions are analyzed (Section T7); then the major state transitions
(Section 8.1), themselves composed of minor state sequences; and finally, the cu-
mulative results for major state sequences, which process single instruction types
(Section 8.3). The many lemmas required throughout the development form a lay-
ered dependence structure. These lemmas are described as they arise. Although it
is difficult to find a slice through the proof structure which conveys its interlocking
complexity and total bulk, it is clearly impossible (and would be hopelessly boring
and repetitious, anyway) to describe the proof as a whole; so as far as possible,
a particular instruction type is taken as typical: this is addition with overflow
detection.

In the process of performing the proof thus far, a great deal has been learned
about managing and properly structuring massive proof efforts. The techniques
required did not go beyond anything already standard in HOL circles; and aside
from space problems, the proof did not tax the HOL system at all, which is en-
couraging news about HOL. To date, the block level proof comprises about seven

million inference steps and required about one person-year to generate. So far, no

real surprises have emerged about the behaviour of the block machine — but then,
surprises would seem likelier to turn up in the third (uncompleted) phase of the
project than in the first two. (The preliminary correctness results are described
in Sections 8.3 and 9.)

The reader will notice (probably with increasing distress) that this paper is
a very straightforward, chronological and (deliberately) detailed account of the
proof effort, intended so that anyone wishing to reproduce the proof, or part of it,
could use the paper as a reference; and so that dedicated HOL users can examine
details. A briefer and more conceptual account is to appear in future [6]. No
attempt has been made to explain the design of Viper or the parts and operation
of the block machine beyond what is really necessary for describing the formal
proof in HOL. Anyone interested in Viper apart from this is referred to the RSRE
Viper literature.

Although the paper is meant to stand on its own, it will obviously make more
sense in context of the RSRE and HOL literature in general and [5] in particular.
A very brief introduction to Viper is given in Section 3, and to HOL in Section 4.
Though actual HOL tactics and procedures are only suggested in this report, it
should be understood that for every theorem and lemma mentioned, a full formal
proof in HOL was performed — by the application of a procedure in HOL’s meta-
language ML. From a research point of view, none of the HOL tactics or methods
used are particularly original or interestihg.

For an overview of the proof effort, Sections 3, 4, 5, 6.1, 6.2 and the Conclusions
section should give some idea of what was proved, and a bit about how.

Appendices containing the HOL versions of the original RSRE definitions of
the top level and the block level of Viper are provided for reference. The author
claims full responsibility for any typographical or other errors in the translation
of the original text (which was in an informally annotated and now-obsolete early
prototype of the HOL logic, with some misprints) into the HOL logic. Such errors
can be difficult to find. The appendices are supplemented by Figure 1 (page 32), a
figure compiled by the author from ten separate RSRE figures. To construct Figure
1, the ten separate figures were connected together according to the coincidence
of the names of lines amongst the original figures. They were then topologically
rearranged, and completed (for type-correctness) by the addition of an extra block
(rseEctcomB) as well as six extra internal line names: ram, count, preg, xreg, yreg and
areg. 'Lhe author also claims full responsibility for any errors in the translation

into Figure 1 of the original ten figures. All subsequent reasoning about the block

model is based on Figure 1.

Finally, Section 2 contains a discussion of the problems involved in asserting
that a chip has been ‘verified’. There are great dangers in making such claims if
their scope and limitations are misunderstood, as they often are. There is little
room for misunderstanding in real-life safety-critical applications. The author
strongly urges that Section 2 be read and pondered even if the technical sections
are skimmed or skipped.

Several other people have worked on the formal verification of processor designs.
Hunt [16] used the Boyer-Moore theorem prover to prove correct the ‘FM8501,
a microcoded microprocessor that he developed as part of his Ph.D. research.
The FM8501 is a machine invented for the purpose of the proof (and not imple-
mented), which therefore has a cleaner specification than Viper; it is roughly as
complex as Viper. Joyce [17] has verified Tamarack, another machine invented for
proof purposes. Tamarack, though very much simpler than Viper, has actually
been implemented and fabricated. The proof was also done in HOL. This work is
noteworthy because the proof goes all the way down to the transistor level, and
is currently being extended up to software levels. An early version of Tamarack
was verified by Barrow using his VERIFY system [1], and again by Gordon us-
ing LCF_LSM [13]; neither of these two latter systems were based on a clearly

delineated logical calculus.

2 The Scope and Limitations of the Proof

When we hear that a chip such as Viper has been ‘verified’, it is essential to
understand exactly what is meant. Several important points sharpen and limit
the senses in which a chip (and Viper in particular) can be called verified.
Ideally, one would like to prove that a chip correctly implemented its intended
behaviour in all circumstances; we could then claim that the chip’s behaviour was
predictable and correct. In reality, neither an actual device nor an intention are
objects to which logical reasoning can be applied. The intended behaviour rests
in the mind of the architects and is not itself accessible. It can be reported in a
formal language, but not with checkable accuracy. At the same time, a material
device can only be observed and measured, not verified. It can be described in
an abstracted way, and the simplified description verified, but again, there is no
way to assure the accuracy of the description. Indeed, the description is bound

to be inaccurate in some respects, since it cannot be hoped to mirror an entire

10

physical situation even at an instant, much less as it evolves through time. In
short, verification involves two or more models of a device, where the models bear
an uncheckable and possibly imperfect relation both to the intended design and
to the actual device. This point is not merely a philosophical quibble; errors were
found both in the top level specification of Viper and in its major state model,
none of which was either intended by the designers or evident in the manufactured
Viper chips (they are discussed in [5]). The errors were fairly minor and quickly
repaired, but their presence throws into relief the rather limited sense in which an
actual product can be said to have been verified against the architect’s design.
That the actual chips appeared not to suffer from the errors found in the models
also illustrates the rather academic nature of the research described in [5] and in
the present paper. The chips were already in the process of being built by the time
the sub-contracted verification work began on the major state proof at Cambridge;
and they had been built and were being advertised by the time the work described
in this report was undertaken. While it is possible in theory that an error in an
abstract specification had been reflected in the circuit design given by RSRE to the
manufacturers — the abstract specifications were no doubt in the architects’ minds
while they designed the circuit — it seems more likely that because of the weak links
between the abstract specifications, the circuit design process and manufacturers,
that problems in the specification would not propagate down to chip problems.
At more concrete levels of description, the problem may be further complicated
by there not even being provided a description in a formal language. For example,
Viper’s top level specification and its major state model were both supplied in a
logical language; but at the block level, the subject of this report, the description
given was partly formally (see the Appendix) and partly pictorially (see Figure 1,
page 32). Combining these two parts required some human ingenuity and guess-
work (see pages 34 to 35 and 37 to 38). Before verification can be meaningfully
applied in such cases, a fully formal description must be produced. Once again,
accuracy cannot be checked; the new formal description may be a flawed trans-
lation of the pictorial specification, or a flawed combination of picture and text,
but there is no sense in which this can be tested. One might thus very well end
up proving properties of a formal description bearing an imperfect relation to the
intended design. In fact, this was a problem in the block level representation of
Viper; the author’s first attempt at a formal representation of the Viper block dia-
gram involved interchanged line names whose presence was only discovered (rather

later in the proof) by an unsystematic inspection. This additional problem of the

11

accuracy of a representation could appear at the gate level, the transistor level or
any other level at which a linguistic description has to be constructed creatively
from a pictorial one. It further limits the sense in which a chip can be called
verified.

Another point which must be made explicit, given that verification relates a
more to a less abstract model, is the level of abstraction and the degree of com-
pleteness of the models in question. We say that a device has been verified ‘at the
major state level’ or ‘at the register transfer level’; it is not enough to say simply
‘yerified’. For example, Viper’s major state machine has been fully verified with
respect to its top level specification, where the major state machine captures the
flow of control (implicit at the top level) through the fetch-decode-execute cycle,
but does not concern itself with any arithmetic or logic computations. The block
machine concerns itself with Viper’s arithmetic and logical operations, and with
the transfer of information between registers and memory; and not with gate con-
nections, transistors, electrical effects, timing problems, and similar areas in which
unsuspected errors seem most likely to be found®. In addition, the models may be
incompletely specified. For example, Viper’s highest level model is complete only
as regards the processing of instructions, and does not cover resetting or timing-
out the machine, or other possible behaviours described at the block level. This
restricts any analysis to the high level behaviours alone, again ignoring the more
subtle issues. In view of all of this, Viper should not be called verified without
reference to the nature of the models used to represent it. |

Further, as mentioned, the verification of the block level with respect to the high
level has for practical reasons not been completed.

All of these limitations on the use of the word ‘verified’ are glossed over in

advertising claims such as the following [23]:

“VIPER is the first commercially available micropressor with both a

formal specification and a proof that the chip conforms to it.”

Such assertions, taken as assurances of the impossibility of design failure in safety-

critical applications, could have catastrophic results.

5In those areas, enormous amounts of research remain to be done on finding useful, tractable
models, even before we begin to verify them.

12

To summarize,

e A physical chip is not an object to which proof meaningfully applies.

o The top level formal specification of Viper (and hence any verification effort)

is itself incomplete, covering only the fetch-decode-execute cycle of Viper .

o Viper has been analyzed at best at register-transfer level, i.e. still very

abstractly, and not yet at levels at which problems seem likeliest to occur.

o At register transfer level, the proof has been only partially completed .

Finally, the correctness of an abstract representation of a chip must be placed
in context when we talk about the reliability of physical systems in safety-critical
applications. The author claims no expertise in the field of reliability, but it
would be irresponsible not to point out the obvious: that this very abstract and
limited sense of correctness (the equivalence of a register transfer level model to
a functional specification of the fetch-decode-execute cycle) is only one of many
issues which have to be considered collectively. Aside from possible problems at
more concrete levels of description, which have already been mentioned, safety will
also depend on factors as yet outside of the world of formal description: these range
all the way from issues of social administration and communication, as well as staff
training and group behaviour, at one end, to the performance of mechanical and
chemical parts, and so on, at the other. One has only to list the mass catastrophes
of the last ten years or so to perceive the predominant role played by these extra-
logical factors. It is the author’s guess (albeit, again, not an expert opinion)
that the sort of a posteriors abstract design correctness discussed in this paper,
though of undoubted importance, forms a relatively small contribution to the
overall reliability of real machinery. (This seems so at least at the present stage of
research into representation and proof, and with the present weak links between
designer, verifier and manufacturer.) That is, using a hardware design verified
only down to register-transfer level (and there only partially verified and only
in ‘normal’ situations) as part of the control system in extraordinarily hazardous
applications (in which large populations or land masses may be destroyed) does not
seem significantly safer than using any other design. The use of the word ‘verified’
must under no circumstances be allowed to confer a false sense of security.

These remarks should be taken as evidence, in our short-sighted times, of the

need for further basic research (i.e. the funding of further basic research), and

13

not as pessimism. After all, the HOL system, currently one of very few theorem-
provers capable of handling realistic hardware proofs, is directly based on research
in pure mathematics and philosophy by Frege, Russell and most directly, Church,
many decades ago; and on R. Milner’s theorem prover for denotational semantics,
a very different application area. The remarks pertain to the current early (but
thoroughly optimistic) state of research into the representation and verification of

hardware.

3 The Design of Viper

Viper [8,9,10,11,22] is a microprocessor designed at the Royal Signals and Radar
Establishment and now commercially available. It is intended for use in safety-
critical applications, and has several design features supporting such applications.
Viper is hard-wired rather than microcoded, to minimize the number of gates.
As mentioned in the introduction, no attempt is made in this report to describe
the design of the machine or its unique features; for that, the reader is referred
to the Viper literature. In this section we introduce only those aspects of the
architecture required for a discussion of the correctness proof of the block level
model. Indeed, of all the features at that level, only those concerned with (un-
interrupted) instruction processing are described. This is because, as mentioned,
the top level specification of Viper provided by the designers itself only covers

instruction processing.

3.1 Viper Instructions

Viper has a 32-bit memory. Addresses are 20-bit words, but the memory is ad-
dressed by 21-bit words whose the most significant bit distinguishes main from
peripheral memory. (Peripheral memory is for input-output operations.) The reg-
isters visible to the user are: a 20-bit program counter, a 32-bit accumulator, two
32-bit index registers, a boolean flag (for holding the results of comparisons, etc)
and a stopping flag (which normally indicates an error condition).

Instructions are 32-bit words, of which the top twelve bits are the instruction
code and the bottom twenty the address. The twelve bits of the instruction encode

the following fields:

14

e Bit 4: A 1-bit indication of whether the instruction is a comparison;

e Bits 0 to 3: A 4-bit function selector indicating the ALU operation to be

computed, according to whether a comparison has been indicated;

e Bits 10 and 11: A 2-bit register source selector for the computation, indi-
cating either the program counter, the accumulator or one of the two index

registers as the source of one of the operands;

e Bits 8 and 9: A two-bit memory source selector for the computation,
indicating either literal addressing, content addressing, or addressing offset
by the value in one of the two index registers as the method of accessing the

operand in memory;

e Bits 5 to 7: A 3-bit destination selector to choose a destination for the
computation from amongst the accumulator, the two index registers, and

the program counter conditionally or unconditionally on the boolean flag.

(Some of these fields can double for other purposes.) The operations are as
one would expect: comparisons test numerical less-than and equality between
operands; non-comparisons (involving one or two operands) include addition, sub-
traction, shifts, logical operations, procedure calls, and so on. As mentioned, the
example used in this report is addition with overflow detection. In that case, the
comparison field holds the value 0 (indicating a non-comparison) and the appro-

priate function selector value happens to be 5.

3.2 Design Features of Viper

Certain internal registers are used (in the course of executing instructions) which
are not accessible from the outside: these include a 32-bit temporary register; a
20-bit register for storing the address field of instructions; and a 12-bit register for
storing the instruction code.

Viper accepts certain inputs from the outside world which control its behaviour
but are not modelled at the top level. (These are all shown in Figure 1, page 32,
prefaced by ‘e..) They include a signal for resetting the machine (e_vesetbar), one
for single-stepping it (e_stepbar), one for forcing an error (e-exrorvar), and one for
extending read/write cycles (e_repty). There are also outputs to the world, for
viewing certain state values directly — for example, the indications of whether the

machine is stopped (e_stopped), is fetching an instruction (s_tetcnvar) or is performing

15

a computation (e_pertorn). The boolean flag and the major state can also be read
externally, on e_bflag and e_majorstate respectively.

Internally, there is a fixed limit (recorded by a counter, comt) to the number
of cycles in which the memory can respond, after which an exception occurs (to
prevent deadlock due to memory failure)®. As mentioned earlier, for establishing
the correspondence between the block level and top level models we must assume
that certain of these signals are well-behaved; e.g. we assume that the reset signal
is false throughout the execution of an instruction, and that at the initial stage
in processing an instruction, the timeout-counter is not already at its maximum
value.

The Viper chip contains no memory aside from its registers. The block level
model, however, includes a simple memory model, since that is the minimum
configuration in which it makes sense to talk about executing an instruction (for
purposes of verification). The memory model provided is simplified in that it
responds in a fixed and minimal number of cycles, The Viper design supports
other memory protocols, but these are not modelled by RSRE. This means that

the timeout facility (with its counter) is not exercised in the correctness proof.

4 The HOL System

The verification described in this report was carried out in the HOL system (‘HOL’
standing for ‘higher order logic’). In this section we attempt to give just enough
information about HOL to make the rest of the report readable; readers curious

to know more about the system are referred to [2,14,15].

4.1 An Outline of the HOL System

The HOL system is a version of LCF (‘logic for computable functions’). LCF was
designed by R. Milner in association with C. Wadsworth, M. Gordon, M. Newey
and L. Morris [12,21]. HOL, like LCF, is designed to facilitate the interactive
generation of formal proofs. In both systems, a logic in which problems can be
expressed is interfaced to a programming language in which proof procedures and
strategies can be encoded. The combination enables deductions in the logic (in
the sense of chains of primitive inference steps) to be produced by invocation of
programming constructs at a higher level of abstractness. This makes it possible for

very long, detailed, complex proofs in the logic to be produced by use of procedures

6T his is the device verified to gate level as a case study [4].

16

meaningful to the user of the system — yet without compromising the formality
and completeness of the underlying proof. Examples of procedures meaningful
to a user might include: unfolding definitions on fixed parameters, normalizing
form, case analysis, and rewriting left-to-right using axioms and previously proved
theorems.

HOL differs from LCF in the particular logic used. The logic part of HOL is
conventional higher-order logic as set out by Church [3]. The version used in the
HOL system is oriented towards proofs about hardware only insofar as it provides
built-in types, constants and axioms for representing bit strings’. New types,
constants and axioms can be introduced by the user, and organised in logical
theories, as in LCF. Theorems once proved can be saved in and retieved from
theories. Theories themselves are organized into hierarchies in which the types,
constants, axioms and theorems of an ancestor theory are accessible from within
a descendent theory.

The programming language of HOL is ML (for ‘meta-language’), which orginated
as the meta-language in the LCF system (though is now well-known in its own
right). The type discipline of ML ensures that the only way to create theorems in
the object logic is by performing proofs; theorems have the ML type thm, objects
of which can only be constructed by the application of inference rules to other
theorems or axioms. (Theorems are written with a turnstile, |-, in front of them,
and with assumptions to the left of the tunstile.) LCF-style proof is explained
more fully in [21].

4.2 The Logic

The HOL system uses the ASCII characters -, \s and /\, ==, 1, 7, and \ to represent
the logical symbols =, V, A, D, V, d and X respectively.
For the purposes of this paper a term of higher-order logic can be one of the

following kinds.

e A variable;

o A constant such as 1 or r (which represent the truth-values true and false

respectively);

e A function application of the form 1+, where the term t; is called the

operator and the term t, the operand;

"They are built in only for convenience; the machinery for defining them “from scratch’ exists.

17

e An abstraction of the form \x.t where the variable x is called the bound

variable and the term + the body;
e A negation of the form ~+ where + is a term;
e A conjunction of the form t;/\t, where t; and ¢, are terms;
e A disjunction of the form t;\/t; where +; and +; are terms;
¢ An implication of the form t;==>t, where t; and t, are terms;

e A universal quantification of the form ix.¢+ where the variable x is the

bound variable and the term ¢ is the body;

e An existential quantification of the form 7x.t+ where the variable x is the

bound variable and the term + is the body;

e A conditional of the form t=>ti1t, where ¢, +; and +; are terms; this has

if-part +, then-part v; and else-part to;

e A local declaration of the form 1et x=t; in t3, where x is a variable and +

and t, are terms; this is provably equivalent to (\x.tp)+; (see Section 4.4); and

o A list of the form rt1:ty;to:ty;...5tn:ty] Where ty i8 a type (see below). Here
tn, is called the zero® element, +; the (n — 1)* element or the head®, and

[tg;...5tn] the tail.

All terms in HOL have a type. The expression t:ty means t has type ty; for
example, the expressions T:voo1 and r:veor indicate that the truth-values r and r
have type voo1 for boolean, and a:num indicates that s is a number.

If ty is a type then (sy1ist (also written ty 1ist) is the type of lists whose com-
ponents have type ty. If ty; and ty, are types then ty;->ty; is the type of functions
whose arguments have type ty; and whose results have type ty;. The cartesian
product operator is represented by #, so that ty;#ty, is the type of pairs whose first
components have type ty; and second, ty,.

In this paper, the logical constants awp, or and ot used by RSRE are used inter-
changeably with the corresponding HOL constants.

As indicated earlier, the HOL system provides a number of predefined types and
constants for reasoning about hardware. The types include wor4,, the type of n-bit

words and mempy ne for memories of ny-bit words addressed by ni-bit words. The

8The ‘reverse’ numbering is used to correspond with conventional significance-order of bit-strings

18

expression #b,_y -+ by (Where b; is either o or 1) denotes an n-bit word in which v
is the least significant bit.

The predefined constants used in this paper are shown below.

® V:bool list->mum converts a list of truth-values to a number;

® VAL, :vword,->mum converts an n-bit word to a number;

® BITS,:wordn->bool list converts an n-bit word to a list of booleans;

® WORD,:num->word, converts a number to an n-bit word;

® FETGH,] memy no->(wordyy ~>wordyg) looks up a word at an address in memory;

® STORE,; : wordpy ~>(Rordpg->(memy] ng->memn1 no)) Stores a word at an address in mem-

ory;

® EL:mun->(bool 1list->bool) Selects the specified element of a boolean list, where the

last (rightmost, in the notation) element of the list is the zerott:
® CoNs:ty->(ty list->ty list), for any type ty, constructs a new list [t;t1;t05.. 5800
from a list rt1;t2;...;t,1 and an element t:ty, so that + is the nt element of

the new list;

e m:ty list->ty, for any type ty, maps a list [t1;t2;...:8,1 t0 £1, i€, to its (n— 1)t

element;
® TL:ty list->ty list, for any type ty, maps a list [t1;562;.. .50 tO [t25... 5801

® SEG: (num#num)->(bool List->bool List) returns the specified segment of a boolean list

between and including the elements whose numbers are given;
® NOT,,:word,->word, inverts the bits of a word;
® AND,, :word,->wordy->word, conjoins two words bit-wise;
® OR,,:word,->wordy->word, disjoins two words bit-wise; and

e s is a constant whose type is instantiable to any type; it denotes an arbitrary

unspecified value at each type — this is useful in certain formal expressions.

19

To make terms more readable, HOL uses certain conventions. One is that a term
152+ - *t, abbreviates ¢ - (t1t9)+ * *t,); that is, function application associates to the
left. The product operator # associates to the right and binds more tightly than
the operator -». For example, the type of sk could be written simply as numtnun->boo1
list->bool list. For another example, the function used in the Viper block model to

select the register operand for a computation (page 34) has the type

word32#word32#word32#word20#word2->vord32

which abbreviates

(word32#(word32#(word32#(word20#word2)))) ->word32

4.3 The Framework for Expressing the Block Model in
HOL

The registers of Viper are represented in HOL using the HOL logic’s special types

for bit-strings. We choose variable names for the various registers so that:

e areg:words2 is the accumulator (a-register);

e xregiworasz is the first index register (x-register);

e yregiworas2 is the second index register (y-register);
® preg:word20 is the program counter (p-register);

® bilag:bool is the boolean flag (bflag);

® ram:mem21_32 is the memory;

e treg:worasz is the temporary register (t-register);

® addr:wora2o is the address register; and

® inst:wora12 is the instruction register.

The constants (predicates) pertaining to hardware are used to manipulate these;
for example, if FETCH_ABBR(ram,preg) is an abbreviation we introduce that denotes the
12-bit instruction code part of the word in the memory ram pointed to by the

program counter preg), then

~EL 4(FETCH_ABBR(ram,preg))

20

means that the new instruction is not a comparison instruction (see page 15). If
in addition

WORD4(V(SEG(0, 3) (FETCH_ABBR(ram,preg)))) = #0101

then (given that the instruction is a non-comparison), the value 5 is defined to
indicate the ALU operation: addition with overflow detection. (This is the example
computation used throughout the report.)

As mentioned, rercr_seer is a convenient abbreviation we introduce in the logic.

In terms of the basic bit-manipulation function rercuat, FETCH_ABBR(zam,preg) stands for

EL
4
(BITS12
(WORD12
v
(SEG
(20,31)
(BLTS32
(FETCH21 ram(WORD21(V(CORS F(BITS20 preg))))))))))

That is, the new instruction is fetched from the address in the 20-bit program
counter (with the twenty-first bit false to indicate main rather than peripheral
memory); it is converted into a list of thirty-two boolean values; the upper 12-
bit segment (the instruction code) is extracted; its value is considered as a 12-bit
string; this is converted to a list of twelve booleans; and the fourth element of the
list, the comparison indicator, is selected.

This whole expression (and most subsequent expressions) are pretty-printed for
ease of parsing (rather than economy of space!)®.

Occasionally, the 12-bit instruction field (usually represented by the variable
inst) and the other fields are dealt with separately from the 20-bit address. In such
cases we write

EL 4(BITS12 inst)

WORD4(V(SEG(0,3) (BITS12 inst)))

WORD3(V(SEG(5,7) (BITS12 inst)))

WORD2(V(SEG(8,9) (BITS12 inst)))

WORD2(V(SEG(10,11) (BITS12 inst)))

to denote the comparison indicator, the function selection field, the destination

selection field, the memory indicator and the register selector, respectively.

9Expressions of this sort can sometimes be logically simplified, but this expression is one that
actually arises in the analysis, so it is left in the form required.

21

4,4 Proof in HOL

As an example of HOL features mentioned thus far, consider (in a purely formal
way) the simple HOL definition of the block model function which computes the
source register for a computation. Given the a-, x-, y- and p- registers as argu-
ments, and the 2-bit source register indicator, the function reeseLecr returns the

appropriate register (negated):

|- REGSELECT(areg,xreg,yreg,preg,rsel) =
(let rf = VAL2 rsel in
((xf = 0) => NOT32 areg |
((rf = 1) => HOT32 xxeg |
((xf = 2) => NOT32 yreg
((xrf = 3) => HOT32(WORD32(VAL20 preg)) | ARB)))))

The turnstile indicates either an axiom, a definition or a theorem (here, a defini-
tion). Constructs of the logic used include the let-construct and the conditional.
The constant ars serves as the final else-value of the conditional (which is intended
never to be returned, since rse1 is a 2-bit word). The HOL bit-string constants
used in the definition are: var2, wors2, worps2 and varzo.

The basic rules of inference in HOL take the form of ML functions which (roughly
speaking) map theorems (and sometimes various parameters as well) to theorems.
More elaborate patterns of inference can be constructed from the basic inference
rules of the logic by user-designed ML functions. The validity of the compound
inferences is preserved by the type system of ML in which only inference rules may
return theorems as results.

In our example, we can transform the definition of reEeseLEcr more computationally
useful by applying a compound inference pattern (an ML function) which expands
the let-construct into the equivalent lambda expression, and performs the resulting

beta-conversions to deduce a new theorem:

|- REGSELECT(areg,xreg,yreg,preg,rsel) =
((VAL2 rsel = 0) =>
NOT32 areg |

((VAL2 rsel = 1) =>
NOT32 xreg |

((VAL2 rsel = 2) =>
HOT32 yreg |

((VAL2 rsel = 3) => NOT32(WORD32(VAL20 preg)) | ARB))))

Applying the inference pattern actually invokes 520 primitive HOL inference steps
(as we have written it) but only requires the user to apply one function to one
definition in order to generate the 520-step proof. The pattern applies to any
definition written using the let-construct. This relieves the user of constructing
a 520-step chain of substitutions of equals for equals, and so on (which no one

would want to bother with) whilst still assuring that an actual proof is done.

22

(For perspective, the whole block model correctness proof comprises about seven
million primitive inferences!®.)

Much of the Viper block proof consists in successive unfoldings of known facts
on specific values. For example, the new form of the definition of reeseLEcr can be
applied to particular values, and the resulting theorem then simplified. We can

prove for example that

[~ REGSELECT(areg,xreg,yreg,preg,#00) = FNOT32 areg

by applying a compound inference rule which instantiates the definition to a spe-
cific value and then simplifies, using axioms and previously established facts about
bit-strings and so on. This particular unfolding consists in 89 primitive inferences.
(In a case argument based on the various possible values of rse1, the theorem above
is used to simplify one of the cases.)

Proofs based on unfolding are an example of a particularly simple and unsophis-
ticated use of HOL: they procede in a forward direction, starting without a fixed
idea of the result, but applying known procedures. In the block model case, the
method allows us to symbolically evaluate the block model on each of the possible
instruction types, and so give a complete description of the model’s behaviour. In
contrast, one often starts with a conjecture —i.e. with an end result in mind — and
constructs a proof backwards by engaging proof strategies to produce successively

simpler subgoals. As a result of this process, a forward proof is then constructed.

5 The Plan for Verification

The original RSRE plan was to establish the correctness of Viper in a series of
decreasingly abstract stages.

The top level specification, as mentioned in the introduction, is just a transition
function specifying how an abstract state (representing the memory and the visible
flags and registers) changes as Viper executes each of the possible instruction types.
It thus embodies an operational semantics of the instruction set. The notion of

time is implicit in the notion of next state; there are no time variables or clocks.

10 A much shorter proof could be constructed in this particular case, but the figure of 520 arises
from the generality of the rule used, which relies on the full power of left-to-right recursive rewriting
to expand let-expressions (250 steps), and then looks for possible beta-conversions at any depth
in the resulting expression. It seems desirable, since many definitions of varying complexity have
to be treated similarly, to trade computational resources for user effort in this way. However, the
apparent length of proofs can be greatly and sometimes misleadingly inflated by use of such general
procedures.

23

The basic time unit is quite coarse: namely, the execution of a whole instruction
schema.

The next (more concrete) level was called the major state level. At the major
state level, an instruction is executed by a sequence of events corresponding to ma-
jor states of the model and representing the phases of processing of an instruction
schema. Each event could affect the visible registers of the high level state or any
of several internal registers. (These internal registers were still part of an abstract
model of Viper, and did not necessarily correspond to parts of the actual Viper
chip.) The next event was determined according to the current event, the visible
state, and the internal state; some events were recognizably terminal and some are
initial, in the sequences. From all of this we extracted a state transition function
representing the major state model, which determined a graph of events showing
all possible major state sequences of Viper. This led to a correctness statement
(proved in HOL) of the following form:

If the major state transition function always gives the next internal
state based on the current internal state, and if the state at the start
time is the initial state, and if it requires n major state traversals to
return for the first time to the initial state, then after n traversals the
visible part of the internal state agrees with the new state specified by

the top level state transition function.

This was proved by analyzing each path through the graph and comparing the
results, under the same conditions which force that path to be taken, with the
high level results. There was an explicit notion of time at the major state level
in the sequencing and accumulation of effects of the various events; several major
state transitions simulated the effect of a single state transition at the high level,
i.e. simulated the effect of executing a single instruction. The machine proof was
based on a paper and pencil proof by J. Cullyer [9].

The ten (numbered) major states and their associated effects are listed below.
e 0. INDEX: To the temporary register is added the register indicated;
e 1. FETCH: The word indicated by the program counter is got from memory;

e 2. RESET: Various registers are cleared;

3. PRECALL: The program counter is stored before a procedure call;
e 4. PERFORM ALU: The appropriate arithmetic-logic operation is done;

24

e 6. READIO: A peripheral device is read;

o 7. READMEM: The memory is read according to the temporary register;

8. STOP: The machine is stopped (because of an error);

10. WRITEMEM: The memory is written; and

11. WRITEIO: A peripheral device is written.

The theorem expressing the correctness of the major state machine, though not
easy to prove, did not say very much; merely that the flow of control in the major
state machine was correct. There was no computation of values at the major
state level — that is, additions, comparisons, shifts, and so on — so the essential
correctness of Viper was not really addressed; the proof did not require any analysis
of the function representing the arithmetic-logic unit, at either level.

Still less abstract than the major state model is the block level model [22], whose
proof is described in this paper. At the block stage, we begin to approach the func-
tional units and connectivity of the actual circuit, though still in a very abstract
way. The block model is a collection of separate functional units (for example, the
arithmetic-logic unit, the decoder, and so on) specified functionally, along with in-
formation on their inter-connectedness and timing behaviour, specified pictorially
(with labelled schematic diagrams). The combination of the definitions and the
pictorial information are given; the block machine’s behaviour patterns must be
inferred logically from what is supplied. The time scale at the block level is finer
again than (but congruent with) the scale at the major state level; each major
state transition is implemented by several minor state transitions. (There are
mechanisms (blocks) to keep track of the major and minor states.) The block
model therefore determines another graph, in which each major node consists of
several minor event nodes. Before the graph is analyzed, though, it first has to
be derived from the given information (see Section 6.2). (At the major state level
the graph transitions were given explicitly in the definition of the major states.)

