Technical Report T e

Number 14

Computer Laboratory

Store to store swapping

for TSO under OS/MVT

J.S. Powers

June 1980

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1980].S. Powers

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

SUMMARY

A system of store-to-store swapping incorporated into TSC on the Cambridge
IBM 370/165 is described. Unoccupied store in the dynamic area is used as
the first stage of a two-stage backing store for swapping time-sharing
sessions; a fixed-head disc provides the second stage. The performance and
costs of the system are evaluated.

CONTENTS

1. Introduction 1
2. Background 4
3. Store-to-store swapping
3.1 An overview 6
3.2 Swap buffers 6
3.3 Swapping, preswapping and migration 7
3.4 The granule manager 10
3.5 The store manager 12
3.6 The driver 12
4, Performance
4.1 Preliminary 15
4.2 Measures of load 15
L.3 Measures of response 18
4.4 Observed performance 19
4.5 Costs of store-—to-store swapping 22
5. Conclusion 26
Appendix A: Glossary 27
FIGURES
1. TJBs, SGEs and granules 9
2. observed performence during an eight-minute period 21
3. path flow for change of state of sessions 23

L, distribution of execution times of transactions 25

1. INTRODUCTION

When the IBM 370/165 was installed in January 1972 the Computing Service
planned to provide time-sharing facilities based on the locally produced
Phoenix command language; the hope was that IBM's Time-Sharing Option
(TSO) would provide adequate support for Phoenix in the way of software
for swapping, session management and so forth. Experience soon curbed this
optimism. The first time-sharing service, supporting a maximum of eight
simultaneous sessions, was introduced in January 1973. After the
installation of a second megabyte of memory and a 2305~I11 fixed-head disc
with its own block multiplexor channel, up to 34 simultaneocus sessions
were supported. By September 1975 the 1limit had been raised to 64
simultaneous sessions; this was made possible by local changes to
software, including major replacements for the IBM mechanisms for disc
space management and dynamic allocation. (Technical Reports 3 and 4
describe this new software.) At this point the addressing limit of the
communications hardware had been reached, and it was only the introduction
of local communications software at the end of 1975 that made it possible
to circumvent this limit. (This software is described in Technical Report
5.) In December 1975 the maximum was raised to 80 sessions. A year later,
after the installation of a third megabyte of memory and in response to
greater demand, the session limit was raised to 90.

There now seemed to be little hope of providing for further growth
merely by improving the efficiency of software components; quite simply,
the cost of swapping sessions in and out of store already led to
frustratingly bad response times when the number of simultaneous sessions
was near the 1limit. Yet there was a need for the session limit to be raised
further.

The absence of any kind of mapped or virtual memory in the 370/165
imposes the chief limitation on the performance of the swapping system. As
a result of this architectural feature, every data structure or program is
bound to the position in memory in which it is first created or loaded.
This implies that a time-sharing session must throughout its life execute
in that region in which it is established at logon. Hence the store for
sessions must be allocated in one or more fixed regions. The Computing
Service currently allows five such time-sharing user regions. In effect,
from the point of view of swapping and related contention the time-sharing
system is equivalent to five single-region machines.

Increasing the number of time-sharing user regions would reduce the
number of sessions competing for each region and increase the multi-
programming level for time-sharing. Unfortunately the small number (16) of
storage protection keys available on a 370/165 imposes a limitation. Each
time-sharing user region must have its own protection key, and under
present conditicns on the Cambridge 370/165 only five keys can be spared.

The major disadvantage of the fixed region organisation is that time
spent in swapping is time lost from the use of the region. One would like
to keep a pool of sessions ready to run, and have the swapping I1/0 proceed
as a parallel activity. The use of fixed regions makes this impossible;

from the start of a swap-out for a given region up to the completion of the
next swap-in, the region is unaveilable for useful work and the multi-
programming capacity of TSO is thereby reduced. This need not be a great
embarrassment if the amount of time spent in swapping is very small.
However measurements have shown that the swap time is significant.

At this point two definitions are in order. The term 'swap time' is used
to denote the time spent in swapping a session one way, either out or in;
it is measured from when the session is queued for the swap up to when the
swap is complete. The time a session spends in a region between swap-in and
swap-out 1s called the 'residence time'.

