Technical Report R

Number 136

Computer Laboratory

Formal specification and verification
of asynchronous processes
in higher-order logic

Jettrey J. Joyce

June 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Jeffrey J. Joyce

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Formal Specification and Verification
c;f Asynchronous Processes
in Higher-Order Logic
Jeffrey J. Joyce

University of Cambridge
Computer Laboratory
Cambridge, England

Abstract

We model the interaction of a synchronous process with an asynchronous
memory process using a four-phase “handshaking” protocol. This example
demonstrates the use of higher-order logic to reason about the behaviour of
synchronous systems such as microprocessors which communicate requests to
asynchronous devices and then wait for unpredictably long periods until these
requests are answered. We also describe how our model could be revised to
include some of the detailed timing requirements found in real systems such
as the M68000 microprocessor. One enhancement uses non-determinism to
model minimum setup times for asynchronous inputs. Experience with this
example suggests that higher-order logic may also be a suitable formalism for
reasoning about more abstract forms of concurrency.

1 Introduction

This paper describes the use of higher-order logic to model the interaction of a
synchronous process with an asynchronous process using a four-phase “handshak-
ing” protocol. Other formalisms, notably temporal logic, have also been used to
reason about handshaking protocols [1,6,7]. In our approach, universal and exis-
tential quantification are used in approximately the same roles as the operators
O (“forever”) and < (“eventually”). But unlike temporal logic, our specifications
allow explicit references to time; for example, f(t) and f(t + 1) denote the values
of signal f at two successive points in discrete time. Higher-order functions are
used to define predicates expressing conditions such a signal rising or the stabil-
ity of a signal over a specified interval. The use of explicit time references and
higher-order functions leads to convenient mechanisms for deriving abstract views
of system behaviour where intervals of time are collapsed into single time steps.
Our use of higher-order logic to verify signalling protocols is based on ex-
perience with this formalism in verifying synchronous hardware. We have used

higher-order logic to verify the correctness of a very simple microprocessor where
the formal semantics of the instruction set have been formally derived from a
switch-level model of MOS circuit behaviour [18]. The current design for this
microprocessor assumes that every read and write request to external memory
is completed in a single clock cycle. This assumption could be validated by a
detailed analysis of timing characteristics for both the microprocessor and the ex-
ternal memory; for example, see [2]. We are now designing 2 new version of this
microprocessor which has wait states where the microprocessor waits one or more
clock cycles after issuing a read or write request to the external memory until
the request is acknowledged. Wait states are implemented by while-loops in the
microcode.

The example described in this paper was developed to investigate how interac-
tion between the microprocessor and the asynchronous memory could be formally
specified in higher-order logic. To focus more clearly on this problem, the micro-
processor specification is replaced by an abstract state machine which models the
interaction of the microprocessor with the asynchronous memory. The abstract
state machine implements a synchronous interface which accepts synchronous read
and write requests and communicates these asynchronously to the external mem-
ory. We develop formal specifications for both the synchronous process and the
asynchronous memory and prove that these two processes correctly implement the
four-phase handshaking protocol.

2 Related Work

Warren Hunt [15] also considers the formal specification and verification of a mi-
croprocessor system which communicates asynchronously with external memory.
The absence of existential quantification in quantifier-free Boyer-Moore logic used
by Hunt motivates the use of “oracles” to predict asynchronous responses from the
memory. An oracle is a list of numbers which specifies the length of wait states
for a particular execution sequence; Hunt’s microprocessor is shown to be correct
for all such oracles.

The VIPER microprocessor also uses four-phase handshaking to communicate
asynchronously with external memory [24]. The formal proof described by Avra
Cohn in [4] deals with higher level aspects of the VIPER implementation where
the details of asynchronous communication are not considered. However, the proof
models the possibility of a failed memory interaction which occurs when a wait
state exceeds a specified “timeout” period.

The use of higher-order logic to reason about asynchronous behaviour in the
verification of latches and flip-flops implemented by fixed delay NOR gates is
described by John Herbert in [12]. Herbert reasons about asynchronous behaviour
at the nanosecond time scale whereas this paper focuses on the behaviour of an
asynchronous memory in terms of a much coarser grain of time corresponding
to the behaviour of clocked sequential circuits. However, the main difference in

v}

this paper is that the delayed response of the asynchronous component, t.e. the
asynchronous memory, is not ﬁxed.’

3 Formal Specification in Higher-Order Logic

Functions which accept other functions as arguments or return functions as re-
sults are called “higher-order” functions. This property often leads to function
definitions which are both simple and direct. Higher-order logic is a formalism for
reasoning about functions; this includes higher-order functions as well as relations,
t.e. functions that return Boolean values.

The behaviour of a hardware device can be described by a relation on input
and output signals where signals are modelled by functions from discrete time to
sampled values. Because signals are modelled by functions, these will be higher-
order relations. This is one reason why higher-order logic is a convenient formalism
for reasoning about functions and relations modelling hardware devices.

This approach, inspired by [9], can also be used to describe input-output be-
haviour at the more abstract level of concurrent processes. The synchronous inter-
face and asynchronous memory correspond to physical devices but the discussion
in this paper is only concerned with their external behaviour. Their behaviour
is described by relations on a set of signals associated with each process. Some
of these signals correspond to wires and busses; other signals represent internal
states and do not have physical counterparts.

Thus, the behaviour of a single process is a set of relations, or constraints, on
output signals in terms of input signals and internal state signals. The behaviour
of a network of concurrent processes is obtained by composing the constraints
imposed by each process. This is expressed formally by logical conjunction which
serves as a behaviour composition operator. Another operator which appears in
specification languages such as CCS [20] and CSP [14] is hiding (or restriction). In
our higher-order logic approach, we use existential quantification to hide internal
signals, t.e. signals which are not external ports of the network.

Much of our notation such as “v” (“for all’) and “3” (“there ezists”) should
be familiar from ordinary predicate calculus. Higher-order logic also includes
function-denoting terms called A-expressions as well as Hilbert’s e-operator. For
example, the A-expression “Ax. x + 1” denotes the successor function. The
term “ex. P x” denotes a value satisfying the predicate P if such a value exists;
otherwise, it denotes an arbitrary value of the appropriate type. For example,
“ex. x < 10” denotes some natural number less than ten but “cx. x < 0” de-
notes an arbitrary natural number since the predicate “less than zero” cannot be
satisfied in the natural numbers.

In addition to standard logical connectives, the language provides conditional
expressions, “b = t1 | t2”, which may be read as “if b then t1 else £2” and
n-tuples of the form “(t1, ... tn)”. Certain features of the language have a
special syntactic status for improved readability, e.g. the definition of infix func-

tions. The language also includes basic arithmetic functions and relations such as
+, -, <and <.

4 Signal Types

Every term in higher-order logic has a type which is either a primitive type (e.g.
Booleans, natural numbers) or built-up from existing types using type construc-
tors such as Cartesian product. Every compound term must correctly type-check;
for example, a function from numbers to Booleans can only be applied to a num-
ber. This section describes function types used to represent various signals in the
synchronous interface and asynchronous memory.

A single wire is modelled by a function which maps every point in discrete time
to either Hi or Lo. For instance, the function f models a signal which is low when
sampled at times ¢t and t + 3 and high at times ¢t +1 and ¢t + 2.

. f(t) = Lo, f(t+1) =Hi, f(t+2) = Ei, f(t +3) = Lo, ...

Hi and Lo are logical constants denoting a pair of distinct values of a type
val. These constants could be synonyms for true and false in a simple Boolean
model of circuit behaviour or they could denote signal values in a more complex
circuit model. For simplicity, we assume that Hi and Lo are the only two values
of the type val; a similar effect can be achieved for a larger set of values with
“well-definedness” assumptions; for example, see [5] or [18].

A simple model is also used for n-bit word values, namely natural numbers,
ignoring the fact that n-bit words are finite which is not important in this example.
Hence, a bus is modelled by a function from discrete time to the natural numbers.
A third type of signal represents a memory state as it varies over time; this is
modelled by a function from discrete time to a memory state which, in turn,
is modelled by a function from addresses to n-bit word values (this is another
use of higher-order functions). Addresses are also modelled by natural numbers
ignoring the fact that memories are finite which, once again, is not important in our
example. These conventions are summarized by the following type abbreviations
where tyl—ty2 denotes the type of all total functions with arguments of type ty1
and results of type ty2.

val = {Hi,Lo}
wire = time=—val
bus = time—number
memory = time— (number—number)

We also introduce a type abbreviation for Boolean signals which are functions
from discrete time to Boolean values. These may be thought of as virtual signals
testing for specific logical conditions. For example, a Boolean signal could be
defined to test when a particular wire is high. In the formal specification of

4

the four-phase handshaking protocol, Boolean signals are often used to detect
synchronization points such as when a memory request is signalled. We sometimes
refer to Boolean signals as event signals or sampling functions.

boolsig = time-=boolean

Some predicates such as Stable (see next section) are used to describe signals
of more than one type. A wire, bus, memory or even a logical condition can all be
described as being stable over a specified interval of time. Type variables provide
the logic with a limited amount of polymorphism. The following type abbreviation
is parameterized by a type variable a to describe the type of a polymorphic signal.
Predicates such as Stable are defined in terms of this polymorphic type.

a sig = time—a

5 Temporal Predicates

Reasoning about asynchronous behaviour involves reasoning about the behaviour
of signals over intervals of time. This section introduces some higher-order predi-
cates which make it easier to describe conditicns which involve one or more instants
of time.

