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Chapter 1

Introduction

The intense interest in concurrent (or “parallel”) computation over the past decade has
given rise to a large number of languages for concurrent programming (e.g. Ada[56],
CCs[38], CSP[23], MultiLisp[22], etc) representing many conflicting views of concurrency.

The discovery that concurrent programming is a significantly more complex task than
sequential programming has prompted considerable research into determining a tractable
and flexible theory of concurrency, with the aim of making concurrent processing more
accessible, and indeed the wide variety of concurrent languages merely reflects the many
different models of concurrency which have also been developed.

One of the most important models of concurrency, the so-called interleaving model
views a system’s behaviour over a period of time as a partially-ordered sequence of “events”
[33]. Intuitively, this means that one observer of a system may see some events occur in a
different order to that which another observer sees. Specifically, if event « occurs in some
system, followed by events 8 and 4 (which occur very close together), after which an event
6 occurs, then an observer of the system could report either of the two event sequences
afy6é or ayfs, depending simply on which of the events 8 and 4 they noticed first.
Notwithstanding this uncertainty, it is clear that event a occurred first in the sequence,
and that event § occurred last; all that we can say about 8 and « is that they occurred “at
about the same time”, or in effect, that they occurred concurrently, insofar as an observer
of the system could see them as occurring in either order [38].

If events 8 and v above, did, in fact, occur at precisely the same instant, then the
interleaving model has flattened what was a concurrent (or “composite”) event (3 || 7)
into one of the sequential interleaved sequences f7y or 48. Although this simplifies much
of the analysis of “pseudo-concurrent” systems, it seems unfortunate to have to dispense
with real concurrency of behaviour. One model which does allow truly concurrent events
is the Petri Net [42,47], and it is the aim of this report to present a summary of the varying
research which has been performed on the Petri Net model.

The remainder of the report is structured as follows:

e Chapter 2 introduces Petri Nets and discusses their behaviour and interpretation.
The relationship of Petri Nets to other models of concurrency is also considered
briefly.

e Chapter 3 defines and discusses several restrictions and extensions of the Petri Net
model, shows how they relate to basic Petri Nets and explains why they have been
of importance historically.




e Chapter 4 presents a survey of the analysis methods applied to Petri Nets in general,
and also in more detail for some of the net models introduced in Chapter 3.

e Chapter 5 concludes the discussion.

The Notation used throughout this report, including that pertaining to multisets,
multirelations and partially ordered sets, is defined in the Appendices. Although care
has been taken to acknowledge all those who have contributed to the field of Petri Net
Theory, apologies are extended to any whose work has not been adequately acknowledged,
or whose contribution has been misinterpreted by the author.




Chapter 2

Petri Nets

Petri Nets were designed for modeling and understanding systems in which concurrency
is present, and although they have often been restricted to modeling merely an interleav-
ing semantics (see for example [41]), they are fully capable of elegantly expressing truly
concurrent event occurrences.

As abstract machines, Petri Nets lie somewhere between Finite Automata and Context-
Sensitive/Turing machines, and thus represent a compromise between the simplicity and
well-understood behaviour of an NFA and the power and complexity of a Turing machine
[26]. The Petri Net model has itself been extended and restricted at various times in order
to make the model more expressive or more manageable.

2.1 Basic Definitions

For the purposes of formal mathematical analysis, Petri Nets are best viewed as abstract
mathematical structures, but an interpretation of the structure also permits powerful
intuition as to the behaviour of a particular net. The abstract model to be presented
below will later be provided with such an interpretation.

Definition: An Unmarked Petri Net! is a 4-tuple (P, T, pre, post) where

P is a nonempty set of places,

T is a nonempty set of transitions, with TN P = @,

pre and post are multirelations from T to P, called the pre
and post condition maps, respectively,

which satisfies the restrictions

VteT.3peP. pre(p,t) >0 or post(p,t) >0
Vpe P.3teT. pre(p,t) > 0 or post(p,t) >0

a

The axioms require merely that no place or transition be isolated in the net. It should
be noted that this is a rather weaker condition than is often used.

The basic Petri Nets as presented here are sometimes called Place/Transition (or P/T) Nets in the
literature.




Definition: If N = (P, T,pre, post) is an Unmarked Petri Net, let Xy = (P U T) denote
the set of elements of N. Say that N is a finite net iff Xy is a finite set. OJ

This report makes considerable use of multisets and multirelations over the sets P and
T of places and transitions of Petri Nets. In particular, the following notation is used
extensively throughout.

Notation: The expressions *A and Ae, where A is a multiset of transitions (i.e. A € uT)
denote the multisets of places corresponding to the multiset sums

D Ai-(ct) and DA (t0)
teT teT

respectively, where the expressions ¢t and t*, for t € T, denote the multisets of places in
the pre and post relations for t, i.e.

t= pre(p,t)-p and te= ) post(p,t)-p ,
peEP pEP
respectively, where p is the singleton multiset consisting of one p-component only.
The expressions *A and Ae are defined similarly when A is a multiset of places (i.e.
AepP). O

As an aid to human understanding, Petri Nets are often represented as bipartite graphs
of places (circles) and transitions (boxes) with directed arcs between those nodes in the pre
and post multirelations. The places of a Petri Net correspond, intuitively, to the potential
(distributed) state(s) of the Net, and such state(s) may be changed by the transitions of
the Net, which correspond to the possible events which may occur (perhaps concurrently).

Example: The Unmarked Petri Net N = (P,T,pre,post) where the sets of places and
transitions are P = {a, b, ¢}, T = {a, B}, and the only nonzero components of pre
and post are:

pre(a,a) =1 post(a,a) =1
pre(c,B) =1 post(b,a) = 2
pre(b,8) =1 post(c, ) = 1

may be represented graphically as shown in figure 2.1. As an example of the °A, A
notation, the following expressions

A= {a} = A= {a}, Ae = {a,b,b}, and
A={a,f} = A= {a,b,c}, A*={a,b,b,c}

are valid for this net. (O

The Unmarked Net of figure 2.1 is an example of an uninterpreted net, as no interpre-
tation has been imposed on its nodes or arcs. As a net is an abstract mathematical object,
any such interpretation is unnecessary for the purposes of mathematically analysing the
net, but interpretation is very important for human interaction with nets. Thus it is often
desirable to informally associate an interpretation with a net, purely for human conve-
nience, as shown in figure 2.2, which interprets the net of figure 2.1 as a variation on the
classical producer-consumer system.

The transitions o and £ are interpreted as produce and consume events, respectively;
the place b acts as a buffer between the producer and consumer processes, and the places a
and c represent the state of each process when it is producing or consuming, respectively.
The dynamics of this particular net will be be explained in section 2.3.

4
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Figure 2.2: An interpreted net
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Figure 2.3: A net which is not simple

2.2 Some Structural Subclasses of Unmarked Petri Nets

Several simple subclasses of the basic Petri Net Model have proven to be of interest in the
past, for various reasons. Some analysis techniques are easier to apply if the Petri Net
model is restricted slightly, or if only a certain form of Net is considered. Several of the
more historically significant of these subclasses are presented in this section.

Definition: An Unmarked Petri Net N = (P, T, pre,post) is said to be pure if and only
if Vz € Xy. *z and z* have no nonzero components in common (i.e. *zM z* = 0, the null

multiset). O

In other words, a net is pure if no connected pair of elements (a place and a transition)
of the net form a self-loop, i.e. there are no place/transition pairs of the form O, O.

Definition: An Unmarked Petri Net N = (P, T,pre, post) is called simple iff
Ve,ye Xy.(*z=°y and ze=y*) =z =1y.
a

A Net is thus simple if there are no equivalent nodes, where two nodes are equivalent
in the sense that they are connected to exactly the same set of other nodes, and in exactly
the same way.

Example: The two transitions ¢; and t; of the net of figure 2.3 are equivalent, and thus
the net is not simple. The producer-and-consumer net of figure 2.1 is, however, simple. [J

Definition: An Unmarked Petri Net N' = (P!, T, pre’, post') is a subnet of another Un-
marked Net N = (P, T,pre,post), denoted N' Cy,. N, iff

P
T

P,
T

N N

and




@

.

Figure 2.4: A Subnet of the producer-consumer net

pre' : T' —, P' is the projection H;;ﬁ,. pre which assigns elements of pre to
pre' whenever (p,t) € P! x T".

post' : T' —, P' is the projection H;;{;, post which assigns elements of post
to post' whenever (p,t) € P! x T'.

a

Essentially, a subnet is a subset of elements of another net, with all arcs between
those nodes in the subset intact and no other arcs present. The notion of a subnet is an
important one when “building” a large net out of smaller component nets.

Example: The net of figure 2.4 is a subnet of the producer-consumer net (figure 2.1),
which retains the places P = {a, b}, transitions T = {a}. The only nonzero components
of pre and post are pre(a,a) = 1, post(a,a) = 1, and post(b,a) =2. O

Deﬁnition. The dual of an Unmarked Petri Net N = (P,T, pre, post) is the 4-tuple
= (P, T, pte, post) where P=T, T =P, pre=post, and post = pre. O

Intuitively, N is N with its places changed to transitions and its transitions to places.
Some basic results concerning the dual of a net are captured in the following.

Lemma 1 Let N = (P,T,pre,post) be an Unmarked Petri Net. Then

1. N, the dual of N, is also an Unmarked Petri Net,
2. The dual of N is N, and
3. If N' is another Unmarked Net, with N' = (P',T',pre,post'), then N Cn. N'
iﬁ N CNet N'.
Proof:

1. From the definition of dual, N = (ﬁ‘,f‘,p?e,péat) is obviously a 4-tuple with the
correct structure. It remains merely to check the two restrictions for Unmarked
Nets. Since N was an Unmarked Net, neither T' nor P contain any unconnected
elements, so neither do T = P or P = T, and hence N is an Unmarked Net.

7
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Figure 2.5: The dual of a net

2. Obvious, by repeated application of the definition of dual.

3. =>. If N Cne N' then by the definition of a subnet, P C P',T C T' and pre &
post are pre’' & post' projected onto T' x P'. The definition of dual means that

Pcp [since P=T and ' =T"'],
Tct [since T = P and 7' = P' ],
pFe is a projection of pre’ [since pte = post and pte' = post' ],
post is a projection of pt;st' [since post = pre and post’ = pre' ],

and thus N is a subnet of N'.
<=. Since the dual of N is N (from 2, above), the above argument with N for N
gives the reverse implication.

O

Example: The dual of the (sub)net shown in figure 2.4 is illustrated in figure 2.5, and
corresponds to the net with place P = {a}, transitions T = {a, b}, and whose only nonzero
components of pre and post are pre(a,a) = 1, pre(a,b) = 2 and post(a,a) =1. O

2.3 The Dynamic Behaviour of Nets

Unmarked Petri Nets as presented above comprise merely a static structure; there is
no facility for modeling any form of dynamic behaviour, let alone concurrency. In this
section the notions of marking and Petri Net dynamics will be introduced, along with a
characterisation of the reachable “states” of a net.

Definition: Let N = (P,T,pre,post) be an unmarked Petri Net. A marking M of N is
a nonnull multiset of places (ie. M € uP). O

A marking thus associates a nonnegative integer with each place of a Petri Net; this
marking determines its distributed state, in the sense of “state” as applied to finite au-
tomata. The fact that a particular component M, of a marking M € uP is nonzero
(M, > 0) is interpreted as meaning that M, tokens of information are currently resident
in place p € P of the net.




Figure 2.6: A Marked Petri Net

Graphically, these tokens are represented as dots e on the circle representing each
place in the net, with M, dots on each place p € P. (If M, is too large to conveniently
represent as dots, inscribing the number M, on the place suffices)?.

Example: Figure 2.6 illustrates the Producer-and-Consumer Petri Net of figure 2.2, dec-
orated with tokens according to the marking M € u{a,b,c}, where M, = 1,M, = 2, and
M, = 1. The fact that M; = 2 may be interpreted as meaning that the buffer in the
producer-and-consumer system currently contains two tokens of information, ready to be
consumed. ]

The definition of Petri Nets (or simply “nets”) to be used in the remainder of this
report may now be stated:

Definition: A Petri Net N is a 5-tuple N = (P,T,pre, post, My) where (P, T, pre, post)
is an Unmarked Petri Net and My € uP is a marking of N called its initial marking. O

The subclasses of Unmarked Nets discussed in the previous section may be applied
to the underlying (unmarked) net component of a (marked) Petri Net. The notion of a
subnet is often extended to marked nets by requiring that those places which remain in the
subnet have the same initial marking as they did in the original (super)net. It should be
noted that the subnet of a (marked) Petri Net may not be a (marked) Petri Net, however
it will always be at least an Unmarked Net.

The dynamic behaviour of a Petri Net arises by considering the transition system it
determines, given the following definition of a net’s transition relation.

Definition: Let M and M' be markings of a Petri Net N = (P,T,pre,post, Mp). Let
A € uT be a finite multiset of transitions. The transition relation for N is defined as

MA M if A<M and M' =M — A+ A
a

2Note that Petri Nets are sometimes defined in the literature to include a place capacity function which
restricts the number of tokens which may reside in a given place. This could, for example, be used to
specify a capacity for the buffer b in the producer-consumer example, thus enabling the modeling of fixed-
size data structures via nets. This report will not address nets having this restriction, each place thus
being considered as having unbounded capacity.




Figure 2.7: The New Marking for the Producers/Consumers Net

Notation: The construct M A, M’ is called an event in this report, and encompasses
the notion of (8 || 7) being a composite event as mentioned in the introduction. When
it is clear from context that the subject of discussion is a multiset A of transitions, A
may also be called an event, independent of the markings M and M'. The composition of
two (possibly composite) events A;, A; € uT is denoted A, || A2 and is defined to be the
multiset sum A; + A;. O

The event M -2+ M' denotes that the transitions of A may occur® (concurrently) when
the net is in the state (i.e. marked with) M, and this (multiple) transition occurrence leads
N into the state (marking) M'.

Graphically, the interpretation of an event M A M !, for A € uT, is that the tokens
representing marking M are removed from the net and those of marking M’ are placed
onto the net, with the intuition being that the tokens of each component place in *A have
“moved into” the transition, and new tokens have been produced by the transition, one
per component place in Ae.

Example: If, in the net of figure 2.6, the singleton event A = & occurred, the resulting
net would be marked as in figure 2.7. Intuitively, what happened was that the transition
a took one token from the place a as specified in its pre condition map, and produced 2
tokens for place b and another for place a. This operation corresponds to a “produce”
action in a classical producer-consumer system, where the producer produces two tokens
of information each time around the “produce” cycle. The new marking of place b is now
4, as indicated in the diagram. O

Definition: A marking M of a net N = (P, T, pre,post) is a reachable marking of N iff

A A Ap—
My =M =5 oo 23 M, =M

is a sequence of events A; € uT connecting a sequence of markings M; of N via the

transition relation of N, where Mj is the initial marking of N. This may also be denoted
AgA ...A"_ . .
My =2tk , or, if the events A; are not of consequence, simply as My —* M.

a

3Sometimes “fire” in the literature.
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A marking M being “reachable” thus means that from a net’s initial state (marking)
it is possible for an observer to see some sequence of events occur, after which the net will
be in the state M.

Notation: Write N : M to denote that M is a reachable marking of a net N, and
N : M -2 M to denote that M is a reachable marking of N and M 4, M' is an event
of N. Write simply M A, to denote M -4 M, for some marking N : M', if the identity
of this resultant marking M’ is not of interest. When N : M A», meaning that the event
A may occur at a marking M, say that the transitions of A have concession* at marking
M, and also that A has concession at M. [0

Definition: The reachability relation between markings of a net N = (P, T, pre, post, My)
is defined to be the relation ~» C uP X uP given by

My~ M, if 3A€uT: My -2 M.

The class of reachable markings of N at a given marking M is the set Ry (M) = {M' €
uP | M ~* M'}, called the reachability class of N, where ~+* is the reflexive, transitive
closure of ~». Where the initial marking M, is understood, Ry may denote Ry(Mpy);
where the net involved is clearly N, R(M) may denote Ry(M). O

An inportant class of concurrent systems are those (such as Operating Systems) which
continually perform a sequence of operations; this class of Petri Nets are called cyclic.