At the block level, the behaviour of the arithmetic-logic unit is analyzed, so
we come closer to the essence of the microprocessor. This means that there is
no single major state called ‘PERFORM’ corresponding to the execution of an
arithmetic-logic operation (as at the major state level) but rather a collection of
distinct major states for the various arithmetic-logic operations of Viper.

The original plan was to state and prove the equivalence of the high level specifi-

cation and the major state model on the visible state; and then of the major state

25

model and the block model on the major state; and finally to make the connection
by a some sort of transitivity argument. The first equivalence, as mentioned, has
been proved completely, and is described in [5]. The second turned out to be awk-
ward (for technical reasons at least). In fact, by using the methods established in
the first proof, a direct comparison of the high level and the block level turns out to
be straightforward, and this is what is ultimately wanted anyway. The proof has
not been completed up to the equivalence (it would not have been practical with
present tools and resources), but only to the point of a complete logical description
(analysis) of the graph of the block level. This in itself is very valuable because it
can be returned to the designers who can then decide whether the results are as
predicated and hoped. Further, it reveals what would be required to complete the
proof.

The major state proof is thus not necessary for the block proof, and is not used in
this paper, but only mentioned in passing. The block level correctness statement,
had it been proved, would have had a similar form to the correctness statement
at the major state level, except that it would have had the added complication
of assumptions carried along with each case. These assumptions limit the cor-
rectness of the block machine to certain normal cases in which, for example, no
resetting signals come from the outside world during the time taken to process an

instruction. This is discussed in Section 8.3.

6 Representing the Problem
6.1 The High Level

The high level or visible state of Viper

(ram,preg,areg,xreg,yreg,bflag,stop)

is represented in HOL as an object with the type

mem21_32#word20#word32#vword32#word32#boolitbool

where ram represents the memory (of 32-bit words addressed by 21-bit words);
preg the program counter; areg, xreg and yreg the registers; vriag a general-purpose
boolean flag; and stop the flag indicating an error requiring Viper to stop. The
high level specification gives state changes for: illegal instructions (which stop the
machine), no-ops, arithmetic-logic operations involving comparisons (whose the
results are put in the bflag), other arithmetic-logical operations whose results go

into one of the three registers, arithmetic-logical operations whose results go into

26

the program counter (i.e. jumps), write instructions, and procedure calls. The
complete definition is supplied in the Appendix, and explanations can be found in
[22]). For purposes of this paper all that is really required is the idea that a visible
state (comprising the seven components) is transformed directly by the high level
function into a new state upon inspection of the current instruction. The current
instruction resides in the memory component of the state, ram, and is pointed to
by the program counter component of the state, preg.

An example of a state transformation (which is treated at length in this paper,
at the block level) is an addition ALU operation with overflow detection, whose
results are placed in one of the three registers besides the program counter. In that
case, the high level specifies a state in which (i) the program counter is incremented;
(ii) the sum of the register source indicated and the memory source is computed
and placed in the destination register indicated; and (iii) the value of the stopping
flag (i.e. whether the sum overflows) is computed. We abbreviate the memory
SOUrce as MEM_ABBR(ram,preg) and the register source REGSELECT_ABBR(areg, xreg, yrog, preg,ram) 1.,

Results are computed at the high level by a sub-function (called aw), the high
level function representing the arithmetic-logic unit'?. The function s’ maps the
function field, the memory selector field, the destination field, the register source,
the memory source and the boolean flag to three values: a 32-bit computed value,
a possible new value for the boolean flag, and a possible new value for the stopping
flag. An example of an ALU non-comparison function is addition with overflow

detection. In this case the aww function returns as the 32-bit computed value

ADD32 (REGSELECT_ABBR(areg,xreg,yreg,preg,ram) ,MEM_ABBR(ram, pre '3}

where the addition function ams2 (on any two 32-bit words r and m) returns

TRIM34T032 (WORD34 ((VAL33(SIGNEXT x)) + (VAL33(SIGNEXT m))))

Here, stenext represents sign-extension:

|- SIGNEXT w = WORD33(V(CONS(EL 31(BITS32 w)) (BITS32 w)))

and tamaaros2 simply drops the top two bits of the 34-bit sign-extended sum:

|- TRIM34T032 w = WORD32(V(TL(TL(BITS34 w))))

11The memory abbreviation requires just the program counter and memory as parameters, as
explained above. The register abbreviation needs in addition the four registers from amongst which
it selects.

121n the appendix, and the RSRE formulation, this function has no prime mark, but we add the
prime here to distinguish it from the block level function which has the same general purpose but
an entirely different type; it is unfortunate that the same name was originally used.

27

For the stopping flag, the function av returns:

“(EL
32
(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT.ABBR(areg,xreg,yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))) =
EL
31
(BLTS34
(WORD34
((VAL33(SIGNEXT(REGSELECT_ ABBR(areg,xreg,yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))))

This represents the overflow condition of the sum; the sum spans bits 0 to 33,

and the test concerns bits 31 and 32!3, When all definitions are unfolded in this

example the sum of the register and memory sources works out to be:

(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT_ABBR(areg,x

re eg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))

g:Y
NN
That is, the sign-extended sources are added to form a 34-bit word whose top two
bits are subsequently dropped. The stopping flag works out to be:
~(EL
32
(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT_ABBR(areg,xreg, yreg, preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))) =
EL
3t
(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT. ABBR(areg,xreg yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))))
(The boolean flag is not affected.) These expressions, of course, can be further
unfolded according to the definition of sresexr.
Another (quite straightforward) ALU operation is a procedure call. The main
computed value in that case is the jump address, which is placed in the program
counter:

WORD20(V(SEG(0,19) (BITS32(MEM_ABBR(zam,preg)))))

That is, the address part of the memory source is the address to which to jump.
(There is no register source required for a procedure call.)

To illustrate the effect of a comparison type ALU operation on the high level
state, we consider first equality test on the source and memory registers. In this

case, the result of the comparison is placed in the boolean flag, and it is simply

13This is a consequence of the high level definition; why the expression represents an overflow is
another question.

28

REGSELECT._ABBR(areg,xreg,yreg,preg,ram) = MEM_ABBR(ram,preg)

For the less-than test (i.e. whether the value of the register source is less than the
value of the memory source), the result of the comparison is

EL

(Brrs3e

(WORD34

IOt e e e 4 S
(VAL33(ROT33(SIGNEXT(MEM_ABBR(ram,preg))))) + 1))))
That is, the value of the sign-extended source is added to 0 if the value of the sign-
extended memory is 0, and to the incremented value of the negated sign-extended
memory value otherwise; and the thirty-second bit of that 34-bit sum is the result.
(Given the equality and the less-than tests, all other desired comparisons can be
constructed.)

Finally, we consider a simple non-ALU operation: an illegal-instruction stop.
Various instuction schemata are not legal — for example, any one which tries to
use the spare function fields 13, 14 or 15. Likewise, any one in which the program
counter cannot be incremented without overflowing its twenty bits is illegal. For
all such illegal instructions the new state specified at the high level will have all
other registers unchanged but the stop flag set to true.

In all of these examples, the results are logically inferred in HOL from the defi-
nitions of the high level function and its sub-functions. This is achieved through
a process of gradual unfolding of definitions in each case, using the particular
case assumptions to simplify resulting expressions. Exactly the same process of
unfolding is carried out at the block level, except that there the block level the rep-
resenting function is not provided explicitly as at the top level, but has instead to
be extracted from a partially pictorial representation before the unfolding process
can be undertaken.

The examples of this section are compared to the block level results in Section 9.
The first example (addition with overflow detection) is the main example of this
report.

It should be stressed that the high level specification of Viper is incomplete
as regards the actual Viper chip. The specification applies only to the fetch-
decode-execute cycle, and ignors capabilities such as resetting, timing-out because
of memory faults, pausing, single-stepping, externally forced errors, and so on —
all of which are possible in the actual circuit, and all of which are represented
in the block model. This means that the scope of any relation between the high

level specification and the block model must be limited to the fetch-decode-execute

29

behaviour of Viper. Thus, because of the minimality of the high level model, any
correctness property one states is bound to be rather unrealistic. It would be

interesting, though beyond this report, to explore better high level specifications.

6.2 The Block Level

At the block level there are ten functional units, or blocks. These are described
and explained in more detail in [22], but in summary their names and general

purposes are as follows:

o wummory_sLock: Models the external memory, ram, in a simplified way;
o extermaL_sLock: Interfaces internal lines with the external world;

o pararec: Computes the data registers: the visible areg, xreg, yreg OF preg (Whichever
is the destination), as well as three internal registers: the address (adaar), in-

struction (inst) and temporary (tzeg) registers;

e tmma_coms; Generates the timing (i.e. sequencing) values within each major

state;
o ummor: Keeps track of the current minor state;
o muor: Keeps track of the current major state;
e rMeouT_Lock: Provides a 64-cycle timeout facility!*;

e pecoper; Generates the control values for the whole block based on the instruc-

tion code;
e rseLect_coms: Extracts the function selector field from the instruction code;

e au_coms: Performs the arithmetic and logical operations to yield a 32-bit data
result as well as a 9-bit word encoding the stopping conditions associated

with the computation; and

o nampstop_sLock: Computes two boolean flags: the verag of the visible state and a

stop flag (not quite the same as in the visible state).

147This is not relevant to the present analysis because of the simplified memory model used.

30

Each of these blocks is given a functional description in [22]; the HOL versions
appear in their entirety in the Appendix. Their inter-connectedness is conveyed
in Figure 1, below, which is a compendium (laid out slightly differently) of several
diagrams from [22], to which the names of the internal lines count, ram, areg, xreg, yreg
and preg have been added by the author. Boxes marked ‘rater’ or ‘v’ are latches,
which cause a delay of one clock cycle (one time unit). These memory elements
can be thought of as registers. Purely combinatorial blocks and sub-blocks (i.e.
those without latches) are shown with the suffix ‘_cows’. Patterns of feedback are
indicated in the figure. The nine lines to or from the external world appear at the
top of the figure (prefaced by ‘c.").

To save space, the types of the values on the lines are not shown in the diagram,
but it can be assumed that they are known. For example, the type of the value
on the inst line at any time is worat2.

The parts of the Viper block model referred to are explained locally and par-
tially as the need arises, but no attempt is made to present a coherent overall

explanation. For that the reader must refer to [22].

6.3 An Example

The nature of the block model and its representation in HOL can be illustrated
by studying one of the blocks. We choose the pararee block (which can be found
within Figure 1).

By way of motivation, the function of the whole pataree block is firstly to remember
the four data values of the high level state: areg, xreg, yreg and preg. It is also to
remember three internal values: a 32-bit temporary value called treg, a 12-bit
value inst for holding the instruction code part of an instruction, and a 20-bit
value adar for holding the address part of an instruction. Besides containing these
seven registers, the patarse block computes new values for them. It outputs one of
the four visible registers (whichever is indicated by the rser line from the decoder
block).

The new register values are computed on the basis of the old register values,
as well as five incoming lines. The informal specification tells us the ‘meanings’

of these and their relations to the external lines!®

. The five incoming lines are:
extdatabar, & 32-bit input from the external interface which, though this is not

deducible from the figure, comes from the memory block and represents incoming

15This information is represented only in English prose in [22]. None of it is actually necessary
for the formal proof.

31

MEMORY_BLOCK

. L]
eTeaetbar E 1 . s /
|] e.errorbar 1g . .].p er
L MEMORY ereply
el 555 Block
——_ o) 1.} 3
ram e —s-c.majorstate O C
— w11} .} 1)
— p-cperform L]
e 4
AR b Diagram
daldfaff [w]i
R
‘a 2 S bit)a
| |° e g g r
ilo]s|a
nlisfrif EXTERNAL_BLOCK
EXTERNAL.COMB |
Y ¥ L] []
r LATCH |
v T
e e
8 r
H °
t
a)
d r
d
T
I minor T TIMEOUT
DATAREG r{ v p NEXT. -COMB s
of 8
o e ¥ by MINOR p{V ﬁ
© x _COMB '
; REG- t 3 m
my al
2 SELeT ooyl MINOR | LIME-
~ al =n r intresetbar m QUT
r| ¢ e
pre ¢ MAJOR ¢ .BLOCK
u|
yreg TIMING N ¢
grog || _COMB i :—‘ a
MAJORLOGIC
are, -COMB
LATCH : : major i f,
T g 1 n
o ¢ DECODER 1 1d
DI el r
al o
dj b
dl e carryused
r
\—s! REGISTERS rael
-COMB clkenb
inst
. !
a s e L
o M g
v r : FSELECT. —
extdatabar {, 8 :. COMB
a o
T b
e fe—
cin Lt INST .
DECODER
ALU_COMB | | voms
alucon ,?
C
conditions H
fsf
BANDSTQP_BLOCK
L clkenbp
BAND- bmpl
E]-— STOP. mpl e
COMB stmplx
b s
f t
o
s |p 32
g

data (e_data_in); aoutbar, the 32-bit data output of the arithmetic-logic unit; cikens, a
line from the decoder controlling when and which registers of pataree are to be loaded
with new values; and finally, two boolean timing values, regstrobe and stroveaddr,
from the timing block, which respectively indicate the stability of an operation,
and when the address latch should be loaded.

The main sub-block of the pataree block is called reeisters (represented by reersters_coms
in Figure 1). That block is described in HOL by a function called reersters which
has the following HOL type:

S e e et A
This type, by conventions of binding power (see Section 4) can be abbreviated as

Word32#word32#word7#bool¥bool #rord32#vordd2#vord32 trord20wordd2#vord20tvordl2 ->

word32#word32#word32#word20#word32 #uord20#wordl2
recsTERs has the following definition in HOL:

|~ REGISTERS
(extdatabar,aoutbar,clkenb,regstrobe,strobeaddr,areg,xreg,yreg,preg, treg,addr,inst) =
(let extdata = NOT32 extdatabar in
let aoutbar_1s20 = WORD20(V(SEG(0,19) (BITS32 aoutbar))) in
let clkenba = NOT(EL O(BITS7 clkenb)) in
let clkenbp = NOT(EL 1(BITS7 clkenb)) in
let clkenbx = NOT(EL 2(BITS7 clkenb)) in
let clkenby = NOT(EL 3(BITS7 clkenb)) in
let clkenmbinst = NOT(EL 4(BITS7 clkenb)) in
let clkenbt = NOT(EL 5(BITS7 clkenb)) in
let tmplxcon = EL 6(BITS7 clkenb) in
let new_areg = CLOCK_REGA(aoutbar,areg,clkenba,regstrobe) in
let new.xreg = CLOCK_REGX(aoutbar,xreg,clkenbx,regstrobe) in
let new_yreg = CLOCK_REGY(aoutbar,yreg,clkenby,regstrobe) in
let new.preg = CLOCK_REGP(aoutbar_1s20,preg,clkenbp,regstrobe) in
let new_inst = CLOCK_INST(extdata,inst,clkenbinst,regstrobe) in
let new_treg = CLOCK_REGT(aoutbar_1s20,extdata,treg,clkenbt,regstrobe,tmplxcon,clkenbinst) in
let new_addr = CLOCK_ADDR(preg,treg,addr,clkenbinst,strobeaddr) in
new.areg,nevw_xreg,nev_yreg,new._preg,nev_ treg,new_addr,new_inst)

Here, the various sub-functions will have been previously defined in HOL., For
example, the function crock_reea, which computes the new value of the a-register,

has the HOL type

word32#word32#booli#tbool->word32

and is defined to choose between the sw_coms block’s (negated) data output and
the existing value in the a-register on the basis of two booleans values: cixenva,
corresponding to the least significant bit of the 7-bit control value cixemb; and
regstrobe, from the timing block.

|- CLOCK_REGA(aoutbar,areg,clkenba,regstrobe) = ((clkenba /\ regstrobe) => HOT32 aoutbar | areg)

Note that the variable names such as new_areg, new_inst and so on, in the definition
of reersters, are purely suggestive of their intended meanings. That is, when the

let-construct is simplified (see Section 4.4), the seventh output of reersters is

33

CLOCK_INST(NOT32 extdatabar,inst,~EL 4(BITS7 clkenb),regstrobe)

which gives no indication that the output represents the new value of the inst
register (since the function name ‘cLock_1ist’ is also mnemonically chosen and does
not formally convey a meaning).

The other function of the pararee block is reeseLecr. Its HOL definition (as seen
earlier) is

|- REGSELECT(areg,xreg,yreg,preg,rsel) =
(let rf = VAL2 rsel in
((xf = 0) => HOT32 areg |
((rf = 1) => NOT32 xreg |
((xf = 2) => KOT32 yreg |
((xf = 3) => HOT32(WORD32(VAL20 preg)) | ARB)))))
(See Section 4 for the form without let’s.) This function takes zse1 (the indicator
from the decoder for selecting a destination register from amongst the visible data
registers) and the four possible destination registers, and returns the appropriate
destination register.
So far, three kinds of information appear to be present in Figure 1 that are not

present in the functional definition of reersters and reeseLecr alone:

1. The internal latch arrangements of the pararee block (i.e. the fact that the

seven outputs of reersters_cows are latched)

2. The relation of the inputs and outputs of the pararre block to the inputs and
outputs of other blocks (e.g. the fact that the input acutbar comes from the

sww_coms block and the output inst goes to the peconer block).

3. The feedback patterns within the patarze block (e.g. the fact that the inst value
is fed back from the latch to reersters_coms) so that the input to reersters_coms
on that line at one time was the output from reersrers_coms on that line at the

previous time

Figure 1 supplies all of this information pictorially, but is not a formal specification
in the sense we need for logical analysis. (In any case, it does not supply the
internal definitions of the various blocks.) Regarding the second item, we could
guess, for example, from the form of the definition of the HOL function defining

the aru_coms block —

|- ALU(rbar,treg,cin,bflag,alucon) =
« .

let aoutbar = .., in

let conditions = ... in
aoutbar,conditions)

34

— that the output ‘acutvar’ of the atu_coms block is identical to the input to pararee
called by the same name; but of course, that is not a formal specification either,
since in both definitions the variable ‘aoutbar’ is bound, and therefore could in either
case could be replaced by a different variable.

Some information present in the RSRE informal descriptions is present neither
in Figure 1 nor in the formal definitions — for example, as we mentioned above,
the connction of the extdatabar line to the e_gata_in line. These identities, stated in
informal prose in [22], obviously assist one’s understanding of Viper, but are not
formally a part of its definition, nor indeed are they necessary for the proof. More
essential ambiguities are discussed in the next section.

In any case, our goal now is to produce a formal expression representing the

whole pamaree block including its latches, feedback patterns and relations to other

blocks.

6.3.1 Representing the Whole Block with the Latch

The function reersters was defined to apply to objects (of various type) representing
the values on lines; it took inputs such as 32-bit words and boolean values and
returned outputs representing seven registers. To describe the behaviour of the
whole pamaree block, however, we have to introduce the notion of time so that we
can talk about the latch and its behaviour. To do this, we introduce the notion
of a signal. Signals are functions from times (represented by natural numbers) to
values of appropriate type. Thus, while the block’s input extdatabar has type worasz,
the signal called (by convention) extdatabar_sig is a function with type nun->woraza. We
write extdatabar_sig n to denote the value of the function extdatabar_sig at time n.

As a first step towards a function representing the pararee block, we define a new
relation called reeisters_come (the suffix ‘_coms’, as mentioned earlier, suggesting the
purely combinational part of the block). 6

The relation reersters_coms holds between the input and output signals correspond-
ing to the input and output values of the function reersters, and it describes the
unit’s behaviour in time. The output signals of reersters_coms are given the arbi-
trary names outt to out7. The types of these signals can be inferred from the type
of reersters: they evaluate respectively to values of type: words2, words2, words2, word2o,

words2, word20 and woraiz. The relation recrsters_coms is defined as follows:

16From this point on, the development is our own, based on the RSRE definitions and corre-
sponding pictures. The use of relations is a standard hardware verification method.

35

|- REGISTERS_.COMB

(extdatabar_sig,aoutbar.sig,clkenb_sig,regstrobe_sig,strobeaddr_sig,

areg sig,xreg_sig,yreg.sig,preg.sig,treg sig,addr. sig,inst_sig,

outl. sig,out2_sig,out3_sig,out4_sig,outb_sig,out6_sig,out7_sig) =

(in.
outl_sig n,out2_sig n,out3_sig n,outd_sig n,outs_sig n,outé_sig n,out7.sig n =
REGISTERS
(extdatabar_sig n,aoutbar.sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
areg.sig n,xreg_sig n,yreg_sig n,preg_sig n,treg.sig n,addr_sig n,inst.sig n))

This means: the relation reersters_coms holds over its input and output signal argu-
ments if and only if all times, the output values of the function recrsters at that time
are the result of applying neetsters to the input values at that time. (The relation
is purely combinational because, as yet, there is no advance in time.) Similarly,

for the function reeseLect, we define a relation

|- REGSELECT_COMB(areg_sig,xreg_sig,yreg.sig,preg_sig,rsel sig,rbar_sig) =
(!n. rbar.sig n = REGSELECT(areg_sig n,xreg_sig n,yreg.sig n,preg_sig n,rsel_sig n))

where the rbar_sig signal returns an object of type woras2.

In the block model, latches introduce the only delays. To describe a latch for-
mally in HOL — a 32-bit latch, for example — we introduce a relation varcrs2 between
two signals each of type num->woras2, and we express the fact that the first signal is

latched to the second by asserting that

|- tin out. LATCH32(in,out) = (!n. out(n+l) = in n)

This means that the output at the next time (one time unit later) is always equal
to the input at the current time.

Thus far, everything has been based on the functional definitions provided by
RSRE. We now turn to the pictures provided. The patarse block is shown in Figure
2 below. This figure is just an enlarged extract from Figure 1, to which we have
added the internal line names out1 to outr. The labelling of the internals lines,
though essential to a correct representation, has to be guessed; the discussion

below analyzes this problem in detail.

36

rsel

———] REGSELECT.COMB |*

preg
yreg inst .
Xreg addr
areg treg .
LATCH

o [o [o o J

u u u u u u u

t t t t t] {

1 2 3 4 7 6 5

N—— T T—
REGISTERS.COMB

clkenb

strobeaddr

regstrobe

DATAREG
Block

HPOoP TP AR B
Heo-Fo e

Fig. 2:

An Aside on Combining Pictures and Text

Considering Figure 2 before the labels out1 to out7 are added, it is clear that the
seven output signals of reersters_coms are each latched. (The latch block is assumed
to be a pictorial abbreviation for seven separate latches. Also, ‘outi’ abbreviates
‘outt_sig’, and so on.) Four of the output signals of the latch(es) are used only
internally (they are fed back to reersters_cams). The other three are fed back and
are also (named and typed) outputs of the whole pararee block. These latter three
outputs must be uniquely identified with outputs of the textual reezsters_coms; since

they represent lines to other blocks we need to know how reersters_coms computes

37

their values. Together the three must include inst, aadr and treg, since the picture
shows those three names on those three outputs to other blocks. The only question
is which outputs to associate with which names (and whether indeed it matters).

In this case, the issue is helpfully resolved by the types of the three signals:
out7 has type worai2, so it must correspond to inmst_sig, whose type we know to be
worat2 from Figure 1 (which, had space pemitted, would have included the types
of inter-block lines); and so on. Thus we get the apparently ‘reversed ordering’ of
outs and out7 in Figure 2.

The point of all this is that the implicit semantics of pictures carry no ordering
information; they just tell us that reersters_coms has nineteen arguments altogether:
twelve signals corresponding to the twelve input values plus the seven output val-
ues of the function reecxsters. The textual representation, by its nature, must order
arguments: out7 is the seventh output of recisters and out7_sig is the nineteenth ar-
gument of recrsters_cows. However, there is no formal indication in the text that inst
is intended to be the seventh output value of reersters!”. Without the fortuitous
aid of the distinctness of the types of outs, oute and out7, these three outputs could
be paired off in any fashion with the signals inst, adar and treg. The pairing does
in fact matter, because it could result in the seventh argument being computed
by the function crock_apor or cLock_reer (see appendix for full definitions) rather than
by crock_twst, which would be a serious mis-representation of the ‘intended’ design.
Since the intention is not formally reported, this demonstrates how a picture and

“its text together may not necessarily determine a correct representation of the de-
signers’ intentions. Notational tricks may allow us to make intelligent guesses, but
there is no way to be certain that a derived representation is correct with respect
to intention. This is an important point which is also mentioned in Section 2 and
Section 10.

As for the other four outputs of the latch, type information only enables the
p-register line to be identified (with outs); the other three are pictorially inter-
changeable as long as we capture the intended computations by pairing outs with
areg, out2 With xreg and outs with yreg. Again, nothing supplied formally specifies
the intended pairings. In drawing the picture we can choose arbitrarily, since the
picture conveys no ordering information. (This ends the Aside.)

Next, a consequence of the definition of recisters_coms is inferred which gives a

more convenient form of the definition for reasoning purposes. The consequence

17The original RSRE text is annotated between lines with comments to this effect, but that, of
course, is not a formal indication either.

38

requires the introduction of new HOL functions called seconp, tazrp, and so on, for
selecting elements of ordered tuples. (rirst already exists in HOL as rst, and seventre
differs from severt in choosing the seventh and final rather the seventh of eight or
more elements of a tuple.) From the definition of reersters_coms, it follows from
simple properties of pairing that

|~ REGISTERS..COMB
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_sig,strobeaddr_ sig,
areg_sig,xreg_sig,yreg_sig,preg_sig,treg_sig,addr_sig,inst_sig,
outl_sig,out2_sig,out3. sig,outd_sig,outb _sig,out6.sig,out7_sig) =
(In,
(outi_sig n =
FST
(REGISTERS
(extdatabar_sig n,aoutbar_sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
areg.sig n,xreg_sig mn,yreg_sig n,preg_sig n,treg_sig n,addr_sig n,inst_sig n))) /\
(out2.sig n =

SECOND

(REGISTERS
(extdatabar.sig n,aoutbar_sig n,clkenb_sig n,regstrobe.sig n,strobeaddr_sig n,
areg_sig n,xreg_sig n,yreg_sig n,preg.sig n,treg.sig n,addr_sig n,inst_sig m)) /\

(out3_sign = ...) /\

(out4_sign = ...) /\

(outS_sig n = ...) /\

(outé.sig n = ...) /\

(out7.sig n =

SEVENTH’

(REGISTERS

(extdatabar_sig n,aoutbar_sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
areg.sig n,xreg.sig n,yreg_sig n,preg_sig n,treg._sig n,addr_sig n,inst_sig n))))

That is, the relation holds over the signals shown if and only if at all times the
function takes inputs and gives outputs as shown. Note that there is still no
advance in time; i.e., this is still a fact only about a combinational part of the
patarEe block.

To specify the whole pataree block, which does involve an advance in time, we
might first try to describe a relation (called pararee) in terms of nine already-defined

relations:

|~ DATAREG
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_sig,strobeaddr_sig,rsel_sig,rbar_sig,
treg_sig,addr_sig,inst_sig) =
(7outi_sig out2_sig out3_sig out4_sig out5_sig out6_sig out7._sig
areg_sig xreg_sig yreg.sig preg.sig.
REGISTERS _COMB
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_sig,strobeaddr_sig,
areg_sig,xreg_sig,yreg.sig,preg.sig,treg_sig,addr_sig,inst_sig,
outl. sig,out2_ sig,out3_sig,outd_sig,out5_sig,out6_sig,out7 sig) /\
LATCH32(outi_sig,areg. sig) /\
LATCH32(out2_sig,xreg_sig) /\
LATCH32(out3_sig,yreg.sig) /\
LATCH20(out4_sig,preg sig) /\
LATCH32(outb_sig,treg_sig) /\
LATCH20(out6_sig,addr_sig) /\
LATCH12(out7 sig,inst_sig) /\
REGSELECT_COMB(areg.sig,xreg _sig,yreg_sig,preg_sig,rsel_sig,rbar_sig))

That is, the new relation pamaree would hold of the ten input/output signals of the
whole block if and only if there could be found eleven internal signals (appropri-
ately typed) such that all nine relations held as shown — the two computation

relations as well as the seven latch relations.

39

This in itself is perfectly correct, but it turns out not to be useful. The ultimate
aim is to ‘solve for’ the internal variables (i.e. to hide them), and hence derive
a relation holding over just the visible state (external variables) of the block.
To do this (at least with existing HOL tools), each such variable must have an
associated equation of suitable form. For example, for out1_sig n we know (from the

consequence of the definition of reersters_cons) that

outl sig n =

FST

(REGISTERS
(extdatabar_sig n,aoutbar_sig n,clkenb_sig n,regstrobe_sig n,strobeaddr.sig n,
areg_sig n,xreg_sig n,yreg_sig n,preg.sig n,treg_sig n,addr_sig n,inst_sig n))

which provides a way to solve for out1_sig — by replacing it with another expression

not involving it. However, in the case of areg_sig, the latch relations tell us only
that

|~ LATCH32(outl_sig,areg.sig) = (!n. areg_sig(ntl) = outi_sig n)

which is not adequate. The syntactic reason it is not adequate is that we have no
equation for areg_sig at time n with which to expand; only at time n+1. The intuitive
reason it is not adequate is that the a-register (as well as the p-, x- and y-registers)
is really a memory element; it ‘remembers’ its previous values, and so is genuinely
part of the overall state of the block machine; it should (indeed must) be given
explicitly in the overall block level state, and in the overall state of pararee. We

therefore describe the whole pararee block as a relation by writing:

|- DATAREG
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_ sig,strobeaddr_sig,rsel_sig,
areg.sig,xreg.sig,yreg._sig,preg_sig,
rbar_sig,
treg_sig,addr_sig,inst_sig) =
(Touti_sig out2.sig out3.sig outd_sig outb_sig out6_sig out7.sig.
REGISTERS _COHMB
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_sig,strobeaddr_sig,
areg.sig,xreg.sig,yreg.sig,preg.sig,treg_sig,addr_sig,inst_sig,
outl_sig,out2_sig,out3_sig,out4_sig,outb_sig,out6_sig,out7.sig) /\
LATCH32(outl_sig,areg sig) /\
LATCH32(out2_sig,xreg_sig) /\
LATCH32(out3_sig,yreg_sig) /\
LATCH20(out4_sig,preg_sig) /\
LATCH32(outb_sig,treg sig) /\
LATCH20(out6_sig,addr_sig) /\
LATCH12(out7. sig,inst_sig) /\
REGSELECT_COMB(areg_sig,xreg_sig,yreg.sig,preg.sig,rsel_sig,rbar_sig))

Here, the relation pamaree has four more explicit signal parameters than in the
first attempt; otherwise it is the same. This definition (a mutually recursive set
of equations) can be repeatedly unfolded, with replacements made where possible
based on (i) the consequence of the definition of reersters_cons, and (ii) the definitions

of the nine relations, to solve for the seven internal variables. This is a standard

technique, commonly used in modelling hardware in HOL. A general ML procedure

40

encodes the inference patterm in HOL. It gives the following result, asserting that
the pataree relation holds if and only if eight facts hold respectively about the eight

state variables (four registers and four outputs) of the block:

|- DATAREG
(extdatabar_sig,aoutbar_sig,clkenb_sig,regstrobe_sig,strobeaddr_sig,rsel_sig,
areg.sig,xreg. sig,yreg_sig,preg._sig,
rbar_sig,
(treg_sig,addr_sig,inst_sig) =
'n,
areg.sig(n+l) =
FST
(REGISTERS
(extdatabar_sig n,aoutbar.sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
) areg.sig n,xreg_sig n,yreg.sig n,preg.sig n,treg.sig n,addr_sig n,inst.sig m))) /\
n.
xreg_sig(n+l) =
SECORD
(REGISTERS
(extdatabar.sig n,aoutbar_sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
areg_sig n,xreg.sig n,yreg.sig n,preg_sig n,treg sig n,addr_sig n,inst_sig n))) /\

(in,
yreg sig(n+1) = ...} /\

‘n
DN

O VAY
S A

péeg_sig(n+1)
(in.
treg_sig(n+l)
1

n.
addr_sig(n+1)

(!n.
inst_sig(n+l)
SEVENTH?
(REGISTERS

(extdatabar_sig n,aoutbar_sig n,clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,

(areg_sig n,xreg_sig n,yreg_sig n,preg_sig n,treg.sig n,addr.sig n,inst_sig n))) /\
in,
rbar.sig n =
REGSELECT (areg_sig n,xXreg sig n,yreg.sig n,preg_sig n,rsel_sig n))

Note that the constructed relations recrsters_coms and reeseLecr_coms have disappeared
in the end result, and the expression for the pararee relation is now in terms of
the original functions reersters and neesireer. The constructed relations were only
devices for deriving the expression for the pataree relation. Ultimately, patare itself
will turn out to be just a device in deriving the expression representing the whole
block model.