IsHi and IsLo are curried functions, that is, functions which take their ar-
guments ‘one at a time’. When applied to a wire signal, e.g. “IsHi w”, these
functions return Boolean signals detecting when the wire is high (or low). When
applied to both a wire signal and time value, e.g. “IsHi w t”, these functions
return Boolean values indicating whether the wire is high (or low) at the specified
time.

Definition 5.1:

F IsHi (w:wire) (t:time) = (w t = Hi)
Definition 5.2:
- Islo (w:wire) (t:time) = (w t = Lo)

Rises and Falls are also curried functions. These functions are used to define
Boolean signals which detect transitions from low to high and vice versa as shown

in Figure 1. For example, a wire rises at time t if it is low at time t and then high
at time t+1.

Definition 5.3:

- Rises (w:wire) (t:time) = ((w t = Lo) A (w (£+1) = Hi))
Definition 5.4:
F Falls (w:wire) (t:time) = ((w t = Hi) A (w (t+1) = Lo))

Figure 1: Rising and Falling Signals

Definition 5.5 shows the definition of stability during an interval. This defini-
tion takes advantage of polymorphic types provided in the HOL logic to define a
predicate which will serve for all types of signal values.

Definition 5.5:
I Stable (s:a sig,v:a,tl:time,t2:time) =
Y. t1 <t At <12 = (st =vV)

Because asynchronous delays are not fixed, we often need to express the con-
dition that a signal remains stable at a given value until a specified event occurs.
If the event never occurs, then the signal remains stable forever. We define two
predicates, StableUntill and StableUntil2, which capture slightly different in-
terpretations of this informal notion. Polymorphic types are also used here so that
these predicates can be used for all types of signals.

Definition 5.6:
F StableUntill (s:a sig.v:a,t:time,b:boolsig)
¥n. Stable (b,F,t,t+n) = (s (t+n) = v)

Definition 5.7:
F StableUntil2 (s:a sig.v:a,t:time,b:boolsig) =
Yn. Stable (b,F,t,t+n) = (s ((t+n)+1) = v)

The choice between StableUntill and StableUntil2 is a matter of fine-tuning
when these predicates are used to describe the behaviour of the synchronous in-
terface and the asynchronous memory. The predicate StableUntill refers to an
interval which begins immediately and ends exactly when the specified event oc-
curs. StableUntil2 refers to an interval which begins and ends one time unit
later than the interval described by StableUntill. Figure 2 illustrates the inter-
vals described by these two predicates where the specified event occurs at time t2.
The shaded region indicates the stable interval in each case.

Interaction between the synchronous interface and the asynchronous memory
process is often described in terms of the “first” or “next” occurrence of a specified
event such as a particular signal rising or falling. The predicate First expresses

6

StableUntill (s,t1,v,e)

tableUntil2 (s,tl,v,e)

T
tl ti+l t2 t2+1

Figure 2: Intervals described by StableUntill and StableUntil2

the property that a specified event occurs for the first time after the start of an
interval. The predicate Next is similar to the First except that the inequality “<”
is used to ensure that the “next” time is strictly after the start of the interval.

Definition 5.8:
F First (t1:time,t2:time) (b:boolsig) =
(t1 < t2) A Stable (b,F,t1,t2) A (b £2)

Definition 5.9:
F Next (ti:time,t2:time) (b:boolsig) =
(t1 < £2) A Stable (b,F,t1+1,t2) A (b t2)

6 Asynchronous Memory

In this section we develop the formal specification of an asynchronous memory
based on the informal specification presented in [15]. As shown in Figure 3, the
asynchronous memory has four inputs and two outputs. A read (write) request is
signalled by a transition from low to high on the read (write) line. The request
is eventually acknowledged by a transition from low to high on the dtack line. A
request to end the cycle can then be signalled by a transition from high to low on
the read (write) line which is acknowledged by a similar transition from high to
low on the dtack line. This four-phase handshaking protocol is shown in Figure
4 for a read request.

Once a read or write request has been signalled, several conditions must be
maintained until the asynchronous memory responds or until the end of the cycle.
After signalling a read request, the read line must remain high until the request
is acknowledged. Furthermore, a write request cannot be signalled during a read
cycle; that is, the write line must remain low until the end of the read cycle.
Similarly, the address bus must remain stable throughout the cycle. During a
write cycle, the write line must remain high until the request is acknowledged
and the read line must remain low until the end of the cycle. In this case, the

read
write —— ———— dtack
\ r 5
addr 3 AsynMem
> dataout
datain | >

Figure 3: Asynchronous Memory Device

addr X)
rad |f \

write
dataout < >
dtack / \
t1 t2 t3 t4

Figure 4: Read Cycle using a Four-Phase Handshaking Protocol. This simplified
timing diagram shows the relative order of events in a read cycle where a request
occurs at t1 followed by an acknowledgement at t2. The acknowledgement may
occur in the same interval as the request, t.e. t2 may be equal to t1. Similarly, t4
may be equal to 3. However, t3 must occur strictly after t1 and t4 strictly after
t2 since signals are not allowed to rise and fall within the same interval.

data bus as well as the address bus must remain stable throughout the write cycle.
For both read and write cycles, a request to end the cycle is signalled by read or
write falling. The next cycle is not allowed to begin until the end of the current
cycle is acknowledged by the asynchronous memory; that is, the read and write
lines must remain low until the dtack line also falls. Between read and write
cycles, when the asynchronous memory is idle, the dtack line remains low and the
internal state of the memory is stable.

Working from this informal description, the formal specification of the asyn-
chronous memory process can be developed by cutlining the overall structure of a
memory cycle specification and then filling in precise details. We focus on the be-
haviour of the asynchronous memory during a read cycle, as illustrated in Figure 4,
and begin with a pseudo-formal specification which shows the overall structure of
the read cycle specification. Universally quantified time variables denote when the
synchronous interface may initiate a request to begin or end a cycle. Existential
quantification is used to specify when the asynchronous memory must eventually
acknowledge one of these requests.

Vti.
asynchronous memory idle A (1)
read cycle requested at time t1 A (2)
.
d¢2.
read request acknowledged at tize t2 A (3)
fetched memory word available as output A (4)
Vt3.
end-of-cycle requested at tize t3 A (5)
=
Jt4.
end-of-cycle acknowledged at time t4 A (6)
asynchronous memory returns to idle state A (7)
internal memory state unchanged during cycle (8)

In the terminology of [21], lines (1) to (2) and (5) specify “domain” constraints
which are assumptions about inputs to the asynchronous memory. Lines (3) to (4)
and (6) to (8) specify “functional” constraints, that is, outputs and internal state
changes which the memory must produce in response to inputs.

Line (1) requires the asynchronous memory to be in an idle state when a read
cycle is initiated (it cannot already be in the middle of another memory request).
Unfortunately, the asynchronous memory device does not provide a “idle” flag as
a physical output signal; while this would simplify the task of writing a formal
specification, real memories devices do not usuaily provide such a signal. Clearly,
the value of the dtack signal at any particular moment does not indicate when
the memory is in an idle state since it can remain low for some time after a read
or write cycle begins. For instance, the dtack signal is still low at time t1+1 in

Figure 4 even though a read cycle has already begun and the memory is no longer
idle. Instead, one of the conditions indicating that the memory is idle is that the

tack signal is low and will remain low until either read or write rises. The
other condition is that the memory state is also stable until the next read or write
request is signalled. These two conditions are easily expressed with the predicate
StableUntill in Definition 6.2. We also define an infix function Or¥hen which
combines two event signals using logical “or”.

Definition 6.1:
F (bil:boolsig) Or¥hen (b2:boolsig) = At. bl t V b2 ¢

Definition 6.2:

 MemIdle (read:wire,write:wire,dtack:wire,mem:mezory) t =
StableUntill (dtack,lLo.,t,(Rises read) Or¥When (Rises write)) A
StableUntill (mem,mem t,t,(Rises read) OrWhen (Rises write))

Line (2) refers to the initiation of a read cycle. A read request is signalled by
a transition from from Lo to Hi on the read line. Once high, the read signal is
required to stay high until the request is acknowledged; otherwise the behaviour
of the asynchronous memory is undefined. More precisely, the read signal must
remain stable up to and including some point when the dtack line is also high.
Furthermore, the write signal must remain low and the address bus stable until
the end of the read cycle, t.e. until dtack falls. These conditions are expressed
formally by the following term.

Rises read ti A

StableUntil2 (read,Hi,t1,Rises dtack) A
StableUntil2 (write,lLo,t1,Falls dtack) A
StableUntil2 (addr,address,t1,Falls dtack)

The eventual acknowledgement of the read request is signalled as soon as the
dtack signal rises, line (3). Once the read request has been acknowledged, the
dtack signal will remain high until the read signal falls. The acknowledgement of
the request also means that the contents of memory at the given address are now
available on dataout until the read signal falls, line (4). The function constant
FETCH is used to represent this memory operation. Another constant, STORE, is
used to specify the effect of a write cycle on the internal state of the asynchronous
memory (see Appendix A for an example of its use). The memory operations
denoted by these two constants are not formally defined here because we never
need to reason about the effect of storing and later fetching a value from memory.

First (t1,t2) (Rises dtack) A
StableUntill (dtack,Hi,t2+1,Falls read) A
StableUntilt (dataout,FETCH (zez t1) address,t2+1,Falls read)

10

Line (5) refers to when read falls signalling a request to end the read cycle.
Once low, the read signal must remain low until the request is acknowledged by

the asynchronous memory.