Definition: A net N = (P, T,pre,post, My) is called cyclic® if M ~* M' (or M' €
Rn(M)) for all reachable markings M and M’ of N. i.e. all markings are reachable from
all other reachable markings, and, in particular, the initial marking is reachable from any
other reachable marking of the net. O

By way of an example, the producers-and-consumers net of figure 2.6 is cyclic.

2.4 Basic Net-Dynamics Situations

The following definitions describe several situations which are basic to the dynamic be-
haviour of Petri Nets; viz. those involving sequential, conflicting, concurrent, contacting
and confused events. These situations characterise the behaviour of (parts of) Petri Nets,
and represent a reasonably broad spectrum of behaviour from purely sequential to fully
concurrent.

2.4.1 Sequential Behaviour

Definition: Let N = (P,T,pre,post, My) be a Petri Net and let A;,A; € uT be two
events of N. If, at a marking N : M of N, it is the case that the event M AL M may

occur, but the event M A, may not occur, and it is the case that M’ Aa, may occur,

then A; and A; are said to be in sequence. []

Example: In the net of figure 2.8 the events A; = {; and Ay = £, are in sequence at the
initial marking M = p;. The occurrence of Ay must precede that of A;. (I

40r “are firable”

5Sometimes “reversible” in the literature.
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Figure 2.8: A Net illustrating sequence
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Figure 2.9: A Net illustrating conflict

2.4.2 Conflict

Definition: Let N = (P,T,pre,post, M) be a net with A;, A; € uT two events of N.
A, and A, are said to be in conflict at a marking M of N if either may occur at M

(iee N: M AL and N : M ﬂ,)’ but both may not occur simultaneously at M (i.e.

N:M“it2 is not an event of N. O

Example: In the net of figure 2.9, the events A; = {; and Ay = {, are in conflict at the
indicated marking M = fo, since the event A; || A2 = {t1,t2} is not an event of the net
at M. This conflict may be resolved in favour of either A; or Az by a nondeterministic
decision to perform the transition(s) specified by one of the two conflicting events. For
example, the conflict might be resolved in favour of A, in which case the transition ¢,
would occur, causing the token in place pp to move to place p;. When a net contains no
conflict situations, it is said to be deterministic. O

A property related to the absence of conflict in a marked Petri Net is that of persistence,
which is defined as follows;
Definition: [34] A Petri Net is called persistent iff for all events A; = {1, Az = {; with
t1,t2 € T,t; # t; and any reachable marking M, it is the case that M A, and M 2%

Az . . :
= M 114 , i.e. if A; and A, are enabled at a reachable marking then the occurrance
of one cannot disable the other. O

Persistent nets have several important properties which will be discussed in Chapter 4.
The class of Persistent nets is a proper superset of the class of conflict-free nets.

2.4.3 Concurrent Behaviour

Definition: Let N = (P, T,pre,post, M) be a net and let A;, A; € uT be events of N.

A]lAs
—

Say that A; and A; can occur concurrently at a marking N: M iff N: M s an

event of N. (O

12
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Figure 2.10: A Net illustrating concurrency

Example: The events A; = £, and Ay = £3 of the net in figure 2.10 may occur concur-
rently at the indicated marking M = {p1,pz}. They may occur completely independently
of each other, so the event sequences of the net may be either A; || Az (concurrent occur-
rence), AjAz (A; occurred first) or A3A; (A2 occurred first). O

2.4.4 Contact

Definition: A net N = (P, T, pre,post, M) is said to be contact-free iff for all reachable
markings M of N and for all events A€ yT of N,sA<M = A*AM =0. 0

Example: The nets of figures 2.8, 2.9 and 2.10 are all contact-free, but the producers-
and-consumers net of figure 2.6 is not (since the event A = & is in contact with the marking
shown). OJ

Contact-freedom is a property of safe Petri Nets (see section 3.1) and is of mainly
historical interest.

2.4.5 Confusion

The final dynamic situation of Petri Nets to be illustrated at this point is that of confusion,
which is the result of a combination of concurrency and conflict. An example of a confused
situation is the net of figure 2.11, where it is not clear whether or not a conflict needed to
be resolved in going to the new state (marking) of the net in figure 2.12; that is, in going
from marking M; = {p1,ps,ps} to marking My = {p2,pe} via some combination of the
transitions ¢; and t5. Two observers could report that either

1. An event iz consisting of the single transition t5 occurred first, without being in con-
flict with any other event, and then an event t; consisting of transition ¢; occurred,
or

2. The transitions ¢t; and t5 occurred concurrently, as an event {t;,t5}, or

3. An event £; occurred first, and as a result, the events t1 and 5 got into conflict.
This conflict was resolved in favour of ¢5, which then occurred.

More formally, confusion is defined as follows:

Definition: Let N = (P,T,pre,post, Mp) be a Petri Net with M a reachable marking of
N, and let A € uT be an event of N such that N : M A, M for some other N : M. The

13




[

O\

L

Ps ts Pe
Figure 2.11: A confused situation
[t_ll P2 [t_zl Ps
()
L & L O

()

O [ -
Ps ts

Figure 2.12: The confusion resolved

14




AljA’

—}

conflict set of A at M, denoted cfi(A, M), is {A'euT |N: M A, and not N : M
the set of all events that are in conflict with A at M. O

Definition: Let N = (P,T,pre,post, M) be a net with reachable marking M and let
A;, A; € uT be two disjoint events of N (i.e. AyMAg = 0) such that N: M — AIIIAZ Say
that N is confused at M iff cfi( Ay, M) # cfi(A1, M') where N : JYE=N Y (™

In other words, confusion arises if A; || Az is an event at M and the occurrence of
A, alters the conflict set of A;. In the above example, the conflict set of the event {5
is cfi(ts, M) = @ at the marking M = {p1,p4, 5}, but cﬁ(ts,M’) = {f;} at the marking
M' = {p3,p4,ps} which results from the occurrence of the event t;. Thus N is confused
at M.

Section 3.3, which presents the class of Free-Choice Petri Nets, will highlight the ways
in which confusion makes analysis of a net’s behaviour considerably more complex, and
why it is desirable to avoid net-confusion wherever possible. Confusion is analagous to
the glitch problem in communications protocols, and this well-known problem has been a
source of theoretical difficulty for many years.

2.5 Petri Nets in Relation to Other Models of Concurrency

In order that Petri Nets may be related to different models of concurrency (such as
Event Structures[52], CCS[38], CSP[23], etc), they have been provided with a notion
of morphism® and cast in a categorical framework, as is briefly described in this section.

Definition: Let N = (P,T,pre,post, Mo) and N' = (P',T',pre',post', M{) be two Petri
Nets. A morphism from N to N' is defined to be a pair (n,8) with n:T —, T' and
B : P —, P such that

BMy =M, and VA€ uT. *(nA) = B(*A) and (nA)* = B(4°)
O

Remark: 7 is a partial function, linearly extended to multirelations, i.e. the matrix of n
satisfies g » < 1, and (g0 =1 and ng e = 1) = t' = t", for transitions t,t' and t". O

The definition of morphism preserves the dynamic behaviour of nets, in the sense of
the following theorem.

Theorem 2 [54] Let (n,8) : N — N' be a morphism of Petri Nets. Then (8 preserves the
initial marking (i.e. My = B(Mo)) and if N: M 2, M then N': M 4, sM'. O

Example: When a morphism (n,8) : N — N' arises from inclusions n : T C T and
B:P C P, N is asubnet of N'. For the subnet (figure 2.4) of the net in figure 2.1, the
morphism is given by n :a+— aand f:a+—a, f:b+—b. O

SNote that the definition of morphism used here is that of Winskel[54}, as opposed to the older definition
of Petri Net morphiem as used in, for example, [11], which did not respect the dynamic behaviour of netas.
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Figure 2.13: A folding of the Producers-and-Consumers Net

Example: The net of figure 2.13 is a folding of the producers-and-consumers net, where
a folding is a morphism which maps no adjacent nodes to the same image. This particular
folding represents the morphism

niar— o B:ar—a
n:pr— B B:br—rzx
Bicr—zx

The places b and ¢ have been folded together (about the axis of transition §) into a
new place z in the folding. O

Definition: Let Net be the category of Petri Nets with morphisms as defined above, in
which the composition of morphisms (g, Bo) : No — Ny and (n1,81) : N1 — N3 is defined
as (non1,B0P1) : No — Nz and the identity morphism for a net N has the form (1r,1p)
where 17 and 1p are the identities on transition-sets and place-multisets, respectively. [

Given this category of nets, the various categorical constructions such as product and
coproduct have been defined as in [54,51,55,50], and the relationships between Petri Nets
and other models of parallel computation have been formalised via this mechanism.

Within the category Net itself, it is desirable to relate Petri Nets and morphisms
between them to Milner’s notion of bisimulation[38], which represents a very useful and
well-understood characterisation of similarity for concurrent systems.

Definition: Let P be the set of possible concurrent processes in a given programming
language and let T be a set of events which may occur in P, where the fact that a process
p € P executes an event t € T and is transformed into a new process p’ € P is denoted

p LN p'. This notation is extended to composite events A over uT' and sequences of
(composite) events o over (uT')*.
A relation p C P x P is called a bisimulation iff for all (p,q) € p and ¢ € uT*,

1. Whenever p -2 p' then for some ¢',q — ¢' and (p',¢') € p.
2. Whenever ¢ — ¢' then for some p',p —— p' and (¢',¢') € p.

a
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Processes p and q are said to be observational equivalent (written p ~ q) iff there
exists a bisimulation p such that (p,g) € p. The above definition is phrased for general
concurrent systems, and may be adapted specifically for Petri Nets, as detailed below.

In order to obtain a definition of bisimulation for Petri Nets, it is first necessary to
define functions on sequences of transitions. Let n : T —, T' be an injective (1-1) partial
function from one set of transitions to another, linearly extended to multisets. Then 5
may be extended to a function 5 : T* —, T™ in the canonical way (where T is the set of
sequences over T, including the empty sequence €r), i.e.

n(er) = e
n(vt) = n(v)n(t) forveT*teT.

Furthermore, n~! is a relation in 7' x T and can, in the following way, be extended to
a function n~1:T" — T*:

ﬂ—l(eT') = €T,
- “(w iftgn(T
I B

foralwe T"*,teT'.
The above definitions allow the following adaptation of bisimulation for Petri Nets; it
is a modification of that presented in (3].

Definition: Let N = (P,T,pre,post, Mo) and N' = (P',T',pre',post', Mj) be two Petri
Nets. A morphism (n,8) : N — N' is called a Petri Net bisimulation relating N and N'
iff the following conditions hold:

1. SMy = M},
2. Suppose that My = M}, for some reachable N : M; and N': Mj ;

(a) Whenever M; —— M; with o € (uT)*, and N : M; then Mj 2, BM; is an
event (sequence) in N', and

(b) Whenever Mj <, M}, with o' € (uT")* and N': M; then there exists N : M,
—1 0
with Mj = S M, such that M; "3 M; is an event (sequence) of N.

In this case, N and N’ are said to be Observational equivalent with respect to the (bisim-
ulation) morphism (n, ). O

Note that provided 5 and g are invertible in the sense defined previously, the defini-
tion of morphism gives Observational Equivalence for all pairs of nets possessing such a
morphism and respecting the additional bisimulation conditions.

Because 7 is an injective partial function, N' has at least as many transitions as N;
the extra transitions of N' (i.e. those in T'\ n(T')) should be thought of as silent internal
actions of N' (corresponding to r actions in CCS). Best has show that the definition of
bisimulation for Petri Nets as presented here preserves both safeness and liveness properties
of nets, as will be seen in Chapter 4.

Quite apart from the (rather abstract) vehicle of morphism, explicit correspondence
between Petri Nets and other models of concurrency has been made by several authors;
in particular, classes of Petri Nets have been mapped to CCS [15,40], COSY (2] and CSP
[16] with considerable success.
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Chapter 3

Restricted and Extended Models

The basic Petri Net model, as defined in the previous chapter, has often been restricted in
order to simplify analysis and provide deeper understanding. These simplified Petri Net
models have been of considerable use in the development of Net Theoretical results. At
the same time, when actually applying Nets to practical modeling problems, it has proved
necessary to develop more powerful (essentially, more concise) representations of nets, and
thus extensions have also appeared. This chapter presents a discussion of several of these
diverging models and interests.

3.1 Safe Nets

One of the most theoretically-important Petri Net models is the safe net, which essentially
simplifies what may happen dynamically in a Petri Net by restricting the static structure
of the Net. Formally, a safe net is defined as follows.

Definition: A Petri Net N = (P,T,pre,post, M) is safe if and only if pre(p,t) < 1 and
post(p,t) < lforallte T,p € P, and M, <1 for all reachable markings M and places
peP. O

For safe nets, all multiset and multirelation components are binary (i.e. either 0 or 1),
and thus pre and post may be considered as mere relations over P x T, while any reachable
marking N : M is simply a set over P, and any event A with N : M 4, is a set over T.

Safe nets are often referred to as “Condition/Event” (or “C/E”) nets in the literature,
since a place may be regarded as representing a condition which either holds (with multi-
plicity 1) or does not hold at a marking. Similarly, events (transitions) either occur (with
multiplicity 1) or do not occur when one marking is transformed into another. In safe
nets, all markings are subsets of P, the set of places, and often a marking M C P of a safe
net is called a case of the net in the literature, but this report will retain the “marking”
terminology.

Example: The Nets of figures 2.8, 2.9, 2.10 and 2.11 are all safe, but those of figures 2.6
and 2.7 are not. The net of figure 3.1 is a slightly more complex, though still safe, net. []
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Figure 3.1: A safe net

Proposition 3 Let N = (P, T,pre,post, Mp) be a safe net with N : M a reachable mark-
ing. If N: M A, M for a marking M' and finite multiset A of events then M, M’ and
A, °A and A® are all sets. Furthermore, M A M iff

(Vte A. st C M) and (Vt,t' € A. t #£t' => stNte =) and M' = (M \ *A) U A~. O

The Petri Net notions of sequence, conflict, concurrency, contact and confusion all
restrict to safe nets, as do morphisms. There are, however, several useful properties of
safe nets which permit significantly more powerful analysis than do the less-restricted
Petri Nets, as will be seen in the remainder of this section, and in the following section on
Occurrence nets.

Notation: Since, for a safe net N = (P, T, pre, post, My), the multirelations pre : T —, P
and post : T —, P are merely relations pre C P x T and post C P x T, it is convenient to
combine them into a single relation Fiy C (P x T)U(T x P) defined as Fy = preUpost~!.
Thus

pFt iff pre(p,t)foralteT,pe P, and
tFp iff post(p,t) forallte T,p € P.

and the safe net N may be manipulated as the 4-tuple N = (P, T, F, My). Thus °t and te,
for t € T, may be expressed as sets in terms of F as follows:

*t = {peP|pFt},
t* = {peP|tFp},

and similarly for *A and Ae, where A C T is a composite event. [J

The following definition and construction of P-completion is used in the calculation
of synchronic distance for Occurrence nets (see section 3.2.3), but is defined on safe nets,
and is thus presented at this point.

Definition: A safe net N = (P,T,F, M) is P-complete iff for every pair (A4;, A;) of
nonempty events A;, A2 C T there exists a place p € P with *p = A; and p* = A,. O
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Figure 3.2: The P-completion of a net

Essentially, a net is P-complete if every pair of subsets of places in the net is connected
by a single event. If a safe net N = (P,T,F, Mp) is not P-complete, it is possible to
construct its P-completion, N' = (P', T, F', My), as follows:

P' = PuUQ, where
Q P(T)x P(T)\ ({(*p,p*) [P € PYU{(z,y) |2,y EP Az # DAy # D))
F'o= Fu U ((41x {(41,42)}) U ({(A1,42)} x 42)).

(A1,42)€Q

This construction creates a great many new places, in general. For example, the P-
completion of the net of figure 2.9 is illustrated in figure 3.2, which is unlabelled (save for
the places and transitions of the original net) for clarity.

Safe nets with morphisms as described in section 2.5 form a subcategory of the category
Net which possesses many agreeable properties, and although they will not be dwelt upon
here, the references [54,51,55,50] make considerable use of this subcategory.