The swapping device on the 370/165 is a 2305-II fixed-head disec.
Measurements made under TSO before the introduction of store-to-store
swapping, when all swapping was onto the fixed-head disc, showed that the
mean swap time was 30 msec. Hence the swap time for a change of session in
a region was on average 60 msec.

The mean residence time on the former system used to be about 600 msec;
under the current system, with store-to-store swapping, the mean is
smaller, becoming as low as 300 msec at busy times. However even this value
is larger than might be expected. Three factors contributing to the size
of this mean are common to the current and former systems. First there is
the effect of multi-programming; for part of a period of residence in its
region a session does nothing. Second, while any disc input or output is in
progress for a session, the session must stay in its region; this feature
of the IBM software would be very difficult to change within the
constraints of the real-memory architecture of the 370/165. Finally, the
distribution of residence times is highly skewed and the mean is far
greater than the median. The distribution is related to that for
transactions illustrated in Figure 4.

The mean swap time, then, used to be about 10% of mean residence time.
More significant was the relationship that swap time bore to transaction
time. A transaction is here taken to be the career of a session from its
becoming ready to run after waiting for terminal input or output up to its
next return to a wait state for terminal I/0. By the execution time of a
transaction we shall mean the sum of the cpu time and disc I/0 time used by
the transaction. It turns out that about 60% of transactions have
execution times less than 60 msec. Furthermore some transactions, even
short ones, have more than one period of residence and so involve more than
one swap cycle. The current mean is about 1.75 swap cycles per transaction;
formerly the value was somewhat lower, though it was still greater than 1.
Hence formerly over 60% of transactions had execution times shorter than
the time they spent in swapping.

The restricted amount of space on the fixed-head disc presented another
obstacle to the raising of the session limit. Up to 89 sessions could be
held in the swap file on the fixed-head disc; beyond this number, sessions
were swapped onto a back-up swap file on a 3330 moving-head disc. On
occasions when the fixed-head disc was broken and all swapping was onto a
moving-head disc, mean one-way swap times were measured at 80 to 100 msec.
In addition to the swap file the fixed-head disc holds some HASP and OS
overlays and other system components; the swap file could not be extended

without detriment to other parts of the system. Hence performance would
deteriorate at a higher rate than hitherto if the number of simultaneous
sessions rose above 90.

Clearly there was scope for improvement. However this was unlikely to
come from changes in hardware. Neither the fixed-head disc nor its channel
were overloaded, and the transfer time for disc swaps could not have been
cut substantially. Furthermore the cost of additional hardware was
prohibitive. The solution lay elsewhere.

There 1s a further 1important consequence of the real-memory
architecture of the 370/165, namely the inefficiency of the use of store
in the dynamic area (the area of store in which offline jobs run). Offline
jobs are not swapped, nor can they be moved around in store during
execution; the result is storage fragmentation. Formerly quite large
contiguous blocks of store remained unused for periods of 10 seconds and
more; the total amount of store unused at any one time could exceed
1 Mbyte. This was inevitable given the high level of multi-programming and
the heterogeneous and unpredictable job mix supported on the Cambridge
370/165. Thus for much of the time there was unused store sufficient to
hold many time-sharing sessions (the mean session size was, and still is,
about 22 Kbytes). Furthermore this unused store consisted of blocks long-
lived by comparison with the swapping rate (currently about ten swaps-out
a second across all regions for heavy loads).

It was realised that this store could be used for the first stage of
swapping, constituting as it were the middle level of a three-level
storage hierarchy. A store-to-store move is a relatively fast operation:
to move 22 Kbytes within the main memory of the 370/165 takes about
2.5 msec, in contrast with the mean swap time between store and disc of
30 msec. In such a system, as many as possible of the swaps to and from
regions should be from and to store, that is, should be store-to-store
swaps. Some swapped sessions would have to migrate to disc; these could be
brought back into store in anticipation of swaps into their regions.

In 1978 the memory of the 370/165 was expanded to 4 Mbytes and a speed-
up feature was installed which gave an increase in cpu speed of up to 209%.
With the additional capacity now availsble, a store-to-store swapping
system was implemented at Cambridge at the beginning of 1979. The rest of
this document describes the system and evaluates its effectiveness.
Section 2 gives some background information on system software before the
introduction of store-to-store swapping.