First (£2,%3) (Falls read) A
StableUntil2 (read,Lo,t3,Falls dtack)

Lines (6) and (7) specify that the asynchronous memory will eventually ac-
knowledge this request by resetting the dtack signal and entering the idle state.
Finally, line (8) states that the internal state of the memory will be unchanged
from its state at the beginning of the cycle.

First (%3,t4) (Falls dtack) A
MemIdle (read,write,dtack,mem) (t4+1) A
(mem (t4+1) = mem t1)

The formal specification of the asynchronous memory behaviour during a read
cycle is obtained by replacing the numbered lines of the pseudo-formal specification
with these precise details. The predicate AsynMemRead is defined in terms of this
specification. The variable address, which denotes the stable value of the addr
signal during the read cycle, is included in the outermost quantification.

11

Definition 6.3:

F AsynMexzRead (
read:wire,write:wire,addr:bus,datain:bus,
dtack:wire,dataout:bus,
cem:memory) =
¥V t1 address.

Rises read ti A
MemIdle (read,write,dtack,zen) tl1 A
StableUntil2 (read,Hi,t1,Rises dtack) A
StableUntil2 {(write,Lo,t1,Falls dtack) A
StableUntil2 (addr,address,t1,Falls dtack)
—_—
Jt2.
First (t1,t2) (Rises dtack) A
StableUntill (dtack,HBi,t2+1,Falls read) A
StableUntill (
dataout ,FETCH (mem t1) address,t2+1,Falls read) A
Vvt3.
First (t2,t3) (Falls read) A
StableUntil2 (read,lo,t3,Falls dtack)
_
Jt4.
First (£3,t4) (Falls dtack) A
MemIdle (read,write,dtack,mem) (t4+1) A
(mem (t4+1) = mem t1)

The formal specification of a write cycle is very similar to the above specifica-
tion of the read cycle with the roles of read and write exchanged. There is also
the extra condition that the data bus must remain stable throughout the write
cycle. The formal specification uses the function constant STORE to specified that
the memory state is updated as expected by the end of the write cycle. These two
specifications are then combined to define a predicate, AsynMem, which denotes
the behaviour of the asynchronous memory process. The formal specification also
states that the memory will be initially idle at time 0. The complete specification
is given in Appendix A.

7 Synchronous Interface

In this section we formally specify the behaviour of a synchronous interface to
the memory device described in the previous section. To focus our discussion,
we ignore implementation issues, 1.e. the interconnection of clocked registers and
control logic, and specify the behaviour of the synchronous interface in terms of an
abstract state machine. The derivation of abstract state machine behaviour from

12

read

write —— d
> dataout
addr >

a_read

. .
datain :’\ Interface a_write
dtack > a_addr

a_dataout) > a_datain

Figure 5: Synchronous Interface Device

an implementation has been demonstrated for several other examples including
those described in {3] and [17].

As shown in Figure 5, the interface has four synchronous inputs and two syn-
chronous outputs. The synchronous signals will eventually be the only externally
visible signals when the interface is combined with the asynchronous memory
to implement a synchronous memory system. The interface receives two asyn-
chronous inputs from the memory and communicates requests and data to the
memory through the four asynchronous outputs. To easily distinguish between
synchronous and asynchronous signals with a common name, we adopt the naming
convention of prefixing asynchronous signals with an “a”, e.g. read and a_read.

The synchronous interface waits in an idle state until the read or write signals
becomes high. As soon as this happens, the synchronous address and data busses
are latched and the synchronous interface begins either a read or write cycle.
After signalling a request to the asynchronous memory, the interface waits some
number of clock ticks until the asynchronous memory responds. As soon as the
request is acknowledged, the interface immediately resets the a_read or a_write
line and waits one or more clock ticks until the asynchronous memory terminates
the memory cycle. In the case of a read cycle, the value of a_dataout is latched
just before resetting the a_read line. At the end of the memory cycle, the interface
returns to the idle state.

We begin with a PASCAL-like notation to describe the implementation of the
handshaking protocol in the synchronous interface. The wait states are imple-
mented by repeat-until constructs where each iteration corresponds to a single
clock tick. Assignment statements are used to specify both current outputs and
updates to the internal state of registers in the interface. This algorithm is illus-
trated by the flow graph of Figure 6.

13

stateO: idle := Hi;
a_read := Lo;
a_write := Lo;
repeat_each_clock_tick {
a_addr := addr;
a_datain := datain
} until ((read = Hi) or (write = Hi));
if (read = Hi) goto statel else goto state2;

statel: idle := Lo;
a_read := Hi;
repeat_each _clock_tick {
- dataout := a_dataout
} until (dtack = Hi);
goto state3;

state2: idle := Lo;
a_write := Hi;
repeat_each_clock_tick {
} until (dtack = Hi);
goto state3;

state3: a_read := Lo;
a_write := Lo;
repeat_each_clock_tick {
} until (dtack = Lo);
goto state0;

The behaviour implied by this algorithm is formally specified in higher-order
logic by Definition 7.1. Assignment statements are replaced by output equations,
e.g. “idle t = Hi”, and next state equations, e.g. “a_addr (t+1) = addr t”.
Unlike assignment statements in the PASCAL-like notation, these equations must
explicitly describe current outputs and next state for every clock tick. In the
above “program” there is an implicit notion of state which is updated by assign-
ment statements. This contrasts with our style of writing formal specifications in
higher-order logic where state is made explicit. We are using the PASCAL-like
notation here as an informal description; the formal semantics of this notation or
its relationship to our formal specifications are not considered.

At this point we should clarify the distinction between two uses of the word
“state”. In the more general sense, we use this word to describe the current
contents of all storage devices in the implementation of a process including both
storage of data, e.g. contents of registers, and storage of control information, e.g.
the program counter in a microprocessor. We also use the word “state” to refer

14

very specifically to control points in a sequential process such as the four nodes of
the flow graph in Figure 6. In the abstract state machine, the sequence of control
points is represented by a function from discrete time to the numbers, 0, 1, 2 and
3, used to label the nodes of the flow graph. Even though we already have a type
abbreviation for signals of this type, bus, we introduce a new type abbreviation,
counter, to emphasis that the state signal does not necessarily have a physical

counterpart.

counter = time—number

15

state O

idle = Hi
a.addr ~— addr
a_datain + datain

read = Hi write = Hi

yes yes

R

/ state 1 \

aread = Hi a_write = Hi

dataout — a._dataout,

(state 3 \

\-

Figure 6: Flow Graph for the Synchronous Interface

16

Definition 7.1:

F Interface (
read:wire,write:wire,dtack:wire,
addr:bus,datain:bus,a_dataout:bus,
idle:wire,a_read:wire,a_write:wire,
a_addr:bus,a_datain:bus,dataout:bus,
state:counter) =
(state 0 = 0) A

Vt.

((state t = 0) =

(idle t = Hi) A

(a_read t = Lo) A

(a_write t = Lo) A

(a_addr (t+1) = addr t) A

(a_datain (t+1) = datain t) A

(datacut (t+1) = dataout t) A

(state (t+1) =

((read t = Hi) = 1 | (write t = Hi) = 2 | 0))) A

((state t = 1) =

(idle t = Lo) A

(a_read t = Hi) A

(a_write t = Lo) A

(a_addr (t+1) = a_addr t) A

(dataout (t+1) = a_dataout t) A

(state (t+1) = ((dtack t = Hi) = 3 | 1))) A
((state t = 2) =

[}
o
o

(idle t)

(a_read t = Lo

(a_write t = Hi) A

(a_addr (t+1) = a_addr t) A

(a_datain (t+1) = a_datain t) A

(dataout (t+1) = dataout t) A

(state (t+1) = ((dtack t = Hi) = 3 | 2))) A
((state t = 3) =

(idle t = Lo) A

(a_read t = Lo) A

(a_write t = Lo) A

(a_addr (t+1) = a_addr t) A

(a_datain (t+1) = a_datain t) A

(dataout (t+1) = dataout t) A

(state (t+1) = ((dtack t = Lo) = 0 | 3)))

17

Definition 7.1 also specifies that the initial state of the machine at time O is
state 0 which is the idle state.

8 Formal Verification in Higher-Order Logic

The main emphasis of this paper is the use of higher-order logic as a specification
language for asynchronous processes. However, higher-order logic is also a powerful
means of reasoning about these specifications.

An interactive theorem-proving environment for higher-order logic is provided
by the HOL system [10], a descendent of Edinburgh LCF [8]. A user of this system
manipulates theorems as data objects in the meta-language. The meta-language
is an interactive functional programming language called ML. Initially, only the
axioms of higher-order logic exist as data objects. New theorems are generated by
a small set of built-in ML functions which correspond to primitive inference rules
of higher-order logic. Derived inference rules and powerful proof strategies can be
programmed as ML functions to automate most of the minor steps, leaving the
user to supply only the main steps in a proof [23]. Several large proofs involving
more than a million primitive inference steps have been constructed in this system
(for instance, see [4] or [18]).

The direct use of inference rules to generate new theorems from existing the-
orems is called “forward” proof. However, it is often easier to state the desired
theorem as a goal and systematically reduce this goal to simpler and simpler
sub-goals until all the sub-goals are proved as theorems. This approach, called
“backward” or “goal-directed” proof indirectly uses the inference rules to generate
the desired theorem. Both forward and backward proof are supported in the HOL
system.

The next three sections describe how higher-order logic can be used to reason
about the specifications of the synchronous interface and the asynchronous mem-
ory, in particular, the interaction of these two processes. Our discussion focuses
on theorems which highlight this process; we ignore details of their formal proof
(although they have been generated as theorems in the HOL system).