3.1.1 Facts in Safe Nets

The marked places (conditions) of a safe (C/E) net may be interpreted as determining a
formula of propositional logic by treating each place name as a boolean variable, negating
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the variables which correspond to unmarked places, and concatenating the variables into
a formula with A operators. For example, the safe net of figure 3.1 has the reachable
marking M = {p1, ps}, which corresponds to the formula

=po A p1 A —p2 A —p3 A ps A —ps.

Arbitrary well-formed formulae over the set P of variables may be tested for valid-
ity at a given marking of a safe net N = (P,T, F, M) by substituting TRUE for each
variable/place name which is currently marked and FALSE for each variable/place name
which is not. Since conditions change as markings change, formulae will either be valid
or not at each marking of the net. A formula which is always valid describes a logical
invariant of the net. For example, the formula

-po <= (((p1V p3) A (P2 V p4)) V Ps5)

is a logical invariant of the safe net in figure 3.1.
There is a formula associated with each transition of a safe net, as defined in the
following:

Definition: Let N = (P, T, F,Mp) be a finite safe net with ¢ € T a transition. Let
ot = {p1,...,pn} and t* = {p},...,p}}. Then the formula associated with t, denoted £(t),
is the formula

(PLAP2 A== Apa) => (PLV -V Ppn).
If t» = @ then £(t) is the formula ~(py A -+ A pp), and if *¢t = @ then £(t) is the formula
(Pyv:-- V) O

Lemma 4 If N = (P,T,F, M) 18 a finite safe net with t € T then for each reachable
marking M of N, £(t) is valid at M iff t does not have concession at M.

Proof: The formula £(t) is valid at a marking M C P iff there exists a place p; € *t
with p & M or there exists a place p; € t* with p € M. This is true iff t does not have
concession at M. O

If a safe net is enlarged by the addition of (“dead”) transitions which will never be
enabled (and thus do not alter the net’s behaviour), the formulae associated with these
extra transitions will be logical invariants of the system. Such invariants (called facts) are
represented graphically as i , and are denoted by a pair t = (Py, P;) where P,,P, C P
are the sets *¢t and t*, respectively, where t is the introduced transition.

Example: The safe net of figure 3.3 represents two processes, each of which executes a
critical region in exclusion by restricting the other from entering its critical region until
the first process has exited theirs. The critical regions are represented by the places p;
and py, and the fact that these places may not both have a token in the same marking
may be expressed by the logical expression —(p1 A p2). This may be also be denoted by
the addition of a fact ¢ to the net, as shown in figure 3.4, where *t = {p;,p;} and t* = @.
0

Theorem 5 Let N = (P,T,F, M) be a finite safe net and let £ be an arbitrary well-
formed formula of propositional logic over the set P of variables. £ s valid over N if and
only if there ezist facts t,,...t, such that § is logically equivalent to £(t ) A -+ A £(tn).
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Figure 3.3: A safe net representing Critical-Regions

Figure 3.4: The Critical-Region net with a Fact
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Proof: Each £ may be transformed into a logically equivalent formula =& A A&,
where each &; is a term of the form —p; V-V —p, Vp} V-V p| with p;, p; € P (conjunctive
normal form). Therefore, &; is logically equivalent to a formula § (t;) with *t; = {p1,...,pr}
and t;* = {p1,---Ps}

Now, ¢ is valid over N if and only if £ is valid over N, and this is true if and only
if ¢; is valid over N, for all 1 < i < k, that is, if and only if { (t;) is valid over N, for all
1 < § < k. This is true, finally, if and only if ¢; is a fact of N, forall1 <¢< k. O

Obviously, more advanced logical systems (such as temporal and modal logics) may
be employed for reasoning about the behaviour of Petri Nets. The interested reader is
directed to [5,45,44,49,51] for further details and references.

3.2 Occurrence Nets

Given a safe Petri Net, it is possible to “run” the net from the initial marking, resolving
conflicts in an arbitrary fashion, and recording the non-sequential occurrences of events
together with the resulting holdings of conditions during the run. Such a run is called a
process of the safe net, and models a non-sequential stretch of history. The record of the
process is itself a special form of safe net, called an occurrence net, and in addition to
their relation to safe nets, occurrence nets possess several interesting properties of their
own.

3.2.1 Basic Definitions

Definition: An unmarked, safe Petri Net N = (P, T, F) is called an occurrence net if and
only if

(i) Vz,y€Xn. zF*tyiff ~(yFtz) [N is cycle-free|, and
(i) Yvpe P. (zxFpAyFp) =>z =y, and
(pFz ApFy) =>z=y. [Places are unbranched].

where F = pre U post~! is as defined for safe nets, and F* is the transitive closure of F.

a

Example: The safe net of figure 3.1 is an occurrence net, with the exception of the token
(marking) on place po. It is thus evident that occurrence nets are merely a special (i-e.
more restricted) subclass of the unmarked safe nets. [

An occurrence net N = (P,T, F) determines a partially ordered set (X, <) where
Xn = PUT are the elements of N and the relation < is the transitive closure F* of F.
The associated relations <, >, > and < are obtained as

< = <Uid = Ffuid = F*,
> = <71

> = »Uid, and

< = F,

and thus the relations li and co, and the notions of discreteness and density of posets
described in Appendix B also apply to occurrence nets.
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Figure 3.5: The poset determined by an occurrence net

Definition: A subset S C P of places is called a slice of an occurrence net N = (P, T, F)
iff S is a cut of the poset (X, <) determined by N. 0

Example: As the occurrence net of figure 3.1 determines the partially-ordered set illus-
trated in figure 3.5, the slices of the net are the cuts {p1,p2}, {p1,p4}, {ps,pz} and {ps,ps}.
For completeness, the remaining cuts of the poset are {p1,t2}, {ps,t2}, {p2,t1},{p4,t1} and

{tl)t2}’ while the lines of the poset are {PO, tO,plx tl’pS) t3>p5} and {PO, to, P2, t2sp4; ts,Ps}-
0

The notion of a process relating an occurrence net and a safe net may now be for-
malised.

Definition: Let N = (P,T, F) be a finite occurrence net and let N' = (P',T', F', Mp) be
a finite, contact-free safe net. A mapping p : Xy — X is called a (finite) process (of N')
iff

1. V slices S of N,p I S is injective and My ~* p(S),
2. VteT. p(et) =+p(t) A p(te) = p(t)e.
a

Let x(N) denote the set of finite processes of a finite, contact-free, safe net N.

Example: The confused net of figure 2.11 has (to within isomorphism) two finite pro-
cesses, the occurrence nets of which are illustrated in figure 3.6. (J

Note that the underlying poset (Xx, <) of an occurrence net N = (P,T, F) determines
the initial marking of N, precluding the need for an additional component My, since the
initial marking may be viewed as comprising those places which are lower bounds of
(XN, =), i.e. Mp! may be constructed as {pc P |Ap' € Xn. p' < p}.

1Sometimes denoted ©N in the literature.
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Figure 3.6: The processes of a safe net

Example: The initial marking of the confused net (figure 2.11) may be determined from
the processes illustrated in figure 3.6. By observation, the places which are lower bounds
are py, ps and ps, and thus the initial marking of the net was My = {p1,p4,ps}. O

3.2.2 Properties of Occurrence Nets

Appendix B presents several of the more important properties which may be possessed
by partially ordered sets, and many of these properties apply to Occurrence nets in par-
ticular. Clearly, the poset (Xx,<) associated with an occurrence net N = (P, T, F) is
combinatorial, but what may be said of its density properties?

Theorem 6 If N = (P,T,F) is an occurrence net then its associated poset (Xn, <) is
N-dense.

Proof: [9] Let z,y,2',y' € X such that
z<yAz=<z AY<yA (zcoy cor coy).
Since (X, <) is combinatorial, there exists a subset {z;,23,...2,} C Xn such that
T=21< Tg< ... < Ty =Y.

Let j € IN with 1 < 5 < n be the smallest element of IN such that z; co z' (and
j exists, since y = z, coz'). By the election of j it is clear that z;_; li z/, and as
z' < zj_y => z' < y = z, causes a contradiction (since z' co z,,) it follows that z;_; < z'.

Similarly, both z;_; < y' and z;_; > ¢ lead to contradictions (since z = z; < ;3 <
y' but =12, co ¢/, and y' < z;_1 < z' but ¢’ co z') so it must be the case that y co z;_;.

Clearly z;_; € T and z; € P. Now both z; < ¢’ and z; > ¢ lead to contradictions
(since z =z; < z; < ¢ but z = z; co y', and y' co z;_; but z; € P) and thus z; co y'.

Thus, letting z = z; givesz < 2 <y A (y' co z co z'), and hence (Xy, <) is N-dense.
O
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Theorem 7 Finite occurrence nets are K-dense.

Proof: See [1,24]. O

3.2.3 Synchronic Distance

In this section it is assumed that all (safe and occurrence) nets are finite and contact-
free. When considering events (or multisets of events) in a Net, it is often the case that
important insights into the net’s behaviour may be obtained by examining the way in
which these events are related or synchronised. The notion of synchronic distance was
developed [14,13,47] in an attempt to characterise the degree of event synchronisation in
a safe net.

The procedure of P-completion which was introduced in section 3.1 creates many new
places, and it is usually necessary to provide these places with initial tokens in addition to
those of the original initial marking, in order to get the P-complete net to behave exactly
the same way as it did before P-completion. Because some of the places constructed by
P-completion must initially hold more that 1 token in order not to influence the system’s
behaviour, the P-complete net is no longer safe, but it is still a Petri net.

The maximal variance of the number of tokens on a place p which was constructed by P-
completion is called the synchronic distance (denoted o(p)) of this element, and similarly,
o(Ay, Az) denotes the synchronic distance of the place constructed by P-completion over
events A;, A; C T. When the events A; = {t;} and A; = {t;} are singleton events (merely
transitions), write o(t;,t) rather than o({t1}, {t2}).

Synchronic distance is useful in the design of nets, in detection of deadlocking or over-
tightly-coupled subnets, and analysis of concurrent systems in general. It may be used to
distinguish true concurrency from arbitrary interleaving, since it gives an upper bound on
concurrency. If two events occur concurrently, their synchronic distance will be at least 2
(i.e. (@] B) = o(a,B) > 2), but if they are simply alternating/interleaving then it is
only certain that their synchronic distance will exceed 0 (i.e. af or fa => o(a,f) > 1).
Since synchronic distance is merely an upper bound on concurrency, a purely sequential
system may have ¢ > 2, but if 0 = 1 then events may never occur concurrently. Note that
o = 0 means that the events are coincident in both time and space (i.e. o(a,a) = 0 for
all events a).

Definition of Synchronic Distance

Before the actual synchronic distance function may be defined, another function is required
for counting the occurrences of events in a process with respect to pairs of slices of an
occurrence net.

Definition: Let N = (P, T, F) be an occurrence net with Sj, S, slices of (Xx, <) and
T' C T. The measure m is defined as

m(T',91,8) = |[{teT' | Sy <t < S} - |[{teT'| S <t <51}
where

t <S; means that Vse& S;. t <s, and
t > S; means that Vse S;. t > s.
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Figure 3.7: A safe net with concurrency restricted

Given the measure m, it is possible to define the variance of the occurrence of a certain
set of transitions against that of a distinct set of transitions, as follows;

Definition: Let N = (P,T, F) be an occurrence net and let sl(N) be the set of slices of
(Xn,<). Let N' = (P',T',F', M) be a safe net and let T3,T; C T'. Let p: Xy — Xnv
be a finite process of N'. Define
r(p,T1,T2) = max {m(p™}(T1),51,82) — m(p~'(T2),51,52)}
$,,5,€8I(N)
to be the variance in process p of the occurrence of T-type events against the occurrence
of To-type events. (]

Finally, the synchronic distance between two events (sets of transitions) of a safe net
may be defined, where the sup function returns the greatest of its arguments (which may
possibly be oo).

Definition: [14] Let N = (P,T, F, M) be a safe net and T1,T; C T. Call

0(T1,Tz) = sup{r(p,T1,T2) | p € n(N)}
the synchronic distance between Ty and T3. []

Example: In the net of figure 3.1, the transitions ¢; and t; may occur completely con-
currently, and by constructing a place p between them with *p = {¢;} and p* = {t2}, their
synchronic distance may be calculated as o(t1,t2) = 2. If the net is altered as illustrated
in figure 3.7, where a regulator section has been added to the net so as to restrict ¢, and
t; to occurring alternately, the synchronic distance is reduced to o(ty,t2) = 1. O

Properties of Synchronic Distance

The synchronic distance function as defined above possesses several agreeable technical
properties, a few of which are presented in this section. These properties justify, to a
degree, the precise choice of definition for synchronic distance.
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Theorem 8 Let N = (P,T, F, M) be a safe net with Ty,T2,Ts C T. Then
1. o(T1,T3) =0 <= T1=T:.
2. o(T1,T2) = o(T2,Th).
8. o(Ty,Tz) < o(T1,Ts) + o(Ts,Tz2).

i.e. o i8 a metric on the elements of P(T).

Proof: [47] Parts 1 and 2 follow immediately from the definition of synchronic distance.
To prove part 3, let p : Xy — X be a process of the safe net N' = (P',T", F', M), with
N = (P,T, F) an occurrence net. Let S; and S be slices of (X, <) such that

7(p, T1,T2) = m(p~*(T1), 51, 52) — m(p™(T2), 51, S2)-
Then, defining [T}] = m(p~*(T}), S1, Sz) for § = 1,2,3, it is the case that

T(p) TI,T2) = [Tl] - [TZ]

[T] — (T3] + [Ts] - [T2]
T(p’ TI’TS) + T(P, TS)T2)-

I

Thus, by the definition of sup,

o(T1,T2) sup{r(p,T1,T:) | p € x(N'")}
§_u_p{r(p’T1’T3) + T(p)TSst) I PE "(N')}
sup{r(p,T1,Ts) | p € x(N')} + sup{r(p,T5,T2) | p € n(N')}.

INIA

a

Theorem 9 The synchronic distance function o : P(T) x P(T) — IN satisfies
1. o(TyU Ty, TsUTy) < 0Ty, Ts) +0(T3, Ta) + o(T1 N T2, Ts N Ty).
2. o(Ty,T2) = o(Ti\ T3, T2\ Th).

where Ty, T3, Ts, T4 C T are events of an occurrence net N = (P, T, F).

Proof: [47] Let p: N — N' € n(N') be a process of the safe net N' = (P', T, F', Mp),
with N = (P,T, F) an occurrence net. For X7 C T' let [X1] = m(p~'(X7), S1, S2).

1. Let S; and S be slices of (X, <) such that
T(p, TiUT,,TsU T4) = m(p'l(Tl U Tg), Sl,Sz) - m(p—l(Ts U T4),Sl,52).
Obviously for all Xp,Y7r C T':
[XruYr] = [Xr]+[Yr\X7)],
[Xr \ Y7] [Xr] — [XTr U YT] and
(Xr]-[Yr] £ 7(p,Xr,Yr) < 0(X1,YT).

Therefore
(p,T1UT3,TsUTy) = [T1UTe]— [T3UTy)
(T1] + [T2 \ Th] - (T3] — [Ty \ T3]
[T1] + [T2] = [T2 N Th] — [Ts] — [T] + [Tu N T3]
< 1(p,T1,Ts) + 7(p, T2, Te) + r(p, 1 N T2, Ts N Ty),
and the result follows by the definition of sup.
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2. Let 51,5 € §1(N) For X7 C T' let [XT] = m(p—l(XT),Sl,Sz). Then

Ty -[T2) = [(W\T)U(inT)] - [(T:\T1)V (1N T)|
= [Tl \ Tz] + [Tl n Tz] - [Tz \T1] - [Tl N Tz]
= [\ T2 - [T2\T].

Hence 7(p,T1,T2) = 7(p,T1 \ T2, Tz \ T1) and the result follows.

a

Using o, the places of the P-completion of a safe net N = (P, T, F, Mp) may be collected
into equivalence classes where, for p1,p2 € P, p1 ~ p2iff o(°p1,p1*) = o(°p2,p2°*). P
together with this relation is called the synchronic structure of N.