We now have expressions for the four outputs of the pararee block, as well as
for the four internal state values (the a-, x-, y- and p- registers) of the block.
These expressions do, finally, reflect the time delay caused by the latch: in each
conjunct but the last, the function reersters is applied to a time-n input to yield a
time-1) output. In the last conjunct, the block output rvar is not latched, so its
expression does not reflect an advance in time. These eight expressions, conjoined,
characterize the relation pararee.

The other blocks are treated similarly, with relations defined as intermediate de-
vices where required. Some blocks have latches and some do not. The saupstor block,
like pataree does — two internal lines are hidden. sampstop_srock has six inputs and two

outputs. The inputs, in order, are: two control signals (stmpix_sig and bmpix_sig) from

41

the decoder, to control the stopping flag and the boolean flag, respectively; the
4-bit function selector ssz_sig (projected out from the 12-bit instruction signal); a
timing signal regstrobe_sig, from the timing block; another control signal (c1xenbp_sig)
from the decoder, indicating whether the program counter is the chosen destina-
tion (in which case values with more than 20 significant bits must be caught so that
the stopping flag is set); and a 9-bit signal (conditions_sig) from the arithmetic-logic
unit, coding information about the computed result and the selected destination.
The outputs, both latched, are just the boolean flag signal and the stopping flag
signal. The main function of the block is the given function sawpstop. (swp, below, is

the existing HOL function for projecting the second element of a pair.)

|- BANDSTOP_BLOCK
(stmplx_sig,bmplx,sig,fsf_sig,regstrobe_sig,clkenbp_sig,conditions_sig,stop_sig,bflag_sig) =
(!n. stop_sig(n+1l) =
FST
(BARDSTOP
(stmplx_sig n,bmplx_sig n,fsf.sig n,regstrobe_sig n,clkenbp_sig n,conditions_sig n,
stop.sig n,bflag_sig n))) /\
(!n. bflag.sig(n+l) =
SHD
(BANDSTOP
(stmplx_sig n,bmplx.sig n,fsf_sig n,regstrobe_sig n,clkenbp.sig n,conditions_sig n,
stop_sig n,bflag.sig n)))

The pecooer block takes the (12-bit) instruction signal, the (coded) major state sig-
nal, the boolean flag signal and the stopping flag signal. It has ten output signals,
all latched except two: an unlatched indicator (cond_sig) of the next major state
when there is a choice of next major state; and an unlatched indicator (cai1 sig)
that a procedure call is being processed. The latched signals are: a control signal
(alucon_sig) to the arithmetic-logic unit, carrying information on the operation to
be performed; bmpix_sig and stmplx_sig as above; an indicator (carryused_sig) of a carry,
to the timing block; a boolean-valued signal (cin_sig) of the carry-in (which doubles
as the least significant bit in some left shifts); and cixenb_sig, cikenbp_sig and rsel_sig
as above. The main function of the block is 1rst_pEcopEr.

|- DECODER

(inst_sig,major,sig,bflag_sig,stop,sig,cond_sig,call_sig,alucon_sig,bmplx_sig,
carryused_sig,cin_sig,clkenb_sig,clkenbp_sig,rsel_sig,stmplx_sig) =

(In. bmplx_sig(n+1) = FST(INST_DECDDER(inst_sig n,major.sig n,bflag_sig n,stop.sig m))) /\

(in. stmplx_sig(n+l) = SECOND(INST_DECODER(inst.sig n,major_sig n,bflag_sig n,stop.sig m))) /\
(in. rsel_sig(n+1) = THIRD(INST_DECODER(inst_sig n,major_sig n,bflag_sig n,stop.sig n))) /\

(In. cin_sig(n+1) = FOURTH(INST_DECODER(inst_sig n,major_sig n,bflag_sig n,stop.sig n))) /\

(In. alucon_sig(n+1) = FIFTH(INST_DECODER(inst_sig n,major_sig n,bflag.sig n,stop.sig n))) /\
(!n. carryused_sig(n+1) = SIXTH(INST_DECODER(inst_sig n,major_sig n,bflag.sig n,stop_sig nm)) /\
(tn. clkenb_sig(n+1) = SEVENTH(INST_DECODER(inst_sig n,major_sig n,bflag._sig n,stop_sig n))) /\
(tn. clkenbp_sig(n+1) = ELGHTH(INST_DECODER(inst_sig m,major_sig n,bflag sig n,stop_sig m))) /\

(in. cond_sig n = NINTH(INST_DECODER(inst.sig n,major_sig n,bflag_sig n,stop.sig n))) /\
(in. call_sig n = TENTH(INST_DECODER(inst_sig n,major.sig n,bflag_sig n,stop.sig n)))

Likewise, the mor and mmor blocks have a latch each. muor takes the stopping
signal; ca11_sig as above; an indication (timeoutbar_sig) of a time-out; two timing

signals (nextmnbar_sig and advance_sig); a signal indicating a reset (reset_sig); and cond_sig

42

as above. The latched (main) output is the major state signal, major_sig. The
unlatched output (intresetbar_sig) is an indication, sent to muior, of an error (so that
urvor can stop counting the sub-states of the major state and re-initialize). The

main function of major is masorLoGIC.

|- MAJOR
(stop_sig,call-sig,timeoutbar_sig,nextmnbar_sig,advance_sig,reset_sig,cond_sig,
major_sig,intresetbar.sig) =
('n. major_sig(n+l) =
FST
(MAJORLOGIC
(stop_sig n,call_sig n,timeoutbar_sig n,nextmnbar_sig n,advance_sig n,reset_sig n,
cond_sig n,major_sig n))) /\
(!n. intresetbar_sig n =
SHD
(MAJORLOGIC
(stop_sig n,call_sig n,timeoutbar_sig n,nextmnbar_sig n,advance_sig n,reset_sig n,
cond_sig n,major.sig n)))

urnor takes the same two timing signals (nextmbar_sig and advance_sig), and reset_sig and
intresetbar_sig as above. It has only one output (latched) — the minor state signal.

The main function of the block is mextInon.

|- MINOR(nextmnbar_sig,advance_sig,reset_sig,intresetbar_sig,minor_sig) =
(!n. minor_sig(n+l) =
NEXTHINOR(nextmnbar_sig n,advance_sig n,reset_sig n,intresetbar_sig n,minor_sig n))

The external interface, extermas_sock, takes five signals from the internal part of
the machine, one from the memory, and the four signals from the outside world; it
returns one signal to the internal machine, ten to either the memory or the outside
world, and four latched signals to the internal machine. The only sub-function is
exrennat, which computes the data signal, extaatavar, to the circuit; the four signals

to the latch; and the ten signals not to the internal circuit.

|- EXTERNAL_BLOCK
(rbar_sig,addr._sig,bflag sig,strobe_sig,major_sig,e_data_ in.sig,
e._resetbar_sig,e_errorbar_sig,e_stepbar_sig,e.reply_sig,extdatabar_sig,
e_bflag_sig,e_fetchbar_sig,e_iobar_sig,e_perform_sig,e_data_out_sig,e_address_sig,
e.stopped_sig,e_majorstate_sig,e_strobebar_sig,e_writebar_sig,
exrror_sig,pause_sig,reply_sig,reset_sig) = :
(in. extdatabar_sig n =
FST
(EXTERNAL
(rbar_sig n,addr_sig n,bflag_sig n,strobe_sig n,major_sig n,e_data_in_sig x,
e_resetbar_sig n,e_errorbar_sig n,e_stepbar_sig n,e_reply_sig n))) /\
(!n. reset_sig(ntl) =
SECOND
(EXTERNAL
(xbar_sig n,addr_sig n,bflag.sig n,strobe_sig n,major_sig n,e_data_in_sig n,
e_resetbar_sig n,e_errorbar_sig n,e_stepbar_sig n,e_reply_sig n)) /\
(In. error_sig(n+l)

(tn. pause.sig(n+i) = ...) /\
(!n, reply_sig(nti) = ...) /\
(In, e_data_out_sig n = ...) /\
(In, e_address_sig n = ...) /\
(in. e_bflag_sign = ...) /\

('n. e_majorstate_sig n = ...) /\
(!n. e.strobebar_sig n = ...) /\
(in. e_stopped_sig n = ...)

(!n. e_perform. sig n
(!n. e_fetchbar_sig n = ...
(!n. e_iobar_sig n = ...) /\
(!n. e_writebar.sig n
FIFTEENTH

(EXTERKAL

(rbar_sig n,addr_sig n,bflag_sig n,strobe_sig n,major.sig n,e_data_in_sig =,

e_resetbar_sig n,e_errorbar_sig n,e_stepbar_sig n,e_reply.sig n)))

an
i
~
~
N~
~
-

43

The memory, mMemory_sLock, takes the five signals from the external interface and
returns one signal to it: (e_data.insig). There is one latched signal, ran_sig, purely
internal to the memory, representing the state of the memory. The only sub-
function is mmory, which computes a new memory and data output based on the

old memory and the inputs.

|- MEMORY.BLOCK
(e_data_out_sig,e_address_sig,e_iobar_sig,e_writebar_sig,e_strobebar,sig,ram_sig,
e_data_in_sig) =
(!n.
ram, sig(ntl) =
FST
(MEMORY
(ram_sig n,
e_data_out_sig n,e_address_sig n,e_iobar_sig m,e_writebar_sig n,e_strobebar_sig n))) A
(in.,
e.data_in_sign =
SND
(MEMORY
(ram.sig n,
e_data_out_sig n,e_address_sig n,e_iobar_sig n,e_writebar_sig n,e_strobebar.sig n)))

Blocks without latches are simpler. For example, as Figure 1 indicates, aLv_cons
has five inputs (two of them from pararee) and two outputs (one of them to patsne).
The inputs are: rbar_sig, the data signal to the external interface; tregsig from
DATAREG, cin_sig as above; the boolean flag; and alucensig as above. The outputs
are: the computed data output aoutbar_sig to pataree (as above); and a 9-bit word,
conditions_sig, encoding certain facts, to eanvstop, as above. Without latches there are

no internal lines to hide. The main function of the block is atv.

|- ALU.COMB
(rbar_sig,treg_sig,cin_sig,bflag_sig,alucon_sig,aoutbar_sig,conditions_sig) =
(in,
(aoutbar_sig n = FST(ALU(rbar_sig n,treg_sig n,cin_sig n,bflag_sig n,alucon_sig n))) /\
(conditions_sig n = SND(ALU(rbar_sig n,treg.sig n,cin_sig n,bflag_sig n,alucon_sig n))))

Similarly, the tnawe block has no latches. In order, it takes major.sig and minor_sig as
above; two signals, pause_sig and repiy_sig, from the external interface; and carryused_sig
as above. It outputs five timing signals to various blocks: advance_sig, nextmmbar_sig,
regstrobe_sig, strobe_sig and strobeaddr_sig. (See [22] for explanations of these.) The

main function of the block is Tinrxe.

|- TIMING_COHB
(major_sig,minor_sig,pause_sig,reply_sig,carryused_sig,advance_sig,nextmnbar_sig,
regstrobe_sig,strobe.sig,strobeaddr_sig) =
(!n.
(advance_sig n =
FST(TIMING(major_sig n,minor_sig n,pause.sig n,reply_sig n,carryused_sig n))) /\
(nextmnbar_sig n =
SECOND(TIMING(major_sig n,minor_sig n,pause_sig n,reply_sig n,carryused_sig n))) /\
(regstrobe_.sig n =
THIRD(TIMING(major.sig n,minor_sig n,pause.sig n,reply.sig m,carryused_sig n))) /\
(strobe_sig n =
FOURTH(TIMING(major_sig n,minor_sig n,pause_sig n,reply_sig n,carryused_sig n))) /\
(strobeaddr_sig n =
FIFTH’(TIHIHG?major_sig n,miner._sig n,pause_sig n,reply_sig n,carryused_sig n))))

44

The other blocks are not necessary for this exposition; we just point out that
the model includes exactly two other purely internal registers which like areg and
so on must be included as state variables. The first is ram, the 32-bit memory value
in memory_rock, and the second is count in TIMEOUT_BLOCK, & 6-bit counter which at its
maximum value indicates that the machine should be timed out (due to a memory
failure).

To summarize this section, the pararee block was used as an example of the method
of deriving a formal expression (a relation) to describe a whole block which is com-
posed of sub-blocks and latches. We began with what was given: the functional
definitions of the two sub-blocks reersters and reesercr, as well as the picture shown
in Figure 2, without names on the internal lines. The notion of signals — func-
tions which produce values given times — was introduced. We discussed why it
was necessary to identify internal lines with arguments of reczsters, and how these
pairings were not fully determined by the combination of picture and text, thus
introducing the possibility of incorrectly representing the design of the machine.
We then extracted the notion of the state of the whole patarze block, and used that
to infer a description of the whole block in terms of state signals only, with internal
lines concealed. All of the blocks in the model are treated similarly. In subsequent
sections, the very same method is used to describe the entire block diagram by a

relation, taking the ten blocks as the basic units.

6.3.2 Joining Blocks

The ultimate aim in this section is to derive a logical expression representing the
whole block model, both its pictorial and the textual parts. The ten block are
first represented as relations, just as we have represented pataree. They are then
combined using exactly the same method as we used to combine the sub-units of
the pararee block itself. Internal lines which are not state (latch output) values are
hidden when possible, as the out; were hidden. The units of the block model can be
combined in any groupings or all at once. Just as an example, suppose we combine
just two: pararee and awv_coms. (These are both discussed in the previous section.)
To represent the combination, we define a relation, called, say pataree_aru, which
applies to the lines to and from parares, and to the lines to and from awv_coms. (See
Figure 1 for a picture of this combination.) Expanding the resulting expression,
it is possible to solve for two of the lines internal to the combined block: rvar and
aoutbar. However, treg is latched in the combined block. This gives expressions

for the seven registers (including treg) and for the arv_coms output comaitions. The

45

resulting a-register expression, for example, is now

(!n.
areg_sig(n+l) =
FST
(REGISTERS
(extdatabar._sig n,
FST
(ALY
(REGSELECT(areg_sig n,xreg_sig n,yreg_sig n,preg.sig n,rsel_sig n),
treg_sig n,cin_sig n,bflag_sig n,alucon_sig n)),
clkenb_sig n,regstrobe_sig n,strobeaddr_sig n,
areg_sig n,xreg_sig n,yreg_sig n,preg_sig n,treg_sig n,addr_sig n,inst.sig n)))

while conditions has the expression

(!n.
conditions.sig n =
SHD
(ALU
(REGSELECT(areg_sig n,xreg_sig n,yreg.sig n,preg_sig n,rsel_sig n),
treg_sig n,cin_sig n,bflag sig n,alucon_sig n)))

The expression for the second argument of reezsters, in the a-register expression, can
be compared with the one which appears in the theorem for parares alone (page 41):
by now ‘acusbar’ in the earlier expression has expanded into an expression involving
the function aw. In addition, an expression (also in terms of awv) for conditions has
emerged.

All ten blocks of the block model are combined, exactly as pararee and aLu_coms
have just been combined in the example. When this is achieved, the expanded
expression for the whole relation (called exrernar_smp_pLock_swp_men, for the block with
the external interface and the memory included) is seven pages long; it is the
beginning of a series of many lengthy expressions in the analysis of the block
model*8, exrermar_anp_pLock_ano_men holds over four inputs from the outside world
(e_resetbar, e_erzorbar, e_stepbar and e_reply) as well as thirty-one state variables. (Those
names prefixed by ‘e_’ are lines to/from memory or to/from the outside world. Of
the thirty-one state variables, six, namely e_data_in, e_data_out, e_address, e_strobebar,
o_vwritebar and e_iobar, represent lines to/from memory, which are unlatched, and
twenty-five are latched variables internal to the block.) It gives expressions for the
thirty-one state variables as well as for the five outputs (e_bflag, e_majorstate, e_stopped,
o_perforn and e_fetchvar) of the block model. (The forty lines can all be found in Fig-
ure 1; some were introduced in Section 6.3. See [22] for further explanations of

the lines.) All other lines shown in Figure 1 are hidden.

18The seven pages are formatted and pretty-printed in standard HOL output style

46

|- EXTERNAL_AND_BLOCK_AND_HEH
(e_data_out_sig,e_address_sig,e_strobebar_sig,e_writebar_sig,e_iobar_sig,e_data_in_sig,
ram_sig,bflag.sig,
addr_sig,major_sig,pause_sig,reply_sig,reset_sig,error_sig,minor_sig,count_sig,
alucon_sig,bmplx_sig,carryused_sig,cin_sig,clkenb_sig,clkenbp_sig,rsel_sig,stmplx_sig,
stop_sig,areg_sig,xreg-sig,yreg_sig,preg_sig,treg_sig,inst_sig,
e_resetbar_sig,e_errorbar_sig,e_stepbar_sig,e-reply_sig,e_bflag_sig,e_fetchbar_sig,
e_perform_sig,e_stopped_sig,e_majorstate_sig) =
(tn,
areg.sig(n+l) =
FST
(REGISTERS
(FST
(EXTERNAL
(REGSELECT
(areg_sig n,xreg_sig n,yreg.sig n,preg_sig n,rsel.sig n),
addr_sig n,bflag_sig n,
FOURTH
(TIMING
(major_sig n,minor_sig n,pause_sig n,reply.sig n,carryused_sig n),
major_sig n,e_data_in.sig n,e_resetbar_sig n,e_errorbar_sig n,
e_stepbar_sig n,e_reply.sig n)),
FST
(ALY
(REGSELECT
(areg_sig n,xreg_sig n,yreg.sig n,preg_sig n,rsel_sig n,
treg_sig n,cin_sig n,bflag_sig n,alucon_sig n)),
clkenb_sig n,
THIRD
(TIMING
(major_sig m,minor_sig n,pause_sig n,reply_sig n,carryused_sig n)),
FIFTH?
(TIMING
(major_sig n,minor_sig n,pause_sig n,reply.sig n,carryused_sig n)),
areg.sig m,xreg_sig n,yreg.sig n,preg sig n,treg_sig n,addr.sig n,inst_sig) /\

Comparing this expression for the a-register with that on page 41 gives some idea
of the evolution of the relation extermaL_awp_rock_smp_mew, and some idea of how the
inter-connectedness of the block model is expressed. There is a similar expression,
of course, for each of the state variables and outputs. For brevity, we abbreviate
each of these expressions by defining a constant to stand for it. For example, we

define

AREG, . ABBR

(treg,areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,

e_data_in,e_resetbar,e-errorbar,e_stepbar,e_reply,cin,alucon,clkenb,inst)
to stand for the final a-register expression. aree_seer terms can then be unfolded or
folded as required. It is helpful with very long expressions to shorten them for as
long as possible in the development.

In a similar way, expressions are derived and abbreviations defined for all thirty-
one registers and five outputs. Some of the key register expressions are shown
below: minor, major, bflag, stop, alucon and carryused. The 1-bit carryused Value, sent from
the decoder to the timing block indicates a carry, and the 7-bit alucon value, from
the decoder to the ALU carries information on the ALU operation to be performed.
As mentioned in Section 6.3.1, the main sub-functions of the mon, srror and prcoper

blocks, respectively, are uasonoerc, NEXTHINOR and INST_DECODER.

47

|- MINOR_ABBR
(minor,major,pause,reply,carryused,reset,stop,inst,bflag,count,error) =
HEXTMINOR
(SECOND(TIMING(major,minor,pause,reply,carryused)),
FST(TIMIRG(major,minor,pause,reply,carryused)),reset,
SND
(MAJORLOGIC '
(stop, TENTH(INST_DECODER(inst,major,bflag,stop)),
SKD
(TIHMEOUT
(count,reset,error,
FOURTH(TIMING(major,minor,pause,reply,carryused)))),
SECOND(TIMING(major,minor,pause,reply,carryused)),
FST(TIMING(major,minor,pause,reply,carryused)) ,reset,
NIRTH(INST_DECODER(inst,major,bflag,stop)) ,major)) ,minor)

|- HAJOR_ABBR
(major,stop,inst,bflag,count,reset,error,minor,pause,reply,carryused) =
FST
(MAJORLOGIC
(stop, TERTH(INST_DECODER(inst,major,bflag,stop)),
SKD
(TIMEOUT
(count,reset,exror,
FOURTH(TIMIBG(major,minoxr,pause,reply,carryused)))),
SECOND(TIMING(major,minor,pause,reply,carryused)),
FST(TIMING(major,minor,pause,reply,carryused)) ,reset,
NINTH(INST_DECODER(inst,major,bflag,stop)),major))

|~ BFLAG_ABBR
(stop,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,areg,xreg,yreg,
preg,rsel,treg,cin,bflag,alucon) =
SHND
(BANDSTOP
(stmplx,bmplx,FSELECT inst,
THIRD(TIMING(major,minor,pause,reply,carryused)),clkenbp,
SND(ALU(REGSELECT (areg,xreg,yreg,preg,rsel) ,treg,cin,bflag,alucon)) ,stop,bflag))
|- STOP_ABBR
(bflag,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,areg,xreg,yreg,
preg,rsel,treg,cin,alucon,stop) =
FST
(BANDSTOP
(stmplx,bmplx,FSELECT inst,
THIRD(TIMING(major,minoxr,pause,reply,carryused)),clkenbp,
SND(ALU(REGSELECT (areg,xreg,yreg,preg,rsel) ,treg,cin,bflag,alucon)),stop,bflag))
|- ALUCON_ABBR(inst,major,bflag,stop) = FIFTH(INST_DECODER(inst,major,bflag,stop))

|- CARRYUSED_ABBR(inst,major,bflag,stop) = SIXTH(INST_DECODER(inst,major,bflag,stop))

These and the other thirty-five expressions help us to derive what we ultimately
want: a function respresenting the block model. The function (called wroLe_rock_mexr
because it computes the next state of the block) applies to the thirty-one state
variables and the four inputs. It returns new values for the thirty-one state vari-
ables and also for the five outputs to the outside world. The form of the function

is:

48

|- WHOLE.BLOCK_EEXT
(areg,xreg,yreg,preg,treg,addr,inst,error,pause,reply,reset,
e_iobar,e_data_out,e_address,e_strobebar,e_writebar,ram,e_data_in,
minor,major,bflag,stop,count,alucon,bmplx,carryused,cin,clkenb,clkenbp,rsel,stmplx,
e_resetbar,e_errorbar,e_stepbar,e_reply) =
let e_bflag = ... in let e_majorstate ... in let e_stopped = ... in
let e_perform = ... in let e_fetchbar ... in
let areg’ = AREG._ABBR
(treg,areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,
pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,
cin,alucon,clkenb,inst) in

let xreg’ = ... in let yreg’ = ... in let preg’ = ... in let treg’ = ... in

let addr’ = ... in let inst’ = ... in

let error’ = ... in let pause’ = .,. in let xeply’ = ... in let reset’ = ... in
let e_iobar’ = ... in let e_data_out’ = ... in let e_address’ = ... in

let e_strobebar’ = ... in let e_writebar’ = ,,. in

let ram’ = ... in let e.data_in’ = ... in

let minor’ = MINDR_ABBR
(minor,major,pause,reply,carryused,reset,stop,inst,bflag,count,error) in

let major’ = MAJOR_ABBR
(major,stop,inst,bflag,count,reset,error,minor,pause,reply,carryused) in

let bflag’ = BFLAG_ABBR
(stop,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,

areg,xreg,yreg,preg,rsel,treg,cin,bflag,alucon) in

let stop’ = STOP_ABBR
(bflag,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,
areg,xreg,yreg,preg,rsel,treg,cin,alucon,stop) in

let count’ = .., in

let alucon’ = ALUCON_ABBR(inst,major,bflag,stop) in

let bmplx’ = ... in

let carryused’ = CARRYUSED_ABBR(inst,major,bflag,stop) in
let cin’ = ... in let clkemb’ = ... in let clkembp’ = ... in
let rsel’ = ... in let stmplx’ = ... in

areg’,xreg’,yreg’,preg’,treg’,addr’,inst’,error’,pause’,reply’,reset’,
e_iobar’,e_data_out’,e_address’,e_strobebar’,e_writebar’,
ram’,e_data_in’,minor’,major’,bflag’,stop’,count’,alucon’,bmplx’,carryused’,cin’,
clkenb’,clkenbp’,rsel’,stmplx’,
e_bflag,e_majorstate,e_stopped,e_perform,e_fetchbar

Since the function was constructed from the text of another expression (that of the
relation ExTERNAL_AND_BLOCK_aND_MEH), it remains to confirm that the function correctly

represents the relation. That is, we prove:

1= (tn,
areg_sig(n+1),xreg,sig(n+1),yreg_sig(n+1),preg_sig(n+1),treg_sig(n+1),
addr_sig(n+l) ,inst_sig(n#l),
error_sig(n+1) ,pause_sig(n+l),reply_sig(n+1),reset_sig(ntl),
e_iobar_sig n,e_data_out_sig n,e_address._sig n,e._strobebar_sig n,
e_writebar_sig n,
ram_sig(n+1) ,e_data_in_sig n,
minor_sig(n+1),major_sig(n+1),bflag_sig(n&l),stop_sig(n+1),count_sig(n+1),
alucon_sig(n+1),bmplx_sig(n+1),carryused_sig(n+1),cin_sig(n+1),
clkenb_sig(n+1) ,clkenbp_sig(n+1) ,rsel_sig(n+l) ,stmplx_sig(n+i),
e_bflag_sig n,e.majorstate_sig n,e_stopped_sig n,e_perform_sig n,e_fetchbar_sig n =
WHOLE_.BLOCK_NEXT
(areg.sig n,xreg.sig n,yreg_sig n,preg.sig n,treg_sig n,addr_sig n,inst_sig n,
error_sig n,pause.sig n,reply_sig n,reset_sig n,
e_iobar_sig n,e_data_out_sig n,e_address.sig n,e_strobebar_sig n,e_writebar_sig n,
ram_sig n,e_data_in_sig n,
minor_sig n,major_sig n,bflag_sig n,stop.sig n,count_sig n,alucon_sig n,
bmplx_sig n,carryused_sig n,cin_sig n,clkenb_sig n,clkenbp_sig n,rsel_sig n,stmplx_sig n,
e_resetbar_sig n,e_errorbar_sig n,e_stepbar_sig n,e.reply.sig n)) =

EXTERNAL_AND_BLOCK_AND_MEH
(e_data_out_sig,e_address_sig,e_strobebar_sig,e_writebar_sig,e_iobar_sig,e_data_in_sig,
ram_sig,bflag_sig,addr_sig,major_sig,
pause_sig,reply.sig,reset_sig,error_sig,
minor_sig,count_sig,alucon_sig,bmplx_sig,carryused_sig,cin_sig,clkenb_sig,clkenbp_sig,
rsel_sig,stmplx_sig,
stop_sig,areg_sig,xreg_sig,yreg_sig,preg_sig,treg_sig,inst_sig,

e_resetbar_sig,e_errorbar_31g,e_stepbar_sig,e_reply_sig,e_bflag_sig,e_fetchbar_sig,
e_perform_sig,e_stopped_sig,e_majorstate_sig)

This means that the function wrove_sLock_tExT maps time-n values of states and inputs

49

to the values of states and outputs as shown!® (that is, it sequences values cor-
rectly in time) if and only if the relation exTermar_aip_BLOCK_AND_HEH holds over input,
state and output signals. The theorem follows more-or-less immediately from the
definitions of the function and the relation, and from properties of pairing. That
in turn implies that each of the state and output values can be computed by the

(abbreviated) expression derived for it:
Sequencing Theorem

|- (n.

areg_sig(n+1),xreg_sig(n+1),yreg_sig(n+1),preg_sig(n+1),treg_sig(n+1),

addr_sig(n+1),inst_sig(n+l),

error_sig(n+l) ,pause._sig(n+l) ,reply sig(nti),reset_sig(n+i),

e_iobar_sig n,e_data_out_sig n,e_address_sig n,e_strobebar_sig n,e_writebar_sig n,

ram_sig(n+l),e.data_in_sig n,

minor_sig(n+l) ,majoxr.sig(n+l) ,bflag sig(n+1),stop_sig(n+l),count_sig(n+1l),
alucon_sig(n+1) ,bmplx_sig(n+1),,carryused_sig(n+1),cin_sig(n+1),

cikenb_sig(n+1) ,clkenbp_sig(n+i) ,rsel_sig(n+1) ,stmplx_sig(n+l),

e_bflag sig n,e_ majorstate_sig n,e_stopped.sig n,e_perform.sig n,e_fetchbar_sig n =

WHOLE_BLOCK_NEXT

(areg.sig n,xreg.sig n,yreg.sig n,preg sig n,treg_sig n,addr_sig n,inst_sig n,
error_sig n,pause_sig n,reply_sig n,reset.sig n,
e_iobar_sig n,e_data_out_sig n,e_address_sig n,e_strobebar_sig n,e_writebar_sig n,
ram_sig n,e_data_in_sig =n,
minor_sig n,major.sig n,bflag_sig n,stop_sig n,count.sig n,alucon_sig n,bmplx_sig n,
carryused_sig n,cin_sig n,clkenb_sig r,clkenbp_sig n,rsel_sig n,stmplx_sig n,
e._resetbar_sig n,e_errorbar.sig n,e_stepbar_sig n,e_reply.sig n)) ==

(areg_sig(n+l) =

AREG_ABBR

(treg.sig n,areg_sig n,xreg.sig n,yreg_sig n,preg_sig n,rsel_sig n,addr_sig n,bflag. sig n,
major_sig n,minox_sig n,pause_sig n,reply_sig n,carryused_sig n,

e.data_in_sig n,e_resetbar_sig n,e_errorbar_sig n,e_stepbar_sig n,e_reply_sig n,
cin_sig n,alucon_sig n,clkenb_sig n,inst_sig n) /\

(xreg_sig(n+1) = ... /\ (yreg_sig(m+1) = ... /\ (preg.sig(n+1) = ... /\
(treg_sig(n+1) = ... /\ (addr_sig(n+1) = ... /\ (inst_sig(n+1) = ... /\
(error_sig(n+1) = ... /\ (pause_sig(n+1) = ... /\

(reply.sig(n+1) = ... /\ (reset_sig(nt1) = ... /\

(e_iobar_sig n = ... /\ (e.data_out.sig n = ... /\ (e_address_sign = ... /\
(e_strobebar_sig n = ... /\ (e_writebar_sig n = ... /\ (ram_sig(n+1) = ... /\
(e.data_in_sig n = ... /\

(minor_sig(n+i) =

HMINOR_ABBR
(minor,major,pause,reply,carryused,reset,stop,inst,bflag,count,error) /\

(major_sig(n+1) =

MAJOR.ABBR
(major,stop,inst,bflag,count,reset,error,minor,pause,reply,carryused) /\

(bflag_sig(ntl) =

BFLAG_ABBR

(stop, strmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,
areg,xreg,yreg,preg,rsel, treg,cin,bflag,alucon) /\

(stop_sig(n+i) =

STOP_ABBR
(bflag,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,
areg,xreg,yreg,preg,rsel,treg,cin,alucon,stop) N\

(count_sig(n+1) = ... /

(alucon_sig(n+1) = ALUCON_ABBR(inst,major,bflag,stop) in

(bmplx_sig(n+i) = ... /\
(carryused_sig(n+1) = CARRYUSED_ABBR(inst,majox,bflag,stop) /\
(cin_sig(n+1) = ... /\ (clkenb_sig(n+1) = ... /\ (clkenbp_sig(n+i) = ... /\ |

oo I\ (stmplx_sig(nt1) = ... /\
... /\ (e_majorstate_sig n = ... /\ (e_stopped_sig n = ... /\
= ... /\ (e_fetchbar_sig n =)...)