9 Collapsing Wait States into Single Steps

States 1, 2 and 3 of the state machine implement wait states which occur during
read and write cycles. In states 1 and 2 the machine waits until the dtack signal
becomes high. In state 3 the machine waits until the dtack signal becomes low.
During waits states, the outputs and internal state of the machine remain stable;
hence, waits states can be viewed as single steps between synchronization points
in the four-phase handshaking protocol.

Using induction on the length of a wait state, we can derive the behaviour
of the machine in these wait states expressed in terms of StableUntili. For
example, Theorem 9.1 shows that the signals state, idle, a_read, a_write and

18

a_addr remain stable while waiting in state 1 for an acknowledgement from the
asynchronous memory.

Theorem 9.1:
 Interface (
read,write,dtack,addr,datain,a_dataout,
idle,a_read,a_write,a_addr,a_datain,dataout,state)
—_
vt.
(state t = 1)
—
StableUntilt (state,1,t,IsHi dtack) A
StableUntill (idle,Lo,t,IsHi dtack) A
StableUntill (a_read,Hi,t,IsHi dtack) A
StableUntill (a_write,Lo,t,IsHi dtack) A
StableUntill (a_addr,a_addr t,t,IsHi dtack)

Similar results can be derived for the behaviour of the machine in state 2 during
a write cycle and for its behaviour in state 3 while waiting for the dtack signal to be
reset (see Appendix B). These theorems are used to reason about the interaction of
the state machine with the asynchronous memory without further use of induction.
Thus, we have factored out the inductive aspects of the verification task at this
early stage in the formal proof.

10 Symbolic Simulation

This section explains how a proof technique called “symbolic simulation” is used
to derive a more abstract view of interaction between the synchronous interface
and the asynchronous memory where synchronization details of the handshaking
protocol are hidden.

Figure 7 shows the interaction of the abstract state machine with the asyn-
chronous memory during a read cycle. This timing diagram is consistent with the
generalized read cycle shown in Figure 4 but shows how some of the unknowns
in the generalized read cycle become fixed when the behaviour of the interacting
process is known. In particular, Figure 7 shows that time t3 occurs immediately
after time t2 (i.e. at time t2+1). Figure 7 also shows related activity in the
synchronous interface such as the current state, the idle signal, and the latching
of data from the asynchronous memory.

To formally reason about the interaction of the abstract state machine with the
asynchronous memory process, we assume that a memory cycle is initiated at an
arbitrary point in time, t1, and then use inference rules to derive the state of the
two processes at each of the subsequent synchronization points, t2, t3 and t4. The
asynchronous memory specification and the derived behaviour of the abstract state

19

machine during wait states, e.g. Theorem 9.1, allows us to regard the intervals
between synchronization points as single time steps. That is, the interaction of
the two processes is deterministic for this abstract view of time where wait states
are collapsed into single time steps.

This proof technique, called “symbolic simulation”, has also been used to for-
mally verify higher level aspects of microprocessor systems in [4] and [16], e.g.
symbolic execution of microcode. The simulation takes the form of a sequence
of inference in higher-order logic. It is symbolic because variables are used in
place of real data and because all possible asynchronous delays are considered at
once. Even though we use the descriptive term “simulation”, we emphasis that
this technique is formal proof based on the inference rules of higher-order logic.

Symbolic simulation is used to reason about read and write cycles as well as idle
cycles (idle cycles occur when there is no interaction between the two processes).
Details on symbolic simulation are given in Appendix C; the results of this major
proof step are summarized in three theorems corresponding to the three types
of memory cycles. Each of these theorems relates the state of the synchronous
machine at the end of a memory cycle to its initial state at the beginning of the

state 0 1 1 1 3 3 3 0
idle _\

a_addr X X

a_read _/

a_write
a_dataout <:>
dataout <
dtack / \

t1 t2 t3 t4

Figure 7: Interaction of State Machine with Asynchronous Memory

20

cycle. This is illustrated below for a read cycle using pseudo-formal notation.

combined behaviour of interface and asynchronous memory (1)
=
Vil
synchronous read request at time t1 A (2)
asynchronous memory idle (3)
=
3t2.
read cycle ends at t2 A
asynchronous memory returns to idle state A

[JNY-N

(o))
L O N

fetched memory word available as output A
internal memory state unchanged during cycle

7

As shown above, the overall structure of these three theorems is an implication
where the results of symbolic simulation are implied by the combined behaviours
of the abstract state machine and the asynchronous memory. The behaviours of
these two processes are combined by replacing the formal parameters of Interface
and AsynMem with the names of interconnecting wires and busses and composing
the two terms by logical conjunction, line {1).

Interface (
read,write,dtack,addr,datain,a_dataout,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMem (a_read,a_write,a_addr,a_datain,dtack,a_dataout ,mem)

The right-hand side of the outermost implication, lines (2) to (7), states that
a read cycle initiated at time t1 will eventually complete at time t2. The existen-
tially quantified variable t2 denotes the end of the read cycle and should not be
confused with time t2 in Figure 7.

Lines (2) and (3) refer to the initiation of a read cycle. This occurs when the
synchronous read line is high, the abstract state machine is in state 0 and the
asynchronous memory is idle.

(state t1 = 0) A
IsHi read ti1 A
MemIdle (a_read,a_write,dtack,mem) t1

If these conditions are satisfied, symbolic simulation shows that read cycle will
eventually be completed at time t2. The end of the cycle is formally specified as
the time when the idle signal of the state machine next becomes high after the
start of the cycle at time t1, line (4). The predicate Next is used to formally state
this condition.

Next (t1,t2) (IsHi idle)

21

Symbolic simulation also shows that the asynchronous memory will return to
its idle state by the end of the read cycle and that the fetched memory word will
be available as output, lines (5) and (6). Finally, line (7) states that the internal
state of the memory will be unchanged from the start of the read cycle.

MenIdle (a_read,a_write,dtack,mem) t2 A
(Gataout t2 = FETCH (zmem t1) (addr ti)) A
(zem t2 = menm t1)

Thus, the results of symbolic simulation for a read cycle are formally expressed
by the following theorem.

Theorem 10.1:
 V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataocut state mem.
Interface (
read,write,dtack,addr,datain,a_dataocut,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMen (a_read,a_write,a_addr,a_datain,dtack,a_datacut,men)
s
Vtil.
(state t1 = 0) A
IsHi read t1 A
MemIdle (a_read,a_write,dtack,mem) t1
.
Js2.
Next (t1,t2) (IsHi idle) A
MemIdle (a_read,a_write,dtack,mem) t2 A
(dataout t2 = FETCH (mem t1) (addr ti)) A
(mem t2 = menm t1)

The above theorem states that the synchronous interface and asynchronous
memory correctly irnplement the four-phase handshaking protocol in the case of a
read cycle. Similar theorems can be derived for a write cycle and for a idle cycle
(see Appendix C). These three theorems are relatively compact because they do not
contain details of synchronization during memory cycles. This is desirable because
we wish to derive a more abstract view of interaction between the synchronous
interface and the asynchronous memory where synchronization details are hidden.

22

11 A Synchronous Memory System

Figure 8 shows a synchronous memory system implemented by the synchronous
interface and the asynchronous memory device. This implementation is formally
specified in Definition 11.1 using logical conjunction to compose behaviours and
existential quantification to hide the internal asynchronous signals.

Definition 11.1:
t SynMem_Imp (
read:wire,write:wire,addr:bus,datain:bus,
idle:wire,dataout:bus,men:memory) =
4 dtack a_dataout a_read a_write a_addr a_datain state.
Interface (
read,write,dtack,addr,datain,a_dataout,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMen (a_read,a_write,a_addr,a_datain,dtack,a_dataout,men)

The behaviour of this implementation is described at an abstract time scale
where 2 memory cycle has a uniform length of one time unit. Thus, read and write
requests issued at time t are completed by time t+1. The following definition
specifies the behaviour of the synchronous memory system with respect to this
abstract time scale. '

read
write

' > dataout
addr |)

datain ‘:> Interface
) AsynMem

—N —

~ -]

Figure 8: Synchronous Memory System Implementation

23

Definition 11.2:
F SynMem_Beh (
read:wire,write:wire,addr:bus,datain:bus,
dataout:bus,zem:memory) =
Y.
(dataout (t+1),mem (t+1)) =
IsHi read t = (FETCH (mem t) (addr t).mem t) |
IsHi write t = (dataout t,
STORE (mem t) (addr t) (datain t)) |
(dataout t,mem t)

The above specification describes the synchronous memory system using an
equation for the state of the system at time t+1 in terms of its inputs and state at
time t. The right hand of the equation is a nested conditional expression testing
first whether the read signal is high and then whether the write signal is high.
A simultaneous request on the read and write signals defaults to a read request.
The state is represented as a pair consisting of dataout and the internal memory
state mem.

The behaviours of the synchronous interface and the asynchronous memory are
stated with respect to the clocking of synchronous components in the interface. To
prove that the combined behaviour of the interface and the asynchronous memory
correctly implement the synchrorous memory system, a formal relationship be-
tween the concrete time scale and the abstract time scale needs to be established.

Both [12] and [22] describe the use of higher-order functions to relate different
time scales. [22] describes a higher-order function Time0Of which is used to con-
struct a temporal abstraction from a concrete time scale to an abstract time scale
in terms of a sampling function. TimeOf can be defined in terms of the predicates
First and Next using primitive recursion and Hilbert’s e-operator. This definition
is equivalent to the definition given in [22] under the validity condition discussed
shortly.