Some notes on terminology are included here; a glossary will be found
in Appendix A. To each user logged onto the system there corresponds an
active session; a ready session (at a given moment) is an active session
which is ready to execute or is executing, that is, a session which is not
in a wait state. To observe the distinction between task and routine on all
occasions would lead to prolixity; where no confusion might result the
distinetion is blurred. The verb 'migrate' is sometimes treated in this
document as transitive in the active voice; the excuse is that here it is
jargon.

2. BACKGROUND

Early versions of OS/MVT had no time-sharing facilities. TSO was added
later, and so is not an integral part of the operating system but rather,
like HASP, a permanently running job with a complex task structure. To TS0
belong the time-sharing user regions (currently five of them) and the
time-sharing control region, which contains most of TSO's routines and

resident data structures.
The top level of control of TSC is vested in the time-sharing control
task. The main job of this task is to handle swapping activity; the routine

used for this will be called the swapper in this document. The time-
sharing control task's other activities are not relevant to this
discussion. The time-sharing control task begets region control tasks, one
for each time-sharing user region, the Parrot task and the TSO STOP/MODIFY
task; these last two will not be discussed further. The subtasks of a
region control task belong to a session and are subject to swapping - the
task-related data structures lie inside the swapped region. A region
control task manages the disconnection of a session from the system
environment prior to a swap-out, and the reconnection of the session after
a swap-in.

The swapper routine handles the actual swapping of sessions; the
scheduling of swaps is managed elsewhere, in the time-sharing driver, here
called the driver for short. The driver is a routine not running under a
specific task but rather entered via an SVC known as TSEVENT. (In fact the
driver is frequently called from system routines by a simple branch rather
than by an SVC call; this is commonly the case for other SVCs also.)
Diverse parts of MVT and TSO use TSEVENT to signal significant events,
such as WAITs and POSTs of session tasks, stages in swapping and terminal
input/output, and so on. This embedding of TSEVENT calls constitutes the
large part of MVT's knowledge of TSO. The driver maintains a private set of
data structures describing sessions, regions and swap scheduling queues;
indeed the driver 1s remarkable among MVT and TSO system modules for its
narrow and well-defined interface with the rest of the system. On each
TSEVENT call the driver inspects and modifies its data structures as
appropriate. If necessary it initiates swapping activity by setting values
in a small communications area called the time-sharing interface area;
subsequently the MVT dispatcher inspects the time-sharing interface area
and POSTs the time-sharing control task and the region control tasks as
required. We can in fact regard the driver as performing the POSTs
directly; the direct route is avoided in practice only because POST itself
calls the driver, and to have the POST routine sort out the matter itself
would be to introduce complexity and thereby inefficiency into a central
part of the system.

The central data structure in TSC is the time-sharing communication
vector table (TSCVT), resident in the time-sharing control region. Many
other data structures and chains are pointed to by the TSCVT, in
particular the time-sharing job blocks (TJB), also resident in the time-
sharing control region and therefore not swapped. The TJB is the basic

data structure describing a session; there are as many TJBs as there may be
simultaneously logged-on users.

The allocation of regions in the dynamic area is in the hands of the
store manager, an important Cambridge extension of OS/MVT comprising a
separate system task and some SVC routines. Changes to the store manager
were necessary for the introduction of store-to-store swapping.

Let us now consider the sequence of operations involved in swapping. A
session, we may suppose, is resident in one of the time-sharing user
regions. A critical event occurs relating to that region, TSEVENT is called
with appropriate parameters and the driver is entered. The event may be
for example the resident session's going into a terminal I/0 wait, the
expiration of the session's time-slice or the end of a wait condition for
some other swapped-out session belonging to the region. The driver adjusts
its data structures and, we will suppose, makes the decision to swap the
session out. In the case of another session's becoming ready after a wait,
various conditions determine whether the resident session is swapped
forthwith. The driver signals the swap by setting a flag in the part of the
time-sharing interface area appertaining to the region. Some time after
the driver has exited, the 0S dispatcher recognises the flag in the time-
sharing interface area and POSTs the relevant region control task. The
region control task disconnects the session from the O0S environment,
unlinking its data structures from the 0S chains, and in turn POSTs the
time-sharing control task with appropriate parameters. As the request is
for a swap the time-sharing control task enters the swapper, which then
handles the business of actually swapping the session out. The region
control task and the swapper keep the driver informed of progress with a
series of TSEVENTs. On receiving the 'swap-out complete' TSEVENT, the
driver selects a session to swap into the region and again signals its
decision through the time-sharing interface area. On this occasion the
time-sharing control task is POSTed first; the swapper sees to it that the
session is swapped in and POSTs the region control task, which in turn
reconnects the session and TSEVENTs the driver. It is then up to the driver
to set up the session's residence time-slice and allocate its share of the
total time-sharing processing time.