Weighted Synchronic Distance

The synchronic distance measure of mutual (in)-dependence of events is sometimes not
as precise as could be desired. Synchronic distance ought to be interpreted as an upper
bound for independence of events, and it is often possible to obtain a tighter bound
by using weighted synchronic distances[14,13,47]. In particular, weighting a synchronic
distance may give a finite value where the original definition of synchronic distance gave

oo for a particular pair of events.
For a safe net N' = (P',T', F', My), a weight-function is a function g : T' — IN \ {0}.

Definition: Let N’ and g be as above, with T3,T, C T".

1. Let p: N — N' be a process of N', for some occurrence net N = (P,T,F). The
g-weighted variance of the events T} and T3, denoted 74(p, T1, T?) is defined to be

5 o {gr:lg(t) -m(p~}(t),$1,852) - t;:zg(t) ' m(P_l(t)’Sl;Sz)} :

2. The g-weighted synchronic distance of Ty and T3 is defined as

04(T1,T2) = sup{ry(p,T1,T2) | p € x(N')}.
a

Example: Using the unweighted definition of synchronic distance, the synchronic distance
of the transitions o and B in figure 3.8 would be infinite, since the difference between the
number of occurrences of @ and § may grow unlimitedly. However, the two events are
actually tightly coupled, as two occurrences of § alternate with single occurrences of a.
This is captured by weighted synchronic distance, where event « is weighted by 2 and all
other transitions of the net by 1, and the weighted synchronic distance is o(a,8) = 2. O
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Figure 3.8: Weighted 0 < Normal o

3.3 Free-Choice Nets

As will be seen in chapter 4, it is the behavioural analysis of Petri Nets which is of most
practical interest and importance. However, it will also become evident that many analysis
problems are very difficult, if not undecidable, for general Petri Nets, and as the static
structure of Petri Nets is easier to analyse that their dynamic behaviour, interest has been
shown in classes of nets whose very structure permits behavioural inference.

One of the most structurally attractive net classes is that called “Free-Choice Nets”,
which prohibit confusion by their very structure and permit relatively simple liveness and
safeness analysis. Free Choice Nets constitute an aesthetically pleasing combination of the
notion of a state machine (conflict, but no concurrency) and the dual notion of a marked
graph (concurrency, but no conflict). As a consequence of this structure, Free-Choice
Nets exhibit no confusion (adjectivally, they are confusion-free), and it is this factor which
essentially simplifies their analysis.

As Free-Choice Nets are a generalisation of two more-restrictive classes (called P- and
T-nets), these two subclasses will be presented first.

3.3.1 P- and T-nets

In this section, two measures of the connectedness of an unmarked Petri Net are used, viz.
weak and strong connectedness, as defined below.

Definition: An unmarked Petri Net N = (P, T,pre, post) is called weakly connected iff
for all z,y € X either there is a directed path from z to y, or there is a directed path
from y to z, or both. N is called strongly connected iff for all z,y € Xy, there is a
directed path from z to y. OJ

Example: The net of figure 3.9(a) is weakly connected, but not strongly connected, while

that of figure 3.9(b) is both weakly and strongly connected. The net of figure 2.10 which
illustrated concurrent behaviour is neither weakly nor strongly connected. [J
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Figure 3.9: Weakly and Strongly Connected Nets

A P-net is a restricted form of (unmarked) Petri Net which admits conflict but no
synchronisation (and concurrency only when it is not safe or not weakly connected).

Definition: A P-Net is an unmarked Petri Net N = (P,T,pre, post) such that for all
teT, |t|<land|ts|<1. 0O

P-nets possess no synchronisation, simply because there are no (backward) branched
transitions; a safe, weakly connected P-net is thus purely sequential.

The dual notion to P-nets are called T-nets, and these permit concurrency and syn-
chronisation but no conflict.

Definition: A T-net is an unmarked Petri Net N = (P,T,pre, post) such that for all
pE P, 'pl <1and |p’| <10

There is no conflict present in T-nets simply because there are no (forward) branched
places.

Clearly, P- and T-nets are duals of each other, as illustrated in figures 3.10(a) and (b),
which show a P-net and its dual T-net, respectively. The analysis of T-nets in chapter 4
makes some use of the cycles of a net, as defined below.

Definition: A cycle of an unmarked net N = (P, T,pre, post) is a sequence Z0,Z1,...Tm
with z; € Xy for all 0 < § < m and with pre(ziv1,z) > 1if z; € T or post(zi,zi4q) > 1
ifr; e Pforall 0 <¢ < mand zg = Zm. A cycle is called simple if no element except
Zo = Zm appears twice in it, i.e. Vk,j, 0<k <j<m. (ze #2;). O

A net is said to be covered by simple cycles iff every z € Xy lies on a simple cycle.

3.3.2 Definition of Free-Choice Nets

Free-Choice nets may now be defined as a generalisation of both P- and T-nets, and they
allow both synchronisation (but “only in the T-net way”) and conflict (but “only in the
P-net way”). Essentially, if two places share a common output transition then they may
not have any more output transitions, and similarly for input transitions.

Definition: An unmarked Petri Net N = (P,T,pre, post) is called a Free-Choice Net
(abbreviated FC net) iff for each pair (p,t) € P x T with post(p, t) > 1, p* = {t} or
*t={p}. O
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Figure 3.10: Dual P- and T-nets

Theorem 10 The following properties of an unmarked Petri Net N = (P,T,pre,post)
are equtvalent;

(1). N 1is a Free-Choice Net.

(2). pEP A |p*|>1=Vtepe. °t={p}.

(3)- PEP A |p+| > 1=> +(p*) = {p}.

(4). P1, P2 €EP A p1°Nipe* # ¢=> 3t € T with py* = pa* = {t}

(5). ti,t2 €T A sty Nty # ¢=> Ip € P with *t; = oty = {p}.

Proof: [47,48]

[1=>2]. If |p*| > 1 then for each t € p*,p* # {t}. Using the definition of FC nets,
*t = {p}.

[2 => 1]. Let post(p,t) > 1. If |p°| = 1 then immediately p* = {t}. If
(2), *t = {p} and thus N is Free-Choice.

[3]. Is obviously equivalent to (2).

[1 = 4]. Let t € py*Npye. Since {p1,p2} C *t,*t # {p1} and *t # {p;}. By the definition
of an FC net,p;* = {t} and p;* = {t}.

[4=> 1]. Let post(p1,t) > 1. If *t # {p1}, there exists p» € P,p; # p1, with t € pe.
Then t € p1* N pa* # @ and by (4), p1* = {t}, and N is Free Choice.

[5]. Is obviously equivalent to (4).
O

p*| > 1 then by
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It is clear that every P-net is a Free-Choice net, as is every T-net, so FC nets are truly
a generalisation. Clearly, also, the dual of an FC net is an FC net. The notions of P-net,
T-net and FC-net each extend immediately to marked Petri Nets N = (P, T, pre, post, Mp).

Use will be made of those properties of FC nets which make them particularly amenable
to analysis in chapter 4. Two final notions which will be of use there are presented in the
following section.

3.3.3 Deadlocks and Traps

Definition: A set Q C P of places of an unmarked Petri Net N = (P,T,pre,post) is
called a deadlock? iff *Q C Q°. The subset Q is called a trap iff Q* C *Q. A deadlock
(resp. trap) is called minimal if no proper subset of it is also a deadlock (resp. trap).
Let N = (P,T,pre,post) be an unmarked net and let P! C P. A trap Q is said to be
the maximal trap contained in P’ iff @ C P' and for every other trap Q' contained in P,

'ce. O

Deadlocks and traps are both special sets of places. If a deadlock is empty under some
marking then it will remain empty under each successor marking; if a trap is marked under
some marking then it will remain marked under each successor marking, as shown in the
following.

Theorem 11 Let N = (P,T,pre,post) be a safe, unmarked Petri Net with M a marking
of N and Q C P.

(1). If Q is a deadlock which is unmarked under M then Q is unmarked under each
reachable marking M' with M ~»* M'.

(2). If Q 15 a trap which is marked under M then Q is marked under each reachable
marking M' with M ~* M'.

(3). The union of deadlocks is a deadlock.

(4). The union of traps is a trap.

(5). Q contains a mazimal deadlock and a mazimal trap.

Proof: [47]

1. Let @ be unmarked under M and let M -4, M. Assume that Q is marked under
M'. Then t € Q. K Q is a deadlock then t € Qe, but this is not possible, since ¢
has concession at M and N is safe.

2. Let @ be marked under M and let M —, M'. Assume that Q is unmarked under
M'. Then t € Qe, but if Q is a trap then t € *Q and so Q is marked under M.

3. P C Pi* A oPy C Pyo —> ‘(P]_ U Pz) =ePjUePy C PieU Py = (P]_ U Pz)'.
4. PioC*P; A Pye CoPp, —> (P1 U Pz)' =Pi*UPye CePyUP, = '(Pl U Pz).
5. Follows from (3) and (4) since @ is both a deadlock and a trap.

a

Deadlocks and Traps will be put to considerable use in chapter 4.

3This is established but not very agreeable terminology.
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Figure 3.11: A Net with two different types of Consumer

3.4 Coloured Petri Nets

Sometimes, when modeling concurrent systems using Petri Nets, it is inconvenient to use
the plain Petri Nets of chapter 2, and several Petri Net extensions have been developed
in order to facilitate more concise representation of certain classes of concurrent system.

One such extension, called Coloured Petri Nets [28], essentially attaches a colour (or
“type”) to the tokens of a net, thus avoiding the duplication of equivalent subnets of the
net structure. This allows simpler, more concise representation of a net, and also reduces
the amount of work which must be performed when analysing many net models.

By way of demonstrating the value of such an extension, consider the producer-
consumer net introduced in chapter 2. If a system consists of one producer (which produces
two tokens per cycle) and two consumers (each of which consume one token per cycle),
the net of figure 2.6 may be extended to model this situation simply by placing two tokens
in the place ¢. Each of these two tokens represents the “state” of one of the consumer
processes. This model may represent, for example, a computer system with two printers,
each of which can cope with approximately half of the printed output of the system. Al-
though this extension is quite adequate to model the system as described above, if it is
further specified that some documents must be printed on one (designated) printer and
the remainder of the documents on the second printer (distinguishing, for example, be-
tween a letter-quality printer and a normal line-printer), then the model is forced to split
the buffer b into two parts, b; and b;, as shown in figure 3.11. Now although this models
the behaviour of the system correctly it does not reflect accurately the fact that items of
differing types are actually residing in the same buffer (e.g. printer queue) in the system
being modeled, nor does it reflect the fact that the two printer processes are essentially
the same. Another problem with this system arises when the number of consumers (e.g.
printers) is increased — the complexity of the net increases significantly, and analysis of
the net must be re-performed each time the number of consumers is altered.

Both of these inadequacies may be rectified by use of a Coloured Petri Net, as illus-
trated in figure 3.12. Note that this net has exactly the same structure as one producer-
consumer model; the only difference is the presence of annotations on the places, transi-
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Figure 3.12: A Coloured Petri Net

tions and arcs of the net. In this case, each of the places is inscribed with a set of possible
token colours (eg. The inscription of place b with the name of the set TOKS = {LQ, LP}
means that tokens of colours LQ and LP may reside in place b, where LQ denotes a docu-
ment which is to be printed on the letter-quality printer and LP denotes a document which
is to be line-printed). Each arc has an attached expression consisting of a single variable
name, where variables may take token colours as values. When a transition occurs, all its
X-variables must take identical values. Each transition may have an attached predicate
over the set of variables specifying a condition which must be satisfied (in addition to
the normal transition-concession requirements) before the transition may occur (e.g. the
transition J requires that the two tokens which are in places b and ¢ before it fires be of
the same colour, since X =Y is its inscription).

Whenever a place, transition or arc is uninscribed it is understood that token colour
is irrelevant to that component of the net.

The net is initially marked by a token of any colour in place a and two tokens, one LQ
and one LP in place c; the buffer place b is initially empty.

More formally, Coloured Petri Nets are defined as follows;

Definition: A Coloured Petri Net is a 6-tuple N = (P, T, C, pre, post, M), where

P is a nonempty set of places,

T is a nonempty set of transitions, with TN P = @,

C is the colour function from P UT into nonempty sets which attaches to each
place a set of possible token colours and to each transition a set of
possible occurrence colour tuples.

pre and post are functions defined on P x T such that
pre(p,t), post(p,t) : uC(t) — uC(p).

My, the initial marking, is a multiset defined over P such that My € uC(p).

which satisfies the restrictions

VteT.dp€P. pre(p,t) # 0 or post(p,t) #0
Vpe P.3teT. pre(p,t) # 0 or post(p,t) #0

where 0 is the null function which maps everything to (). The colour function is defined
so that C(p) is the set of token colours which may be present in place p, which C(t) is
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given by
C(t) = {(d1,dz,...dn) € D1 X D3 X+ Dy | (A(v1,v2,. ..v,).PRED)(dy,ds,...dn)}

where Dy, D3, ... D, are the types (colour-sets) of the expressions inscribed on the incident
arcs to transition t, vy, va, ... v, are free variables of types D1, D3, ... Dy, respectively, and
PRED is the predicate attached to the transition ¢.

The functions pre and post assign to each pair (p,t) € P x T the function

A(v1,va,...v5).EXP

linearly extended to multisets, where vy : Dy, vz : D3,...v, : Dy are free variables of the
indicated types D;, which are the types of the arcs incident on the transition t, and where
EXP is the expression inscribed on the arc (p,t). If there is more than one arc between
place p and transition t, then the entry of pre or post corresponding to (p,t) is the multiset
sum of the above functions. The null function signifies that there are no arcs between p

and t. O

Example: The Coloured Petri Net of figure 3.12 may be represented as the 6-tuple N =
(P,T,C, pre, post, Mp) where the set of colours is the set TOKS = {LQ, LP}, and

P = {a,b,c}
T = {a8}
(MO)a = {LQ}) (MO)b =¢, and (MO)c = {LQ’LP}
C(a) = TOKS=C(b) =C(c)
C(a) = {(di,d2) € TOKS* | (A\(X,Y).X # Y)(dy,d2)}
{(LQ,LP),(LP,LQ)}
C(B) = {(d)€ TOKs| (A(X).X)(d)}
{(LP),(LQ)}
and the only non-null entries of pre and post are
pre(a,a) = A(X,Y).X post(a,a) = A(X,Y).X
pre(b,8) = A(X).X post(b,a) = AX,Y).X+Y
pre(c,f) = AX).X post(c,f) = AX).X

]

The transition relation of Petri Nets is extended to Coloured Petri Nets by treating
an event as a function from T to uC(T'). Letting *A and A* denote the expressions

Vp e P. Zpre(p, t)(A(t)) and Vpe P. Epost(p, t)(A(2)),
teT teT
(vectors over P), respectively, the transition A : T — uC(T) has concession at a marking
M iff +A < M, treating both as vectors over P.

Definition: Let N = (P,T,C, pre, post, My) be a Coloured Petri Net with two markings
M and M', and let A:T — uC(t) be an event of N. The transition relation for N is
defined as

M2 M if A<M and M'=M — A+ As

a
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Example: The Coloured Net of figure 3.12 admits the event X, which maps T to uC(t)
according to X : a+— {(LQ,LP)} and X : B+ {(b)}, which may occur at the indicated
marking to give a new marking M', where M) = {LQ},M] = {LP,LQ}, and M =
{LP,LQ}. O ‘

Coloured Petri Nets have been used for solving many practical modeling problems,

and when combined with techniques for determining Net invariants, they constitute an
important concurrent system design paradigm.
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Chapter 4

Net Analysis

A major motivation for the development of Petri Net theory is that the Petri Net model
provides a vehicle for the analysis of concurrent systems. Such systems include concurrent
computer programs, parallel machine architectures, and models of information flow in
business, to name but a few examples. Systems analysis has traditionally asked several
questions of a concurrent system, viz. will it ever deadlock? Will part of it deadlock? Are
there enough resources present? Is the system organisation “optimal” in some sense?, etc.

The classical safeness, liveness and invariance properties of concurrent systems apply
immediately to Petri Nets, and there are also several other properties specific to Petri
Nets which prove to be of interest. As a brief intuition, safeness! properties require
that nothing “bad” ever happens during the net’s execution (e.g. no deadlock occurs).
Liveness properties require that something “good” eventually happens (e.g. fair execution,
no livelock, etc). Invariance properties require that certain aspects of the system remain
in balance (e.g. the number of resource tokens in a net is constant).