Definition 11.3:
F (TimeOf (b:boolsig) 0 = et. First (0,t) b) A
(TimeOf (b:boolsig) (n+1) = et. Next (TimeOf b n,t))

The first point on the abstract time scale corresponds to the first time that the
sampling function b is true with respect to the concrete time scale. Subsequent
points on the abstract time scale are defined recursively. The n+1th point on
the abstract time scale corresponds to the next time that the sampling function
becomes true after the nth time point.

In this example, TimeOf is applied to the sampling function “IsHi idle” to
produce an abstraction which maps the nth point on the abstract time scale to
the nth occurrence of “IsHi idle” on the concrete time scale. The use of idle

24

abstract time ;

IsHi idle ‘—1

. i
concrete time T

TimeOf (IsHi idle) n TimeOf (IsHi idle) (n+1)

Figure 9: Relationship between Abstract and Concrete Time Scales

to define the formal relationship between the abstract and concrete time scales
reflects the fact that this signal is high exactly at the beginning and end of every
memory cycle. Figure 9 illustrates the relationship between these two time scales
based on the sampling function “IsHi idle”.

The validity of the temporal abstraction relating abstract and concrete time
scales depends upon showing that the sampling function “IsHi idle” is true in-
finitely often. The predicate Inf is defined to express this condition.

Definition 11.4:
F Inf (b:boolsig) = Vti. 3t2. t1 < t2 A (b t2)

For some examples of temporal abstraction such the one described in [22],
the external environment is assumed to satisfy the validity condition that the
sampling function is true infinitely often. In other examples such as the verification
of the Tamarack microprocessor [16}, this validity condition is satisfied by the
implementation. In the synchronous memory system, the validity of the temporal
abstraction is also satisfied by the implementation. The following theorem states
general conditions for showing that a sampling function is true infinitely often.

Theorem 11.1:
FVgh.
(3t. gt A ht) A
(V1. g t1 A h t1 = 3t2. Next (£1,t2) g A h t2)
_
Inf g

In Theorem 11.1, the variable g is a sampling function and h represents any
other conditions which must be propagated from every abstract point in time to

25

the next. In some cases, there are no such conditions and h can be eliminated from
Theorem 11.1. In other cases, the successful completion of an abstract interval of
time depends on some conditions holding at the start of the interval. For example,
to show that the sampling function “IsHi idle” is true infinitely often, we need to
show that the asynchronous memory is always idle at the beginning of an abstract
interval. Thus, to show that the sampling function “IsHi idle” is true infinitely
often, we first prove the following theorems.

Theorem 11.2:
 3%. IsHi idle t A MemIdle (a_read,a_write,dtack,mem) t

Theorem 11.3:
F Vei.
IsHi idle t1 A Memldle (a_read,a_write,dtack,mem) ti
—
dt2.
Next (t1,t2) (IsHi idle) A
MemIdle (a_read,a_write,dtack,mem) t2)

The first theorem, asserting that there exists some time when the interface
and asynchronous are both idle, is satisfied at time 0. The other condition, that
memory cycles always end with the interface and asynchronous memory in an idle
state, follows from the results of symbolic simulation described in the previous
section. By Theorem 11.1, the sampling function “IsHi idle” is true infinitely
often.

Theorem 11.4:
 V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataout state menm.
Interface (
read,write,dtack,addr,datain,a_datacut,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMem (a_read,a_write,a_addr,a_datain,dtack,a_dataout,mem)
=
Inf (IsHi idle)

The logical significance of Theorem 11.4 is that there is always a “next” ab-
stract time point to be selected by the e-operator in the definition of Time0f. This
is described as a validity condition for temporal abstraction since many useful
theorems about TimeOf depend on this result. Theorem 11.4 is also significant
because it states a “liveness” property for the concurrent system implemented by
the two processes.

Using Theorem 11.4 and some of the temporal abstraction theorems described

26

in [22], we can prove that the asynchronous memory will be idle at every point
on the abstract time scale. Therefore, every abstract time point corresponds to a
concrete time when a read or write cycle can begin.

Theorem 11.5:
- V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataout state mem.
Interface (
read,write,dtack,addr,datain,a_dataout,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMem (a_read,a_write,a_addr,a_datain,dtack,a_dataout,mem)
=
Vn. MemIdle (a_read,a_write,dtack,mem) (TimeOf (IsHi idle) n)

The temporal abstraction relating the abstract time scale to the concrete time
scale results in a relationship between the implementation signals which are defined
in terms of the concrete time scale and a corresponding set of abstract signals
which are defined in terms of the abstract time scale. An abstract signal is the
sequence of values obtained when the corresponding concrete signal is sampled at
abstract time points. [22] defines an infix function which produces the abstract
signal corresponding to a concrete signal.

Definition 11.5:
F (s:a sig) when (b:boolsig) = An. s (TimeOf b n)

At this point we are in a position to formulate the top-level statement of
correctness for the synchronous memory system. This will state that the con-
straints imposed on the externally visible signals by the implementation will imply
those constraints expressed by the behavioural specification when the implemen-
tation signals are sampled according the sampling function “IsHi idle”. Recall
that SynMem_Imp and SynMem_Beh are the implementation and behavioural spec-
ifications of the synchronous memory system. SynMem_Imp imposes constraints
on implementation signals which are defined in terms of the concrete time scale
whereas SynMem_Beh imposes constraints on signals defined in terms of the ab-
stract time scale. We introduce a higher-order function SamplingWhen which pro-
duces constraints on concrete signals corresponding to the constraints imposed by
SynMem_Beh on the abstract signals.

Definition 11.6:

I SamplingWhen (b:boolsig) behaviour_predicate
(si:wire,s2:wire,s3:bus,s4:bus,s5:bus,s6:nemory) =
behaviour_predicate (

sl when b,s2 when b,s3 when b,s4 when b,s5 when b,s6 when b)

27

Using this function, the top-level correctness statement for the synchronous
memory system is expressed by Theorem 11.6.

Theorem 11.6:
F V read write addr datain idle dataout mez:.
SynMem_Imp (read,write,addr,datain,idle,dataocut ,mem)
—_
SamplingWhen (IsHi idle)
SynMem_Beh (read,write,addr,datain,dataout,mem)

Until now, we have not described proof details for any of the theorems presented
in this paper. However, it is worthwhile outlining the formal proof of Theorem 11.6
since it is a good example of one way in which the HOL system is used to prove
theorems. Using backward proof, the conclusion of Theorem 11.6 (i.e. the term
following the “F") is set up as the top-level goal. After expanding the top-level goal
with the definitions of SynMem_Izp, SynMem_Beh, SamplingWhen and when, case
analysis is used to split the goal into three sub-goals corresponding to the three
types of memory cycles, t.e. read, write and idle cycles. The results of symbolic
simulation, e.g. Theorem 10.1, are then used to show that the implementation of
the synchronous memory system satisfies its behavioural specification for each of
the three cases.

12 Independent Process Specification

One of the main differences between the specifications described in this paper and
the approach taken in [15] is that here each process has an independent speci-
fication. In particular, the asynchronous memory specification is written as an
independent definition in higher-order logic. Thus, it is possible to reason inde-
pendently about each process; it is only necessary to compose specifications in
order to reason about their interaction. This contrasts with Hunt’s functional
specification style where “the characterization of external devices are wrapped up
in the same function which specifies the microprocessor” 1.

The relational style of specification used in our approach makes it easy to
write independent specifications for each process and compose them using logi-
cal conjunction. The main problem with the functional style of specification is
modelling bi-directional communication between two processes. [11] and [13] de-
scribe functional specification styles which solve this problem using lazy evaluation
techniques.

With independent specifications for each process, it is possible to prove that
particular implementations of each process correctly implement these specifica-
tions. To illustrate this point, Deinition 12.1 describes a particular implementa-

1{15], page 113.

28

tion of the asynchronous memory process. The behaviour of this implementation
is described by an abstract state machine using a specification style similar to the
specification of the synchronous interface. For simplicity, we assume that this spec-
ification shares a common time scale with the implementation of the synchronous

interface.

Definition 12.1:

F Memory (
read:wire,write:wire,addr:bus,datain:bus,
dtack:wire,datacut:bus,
mem:memory,state:counter) =

(state 0 = 0) A
Vt.
((state t = 0) ==
(dtack t = Lo) A
(mem (t+1) = mem t) A

(state (t+1) =
((read t = Hi) = 1 | (write t = Hi) = 2 | 0))) A
((state t = 1) —
(dtack t = Hi) A
(dataout t = FETCH (mem t) (addr t)) A
(mem (t+1) = mem t) A

(state (t+1) = ((read ¢t = Hi) = 1 | 0))) A
((state t = 2) =—

(dtack t = Hi) A

(mem (t+1) = STORE (mem t) (addr t) (datain %)) A

(state (t+1) = ((write t = Hi) = 2 | O)))

13 Independent Time Scales

The formal specifications of the asynchronous memory process and the synchronous
interface are expressed in terms of a common time scale, namely, the clocking rate
of sequential components in the synchronous interface. This common time scale is
an implicit form of synchronization which underlies the asynchronous interaction
implemented by the four-phase handshaking protocol.

To clarify this situation, we distinguish between the time scale of the formal
specification and the use of clocked components (if any) in an implementation
of the asynchronous memory process. The formal specification describes the be-
haviour of the asynchronous memory process when observed in terms of the clock-
ing rate of the synchronous interface. It is possible that the asynchronous memory
is implemented by components clocked by the same clock used in the synchronous
interface (such as the implementation described in the previous section). However,
the formal specification of the asynchronous memory process could also specify the

29

Figure 10: A Signal which is Not “Well-Behaved”

observed behaviour of a memory with an independent clock or a memory imple-
mented by unclocked circuits.