Note that swapping is scheduled by individual region, although there
may be interference between regions in queueing for the single fixed-head
disc; the analogy of five logical machines is applicable. The driver takes
the regions together only when allocating slices of processing time to the
currently resident sessions.

3. STORE-TO-STORE SWAPPING

3.1. An overview

Figure 3 may be found helpful in this and the following subsections; the
percentages marked on the Figure will not be used until section 4.

The aim of the store-to-store swapping system is to ensure that as many
as possible of swaps to and from time-sharing user regions should be from
and to store. The term 'swap' is used in the rest of this document to refer
to the move of a session to or from its time-sharing user region, either
between region and store or between region and disc. When a session is to
be swapped out, the swapper tries to acquire a swap buffer of sufficient
size, consisting of one or more blocks from the dynamiec area. If the
attempt is successful the session is moved to the swap buffer, otherwise
it is swapped directly to disc.

Usually the store available for swap buffers is insufficient to hold
all active sessions; in addition the store manager may wish to claim for
another purpose store occupied by swap buffers. For either reason sessions
may migrate from their swap buffers to disec.

For each region the driver attempts to predict which ready session will
be the next to be swapped in. Whenever such a prediction can be made, the
system tries to ensure that the chosen session is in store in readiness. If
the last move of the session was a swap-out to store it will still be in a
swap buffer. If, however, the session is on disc, the system must acquire a
swap buffer and transfer the session from the disc to the buffer. In either
case the system is said to preswap the session; a preswapped session
cannot be migrated.

When a session is to be swapped in it is simply transferred from disc
or swap buffer as appropriate.

3.2. Swap buffers

When the driver demands a swap-out or a preswap for a session on disec, the
swapper must first try to get a swap buffer. This is done by a call to the
granule manager, a part of the swapper responsible for the management of
swap buffers.

A swap buffer consists of one or more granules; a granule is a block of
store in the dynamic area starting on a 2 Kbyte boundary and a multiple of
2 Kbytes in extent. In the implementation active at the time of writing,
the granules are all of a fixed size, but the external interfaces of the
granule manager do not assume that this is so. The granule size must be
chosen with care: if larger granules are used fewer are needed and the
overheads are lower; on the other hand a small size reduces the wastage of
store both inside and outside granules. When a session is swapped out only
those parts of the time-sharing user region which the session is using are
moved. Hence the swap sizes of different sessions, and of a single session
at different times, vary considerably. The distribution of swap sizes is

uneven: certain sizes, for example the size common when a session is
running the Phoenix command program alone, occur more frequently than
others. As a result the relationship between granule size and efficiency
in the use of store is not linear; in fact it is not monotonic. Experiments
have shown that both 14 Kbytes and 26 Kbytes are good choices; the former
is marginally more efficient in use of store, whereas housekeeping for the
latter size is considerably cheaper. In the current implementation the
granule size is 26 Kbytes.

Granules are not permanently allocated; the number and positions of
granules change as more or less store becomes available and is needed by
the swapper.

Each granule owned by the swapper has an associated data structure, a
swap granule element (SGE). The SGE contains the address and size of its
granule, three link fields and miscellaneous flags and data. The active
SGEs are held on a two-way chain ordered by the addresses of their
associated granules. This SGE chain is the only description of allocated
granules held by the system, and therefore is used by the store manager as
well as by the swapper; the two-way chaining is entirely for the benefit of
the store manager. There is a pool of SGEs in the time-sharing control
region; more can be obtained dynamically. Figure 1 illustrates the
chaining of SGEs.

A swapper routine requests a swap buffer of a certain size by a call to
the granule manager. If the store is available, the granule manager returns
one or more granules with their SGEs chained through the third link field.
The chain is then attached to the TJB of the session in question. In
practice the swap buffer will seldom contain more than two granules, and
will frequently consist of just one.