For Petri Nets, safeness and liveness properties may generally be expressed in terms
of the question

Can a particular marking M ever be reached by a given net N?

This question, formalised as the Reachability Problem (RP) for Petri Nets, subsumes
many other Petri Net problems, as will be shown later. Some of the important Petri Net
analysis problems which are variously related to the RP are;

1. The Boundedness Problem (BP). This problem asks whether a particular place of a
net may ever contain more than k tokens (for some constant k). This k-boundedness
problem is sometimes called k-safeness, and clearly 1-safeness (setting k to 1) cor-
responds to the notion of a safe net as introduced in section 3.1. Related to this
problem is that of determining whether two distinct subsets of places are simultane-
ously unbounded in any reachable marking of the net.

2. The Equivalence Problem (EP) asks whether two particular nets behave equivalently
in the sense of having equivalent sets of reachable markings. A related problem is
the Containment Problem (CP), which asks whether a given net’s reachability set
is contained in another net’s reachability set. The Equivalence Problem represents
a variation on Net bisimulations as a means of comparing two nets.

!These should not be confused with “safe® Petri Nets
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3. The Coverability Problem (KP) asks whether there exists a marking M € Ry such
that a given marking M' covers M (i.e. M' > M as vectors).

4. The Liveness Problem (LP) represents a combination of deadlock and livelock ques-
tions. There are several definitions of liveness for a Petri Net, essentially correspond-
ing to the definitions of fairness of Francez|10|, and ranging from “Can this net still
execute any transition?” (Is it deadlocked?) to “Does every transition of this net
have concession infinitely often in any infinite run of the net?”.

Many other analysis questions have been asked about Petri Nets in the literature, but
the aforementioned are the most important. The next section examines the RP in detail
and shows its relationship to the BP, EP, CP and LP. Invariants will be discussed in
section 4.2, where it will be seen that they provide a more sophisticated, and often more
computationally feasible method of Petri Net analysis than do solutions to the RP. Finally,
in section 4.3, analysis methods will be applied to several of the net models introduced
in Chapter 3 and it will be seen that restricting the structure of nets can simplify their
analysis significantly.

4.1 The Reachability Problem

Firstly, the RP will be formally defined, so that observations may be made regarding the
problem and its solution.

Definition: The Reachability Problem for Petri Nets is formulated as follows;

“Given a Petri Net N = (P, T, pre,post, My) and a marking M, is M a reach-
able marking of N?” (or alternatively, “Is M € Ry 7”)

a

The Reachability Problem for Petri Nets was originally expressed [30] as a problem
over Vector Addition Systems — a linear-algebraic formalism which is equivalent to the
dynamic behaviour of Petri Nets (see Appendix C). All solutions to the RP consider
only singleton events, as opposed to the multisets of events used in Chapters 2 and 3
of this report. This merely simplifies the (rather complex) solutions and proofs for the
Reachability Problem, and the extension to composite events is immediate.

It was shown very early that the RP for VAS was decidable for limited dimension cases
(25], but for even this restricted result, the new formalism of Vector Addition Systems with
States (VASS) was required. The exact structure of a VASS is detailed in the appendix,
and for present purposes it will simply be shown that VAS and VASS are equivalent to
a sufficient degree that it is possible to treat their reachability problems as also being
equivalent.

Lemma 12 An n-dimensional VASS can be simulated by an n + 3-dimensional VAS.

Proof: [25] The proof follows the construction of a simulating VAS from a given VASS,
The last three coordinates of the VAS are used to encode the VASS’ state while the first
n coordinates are exactly as in the VASS. Assume that the VASS has k states qy,...,qx
and let a; =4 and b; = (k+1)(k+ 1 —1) for i € {1,...,k}. If the VASS is at v in state
g; then the VAS will be at (v,a;,b;,0). For each ¢ the VAS has two dummy transitions
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t; and t! defined so that ¢; goes from (v,a;,b:,0) to (v,0,8k—i+1,bx—i+1) and t; goes from
(v,0, @k—i+1,Dk—i+1) to (v,b;,0, a;). It should be noted that t; and t; modify only the last
three components of any vector in the VAS. In addition, there is a transition ¢ for each
step + — (7, w) of the VASS, defined by

t:-' = (w,aj - b.',bj, —a.-).

Clearly, any path of the VASS can be mimicked by the VAS. It remains to show that the
VAS cannot do anything unintended; it will merely be shown that t; can only be applied
if the last three components of the vector in question are b;,0, and a;, respectively, as the
other cases are similar. Observe that for each ¢ and 7, a; < a1, by > biy1, a5 < b; and
bi — bi+1 = k+ 1 > a;. Let v be the vector (w,a; — b;, b;, —a;) which accomplishes the
transition t]. Note that the n+ 15t and last components are negative, and hence ¢! cannot
be applied when the last three coordinates are (a;, b;,0) or (0, ak—i41,bk—i+1) since either
the first or third components are 0. Let the last three components be (by,,0,8.,). Then if
m < §, t;! cannot be applied since a,, — a; < 0. If m > ¢, then t] cannot be applied since

bnt+a;—b < aj—(k+1) < 0.
a

Since an n-dimensional VASS can trivially simulate an n 4 3-dimensional VAS, the
reachability problem for a VAS is decidable iff the reachability problem for VASS (see
Appendix C) is decidable.

From VASS, Kosaraju designed the Generalised VASS (G VASS) formalism, and in 1982
he published the following decision procedure which satisfactorily? solved the GVASS (and
hence, VASS, VAS and Petri Net RPs) reachability problem [31].

Theorem 13 (Kosajaru 1982) The Reachability Problem for GVASS is decidable.

Proof: The essence of the proof is contained in the following decision procedure for the
Reachability problem, where G is a GVASS and 0 is a property as described below.

procedure Decide (G, RESULT);
begin
if G satisfies § then
RESULT := yes;
exit;
elsif size(G) is not trivial then
compute a finite set GS of reduced GVASS for G;
for all g € GS do
Decide(g, RESULT);
end for all;
else
RESULT := no;
return;
end if;
end procedure Decide;

In 1981, Mayr published a paper [36,37] in which he claimed to have solved the General RP, but his
extremely complex proofs have not satisfied several of the major contributors to the field, and it remains
an open question whether his solution to the RP is adequate.
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The property 8 is crucial to the proof, and as it is rather complex, the reader is
directed to [31,39] for details. The correctness of the procedure follows from the following
four theorems of Kosaraju;

1. “G satisfies §” is decidable.
2. If G satisfies # then G has a CR-path.

3. If G does not satisfy § and size(G) is not trivial then a finite set of reduced GVASS
can be effectively computed such that

(a) Vg € GS. size(g) < size(G), and
(b) G has a CR-path iff 39 € GS: ¢ has a CR-path.
4. If G does not satisfy 8 and size(G) is trivial then G has no CR-path.

where the measure size(G) represents a balance of the number of nodes and arcs in the
underlying VASSs of each GVASS G. O

The exact complexity of this decision procedure for the Reachability Problem for Petri
Nets remains an open problem, but it has been known for some time that the RP itself
requires a lower bound of exponential space {46], and that its time complexity is unbounded
by any primitive recursive function (i.e. NP-hard) [29]. It has recently been determined
that the Reachability Problem is in fact NP-complete in both space and time[27]. The
solution of the RP was a major breakthrough, as it had been demonstrated that many of
the other Petri Net problems were related or equivalent to the RP (as is shown in the next
section) and results for these problems were thus obtained automatically from Kosaraju’s
proof.

4.1.1 Relationship of RP to Other Problems
The Boundedness Problem (BP)

Formally, Petri Net boundedness is defined as follows. Let N = (P, T, pre, post, M) be a
marked Petri Net; a place p € P is n-bounded (for any n € IN) if VM € Ry : M, < n.
The net N itself is n-bounded (for n € IN) iff Vp € P : p is n-bounded. In accordance
with the previous definition of safe nets, N is safe iff N is 1-bounded.

Obviously, if a place is unbounded in a net N, the reachability set Ry must also be
unbounded in size, and thus the solution to the RP is of no use in solving the BP.

The BP was shown to be decidable by its inventors [30], and the complexity of the
problem has since been refined to lie between a lower bound of 0(2°V") [27,35] and an
upper bound of O(2°"!°¢™) [46] space, where n is the number of bits in the problem
instance and c is any constant. Solutions to the Coverability Problem (see below) provide

a conceptually manageable (though computationally unattractive) method for solving the
BP.

The Equivalence (EP) and Containment (CP) Problems

Using the undecidability of Hilbert’s 10th problem, Rabin gave a very early (though un-
published) proof for the undecidability of the CP, and Hack applied this result to the EP
by proving that the CP is recursively reducable to the EP [19).
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Thus both the CP and the EP are, in general, undecidable; it was discovered, how-
ever, that for certain classes of nets (namely those whose reachability sets are effectively
computable semilinear sets) the CP and the EP are decidable.

Classes of nets with semilinear reachability sets include those representable as VAS of
up to 5 dimensions, those which are conflict-free, and those which are persistent. This
result led to considerable work being performed with such restricted net models, although
the eventual solution to the RP makes their use less necessary.

The Coverability Problem (KP)

One of the early approximate solutions to the RP was provided in the form of the KP,
in the sense that it can be determined whether a marking M may be in Ry simply by
building a structure called a Coverability Tree for N and examining this to see if there
is an M’ in the tree with M' > M. If no such M' exists, then M & Ry definitely; if
3M' : M' = M then M € Ry definitely, and if 3M' > M then M may be in Ry (and
herein lies the “approximation”).

A Coverability Tree is an approximation to the intuitive notion of a Reachability Tree
(a tree of all reachable markings, connected by arcs labelled with the transitions going
from marking to marking) which is “pruned” to abbreviate any infinite branches of the
tree. This pruning causes the loss of some information, but this loss is countered by the
fact that a conceptually simple approximate decision procedure is obtained.

The following procedure for constructing a coverability tree is due to Hack [18].

A Coverability Tree is a rooted, labelled tree, where the node labels are |Pl-dimensional
oo-multisets for a net N = (P,T,pre,post, My). The arcs of the tree are labelled by
transition names (members of T'). In addition to the arcs of the tree, there are two types
of backpointers, which can point from a node a to an antecedent of that node. These
pointers are not considered to be arcs of the tree (in the interests of it remaining a well-
formed tree), but are used for book-keeping purposes. If 8 is an antecedent of «, this is
denoted A < a (consistent with the poset notation used in section 3.2 and appendix B).
The label of a node a is denoted L,.

The root node is an antecedent to every other node in the tree, and its label will be the
initial marking M. A leaf node is not antecedent to any node. The node labels reflect the
corresponding marking changes, but as soon as a node a is reached whose label L, covers
the label of some antecedent 8 (i.e. Ly > Lg), there is a possibility of unboundedness, and
oo is introduced to those coordinates where arbitrarily many tokens can be generated if the
sequence of transitions expressed by the arc labels along the path from 8 to « is repeated
sufficiently often. To express this more conveniently, a co-backpointer, labelled oo; if co
is introduced in the ¢** coordinate, is included from the node a to the corresponding
antecedent 8.

If a node « is reached whose label is equal to that of an antecedent 8 then a is made
a leaf-node and a loop-backpointer is introduced, labelled A (for the empty string), from
a to B. This procedure is expressed more formally in the following definition.

Definition: Given a Petri Net N = (P,T,pre,post, My), its Coverability Tree Ty is
defined recursively by the following procedure. The label of the root node p is the original
marking (L, = Mp). The Coverability Tree is generated from p by a call to the procedure
CoverTree(p) ;.
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begin
if no Transition has concession at Marking L, then
a is a leaf-node called a dead-end;
elseif J an Antecedent 8 of a with Lg = L, then
a is a leaf-node called a loop-end;
Add a loop-backpointer from a to g;

{ This is denoted ad B}
else

for each Transition t which has concession at L, do
Create a new node f;
Compute the marking L' = L, — *t + te;
{Which results from t's occurrence at the marking L, }
Compute the set Ag={y|y<p8 and L, < L'};
{0f Antecedents of § with smaller markings than Lg };

if Ag = ¢ then
Lg=1L"; { is the label for node § }
else

for each coordinate ¢ for which (L'(s) # oo) and
(L'(5) > L(5)) for some v € Ag do
Introduce an co-backpointer from 8 to 7;
{This is denoted 8% ~ }
end for;
{Lg is then determined componentwise as follows}
for alli with 1 <i < |P| do
Lp(s) := if (3y € Ag : B X 4) then oo else L'(s) end if;
end for all;
end if;
Call CoverTree(f);
end for;
end if;
end procedure CoverTree;

a

Clearly, the algorithm will terminate iff the tree is finite, and Hack showed (by the
following theorem) that this is guaranteed by the structure of the algorithm.

Theorem 14 Every Coverability Tree 18 finite, and can be effectively constructed.
Proof: See [18]. O

Example: A Coverability Tree for the “Producers-and-Consumers” Petri Net of figure 2.6
which was constructed using the above algorithm is illustrated in figure 4.1. All backpoint-
ers and loop-end leaf nodes have been omitted for clarity. From the Coverability tree, it
is easy to see that the marking (0,1, 1) can never be reached by the net; that the marking
(1,0,1) is definitely reachable by the net, and that the marking (1,324, 1) may possibly be
reachable.It should be noted that the Coverability Tree for a given net may not necessarily
be unique. (O
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(l,oo, 1) (1,1,1)
/ \
(l,oo, 1) (1,0,1)
(1,00,1)

Figure 4.1: Coverability Tree for the Producer/Consumer Net

The following two results relating to the BP are obtained from the Coverability Tree
construction.

Theorem 15 A place p € P of a Petri Net N = (P,T,pre,post, My) is unbounded iff a
coverability tree for N contains a node o with label L, in which the corresponding coordi-
nate 18 Lo(p) = o0.

Proof: See [18]) I
Theorem 16 It is decidable whether a set of places 18 stimultaneously unbounded.

Proof: [18] The Coverability Tree (which is finite and effectively constructible) can be
examined to see whether it contains a label in which the coordinates corresponding to
these places are all co. OJ

It should be noted, however, that the problem of generating of a coverability tree is
of the same order of complexity as the BP (i.e. unbounded by any primitive recursive
function), and it is thus not computationally feasible, in general, to make much use of
coverability trees for practical net analysis.

The Liveness Problem (LP)

Finally, the Liveness and Reachability problems were proved to be recursively equivalent
by Hack in 1974 [20]. This important result placed even more emphasis on the need to
know whether the Reachability Problem was decidable, and helped to spur on those who
were searching for solutions to the RP. The definition of liveness used in most Petri Net
work (including section 4.3 of this report) is given below;

44




Definition: Let N = (P,T,pre,post, M) be a Petri Net;

1. t € T is called live iff VM € Ry(Mo). 3M' € Ry(M)s.t. t has concession at M'.
2. Nis liveif Vt € T. tis live.

a

Liveness as expressed here is thus equivalent to the weak liveness of Francez[10] where
essentially all that is required is absence of global deadlock. More complex (and more
demanding) liveness requirements may be phrased for Petri Nets, but the above (weak)
liveness definition is the most usual.

4.2 Net Invariants

This section presents the theory and intuition related to sets of Petri Net places which
maintain a constant token count during any run of the net; the so-called place-invariants
of a net.

Knowledge of such sets of places helps in analysing safeness, liveness and other prop-
erties of Petri Nets, and corresponds essentially to the use of invariant assertions in the
program proof techniques of [7] and [17].

Definition: Let N = (P, T,pre,post, My) be a Petri Net and let W be a matrix called
the incidence matrix of N, such that

W (p,t) = post(p,t) — pre(p,t)
for all p€ P,t € T. Let I be a vector over P (i.e. I € vP). Then

1. I is called a place-invariant of N if W - I = 0,
2. P; C P is called the support of I iff P = {p€ P | I, # 0}, and
3. A place invariant I > 0 of N is called minimal iff A I' > 0 of N with I' < I.

a

The set of invariants of a Petri Net N is denoted InvN. Since invariants are charac-
terised by solutions of a system of linear equations, they can be computed by well-known
methods of linear algebra. Also from linear algebra, it is clear that the following Lemma
is valid.