Hence, our specifications use a common time scale even though the correspond-
ing devices may involve independent clocks. We have not used formal methods
to relate specifications involving independent time scales. However, we have at-
tempted to write the asynchronous memory specification in a “speed-independent”
style where the underlying time scale is unimportant. This specification describes
the behaviour of the asynchronous memory process at any granularity of time for
which inputs to the memory process are “well-behaved”.

A signal is well-behaved with respect to a particular sampling rate if the signal,
when viewed continuously, does not rise and fall or vice versa within a single
interval of discrete time. For example, Figure 10 shows an input signal which is
not well-behaved because it momentarily rises and then falls without the event
being detected at the selected sampling rate. This constraint is meant to prevent
asynchronous inputs from switching faster than the sampling rate; it also excludes
“glitches”, pulses with a duration shorter than a technology-dependent threshold,
which may have an unknown effect on the asynchronous memory. Both [5] and
[19] describe similar conditions constraining how signals may change with respect
to discrete time.

When inputs are well-behaved, the formal specification of the asynchronous
memory will be satisfied even for a relatively coarse grain of time. We do not
assume, for example, that the acknowledgement by the memory must occur strictly
after a request since this might be untrue even when the sampling rate is slow
relative to the operation of the asynchronous memory. In such a case, the sampled
value of the dtack signal may appear to rise simultaneously with the rise of the
read signal as shown in Figure 11 even though it really occurs slightly later than
the request on the continuous time scale. This is why the specification requires
the inequality “<” to be used in the definition of First instead of “<”.

The formal specification of the asynchronous memory is also satisfied at an
extremely fine grain of time. Even at the granularity of nanoseconds, the formal
specification requires that the read and write signals remain stable until the

request is recognized by the memory device even if tens of nanoseconds elapse
before this happens.

30

read /
dtack /

t t+l

Figure 11: A Relatively Coarse Time Scale

Hence, the time scale in the formal specification of the asynchronous memory
is unimportant. Our use of the term “speed-independent” to describe this style
of specification alludes to the use of the four-phase handshaking protocol (also
called Muller signalling) in self-timed systems [21]. While the scale of time in the
asynchronous memmory specification is not important, the specification depends
on “open-loop” relations which assume that address and data values are sent, not
just concurrently, but in parallel with the request and acknowledgement signals.

14 Real Systems

The four-phase handshaking protocol described in this paper is also the basis for
asynchronous data transfers between the M68000 microprocessor and memory or
other peripheral devices. Instead of separate signals for read and write requests,
the M68000 has an address strobe AS* which signals requests to asynchronous
memory. Read requests are distinguished from write requests by another signal,
R/W, which is set high or low before a request is signalled by AS*. Data is transferred
over a bi-directional bus instead of separate datain and dataout busses.

A simplified timing diagram for a M68000 read cycle is shown in Figure 12.
An important difference between this diagram and our model of an asynchronous
memory is that the address must be valid before the memory request is signalled
by AS*. More detailed timing information for the M68000 states the address
must be valid at least 30 nanoseconds before AS* is asserted. This ensures that
memory is not written at the wrong address before the correct address has had
sufficient time to become stable within the memory. This contrasts with our
formal specification of the asynchronous memory which only requires the address
to become valid simultaneously with the memory request. We could revise this
formal specification to include this more detailed timing requirement by rewriting
the specification in terms of a specific time scale, 1.e. the nanosecond time scale.
The specification would explicitly require the address bus to be stable from at
least 30 nanoseconds before a read or write request.

31

one bus cycle

CLK—

oo LT)
w1 /
rw

rwoxe 1 \ /
D

Figure 12: Simplified M68000 Read Cycle. The synchronous time scale for the
M68000 ss divided snto half cycle intervals because events can occur on both rising
and falling edges. Only the address strobe AS* ts mentioned here. Asterisks indicate
“active-low” signals. This timing diagram 1s adapted from [2], page 121.

32

To reason about the interaction of the asynchronous memory with the syn-
chronous interface using this revised specification, we need to relate this specifica-
tion to a synchronous level specification. The timing diagram in Figure 12 shows
how the detailed timing level behaviour of the M68000 can be viewed in terms of a
time scale divided into half-cycle intervals. Assuming that the latest point at which
the address can become stable occurs at least 30 nanoseconds before the earliest
possible rise of AS* in the following interval, then the detailed timing requirement
is satisfied. Hence, requiring the address to become stable in the preceding half-
cycle interval is a synchronous level condition which satisfies the detailed timing
requirement that the address becomes stable at least 30 nanoseconds before a read
or write request. This synchronous level condition could be used to rewrite the
formal specification of the asynchronous memory in terms of the synchronous time
scale.

Detailed timing information for the M68000 also states: “If DTACK* is does
not go low (active low) at least 20 nanoseconds before the end of state S4, wait
states are introduced between S4 and S5 until DTACK?* is asserted”. In fact, this
description, taken directly from [2], is unrealistically precise. The minimum setup
time for the acknowledgement signal is a value for which the M68000 is certain to
behave in a predictable way. However, if the acknowledgement is asserted some
very small fraction of 2 nanosecond under the minimum setup time, it is likely that
the microprocessor will still detect the acknowledgement in this interval and not
introduce a wait state. Therefore, the above description is not entirely accurate
because the assertion of DTACK* less than 20 nanoseconds before the falling edge
of the clock does not necessarily result in a wait state.

If DTACK* was a synchronous input to the M68000, then it would be reasonable
to disallow the possibility of an acknowledgement occurring under the minimum
setup time; in such a case the behaviour of the M68000 would be left undefined.
However, asynchronous inputs such as DTACK* should not be expected to satisfy
such conditions. Furthermore, a fixed minimum setup time of 20 nanoseconds is
not the problem; more complicated conditions would eventually become impracti-
cal and at some point even theoretical physics could not be precise.

Instead of attempting to be more precise about the timing requirements, we
can simply state that when DTACK* is asserted less than 20 nanoseconds before a
clock edge, the microprocessor may or may not introduce a wait state. In other
words, the behaviour of the microprocessor is not deterministic in this case, but
is it constrained to either introduce a wait state or continue with the rest of the
memory cycle.

To illustrate this approach, we revise the formal specification of synchronous
interface which models the role of the M68000 in its interaction with asynchronous
memory. We could rewrite the formal specification in terms of the nanosecond
time scale stating that the behaviour of the interface is only deterministic when
the acknowledgement is asserted 20 nanoseconds before the clock edge; however,
we would then lose the advantage of being able to reason about the behaviour

33

of the interface in terms of the synchronous time scale. Instead, we ccntinue to
express the behaviour of the interface in terms of the synchronous time scale by
ignoring the fact that the behaviour is deterministic when the minimum setup
time is satisfied. We state that the behaviour of the interface is non-deterministic
when dtack is first asserted in an interval. We only state that the behaviour of
the interface is deterministic when the dtack signal is asserted throughout the
interval in which case the minimum setup time is clearly satisfied. This behaviour
is expressed by the following definition of a function which computes the next
value of state at time t+1.

Definition 14.1:
- Either (vi:a,v2:a) = ev. (v

vi) V (v = v2)

. Definition 14.2:
I Continuous (s:a sig,t:time)

(s (-1) =8 t)

Definition 14.3:
l InterfaceStateFun (read:wire,write:wire,dtack:wire,state) t =
(state t = 0) = (
(read t = Hi) = 1 | (write t = Hi) = 2 | 0) |
(state t = 1) = (

Continuous (dtack,t) A (dtack t = Hi) = 3 |
Continuous (dtack,t) A (dtack t = Lo) = 1 |
Either (3,1)) |
(state t = 2) = (,
Continuous (dtack,t) A (dtack t = Hi) = 2 |
Continuous (dtack,t) A (dtack t = Lo) = 1 |
Either (2,1)) |
Continuous (dtack,t) A (dtack t = Lo) = 0O |
Continuous (dtack,t) A (dtack t = Hi) = 3 |

Either (0,3)) |

The predicate Continuous tests whether a signal is stable throughout an inter-
val with respect to continuous time assuming that the signal is well-behaved. We
can assume that the dtack signal is well-behaved with respect to the synchronous
time scale because it is constrained by the formal specification of the asynchronous
memory to change its value only in response to a change from the synchronous
interface; hence, it impossible for the dtack to change its value more than once
during a single interval.

Testing whether dtack is stable throughout an interval of synchronous time
satisfies the minimum setup time for an acknowledgement since the the length of a
synchronous interval is likely to be much longer than 20 nanoseconds. For example,
if the interface is in state 1 and dtack is stable throughout the interval at high,
then we know for certain that the next state will be 3. If dtack is low throughout

34

the interval, then we know for certain that the next state will be 1. Otherwise,
we cannot determined by synchronous sampling alone whether the minimum setup
time was satisfied; therefore, we can only conclude that the next state is either 3 or
1. This non-deterministic choice is specified using the e-operator in the definition
of Either. It is significant that only the asynchronous inputs to the interface
require this special attention; the signals read and write are synchronous inputs
which are assumed to satisfy minimum setup times. The derivation of synchronous
behaviour in this regard is considered in {12].

This non-deterministic specification of the next state function does not allow
us to predict the exact length of a wait state. However, it is still possible to prove
that the synchronous interface and asynchronous memory correctly implement the
synchronous memory system because the behaviour of the synchronous memory
system does not depend on the actual length of the wait state.