3.3. Swapping, preswapping and migration

A session may be in one of four states:

in a region

swapped out to store, in a swap buffer
preswapped, in a swap buffer

on disc

=W

Possible transitions between these states are:

A: 1to 2 swap out to store

B: Tto 4 swapout to disc

C: 2to & migrate

D: 2to 3 preswap in store

E: 4 to 3 preswap from disc

F: 2to 1 swap in from store

G: 3to 1 swap in from store, from preswapped state
H: Lto 1 swap in from disc

The letters are references to Figure 3.

When a session is to be swapped out, it is swapped to store if a swap
buffer is available. A session in state 2 is held on one of two queues, the
keep chain or the don't-keep chain; the former is for sessions with at

least one task ready to run at the time of swap-out, the latter is for the
rest. When a session is swapped out to store its TJB is placed at the head
of the appropriate queue. A swap to disc occurs only if there is no swap
buffer available.

A swap-in may be from disc or from store; in the latter case the swap
buffer is released to the granule manager when the move is complete.

Preswaps are used to ensure that as often as possible a session is in
store ready to be swapped into the region. The driver calls for preswaps on
the basis of its predictions and without regard to whether sessions are in
store or on disc. A session in store is removed from the keep chain or the
don't-keep chain and its TJB flagged as preswapped. A session on disc is
transferred into store if a swap buffer is available and flagged
preswapped; the preswap attempt fails if there is no buffer. A preswapped
session 1is expected to move into 1its region in the near future, s0
migration from preswapped state is forbidden. There may be more than one
session preswapped for a given region at one time. For example an
interactive session may become ready after a compute-bound session has
been preswapped; as the interactive session has priority the driver will
revise its prediction of the next session to run and call for the
interactive session to be preswapped as well.

The causes of migration are discussed below. It is important at this
point to note that migration goes on as it were in the background. The
driver, which alone initiates preswaps and swaps-out and -in, is not aware
of migrations. Hence the driver may well request a swap-in or a preswap for
a session which is in the process of migrating. The session's swap buffer
is surrendered only when the migration is complete, and until that point
the swapper can preswap the session, or swap it into its region, without
waiting on the migration. The session may just be queued for the disec
transfer, in which case the migration is simply cancelled. If however the
disc transfer is in progress it is left to finish disassociated from the
session; on the transfer's completion the space in the swap file is
immediately released. Thus it is possible for a session to be executing in
a region while it is still nominally migrating to disc.

When a session is to be transferred between store and disc its TJB is
put on the transfer queue. Requests are serviced in the order in which they
are queued. The position of a new request on the queue depends on the
transition involved: a swap~in from disc has the highest priority, while a
migration from the keep chain has the lowest. In practice long transfer
queues are rare. The only occasion on which there are likely to be many
queued requests is when the store manager demands a section of the dynamic
area which contains granules belonging to several different sessions.

Before the introduction of store-to-store swapping the swapper did not
use a transfer queue. Without migration and preswapping the maximum number
of simultaneous requests for disc transfers was equal to the number of
time-sharing user regions; the swapper could provide duplicate data
structures and have all the requests active at the same time. With
migration and preswapping the number of outstanding requests may in
principle be much higher, and a queueing mechanism becomes essential.

Figure 1: TJBs, SGEs and granules.

don't-keep SGEs
keep chain on SGE chain granutes
chain ' ~ in the
' v TJBs A dynamic area
vV \ 1

N] T\% c
// Y \
\
e
r -
-~ , .
z = T ~~—
A
&’ —t” \
e _
{ | \\
! AN
{ \-————f”—-d !] ‘
v ARV

—~__

Examples:

TJB X is on don't-keep chain and has granutes a and ¢ in its swap buffer

TJB Y is on keep chain and has granute b in its swap buffer

9

3.4. The granule manager

The granule manager is a set of subroutines in the swapper. Other routines
of the swapper call the appropriate granule manager routines in order to
request a swap buffer of a specified size or to return granules which are
no longer occupied. The granule manager has an external interface with the
store manager via GETMAIN and FREEMAIN SVCs. To obtain a granule the
granule manager issues a special GETMAIN call which is recognised by the
store manager; the granule size 1is passed as a parameter. If the store
manager intends to satisfy the request it allocates a block of store in
the dynamic area without, however, constructing the data structures
normally used to describe a region. On receiving the new granule, the
granule manager provides it with an SGE duly filled out and linked onto
the SGE chain; the SGE acts as the descriptor for the allocated store. The
store manager might refuse a request for a granule either because there is
no store available or because it is waiting for granules to be cleared
from a particular area of store which it needs in order to create a region.
The store manager never refuses a FREEMAIN call to free a granule.