Lemma 17 Let Iy and I be place-invariants of a net N, and let z € Z be any integer.
Then I + I; and z+ I, are also place-invariants of N.

Net invariants thus form a Z-Module (An Abelian group with composition + and
identity O, together with a scalar product operation - : Z x vP — vP).

It should be noted that as a morphism between Z-modules M and N is a function
a: M — N which is linear in the sense that a(zv) = z(av) and a(u+v) = au+ av for all
u,v € M and z € Z, it follows that ZZ-modules correspond to Abelian groups and their
morphisms correspond to homomorphisms on Abelian groups [55].
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Sk

ps i3 to p1
Figure 4.2: A System of Readers and Writers
Such invariant vectors I are so-called because a solution I to the equation W-I = 0 will

preserve markings of the net N in the sense of the following theorem. By way of notation,
the vector t : P — Z is defined componentwise as follows, for all transitions t € T

post(p,t) iff pEte\t
' = —pre(p,t) iff pEt\te
* 7 | post(p,t) — pre(p,t) iff pEtNte
0 otherwise

and clearly it is the case that M -, M is an event of the net, with M and M’ reachable
markings, if and only if M' = M +¢.

Theorem 18 Let N = (P,T,pre,post, M) be a petri net. For each place-invariant I of
N and each reachable marking M € Rn(Mp) it is the case that M - I = My - I.

Proof: [47] Let My, M; € Rn(My) and let t € T such that M; —*, M, is an event of N.
Then, in particular, My = M; +tand t-I=0 (since I is a place-invariant). Therefore,

M- I=(My+t) - I=My- I+t-I=M-I,

and the result follows by induction from the initial marking My. O

Example: The net of figure 4.2 illustrates a system of n processes (indicated by n tokens
on place pg, the “inactive processes” place) which can either perform a read or a write
operation (i.e. can execute transitions t; or t4, respectively) on a shared data base.

The system is restricted so that a maximum of k < n processes may read the data
base at any one time, and so that writing may only take place when there are no processes
reading. There are initially k tokens on the synchronisation place pg.
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The other places correspond to the states “ready to read” (p1), “reading” (pz), “ready
to write” (ps) and “writing” (p4).
Given the above specification for the net, the incidence matrix W for N is as follows,

Po|pL p2 ps P4 Ps
% -1] 1 0 0 0 O
¢ 0 /-1 1 0 0 -1
tz 1/0 -1 0 0 1
ts -1/ 0 0 1 0 O
t4a 0l 0 0 -1 1 -k
ts 1 /0 0 0 -1 k

and it is a simple matter to solve the equation W - I = 0 (using normal linear-algebraic
techniques, such as Gaussian elimination) to determine that all place-invariants of the net
are of the form

-1- - —k -
1 —k
1 —k
Iso| ([ +8 1% |
1 0
-Od e 1 -

where a and 8 are any integers. [J

It has been shown [55] that net morphisms preserve invariants. Invariants are closely
related to deadlocks and traps, as shown in the following result; there cq denotes the
characteristic vector of @ C P, meaning that ¢, € {0,1} forallpe Pand ¢, = 1iff p€ Q;
otherwise ¢, = 0.

Lemma 19 Let N = (P,T,pre,post, My) be a Petri Net with a positive place-invariant
I>0andletQ={p€P|I,>0}. Then Q*=1Q.

Proof: [47] Assume that there exists t € @+ \ *Q. Then
dJpeP:t, <0 and Vpe P:—(t, >0).

Then clearly t - cg < O and since I is positive, c¢g < I and therefore t- I < 0. So I is,
under this assumption, not a place-invariant. Similarly for ¢t € ¢S\ S, it is the case that
t-I1>0.0

Corollary 20 Every positive place-invariant 1s both a deadlock and a trap.

Recent work on the generation of all invariants for a Petri Net has concentrated on
altering classical computation techniques for linear Diaphantine equations W - I = 0 to
produce techniques which are tailored specifically towards invariants, and which are more
computationally attractive [32].

Place-invariants for Coloured Petri Nets are rather more complicated structures, but
the same concepts are preserved, and the interested reader is directed to [28].
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4.2.1 Nets covered by place-invariants

Unbounded places of a net may not feature in any place-invariant, as indicated in the
remainder of this section.

Definition: A net N = (P,T,pre,post, M) is said to be covered by place invariants iff
for each place p € P of N there exists a positive place-invariant I of N with I, > 0. (J

Thus, to feature in a place-invariant I, a place p € P must correspond to a non-zero
component of I. The following result concludes that any place which does not feature in
any such I must be unbounded in the net N.

Theorem 21 Let N = (P, T,pre,post, Mo) be a net with a finite initial marking Mo. If
N is covered by place invariants then N is k-bounded for some k € IN.

Proof: [47] Let p € P and let I be a positive place invariant of N with I, > 0; let
M € Rn(Mo) be a reachable marking. Since

M-I, <Y My-In=M-1=M-I,
p'€P

it is the case that
My-I

Iy

M, <
O

4.2.2 TUsing Invariants to Prove Assertions about Nets

Not surprisingly, invariants are useful for describing invariant behaviour of nets. In ad-
dition, they comprise a powerful tool for proving safeness and liveness properties about
Petri Nets. For example, two particular invariants of the net in figure 4.2 are (setting
a=1and §=0)

1
0]
1
L= 1
1
[ 0]
and (setting « = k and § = 1)
F 0
0
1
Iz— 0 ’
k
[ 1]

and these two invariants define safeness properties as described below.
Firstly, I, states that in all markings of the net, the number of processes remains
constant (n), since

Z M, = E(Mo)p.' =n.

=0 =0
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The second invariant, I3, gives the formula
My, + k- My + My, = (Mo)p, + k- (Mo)p, + (Mo)p, = k
for all reachable markings M. This facilitates the deduction of the following facts;

1. Place p4 contains at most one token under any M (i.e. there is at most one process
writing);

2. When pq carries a token, pz and ps are empty (i.e. when a process is writing, no
other process may read the buffer);

3. p; carries at most k tokens (i.e. there are at most k processes reading concurrently).

In addition, liveness properties may also be deduced from invariants, as shown in the
following result.

Proposition 22 With the initial marking as indicated, the net of figure 4.2 38 live.

Proof: [47] Liveness is demonstrated by showing that at every marking will enable at least
one transition. In a marking M where M,, + Mp, + M,, > 0, the net structure reveals
that at least one of the transitions to,t3,ts or t5 is enabled. If Mp, + My, + M,, = 0
then I; gives the result that M,, + Mp, = n and I; gives that M, = k; then ¢, or ¢, is
enabled. Now, if po is empty for some reachable marking M € R(Mp), it may be marked
by some succession of firings. This implies the liveness of ¢o and 3. The liveness of the
other transitions follows immediately. [

Thus, as demonstrated, invariants provide a powerful basis for reasoning about Petri
Nets, especially when combined with a form of logic capable of expressing time-invariant
assertions such as temporal logic.

4.3 Analysis of Restricted Classes of Nets

Due to the complexity of the Petri Net Reachability Problem, and also because the solution
to this problem was only discovered recently, a large (and growing) body of theory has
been developed in an effort to determine salient features of a net’s dynamic behaviour
from its static structure. Called Structure Theory [3], this school soon determined that
deep results were scarce for general Petri Nets, but for some subclasses of nets, significant
results were easier to obtain.

This section first presents some of the (rare) general results relating Petri Net struc-
ture and such dynamic properties as liveness and boundedness/safeness. Then properties
relating specifically to P- and T-nets will be examined, followed, finally, by several major
results for Free Choice Nets.

4.3.1 General Results

There exist very few non-trivial necessary conditions for liveness and safeness in General
Petri nets. Sufficient conditions are even fewer and farther between. The first two propo-
sitions below represent necessary conditions for the liveness of a net and for the safeness
of a live net, respectively.
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Proposition 23 If a Petri Net N = (P, T,pre, post, My) is live then VYp€ P : *p # 0.

Proof: [4] Suppose that *p = 0 for some p € P. By the definition of a Petri Net, p* # 0.
Because of the liveness of N, all transitions in p* may eventually fire, and thus there is a
reachable marking M € Ryx(Mo) at which M, = 0. Because *p = 0, it is the case that
M! =0 for all M'€ Ry(M), so none of the transitions in p* can ever be enabled again,
contradicting liveness. OJ

Proposition 24 If a live Petri Net N = (P, T, pre, post, M,) s safe thenVp € P : p* # 0.

Proof: [4] Suppose N is live and safe, and p* = O for some p € P. Again, by the
definition of a Petri Net, it must be the case that *p # 0. By the liveness of N, all of the
transitions in *p may eventually fire, and when one does, p will hold a token; thus, there
is a reachable marking M € Rn(Mo) such that M, = 1 (possibly M = Mo). Because
p* = 0 and because of the safeness of N, it is the case that My =1 for all M' € R.(M),
so none of the transitions in *s can ever occur again, contradicting liveness. [

Conversely to the above, the following two propositions provide necessary conditions
for safeness, and for the liveness of a safe net, respectively.

Proposition 25 If a Petri Net N = (P,T,pre,post, Mo) is safe then V€T : ot # 0.

Proof: [4] Suppose that N is safe and that t € T such that ¢t = 0. Then t* # 0 by the
definition of a net. Let p € t*. Because there are no preconditions to t, t has concession

arbitrarily often, and in particular, the event My R may occur, with the result that
M, > 1. This contradicts the safeness of N. []

To prove the next proposition which provides a necessary condition for the liveness of
safe nets, the following observation must be made.

Let N = (P,T,pre,post) be an unmarked Petri Net with two markings M, M’ of N
such that M' > M (i.e. Vp € P: M; > M,). Suppose that M —+*M,; where r € T* is a

transition sequence. Then M’ —»*M} where M| satisfies
Vpe P: My, = My, + (M, — My).

In other words, if r is a transition sequence at M then it is also a transition sequence at
M!'. Moreover, the resultant markings M; and Mj are related to each other exactly as M
and M' are related.

Proposition 26 If a safe Petri net N = (P, T,pre,post, Mp) s live thenVt €T : t* £ 0.

Proof: [4] Assume that the safe net N = (P, T,pre, post, M) is live. Suppose thatt € T
such that t* = 0. Let My — *M' such that t is enabled at M'. The existence of r and
M’ are assured because of the assumption that N is live. Let M' —, M. Then clearly
M' > M since t* = 0. In fact, for each p € *t, M, > M,. Since N is live and M € Rn(Mp)

it is possible to find a transition sequence r; and a marking M; such that M TL,*M, and
t is enabled at M;. By the preceding observation, a marking M] may be found such that
M' ZL* M} where M| satisfies

Vpe P: M, = My, + (M, - My).
Let p € *t. Such a p exists because from t* = 0 it follows that *¢t # 0. Then M;, > 0

because t is enabled at M;. As noted earlier, from M’ -t M it follows that M,’, > M,.
Hence Mj, > 1, which contradicts the safeness of N. a
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The following Corollary is a simple consequence of the preceding four propositions,
and represents at once a necessary condition for Liveness and Safeness.

Corollary 27 If N = (P, T,pre,post, Mo) is live and safe then Vz € XN : °z # 0 # z°.

The remainder of this chapter assumes that all Petri Nets are both finite and Weakly
Connected. These restrictions permit one further result in this section on general Petri

Nets.

Theorem 28 If a (finite, weakly connected) Petri Net N has a live and safe marking then
it 15 strongly connected.

Proof: See [3]. Actually, this result holds for a live and n-bounded net, for any n € IN.
a

4.3.2 Results for P- and T-nets

The behavioural Structure Theory of P-nets is rather simpler than that of T-nets, and as
such will be presented first; intuitively, a strongly connected P-net is live iff it carries at
least 1 token, and safe iff it carries at most 1 token.

Proposition 29 A P-net N = (P, T,pre,post, My) is live iff it is strongly connected and
My > 0, 1.e. there i3 at least one token.

Proof: [4]

[=>] Note that in the empty initial marking (i.e. My = 0) none of the transitions of
N is live; hence N is also not live, since T # @ by the definition of a Petri Net.
Next, it will be seen that liveness implies strong connectedness (assuming weak
connectedness ). To this end, consider the strongly connected components of N, i.e.
all sets R C X such that Vz,y€ R:z <y and y < z, treating the components
of Xy as a partially ordered set. This defines a partitioning of Xy. Define R; C R,
where R; and R; are two strongly connected components. If 4z € Ry, y€ Ry : z < y,
then C is a partial order on the set of strongly connected components of N. Since
N is finite, C has maximal elements. Because a path leads from every place of N
into some maximal element of C, every token of My can be moved into one of the
maximal elements of = where it will stay. Hence by the liveness of N, C cannot have
any non-maximal elements. But then by the weak connectedness of N, C cannot
have more than one maximal element. Hence the unique maximal element of C is
Xn itself, which implies that N is strongly connected.

[<=] Consider any marking M € Ry and any transition ¢ € T. It is the case that
IM I = |Mo|; this follows directly from the definition of a P-net and the transition

rule. Because lM | = |M0I > 0, there is a place p € P which is marked under M, i.e.
M, > 0. By strong connectedness, a directed Xy-path can be found which leads to
t, and this path can be used to enable t; hence N is live.

a

Proposition 30 A live P-net N = (P,T,pre,post, M) 1s safe iff |Mo| =1, t.e. there is
ezactly one token.
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Proof: [4]

[=>] Use Proposition 29 to show that |M0| > 0 and N is strongly connected. If |Mo| >1
then either there is a place p € P such that Mg, > 1 (in which case the Net N is
not safe in the initial marking), or there are places p1, p2 € P such that p; # ps and
Mop, + Moy, > 1. By strong connectedness, a path leads from p; to p; and the net

is not safe. Hence |M0| =1,

[<=] It is sufficient to notice that IM | = lMol for all M € Ry, since N is a P-net.

O

The following results for T-nets were determined very early in the development of Net
Theory, and were originally phrased for Marked Directed Graphs [6,12].

Theorem 31 A T-net N = (P,T,pre,post, Mo) 18 live iff all of its simple cycles carry at
least one token, and for all placesp€ P : ['pl =1.

Proof: [6,12] If some simple cycle of N is unmarked then no transition of this cycle may
occur (as N is a T-net); since the number of tokens in a cycle cannot be changed by other
transitions firing (as T-net places are unbranching), no transition can be made firable
through firings.

Now assume that all simple cycles of N are marked, and let t € T be any transition
of N. Consider the unmarked places p € P in *t. If there are none then t is firable;
otherwise consider the transitions t' with p € P in t'e (and there are some places in °t,
since |*p| = 1 for all p € P). If each of these is immediately firable, then, clearly, ¢ will
become firable after every one of them has fired. If some are not, consider the unmarked
places p' € P in *t, etc. As this backtracking continues, a subnet is being constructed of
t, the places preconnected to t, the transitions postconnected to those places, etc. This
process must terminate, and the generated subnet must be cycle-free , since N is finite
and since there are no unmarked simple cycles in N, respectively. Thus, the subnet must
contain at least one transition which has no preceding places belonging to the subnet.
This transition is firable in the present marking of N. After firing it, the subnet of the
token-free backtracking from ¢t is reduced in size (by one transition). By repeating this
process, t is firable and hence ¢ is live. As t was chosen arbitrarily, N is also live. (|

A necessary condition for the safeness of a live T-net is given in the following.

Theorem 32 A live T-net N = (P,T,pre,post, My) is safe iff it 18 covered by simple
cycles which carry at most one token.

Proof: [6,12] If, for each place p € P, there exists a simple cycle upon which p resides,
with exactly one token on it, then the token count of this cycle will remain constant (since
T-nets prohibit branching places) and thus the cycle is safe.

Assume that there exist two transitions o and B with a place p between them (i.e.
a*, = 1 and *B, = 1), such that all simple cycles passing through o,p, and 8 carry 2 or
more tokens. It must be demonstrated that by a sequence of transition occurrences it is
possible to place 2 (or more) tokens on p.

If there are no tokens on p, backtrack the token-free subnet, as in Theorem 31, starting
with transition a. Thus, @ may be made firable, and firing it places 1 token on p. If this
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construction is repeated, again, the token-free subnet backtracked from o does not include
B, since that would imply the existence of a cycle of token-count 1 through p. Thus a
may be fired again, without firing 8, and therefore placing a second token on p, and thus
contradicting the safeness of N. O

The following results tie liveness of T-nets to Strong Connectivity, via the notion of a
reproducible marking.