In practice, microprocessor system designers exploit detailed timing character-
istics to interface a microprocessor such as the M68000 to asynchronous memory
without the full generality of the four-phase handshaking protocol. For example,
[2] describes the use of 2 HM6116P static RAM with an maximum access time
that ensures the completion of 2 M68000 memory cycle without the introduction
of wait states. A similar practice is described for the safety-critical VIPER micro-
processor which also uses the four-phase handshaking protocol [24]. In these cases,
where is the maximum access time is calculated to be sufficient for a memory cycle
to complete without the introduction of wait states, the acknowledgement can be
automatically asserted by miscellaneous logic not controlled by the asynchronous
memory, e.g. wiring DTACK* to a voltage source.

15 Future Work

The formal specifications of the synchronous interface and the asynchronous mems-
ory are currently expressed in terms of the concrete time scale corresponding to
the clocking of sequential circuits. Temporal predicates such as StableUntill and
StableUntil2 are used to describe the behaviour of signals over variable length
intervals. These specifications implicitly define an abstract time scale where wait
states are collapsed into single time steps. This abstract time scale is an interme-
diate level of timing; it is coarser than the underlying concrete time scale but finer
than the abstract time scale formally defined in Section 11.

In future work, we plan to write specifications directly in terms of this abstract
time scale using the temporal abstraction function TimeOf to establish a direct
relationship between this abstract time scale and the concrete time scale. In this
case, the sampling function would detect whenever a relevant signal changes value.
This guarantees that these signals are stable during every abstract interval since
the interval terminates as soon as any signal changes value.

Writing specifications directly in terms of this abstract time scale should re-
sult in considerably “smaller” and more direct specifications. For example, the

35

term “StableUntil2 (read,Hi,t1,Rises dtack)” is used to express the con-
dition that the read signal must remain high until dtack rises in the current
specification of the asynchronous memory. When expressed in terms of the ab-
stract time scale, this condition would simply be “read t1 = Hi”; if some event
other than the rise of dtack terminates the abstract interval, then the resulting
behaviour of the asynchronous memory is undefined. In addition, to the aesthetic
qualities of a smaller and more direct specification, formal reasoning about the
interaction of the synchronous interface with the asynchronous memory should be
much easier because single steps in the symbolic simulation will correspond to unit
intervals on the abstract time scale.

16 Summary and Conclusion

We have modelled the interaction of a synchronous device with an asynchronous
memory using a four-phase handshaking protocol. This example demonstrates the
use of higher-order logic to reason about the behaviour of synchronous systems
such as microprocessors which communicate requests to an asynchronous device
and then wait for unpredictably long periods until these requests are answered. We
also showed how this behaviour can be formally related to an abstract time scale
where wait states correspond to single abstract intervals. When viewed in terms
of this abstract time scale, the behaviour of the synchronous device is entirely
deterministic. We can then reason about higher level aspects of the synchronous
behaviour, e.g. the correctness of microcode, without the extra complication of
non-determinism. The main features of our approach are summarized in the fol-
lowing points:

e Existential quantification provides a straightforward means of specifying the
finite but unknown length of a wait state.

e The use of explicit time references and higher-order functions leads to rela-
tively simple and direct specifications.

e The relational specification style makes it easy to write independent specifi-
cations for processes.

In reasoning about the interaction of the synchronous interface with the asyn-
chronous memory, inductive aspects were factored out of the verification procedure
at an early stage; we obtained properties about the synchronous interface expressed
in terms of the StableUntill predicate. We then used forward inference rules to
symbolically simulate the interaction of the synchronous interface with the asyn-
chronous memory. The results of symbolic simulation were used to prove that
the synchronous interface and asynchronous memory correctly implement a syn-
chronous memory system. The behaviour of the synchronous memory system is
expressed at an abstract time scale where read and write requests are completed
in single intervals of time.

36

We also compared our model to real systems such as the M68000 microproces-
sor. We identified some of the detailed timing requirements in these real systems
and suggested how our model could be revised to include these details. In par-
ticular, we suggested how non-determinism could be used to specify the effect of
asynchronous inputs on synchronous devices.

Although the example described in this paper is strongly oriented towards
hardware, we believe that higher-order logic is also a suitable formalism for more
abstract forms of concurrency. Furthermore, the expressive power of higher-order
logic can be used to represent other formalisms such as temporal logic which are
often used to specify concurrent systems. The readability of our specifications
may be improved by borrowing notation from other formalisms and our proof
strategies made more efficient by deriving special-purpose inference rules based on
these formalisms.

Acknowledgements

Mike Gordon and Avra Cohn suggested many improvements to earlier versions
of this paper. I am also grateful to Miriam Leeser for helpful discussions on
handshaking protocols and their formal specification.

This research has been funded by the Cambridge Commonwealth Trust, the
Canada Centennial Scholarship Fund, the Government of Alberta Heritage Fund,
the Natural Sciences and Engineering Research Council of Canada and the UK
Overseas Research Student Awards Scheme.

37

References

[4]

l6]

7]

8]

9]

[10]

[11]

[12]

G. Bochman, “Hardware Specification with Temporal Logic”, IEEE Transac-
tions on Computers, C-31 (3), March 1982.

A. Clements, Microprocessor Systems Design, PWS Publishers, Boston, 1987.

A. Cohn and M. Gordon, “A Mechanized Proof of Correctness of a Simple
Counter”, Technical Report No. 94, Computer Laboratory, Cambridge Uni-
versity, July 1986.

A. Cohn, “A Proof of Correctness of the Viper Microprocessor: The First
Level”?, VLSI Specification, Verification and Synthesis, Proceedings of the
Workshop on Hardware Verification, Calgary, Canada, 12-16 January 1987, G.
Birtwistle and P. Subrahmanyam, eds., Kluwer Academic Publishers, Boston,
1988.

I. Dhingra, “Formal Validation of an Integrated Circuit Design Style”, VLSI
Spectfication, Verification and Synthesis, Proceedings of the Workshop on
Hardware Verification, Calgary, Canada, 12-16 January 1987, G. Birtwistle
and P. Subrahmanyam, eds., Kluwer Academic Publishers, Boston, 1988.

D. Dill and E. Clarke, “Automatic Verification of Asynchronous Circuits using
Temporal Logic”, IEE Proceedings, Vol. 133, Pt. E, No. 5, September 1986.

M. Fujita, H. Tanaka and T. Moto-oka., “Temporal Logic Based Hardware
Description and Its Verification with Prolog”, New Generation Computing,
No. 1, 1083.

M. Gordon, R. Milner and C. Wadsworth. Edinburgh LCF: An Mechanised
Logic of Computation, Lecture Notes in Computer Science, Springer-Verlag,
1979.

M. Gordon, “Why Higher-Order Logic is a Good Formalism for Specifying
and Verifying Hardware”, Formal Aspects of VLSI Design, Proceedings of the
1985 Edinburgh Conference on VLSI, G.J. Milne and P. Subrahmanyam, eds.,
North-Holland, Amsterdam, 1986.

M. Gordon, “A Proof Generating System for Higher-Order Logic”, VLSI Spec-
ification, Verification and Synthesis, Proceedings of the Workshop on Hard-
ware Verification, Calgary, Canada, 12-16 January 1987, G. Birtwistle and P.
Subrahmanyam, eds., Kluwer Academic Publishers, Boston, 1988.

P. Henderson, Functional Programming, Prentice-Hall, 1980.
J. Herbert, “Application of Formal Methods to Digital System Design”, Ph.D.
Thesis, Computer Laboratory, Cambridge University, December 1986.

38

[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Hill, “Simulating Digital Circuits in Miranda”, University of Kent, 1986.
C. Hoare, Communicating Sequential Processes Prentice-Hall, 1985.

W. Hunt, “FM8501: A Verified Microprocessor”, PhD Thesis, Institute for
Computer Science, University of Texas at Austin, 1986.

J. Joyce, G. Birtwistle, and M. Gordon, “Proving a Computer Correct in
Higher Order Logic”, Technical Report No. 100, Computer Laboratory, Cam-
bridge University, December 1986.

J. Joyce, “Multi-Level Verification of a Simple Microprocessor”, Ph.D. Re-
search Progress Report, Computer Laboratory, Cambridge University, De-
cember 1987.

J. Joyce, “Formal Specification and Verification of Microprocessor Systems”,
EUROMICRO 88, Proceedings of the 14th Symposium on Microprocessing
and Microprogramming, Zurich, Switzerland, 29 August - 1 September, 1988,
S. Winter and H. Schumny, eds., North-Holland, Amsterdam, 1988.

M. Leeser, “Reasoning about the Function and Timing of Integrated Cir-
cuits with Prolog and Tempcral Logic”, Ph.D. Thesis, Computer Laboratory,
Cambridge University, December 1987.

R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer
Science, Springer-Verlag, 1980.

C. Seitz, “System Timing”, Chapter 7 in Introduction to VLSI Systems, C.
Mead and L. Conway, Addison-Wesley, Reading, Massachusetts, 1980.

T. Melham, “Abstraction Mechanisms for Hardware Verification”, VLSI Spec-
ification, Verification and Synthesis, Proceedings of the Workshop on Hard-
ware Verification, Calgary, Canada, 12-16 January 1987, G. Birtwistle and P.
Subrahmanyam, eds., Kluwer Academic Publishers, Boston, 1988.

Paulson, L., Logic and Computation, Cambridge University Press, Cambridge,
1987.

C. Pygott, “Electrical, Environmental and Timing Specification of the Viper
Microprocessor”, Memorandum No. 3753 (Unclassified), RSRE (Royal Signals
and Radar Establishment), British Ministry of Defense, December 1984.