(rsel_sig(n+1)
(e_bflag_sig n
(e_perform_ sig

B o0n
o

The function waore_Lock_texr (and in particular the property above) is the essential

and basic tool for analyzing the block model of Viper. Its usefulness lies in the

19The twenty-five internal state variables are latched so appear at the ‘next’ time; the five outputs
and six lines to/from memory are not latched so appear at the initial time.

50

fact that since it i3 a function, we can give it inputs and it will compute outputs.
These outputs, for latched values, represent the values on lines one time unit
later. By repeatedly applying the function, it is possible to describe the behaviour
of the block machine during and after the processing of Viper’s various instruction
types. The rest of this paper describes the analysis of the block model based on

the functional expression.

7 Using the Representation: The Minor State
Transitions

The analysis of the Viper block machine forms a complex layered structure. Simple
facts about the functions (such as vararee) representing individual blocks, and about
their sub-functions and sub-sub-functions (such as recrsters and cLock_rEea) support
more complex facts about the values on lines (such as the value of areg) at given
times. In particular, they support facts about the values of the major and minor
lines. This pair of values characterizes the progress of the block machine in its
execution of an instruction schema. They are particularly important registers in
the analysis because as the function wios_stock_nexr (representing the block model)
is computed successively through major and minor values, results accumulate in
various registers, thereby giving a complete description of the behaviour of the
block machine — which is the goal. As suggested in the introduction, this stage
of the analysis can be viewed at one level as a symbolic execution of the block
machine, but supported in addition by the security of formal proof; each state
transition is logically inferred, and not just computed.

The structure of the analysis is reflected in a hierarchy of HOL theories. So
far, for example, we have indicated some of what is contained in the HOL theory
about the pararee block. Each layer of the subsequent analysis is similarly reflected
in an HOL theory. The analysis itself rests on a hierarchy of theories containing
lemmas.

One example will suffice for all the cases: we assume that the major state is fixed
and equal to 4. That indicates the performance of an ALU operation, specified in
detail by the current instruction®’. As for which ALU operation is chosen in the

~example, it is not necessary at first to be specific.

20Ty a sequence of major state transitions, an ALU operation would only happen after the major
state had been 1, i.e. sometime after a FETCH operation producing the current instruction. In
fact, each sequence of major states begins with 1.

51

7.1 Lemmas about the Thirty-Six Lines

The first step in the analysis is to characterize the minor state transitions of the
block machine. That means evaluating the Sequencing Theorem (page 50) up to
seven times, assuming in turn that the 3-bit minor state counter holds the values 0,
1, 2, and so on?', while the 4-bit major state remains fixed at 4. Ultimately, these
evaluations will permit the composition of the minor state transformations, and
so yield the (provably correct) cumulative effect of the single transition through
the major state 4 (the performance of an ALU operation). The single transition
is effected by a recursive procedure which ‘runs through’ the minor transitions
in sequence, accumulating effects on state and output values. (A similar sort of
symbolic execution is considered by J. Joyce in [17]).

To infer the effects on the block state of the various minor state transitions, we
infer the value of wioLe_rock_uext at these states. This requires deducing the values
on thirty-six lines, each described by an abbreviation such as sree_aser. We therefore
prove thirty-six sets of lemmas, dubbed ‘Class 2’ lemmas because they depend
on one further layer of more basic lemmas. For the a-register, for example:

VaL3 minox = O, VAL4 major = 4

(areg,xreg, yreg,preg, rsel,addr,bflag,major,minor,pause, reply,carryused,

e_data_in,e,resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst)
areg

VAL3 minor = 1, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst)
areg

VAL3 minor = 2, VAL4 major = 4

|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,e_data_in,
e_resetbar,e_errprbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
areg

VAL3 minoxr = 3, VAL4 major = 4
|- AREG.ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e-data_in,e,resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
(("EL O(BITS7 clkenb) /\ “carryused) =>
NOT32
(FST
(ALU
(R?GSELECT(areg,xreg,yreg,preg,rsel),treg,cin,bflag,alucon))) |
areg

VAL3 minor = 4, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e-resetbar,e-errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
(("EL O(BITS7 clkenb) /\ carryused) =>
NOT32
(FST
(ALY
(RfGSELECT(areg,xreg,yreg,preg,rsel),treg,cin,bflag,alucon))) |
areg

217 ikewise, each sequence of minor states begins with 0. This and the previous footnote are
discussed later.

52

VAL3 minor = 5, VAL4 major = 4

|~ AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
areg

VAL3 minor = 6, VAL4 major = 4

|~ AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data._in,e_resetbar,e_errorbar,e_stepbar,e_reply,
treg,cin,alucon,clkenb,inst) =
areg

VAL3 minor = 7, VAL4 major = 4

|~ AREG_ABBR
(areg,xreg, yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e.data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
areg

The fortunes of the a-register at each of the eight minor states are now explicit:
changes can only occur in the fourth and fifth cycles (minor states 3 and 4), during
which, depending on two lines from the decoder, the accumulator may take on the
(negated) data result (i.e. the first output) of the ALU operation. The relevant
information is (i) the least significant bit of the control line cikenv, (the bit which
controls the loading of the a-register in particular), and (ii) the carry indicator
carryused.

The eight theorems above are proved by an ML procedure which takes the defi-
nition of aree_seer, unfolds it on the given values, applies relevant Class 1 lemmas,
and simplifies. This is an example for forward proof in HOL (see Section 4); a
definition is unfolded and simplified, using lemmas and logical identities, to yield
a result which was not necessarily foreseen. All of the many lemmas mentioned or
suggested in this section are proved in a similar forward manner.

The form in which the lemmas are shown turns out to be a convenient one:
that is, equations with assumptions carried along in the background, rather than
implications with equational consequents. With assumptions in the background,
substitutions (such as ‘4’ for ‘vaL4 mjor’) are made directly, and the assumptions
are propagated ‘behind the scenes’. In the implicative form (1- ... /\ (vAL4 major =
4 = ...), the lemmas would not be useable until the assumptions were dismissed
and the substitution(s) made.

Similarly, we prove sets of Class2 theorems giving the values of the other thirty
lines and the five outputs, each at the ten major and eight minor states. As
mentioned, the cumulative results for the registers major and minor are particularly
important in the operation of the block machine. These results depend on two lines
from the external interface: (i) reset, to urmor, masor and rimeour_sLock, which indicates
that the machine is to be reset (have its registers cleared, etc), and (ii) error, to

rmneour_pLock only, which indicates that the machine is to be stopped because of a

53

forced error. The results also depend on the 6-bit internal register, count, which

indicates a time-out (due to memory failure) when it reaches the value 64. For
example, while the major state is fixed at 4 (PERFORM ALU), we prove:

VAL3 minor = O, VAL4 major = 4

|- MAJOR_ABBR
(major,stop,inst,bflag,count,reset,error,minor,pause,reply,carryused)
(reset => #0010 | (((count = #111111) \/ error) => #1000 | #0100))

VAL3 minor = O, VAL4 major = 4

|- MINDR_ABBR
(minor,major,pause,reply,carryused,reset,stop,inst,bflag,count,error)
((reset \/ (count = #111111) \/ error) => %000 | #001)

That is, for the minor state 0 and major state 4, unless there is a reset, timeout
or error, the major state does not change from 4, and the minor state advances to
1. At the same time, it is inferred that the two boolean flags do not change under

any circumstances on this minor cycle:

VAL3 minor = 0, VAL4 major = 4
|- BFLAG.ABBR
(stop,stmplx,bmplx,inst,majoxr,minor,pause,reply,carryused,clkenbp,
areg,xreg,yreg,preg,rsel, treg,cin,bflag,alucon) =
bflag

VAL3 minor = 0, VAL4 major = 4

|~ STOP_ABBR
(bflag,stmplx,bmplx,inst,major,minor,pause,reply,carryused,clkenbp,
areg,xreg,yreg,preg,rsel, treg,cin,alucon,stop) =
stop

The 7-bit control word atucen is sent from the decoder to the ALU, and determines
the behaviour of the ALU during its operation. It is computed by becope_pErrori,
one of the main sub-functions of the decoder, which takes in the various fields of
the instruction and puts out the control values of the pecooer block. The projection
function eer_as selects from the various outputs of pecope_rerroru the 7-bit word atucon
sent to the ALU.) The alucon register value is inferred (independently of the minor
state) to be

VAL4 major = 4
|- ALUCON_ABBR(inst,major,bflag,stop) =
(EL 4(BITS12 inst) => #0011001 |
GET_AL
(DECODE_PERFDRN
(WORD4(V(SEG(0,3) (BITS12 inst))),
WORD3(V(SEG(5,7) (BITS12 inst))),
WORD2(V(SEG(8,9) (BITS12 inst))),
WORD2(V(SEG(10,11) (BITS12 inst))),bflag)))

That is, there is one 7-bit aiucon value for all comparison ALU operations (as
indicated by bit 4 of the instruction code); while for non-comparisons, pEcopE_PERFORN
computes the correct control values to be output by the decoder block, and eer_a.
selects from these the appropriate alucon value for the ALU operation indicated.

Finally, we prove

54

VAL4 major = 4
|~ CARRYUSED_ABBR(inst,major,bflag,stop) =
(EL 4(BITS12 inst) => T |
~EL
5
(BITS7
(GET_AL
(DECODE.. PERFORM
(WORD4(V(SEG(0,3) (BITS12 inst))),
WORD3(V(SEG(5,7) (BITS12 inst))),
WORD2(V(SEG(8,9) (BITS12 inst))),
wonnz(v(sgc(1o 11) (BITS12 inst))) ,bflag)))))

meaning that for all comparisons, the carryusea value is 7; while for non-comparisons

it is given by bit 5 of the alucen code.

7.2 Lemmas about Sub-Blocks

The lemmas that are required for proving the Class 2 theorems exemplified above
concern the various functions and sub-functions (such as rmmwe) making up the
Viper definition, and they depend on no further layers of lemmas, but simply on
the original definitions. We call these ‘Class 1’ lemmas. To see what is required,
consider again the expression for the a-register (page 47). The first set of Class 1

lemmas required to unfold this expression concern the function rmwe. We prove:
VAL3 minor = O, VAL4 major = 4
{= TIHING(maJor minor,pause,reply,carryused) = T,T,F,F,F

VAL3 minor = 1, VAL4 major = 4
|- TIHING(mﬂJOI minor,pause,reply,carryused) = T,T,F,F,F

VAL3 minor = 2, VAL4 major = 4

|- TIHING(maJor minor,pause,reply,carryused) = T,T,F,F,F

VAL3 minor = 3, VAL4 major = 4
|- TIMING(major,minor,pause,reply,carryused)

VAL3 minor = 4, VAL4 major = 4
|- TIMING(major,minor,pause,reply,carryused)

VAL3 minor = 5, VAL4 major = 4
|- TIHIHG(maJor minor,pause,reply,carryused)

VAL3 minor = 6, VAL4 major = 4

T,T, carryused,F,F

T,carryused,carryused,F,F

T,"carryused,F,F,F

|- TIHING(maJor minor,pause,reply,carryused) = T,T,F,F,F

VAL3 minor = 7, VAL4 major = 4
|- TIMING(major,minor,pause,reply,carryused) = T,T,F,F,F

These theorems give the complete timing pattern for the major state 4 (PER-
FORM ALU). They are proved simply by unfolding the definition of rurve under
the various assumptions and simplifying. Along with the definitions of tarrp, rourt
and rrrmw, the timing theorems enable the anec_spsr expressions to be reduced to
a form with definite values for the tmme sub-expressions. For example, assuming

respectively that minor is 0, 3 and 4, we infer:

55

VAL3 minor = 0, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
FST
(REGISTERS
(FST
(EXTERNAL
(REGSELECT(areg,xreg,yreg,preg,rsel) ,addr,bflag,F,major,
e.data_in,e_resetbar,e_errorbar,e_stepbar,e_reply)),
FST
(ALU(REGSELECT (areg,xreg,yreg,preg,rsel) ,treg,cin,bflag,alucon)),
clkenb,F,F,areg,xreg,yreg,preg,treg,addr,inst))

VAL3 minor = 3, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major ,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
FST
(REGISTERS
(FST
(EXTERNAL
(REGSELECT(areg,xreg,yreg,preg,rsel) ,addr,bflag,F,major,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply)),
FST
(ALU(REGSELECT (areg,xreg,yreg,preg,rsel) ,treg,cin,bflag,alucon)),
clkenb, carryused,F,areg,xreg,yreg,preg, treg,addr,inst))

VAL3 minor = 4, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
FST
(REGISTERS
(FST
(EXTERNAL
(REGSELECT(areg,xreg,yreg,preg,rsel) ,addr,bflag,F,major,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply)),
FST
(ALU(REGSELECT(areg,xreg,yreg,preg,rsel) ,treg,cin,bflag,alucon)),
clkenb,carryused,F,areg,xrog,yreg,preg, treg,addr,inst))

(The other five theorems of the set have the same conclusion as the first one
above.) This reveals that we next need some further Class 1 lemmas about the
function reezsters. The first one simplifies the definition when the fifth argument to
recIstERs is false — this applies when the minor state is 3 or 4. (The fifth argument,
corresponding to the variable ‘stroveaddr’ in the original definition, page 33, indicates
to pararee when the address register,‘adar’, should be loaded.) In that case, new
values of the seven registers may be chosen, depending on the decoder’s control

line cixenb and on the timing line regstrobe:

|~ REGISTERS
(extdatabar,aoutbar,clkenb,regstrobe,F,areg,xreg,yreg,preg,treg,addr,inst) =
((“EL O(BITS7 clkenb) /\ regstrobe) => NOT32 aoutbar | areg),
((“EL 2(BITS7 clkenb) /\ regstrobe) => NOT32 aoutbar | xreg),
((“EL 3(BITS7 clkenb) /\ regstrobe) => NOT32 aoutbar | yreg),
(("EL 1(BITS7 clkenb) /\ regstrobe) =>
NOT20(WORD20(V(SEG(0,19) (BITS32 aoutbar)))) | preg),
((*(“EL 5(BITST clkenb) /\ regstrobe)) => treg |
(("EL 6(BITS7 clkenb) /\ EL 4(BITS7 clkenb)) => HOT32 extdatabar |
((EL 6(BITS7 clkenb) /\ EL 4(BITS7 clkenb)) =>
WORD32 (VAL20(NOT20(WORD20(V(SEG(0,19) (BITS32 aoutbar)))))) |
((“EL 6(BITST clkemb) /\ "EL 4(BITS7 clkenb)) =>
WORD32(V(SEG(0,19) (BITS32(NOT32 extdatabar)))) | ARB)))),
addr,
(("EL 4(BITS7 clkenb) /\ regstrobe) =>
WORD12(V(SEG(20,31) (BITS32(N0T32 extdatabar)))) | inst)

This says that the a-, x-, and y-registers and the program counter may each take

on the (negated) value computed by the ALU when it is the indicated destination

56

register. The temporary register may take on various values because it has various
uses in ALU operations. The address-register does not change in this case, and
the instruction register might or might not take on the top twelve bits of the data
input from memory.

To simplify the Class 2 theorem for the minor = 0 case, we prove a theorem which
further simplifies the above result by adding the assumption that the fourth input
is also false. (The fourth argument, corresponding to the variable ‘regstrove’ in the
original definition, indicates that the results of certain ALU operations are stable.)
In this case none of the seven registers is changed:

|- REGISTERS(extdatabar,aoutbar,clkenb,F,F,areg,xreg,yreg,preg,treg,addr,inst) =
areg,xreg,yreg,preg,treg,addr,inst

To prove the first of these two lemmas requires an ML procedure which uses the
definitions of reerster’s sub-functions (crock_reea and so on) to simplify the definition
of reczsrers under the appropriate assumptions. The second is a simple logical
consequence.

Using the lemmas gives us simplified values for the three sample a-register ex-
pressions, which in the context of specific values of cikenb and carryusea (during an
actual evaluation sequence of the block machine) will give specific a-register values:

VAL3 minor = O, VAL4 major = 4

|~ AREG_ABBR
(areg,xreg,yreg,preg,rsel, addr,bflag,major,minor,pause,reply,
carryused,e,data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,
treg,cin,alucon,clkenb,inst) =
areg

VAL3 minor = 3, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
(("EL O(BITS7 clkenb) /\ “carryused) =>
HOT32
(FST
(ALU
(R?GSELECT(areg,xreg,yreg,preg,rsel),treg,cin,bflag,alucon))) |
areg

VAL3 minor = 4, VAL4 major = 4
|- AREG_ABBR
(areg,xreg,yreg,preg,rsel,addr,bflag,major,minor,pause,reply,carryused,
e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply,treg,cin,alucon,clkenb,inst) =
(("EL O(BITS7 clkenb) /\ carryused) =>
HOT32
(FST
ALU
(R?GSELECT(areg,xreg,yreg,preg,rsel),treg,cin,bflag,alucon))) |
areg

To put the Class 1 and Class 2 lemmas mentioned so far into context, it should
be obvious that there are a very large number of them. Class 1 theorems about
the timing patterns have to be inferred for each of the ten major states at each

of eight minor states; the reersters theorems have to be proved for true, false and

unknown values of the two key arguments; in some cases, lemmas are also required

57

to simplify the extermaL subexpressions; and analagous theorems have to be proved
about each of the ten blocks at key specific values. Class 2 theorems analagous to
the theorems about the a-register have to be proved for all of the thirty-one state
values and the five outputs, each of these at all combinations of the ten major and
eight minor states.

None of the many derivations is difficult, and all can be done easily (and largely
automatically) by a set of simple general-purpose ML procedures. The ML pro-
cedures required become clear as the unfolding of the block model progresses and
facts required become clear. The main point of interest is really the sheer number

of facts required and the total size of the proofs in time and space (see Section 10).

7.3 The Progression of the Registers

Once the hiererchy of theorems is developed to the point of the Class 2 lemmas
about the register expressions, it is a simple matter to successively substitute into
the Sequencing Theorem the values for the abbreviation expressions at the
eight minor states. By doing this (and using a slightly clever unfolding procedure
for recursive unfoldings) a set of eight theorems is proved, all of them of the form
sketched below. The theorem for the case minor_sig n = 0, for example, with some of

the main register values, is shown below??

0) ==>

|- (VAL3(minor_sig n)
4) ==>

(VAL4(major.sig n)

(tn.
areg_sig(n+l),xreg_sig(nt+1l),yreg. sig(ntl) ,preg. sig(n+i),
treg_sig(n+1l),addr_sig(n+1),inst_sig(n+1),
error_ 51g(n+1),pause 31g(n+1) reply_31g(n+1) reset_sig(n+l),
e_iobar_sig n,e_data_out_sig n,e_address_.sig n,e_strobebar_sig n,e wrltebar .sig n,
ram_sig(n+1),e.data_in_sig n,
minor_ 31g(n+1) major_sig(n+l) ,bflag sig(n+l),stop_sigln+1),
count_sig(n+l), alucon_51g(n+1) bmplx_ 31g(n+1) carryused,_ s1g(n+1)
cin_sig(n+1),clkenb.sig(n+1), clkenbp_31g(n+1) rsel_sig(nt+1) ,stmplx_sig(n+1),
e_bflag sig n,e_majorstate_sig n,e_stopped_sig n,e_perform sig n,e_fetchbar sig n =
WHOLE_BLOCK_NEXT
(areg.sig n,xreg.sig n,yreg_sig n,preg_sig n,treg.sig n,addr_sig n,inst_sig n,
error.sig n,pause_sig n,reply.sig n,reset_sig n,
e_iobar_sig n,e_data_out_sig n,e_address_sig mn,e_strobebar_sig n,e_writebar_sig n,
ram.sig n,e_data_in_sig n,
minor_sig n,major_sig n,bflag_sig n,stop.sig n,count_sig n,alucon_sig n,
bmplx_sig n,carryused_sig n,cin_sig n,clkenb_sig n,clkenbp_sig n,
rsel _sig n,stmplx_sig n,
e_resetbar.sig n,e_errorbar_sig n,e_stepbar_sig n,e_reply.sig n)) ==

(areg_sig(ntl) = areg.sig n) /\

(minor_sig(n+l) =
((reset_sig n \/ (count_sig n = #111111) \/ error.sig n) => #000 | #001)) /\

(major_sig(n+l) =
(reset_sig n => #0010 |
(((count_sig n = #111111) \/ error_sig n) => #1000 | #0100))) /\

22The register value lemmas are instantiated, for this purpose, to signals at times, with n the
initial time

58

(bflag_sig(n+1) = bflag sig n) /\

(stop_sig(n+1) = stop_sig n) /\

(alucon_sig(n+i) =
(EL 4(BITS12(inst_sig n)) => #0011001 |
GET_AL
(DECODE_PERFORM
(WORD4(V(SEG(0,3) (BITS12(inst_sig n))))
WORD3(V(SEG(5,7) (BITS12(inst_sig n))))
WORD2(V(SEG(8,9) (BITS12(inst_sig n))))
WORD2(V(SEG(10,11) (BITS12(inst_sig n))

5),bflag_sig n)))) /\

(carryused_sig(n+l) =
(EL 4(BITS12(inst_sig n)) => T |
~EL
b
(BITS7
(GET.AL
(DECODE_PERFORM
(WORD4(V(SEG(0,3) (BITS12(inst_sig n)
WORD3(V(SEG(6,7) (BITS12(inst_sig n)
WORD2(V(SEG(8,9) (BITS12(inst_sig n)
WORD2(V(SEG(10,11) (BITS12(inst. sig

e e .

),bflag_sig n)))))) /\

This asserts that if the minor signal at some time is 0, the a-register signal at
the nezt time is unchanged; and the other signals at the next time change or stay
the same as shown. As mentioned, the major and minor values are key factors in
determining the progress of the block machine in time. The areg and br1ag values
are typical of block state components which are also components of the high level
state?®, The alucon and carryusea values are typical of the block level control values
(not reflected in the high level state) which determine the subsequent behaviour
of the block model.

By continuing to substitute as above for minor values 1 to 7, the value of each
of the registers can be deduced at each of the minor states. That is, we prove a
sequence of theorems analogous to the one above for all eight possible values of ninoz.
These contain, for example, the sequence of values of the a-register. Inspection
reveals that the a-register shows no change except when the minor state is 3 or 4.
This follows from the register value lemmas concerning the a-register (simplified

as shown). The fourth theorem in the new sequence tells us that

23The block level stop flag is not precisely the same as the high level stop flag. See remarks in
the Conclusions section.

59

3) ==>

- (VAL3(minor_sig n)
4) ==>

(VAL4(major_sig n)

(areg_sig(n+l) =
((“EL O(BITS7(clkenb_sig n)) /\ “carryused.sig n) =>
ROT32
(FST
(ALY
(REGSELECT
(areg_sig n,xreg_sig mn,yreg.sig n,preg_sig n,rsel_sig n),
treg_sig n,cin_sig n,bflag sig n,alucon_sig n))) |
areg_sig n)) /\ ...

and the fifth tells us

4) ==>

|- (VAL3(minor_sig n)
4) ==>

(VAL4(major_sig n)

(areg_sig(n+l) =
(C"EL 0%BITS7(c1kenb_sig n)) /\ carryused_sig n) =>
HOT32
(FST
(ALU
(REGSELECT
(areg.sig n,xreg._sig n,yreg_sig n,preg_sig n,rsel_sig n),
treg. sig n,cin_sig n,bflag _sig n,alucon_sig n))) |
areg_sig n)) /\ ...

and the a-register does not change subsequently. (The pattern for the x-, y-, p-
and t-registers is similar.) Meanwhile (by analogous inferences based on analogous
lemmas), the successive values of the major and minor registers at each of the minor
states are as follows:

|- (VAL3(minor.sig n) = 0) ==> (VAL4(major_sig n) = 4) ==>

.

(minor_sig(n+l) =

((reset._sig n \/ (count_sig n = #111111) \/ error_sig n) => #000 | #001)) /\

(major_sig(n+l) =

(reset_sig n => #0010 | (((count_sig n = #111111) \/ error_sig m) => #1000 | #0100))) /\ ...

|- (VAL3(minor_sig n) = 1) ==> (VAL4(major._sig n) = 4) ==

(minor_sig(n+1) =

((reset_sig n \/ (count_sig n = #111111) \/ error_sig n) => #000 | #010)) /\

(major_sig(n+i) =

(reset_sig n => #0010 | (((count.sig n = #111111) \/ exror_sig n) => #1000 | #0100))) /\ ...

- (VAL3(minor_sig n) = 2) ==> (VAL4(major_sig m) = 4) ==

(minor_ sig(n+1) =

((reset_sig n \/ (count_sig n = #111111) \/ error_sig n) => #000 | #011)) /\
(major_sig(ntl) =

(reset_sig n => #0010 | (((count.sig n = #111111) \/ errox_sig n) => #1000 | #0100))) /\ ...

|- (VAL3(minor_sig n) = 3) ==> (VAL4(major_sig n) = 4) ==>
(minor_sig(n+1) =
((reset._sig n \/ (count_sig n = #111111) \/ error_sig n) => #000 | #100)) /\

(major.sig(n+1l) =
(reset_sig n => #0010 | (((count_.sig n = #111111) \/ error_sig n) => #1000 | #0100))) /\ ...

60

|- (VAL3(minor_sig n) = 4) ==> (VAL4(major.sig n) = 4) ==>

(minor_sig(n+1) =
((reset_sig n \/ ((count_sig n = #111111) \/ error_sig n) \/
“carryused_sig n) => #000 | #101)) /\
(major_sig(n+l) =
(reset_sig n => #0010 |
(((count_sig n = #111111) \/ error_sig n) => #1000 |
(("carryused.sig n) => (stop_sig n => #1000 | #0001) | #0100)))) /\ ...

|-~ (VAL3(minor_sig n) = 5) ==> (VAL4(major_sig n) = 4) ==>

(minox. sig(n+1) =
((reset_sig n \/ ((count_sig n = #111111) \/ error.sig n) \/
carryused_sig n) => #000 | #110)) /\
(major.sig(n+l) =
(reset_sig n => #0010 |
(((count_sig n = #111111) \/ error_sig n) => #1000 |
(carryused_sig n => (stop_sig n => #1000 | #0001) | #0100)))) /\ ...

|- (VAL3(minor_sig n) = 6) ==> (VAL4(major_sig n) = 4) ==

.

(minor_sig(n+l) =

((reset_sig n \/ (count_sig n = #111111) \/ error_sig n) => #000 | #111)) /\
(major.sig(n+l) =

(reset_sig n => #0010 | (((count_sig n = #111111) \/ error._sig n) => #1000 [#0100))) /\ ...

|- (VAL3(minor.sig n) = 7) ==> (VAL4(major_sig n) = 4) ==>

(minor_sig(n+) = #000) /\
(major_sig(n+l)

(reset.sig n => #0010 | (((count_sig n = #111111) \/ error_sig n) => #1000 | #0100))) /\ ...

As can be seen, the advancement of major and minor depends on the absence of signals
for stopping, resetting or timing-out the machine.
The two boolean flags change when the minor state is 3 and again when it is 4

(and at no other minor states). For the b-flag value we have

|- (VAL3(minor_sig n) = 3) ==> (VAL4(major_sig n) = 4) ==>

(bflag_sig(n+l) =
SND
(BANDSTOP
(stmplx_sig n,bmplx_sig n,FSELECT(inst_.sig n),“carryused_sig n,clkenbp.sig n,
SND
(ALU
(REGSELECT
(areg._sig n,xreg_sig n,yreg._sig n,preg.sig n,rsel_sig n),
treg_sig n,cin_sig n,bflag. sig n,alucon_sig n)),stop.sig n,bflag.sig n))) /\ ...

|- (VAL3(minor_sig n) = 4) ==> (VAL4(major_sig n) = 4) ==>

(bflag_sig(n+i) =
SHD
(BANDSTOP
(stmplx_sig n,bmplx_sig n,FSELECT(inst_sig n),carryused.sig n,clkenbp._sig n,
SHD
(ALY
(REGSELECT
(areg_sig n,xreg.sig n,yreg.sig n,preg.sig n,rsel_sig n),
treg_sig n,cin_sig n,bflag. sig n,alucon.sig n)),stop.sig n,bflag sig n))) /\ ...

61

The ve1ag values are similar but depend obviously on the second eamstor output
rather than the first. Both stop and vsieg also depend on the second ALU output
— the 9-bit word (conditions, in Figure 1) which codes the conditions on the source
register and on the computed value needed to check for errors.

The carryused and alucon signals do not depend on the minor state, just the major

state, so they do not change throughout the transitions.

7 4 The Individual Minor State Transitions

In order to compose the minor state transitions to yield their cumulative effects,
certain assumptions must be made. First, in order to advance the major and minor
states (i.e. to resolve their expressions to particular values), some assumptions
must be made about certain internal lines of the Viper block model at the starting

time (time n). For example, it is necessary to assume that

(reset_sig mn = F) /\
(error_sig n = F) /\
((count_sig n = #111111) = F)

That is, the block model cannot be ‘run’ (starting with a minor state 0 and a major
state 4) if the reset or error value is initially set, or if the timout-counter is initially
at its maximum value. Of these three, only the comt signal is genuinely internal to
the block model. The reset and exror values stem from external inputs (though, as
mentioned earlier, this is not deducible from Figure 1 or any definitions), so that
at every time after time », these two can be expressed in terms of external values
at the previous time. In particular, as the transitions are composed, reset and error
take on the values “o_resetbar and ~e_exrorvar respectively?. To propagate the correct
chain of subsequent values for e_resetbar and e_errorbar, their initial values must also

be assumed?®:

(e_resetbar_sig n = T) /\
(e_errorbar_sig n = T)

To evaluate the destination register expressions (e.g. the a-register expression
on the minor cycles in which it does change), it is necessary to unfold the function

aw. The definition has the form

24The fact that these connections can be deduced is the reason that they do not have to be
indicated in the formal specifications of the blocks, nor drawn in Figure 1.

25This is consistent with the RSRE informal explanation (Annex A) of [22] in which these two
values are “normally held high”.