It is not uncommon for the store manager to refuse a request for a
granule: at busy times over 70% of requests are turned down. To cushion the
effect of this, the granule manager maintains a pool of unoccupied
granules called the reserve. If the number of granules in the reserve
falls below a fixed value called the reserve level, action must be taken to
acquire new granules from the store manager or to release occupied
granules by causing sessions to migrate. The reserve level is currently
set at six.

There are three entries to the granule manager: to request a swap
buffer, to release granules which are no longer occupied or which are
wanted by the store manager, and to cause the granule manager to make good
the reserve.

When a swapper routine calls for a swap buffer, the granule manager
calculates how many granules are needed and tries to allocate that number
from the reserve. If there are insufficient in the reserve the store
manager 1is called for fresh granules. The requests may be satisfied, in
which case the swap buffer is assembled from the reserve and the fresh
granules, and handed back to the caller. If however the store manager fails
to provide all the fresh granules required, any which have been obtained
are added to the reserve, and the request for a swap buffer is turned down.
In most cases there will be enough granules in the reserve.

Granules released by sessions are handed back to the granule manager.
For each granule marked as migrating the predicted additional size of the
reserve (see next paragraph) is decremented. A granule marked as wanted by
the store manager is FREEMAINed; any remaining granules are added to the
reserve. A reserve granule may be claimed by the store manager, in which
case it must be handed over directly and the reserve made good in the
usual way. '

The third entry to the granule manager prompts it to check the health
of the reserve. To this end the granule manasger keeps a record of the
predicted additional size, that is, the number of granules which are

10

shortly to be released by migrating sessions and which the granule manager
might be able to add to the reserve. If the sum of the actual size of the
reserve and the predicted additional size is less than the reserve level,
the store manager is called for fresh granules to make good the deficit. If
the fresh granules are forthcoming all is well; if not, the granule manager
must look elsewhere. When the store manager turns down a request for a
granule, the granule manager inspects the reason for the refusal. If the
store manager is in the process of claiming a region no further steps are
taken: there may in fact be plenty of store available. In the case of a
refusal because of lack of store, the granule manager must select sessions
for migration from swap buffers to disc.

First the oldest arrivals on the don't-keep chain are selected; if that
chain is exhausted, the most recent additions to the keep chain are chosen,
though in practice it is a rare event for the granule manager to migrate a
session from the keep chain. The rationale for the latter choice is clear:
the most recently swapped out ready session is, in the absence of other
evidence, the ready session least likely to be swapped back soon. Deciding
on an algorithm for the don't-keep chain is more difficult; at least one
can argue that to select the oldest arrival is to ensure that a session
whose user has gone for coffee does not sit in store indefinitely.

For each session chosen the granules are marked as migrating, the
predicted additional size of the reserve incremented, and the session put
on the transfer queue. This continues until the sum of the predicted
additional size and the actual size reaches the reserve level. It can now
be seen why the predicted additional size is used in the comparison rather
than just the actual size. If the latter alone were used each entry to the
granule manager would be liable to initiate migrations to make good the
deficit in the reserve. The result of a rapid sequence of entries would be
to make good the deficit several times over and so to cause too many
sessions to migrate.

The reserve mechanism is one of the more crucial features of the
system. The granule manager is able to detect a shortage of store several
steps before requests for swap buffers are affected. Performance figures
for a particular period of moderate-heavy load, discussed in detail in
section U4, show that whereas 70% of requests for granules were refused, the
failure rate for requests for swap buffers was less than 2%. Furthermore
there were 10% more requests for swap buffers than for granules; the
supply of granules from migrated sessions accounts for the difference. If
there were no reserve each request for a swap buffer would generate at
least one request for a granule, and one would expect more than 70% of the
requests for swap buffers to fail. The proportion of swaps-out directly to
disc, and of failed preswaps from disc, would be far greater than the 1.1%
and 1.2% actually obtaining. The figures indicate that the use of reserve
also induces a reduction in the number of GETMAINs and FREEMAINs for
granules. In fact these figures were obtained under an earlier version of
the granule manager. With the current version the saving is far greater:
the number of granule requests may fall below 30% of the number of
requests for swap buffers. This serves to reduce overhead rather than
improve performance in any perceptible way.