Definition: A marking M € Ry(Mpo) of a Petri Net N = (P, T,pre,post, Mo) is called
reproducible iff there is a nonempty sequence ¢ € T* of transition occurrences which
lead from the marking M back to itself (ie. M —Z,*M, meaning that it is the case that
M e Ry(M)). O

Theorem 33 A strongly connected T-net N = (P,T,pre,post, Mo) 1s live iff its initial
marking My can be reproduced by a transition sequence o in such a way that every transition
occurs exactly once in 0.

Proof:
[=>] Rather complex — see [6,12].

[¢<=] The reproducing sequence o requires at least one token on each cycle, and by Theo-
rem 31, N is live. O

The following corollary is a simple consequence of the preceding results.

Corollary 34 In a strongly connected T-net N = (P,T,pre, post, M) the following are
equivalent.

1. N 1s live.
2. All simple cycles of N carry at least one token.

8. The initial marking of N 1s reproducible such that every transition occurs ezactly
once.

Theorem 35 A T-net N can be endowed with a live and safe marking iff it is strongly
connected.

Proof: [6,12] Clearly, a live marking is obtained by putting one token on each place of N
(by Theorem 31). The technique used in the proofs of Theorems 31 and 32 may now be
employed to change this marking until it becomes safe, without changing its liveness.
Assume that for a given place the least token count for the simple cycles through it
is k > 1. It is possible to describe a sequence of transition occurrences that will bring k
tokens to this place. By lifting k — 1 of them, no cycle becomes token-free and there is
now a circuit through this place with a token count of 1. If this is repeated until there are

no places lying on cycles with a token count greater (or less) than 1, N is now both live
and safe. O

The preceding results highlight the deductive power which is available when dealing
with P- and T-nets. This power is due, in the main, to their simple structure, and it is
because this structure is often found to be too restrictive that the generalisation to Free
Choice nets was made. Despite this increased power and complexity, it is still possible to
determine some important results for Free Choice nets, as illustrated in the next section.
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O

Figure 4.3: A Net which is Deadlock-free but not Live

4.3.3 Results for Free Choice (FC) Nets

Several significant results have been determined for Free-Choice Nets, highlighting their
amenable nature and their importance as a class of Petri Net. Some of the results refer
to a weaker, easier to check, property than liveness, called deadlock-freedom. It must
be emphasised that care is needed to distinguish between the classical use of the word
“deadlock” (denoting non-live systems) and the specific term (introduced in section 3.3.3)
to describe a subset of transitions of a FC net, as both are used in this section.

Definition: A Petri Net N = (P,T,pre,post, Mp) is called deadlock-free iff for all M €
RN(Mp). 3t €T : M enables t. O

Liveness implies deadlock-freedom, by definition, but the converse is not true, as illus-
trated by the net of figure 4.3 which is deadlock-free, but not live. The following results
relate Deadlock-freedom and liveness for safe FC nets.

Theorem 36 Let N = (P, T,pre,post, My) be a safe FC net which is deadlock-free and
lett € T be such that V' € T : t' < t (i.e. t can be reached from all other transitions).
Then t ts live.

Proof: [3] The proof is by contradiction. Assume that ¢ is not live; there then exists a
marking M; € R(Mo) at which ¢ is dead, i.e. no successor marking of M, enables ¢.

Consider any p € P in *t; then, by the definition of a FC net, all t' € T in p* (not just
t itself) are dead at M;. But this implies that any token put on p after M, will stay there.

By safeness, if follows that the transitions in *p can occur at most once, i.e. there is a
marking M; € R(M,;) at which all transitions in *p are dead.

Since this holds for all p € *t (and since the net is finite), there is same Mg € R(M;)
at which all transitions in *(*t) are dead.

Repeating this argument shows that every transition in the set {t' € T' | ¢' < t} can be
made dead; but since, by assumption, the latter set equals T, this means that a deadlock
can be reached and the contradiction follows. O

Corollary 37 Let N = (P,T,pre,post,My) be a safe, strongly connected FC net. Then
N 13 lsve ¢ff N s deadlock-free.
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(T)\ T’

Figure 4.4: Illustrating the proof of Lemma 38

Characterisation of Liveness of FC Nets

The liveness of a Free Choice net may be characterised (i.e. both necessary and sufficient
conditions given) as shown in theorem 42 below; the following lemmata are required to
support the theorem. This is one of the most significant Petri Net analysis results, and is
due to Commoner and Hack (although this proof is from [47]).

Lemma 38 Let N = (P, T,pre,post, Mg) be a Free Choice net, and let T' C T. If (*T')e
may be enabled in R(Mo) then T' may be enabled in R(Mo) too.

Proof: [47] Let t; € T', p € P in *t; and t; € P+ \ T'. Since t; # t; it is the case that
p* # {t1} and p* # {tz}. By the definition of a Free Choice net, *t; = *t2 = {p}. t3 is
enabled iff p is marked, but in this case, ¢; is enabled, too. []

The following three lemmata refer to the set M which is defined to be the set of places
which carry no tokens in a given marking M (i.e. M = {p€ P | M, = 0}).

Lemma 39 Let N = (P,T,pre,post, M) be a Free Choice net, and let T' C T be a set
of transitions, none of which is enabled at any marking in R(Mg). Then there exists a
marking M € R(Mp) such that none of the transitions in *(*T' N M) is enabled by any
marking in R(M).

Proof: [47] Let M € R(M,) be a marking such that 3 a transition t € *(T' N M) which
fires to a marking M; and thereby marks a place p € *T' N M. Using Lemma 38, the
transitions firing from My to M; do not belong to (*T")*. Hence all places of *T' \ M
are marked under M too, and therefore, in *T, only the places of *T N My are unmarked.
Since p is marked under M, it is the case that *T'NM; C *T'NM C T'nM,.

By iterating this procedure (starting from M), it is possible to find in finitely many
steps a marking M’ such that *(*T' N M) may not be enabled in R(M'). Otherwise all
elements of *T' could be marked. OJ
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Figure 4.5: Illustrating the proof of Lemma 39

Lemma 40 Let N = (P, T, pre,post, Mo) be a Petri Net and let T' C T. If *(*T'NMo) C
T then either there exists a transition in T which has concession at M, or *T' N My i3 an
unmarked deadlock.

Proof: [47) Assume that no transition in T’ has concession at Mo. Let @ = *T'N My
and let t € *Q. By the hypothesis, t € T'. Since T' does not have concession at Mo,
ot Mo # @ and hence tNQ # @, that is, t € Q. Since this is true for each t € *Q it is
the case that *Q C Q* and *T’' N My, is a deadlock (and unmarked). O

Lemma 41 Let N = (P,T,pre,post, My) be a Free Choice net and let T' C T be a set
of transitions, none of which is enabled by any marking in R(Mo). Then there ezists a
marking M € R(M,) and a deadlock of N which is unmarked under M.

Proof: [47] By induction on |T \T'I.

lT \ T'l =1: Since T = T, trivially *(*T' N My) C T, where My denotes the set of
places unmarked under M. Using Lemma 40, *T' N My is an unmarked deadlock.

Induction Hypothesis: The proposition is true if |T \T' I = n. Now let IT \T' | =n+1.
Using Lemma 39, there exists a marking M € R(Mp) such that no transition *(*T' N M)
may be enabled in R(M). K ¢(*T'NM) C T the result follows using Lemma 40. Otherwise,
let t € *(*T' N M)\ T". Since T' U {t} may not be enabled in R(M) (Lemma 39) and
|T \(T' U{t})l = n, the induction hypothesis yields that there exists a marking M' € R(M)
such that some deadlock of N is unmarked under M'. In particular, M' € R(Mp). O

It is now possible to present the main result of this section;
Theorem 42 Let N = (P,T,pre,post, My) be a free choice net. If every nonempty dead-

lock of N contains a trap which is marked under the initial marking My of N then N 1s
live.

56




Figure 4.6: Illustrating the proof of Lemma 40

Proof: [21,47] If N is not live then there exists a marking M € R(Mp) and a nonempty
set of transitions which may not be enabled in R(M). Then, using Lemma 41 above, there
exists a marking M' € R(M) and a deadlock Q which is unmarked under M'. Theorem 11

states that Q may not become empty in R(Mp) if Q contains a trap which is marked under
M,. O

This result characterises the liveness of Free Choice nets in a manner which has proved
impossible for general Petri Nets, and represents one of the more significant Petri Net
Theory results yet achieved.

4.3.4 Liveness and Safeness under Net morphisms

Best has shown that the definition of morphism and bisimulation for Petri Nets preserves
liveness and safeness as shown in the following two theorems.

Theorem 43 Suppose that N = (P,T,pre,post, My) and N' = (P!, T',pre’,post', M) are
two Petri Nets and that there exists a bisimulation morphism (n,p) relating N and N'.
Then N is n-safe iff N' is n'-safe (for some n,n' € IN).

Proof: (3]

[=>] Assume that N is n-safe for some n € IN; hence the reachability class Ry of N will
be finite. It follows from this that

U s

MEeRy

is finite, since 8 is injective, and hence Ry is finite, since

Ry < Y0 |B(M)).

MeRy

Thus N’ is also safe.
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[¢=] Conversely, assume that N ! is n'-safe for some n' € IN. Then Ry is finite, and
hence Ry is also finite, because B! is surjective and thus IRNI < IR N'I' Thus N
is also safe.

a

Theorem 44 Let N = (P,T,pre,post,Mo) and N' = (P', T, pre ,post', My) be two Petri
Nets and suppose that there ezists a bisimulation morphism (n,): N — N'. Then N s
live iff V&' € n(T) : t' is live in N'.

Proof: [3]

[=>] Assume that N is live. Let M —*M] for w € (uT)* and let t' € n(uT). By

-1
the definition of Petri Net bisimulation, parts (1) and (2b), Mo "ty )*M1 where
M; = f~1(M}). Because N is live, there exists v € (uT)" such that

IM; € Ry(Mp) : My —>*M,

and t occurs in v. By (2a) and because § is injective, there are a sequence v' € (uT")"
(]

and a marking M} € Ry (M}) such that M] —— *M} and ¢' occurs in v'. Hence all

t' € n(uT) are live in N'.

[¢=] Assume that all ¢' € n(uT) are live in N'. Let My —*M; for v = vjvz ...V €
(uT)* and let t € uT'. By the definition of Petri Net bisimulation, parts (1) and (2a),
there exist wy, ..., wn : M) Y57 *M] and M; = ~1(M]). Since all t' € n(uT) are
live in N', there are a sequence w' € (uT)* and a marking M; € Ry:(Mp) such that

-1 !
M} —*M} and n(t) occurs in w'. By (2b), My Ly )*Mz for M, = f~1(Mj}) and
t occurs in n~!(w') by the definition of ™. Hence N is live.

a

These results complete the Petri Net analysis picture, by showing that bisimulation
morphisms of Petri Nets preserve dynamic behaviour at least as far as the important
safeness and liveness considerations, and give a tidy conclusion to this discussion of Petri
Net Theory.
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Chapter 5

Conclusion

This report has attempted to summarise and correlate as much as possible of the varying
research into the theory of Petri Nets, and to present the whole in a reasonably standard-
ised notation. An important objective was to preserve the power of multiset /composite
event notation, and to emphasise the ablility of nets to express truly concurrent events.
Despite its size, this report has neglected to consider many important areas of Net
Theory, and has abbreviated many others — notwithstanding these deficiencies, it is hoped
that the result is still a useful, detailed introduction to the field, and that the presentation
of selected proofs has adequately illustrated the depth and elegance of Petri Net Theory.
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Appendix A

Multisets and Multirelations

Multisets and multirelations are used and manipulated throughout this report, and as
these structures are defined in many different ways in the literature, the definitions used
in the body of the report are stated here; they are taken from [55].

A.1 Vectors and Operations on Vectors

A vector f over a set X is a function f : X — Z assigning an integer to each element of
X. Write f, for the z-component of f (the member of Z corresponding to z € X. Call vX
the space of vectors over X, and X its basis. Say that a vector is finite if all but finitely
many of its components are 0.

Useful operations and relations on vectors are induced pointwise by operations and
relations on integers. Letting f and g be vectors over the set X, define

(f+g)z = fz+9:
(f"g)z = fr—9z

to be the sum and difference of vectors, for z € X, and
f<g if VzeX. f:<yg,,

to be an ordering relation on vectors.
Define the projection II¥ : f — g of a vector f € vX to a vector g € uS, where S is a
subset of X, componentwise to be

(m¥ (f))’ =f, forallses.

Letting n € Z and f,g € vX, the scalar product nf is defined as (nf), = nf, for
z € X, and the inner (dot) product f - g is defined to be

f9=2 fs 9z

z€X

when the set {z € X | f; - g # 0} is finite, and undefined otherwise; finally, the vector
product (“intersection”) fMg is defined componentwise to be

(fP9)e=fz:9: Vze X
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A.2 Multisets

A multiset over a set X is a vector in which all of the components are nonnegative, i.e.
a function f:X — IN. Call pX the space of multisets over X, and X its basis. By
convention, subsets of X are identified with those multisets f € uX such that f; < 1 for
all z € X. The cardinality of a multiset f : X — IN is defined as

|f|=2fza

zeX

and represents the number of “members” of f, where members are weightings over X.
The vector operations of addition, subtraction, projection and scalar, inner and vector
product restrict to multisets, but for two multisets f and g, the difference f — g is defined
(i.e. is a multiset) iff g < f.
Some particular multisets are 0, the null multiset over any set X, which is defined as
the function 0 : z — 0 for all z € X, and %, the singleton multiset for each element z of
a set X, which is defined to be the function

5y 1 ifz=y
Y 0 otherwise

For convenience, a particular multiset f may sometimes be represented as a set con-
taining f, copies of each element z, so that for example f = {a,a,b,b,b} represents the
multiset over {a, b, c} with f, =2, f; =38, and f. =0.

A.3 Natural Numbers extended by oo

In order to manipulate the object oo, it is necessary to expand the ordering < and the
operations +, — and - defined on IN to IN® = IN U {oo} as follows:

Y¥nelN : n<oo,

VnelN® : co+n=n-+o00o=00
VnelN : co—-n=o0
VneIN®-{0} : corn=n-00=00

but 00:0=0:-00=0.

Define sums over IN®as follows: let {f; | { € I} be an indexed sum of IN®*. Say that
such an indexed sum is finite precisely in the case where each f; # oo, for ¢ € I, and the
set {t € I | f; # 0} is finite.

When {f; | § € I} is finite, define Y_,c; fi to be the usual sum and otherwise to be oo.

A.4 Matrices and Operations on Matrices

A ZZ-matrix from a set X to a set Y is a vector a : Y X X — Z which associates an integer
oy » With each pair (y,z) € Y x X. Write o : X —, Y to mean that « is a ZZ-matrix from
X to Y. As matrices are vectors, they inherit the aforementioned vector operations such
as sum, difference and products.
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Let f € vX be a vector over a set X, and let ¢ : X —, Y be a Z-matrix from X to
another set Y. Define the application of a to f to be the vector af € 1Y satisfying

(af)v = Z Qyz° fz

z€X

for all y € Y, provided each indexed sum of integers {ayz- fz |z € X } is finite; otherwise
take af to be undefined.

Let «: X —, Y and 8:Y —, Z be two matrices, over sets X,Y, and Z. Define their
composition o o : X —, Z to be the matrix given by

(ﬂ ° a):,z = Z ﬂs,y Oy,

yeY

for z € X, z € Z, provided each sum is defined; otherwise take the matrix composition to
be undefined.

The projection H?’; : @ — B which maps a matrix a : Y X X — Z to another matrix
B:Tx8S—17, where S € X and T C Y, is defined componentwise to be the vector
associating an integer fB;, = a,, with each pair (t,8) €T x S.

A.5 Multirelations

A multirelation from X to Y is a matrix a : X —, Y in which all entries a; ; are nonneg-
ative, ie. @:Y x X — IN. Write @: X —,Y to mean that o is a multirelation from X
toY.