39

Appendix A - Memory Specification

The definition of AsynMezRead in Section 6 specifies the behaviour of the asyn-
chronous memory process during a read cycle. The corresponding specification
for a write cycle is shown below. These two specifications are then combined
to define AsynMen. In addition to the constraints imposed by AsynMezRead and
AsynMecWrite during read and write cycles, AsynMen states that the memory is
initially idle at time O.

I AsynMemWrite (
read:wire,write:wire,addr:bus,datain:bus,
dtack:wire,dataout:bus,
mem:memory) =
V t1 address value.

Rises write t1 A
MemIdle (read,write,dtack,mem) t1 A
StableUntil2 (read,Lo,ti1,Falls dtack) A
StableUntil2 (write,Hi,t1,Rises dtack) A
StableUntil2 (addr,address,tl,Falls dtack) A
StableUntil2 (datain,value,tl,Falls dtack)
=
Jt2.
First (t1,t2) (Rises dtack) A
StableUntill (dtack,Hi,t2+1,Falls write) A
V3.
First (42,t3) (Falls write) A
StableUntil2 (write,Lo,t3,Falls dtack)
—_
dt4.
First (t3,t4) (Falls dtack) A
MemIdle (read,write,dtack,mem) (t4+1) A
(mem (t4+1) = STORE (mem t1) address value))

F AsynMem (
read:wire,write:wire,addr:bus,datain:bus,
dtack:wire,dataout:bus,
mem:memory) =
MemIdle (read,write,dtack,mem) O A
AsynMemRead (read,write,addr,datain,dtack,dataout,mem) A
AsynMemWrite (read,write,addr,datain,dtack,dataout,menm)

40

Appendix B - Wait State Theorems

Theorem 9.1 uses the predicate StableUntill to describe the behaviour of the
synchronous interface while waiting in state 1. The corresponding theorems for
states 2 and 3 are shown below.

F Interface (

read,write,dtack,addr,datain,a_dataout,

idle,a_read,a_write,a_addr,a_datain,dataout,state)

—

Vt.
(state t = 2)
—_
StableUntill (state,2,t,IsHi dtack) A
StableUntill (idle,Lo,t,IsEi dtack) A
StableUntill (a_read,Lo,t,IsHi dtack) A
StableUntill (a_write,Hi,t,IsHi dtack) A
StableUntill (a_addr,a_addr t,%t,IsHi dtack) A
StableUntill (a_datain,a_datain t,t,IsHi dtack) A
StableUntill (dataout,dataout t.,t,IsHi dtack)

l Interface (

read,write,dtack,addr,datain,a_dataout,

idle,a_read,a_write,a_addr,a_datain,dataout,state)

—

Vt.
(state t = 3)
.
StableUntill (state,3,t,Islo dtack) A
StableUntill (idle,Lo,t,IslLo dtack) A
StableUntill (a_read,lLo,t,Islo dtack) A
StableUntill (a_write,Llo,t.IslLo dtack) A
StableUntill (a_addr,a_addr t,t,IsLo dtack) A
tableUntill (a_datain,a_datain t,t,Islo dtack) A
StableUntili (dataout,dataout t,t,Islo dtack)

41

Appendix C - Symbolic Simulation

Symbolic simulation is used to investigate the interaction of the synchronous in-
terface with the asynchronous memory process. Each step in the simulation is
formally derived from initial assumptions or from previous steps using inference
rules of higher-order logic. To illustrate this proof technique, we describe the sym-
bolic simulation of a read cycle beginning at time ti. The time variables, t1,
t2, t3 and %4, correspond to the timing diagram in Figure 7 which shows the

interaction of these two processes during a read cycle.
We begin by assuming that the state machine is in state O at time t1 and that
the read signal is high. We also assume that the asynchronous memory is idle at

time t1.
state t1 = O
read t1 = high

MenIdle (a_read,a_write,dtack,mem) t1

At time t1+1, the state machine enters state 1 and a_read becomes high
signalling a read request to the memory.

state (ti+1) =1

Rises a_read ti

In state 1, the interface waits for the acknowledgement from the memory.
Theorem 9.1 shows that a_read will remain high until dtack becomes high.

StableUntill (a_read,Hi,t1+1,IsHi dtack)

This condition may be rewritten in the form required by the formal specification
of the asynchronous memory.

StableUntil2 (a_read,Hi,t1,Rises dtack)

Next, we need to show that a_write and a_addr remain stable throughout
the read cycle, f.e. until dtack falls. This follows from the behaviour of the
interface and does not depend on responses from the asynchronous memory; if the
dtack never rises or rises but never falls, then the following conditions will still be
satisfied.

StableUntil2 (a_write,Lo,t1,Falls dtack)
StableUntil2 (a_addr,addr ti1,ti,Falls dtack)

42

At this point in the symbolic simulation we have established all the conditions
required by the formal specification of the asynchronous memory to ensure that
the memory will eventually acknowledge the read request at some time t2.

First (t1,%2) (Rises dtack)

As shown in Figure 7, the interface will detect that the dtack signal is high at
time t2+1 and will enter state 3 at time (t2+1)+1. However, before leaving state
1, the interface will latch the fetched memory word which becomes available on
a_dataout by at least time t2+1. Note that t2+1 is labelled by t3 in Figure 7.

dataout ({(t2+1)+1) = FETCH (mem t1) (addr ti)
state ((t2+1)+1) = 3

First (£2,t2+1) (Falls a_read)

In state 3 the interface waits until the memory acknowledges the request to
end the cycle by resetting the dtack signal. The derived behaviour of the state
machine while waiting in state 3 shows that the a_read signal will remain low
until the dtack becomes low (see Appendix B). This condition can be rewritten
in the form required by the formal specification of the asynchronous memory.

StableUntil2 (a_read,lLo,t2+1,Falls dtack)

This condition ensures that the asynchronous memory will eventually signal
the end of the read cycle by resetting dtack at some time t4.

First (t2+1,t4) (Falls dtack)

The derived behaviour of the state machine while waiting in state 3 also shows
that the dataout signal remains stable. Therefore, at the end of this wait state,
the value of dataout will still be the fetched memory word.

dataout ((t4+1)+1) = FETCH (mem t1) (addr t1)

The formal specification of the memory states that the internal state of the
asynchronous memory will remain unchanged at the end of the read cycle and the
memory will return to an idle state.

mem (t4+1) = mem t1
MemIdle (a_read,a_write,dtack,mem) (t4+1)

43

The last step in the symbolic simulation allows the interface to return to state
0, its idle state, at time (t4+1)+1. Because the signals a_read and a_write will
remain low during (t4+1)+1, we can show that the state of the asynchronous
memory remains unchanged and idle at time (t4+1)+1.

pen ((t4+1)+1) = mem t1

MemIdle (a_read,a_write,dtack,mem) ((t4+1)+1)

The idle signal generated by the state machine provides an output signal
which indicates when the synchronous interface is between memory requests. This
signal is only high in state 0 and remains low during read and write cycles. Hence,
the next time that idle becomes high after t1 is time (t4+1)+1 when the state
machine returns to state O. '

Next (t1,(t4+1)+1) (IsHi idle)

We summarize the results of symbolic simulation in the following theorem
(also given in Section 10) which expresses relevant facts about the simulation at
the end of read cycle in relation to its initial state at time t1. The existentially
quantified variable t2 stands for when the state machine returns to state 0, f.e.
time (t4+1)+1, and it should not be confused with time t2 in the above simulation.

 V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataout state men.
Interface (
read,write,dtack,addr,datain,a_dataocut,
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMem (a_read,a_write,a_addr,a_datain,dtack,a_dataout,mem)
=
V1.
(state t1 = 0) A
IsHi read ti A
MemIdle (a_read,a_write,dtack,mem) ti
=
Jt2.
Next (t1,t2) (IsHi idle) A
MemIdle (a_read,a_write,dtack,mem) t2 A
(dataout t2 = FETCH (mem t1) (addr ti1)) A
(mem t2 = mem t1)

Symbolic simulation is also used to derive a similar theorem summarizing the
interaction of the synchronous interface with the asynchronous memory during a

44

write cycle. In this case, the contents of the dataout register remain unchanged
but the memory has a new state defined in terms of the STORE operation.

F V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataoubt state mem.
Interface (
read,write,dtack,addr,datain,a_dataout,
idle,a_read,a_write,a_addr,a_datain,dataocut,state) A
AsynMen (a_read,a_write,a_addr,a_datain.dtack,a_dataout,mem)»
—
vei.
(state t1 = 0) A
Islo read t1i A
IsHi write t1 A
MenIdle (a_read,a_write,dtack,mem) t1
=
Jt2.
Next (t1,t2) (IsHi idle) A
MemIdle (a_read,a_write,dtack,mem) t2 A
(dataout t2 = dataout ti) A
(mem t2 = STORE (mem t1) (addr t1) (datain t1))

Finally, we derive a theorem for an idle cycle, that is, a single step by the state
machine beginning and ending in state 0 which leaves datacut and mem unchanged.

F V read write dtack addr datain a_dataout
idle a_read a_write a_addr a_datain dataout state men.
Interface (
read,write,dtack,addr,datain,a_dataout, ‘
idle,a_read,a_write,a_addr,a_datain,dataout,state) A
AsynMem (a_read,a_write,a_addr,a_datain,dtack,a_dataout,mem)
=
Vei.
(state t1 = 0) A
Islo read t1 A
IsLo write t1 A
MemIdle (a_read,a_write,dtack,mem) t1
=
Jt2.
Next (t1,t2) (IsHi idle) A
MenIdle (a_read,a_write,dtack,mem) t2 A
(dataout t2 = dataout t1) A
(mem t2 = mem t1)

45