11

3.5. The store manager

The store manager task handles the allocation, placement and freeing of
regions and granules in the dynamic area; the former comprise regions for
system components and offline jobs, and second regions for time-sharing
sessions (a Cambridge innovation - unswapped regions in the dynamic area
temporarily allocated to time-sharing sessions). The store manager is
so0lely responsible for determining priorities for the provision of store,
and for arbitrating in cases of conflict. In particular it is the store
manager which ensures that granules have the lowest-priority claim on
store.

The store manager permits the swapper to use as much of the free store
as is needed; this will frequently be all the free store. A condition,
however, is that the store manager has the right to claim back at any time
any part of store containing granules to construct a region for some other
purpose. When it needs to do this, the store manager scans the SGE chain to
determine which granules need to be moved. The SGE chain is two-way linked
and ordered by granule address so that the store manager, which knows
whether it is dealing with high store or low store, can scan from the
nearest end. Doomed granules are marked as wanted, and the time-sharing
control task is POSTed.)

The swapper in turn scans the SGE chain noting the marked granules.
Reserve granules are removed from the reserve and handed directly to the
granule manager for immediate freeing. The remaining marked granules
belong to sessions. The status of the sessions is inspected and those
which are not in a preswapped state are queued for migration. Preswapped
sessions are left untouched: the marked granules will be returned to the
store manager as soon as their sessions are swapped in.

The system has been designed to allow the store manager to move
granules to another part of store rather than migrating their sessions,
although this mechanism is currently not in use. To this end interlocks
are provided on individual granules in order to prevent interference
between the store manager and the swapper.

3.6. The driver

An outline of the chief functions of the driver appears in section 2. It
will be recalled that the driver is responsible for scheduling swaps and
assigning time-slices to resident sessions. Many of the changes introduced
into the driver for store-to-store swapping are detailed rather than
sweeping; however, there are some substantial modifications. The control of
preswapping is the one major new function. In addition certain significant
changes in the scheduling algorithms have been made possible by the
comparative cheapness of swapping under the new system.

The conventional term 'compute-bound' is here used of sessions heavily
engaged in computation, disc I/0 or both: it will be recalled that a
session must occupy its region while it has disc I/0 in progress. A session
is considered to be interactive at the start of each new transaction; it

12

becomes compute-bound if the execution time of the transaction rises
beyond a certain value.

At its simplest, the preswapping mechanism within the driver works as
follows: whenever the driver is notified of the completion of a swap-in, it
will seek to ensure that another session is preswapped for that region;:
the aim is always to have one session in hand for each region. The driver
may if necessary preswap at times other than the completions of swaps. In
choosing a session to preswap the driver imposes an order of priorities:
only a session which is ready to run is eligible; then the choice will
depend on whether a session is interactive or compute-bound, and whether
or not it has just emerged from a wait state. The driver may find that the
session of its choice is already preswapped or that for some reason it
cannot be preswapped. In such a case the driver does not choose another
session of lower priority but abandons the attempt to preswap. Too many
sessions must not be preswapped at once, for a preswapped session may not
be migrated, and s0 a large number in store at one time might prove a
problem for the store manager. Clearly there is no advantage in allowing a
larger number of preswaps and permitting them to migrate.

There are, as we have seen, occasions on which the driver may have more
than one session preswapped for a region: a session may become ready and so
eligible for preswapping after a -session of lower priority has been
preswapped. There is good reason for allowing more than one preswap in
such cases. The driver pays no attention to preswaps when it chooses a
session to swap in, though of course the priority rules for preswapping
are modelled on those for swapping in. Hence a higher priority session may
as well be preswapped since it will in any case be preferred over a lower
priority session for the next swap-in.

The reduction in swap time in the new system made it practicable to
change the algorithms for preempting. A swapped-out session which emerges
from a wait state may preempt a resident session for the same region by in
some way curtailing the 1latter's period of residence. The aim of the
algorithm is to afford good response to the mass of trivial transactions.
Formerly the cost of swapping meant that the action could not be too
drastic; in practice the only effect was that a preempting interactive
session would cut the residence time-slice of a resident compute-bound
session to that of an interactive session. This might mean that the
session was swapped out forthwith if it had already been resident for an
interactive time-slice.