62

|~ ALU(rbar,treg,cin,bflag,alucon) =
(.

let a_c = BITOP(...,treg,bflag,...,cin,alucon) in
let aout = GET._AOUT a_c¢ in
let aoutbar = NOT32 aout in

aoutbar,conditions)

srmop uses the 7-bit control word atucon (from the decoder), whose thirteen (as it
happens) permitted values characterize the operation to be performed. srrop re-
turns the 32-bit computed value (negated), and a boolean value (used for various
purposes); eer_sour returns the computed value. (See the Appendix for the full def-
initions.) The value in the alucon register remains the same throughout the minor

state sequence — as we have seen:

(EL 4(BITS12(inst_sig n)) => #0011001 |
GET_AL
(DECODE_PERFORM
(WORD4 (V(SEG(0,3) (BITS12(inst_sig n))))
WORD3(V(SEG(5,7) (BITS12(inst.sig n))))
WORD2(V(SEG(8,9) (BITS12(inst_sig n))))
)

N,
WORD2 (V(SEG(10,11) (BITS12(inst_sig n)))),bflag_sig n))))

To resolve the alucon expression, mL 4(ITsiz(inst_sig ») (the fifth bit of the initial
instruction register value) must be fixed. That is, it must be known whether the
instruction indicates a comparison operation, in which case the alucon value #0011001
happens to be the appropriate code; or whether it is not a comparison, in which
case the appropriate code signal is computed by the function pecope_perroru Of the
decoder. That in turn depends on knowing at least the 4-bit function code of ther
current instruction, i.e. the value of worpa(v(sEe(0,3)(BITS12(inst sig W))).

Suppose, for example, that the instruction is not a comparison, and that the
function field indicates addition with detection of overflows. According to the
RSRE informal explanations in [22], that case would be indicated by the following

assumptions on the current instruction:

(EL 4(BITS12(imst_sig n)) = F) /\
(WORD4(V(SEG(0,3) (BITS12(inst. sig n)))) = #0101)

For this case, a simple Class 1 lemma is proved (by the usual unfolding of defini-

tions — see the Appendix for details of becope_rerromn) stating that

|- DECODE_PERFORM(#0101,dsf,msf,rsf,bflag) = viaseeeyese,F,#0001001 ,DSFPRIH dsf

where pseery is a sub-function of the decoder which returns (another) 7-bit code,
characterizing the destination register. The ALU signal in this case (picked out
by the function err_ar) is #oooto01 throughout the sequence. The assumptions also
obviously fix the carryusea register throughout the sequence to be 1 (it is fixed by

the destination code). Finally, for similar reasons, we also know that

63

cin_sig(n+l) = F /\
clkenb_sig(n+t) = DSFPRIM(WORD3(V(SEG(5,7) (BITS12(inst_sig n)))))

throughout, where cixenb controls the loading of registers, and cin is used for carries
and shifts, according to context.

With a specific atucon signal (and the others) and the five assumptions about the
initial state, it is now possible to deduce a simpler sequence of theorems describing

the minor state transitions. For example:

|- (VAL3(minor_sig n) = 0) ==
(VAL4(major_sig n) = 4) ==>
(WORD4(V{SEG(0,3) (BITS12(inst_sig n)))) = #0101) ==
(EL 4(BITS12(inst.sig n)) = F) ==>
(e_resetbar_sig n = T) ==
(e_errorbar_sig n = T) ==
(error_sig n = F) ==>
(reset_sig n = F) ==
((count_sig n = #111111) = F) ==>

#001) /\

(minér_sig(n+1)
#0100) /\

(major_sig(n+1)

The subsequent values of the minor and major registers through the sequence are

shown below.

(minor_sig(n+1) = #010) /\
(major_sig(n+1l) = #0100) /\
(minor_sig(n+1) = #011) /\
(major_sig(n+l) = #0100) /\
(minor_sig(n+1l) = #100) /\

(major_sig(n+i) ;uomo) A

(minor_sig(n+l) = #101) /\
(major_sig(n+1) = #0100) /\
(minor_sig(n+1) = #000) /\

(major_sig(n+l) = (stop.sig n => #1000 | #0001)) /\

(minor_sig(n+l) = #111) /\
(major_sig(n+l) = #0100) /\
(minoxr_sig(n+1) = #000) /\
(major_sig(n+1) = #0100) /\

The minor state will therefore advance by increments of 1 until the sixth cycle, at
which time it is comes round to 0 again, ready to begin another major cycle. The
major state, meanwhile, will stay fixed at 4 until the same sixth cycle, at which
time it will then (normally) procede to 1 (FETCH, the beginning of a new fetch-
decode-execute loop), unless the stopping flag forces it to 8, the stopped state.
(The final two theorems therefore turn out to be superfluous.)

If the minor states had not progressed in increments of one, returing to 0 again

at some point at or before the last transition, or if the major state had not changed

64

to 1 (FETCH) or 8 (STOP) at the same point, as intended in the informal spec-
ification in [22], then an error would have been indicated — either in the block
design of Viper or in the HOL representation of the block design. The source
of the error would have had to have been traced back heuristically through the
analysis, possibly to the design. All that would be certain were that (modulo the
correctness of the implementation of HOL) the error could not lie in the proof;
see Section 4 for a discussion of the security of HOL proofs. In fact, all of the
transitions do work correctly in the Viper block machine.

In conclusion, a full account of the individual transitions has now been inferred
(illustrated for the seven typical registers). With the pattern of minor and ma-
jor sequences established, we are finally in a position to compose together the

individual minor state transitions.

7.5 Composing the Minor State Transitions

The sequence of theorems describing the individual minor state transitions through
the major state 4 are now used to infer the cumulative effects on the various

registers of the sequence of minor state transitions. The initial effects are described

by the simplified theorem for the minor state 0 (and major state 4%

|- (VAL3(minor_sig n) = 0) ==>
(VAL4(major_sig n) = 4) ==>
(WORD4(V(SEG(0,3) (BITS12(inst_sig n)))) = #0101) ==>
(EL 4(BITS12(inst_sig n)) = F) ==>
(e.resetbar_sig n = T) ==>
(e_errorbar_sig n = T) ==
(error_sig n = F) ==>
(reset_sig n = F) ==
((count_sig n = #111111) = F) ==>

(areg_sig(n+l) = areg_sig n) /\
(minor_sig(n+1) = #001) ?\

(major.sig(n+1) = #0100) /\

(bflag_sig(n+l) = bflag sig n) /\

(stop_sigln+1l) = stop.sig n) /\

(alucon_sig(n+l) = #0001001) /\

(carryused_sig(nt1) = T) /\

(clkenb_sig(n+1) = DSFPRIM(WORD3(V(SEG(S5,7) (BITS12(inst_sig n)))))) /\
(cin_sig(n+i) = F) /\

At each subsequent stage until the minor state first returns to 0, the nest cumula-
tive result in the sequence is inferred from the current cumulative theorem. The

inference procedure is recursive:

26Ty this respect it would be impossible to do an analysis of the block model without some
indication that the minor state 0 was distinguished in this way. This indication is in RSRE’s
English description rather than in the specification itself.

65

1. For whatever value from 1 to 7 the minor state of the current cumulative
theorem is, the appropriate minor state transition theorem is selected, giving
time n+1 values in terms of time » values, for each n. For example, when the
minor state is 4, the corresponding state transition theorem tells us the next

states in terms of the current — for example:

(areg_sig(ntl) =
(("EL O(BITS7(clkenb_.sig n)) /\ carryused_sig n) =>
NOT32
(FST
(ALU
(REGSELECT
(areg_sig n,xreg_sig n,yreg_sig n,preg_sig n,rsel_sig n),
treg.sig n,cin.sig n,bflag_sig n,alucon.sig n)))
areg_sig n)) /\

(minor_sig(n+l) = ((“carryused_sig n) => #000 | #101))

At this stage (i.e. time n+a) the current cumulative theorem so far happens

to assert that

(areg.sig(n+4)
(inst_sig(n+4)
(minor. sig(n+4)
(major_sig(n+4) = #0100) /\

(bflag_sig(n+4) = bflag_sig n) /\

(stop_sig(n+4) = stop_sig n) /\

(carryused_sig(n+4) = T) /\

(clkenb_sig(n+4) = DSFPRIM(WORD3(V(SEG(5,7) (BITS12(inst_sig n)))))) /\

(cin_sig(n+4) = F) /\

(rsel_sig(n+4) = WORD2(V(SEG(10,11) (BITS12(inst. sig n))))) /\

(bmplx_sig(n+4) = #000) /\

(clkenbp.sig(n+4) = “EL 1(BITS7(DSFPRIM(WORD3(V(SEG(E,7) (BITS12(inst_sig n)))))))) /\
(stmplx_sig(n+4) = #011) /\

(alucon_sig(n+4) = #0001001) /\ ...

areg_sig n) /\
inst_sig n) /\
#100) /\

It gives the time-n+a values in terms of the initial values.

2. The appropriate transition theorem is then instantiated to the time of the
current theorem, giving a new transition theorem. In the example n is instan-
tiated to n+4, giving a transition theorem useful in the present circumstances:
it expresses the time n+s values in terms of the known time n+4 values. Among

other things, the new transition theorem asserts that

(areg_sig(n+B) =
((“EL O%BITS7(c1kenb_sig(n+4))) /\ carryused_sig(n+4)) =>
NOT32
(FsT
(ALU
(REGSELECT
(areg_sig(n+4) ,xreg_sig(n+4) ,yreg_sig(nt4) ,preg_sig(n+4) ,rsel_sig(n+4)),
treg_sig(n+4),cin_sig(n+4) ,bflag. sig(nt4) ,alucon_sig(n+4)))) |
areg_sig(n+4))) /\

(minor_sig(n+6) = ({“carryused_sig(n+4)) => #000 | #101)) /\

(major_sig(n+s) =
((*carryused_sig(n+4)) => (stop_sig(n+4) => #1000 | #0001) | #0100)) /\

66

(stop_sig(ntb) =
FST
(BANDSTOP
(stmplx_sig(n+4),bmplx_sig(n+4),FSELECT(inst_sig(n+4)),carryused_sig(n+4),
clkenbp_sig(nt4),
SHD
(ALU
(REGSELECT
(areg_sig(n+4),xreg_sig(n+4),yreg_sig(n+4),preg-sig(n+4),rsel_sig(n+4)),
treg_sig(n+t4) ,cin_sig(n+4) ,bflag sig(nt+4),alucon_sig(nt+4))),
stop_sig(ntd) ,bflag sig(n+4)))) /\ ...

. The last step consists in substituting the known values given by the cumu-
lative theorem so far into the new transition theorem. In the example, the
known time n+a values are substituted for the time-n+a terms (this step is jus-
tified by the rule of substitution of equals for equals.) The substitution puts
the new cumulative theorem entirely in terms of the time-n values. Thus, for

example, the new cumulative theorem asserts:

(areg.sig(n+b) =
((“EL 0(BITS7(DSFPRIM(WORD3(V(SEG(5,7) (BITS12(inst_sig n)))))))) =>
NOT32
(FST
(ALU
(REGSELECT
(areg.sig n,xreg_sig n,yreg.sig n,preg_sig n,WORD2(V(SEG(10,11) (BITS12(inst_sig n))))),
treg_sig n,F,bflag.sig n,#0001001))) |
areg.sig n)) /\

(minor_sig(n+5) = #101) /\

(major_sig(n+s) = #0100) /\

(stop.sig(n+s) =
FST
(BANDSTOP
(#011, %000, FSELECT(inst_sig n),T,
“EL 1(BITS?(DSFPRIH(WDRDS%V(SEG(B,7)(BIT512(inst_sig mMNN)I),
SKD
(ALU
(REGSELECT
(areg_sig n,xreg_sig n,yreg_sig n,preg_sig n,WORD2(V(SEG(10,11) (BITS12(inst_sig n))))),
treg_sig n,F,bflag.sig n,#0001001)),
stop_sig n,bflag_sig n)))

so that now the a-register, if it is the desination register indicated, takes on
the 32-bit result computed by the ALU. The stopping value on this cycle de-
pends on the other computed result — the 9-bit word encoding the knowledge
about error conditions. (In this case the stopping expression will evaluate to

1 if an addition overflow has occurred.)

Here, a new set of Class 2 lemmas comes into play; the a-register expression,
for example, requires a lemma giving the actual computed value (i.e. the first
of the two outputs) of the ALU on the values shown. That lemma in fact

implies that

67

areg_sig(ntb) =
(¢~EL O(BITS7(DSFPRIM(WORD3(V(SEG(5,7) (BITS12(inst._sig n)))))))) =>
WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32
(NDT32
(REGSELECT
(areg_sig n,xreg_sig m,yreg_sig n,preg _sig n,
WORD2(V(SEG(10,11) (BITS12(inst_sig n)))))))) +
(VAL32(treg.sig n))))))) |
areg_sig n)

Likewise, lemmas for the stopping expression imply that?’

stop_sig(n+s) =
“EL 1(BITS7(DSFPRIM(WORD3(V(SEG(5,7)(BITS12(inst. sig n))))))) /\
“(v
(SEG
(20,31)
(BITS32
(WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32
(NDT32
(REGSELECT
(areg_sig n,xreg.sig n,yreg.sig n,preg_sig n,
WORD2(V(SEG(10,11) (BITS12(inst_sig n)))))))) +
)\, (VAL32(treg.sig n)))))))))) =
0

(EL
31
(BLTS32
(NOT32
(REGSELECT
(areg_sig n,xreg.sig n,yreg_sig n,preg_sig n
WORD2(V(SEG(10,11) (BITS12(inst_sig n)))))))
EL 31(BITS32(treg_sig n))) /\
~(EL
31
(BITS32
(NOT32
(REGSELECT
(areg.sig n,xreg_sig n,yreg_sig n,preg_sig n,
WORD2(V(SEG(10,11) (BITS12(inst_sig n)))))))) =
EL
31
(BITS32
(WORD32
w
(SEG
(0,31)
(BITS33
(WORD33
((VAL32
(HOT32
(REGSELECT
(areg_sig n,xreg_sig n,yreg.sig n,preg_sig n,
HORD2(V%SEG(10,11)(BITSlZ(inst_sig I +
(VAL32(treg.sig 1n))))))))N)

S -

The a-register result means that if the a-register is the intended destination, then

the value initially in the temporary register is added to the (inverse of) the value

27The accumulation of values produces a rather large term — it could be subsequently abbreviated
if desired.

68

initially in the source (a-) register to give a 33-bit sum, of which the thirty-third
bit is simply ignored (by taking the 32-bit lower segment). If the a-register is not
the intended destination it remains unchanged from its initial value.

The stopping value will be true if either of two conditions hold. The first disjunct
tests whether the intended destination is the (20-bit) program counter in the case
that the sum to be stored there actually uses more than twenty bits. The second
disjunct compares the top bit of the source register to the top bits of both the
temporary register and the sum, in order to detect addition overflow?®,

At time n+s, the minor state becomes 0 again, ready to start a new cycle; and
neither the a-register nor the stop flag change. The major state changes in the
last cycle from 4, which it has been thus far, to either 8 (STOP) or 1 (FETCH),
depending on the stop flag. In this way the final cumulative theorem represents
the processing of the single major state 4 (PERFORM ALU) and specifies the neat
major state to be processed.

In the instantiation phase of the recursive accumulation procedure, new assump-

tions may be generated. In the example, the old cumulative theorem’s assumptions

included

(error_sig n = F) /\
((count_sig n = #111111) = F) /\
(reset_sig n = F) /\

(e_resetbar_sig n = T) /\
(e_resetbar_sig(n+1) = T) /\
(e_resetbar_sig(n+2) = T) /\
(e_resetbar_sig(n+3) = T) /\
(e_errorbar_sig n = T) /\
(e_errorbar_sig(n+1l) = T) /\
(e_errorbar_sig(n+2) = T) /\
(e.errorbar. sig(n+3) = T)

while the new cumulative theorem’s assumptions add to those

bbby T I
In the final cumulative theorem, e_errorbar and e_resetbar are assumed to hold steady
up to time n+s.

The cycle of steps which produces the final cumulative theorem is implemented
in HOL by a recursive ML procedure. The procedure produces the next cumulative
theorem at each recursive call, while at the same time monitoring the progress of
the minor state. The first time after the start that the minor value reaches 0 again,
the procedure stops and produces the current cumulative theorem as its final result.

In this way, the entire chain of inferences culminating in the final cumulative result

28This takes some thinking about.

69

is produced automatically — and yet fully formally (once the lemmas are proved).
This is an illustration of the power of the linked programming language and the

logic in LCF-type systems.

7.6 Lemmas for the Composed Transitions

Stepping experimentally through the procedure, it becomes clear what Class 2
(and hence Class 1) lemmas are required en route. These lemmas make it clearer
how the sum and overflow check evolve in the chain of cumulative results. For
example, inferring the time-n+s value of the a-register shown earlier requires a
lemma about the function aw (on specific values). Namely, we need to know the

first output (the computed value) of av for the add case:

|- FST
(ALU
(REGSELECT(areg,xreg,yreg,preg, WORD2(V(SEG(10,11) (BITS12 inst)))),treg,F,bflag,#0001001)) =
NOT32
(WORD32
w
(SEG
(0,31)
(BITS33
(WORD33
((VAL32
(NOT32
(REGSELECT
(areg,xreg

,yreg,preg,WORD2(V(SEG(10,11) (BITS12 inst))))))) +
(VAL32 treg)))

yre
N»

Clearly, this specifies the sum of the selected register and the temporary register.
It is proved as usual in a forward manner, by unfolding and simplifying, and using
various further Class 1 lemmas.

Similarly, two lemmas produce the time-n+s stopping value. The first concerns
the second output of the application of the function amv to some specific values.

The lemma specifies the 9-bit error conditions code for addition:

|- SHD
(ALY
(REGSELECT(areg,xreg,yreg, preg,WORD2(V(SEG(10,11) (BITS12 inst)))),
treg,F,bflag,#0001001)) =
WORD9
w
[EL
31
(BITS32
(WORD32
v
(SEG
€0,31)
(BITS33
(WORD33
((VAL32
(HOT32
(REGSELECT
(areg,xreg,y

reg,preg,WORD2(V(SEG(10,11) (BITS12 inst))))))) +
(VAL32 treg))))))

8>
)

70

EL
31
(BITS32
(HOT32
(REGSELECT
(areg,xreg,yreg,preg,WORD2(V(SEG(10,11) (BITS12 inst)))))));
EL 31(BITS32 treg);
vy
“(v
(SEG
(20,31)
(BITS32
(WORD32
v
(SEG
€0,31)
(BITS33
(WORD33
((VAL32
(NOT32
(REGSELECT
(areg,xreg,yreg,preg,WORD2(V(SEG(10,11) (BITS12 inst))))))) +
, (VAL32 treg))))))))) =
0);

R
b

In the 9-bit word produced, bit 8 is the top bit of the sum; bit 5 is the top bit

of the source register; bit 4 is the top bit of the temporary register; and bit 2

indicates whether the top 12 bits of the sum are used (it is false if they are).
The second lemma concerns the first output of the function sampstor when applied

to certain values; this gives the stopping value:

|- FST
(BANDSTOP
(#011,#000,fsf,T, clkenbp,
SKD
(ALU
(REGSELECT(areg,xreg,yreg,preg, WORD2(V(SEG(10,11) (BITS12 inst)))),
treg,F,bflag,#0001001)) ,stop,bflag)) =
clkenbp /\
EL 2(BITS9
(SED
(ALY
(REGSELECT(areg,xreg,yreg,preg, WORD2 (V(SEG(10,11) (BITS12 inst)))),
treg,F,bflag,#0001001)))) \/

(EL 5(BITS9
(sHD
(ALY
(REGSELECT(axeg,xreg,yreg,preg, WORD2(V(SEG(10,11) (BITS12 inst)))),
treg,F,bflag,#0001001)))) =
EL 4(BITS9
(SHD
(ALU
(REGSELECT(areg,xreg,yreg,preg,
treg,F,bflag,#0001001))))) /\
~(EL 5(BITS9
(SHD
(ALU
(REGSELECT
(areg,xreg,yreg,preg,WORD2(V(SEG(10,11) (BITS12 inst)))),treg,F,bflag,#0001001)))) =
EL 8(BITS9
(SKD
(ALU
(REGSELECT
(areg,xreg,yreg,preg,WORD2(V(SEG(10,11) (BITS12 inst)))),treg,F,bflag,#0001001)))))

WORD2(V(SEG(10,11) (BITS12 inst)))),

The first disjunct codes the information that the intended destination of the com-

puted result is the program counter (cixenv indicates that) and that the top twelve

71

bits of the computed 32-bit ALU result are used. This means that the machine
must stop, since the computed result will not fit into the 20-bit p-register. The
second disjunct is the overflow condition for addition, which if true must also cause
the machine must also stop.

These Class 2 lemmas depend on still simpler Class 1 lemmas about the func-
tions av and sampstop, on specific values. They follow from the basic Viper block
definitions by subsitution of the specific values (i.e. unfolding and simplifying
again). There are naturally many more lemmas required of a similar form, for
other possible ALU operations, etc. Although all involve different sets of control
signals and so on, the ML procedures that generate the proofs are fairly uniform.
The required lemmas are all identified as illustrated — by interactively deriving
the minor state transitions (in sequence one-by-one), accumulating results, and
analyzing the resulting expressions for sub-expressions whose evaluation is essen-
tial for producing the nezt theorem in the sequence. This process requires human
intelligence to identify the relevant sub-expressions, as well as machine assistance
to carry out the massive inferences. In theory, more of the process could be au-
tomated, but that is a research problem of its own, on the boundaries of artificial

intelligence.

7.7 Remarks

It is worth stressing at this point that all of the proofs in this section are produced
by forward reasoning, i.e. straightforward unfoldings of the basic block model
definitions or previous lemmas. None of the results were planned or foreseen; we
have simply deduced some consequences of the block representation function we
derived, and hence analyzed it. The results can usefully be compared with the
intended results, or just checked for plausibility; but in any case, the intentions
were in no way taken into account in the analysis. The only prior knowledge
required for the analysis thus far was the fact that minor cycles always begin at 0.
The minor state analysis proceeds in a similar way for each of the other arithmetic-
logic major states, and for all of the non-ALU major states. There are thirty-two
ALU operations in all: sixteen comparisons, four arithmetic operations, five logical
operations, two read operations, four shifts, and finally, procedure calls. (For pur-
poses of analysis, forty-one ALU operations are considered later on in the analysis,
because breaking some up into cases depending on whether the p-register is the
destination simplifies matters.) There are nine non-ALU major states, as listed in

Section 5.

72

It is also worth emphasizing the large total size of the cumulative-result theorems;
for example, the one used in the example was nine pages long (when pretty-printed
in full), and it is only one average-sized theorem among many similar ones. These
depend on very large numbers of lemmas of the type illustrated.

Briefly, as this is needed later, the (six) minor transitions comprising the FETCH
operation produce a final cumulative theorem asserting that in fetching an instruc-

tion, the program counter is (in a roundabout way) incremented:

(preg_sig(n+6) =
NOT20
(WORD20
v
(SEG
€0,19)
(BITS32
(NOT32
(WORD32
w
(SEG
€0,31)
(BITS33(WORD33((VAL32(WORD32(VAL20(preg_sig m)))) + 1))))))))))))

It also tells us that the temporary register takes on the address field of the new,

fetched instruction:

(treg_sig(n+6) =
WORD32
v
(SEG
(0,19)
(BITS32
(FETCH21 (ram_sig n) (WORD21(V(CONS F(BITS20(preg_sig n))))))))))

Likewise, the inst signal in the end holds the (12-bit) instruction code of the new
instruction. The stop signal becomes true only if incrementing the program counter
makes it more than twenty significant bits long. The major signal can hold a wide
variety of values, determined by analysis of the fields of the new fetched instruction.
This makes sense, since any other of the major states may follow a fetch operation.
The conditional expression representing this analysis is quite complex because of
the number of combinations possible. The a-register (nor the others, aside from
the program counter) does not change.

The assumptions generated in the process of accumulating minor state effects
through the FETCH node are: the external signals e_errorbar, e_resetbar, e_reply and
o_stepbar are true from time n to time n+s. Also, the internal signals reset, error and
pause are false at time n, while reply is true at time », and count is not 63 at time x.

The number of minor transitions required varies over the major states. They
range in length from one cycle (STOP) to three cycles (READMEM) to four cy-
cles (PRECALL, RESET, WRITEMEM, WRITEIO and READIO) to five cycles

73

(PERFORM ALU operations involving right shifts, calls, reads, and logic opera-
tions) to six cycles (FETCH, INDEX, and PERFORM ALU operations involving
left shifts, adds, subtracts and comparisons).

To summarize, we have shown through a process of inference how the block
definitions (including the definition of the minor state block) together with the
information in Figure 1, and the knowledge that minor cycles start at minor state 0,
determine the minor state transitions which comprise the major states of the Viper
block machine. The minor state transitions give information about the ultimate
values on the thirty-one lines of the block model (including the line indicating
the next major state), as well as the values on the five lines to the outside world.
These values reflect the block state resulting from the execution of each of the
major states, such as fetching an instruction or performing an addition operation.

The values determined for the major line in particular put us finally in a position

to analyze the major state transitions of the block model.

8 Using the Representation: The Major State
Transitions

In Section 7 we have shown how the logical analysis of the minor state transitions
is carried out. A bonus of that analysis is the information on how the major
states follow each other; each minor state transition through a particular major
state yields an expression for selecting the next major state. Given adequate case-
assumptions to resolve these expressions into definite values, sequences of major
states can be composed in the same way that sequences of minor states were
composed. This is a much simpler process than composing the minor states; for
one thing, there are fewer lemmas needed. The first problem, therefore, is to work

out what case assumptions are required.

8.1 The Major State Transition Conditions

In Section 7 we briefly sketched the effects of executing a FETCH instruction: a
fresh instruction is produced from the memory according to the program counter
and its fields are placed in the appropriate registers of the block machine. One
of the results of the FETCH operation, appearing in the major register, is a long,
complex expression specifying the next major state. The expression is a conditional
in which any of the ten major states (including FETCH itself, if the instruction in

question is a no-op) can follow the FETCH state. The conditional expression can

74

be helpfully shortened by introducing an abbreviation (as introduced in Section 4):

|- FETCH_ABBR(ram,preg) =
BITS12
(WORD12

w
(SEG(20,31) (BITS32(FETCH21 ram(WORD21(V(CONS F(BITS20 preg)))))))))

which denotes the list of booleans representing the twelve bits of the instruction
code of the new instruction.

In selecting the next state after FETCH, the conditional expression branches
according to the various fields of the 12-bit instruction. It will choose state 4
(PERFORM ALU), for example, under several different sets of circumstances,
corresponding to the several possible ALU operations. To characterize the choice
of major state 4, for example, we define a predicate (called c4) which holds (over
certain components of the visible state) if and only if PERFORM ALU is the
major state following the FETCH. This predicate is constructed by analyzing the
conditional expression (derived from the block specifications) for changing major
states; that is, it follows entirely from the block definitions, and is neither invented
for the purpose nor derived from the documentation of Viper. The predicate works

out as follows??:

|- c4(ram,preg,areg,xreg,yreg,bflag) =
(v

(SEG

(20,31)

(BITS32

(WORD32

, fx(SEG(O,si)(BITS33(HORD33((VALSZ(HORDSZ(VALZO preg))) + 1NN =
0

(EL 4(FETCH_ABBR(ram,preg)) /\

(VAL2(WORD2(V(SEG(8,9) (FETCH_ABBR(ram,preg))))) = 0) \/

“EL 4(FETCH_ABBR(ram,preg)) /\

(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = B) /\

~“bflag /\

(VAL2 (WORD2(V(SEG(8,9) (FETCH_ABBR(ram,preg))))) = 0) /\
((VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 3) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(xram,preg))))) = 6) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 7)) \/

“EL 4(FETCH_ABBR(ram,preg)) /\
(VALS(HQRDs(V(SEG(5,7)(FETCH_ABBR(ram,preg))))) =4) /\

bflag /

(VALgcwonnz(v(SEG(s,s)(FETCH_ABBR(ram,preg))))) =0) /\
((VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 3) \/
(VALA(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 5) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) =) \/

“EL 4(FETCH_ABBR(ram,preg)) /\

(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 3) /\
(VAL2(WORD2(V(SEG(8,9) (FETCH_ABBR(ram,preg))))) = 0) /\
((VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 3) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 5) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 7 \/

2The predicate could be just defined over the memory and program counter, but the other
arguments are for uniformity with other predicates.

75

“El, 4(FETCH_ABBR(ram,preg)) /\
(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg)))) = #1100) /\

”((VALa(HORDS(V(SEG(S 7) (FETCH_ABBR(xam,preg))))) = 3) \/
(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 4) \/
(VALS(HORD3(V(SEG(5,7)(FETCH_ABBR(ram,preg))))) =5)) /\

~(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 6) /\

~(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 7) \/
~EL 4(FETCH_ABBR(ram,preg)) /\

“((VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 3) \/
(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 4 \/
(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 6)) /\

~(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(zram,preg))))) =7) /\

~(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 6) /\

(VAL2(WORD2(V(SEG(8,9) (FETCH_ABBR(xram,preg))))) = 0) /

~((VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 1) \/
(VAL4(WORD4(V(SEG(0, 3) (FETCH_ABBR(ram,preg))))) = 13) \/
(VAL4(WORD4(V(SEG(O, 3) (FETCH_ABBR(ram,preg))))) = 14) \/
(VAL4(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg))))) = 16)) /\

~ (WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg)))) = #1100)))

That is, if the incremented program counter has not spread into its top twelve bits
(since it must be usable as a 20-bit address), then there are six choices. (See [8] and
[22] for precise details of the codings.) The instruction can indicate a comparison
using a literal source; or it can indicate a non-comparison. If the latter, there are

five choices:

1. The instruction can indicate the program counter as the destination if the
boolean flag is false, with a false boolean flag, and with a literal source — and
a no-op if the boolean flag is true. In that case, the operation indicated can
only be a memory-read, an addition with overflow detection, or a subtraction
with overflow detection — and no other ALU operation. (The function field

values 3, 5 and 7 indicate the operations listed, respectively.)

2. It can be the same as above but with the program counter as the destination
if the boolean flag is true, with a true boolean flag — and a no-op if it is

false,

3. It can be as above but with the program counter as the unconditional des-

tination, and no restiction on the boolean flag.

4. It can indicate the a-, x- or y-register as the destination for a shift operation.
(The function field value 12 indicates a shift.)

5. It can indicate the a-, x- or y-register as destination, a literal source, and
any of the arithmetic-logic operations except procedure calls (function field
value 1), shifts (function field value 12) or the dis-allowed (spare) operations
(function field values 13, 14 and 15).

Similarly, we define condition c2 to hold if the INDEX operation follows FETCH,
¢3 to hold if PRECALL follows FETCH, s if READIO is next, <6 if READMEM is

76

next, <7 if STOP is next, cs if WRITEMEM is next, <o if WRITEIO is next, and cto
if FETCH follows immediately after FETCH. All of the condition definitions follow
immediately from analysis of the major state expression produced by a FETCH
operation.

It is first of all necessary to confirm that the nine conditions cover all logical
possibilities; otherwise the conditional expression for choosing would be defective,
and we would be able to describe an instruction type which the block machine
could not handle. Since the conditional followed from the block representation,
this would indicate that it was in some way flawed — either the representation itself

or the basic definitions and Figure 1. We therefore prove:

|- c2(ram,preg,areg,xrog,yreg,bflag) \/
c3(ram,preg,areg,xreg,yreg,bflag) \/
c4(ram,preg,areg,xreg,yrog,bflag) \/
c5(ram,preg,areg,xreg,yreg,bflag) \/
c6(ram,preg,areg, xreg,yreg,bflag) \/
c7(ram,preg,areg,xreg,yreg,bflag) \/
c8(ram,preg,areg,xreg,yreg,bflag) \/
¢9(xram,preg,areg, xreg,yreg,bflag) \/
¢10(ram,preg,areg,xreg, yreg,bflag)

The proof of this fact is very long and messy because there are so many cases
to consider. Because the condition definitions themselves are so long, this fact is
most easily proved in an abstracted form (with various assumptions on the abstract
variables), then instantiated, and the assumptions proved and dismissed. This is
the first example so far of goal-oriented proof; we know to start with what we
want to prove, but not necessarily the method of proof. The theorem is achieved
by applying to the goal (the candidate theorem above) a strategy based on case-
analysis. By choosing cases in a clever order, we can minimize the number of cases
considered, though it is still very large.