By convention, the relations between a set X and a set Y are identified with those
multirelations § : X —, Y for which 6;, < 1,Vz € X,Vy € Y. Write zRy to denote that
z and y are in the relation R.

Before the restriction of matrix operations to multirelations may be examined, it is
necessary to extend multisets and multirelations to include oo.

A.6 oo-multisets and oco-multirelations

A co-multiset over a set X is a function f : X — IN®, which associates f,, a nonnegative
integer or oo, with each z € X. Let u®X denote the space of co-multisets over X.

A oco-multirelation from a set X to a set Y is a matrix a:Y x X —» IN®. Write
a:X —PY tomean ais a co-multirelation from X to Y.

A.7 Operations on Multirelations

Matrix projection restricts directly to multirelations, but the application and composition
operations must be altered slightly to avoid infinite sums.
Let f € p®X, and let a: X = Y. Define the application of a to f to be the vector

af € u®Y satisfying
(af),, = Z ayz- [z,
. zeX
where the sums may be infinite.
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Let a: X »3Y and f:Y -7 2 be two oo-multirelations over sets X,Y, and Z.
Define their composmon Boa:X —»°° Z to be the matrix given by

(Boa)ez = Z Bey 0z »

yeY

where again the sums may be infinite.
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Appendix B
Partially Ordered Sets

The section (3.2) on Occurrence nets makes considerable use of several significant results
relating to partially ordered sets, the details and selected proofs of which appear here.
They are taken in the main from [8,9,47].

B.1 Definitions

A partially-ordered set (abbreviated poset) is a structure (X, <) consisting of a set X
together with an irreflexive, transitive (and hence antisymmetric) ordering relation < over

X.
The ordering relation < may be associated with the relations <X, >, > and < which

are defined as follows:

zXy & (z<y) and (z=y),
>y & Ty,
& (z>y) and (z=y), and
<

(z<y) and Az: z<z<y.

zxy
<Y

for elements z,y € X.

For a poset (X, <) with elements z,y € X, the relationship z< y may be represented
graphically by a directed arc z — y, while z < y (but not necessarily z< y) may be
represented as z ~ y.

Example: The illustration of figure B.1 shows a poset (X, <) where X = {a,b,c,d,e¢, f}
and the < relation is defined so that

a =< {becdef} b < {ed,f}
c <{d,f} d <@
e <{f} f <9

a

An element u of a poset S is said to be an upper bound for a subset AC S ifz < u
for all z € A. The element u is a least upper bound for A if it is an upper bound and
u < v for each upper bound v of A, and hence least upper bounds are unique.

A poset (X, <) is called dense iff the relation < is empty (i.e. < = @), meaning that
for all z,y € X such that z < y there always exists a z € X such that z < z < y. An
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e —f

Figure B.1: A partially ordered set

example of a dense poset is (IR, <), the real numbers together with the usual “less than”
ordering relation on IR..

A poset {X,<) is called combinatorial iff the relation < is the transitive closure of
< (i.e. < = (=)%), meaning that for any z,y € X with z < y there is a finite subset
{z1,23,...2n} € X such that

T=21< X< +0- =< Tn =Y.

The integers determine a combinatorial poset (Z, <), since between any finite integers z
and y with z < y there is a finite ascending sequence of y — = integers.

B.2 Lines and Cuts of Posets

Let (X, <) be a partially ordered set. The relations li and co over X are defined as
follows;

liCXxX isgivenby alibiff (a<b)or (b=<a)or(a=0b)
co CXxX isgivenby acobiff —(alid)or (a=0d)
(i.e. acobiff —(a<borb=<a)).

Thus, if (X, <) is a poset with z,y € X then either z li y or z co y, and if both z liy
and z co y then z = y.

Example: The li and co relations corresponding to the poset of figure B.1 are illustrated
in figure B.2, where a line £ — y between elements z and y of the poset indicates that
z and y are in the appropriate ( li or co ) relation. []

A subset Y C X, where (X, <) is a poset, is called a region of a relation p C X X X
iff
Vz,yeY. zpy [pis full onY], and
VzeX. z@Y =>3yeY. ~(zpy) [Yisa maximalsubset on whichpis full].

Let (X, <) be a poset, and let Y C X. Then Y is called a lineiff Y is a region of li,
and Y is called a cut iff Y is a region of co . The set of lines of a poset (X, <) is denoted
L{X, <), and the set of cuts is denoted C(X, <). Where (X, <) is understood, L and C
suffice.

Example: In the poset of figure B.1, the lines are {a, b, ¢, d},{q, b, ¢, f} and {a, ¢, f},
while the cuts are {e, b},{e, c},{e, d}, and {d, f}. O
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Figure B.2: The li and co relations

Proposition 45 Let (X, <) be a poset, and letY C X. ThenY 1s a line iff

(a) Vz,y€Y. (z<y)V(y<2z)V(z=y) and
(b)) Vze X\Y.JyeY with ~(z <yVy<z),

andY 18 a cut iff

(a) Vz,y€Y. —(z<yVy=<z)and
() Vze X\Y.3yeY withz<yory<z. U

B.3 Discreteness Properties of a Poset

Although the definition of a combinatorial poset (X, <) essentially implies that the el-
ements of X are discrete, there is more than one intensity of “discrete”, as described
below.

Definition: A poset (X, <) is called weakly-discrete iff
Vz,ye X. Vl € L(X,<). l[z,y] ﬁll elN ,
where [z,y] ={z€ X |z 22Xy} O

Thus, if there are no infinite chains between elements in any line of a poset then it
is weakly discrete. It is also clear that weakly-discrete implies combinatorial. The poset
of figure B.1 is clearly both combinatorial and weakly discrete, while that of figure B.3 is
combinatorial but not weakly-discrete, thus showing that the reverse implication does not
hold in general.

If, in addition to being finite, chains are all required to have bounded length, the notion
of bounded-discreteness is arrived at.

Definition: A poset (X, <) is called boundedly-discrete (abbreviated b-discrete) iff
Vz,yeX. IneN : Ve L. |[z,y]nl|<n.
a

Lemma 46 If a poset (X, <) is b-discrete then it 18 also weakly-discrete.
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Figure B.3: A poset which is not weakly-discrete

Proof: Obvious, from the definitions of b-discrete and weakly-discrete. [

B-discreteness is closely related to the concept of observability as defined in [53], viz.
An observer f of (X, <) is a function f : X — Z such that

Vz,y€ X. z < y=> f(z) < f(y)-
If such an observer exists, (X, <) is said to be observable.

Theorem 47 If a poset (X, <) is observable then it is boundedly discrete. If X is countable
and (X, <) is boundedly discrete then (X, <) is observable.

Proof: See [53]. O

Although the poset of figure B.4 is both weakly and boundedly discrete, the lines going
through z are unbounded (in length). The concept of discreteness with respect to a cut
restricts such situations.

Definition: Let (X, <) be a poset and let ¢ € C(X, <). Say that (X, <) is discrete with
respect to c iff

Ve X. 3neN. Vle L. |[c,x]ﬂl|§nand|[z,c]ﬁl|_<_n,
where

[e,z] = {z€X|3y€c.yz2z=z}
[z,c] = {zeX|Iyecc. 22y}

O

Discreteness with respect to a cut is a stronger property than b-discreteness, as indi-
cated by:

Theorem 48 If there exists a cut c of a poset (X, <) such that (X, <) is discrete w.r.t. c
then (X, <) 1s also boundedly discrete.
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Figure B.4: A Weakly and Boundedly-Discrete Poset

Proof: [9] Let z,y € X. It must be shown that there exists n € IN such that for all
le L. | [z,y] N1 | < n. If z co y then the result follows from choosing n = 0. Without loss
of generality, assume z < y and consider the following 3 cases.

1. [z € c. z < z]. In this case [z,y] C [c,y] and thus VI € L. ([z,y] 1) € ([e,y] N 1),
but since (X, <) is discrete w.r.t. ¢, In € IN such that for alll € L,

|alnt] < [leslnt] < »

giving the required result.
2. [3z € c. y < 2]. In this case [z,y] C [2,c] and the result follows similarly to case 1.
3. [321,22 € ¢ : T < 21 A z3 < y]. In this case, [z,y] C [z,¢]Uc,y] and then VI € L.

[z,9]n1 € ([z,cule,)nl = (=cnl)u(le,y]nl) (B.1)

and since {X, <) is discrete w.r.t. c, there exist n;,nz € IN such that I [z, c]Ni | <n
and I [e, ] ﬁl| < ng. From ( B.1) it follows that In € IN with n = n; +n; such that

|lz,y]ni| <n. Ve,

and the result again follows.

a

There thus exists the following hierarchy of discreteness properties;

Discrete Boundedly Weakly

w.r.t. a cut Discrete Discrete —3 Combinatorial

where the implications are, in general, not reversible (see [9,53]).
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B.4 Density Properties of a Poset

Clearly from the definitions of dense and combinatorial posets in section B.1 of this ap-
pendix, a dense poset cannot be combinatorial, and vice versa. The following introduces
two notions of density due to by Petri [43] which do apply to combinatorial posets.

The first of these density notions, called N-density, intuitively means that in an N-
shaped diagram like that of figure B.5(a) there must exist a point z between z and y as
shown in figure B.5(b).

More formally:
Definition: A poset (X, <) is called N-dense iff for all z,y,2',y' € X with
z<yAz<z Ay <yA (zcoy cor' coy)
there exists z € X such that
z<2<y A (2 cozcoy)
O

The second density property is called K-density (from German “Kombinatorisch”),
which postulates that every element of a line must be in a definitive cut.

Definition: A poset (X, <) is K-dense iff
Ve € C(X,<). Yl € L{X,<). enl#@.
O

Note that since |cﬁ l| <1, ¢cnl# @ implies that |cr1 ll = 1 for all cuts ¢ and lines .
The two forms of density are related by the following result.

Theorem 49 If a poset (X, <) is K-dense then it is also N-dense.
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Proof: [9] Letting z,y,z',y' € X such that
z<yAz<2 Ay <y A (zcoy coz coy)
it is required to show that 3z € X such that
z<z=<y A (f cozcoy).

Let ¢ € C be such that {z',y'} C ¢ and let | € L be such that {z,y} C I. Since (X, <)
is K-dense, there exists z € X such that I N¢ = {z} and since 2, ', €cand c€ C it
follows that z' co z co y'.

It remains to show that z < z < y, where z,y,z € l. Now if z X z then 2 < z' which
leads to a contradiction, since z co z', and hence z < z. Finally, if 2 > y theny <y =<z
which also gives a contradiction, since y' co z, and hence z < y, giving the result that

JzeX. z<z<y A (¢ cozcoy),
and (X, <) is N-dense as required. [

The reverse implication is not, in general, true.
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Appendix C

Vector Addition Systems

The original definition of Vector Addition Systems (VAS) was due to Karp and Miller (30],
and that presented here is essentially the same as theirs, but was taken from [20]. VAS
are equivalent to the dynamic behaviour of pure (self-loop free) Petri Nets. The pureness
restriction is removed in the related model of Vector Replacement Systems (VRS) which
has been used by several authors, but which will not be considered here.

Definition: An r-dimensional Vector Addition System is a pair W = (g,W) where g is
an r-dimensional vector over the nonnegative integers (¢ € IN) and W is a finite set of
r-dimensional integer vectors (W C Z"). The reachability set Ry of W is the set of all
vectors of the form

g+w+ w2t ...+ wy

such that Vi < n,

i
w; €W and q+§:w,-20.
i=1

O

The relationship between a VAS W and its corresponding Petri Net N is obvious if ¢
is viewed as being the initial marking and w; represent the effect of transition ¢ on a given
(current) marking of the net. Thus Ry is precisely the set of reachable markings of the
Petri Net N (ie. Rw = Ry = {M | My ~* M} ), and the reachability problem may
be examined for VAS without requiring the extra machinery present in the definition of a
Petri Net.

Example: The confused Petri Net of figure 2.11 has an identical reachability class to that
of the VAS given by W = (q,W) where ¢,w; € 1{1,...,5} and ¢ is the vector mapping
only 1, 4, and 5 to 1, denoted

O bt O O =
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and W = {w;, w2, w3} where

w = and wg =

O O O O = =

| ] | 0

The isomorphism from the net to the VAS W maps each place p; to the coordinate 1 in

{,...,5}. 0

Vector Addition Systems formed the basis of most early attempts at solutions to the
Petri Net reachability problem, but it was found that extensions to the basic VAS model
were useful, and these involved the notion of a semilinear set.

Definition: A semilinear set SLS = Ly U Ly -+ Ly, is a finite union of linear sets L;, for
1< ¢ < n, where a set L C IN" is called linear iff 3c,ps,...,Pm € IN™ such that

m
L=L(c;p1y..,Pm) = {c+2x,-p,- | z1,...,2m € IN}.
i=1

A set is said to be effectively semilinear if a semilinear representation of the set may be
computed effectively. (I

Solutions to the Reachability Problem for VAS (and Petri Nets) make use of exten-
sions of the basic VAS model called Vector Addition Systems with States (VASS) and
Generalised Vector Addition Systems with States (GVASS), which are described in the
sequel.

Intuitively, a VASS may be viewed as the combination of a VAS and a finite automaton,
or alternatively, as a finite directed graph whose edges are labelled by vectors of integers
and with one initial and one final node. Each configuration of a VASS comprises a pair
(¢,z) where g is the name of the state and z is a vector of the underlying VAS.

A step ¢ —> (gi+1,t) of a VASS leads from a configuration (g;, z;) to a configuration
(¢i+1,zi+1) if an arc labelled by a vector ¢ goes from states ¢; to g;+1 of the automaton,
and z;41 = 75 + t.

Define I4(z,...,2n) = (%i,,...,%i,) to be the projection on a subset A of the co-
ordinates, where A = {i1,...,5x} C {1,...,n} with §; < §3 < ... < 4, and with
Ma(X) = {(Na(z) | z€ X} and 14 =115, n}-a4-

Sequences of steps of a VASS define r-paths (with vectors z; € Z"), R-paths (with
vectors z; € IN™) and SR-paths (if ILs(z;) > 0, for vectors z;) with respect to some subset
A of the coordinates

Definition: The Reachability Problem for a VASS is to decide whether there exists an
R-path 7 of the VASS such that (snit, z) 5 (fin,y). The Reachability Set for a VASS is

Rigs) = {(d9) | 3r: (a,2) 5 (¢, )}
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As shown by Hopcroft and Pansiot [25], the VAS and VASS constructions are equivalent
in the sense that an n-dimensional VASS can be simulated by an n + 3-dimensional VAS,
and that the reachability problem for VASS is thus equivalent to that for VAS.

Kosaraju, in constructing the first (accepted) complete decision procedure for the
reachability problem, extended the VASS formalism to what he called Generalised Vector
Addition Systems with States, or GVASS.

Definition: A GVASS is a finite chain of VASS G; linked by edges from G to Giqa.
The G; are also subjoined by (“constraint”) vectors V; and V! which express the fact that
no information is known about the behaviour of some components between the G (i.e.
“don’t care” values), and by sets R; of rigid coordinates (which remain invariant between
G;) which satisfy the conditions

.t eZ,

. Vi, V! € (IN®)",

. 8 = {5 | ;(V5) # oo},

. 8= {4 | ;(Vj) # oo},

. R; C 8;n S}, and

. Vt € G;. HR'.(t) =0.

LR

O

Although this construction appears to be more complex than both the VAS and VASS,
it is simpler in one important sense, related to the ease with which paths in the GVASS
may be analysed.

Definition: A cr-path p of a GVASS is a composition of r-paths p; in the underlying
VASSs G; and connecting edges which satisfies the constraints

p: (a1, 21) B (ghv1)  (a2,22) - (g0,2) B (g ) (givn,mia) - (0 we)
such that z;,y; > 0 and
Is,(z:) = Mg, (Vi) and Iigi(w) = Mgr(V5).
a
A CR-path p is a cr-path which is an R-path from (g1,%1) to (i, ¥s)-

Definition: The Reachability Problem for GVASS is to decide whether there exists any
CR-path from the initial node to a particular node (g;,y,). O

As indicated in the body of this report (Chapter 4), Kosaraju also presented a decision

procedure for determining the existence of such a CP-path, thus effectively solving the
Petri Net Reachability Problem.
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