In any case, we now have a predicate <4 which holds exactly when major state 4
follows major state 1 (in any of several ways). The example case of the previous
section, however, is more specific: it is the major state 4 in which the comparison
field holds the value r and the function selector field holds the word #0101, indicating
addition with overflow detection. That is so far consistent with four of the ways
in which <4 can hold. To simplify the presentation, we further assume that the
program counter is not the destination (i.e. the destination field is not 3, 4 or 5);
otherwise we would have to check whether the computed result exceeded twenty
significant bits. With that assumption, there is only one remaining way in which ca
can hold. Therefore we define a more specific predicate to describe the transition
to our particular major state 4 — i.e. we define a sub-condition of <4 called c4_r.s

(to reflect the comparison and function selector fields. We would write ca_r_sss_s

(e

for the sub-condition in which the destinationwere 3, 4 or 5). The sub-condition
is:
|- ?4_F_5(ram,preg,areg,xreg,yreg,bflag) =
v

(SEG
(20,31)
(BITS32

(WORD32
, §¥(SEG(0,31)(BITS33(HORD33((VALSZ(HORD32(VAL20 preg))) + 1)) =

0
~EL 4(FETCH_ABBR(ram,pre§)) /\

“((VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 3) \/
(VAL3(WORD3(V(SEG(S,7) (FETCH_ABBR(ram,preg))))) = 4) \/
(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 5)) /\

~ (VAL3(WORD3(V(SEG(6,7) (FETCH_ABBR(ram,preg))))) = 7) /\

~(VAL3(WORD3(V(SEG(5,7) (FETCH_ABBR(ram,preg))))) = 6) /\

(VAL2(WORD2(V(SEG(8,9) (FETCH_ABBR(ram,preg))))) = 0) /\

(WORD4(V(SEG(0,3) (FETCH_ABBR(ram,preg)))) = #0101)

There are in all thirty-four sub-conditions of ¢4, where for each sub-condition
the function selector and comparison indicator are given definite values, and the
question of whether the program counter is the destination is definitely resolved.
All of the sub-conditions are named in the same way that c4_r_s was named; in the
shift case (where the function selector is 12), analysis of the conditional expression
reveals that the 2-bit memory selection field must be specified also, because it dou-
bles there as an inidicator of differentiate kinds of shifts; hence the name ‘ca_r_12_0,
and so on. We prove (much as before) that these thirty-four sub-conditions cover

all logical possibilities within ca:
|- c4(ram,preg,areg,xreg,yreg,bflag) =

c4_T_O(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_1(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_2(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_3(ram,preg,areg,xreg,yreg,bflag) \/
¢4.T.4(ram,preg,areg,xreg, yreg,bflag) \/
c4_T_b6(ram,preg,areg,xreg,yreg,bflag) \/
c4.T.6(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_7(ram,preg,areg,xreg,yreg,bflag) \/
c4.T.8(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_9(ram,preg,areg,xreg, yreg,bflag) \/
¢4.T.10(ram,preg,areg,xreg,yreg,bflag) \/
¢4_T_11(ram,preg,areg,xreg,yreg,bflag) \/
c4_T_12(xram,preg,areg,xrog,yreg,bflag) \/
c4_T_13(ram,preg,areg,xreg,yreg,bflag) \/
¢4.T.14(ram,preg,areg,xreg,yreg,bflag) \/
c4,T_16(ram,preg,areg,xreg,yreg,bflag) \/

c4_F_12_0(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_12_1(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_12_2(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_12_3(ram,preg,areg,xreg,yreg,bflag) \/

¢4, F_345_3(ram,preg,areg,xreg,yreg,bflag) \/
¢4_F_345_5(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_346_7(ram,preg,areg,xreg,yreg,bflag) \/

¢4 F_O(ram,preg,areg,xreg,yreg,bflag) \/
c4.F_2(ram,preg,areg,xreg,yreg,bflag) \/
c4.F_3(ram,preg,areg,xreg,yreg,bflag) \/
c4._F_4(ram,preg,areg,xreg, yreg,bflag) \/
c4_F_5(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_6(ram,preg,areg,xreg, yreg,bflag) \/
c4_F.7(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_8(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_9(ram,preg,areg,xreg,yreg,bflag) \/
c4_F_10(ram,preg,areg,xreg,yreg,bflag) \/
c4.F_11(ram,preg,areg,xreg,yreg, bflag)

78

The proof, as before, considers a very large number of cases, represented initially
in an abstracted way. The first sixteen sub-conditions shown are comparison op-
erations; the next four are shifts; the next three are non-comparisons with the
program counter as destination; and the final eleven are non-comparisons with
one of the other registers as destination. (Note that among the latter eleven, no
sub-condition has a function field value of 1; 1 is reserved for procedure calls,
which are considered as a separate major operation, not a variety of PERFORM
ALU operation; and 13, 14 and 15 are dis-allowed as values.)

These conditions define thirty-four major states of the PERFORM ALU type,
where initially (and in [5]) we had considered just one. Similarly, the PERFORM
ALU states that follows a READMEM state or an INDEX and a READMEM
state (in sequence) also branch into multiple states (twenty-nine each); these are
elaborations of the corresponding PERFORM ALU operations in which the source
address is either computed or looked up in memory and then computed, rather
than just being taken literally.

The complete set of minor state transition theorems tells us that besides the
FETCH state, other major states also offer a choice of next state. For example,
the INDEX state can be followed by any of the four read or write operations
(or by STOP). Also, as in the add-overflow example, the PERFORM ALU state
sometimes specifies a choice between STOP or FETCH as the next state. (Had
we considered the case in which the function selector were 4, indicating addition
without overflow checks, there would have been no choice of next states.) In gen-
eral, STOP-FETCH choices are governed by conditions which we call ¢17. In the
add-overflow case, we define c17_r_s, based on the complicated stopping expression
produced in that case, in the context of having previously fetched an instruc-
tion. (See Section 9.) The condition holds if the machine does not stop. The
corresponding condition is just the negation, so proving that all possibilities are

covered is easy.

8.2 The Major State Tree

In the analysis of the minor states, it was never the case that at a given minor
state there was a choice of next minor state; the sequences were linear. This is not
true of major states; the analysis of the way major states follow each other leads
to a representation of the major state transitions of the block machine as a tree
(or more accurately, a graph). Each possible sequence of major states (i.e. each

path through the graph) is represented in Figure 3, below.

79

FETCH

WRITEIO

WRITEMEM

> READMEM

\
/

Fig. 3:Viper Block

FETCH

< STOP } | PERFORM

PRECALL

r KPERFO RM

Major State
Tree Schema

FETCH

READIO

) {

_.@

A 4

INDEX

WRITEIO

WRITEMEM

READIO

\ PERFORM [
STOP
PRECALL PERFORM -

;

PERFORM

PRECALL

PERFORM

STOP

FETCH

N

/

PERFORM

STOP
FETCH
FETCH
STOP

FETCH
PERFORM

STOP

The bolder lines in the figure are path schemata, e.g. the collective thirty-or-so
paths which follow the pattern of major states shown and contain the PERFORM
ALU state. Of these, five or so in each path schema admit the possibility of
stopping — e.g. the add-overflow case. The stopping cases are also represented
collectively by a bolder line.

For each separate path (not path schema), of which there are one hundred and
twenty-two, we can now consider composing the relevant minor state transition
theorems to infer cumulative major path results. This is done by exactly the same

method which yielded the cumulative minor state results.

8.3 Major State Transitions

The example case is continued; all one hundred twenty-two major state sequences
are treated similarly.

The final cumulative minor state theorems for two nodes are considered: FETCH
and ADD OVERFLOW. A recursive procedure, just as before, is used to compose
then. The first major state in any sequence is always FETCH, so the procedure
uses the minor state cumulative theorem for FETCH as its initial theorem®.

It is assumed that condition ca.r.s holds. We then procede as before, using
the case assumption where possible, and stopping the first time the major state
becomes 1 again, indicating a fresh FETCH cycle. The possibility of the state
becoming 8 (STOP) must also be dealt with; the minor state cumulative theorem
for the STOP major state (not shown) asserts that at the final time (time n+1)

major_sig(n+l) = (reset_sig n => #0010 | #1000)

so that the next state may be 2 (RESET) or 8 (STOP), depending on the reset
signal. The minor state cumulative theorem for the RESET state asserts that at

the final time (time n+4)

major.sig(n+4) = #0001

This means that the block machine will remain in the stop state indefinitely, until
and unless the reset line (connected to the external line e_resetvar, as we have seen)
becomes set, the next time after which it will move to the RESET state and thence
to FETCH again. Since a possibly infinite path cannot conveniently be analyzed,

the analyis stops at the point at which the STOP state is reached. In any case,

80T his is another instance in which the informal description of the Viper block machine is required
for the anaylsis; there is nothing in the specifications to suggest that FETCH is special in this way
— though of course it would be a sensible guess.

31

since the high level and major state specifications of Viper do not take resetting
into account at all, there would be no point in trying to find a method, using an
inductive argument, say, that allowed us to trace all paths back to FETCH.

Suppose that c_17.r.6 holds (the no-stop case). The recursive ML procedure is
applied to the initial theorem (the cumulative minor state theorem for FETCH).
The procedure then infers the sequence of cumulative theorems for each major
state, culminating in the one whose major state points back to FETCH again.
In this example, the final theorem is the next one after FETCH: the add-verflow
theorem.

To shorten the expressions as results accumulate over major paths, we abbrevi-
ated the recurring source and memory sub-expressions:

|- REGSELECT_ABBR(areg,xreg,yreg,preg,ram) =
NOT32
(REGSELECT
(areg,xreg,yreg,
NOT20
(WORD20
4
(SEG
€0,19)
(BITS32
(N0T32
(gonnsz
v
(SEG(0,31) (BITS33(WORD33((VAL32 (WORD32(VAL20 preg))) + 1)),
WORD2(V(SEG(10,11) (FETCE_ABBR(ram,preg))))))

|~ MEM_ABBR(ram,preg) =
WORD32
(V(SEG(0,19) (BITS32(FETCH21 ram(WORD21(V(CONS F(BITS20 preg))))))))

At the end, the a-register’s final value is

areg_sig(n+12) =
(("EL
(]
(BITS7
(DSFPRIM(WORD3(V(SEG(5,7) (FETCH_ABBR(ram_sig n,preg_sig n)))))))) =>
WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32
(REGSELECT..ABBR
(areg_sig n,xreg_sig n,yreg_sig n,preg_sig n,ram sig n))) +
(VALSZ%HEH_ABBR(ram_sig n,preg_sig n)))))))) |
areg_sig mn)

Compared with the result for the addition operation in isolation (page 68), this
naturally has the same form; but the value taken from the temporary register
(t-register) is the word obtained from memory; the destination field found in the
instruction register is the destination field of the looked-up word, as so on — as one
would expect.

In the corresponding major sequence with overflow (i.e. assuming that ci7_rs

does not hold), the final value of the a-register, and so on, is the same as above —

82

the addition is still performed. However, the stopping value becomes true in this
case, and the next major state is 8 (STOP).

As in the minor state transitions, assumptions accumulate when we compose
the theorems. Here, assumption sets from the two major states are produced. As
a result, we -have to have assumed, by the final theorem in the sequence, that
o_errorbar_sig and e_resetbar_sig are true from the initial time through time n+11; that
e_reply_sig and e_stepbar_sig are true from the initial time to time n+s; and the former
assumptions about the initial state. That is, some signals have to persist through
both major states while others only have to persist only until time »+s, through

the fetch operation. The rest only have to be true initially.

8.4 Conclusions about the Major State Transitions

We apply the same method to all one hundred twenty-two major state paths. The
procedure is similar for all, though in each case there are small variations which
make it difficult at first to design a uniform procedure. The total bulk of the
theorems can be imagined; the final result in this relatively simple example is a
six-page theorem (pretty-printed), and the complications caused by the occurrence
of a READMEM (or an INDEX followed by a READMEM) operation before the
addition produce very much longer cumulative results.

Once all the major paths through the graph shown in Figure 3 are derived, the
formal analysis is provably complete; there is then a complete, proved picture of
the block machine’s behaviour on all instruction classes (and an assurance that no
instruction classes have been overlooked). This in itself is useful because it could
be given to the original designers for inspection; just perusing the results could
reveal problems. Furthermore, the proved results could be used as the basis for a
simulator.

For the non-ALU sequences, the results are not very complicated and they appear
to be as intended. Some of the arithmetic-logic paths are also apparently correct.
Others, in particular the additions, subtractions and comparisons, are neither
obviously correct nor incorrect, and require further study. So far, there do not
seem to be any definitely incorrect results, but obviously, since the formal analysis
ends at this point, there very well could be. For that reason, a great deal of care
should be taken in describing the Viper block model as being ‘verified’; it has to
date only been analyzed as described in this section, and inspected (as described
in the next section).

The rest of the analyis is completely speculative: we explore what facts and

83

equipment would be required to complete the proof up to the point of equivalence
with the high level.

9 Speculation on the Rest of the Proof

In Section 6.1, the nature of the state transformations at the specification level was
illustrated. We have so far deduced the behaviour of the block machine on every
instruction schema, and proved that none was omitted. To complete the proof of
correctness of the Viper block model with respect to the high level specification,
it would be necessary to compare the high level and block level results for every
traversal of the major state tree of the block machine — that is, for over one
hundred cases — where each such traversal corresponds to the processing of a
single instruction schema. To be able to compare the two sets of results, the logical
conditions determining a particular traversal would first have to be related to the
conditional choices of the high level specification; then the high level definition
would have to be fully unfolded in every case; and finally, the results at the two
levels would have to be proved equivalent in some appropriate sense. None of these

things has been done, for several reasons:

1. The amount of work involved in proving this number of cases would be

considerable, even though there is a certain amount of common effort.

2. Both (i) relating the block’s major state path predicates to the high level
conditional choices and (ii) relating the block results to the high level results
involve a great deal of intricate reasoning about complex bit manipulations.
At the time this research was done, there was not enough infrastructure
in HOL to support sophisticated reasoning about bits and words; the only
method would have been to carry along a large (and possibly inconsistent)
set of assumptions about bit-strings. T. Melham [20] at Cambridge is cur-
rently developing a definitional framework for bit-string reasoning in HOL.
However, it would still remain to build within that theory a library of the-
orems adequate to support the complex bit-manipulations involved in the

equivalence proof.

3. The results at the two levels are quite disparate in the more difficult cases
(particularly in cases of ALU operations which are not shifts). Up to the
present point in the analysis, the definitions were capable of being unfolded

without deep understanding of Viper’s design or methods of computation.

84

However, relating the block results to the high level results could not be
approached in the same naive way; it would require extensive co-operation

between the verifier and the Viper design team.

Nevertheless, it is possible, and quite useful, to speculate on what would be in-
volved in completing the equivalence proofs.

The general form of the ultimate correctness statement was given in Section 5.
Further details of the form can be found in [5]; this applied to a major state
machine defined directly, but the form of the statement for the block machine
would be very similar. The only forseeable complication is that in the block
proof, there are the sets of accumulated assumptions attached to each path result,
different in each case, which would probably complicate the task of tying the cases
together.

The equivalence proofs are necessarily goal-oriented, unlike most of the proofs
described above. That is, it is known what the results are for corresponding cases
at the two levels, so one begins with the goal and tries to infer the equavilence by
applying proof strategies. Goal-oriented proofs are generally more difficult than
the rather deterministic unfolding-style foward proofs seen thus far; they require
more insight into the problem on the part of the user.

As mentioned, a large body of facts about bit-strings are required to relate
block level and high level terms. These are often phrased rather differently — for
example, high level expressions are in terms of 32-bit fetched instructions, while
block level expressions are in terms of segments of 12-bit instruction codes placed
in various internal registers. Because the facts required are not very profound, we
assume that they will eventually form part of a theory of bit-strings, and ignor
them by simply equating the register and memory source expressions at the two
levels. As in Section 5, the two expressions are be abbreviated respectively as
REGSELECT_ABBR(areg, xreg, yreg,preg,ram) and MEM_ABBR(ram,preg).

Unfolding the high level definition would be straightforward; it is unfolded in
a forward way exactly as the block definitions were unfolded. The really difficult
part of the equivalence is not relating the predicates to the conditional choices, but
relating the results at the two levels. For example, in the addition-overflow case
(where the destination is not the program counter) we have claimed (Section 6.1)

that the sum specified at the high level by the function av is

85

WORD32

(BITS34

(WORD34
((VAL33(SIGNEXT (REGSELECT_ABBR(areg,xreg,yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(ram,preg))))))))))

where sign extension (siemexr) was defined as the construction of a 33-bit word from
a 32-bit word by copying the top bit: '

|- tw. SIGNEXT w = WORD33(V(CONS(EL 31(BITS32 w))(BITS32 w)))

The values of the two sign-extended words are added to form a 34-bit word from
which the top two bits are then dropped. On the other hand, the sum we have
laboriously inferred at the block level is

WORD32
w
(SEG
(0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) +
(VAL32 (MEM_ABBR(ram,preg))))))))

which involves adding the values of the two registers to form a 33-bit word and
dropping the top (thirty-second) bit. One can convince oneself that the two sums
are equivalent, but again, the infrastructure to do this formally in HOL is at
present rather limited. Further, the difficulty in this case, and more so in some
others, stems from the different methods of computation used at the two levels;
here, one level is in terms of a 34-bit sign-extension addition algorithm, while the
other is an abstract addition with a carry into the thirty-third bit which is then
ignored. The difference is clearer in the case of the overflow expressions; the new
overflow condition (the high level stopping flag) at the high level was claimed to
be

~(EL
32
(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT_ABBR(areg,xreg,yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(zam,preg))))))) =
EL
31
(BITS34
(WORD34
((VAL33(SIGHNEXT(REGSELECT_ABBR(areg,xreg,yreg,preg,ram)))) +
(VAL33(SIGNEXT(MEM_ABBR(zam,preg))))))))

That is, overflow depended on the equality of the thirty-second and thirty-first bits
of the 34-bit sum (comprising bits 0 to 33) of the values of the 33-bit sign-extended

registers. At the block level the corresponding overflow expression is inferred to

be

86

(EL 31(BITS32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) =
EL 31(BITS32(MEM_ABBR(ram,preg)))) /\
~(EL 31(BITS32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) =
EL
31
(BITS32
(WORD32
w
(SEG
(0,31)
(BITS33
(WORD33
((VAL32(REGSELECT.ABBR(areg,xr

eg,yreg,preg,ram))) +
(VAL32 (MEM_ABBR(ram,preg)))))))

yr
NN

Here, the overflow depends on the top bits of the two original registers as well as
on the penultimate bit of the 33-bit sum of the values in the two original registers.
It is difficult to relate these two expressions even informally, aside from problems
of reasoning about bit-strings.

In a typical comparison case, we have claimed that the equality of two registers,

at the high level, is tested simply by

REGSELECT_ABBR(areg,xreg,yreg,preg,ram) = MEM_ABBR(ram,preg)

At the low level, it happens that the expression inferred is

v
(SEG
(0,15)
(BITS32
(WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg, xreg,yreg,preg,ram))) +
) A ((VAL32(HOT32(MEM_ABBR(ram,preg)))) + 1))))))))) =
0
w

(SEG
(16,19)
(BITS32
(WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg,xreg,yreg,preg, ram)))
((VAL32(NOT32(MEM_ABBR(ram,preg)))) + 1))))))))

+

0 /\
w

(SEG
(20,31)
(BITS32

(WORD32

v
(SEG
€0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram)))
¢ (VAL32(NOT32(MEM_ABBR(ram,preg)))) + 1)))))))))

0)

Here, the register and memory source are combined by negating the memory source

and adding one to its value, then adding that value to the value of the register

87

source. The thirty-third bit of that sum is dropped, and the 32-bit result is
partitioned into three sections, each of which is tested for equality to 0. Again, it
takes some thought to convince oneself that the two levels are equiavlent; and only
the designers of Viper could explain the computational significance of the block
level partition.

For the less-than comparison (source value is less than memory value) the top

level result was claimed to be

EL
32
(BITS34
(WORD34
((VAL33(SIGNEXT(REGSELECT.. ABBR(areg,xreg yreg preg,ram)))) +
((VAL33(SIGNEXT(MEM_ABBR(ram,preg))) = 0) => 0 |
(VAL33(NOT33(SIGNEXT(MEM_ ABBR(ram,preg))))) +1))))

while at the block level what we derive is

“(EL 31(BITS32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) =

31
(BITS32
(WORD32
v
(SEG
(0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) +
((VAL32(NOT32(HEM_ABBR(ram,preg)))) + 1))))))))) /\
~EL 31(BITS32(MEM_ABBR(ram,preg))) \/
EL 31(BITS32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) /\
EL
31
(BITS32
(WORD32
v
(SEG
€0,31)
(BITS33
(WORD33
((VAL32(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) +
((VAL32(NOT32(MEM_ABBR(ram,preg)))) + 1))))))))

Here, the top bits of the original registers and the top bits of the same sum as
before are the determining factors. This is a case in which it is not all easy to see
the connection between levels, and not easy to explain the differing methods of
computation.

Finally, the procedure call case was said to give the following jump address at

the high level:

WORD20(V(SEG(0,19) (BITS32 (MEH_ABBR(ram,preg)))))

At the block level the address is inferred to be:

NOT20(WORD20(V(SEG(0,19) (BITS32(NOT32(MEM_ABBR(ram,preg)))))))

38

which is clearly equivalent (once we have proved suitable lemmas about inversion).

The expressions resulting from indirect addressing, or worse, offset addressing,
are particularly long and cumbersome, though the ideas should be the same, for
both, as in the corresponding simple cases.

In summary, some of the pairs of high and block level expressions are not related
in an obvious way, while others require only simple lemmas to be shown equal.
The main difficulty rests in understanding and relating the different methods of
computation at the two levels.

A minor oddity is that at the block level, two store operations are performed
when one would be expected. The high level memory value resulting from this
operation is simply |

STORE21

(WORD21
v

(CONS

F

(BLTS20(WORD20(V(SEG(0,19) (BITS32(MEH_ABBR(ram,preg))))))))))
(REGSELECT.ABBR(areg,xreg,yreg,preg,ram))
ram

whereas at the low level the new memory value is

STORE21
(WORD21
v
(CONSs
F
(BITS20(WORD20(V(SEG(0,19) (BITS32(MEM_ABBR(ram,preg))))))))))
(REGSELECT_ABBR(areg,xreg,yreg,preg,ram))
(STORE21
(WORD21
v
(CONS
F

(BITS20(WORD20(V(SEG(0,19) (BITS32(MEH_ABBR(ram,preg))))))))))
(REGSELECT..ABBR(areg,xreg, yreg,preg,ram))
ram)

The double store is clearly equivalent to a single store, and there is apparently a
reason for this construction®!,

A slightly more puzzling discrepancy is that the stop flag component of the high
level (visible) state is, in exactly one case, not equivalent to the block level stop flag.
Because of this, the two flags are not identifiable, although one might well expect
them to be. The instruction schema on which they differ is the illegal instruction.
The high level function specifies that in any of several illegal instruction types,
the new state will have all other registers unchanged but the stop flag set to
true (see page 29). At the block level, on the other hand, the new value of the

stopping flag is determined exclusively by whether the program counter can be

31C. Pygott, private communication.

89

incremented without exceeding twenty bits — and any other illegal conditions are
ignored. Because of this fact, the two stopping flags cannot be identified (even
though in all other instances they correspond). To circumvent the problem (which
seems unintentional), we have to relate the stopping flag at the high level to the
equation ‘major = 8’ at the block level — i.e. to whether the major state is STOP.
This does give a pair of corresponding expressions, but it is rather unaesthetic.
Since the equivalence proof can be explored but cannot reasonably be completed
at the present time, the next logical step was for the designers to carefully examine
the block results. With suitable abbreviations these are quite readable, and the
designers were able to report that the block machine results bore at least a roughly
plausible relation to the specified results. This is of course no substitute for a proof,
but is a good sign. Nevertheless, it remains possible that a completed formal proof
might reveal subtle errors not obvious from an informal scan of the results by the
designers. Thus it is really too soon to claim that the Viper block model has been
verified, and, as discussed in Section 2, a great deal of care should be taken in

making that sort of claim.

10 Lessons and Conclusions

In this section we amplify some of the points made in the Introduction.

This report has described the partially completed proof of correctness of the
block model of the Viper microprocessor. The block model is a register-transfer
level model of Viper, comprising functional descriptions of the computational units
such as the ALU, together with pictorial descriptions of the flow of data and
control signals, over time, between units. Viper’s correctness is analyzed relative
to a higher level specification given in terms of abstract state transformations. The
block model was intended to assist in Viper’s circuit design phase. Both Viper
and the block model were developed at RSRE, by J. Cullyer, C. Pygott and J.
Kershaw. The idea of structuring the proof according to the tree of execution
paths is due to J. Cullyer.

The project thus far has achieved the following:

o We have extracted a fully formal representation of the block machine based
on the original block definitions and diagrams. This has been done in the
HOL theorem proving system, in which functions (in the mathematical sense)
are regarded as first-class objects of the logic. The block machine itself

is expressed as a function, so that one can infer its value when applied

90

to arguments. The representation determines the set of possible execution

sequences of the machine,

Through a process of inference consisting in recursively instantiating the
theorems expressing the results of individual major state traversals, we have
deduced the cumulative effects of each of the block model’s major state
sequences. Each sequence in this sense represents the execution of a single
instruction type. Each major state traversal is achieved in turn by a sequence
of minor events itself having a cumulative effect. Therefore the analysis is
hierarchically structured according to major and minor sequences. The in-
dividual major and minor state traversal theorems themselves rely on a very
large number of lemmas about the basic blocks comprising the block model.

These lemmas are all proved by straightforward unfolding of definitions®?,

In effect, we have symbolically evaluated the machine through each execution
path, but with the additional security of having proved that the results follow
from the definitions. As a side-effect, this provides a secure basis for building

a simulator.

Assumptions about certain incoming and initial signals limit the cases con-
sidered; this is necessary in part because the high level specification is itself
incomplete as regards certain inputs to the block model (e.g. externally

forced resets).

We prove further that all possible instruction types have been considered,

making the description complete as well as correct.

The fourth and concluding phase of the project, about which we have only

speculated, would involve proving a congruence between the block results and the

high level results for corresponding instruction types. This phase is impractical to

complete at the moment, for several reasons. One reason is that the number of

cases and the size of some of the resulting expressions is dauntingly large (for what

would appear to be dwindling research interest). A second reason is the current

lack of a well-developed HOL infrastructure for supporting advanced reasoning

about bit-string manipulations. (T. Melham at Cambridge ([20]) is working on

developing an appropriate HOL theory, but it still remains to build within this

theory a library of useful theorems leading up to the sort of theorem needed in

32By ‘unfolding’ we mean the application of lambda-expressions to values, followed by beta-
reduction.

91

the equivalence statement — see Section 9.) Finally, it became clear that relating
the two disparate descriptions would involve close interaction between verification
team and design team, and could not be done as independently as the proof thus
far has been.

The success of the proof thus far must be qualified by three caveats, all of which
have been discussed in detail in Section 2. Firstly, as just mentioned, the high
level specification itself is incomplete as regards Viper as a whole; it describes
only the fetch-decode-execute cycle of the machine. Proving that a design satisfies
an incomplete specification still leaves plenty of scope for an unacceptable imple-
mentation of the design. Secondly, the problem of establishing that the formal
representation of the block is itself accurate has no real solution. For example,
in the present proof, an incorrect representation was originally derived by cross-
naming two block outputs of the same type. The description was subsequently
used to generate plausible block results (in most cases) until the error happened
to be noticed. Thirdly, the block level itself is still very abstract. Between the
block level and the manufactured chip there remain, for example, the gate level
and the electronic level — at which problems seem at least as likely to occur. Fur-
thermore, a physical chip cannot be verified in a mathematical sense. Any model
is inaccurate to some extent; a ‘verified’ safety-critical chip can still go wrong and
cause loss of life and environment.

As has been described at length, all of the aﬁalytical concepts of the proof stem
from the functional representation we derived of the block machine. These include
the state of the block machine, the shape of the major state tree, and all of the the
path predicates. Almost the whole of the proof (with the exception of the proofs
that no instruction types have been omitted) consisted in unfolding definitions on
typical values. This is not the only mode in which HOL can be used, but it is the
easiest, as it requires the user to follow rather than lead the analysis. Indeed, the
proof thus far requires minimal understanding of the operation of Viper and its
design rationale; all that is really essential is to understand that there are major
and minor cycles, and that the major start with FETCH (1), while the minor
start with 0. The fourth phase, however, in which the block results are shown to
implement the specified results, is different. There, instead of applying routine
transformations to known facts to yield unforeseen results, conjectures (goals) are
reduced to subgoals by application of carefully planned strategies. These strategies
have to embody some understanding of the reason for the implementation, or the

proof drifts into useless subgoals.

92

A brief account of the size of and time required by the proof may be of interest.
(It should be borne in mind here that all HOL proofs, like LCF proofs, are actually
performed to the smallest logical steps; any lemmas used must already have been
proved; and no procedures are used to shortcut the process of formal deduction.)
The approximate number of primitive inference steps for the various groups of
theorems is given below, with the approximate elapsed cpu time on a 12-megabyte

Sun-3, and the relevant section of this report (if the issue was discussed).

o Deriving the representation: 95,000 steps (2 hours) (Section 6)

e Lemmas about particular block values for specific minor and/or major states:
5,130,000 steps (50 hours) (Section 7.6)

o Theorems about the transitions through minor states: 210,000 steps (15
hours) (Section 7)

e Proof that all cases have been covered: 160,000 steps (14 hours) (Section 8.1)
e Lemmas about major path predicates: 530,000 steps (7 hours)

e Theorems about the transitions through major states: 128,000 steps (10
hours) (Section 8)

e Projected theorems expressing equivalence to the high level, provided with

appropriate lemmas about bit-strings: 900,000 steps (14 hours) (Section 9)
e Total without equivalence proof: 6,253,000 steps (98 hours)

o Total with equivalence proof: about 7,153,000 steps (about 112 hours)

This effort took one person working full-time eleven months to complete. It can be
observed that the greatest bulk of the proof by far is in the lemmas which describe
the behaviour of the individual blocks on specific major and minor values. These
lemmas are all very simple unfoldings; there are just a large number of them, since
the block results all have to be inferred for most possible major and minor values.
This is encouraging, since that phase involved relatively little time or effort on the
part of the user. The most user time was spent in tracing the one-hundred or so
execution paths, but again that was a fairly routine process. The most difficult
(creative) part of the proof effort was deriving the logical representation of the

block machine.

93

These observations suggest that for a trained user it is not difficult to verify
computer designs; it requires more patience perhaps than cleverness. This holds
despite the absence of sophisticated proof-editors, friendly interfaces, helpful er-
ror messages, or support for proof structuring (beyond a simple subgoal stack).
However, it is true that unfolding one hundred-odd cases was tedious. Although
the cases were quite similar to one another (especially the sets of corresponding
ALTU cases using different means of addressing), each seemed to involve some com-
plication which prevented previous strategies from working without some minor
change. Generalizing the strategies would be a useful exercise.

The representation methods used in the block proof were all standard in ‘Cam-
bridge style’ hardware verification circles; the author cannot claim any original
contribution. Likewise, the proof strategies deployed (as mentioned) were simple
ones — not particularly interesting or original in themselves. Only the size of the
proof and the realistic nature of the problem are unique (and probably also the
length of some of the theorems).

In terms of the original plan [9] to prove that the block machine implements
major state machine (which was already proved [5] to implement the high level
specification), it appeared to be more sensible to make the link directly from the

block level to the high level. We list some of the issues related to this decision:

e The use of the intermediate level seemed unnecessary, for a start; since equiv-
alence with the top level was the ultimate goal anyway, the need for some

sort of transitivity argument was avoided by a direct connection.

e The block and major state levels, though both culminated in major state
transition trees, produced rather differently structured trees with different
path predicates; the tree and conditions at the block level stem directly from
the block representation function, wheras the major state level was designed
directly to implement the top level specification. This meant that the local
contexts of the trees were difficult to relate. (At the high level, however, the
conditional expression branches directly into a state transformation for each

possible operation, so there is no problem about local contexts in a tree.)

e The expressions derived at the major state level were never fully unfolded
(in particular, ALU expressions were not unfolded) because the property
proved did not involve any computation. That is, in the previous major
state tree there was only one FETCH-PERFORM path rather than one for

each possible ALU operation, so the major state level missed the essence of

94

the block level: Viper’s computational behaviour. This further complicated
the use of the major state machine as an intermediate level, as the previous

major state results would have to be much further unfolded to be useful.

¢ Finally, the block level path predicates only emerge from a consideration of
the block level major paths, because of the accumulation of results. That is,
block level conditions such as c17.r_s (see page 79) require the whole FETCH-
PERFORM sequences to be considered, so that the use of the intermediate

level does not seem to get round that stage of analysis (as hoped).

These problems raise the more general issue of using intermediate levels at all,
and if so, how they are designed. In a layered approach, it may be difficult to
predict, in advance of analyzing the low level in detail, what are the useful concepts
at intermediate stages, and what are useful bridging levels. In this case it seemed
a good idea to isolate the flow of control correctness at the major state level, and
the computational problem at the block level — but in fact the block level involved
both control and computation, and the two were intertwined, so the separation
did not work to assist the proof. This is a subject deserving further thought and
research. (J. Joyce at Cambridge is also working on this problem [18].) In any
case, though not engaged directly, the major state proof was certainly a useful
preliminary exercise for the block proof; it established the methodology on a more
manageable scale.

Another conclusion, in considering the block proof as a feasibility study in real-
istically sized proofs, is the performance of the HOL system. HOL does not have a
particularly good implementation; it was laced togther from old LCF code which
itself has complex historical origins. It is therefore amazing and very encouraging
that the system performed so well on a very large proof — orders of magnitude
larger than was originally intended when the first LCF system was implemented
in the 1970’s. This can only be attributed to the successful design principles de-
vised R. Milner, which shine through the layers of implementations and patches.
Indeed the only bottleneck in the performance of the block proof was a short-
age of disc-space, not the performance of the system or its capacity for handling
(parsing, retreiving, manipulating, etc) massive expressions or for managing huge
intermediate proof structures.

The massive expressions that comprise the proof arise mostly through the ac-
cumulation of effects through layers of processing, as well as through the absence

of logical equipment for simplifying expressions about bits and bit-strings. Apart

95

from that, it would have been better (in retrospect) to have abbreviated the longer
recurring sub-expressions as much as possible, for readability and economy; some
abbreviation was used, as noted in the paper, but on the whole it was difficult to
predict intelligent abbreviations in advance, and after the fact, a bit tedious to
re-do the proof for that reason alone.

Re-doing proofs is another issue worth mentioning; at one stage our represen-
tation was actually incorrect (involving crossed lines, as mentioned) and it was
of course necessary to re-do the proof up to that point. (In fact, this happened
a second time because of a typographical error by the author.) The re-doing
was facilitated by having preserved the ML code which generated the proof, and
simply re-running it on corrected definitions. In fact, since proofs are performed
rather than produced as sequences of (millions of) steps, the ML code generating
the proof is the only tangible end product of a proof effort, and indeed the only
‘abstract’ description of the proof that one ever has. Two facilities would be de-
sirable in HOL, though both raise philosophical/research problems. One would
be a genuinely abstract description of the structure of a proof — more abstract
than the sequence of tactics or inference patterns that generate the proof. The
other would be a way of tracing ‘material dependence’ of theorems, so that when it
were necessary to go back and change the problem statement, there were a way of
knowing which areas of the proof might be or definitely could not be affected. As
it stands, the entire proof has to be redone in such cases, which means replacing
documentation, and so on.

Many readers will want a simple answer to the question: is Vipér correct at the
block level? The major state proof [5] was wholly completed, and errors were found
in the design of the major state model. It may therefore come as a disappointment
that the present proof has not been carried far enough for a definite answer to be
given; it amounts to an enalysis of the block machine under all circumstances
covered by the specification, but is not a proof that the block model meets the
specification. On the positive side, it is now possible for the designers to (i) make
a visual inspection of the complete description of the block model’s behaviour,
and (i) use the description to simulate the block model in a secure way. These
factors may go some way to answering the question. Aside from some confusion
about the stopping behaviour of the machine (Section 9), which in any case can
be circumvented as described, there does not so far appear to be any problem —

that is the best answer we can give.

96

11 Acknowledgements

Thanks to Mike Gordon who assisted and advised throughout the project, and who
helped with this report; and to to the Hardware Verification Group at Cambridge
University Computer Laboratory. The work described here was supported by a
grant from RSRE under Research Agreement 2029/205(RSRE).

References

[1] H. G. Barrow, VERIFY: A Program for Proving Correctness of Digital Hard-
ware Designs, Artificial Intelligence Vol. 24, 1984

[2] A. Camilieri, M. Gordon and T. Melham, Hardware Verification using
Higher-Order Logic, Proceedings of the IFIP WG 10.2 Working Conference:
From H.D.L. Descriptions to Guaranteed Correct Circuit Designs, Grenoble,
September 1986, ed. D. Borrione, North-Holland, Amsterdam, 1987

(3] A.Church, A Formulation of the Simple Theory of Types, Journal of Symbolic
Logic 5, 1940

[4] A. Cohn and M. Gordon, A Mechanized Proof of Correctness of a Simple
Counter, University of Cambridge, Computer Laboratory, Tech. Report No.
94, 1986

[5] A. Cohn, A Proof of Correctness of the Viper Microprocessor: the First Level,
VLSI Specification, Verification and Synthesis, eds. G. Birtwistle and P.A.
Subrahmanyam, Kluwer, 1987; Also University of Cambridge, Computer Lab-
oratory, Tech. Report No. 104

[6] A. Cohn, to appear, Proceedings of the Banff Hardware Verification Work-
shop, 12-18 June 1988

[7] W.J. Cullyer and C. H. Pygott, Hardware Proofs using LCF_LSM and ELLA,
RSRE Memo. 3832, Sept. 1985

[8] W. J. Cullyer, Viper Microprocessor: Formal Specification, RSRE Report
85013, Oct. 1985

[9] W. J. Cullyer, Viper — Correspondence between the Specification and the
“Major State Machine”, RSRE report No. 86004, Jan. 1986

97

[10] W. J. Cullyer, Implementing Safety-Critical Systems: The Viper Micropro-
cessor, VLSI Specification, Verification and Synthesis, eds. G. Birtwistle and
P.A. Subrahmanyam, Kluwer, 1987

[11] J. Cullyer et. al., forthcoming book

[12] M. Gordon, R. Milner and C. P. Wadsworth, Edinburgh LCF, Lecture Notes
in Computer Science No. 78, Springer-Verlag, 1979

[13] M. Gordon, Proving a Computer Correct, University of Cambridge, Computer
Laboratory, Tech. Report No. 42, 1983

[14] M. Gordon, HOL: A Machine Oriented Formulation of Higher-Order Logic,
University of Cambridge, Computer Laboratory, Tech. Report No. 68, 1985

[15] M. Gordon, HOL: A Proof Generating System for Higher-Order Logic, Uni-
versity of Cambridge, Computer Laboratory, Tech. Report No. 103, 1987;
Revised version in VLSI Specification, Verification and Synthesis, eds. G.
Birtwistle and P.A. Subrahmanyam, Kluwer, 1987

[16] W. A. Hunt Jr., FM8501: A Verified Microprocessor, University of Texas,
Austin, Tech. Report 47, 1985

[17] J. J. Joyce, Formal Verification and Implementation of a Microprocessor,
VLSI Specification, Verification and Synthesis, eds. G. Birtwistle and P.A.
Subrahmanyam, Kluwer, 1987

[18] J. J. Joyce, private communication

[19] J. Kershaw, Viper: A Microprocessor for Safety-Critical Applications, RSRE
Memo. No. 3754, Dec. 1985

[20] T. Melham, private communication

[21] L. Paulson, Interactive Theorem Proving with Cambridge LCF, Cambridge
University Press, 1987

[22] C. H. Pygott, Viper: The Electronic Block Model, RSRE Report. No. 86006,
July 1986

[23] Viper Microprocessor: Verifiable Integrated Processor for Enhanced Reliabil-
ity: Development Tools, Charter Technologies Ltd., Publication No. VDT1,
Issue 1, Dec. 1987

98

12 Appendix: The HOL Viper High Level and
Block Level Definitions

The following two sections give the complete, corrected RSRE definitions in HOL
format of (i) the high level specification and (ii) the blocks of the block model. In
each section, the constants (with types) are shown first, followed by the definitions.
The block definitions are to be interpreted in conjunction with Figure 1 (page 32).
Note that the constants at the two levels are completely distinct; in particular the
constant aLu, representing the arithmetic-logic units, occurs at both levels but does
not represent the same function in the two cases. This should be regarded as an
unfortunate coincidence of names. The state in the high level definitions uses the

variable names

(ram:mem21_32,p:word20,a:word32,x:word32,y:word32,b:bool,stop:bool)

whereas the visible part of the block level state uses

(ram:mem21_32,preg:word20,areg:wordSZ,xreg:word32,yreg:words,bflag:bool,stop:bool)

where p corresponds to preg, and similarly for all the other variables, except that
the stop component at the high level does not work out to correspond to the stop
component at the block level. (See Section 9.)

The definitions are implicitly universally quantified over all free variables.

12.1 The High Level Specification

12.1.1 The Types

VALUE: word32#bool#bool->word32
OFLO:woxrd32#bool#bool->bool

CARRY: word32#bool#bool->bool
SVAL:word32#bool#bool~>bool
BVAL:word32#bool#bool->bool
TRIM33T020: word33->word20

TRIM32T020: word32->word20

TRIM34T032: word34->word32

PAD20T032 :word20->woxrd32
SIGNEXT:word32->word33
RIGHT:bool#word32->word32
LEFT:woxrd32#bool~>word32

RIGHTARITH: word32->word32

HEG: word33->num
ADD32:word32#word32->word32#bool#bool
SUB32:word32#word32->word32#bool#bool
INCP32:word20~->word32
FINDINDEX:woxrd2#mord32#word32#vord32~->word32
DEC: (num # num)#word32->num
R:word32->word2

H:woxrd32->word2

D:word32->woxrd3

C:word32->wordli

FF:word32->word4

A:word32->woxd20
NOOP:word3#wordl#bool->bool

COMPARE: word4#word32#word32#bool->bool
REG: word2#word32#word32#word32#word20->word32

99

IRVALID: word32->bool

INSTFETCH:mem21_32 # word20 ~> word32"

ALU: word4#word2#word3#word32#word32#bool->word32#bool#bool

WRITE:word3#wordi->bool

SPAREFURC:word3#wordl#word4->bool

JLLEGALCALL : word3#wordi#woxrd4->bool

ILLEGALPDEST : word3#wordi#word4->bool

ILLEGALWRITE : word3#wordi#word2->bool

OFFSET:word2#woxrd20#word32#word32->vord32

MEMREAD : mem21_32#word2#word20#vword32#word32#bool#bool->word32

MEHMWRITE :mem21_32#word32#word2#word20#word32#word32#bool~>mem21_32

NILM:word3#wordli#word4->bool

OUTPUT :woxd3#twordi->bool

INPUT: word3#wordl #word4~>bool

HEXT:mem21_32#word20#woxrd32#vword32#word32#bool#bool~>
mem21_32#word20#word32#word32#word32#bool#bool

12.1.2 The Definitions

|- VALUE(result,carry,overflow) = result
|- OFLO(result,carry,overflow) = overflow
|- CARRY(result,carry,overflow) = carry
|- SVAL(result,b,abort) = abort
|- BVAL(result,b,abort) = b
|- TRIM33TD20 w = WORD20(V(SEG(0,19) (BITS33 w)))
|- TRIM32T020 w = WORD20(V(SEG(0,19) (BITS32 w)))
|- TRINM34T032 w = WORD32(V(TL(TL(BITS34 w))))
|- PAD20T032 w = WORD32(VAL20 w)
|- SIGREXT w = (let bitlist = BITS32 w in WORD33(V(CONS(EL 31 bitlist)bitlist)))
|- RIGET(b,r) = WORD32(V(CONS b(SEG(1,31)(BITS32 r))))
|- LEFT(r,b) = (let twice = V(TL(BITS32 r)) in
(b => WORD32((twice + twice) + 1) | WORD32(twice + twice)))
|- RIGHTARITH r = (let sign = EL 31(BITS32 x) in
wonnsz%%(cous sign(SEG(1,31) (BITS32 x)))))
|- REG m = ((VAL33 m = 0) => O | (VAL33(NOT33 m)) + 1)
|- ADD32(r,m) = (let sum = WORD34((VAL33(SIGNEXT r)) + (VAL33(SIGREXT m))) in
let opposite = (EL 31(BITS32 r)) XOR (EL 31(BITS$32 m)) in
TRIM34T032 sum, (EL 32(BITS34 sum)) XOR opposite,
(EL 32(BITS34 sum)) XOR (EL 31(BITS34 sum)))
|- 8UB32(r,m) = (let dif = WORD34((VAL33(SIGNEXT r)) + (NEG(SIGNEXT m))) in
let opposite = (EL 31(BITS32 r)) XOR (EL 31(BITS32 m)) in
TRIM34T032 dif, (EL 32(BITS34 dif)) XOR opposite,
(EL 32(BITS34 dif)) XOR (EL 31(BITS34 dif)))
|- INCP32 p = VALUE(ADD32(PAD20T032 p,WORD32 1))
|~ FINDINDEX(msf,t,x,y) = (let xindex = VAL2 msf = 2 in
(xindex => VALUE(ADD32(t,x)) | VALUE(ADD32(t,y))))
|~ DEC((low,high),w) = V(SEG(low,high)(BITS32 w))
WORD2(DEC((30,31) ,w))
WORD2(DEC((28,29),w))
D WORD3(DEC((25,27) ,%))
[WORD1(DEC((24,24),w))
FF w = WORD4(DEC((20,23),%w))
A
N

w = WORD20(DEC((0,19),w))
00P(dsf,csf,b) = (let df = VAL3 dsf in
let cf = VAL1 csf in
(cf = 0) AND (((df = 5) AND b) OR ((df = 4) ANWD (WOT b))))
|- COMPARE(fsf,r,m,b) =
(let op = VAL4 fsf in
let dif = WORD34((VAL33(SIGNEXT r)) + (NEG(SIGEEXT m))) in
let equal = r = m in
let less = EL 32(BITS34 dif) in
let borrow = (EL 32(BITS34 dif)) XNOR ((EL 31(BITS32 r)) XNOR (EL 31(BITS32 m))) in
((op = 0) => less |
((op = 1) => HOT less |
((op = 2) => equal |

((op = 3) => NOT equal |

((op = 4) => less OR equal |
({op =) => NOT(less OR equal) |
(

P
op
(op = 6) => borrow |
§

op = 7) => NOT borrow |
(op = 8) => less OR b |
((op = 9) => (NOT less) OR b |
((op = 10) => equal OR b |
((op = 11) => (NOT equal) OR b |
((op = 12) => (less OR equal) OR b |
((op = 13) => (HOT(less OR equal)) OR b |
((op = 14) => borrow DR b | (HOT borrow) OR b))
|- REG(rsf,a,x,y,p) = (let r = VAL2 rsf in
((x=0) = a| ((r=1) => x| ((xr=2) =>y | PAD20TO32 p))))

100

|- INVALID value = NOT(value = PAD20T032(TRIM32T020 value))
|~ INSTFETCH(ram,p) = FETCH21 ram(WORD21(V(CONS F(BITS20 p))))
|~ ALU(f£sf,ms¥f,dsf,r,m,b) =
(let £f = VAL4 fsf in
let mf = VAL2 msf in
let df = VAL3 dsf in
let pwrite = (df = 3) OR ((df = 4) OR (df = 5)) in
((£f = 0) => (NOT32 m,b,pwrite) |
((££ = 1) => (m,b,(HOT pwrite) OR (INVALID m)) |
((£ff = 2) => (m,b,pwrite) |
((ff = 3) => (m,b,pwrite AND (INVALID m)) |
((ff = 4) => let sum = ADD32(r,m) in VALUE sum,CARRY sum,pwrite |
((£f = 5) => let sum = ADD32(r,m) in
VALUE sum,b, (OFLO sum) OR (pwrite AND (INVALID(VALUE sum))) |
((£f = 6) => let dif = SUB32(r,m) in VALUE dif,CARRY dif,pwrite |
((££f = 7) => let dif = SUB32(r,m) in
VALUE dif,b,(OFLO dif) OR (pwrite AND (INVALID(VALUE dif))) |
((£f = 8) => ((r OR32 m) AND32 (NOT32(r AND32 m)),b,pwrite) |
((£f = 9) => (xr AND32 m,b,pwrite) |
((f£ = 10) => (NOT32(r OR32 m),b,pwrite) |
((£ff = 11) => (r AND32 (NOT32 m),b,pwrite) |
((£f = 12) => ((mf = 0) => (RIGHTARITH r,b,pwrite) |
((mf = 1) => (RIGHT(b,x) ,EL O(BITS32 r),pwrite) |
((mf = 2) => let double = ADD32(r,r) in
VALUE double,b, (OFLO double) OR pwrite |
(LEFT(x,b),EL 31(BITS32 r),pwrite)))) |
((££ = 13) => (x,b,D) |
((££ = 14) => (,b, D | &b, DINININNINN
|- WRITE(dsf,csf) = (let df = VAL3 dsf in
: let cf = VAL1 csf in (cf = 0) AND ((df = 7) OR (df = 6)))
|- SPAREFUNC(dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VAL1 csf in
let ff = VAL4 fsf in
(cf = 0) AND ((NOT((Af = 6) OR (df = 7))) AND ((£ff = 13) OR ((ff = 14) OR (£f = 15)))))
|- ILLEGALCALL(dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VAL1 csf in
let ff = VAL4 fsf in
(cf = 0) AND ((££f = 1) AND ((df = 0) OR ((df = 1) OR (df = 2)))))
|- ILLEGALPDEST(dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VAL1 ¢sf in
let ff = VAL4 fsf in
(c£ = 0) AND (((af = 3) OR ((df = 4) OR (df = 5))) AND
(NOT((EE = 1) OR ((£f = 3) OR ((£f = 5) OR (££ = TN
|- ILLEGALWRITE(dsf,csf,msf) = (let mf = VAL2 msf in (WRITE(dsf,csf)) AND (mf = 0))
|- OFFSET(msf,addr,x,y) =
(let mf = VAL2 msf in
let addr32 = PAD20T032 addr in
((nf = 0) => addr32 |
((nf = 1) => addr32 |
((mf = 2) => VALUE(ADD32(addr32,x)) | VALUE(ADD32(addr32,y))))))
}- MEMREAD(ram,msf,addr,x,y,io,nil) =
(let m = VAL2 msf in
(nil => WORD32 O |
({m = 0) => PAD20T032 addr |
FETCH21
ram
(WORD21 (V(CORS io0(BITS20(TRIM32T020(0FFSET(msf,addr,x,y))))))))))
|~ HMEMWRITE(ram,source,msf,addr,x,y,io) =
(let m = VAL2 msf in
((m = 0) => ram |
STORE21
(WORD21(V(CONS io(BITS20(TRIH32T020(0FFSET(msf,addr,x,y)))))))
source
ram))
|- NILM(dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VALL csf in
let £f = VAL4 fsf in (cf
|- OUTPUT(dsf,csf) = (let df
|~ INPUT(dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VAL1 c¢sf in
let £ff = VAL4 fsf in (cf

0) AND ((NOT((df

= 7) OR (df = 6))) AWD (£f = 12)))
VAL3 dsf in let cf =

VALL csf in (cf = 0) AND (df = 6))

0) AND ((NOT((df = 7) OR (df = 6))) AND (£f = 2)))

101

12.1.3 The High Level State Transition Function

|- NEXT(ram,p,a,x,y,b,stop) =
(let instbits = BITS32(INSTFETCH(ram,p)) in
let newp = TRIM32T020(INCP32 p) in

let rsf = WORD2(V(SEG(30,31)instbits)) in

let msf = WORD2(V(SEG(28,29)instbits)) in

let dsf = WORD3(V(SEG(25,27)instbits)) in

let csf = WORD1(V(SEG(24,24)instbits)) in

let fsf = WORD4(V(SEG(20,23)instbits)) in

let addr = WORD20(V(SEG(0,19)instbits)) in
let df = VAL3 dsf in

let cf = VALl csf in

let £f = VAL4 fsf in

let comp = ¢f =1 in
let call = (c¢f = 0) AND (£f = 1) in
let output = ODUTPUT(dsf,csf) in
let input = INPUT(dsf,csf,fsf) in
let io = output OR input in
let writeop = WRITE(dsf,csf) in
let skip = NOOP(dsf,csf,b) in
let noinc = INVALID(INCP32 p) in
let illegaladdr = (NOT(NILM(dsf,csf,fsf))) AND
((INVALID(OFFSET(msf,addr,x,y))) AND
(HOT skip)) in
let illegalcl = ILLEGALCALL(dsf,csf,fsf) in
let illegalsp = SPAREFUNC(dsf,csf,fsf) in
let illegalonp = ILLEGALPDEST(dsf,csf,fsf) in
let illegalwr = ILLEGALWRITE(dsf,csf,msf) in
let source = REG(rsf,a,x,y,newp) in
(stop => (ram,p,a,x,y,b,T)
((noinc OR illegaladdr) DR ((illegalcl OR illegalsp) OR (illegalonp OR illegalwr)) =>
(ram,newp,a,x,y,b,T)
(comp => (ram,newp,a,x,y,COMPARE(fsf,source,MEHREAD(ram,msf,addr,x,y,i0,F),b),F) |
(uriteop => (MEMWRITE(ram,source,msf,addr,x,y,ic),newp,a,x,y,b,F)
(skip => (ram,newp,a,x,y,b,F)
let m = MEMREAD(ram,msf,addr,x,y,io,NILH(dsf,csf,fsf)) in
let aluout = ALU(fsf,msf,dsf,source,m,b) in
((af = 0) => (ram,newp,VALUE aluout,x,y,BVAL aluout,SVAL aluout) |
((df = 1) => (ram,newp,a,VALUE aluout,y,BVAL aluout,SVAL aluout) |
((af = 2) => (ram,newp,a,x,VALUE aluout,BVAL aluout,SVAL aluout) |
(call => (ram, TRIM32T020(VALUE aluout),a,x,INCP32 p,BVAL aluout,SVAL aluout) |
(ram, TRIM32T020(VALUE aluout),a,x,y,BVAL aluout,SVAL aluout)))))))))))

12.2 The Block Definitions

Both the types and the definitions are grouped according to the eleven blocks.
The types are as follows:

12.2.1 Minor Block Types

INCHWORD3: word3->word3
NEXTMINOR:bool#bool#bool#tboolitwvord3->gord3

12.2.2 Major Block Types

ILLEGAL_MAJOR:word4->bool

INTRESET: bool#word4->bool
NEXT_MAJOR:bool#bool#wordd#word4->wordd
FIND_HAJOR:booli#bool#boolitbool#tbool#tbool#twordd#word4->wordd
HAJORLOGIC:bool#bool#booli#boolitbool#bool#wordd#tword4->worda#tbool

12.2.3 Timeout Block Types

NEXT_COUNT: word6#bool#tbool->word6
FIND, TIHEOUT:woxd6#bool->bool
TIHEOUT: word6#bool#bool#bool->word6#bool

102

12.2.4 Timing Block Types

FIND.OPTYPE:word4#bool->num

FIND_STA:num#word3->bool
FIND_HALT:nun#word3#bool#bool~>bool
FIND.STB:num#word3->bool

FIND. RS :num#word3->bool

FIND_NM:nun#word3->bool
TIHING:word4#word3#booli#bool#bool->bool#boolitboolitbool#bool

12.2.5 BandStop Block Types

STOP.LOGIC:word3#bool#bool#bool#tbool#bool#boolitbool#bool->bool

B_COMPARE :woxrd4#bool#bool#bool#bool#bool#bool#bool#tbool->bool
B_LOGIC:word3#word4#bool#bool#bool#boolitbool#bool#boolébooliboolitbool->bool
BANDSTOP: word3#word3#word4#boolitbool#word#boolébool->bool#bool

12.2.6 Decoder Block Types

O0SEL:word2->word2

DSFPRIM:word3->word7)

FIND_CALL:bool#word4->bool

I0_READ:word4->wordd

COND_INDEX: word4#bool#word3#bool->wordd

ILLEGAL_0OP:word4#vord3->bool

COND..JUMP :word4#word2->words

COND_FETCH: word4#bool#word3#word2#bool#bool->wordd
FIND_COND:word4#boolitword3#word2#bool#bool#wordd~>words

DECODE, PERFORM: word4#vword3#word2#word2#bool->word3#word3ttword2#bool#word7#word?
DECODE_MAJOR :word4#bool#word3#word2#word2#boolitnord4->vword3tvord3#word2#bool #word7#word7?
GET_BH:word3#word3#word2#bool#word7#word7->word3
GET_SH:word3#word3#word2#bool#word7#word7->word3

GET_RS :word3#word3#word2#bool#word7#word7->word2

GET_CI :woxd3#word3#word2#bool#word7#word7->bool

GET_AL :woxd3#word3#word2#bool#worxd7#word7->word7
GET_CL:word3#word3#word2#bool#word7#word7->word7

INST.DECODER :wordi2#word4#boolitbool->word3#word3#word2#tbool#word7#bool#word7#bool#twordditbool

12.2.7 ALU Block Types

ADD32:word32#word32#bool->word33

ADD32BIT: word32#vword32#bool~>word32#bool
FIND_.SR:bool#bool#bool->bool
BITOP:word32#word32#bool#booli#boolitvord7->word32#bool
GET_RM31 :bool#woxd7->bool
GET..AOUT : word32#bool~>word32

GET_COUT: word32#bool->bool

ALU: word32#word32#bool#bool#word7->word32#word9

12.2.8 Datareg Block Types

CLOCK_REGA:word32#word32#bool#bool~>word32

CLOCK_REGX: word32#word32#bool#bool->word32

CLOCR_REGY:word32#woxrd32#bool#bool->word32

CLOCK_ . REGP: word20#word20#bool#bool->woxrd20

CLOCK_REGT: word20#word32#word32#bool#boolitbool#bool->word32

CLOCK_INST:word32#wordi2#bool#bool~>wordi2

CLOCK_ADDR: word20#word32#word20#bool#bool~>word20

REGISTERS :woxrd32#vword32#word7#boolitboolitword32#word32#word32#word20#word32#word20#wordli 2->
word32#word32#word32#vword20#word32#vword20#vordl2

REGSELECT : word32#word32#word32#vword20#word2->word32

12.2.9 FSelect Block Types

FSELECT: word12~>word4

103

12.2.10 External Block Types

FIND_EDB:word32#word4~>word32

FIND_DO:word32#bool->word32

EXTERFAL : word32#vword20#bool#booléwordditword32#booléboolitboolébool->
word32#bool#boolébool#tbool#word32#word20#boolitvordd#tbooléboolitbooléboolitboolébool

12.2.11 Memory Block Types

MEMORY :mem21_32#word32#word20#boolitbool#bool->mem21_32#word32

The block definitions are as follows:

12.2,12 Minor Block

|- INCWORD3 w = (let valw = VAL3 w in ((valw = 7) => WORD3 O | WORD3(valw + 1)))
|- NEXTMINOR(nextmnbar,advance,reset,intresetbar,minor) =
(let clear = reset DR ((NOT intresetbar) OR (advance AND (NOT nextmnbar))) in
(clear => WORD3 0 | (advance => INCWORD3 minor | minor)))

12.2.13 Major Block

|- ILLEGAL_MAJOR major =
(let majorval = VAL4 major in
(majorval = 5) OR
((majorval = 8) OR
((majorval = 9) OR
((majorval = 12) OR
((majoxrval = 13) OR ((majorval = 14) OR (majorval = 15)))))))
|~ INTRESET(timeoutbar,major) = (ILLEGAL_MAJOR major) OR (NOT timeoutbar)
|- NEXT_MAJOR(stop,call,cond,major) =
(let majorval = VAL4 major in
((majorval = 0) => cond |
((majorval = 1) => cond |
((majorval = 2) => WORD4 1 |
((majorval = 3) => WORD4 4 |
((majorval = 4) => (stop => WORD4 8 | WORD4 1) |
((majorval = 6) => WORD4 4 |
((majorval = 7) => (call => WORD4 3 | WORD4 4) |
((majoxrval = 10) => WORD4 1 |
((majorval = 11) => WORD4 1 | ARB))))))))))
|- FIED_MAJOR(reset,intreset,advance,nextmain,stop,call,cond,major) =
(reset => WORD4 2 |
(intreset => WORD4 8 |
(advance AND nextmain => NEXT_MAJOR(stop,call,cond,major) | major)))
|- MAJORLOGIC
(stop,call, timeoutbar,nextmnbar,advance,reset,cond,major) =
(let intreset = INTRESET(timeoutbar,major) in
let nextmajor = FIND_MAJOR(reset,intreset,advance,NOT nextmnbar,stop,call,cond,major) in
nextmajor,HOT intreset)

12.2.14 Timeout Block

|- NEXT_COUNT(count,reset,strobe) =
(let countval = VAL6 count in
(reset OR (NOT strobe) => WORD6 O | ((countval = 63) => WORD6 O | WORD6(countval + 1))))
|- FIKD_TIMEOUT(count,error) = (count = #111111) OR error
|- TIMEOUT(count,reset,error,strobe) =
(let nextcount = NEXT_COUNT(count,reset,strobe) in
let timeoutbar = NOT(FIND_TIMEOUT(count,error)) in mnextcount,timeoutbar)

12.2.15 Timing Block

- FIND_OPTYPE(major,carryused) =
(let majorval = VAL4 major in
((majorval = 0) => 0 |
((majorval = 1) => 3 |
((majorval = 2) => 2 |

104

((majorval = 3) => 2 |
((majorval = 4) => (carryused => 0 | 1) |
((majorval = 6) => 4 |
((majorval = 7)
((majorval = 8)
((majorval = 1
|- FIND.STA(optype,minor)
((optype = 0) => F |
(Coptype = 1) => F |
((optype = 2) => F |
((optype = 3) => (minor = #001) |
((optype = 4) => (minor = #001) | ((optype = 5) => F | ARB))))))
|- FIND_HALT(optype,minor,pause,reply) =
(let wait = NOT reply in
(Coptype = 0) => F |
((optype = 1) => F |
((optype = 2) => F |
(Coptype = 3) =>
((minor = #001) AND pause) OR ((minor = #011) AWD wait) |
((optype = 4) => (minor = #011) AND wait |
(Coptype = B) => F | ARB)))))))
- FIND_STB(optype,minor) =
((optype = 0) => F |
((optype = 1) =>F |
((optype = 2) => F |
((optype = 3) =>
(minor = #010) OR ((minor = #011) OR (minor = #100)) |
((optype = 4) => (minor = #010) OR (minor = #011) |
(Coptype = B) => F | ARB))))))
- FIND_RS(optype,minor) =
((optype = 0) => (minor = #100) |
((optype = 1) => (minor = #011) |
((optype = 2) => (minoxr = #011) |
((optype = 3) => (minor = #100) |
(Coptype = 4) => (minoxr = #011) | ((optype
|- FIND_NM(optype,minor) =
((optype = 0) => (minor = #101) |
((optype = 1) => (minor = #100) |
((optype = 2) => (minor = #011) |
((optype = 3) => (minor = #101) |
(Coptype = 4) => (minor = #011) | ((optype
|~ TIMIRG(major,minor,pause,reply,carryused) =
(let optype = FIND_OPTYPE(major,carryused) in
let advance = NOT(FIND_HALT(optype,minor,pause,reply)) in
let nextmnbar = NOT(FIND_NH(optype,minor)) in
let regstrobe = FIND_RS(optype,minor) in
let strobe = FIND_STB(optype,minor) in
let strobeaddr = FIND_STA(optype,minor) in advance ,nextmnbar,regstrobe,strobe,strobeaddr)

nv

]
4 | ((majorval = 11) => 4 | ARB)))))))))))

) => F | ARB))))))

5) => F | ARB))))))

12.2.16 BandStop Block

|- STOP_LOGIC
(stmplx,regstrobe,clkenbp,nztopl2,m31,r31,r30,a0ut31,stop) =
(let stopsel = VAL3 stmplx in
let illegal_jump = clkenbp AND nztopi2 in
let overflow = (r31 = rm31) AND (NOT(r31i = aout31)) in
(NOT regstrobe => stop |
((stopsel = 0) => F |
((stopsel = 1) => illegal_jump |
((stopsel = 2) => NOT(r31 = r30) |
((stopsel = 3) => illegal_jump OR overflow |
((stopsel = 4) => T |
((stopsel = 5) => nztopl2 |
((stopsel = 6) => T | ((stopsel = 7) => T | ARB))))))))))
|- B.COMPARE
(fsf,nzbot16,zmid4,nztopl12,coutbar,rm31,r31 ,a0ut31,bflag) =
(let £f = VAL4 fsf in
let reqm = (ROT nzbot16) AND (zmid4 AND (NOT nztopl2)) in
let rltm = ((NOT(x31 = aout31)) AND rm31) OR (r31 AND aout31) in
let rgtm = NOT(rltm OR regm) in
((£f = 0) => rltm |
((££ = 1) => NOT rltm |
((£f = 2) => reqm |
((££ = 3) => HOT reqm |
ff = 4) => NOT rgtm |
(£
«
(

f = B) => rgtm |

ff = 6) => coutbar |

(ff = 7) => NOT coutbar |
((£f = 8) => bflag OR rltm |

105

(C£f = 9) => bflag OR (NOT rltm) |
((ff = 10) => bflag OR regm |
((ff = 11) => bflag OR (NOT reqm) |
((££ = 12) => bflag OR (NOT rgtm) |
((ff = 13) => bflag OR rgtm f
((£f = 14) => bflag OR coutbar |
((£f = 16) => bflag OR (NOT coutbar) | ARB)))INININININ)

|~ B_LOGIC
(bmplx,fsf,regstrobe,nzbot16,zmid4,nztop12,coutbar,rmSl,rSi,rO,aoutsi,bflag) =
(let bsel = VAL3 bmplx in
(NOT regstrobe => bflag |
((bsel = 0) => bflag %
((bsel = 1) => r0
((bsel = 2) => r31 |
((bsel = 3) => NOT coutbar
((bsel = 4) => coutbar |
((bzsel = 5) =>F |
((bsel = 6) =>
B..COMPARE
(fsf,nzbot16,2mid4,nztopi2,coutbar,rm31,r31,aout31,bflag) |
((bsel = 7) => bflag | ARB)))))))))
|- BANDSTOP
(stmplx,bmplx,fsf,regstrobe,clkenbp,conditions,stop,bflag) =
(let nzbot16 = EL O(BITS9 conditions) in
let zmid4 = EL 1(BITS9 conditions) in
let nztopl2 = EL 2(BITS9 conditions) in
Jet coutbar = EL 3(BITS9 conditions) in
let rm31 = EL 4(BITSY9 conditions) in
let r31 = EL B(BITS9 conditions) in
let r30 = EL 6(BITS9 conditions) in
let r0 = EL 7(BITS9 conditions) in
let aout3i = EL 8(BITS9 conditions) in
let mextstop = STOP_LOGIC(stmplx,regstrobe,clkenbp,nztopi2,rm31,r31,r30,aout31,stop) in
let nextbflag = B_LOGIC
(bmplx,fsf,regstrobe,nzbotiﬁ,zmid4,nztop12,coutbar,rmSi,rBi,rO,
aout3i,bflag) in
nextstop,nextbflag)

12.2.17 Decoder Block

|- OSEL msf =

(let msfval = VAL2 msf in ((msfval = 2) => #01 | ((msfval = 3) => #10 | ARB)))
|- DSFPRIM dsf =

(let dsfval = VAL3 dsf in

((dsfval = 0) => #0111110 |
((dsfval = 1) => #0111011 |
((dsfval = 2) => #0110111 |
((dsfval = 3) => #0111101 |
((dsfval = 4) => #0111101 |
((dsfval = B) => #0111101 | ARB)))))))
|- FIND_CALL(csf,fsf) = (NOT csf) AND (£sf = #0001)
|- TI0_READ fsf = ((fsf = #0010) => WORD4 6 | WORD4 7)
|- COND_INDEX(fsf,csf,dsf,stop) =
(let io_read = IO_READ fsf in
let dsfval = VAL3 dsf in
(stop => WORD4 8 |
(csf => WORD4 7 |
((dsfval = 7) => WORD4 10 |
((dsfval = 6) => WORD4 11 | io_read)))))
|- ILLEGAL_OP(fsf,dsf) =
(let £f = VAL4 fsf in
let df = VAL3 dsf in
let pdest = (df = 3) OR ((df = 4) OR (df = 6)) in
let legal_on_p = (££ = 1) OR ((£f = 3) OR ((£f = B) OR (£f = 7))) in
let illegal_not_p = (£f = 1) OR ((£f = 13) OR ((£ff = 14) OR (£f = 15))) in
((NOT pdest) AND illegal_not.p) OR (pdest AND (HOT legal_on_p)))
|- COND_JUHP(fsf,msf) =
(let mf = VAL2 msf in
let shift = fsf = #1100 in
let call = fsf = #0001 in
let io = fsf = #0010 in
(shift => WORD4 4 |
((mf = 0) => (call => WORD4 3 | WORD4 4) |
((mf = 1) => (io => WORD4 6 | WORD4 7) | WORD4 0))))
|- COND_FETCH(fsf,csf,dsf,msf,bflag,stop) =
(let cond_jump = COND_JUMP(fsf,msf) in
let illegal_op = ILLEGAL_OP(fsf,dsf) in
let mf = VAL2 msf in
let df = VAL3 dsf in

106

(stop => WORD4 8 |
(csf =>
((mf = 0) => WORD4 4 | ((mf = 1) => WORD4 7 | WORD4 0)) |
((@f =7) = ((mf = 0) => WORD4 8 | ((mf = 1) => WORD4 10 | WORD4 0)) |

((df = 6) => ((mf = 0) => WORD4 8 | ((mf = 1) => WORD4 11 | WORD4 0)) |
(illegal_op => WORD4 8 | i
((df = 5) => (bflag => WORD4 1 | cond._jump) |
((af = 4) => (NOT bflag => WORD4 1 | cond_jump) | comnd_jump))))))))
|- FIND_COND(fsf,csf,dsf,maf,bflag,stop,major) =
((major = #0000) => COND_INDEX(fsf,csf,dsf,stop) |
((major = #0001) => COND.FETCH(fsf,csf,dsf,msf,bflag,stop) | ARB))
|- DECODE.PERFORM(fsf,dsf,msf,rsf,bflag) =
(let bmp.b = #000 in
let bmp_lsbr = #001 in
let bmp_msbr = #010 in
let bmp_carry = #011 in
let bmp_borrw = #100 in
let bmp.0O = #101 in
let bmp.comp = #110 in
let smp_0 = #000 in
let smp_nsf = #001 in
let smp.shfov = #010 in
let smp_ovf = #011 in
let smp_1 = #100 in
let smp_tail = #101 in
let rsel_x = #00 in

let cin_t = T in
let cin_f = F in
let cin.x = F in
let alu_and = #1101001 in
let alu_rmb = #1111001 in

let alu.zero = #1100000 in
let alu_m = #1101000 in
let alu_corm = #1111000 in
let alu_r = #1110001 in
let alu_sr = #1110010 in
let alu_xor = #0111001 in
let alu_nor = #0111100 in
let alu.add = #0001001 in
let alu_sub = #0011001 in
let alu.incr = #0000001 in
let alu_sl = #0000101 in
let fsfval = VAL4 fsf in
let msfval = VAL2 msf in
let dsfprim = DSFPRIM dsf in
((fsfval = 0) => (bmp.b,smp_0,rsel_x,cin_x,alu_comm,dsFfprim) |
((fsfval = 1) =
(bmp_b,smp_nsf,rsel_x,cin_x,alu_m,dsfprim) |
((fsfval = 2) => (bmp_b,smp_0,rsel_x,cin_x,alu_m,dsfprim) |
((fsfval = 3) => (bmp.b,smp.nsf,rsel_x,cin_x,alu_m,dsfprim) |
((fsfval = 4) => (bmp_carry,smp.0,rsf,cin_f,alu_add,dsfprim) |
((£sfval = B) => (bmp_b,smp_ovf,rsf,cin_f,alu_add,dsfprim) |
((fsfval = 6) => (bmp_borrw,smp.0,rsf,cin_t,alu_sub,dsfprim) |
((fsfval = 7) => (bmp.b,smp.ovf,rsf,cin_t,alu_sub,dsfprim) |
((fsfval = 8) => (bmp_b,smp.0,rsf,cin_x,alu_xor,dsfprim) |
((fsfval = 9) => (bmp_b,smp_0,rsf,cin_x,alu_and,dsfprim) |
((fsfval = 10) => (bmp_b,smp_0,rsf,cin_x,alu_nor,dsfprim) |
((fsfval = 11) => (bmp_b,smp.0,rsf,cin_x,alu_rmb,dsfprim) |
((fsfval = 12) =>
((msfval = 0) => (bmp_b,smp_0,rsf,cin_t,alu_sr,dsfprim) |
((msfval = 1) => (bmp_lsbr,smp_O,rsf,cin_f,alu_sr,dsfprim) |
((msfval = 2) => (bmp_b,smp_shfov,rsf,cin_f,alu_sl,dsfprim) |
((msfval = 3) => (bmp.msbr,smp.0,rsf,bflag,alu_sl,dsfprim) |
ARB))))
ARB)IIININMNMINM
|- DECODE_MAJOR(fsf,csf,dsf,msf,rsf,bflag,major) =
(let bmp.b = #000 in
let bmp_lsbr = #001 in
let bmp_msbr = #010 in
let bmp.carry = #011 in
let bmp_borrw = #100 in
let bmp_O = #101 in
let bmp_comp = #110 in
let =mp_.0 = #000 in
let smp.nsf = #001 in
let smp.shfov = #010 in
let smp.ovf = #011 in
let smp_.1l = #100 in
let smp_tail = #101 in
let reg.p = #11 in
let rsel.x = #00 in

107

let cin.t = T in

let cin_f = F in

let cin_x = F in

let alu_and = #1101001 in
let alu_rmb = #1111001 in
let alu_zero = #1100000 in
let alu_m = #1101000 in
let alu.comm = #1111000 in
let alu_r = #1110001 in
let alu.sr = #1110010 in
let alu_xor = #0111001 in
let alu_nor = #0111100 in
let alu_add = #0001001 in
let alu_sub = #0011001 in
let alu_incx = #0000001 in
let alu_sl = #0000101 in
let dest_t = #1011111 in
let dest.y = #0110111 in
let dest_fet = #0001101 in
let dest_all = #0110000 in
let dest_te = #0011111 in
let dest_non = #0111111 in
let majorval = VAL4 major in
let osel = DOSEL msf in

((majorval = 0) => (bmp_b,smp_tail,osel,cin_f,alu_add,dest_t) |
((majorval = 1) => (bmp_b,smp._nsf,reg p,cin_t,alu_incr,dest_fet) |
((majorval = 2) => (bmp_0,smp_0,rsel_x,cin_x,alu_zero,dest_all) |
((majorval = 3) => (bmp_b,smp.0,reg.p,cin_x,alu_r,dest_y) |
({majorval = 6) => (bmp_b,smp_0,rsel_x,cin_x,alu_zero,dest_te) |
((majorval = 7) => (bmp_b,smp_0,rsel_x,cin_x,alu_zero,dest_te) |
((majorval = 8) => (bmp_b,smp_0,rsel_x,cin_x,alu_zero,dest_non) |
((majorval = 10) => (bmp_b,smp_O0,rsf,cin_x,alu_zero,dest_non) |
((majorval = 11) => (bmp_b,smp_0,rsf,cin_x,alu_zero,dest_non) |
((majorval = 4) => (csf =>
(bmp_comp,smp_0,rsf,cin_t,alu_sub,dest_non) |
DECODE_PERFORM(fsf,dsf,msf,rsf,bflag)) | ARB)))))IIIN

|- GET_BHM(bmplx,stmplx,rsel,cin,alucon,clkenb) = bmplx
|- GET_SM(bmplx,stmplx,rsel,cin,alucon,clkendb) = stmplx
|- GET_RS(bmplx,stmplx,rsel,cin,alucon,clkenb) = rsel
|~ GET..CI(bmplx,stmplx,rsel,cin,alucon,clkenb) = cin

|- GET_AL(bmplx,stmplx,rsel,cin,alucon,clkenb) = alucon
;— GET_CL(bmplx,stmplx,rsel,cin,alucon,clkenb) = clkenb

INST.DECODER(inst,major,bflag,stop) =
(let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

instlist = BITS12 inst in

fsf = WORD4(V(SEG(0,3)instlist)) in

csf = EL 4 instlist in

dsf = WORD3(V(SEG(5,7)instlist)) in

msf = WORD2(V(SEG(8,9)instlist)) in

rsf = WORD2(V(SEG(10,11)instlist)) in

decode_major = DECODE_MAJOR(fsf,csf,dsf,msf,rsf,bflag,major) in
bmplx = GET_BM decode_major in

stmplx = GET_SM decode.major in

rsel = GET_RS decode_major in

cin = GET_CI decode_major in

alucon = GET.AL decode_major in

clkenb = GET_CL decode_major in

carryused = NOT(EL 5(BITS7 alucon)) in

clkenbp = NOT(EL 1(BITS7 clkenb)) in

let cond = FIND_COND{(fsf,csf,dsf,msf,bflag,stop,major) in

let call = FIND_CALL(csf,fsf) in
bmplx,stmplx,rsel,cin,alucon,carryused,clkenb,clkenbp,cond,call)

12.2.18 ALU Block

|~ ADD32(r,t,cin) = (cin => WORD33((VAL32 x) + ((VAL32 t) + 1)) | WORD33((VAL32 r) + (VAL32 t)))
{- ADD32BIT(r,t,cin) =
(let sum33 = ADD32(r,t,cin) in
let aout = WORD32(V(SEG(0,31) (BITS33 sum33))) in
let carry = EL 32(BITS33 sum33) in aout,carry)
|~ FIND_SR(cin,bflag,r31) = (cin => r31 | bflag)
|~ BITOP(r,t,bflag,r31,cin,op) =
(let cout_x = F in
let tbar = NOT32 t in
let rbar = NOT32 r in
let sr = FIND.SR(cin,bflag,r31) in
let xr.xor_t = (r AND32 tbar) OR32 (rbar AND32 t) in
let shift_right = WORD32(V(CONS sr(SEG(1,31)(BITS32 r)))) in
((op = #1101001) => (r AED32 t,cout_x)
((op = #1111001) => (r AND32 tbar,cout_x) |

108

(= #1100000) => (WORD32 0,cout_x) |
= #1101000) => (t,cout_x) |
= #1111000) => (tbar,cout_x) |
= #1110001) => (r,cout._x) |

(op

(o
«
((op

2p = #1110010) => (shift_right,cout_x) |

(

P
op
(o
(
((op = #0111001) => (r_xor_t,cout_x)
(op = #0111100) => (NOT32(r OR32 t),cout_x) |
(= #0000101) => ADD32BIT(r,r,cin) |
= #0001001) => ADD32BIT(x,t,cin) |
p = #0011001) => ADD32BIT(r,tbar,cin) |
(Cop = #0000001) => ADD32BIT(r,WORD32 O,cin) | ARB))))))))))))))
|- GET.RM31(t31,alucon) = ((alucon = #0011001) => NOT t31 |
((alucon = #0001001) => t31 | F))

|- GET.AOUT(aout,cout) = aout
|- GET_COUT(aout,cout) = cout
|- ALU(rbar,treg,cin,bflag,alucon) =

(let r = NOT32 rbar in

let t31 = EL 31(BITS32 treg) in

let rm31 = GET_RH31(t31,alucon) in

let r0 = EL O(BITS32 r) in

P
op
(op
(Cop
(o

let r30 = EL 30(BITS32 1) in
let r31 = EL 31(BITS32 1) in
let a_c = BITOP(x,treg,bflag,r31,cin,alucon) in

let aout = GET_AOUT a_c in

let aoutbar = NOT32 aout in

let coutbar = ROT(GET_COUT a.c) in

let aout3i = EL 31(BITS32 aout) in

let nzboti6 = NOT(V(SEG(0,15) (BITS32 aout)) = 0) in

let zmid4 = V(SEG(16,19)(BITS32 aout)) = O in

let nztopl2 = NOT(V(SEG(20,31)(BITS32 aout)) = 0) in

let conditions = WORD9(V[aout31;r0;r30;x31;rm31;coutbar;nztopl2;zmid4;nzbot16]) in
aoutbar,conditions)

12.2,19 Datareg Block

|- CLOCK_REGA(aoutbar,areg,clkenba,regstrobe) = (clkenba AND regstrobe => NOT32 aoutbar | areg)
|- CLOCK_REGX(aoutbar,xreg,clkenbx,regstrobe) = (clkenbx AND regstrobe => NOT32 aoutbar | xreg)
|- CLOCK_REGY(aoutbar,yreg,clkenby,regstrobe) = (clkenby AND regstrobe => NOT32 aoutbar | yreg)
|~ CLOCK_REGP(aoutbar_l1s20,preg,clkenbp,regstrobe) =
(clkenbp AND regstrobe => NOT20 aoutbar_1s20 | preg)
|- CLOCK_REGT
(aoutbar.1s20,extdata,treg,clkenbt ,regstrobe, tmplxcon,clkenbinst) =
(let extdata_1s20 = WORD32(V(SEG(0,19) (BITS32 extdata))) in
let aout_tail = WORD32(VAL20(NOT20 aoutbar_1s20)) in
(NOT(clkenbt AND regstrobe) => treg |
((NOT tmplxcon) AND (NOT clkenbinst) => extdata |
(tmplxcon AND (NOT clkembinst) => aout_tail |
((HOT tmplxcon) AND clkenbinst => extdata_1s20 | ARB)))))
|- CLOCK_INST(extdata,inst,clkenbinst,regstrobe) =
(let extdata_ms12 = WORD12(V(SEG(20,31) (BITS32 extdata))) in
(clkenbinst AND regstrobe => extdata_ms12 | inst))
|- CLOCK_ADDR(preg,treg,addr,clkenbinst,strobeaddr) =
(HOT strobeaddr => addr |
(clkenbinst => preg | WORD20(V(SEG(0,19) (BITS32 treg)))))
|~ REGISTERS
(extdatabar,aoutbar,clkenb,regstrobe,strobeaddr,areg,xreg,yreg,preg,treg,addr,inst) =
(let extdata = HOT32 extdatabar in
let aoutbar_1s20 = WORD20(V(SEG(0,19) (BITS32 aoutbar))) in
let clkenba = NOT(EL O(BITS7 clkenb)) in

let clkenbp = NOT(EL 1(BITS7 clkenb)) in
let clkenbx = NOT(EL 2(BITS7 clkenb)) in
let clkenby = NOT(EL 3(BITS7 clkenb)) in

let clkenbinst = NOT(EL 4(BITS7 clkenb)) in
let clkenbt = NOT(EL 5(BITS7 clkenb)) in
let tmplxcon = EL 6(BITS7 clkenb) in
let new_areg = CLOCK_REGA(aoutbar,areg,clkenba,regstrobe) in
let new_xreg = CLOCK_REGX(aoutbar,xreg,clkenbx,regstrobe) in
let new_yreg = CLOCK_REGY(aoutbar,yreg,clkenby,regstrobe) in
let new_preg = CLOCK_REGP(aoutbar_.ls20,preg,clkenbp,regstrobe) in
let new_inst = CLOCK_INST(extdata,inst,clkenbinst,regstrobe) in
let new.treg = CLOCK_REGT
(aoutbar_1s20,extdata, treg,clkenbt,regstrobe, tmplxcon,clkenbinst) in
let new_addr = CLOCK_ADDR(preg,treg,addr,clkenbinst,strobeaddr) in
new_areg,nev_xreg,new_yreg,nev._preg,new_treg,new_addr,nev_inst)
|- REGSELECT(areg,xreg,yreg,preg,rsel) =

(let rf = VAL2 rsel in
((xf = 0) => NOT32 areg |

((xf = 1) => NOT32 xreg |

((xf = 2) => HOT32 yreg |

109

((rf = 3) => HOT32(WORD32(VAL20 preg)) | ARB)))))

12.2.20 FSelect Block

|- FSELECT inst = WORD4(V(SEG(0,3)(BITS12 inst)))

12.2.21 External Block

|~ FIND_EDB(e.data._in,majoxr) =
(let unused_input = WORD32 O in
let majorval = VAL4 major in
((majoxval = 1) => HOT32 e_data_in |
((majorval = 6) => HOT32 e_data_in |
((majorval = 7) => NOT32 e_data.in | unused_input))))
|- FIND_DO(rbar,writegate) = (let tri_state = WORD32 O in (writegate => NOT32 rbar | tri_state))
|- EXTERNAL
(rbar,addr,bflag,strobe,major,e_data_in,e_resetbar,e_errorbar,e_stepbar,e_reply) =
(let writegate = (major = #1010) OR (major = #1011) in
FIND_EDB(e_data._in,major) ,NOT e_resetbar,NOT e_errorbar,N0T e_stepbar,e_reply,
FIND_DO(rbar,writegate),addr,bflag,major ,NOT strobe,(major = #1000), (major = #0100),
ROT(major = #0001),H0T((major = #0110) OR (major = #1011)),
NOT((major = #1010) OR (major #1011)))

no

12.2.22 Memory Block

|~ MEMORY(ram,e_data_out,e_address,e_iobar,e_writebar,e_strobebar) =
(let address = WORD21(V(CONS(NOT e_iobar)(BITS20 e_address))) in
(e_strobebar => (ram,e_data_out) |
(e_writebar => (ram,FETCH2{ ram address) |
(STORE21 address e_data_out ram,e_data_out))))

110

Index

#, 20
->, 20
/\, 17
5, 18
==, 17
=, 18
, 18
\, 17
\/, 17
cos, 31
sig, 35
~, 17
-, 22

ADD OVERFLOW, 81

aop32 (block level), 103, 108

aopa2 (high level), 99, 100

aopaz2ert, 103, 108

appa2, 27

addr, 20, 31, 37, 56

advance, 42, 44

aw_cows, 30, 34, 44, 45

ALUCON_ABBR, 48

alucon, 42, 44, 47, 54, 55, 59, 62, 63

ALU, 21, 27-29, 45, 47, 51-53, 56, 57,
62, 67, 72, 75, 76, 84, 94

aw (block level), 34, 44, 70, 72, 103,
109

aw, s (high level), 27-28, 85, 100,
101

ARD,, 19

awp, 18

aoutbar, 33-35, 4446

arB, 19

arec.aBBR, 47, 52, 53, 56, 57

111

areg, 20, 26, 31, 33, 45, 46, 59, 82
1, 99, 100

B.coxpare, 103, 105

B.1ocrc, 103, 106
BawpstopBLOCK, 30, 41, 42
sawpsTop, 44, 71, 72, 103, 106
BFLAG.ABBR, 48, 54

btlag, 20, 26, 47, 59, 62, 89
sIrop, 63, 103, 108

BITS,, 19

bmplx, 41, 42

svaL, 99, 100

2, 15, 77

3, 15, T7

c4F.3455, 16

car.5, 16, 78, 81
c4F120, 18

ca, 75-T8

cs, 15, T7

c6, 15, 77

c7, 16, 77

c8, 16, 77

co, 16, 77

ct0, 716, 77

c17.F5, 79, 82

call, 42
CARRYUSED_ABBR, 48, 55
carryused, 42, 44, 47, 53, 55, 57, 59, 62
carry, 99, 100

cin, 42, 44

clkenba, 33

clkenbp, 42

clkendb, 33, 42, 53, 56, 57, 71

cLock-appr, 103, 109
cLock.xsst, 34, 103, 109
CcLOCK.REGA, 33, 103, 109
cLock.recp, 103, 109
crock.reer, 103, 109
cLock.reex, 103, 109
cLock.rEGy, 103, 109
comparg, 99, 100
corp_rercH, 103, 106
cowp_1mpEX, 103, 106
coxp.Juwp, 103, 106
conditions, 42, 4446, 62
cond, 42

coms, 19

count, 16, 31, 45, 54, 62, 69, 73
¢, 99, 100

DATAREG_ALU, 45

pataree, 30, 31, 34, 39, 41, 4446

pECODEMAJoR, 103, 107
pECODE.PERFORM, 54, 63, 103, 107
pEcoper, 30, 34, 42, 54

pec, 99, 100

psrprIN, 63, 103, 106

p, 99, 100

e.bflag, 16

e.datain, 33, 35, 44
e-errorbar, 15, 62, 69, T3, 83
efetchbar, 15

e.majorstate, 16

e.perform, 16

e_reply, 15, 73, 83

e_resetbar, 15, 62, 69, 73, 81, 83
e_stepbar, 15, 73, 83
estopped, 15

ooy 31

112

EL, 19

error, 53, 62, 69, 73
extdatabar, 31, 35, 43
exrerp, 104, 110

EXTERNAL_AND_BLOCKAND.MEM, 46, 47, 49, 50

EXTERFAL.BLOCK, 30, 43

EXTERRAL, 43, 58

FETCH, 24, 64, 65, 69, 73-77, 79, 81,

82, 94, 95
FETCHp1, 19
FETCH.ABBR, 20, 75
Fr, 99, 100
FinpcaiL, 103, 106
Finp_comn, 103, 107
Fiepoo, 104, 110
Fisp.EpB, 104, 110
risp.maLt, 103, 105
FIxp.MAsOR, 102, 104
Fiup.wy, 103, 105
Finp_opryeE, 103, 104
Fiuprs, 103, 105
Frepsr, 103, 108
riupsta, 103, 105
riep.sTB, 103, 105
FInp_rrveour, 102, 104
FInpINDEX, 99, 100
FoURTH, 39
FSELECTCouB, 30
rseLect, 103, 110
s, 42
FsT, 39
F, 17

GET.AL, 54, 103, 108
eeT-A0UT, 63, 103, 109
¢ersx, 103, 108

eercr, 103, 108
eercL, 103, 108
eer-cour, 103, 109
eer-rma1, 103, 109
eerrs, 103, 108

m, 19

ILLEGALMAJOR, 102, 104
r.Leearop, 103, 106
rLeearcarr, 100, 101
ruieeaLppest, 100, 101
rreeeaLwrITE, 100, 101
mcpa2, 99, 100

Ixcworn3, 102, 104
INDEX, 24, 73, 76, 79, 83
mepeut, 100, 101
INST.DECODER, 42, 103, 108
mstrETCH, 100, 101

inst, 20, 31, 37, 73
merreser, 102, 104
intreset, 43

10reaD, 103, 106

LATCH,,, 36
Lert, 99, 100
let, 18

MAJOR_ABBR, 48, 54

masorLoGIC, 43, 102, 104

masor, 30, 42, 43, 53

major, 43, 44, 47, 51, 59-61, 64, 73, 81
memp1 2, 18

MEN_ABBR, 27, 82, 85-88

MEMORY.BLOCK, 30, 44

memory, 44, 104, 110

memreap, 100, 101

memwrIte, 100, 101

113

HINOR_ABBR, 48

ninor, 30, 42, 43, 53

minor, 44, 47, 51, 59-61, 64
¥, 99, 100

see, 99, 100

sExt.count, 102, 104
sExT.MAJOR, 102, 104
sExTHIROR, 43, 102, 104
nextmnbar, 42, 44

rExt, 100, 102

sy, 100, 101

woop, 99, 100

wot,, 19

vor, 18

orrser, 100, 101
orLa, 99, 100
O0R,, 19

or, 18

oseL, 103, 106
ourpur, 100, 101

pap201032, 99, 100

pause, 44, 73

PERFORM ALU, 24, 45, 55, 69, 74,
75, 79, 81

PERFORM, 94, 95

PRECALL, 24, 73, 76

preg, 20, 26, 31, 73

ran, 20, 26, 31, 44, 45

rbax, 36, 41, 44, 45

READIO, 25, 73, 76

READMEM, 25, 73, 76, 79, 83

REGISTERScOMB, 34, 35, 37, 39, 41

REGISTERS, 33, 37, 45, 46, 56-57, 103,
109

REGSELECT.ABBR, 27, 82, 85-88
REGSELECT_COMB, 36, 41
REGSELECT, 22, 34, 45, 103, 109
regstrobe, 33, 42, 44, 56, 57
ree, 99, 100, 101

reply, 44, 73

RESET, 24, 73, 81

reset, 42, 53, 62, 69, 73, 81
rrentarite, 99, 100

rrcur, 99, 100

rsel, 31, 42

®, 99, 100

sEconp, 39

seg, 19

SEVENTH?, 39

SEVERTH, 39

stenext, 27, 86, 99, 100
swp, 42

sparerurc, 100, 101
stmplx, 41, 42

sTop_aBBR, 48, 54
stop_tocrc, 103, 105
STOP, 25, 65, 69, 73, 77, 79, 81, 83
stop, 26, 47, 62, 73, 89
STORE,1, 19

sTORE21, 89

strobeaddr, 33, 44, 56
strobe, 44

sus32, 99, 100

svaL, 99, 100

THIRD, 39
TIMEOUT.BLOCK, 30, 53
timeoutbar, 42
riveout, 102, 104

TIMING_coms, 30, 44

114

TIvInG, 44, 55, 103, 105

L, 19

treg, 20, 31, 37, 44, 45, 73
TRIM327020, 99, 100
TRIN33T020, 99, 100
TRIM34T032, 27, 99, 100

T, 17

vaL,, 19
varve, 99, 100

WHOLE_BLOCKNEXT, 48, 49, 51, 52, 58
WORD,, 19

wordp, 18

WRITEIO, 25, 73, 77
WRITEMEM, 25, 73, 77

wrrte, 100, 101

xreg, 20, 26, 31

yreg, 20, 26, 31