Store-to-store swapping is cheaper, and so a preempting session can be
allowed to cause more drastic action. The current algorithm uses the
execution time of the transaction in progress for a session, that is, the
sum of the cpu time and disc I/0 time since the session's last terminal I/0
wait, as a measure of the degree to which the session is interactive. First
the driver attempts to preswap a preempting session. When the driver is
notified of the completion or failure of the attempt, it compares the
states of the preempting and resident sessions to determine the next step.
Broadly speaking, if the preempting session is newly out of a terminal I/0
wait it will cause the resident session to be swapped, allowing a short
period of grace 1f the resident session is itself highly interactive;

13

otherwise the residence time-slice of the resident session is cut to that
of the preemptor, as in the former system.

A feature of the driver's strategy for assigning residence time-slices
is also of interest. In TSO as provided by IBM the number of scheduling
queues, their characteristic time-slices and the manner in which they are
treated are all specifiable as parameters. Unfortunately the underlying
mechanisms are rather inflexible; the only versions which have proved
successful at Cambridge have been based on round robins. A modification
contemporaneous with store-to-store swapping is a variable-slice round
robin. Sessions which were in a ready state at their last swap-out are held
on one of two circular chains; one chain is for interactive sessions, the
other for compute-bound sessions. The pair of chains is treated as a
single round robin. While there are sessions on the interactive chain all
sessions are granted the shorter interactive time-slice; if the
interactive chain is empty the remaining compute-bound sessions receive a
longer time-slice. The relative cheapness of store-to-store swapping makes
it reasonable to grant short slices to compute-bound sessions. There are
additional mechanisms for granting priority to sessions emerging from a
wait state over those already on the scheduling chains.

14

4. PERFORMANCE

4.1. Preliminary

The purpose of this section is to evaluate the performance of the time-
sharing system in general and of store-to-store swapping in particular.
First, however, the discussion concentrates on certain problems of
performance evaluation and leads on to the solutions used at Cambridge.

The performance measures used for store-to-store swapping may be
divided into two classes. Some measures are relevant only to the internal
operation of the system; they may be used to compare the efficiency of
different versions of the system and to check whether particular
components are working as expected. Other measures, such as swap times,
response times and transaction rates, quantify features common to all
time-sharing systems; these may be called external measures.

External measures could potentially provide a direct comparison
between the current and former versions of the time-sharing system, or in
certain cases between the system at Cambridge and those elsewhere.
Unfortunately many of the performance logging mechanisms now incorporated
in the system were introduced at the same time as or after store-to-store
swapping. Hence there are disappointingly few direct comparisons that can
be made between the present and former Cambridge systems.

A problem that affects all the statistics-gathering exercises of the
Cambridge time-sharing system arises from the great variation in load at
different times. Store-to-store swapping is influenced not only by the
number of active sessions and the work they do, but also by the demand for
store in the dynamic area; the latter depends on the offline job load and
the use of time-sharing second regions . As a result it is difficult to
correlate performance figures so as to give a single composite
representation of performance - or at least any representation so obtained
would be of doubtful value. The method adopted here is rather to give
specific and, as far as is possible, typical values, indicating in more
general terms the variations that occur.

The measurement of certain characteristics, in particular of load and
response, presents a second problem: what in fact constitutes an adequate
measure? Is a single measure applicable in all circumstances? In practice
one has to develop suitable operational definitions as reconstructions of
the pre-formal notions. The next two subsections discuss this issue for
load and response.

4.2, Measures of load

The number of active sessions is clearly a broad indication of the load on
the time-sharing system; one readily observes a rough correspondence
between this number and response. However it is not sufficient for all
purposes. An effect noticeable at Cambridge is that the response in the
first term of the academic year with, say, 80 active sessions is by and

15

large better than the response with the same number of sessions in the
second term. The reason is not hard to determine: in the first term many
users are novices, finding their way round the system and doubtless
spending much of the time thinking rather than driving their sessions. By
the second term the same users have greater experience and are driving
their sessions harder, thus making greater demands on machine resources.
This effect 1is in fact measurable: there are details later in this
subsection.

Clearly the rate at which sessions work must be taken into account in
characterising load. Now the rate of work of a session depends on the rate
at which new transactions are initiated and on their execution times. As
the rate and size of transactions increase, so the mean number of sessions
which are running or ready to run also increases (that this is so depends
on the near-random distribution in time of the starts of transactions).

Thus the mean number of ready sessions represents a good measure of
load. It remains to decide how to calculate a mean; as the actual number of
ready sessions varies wildly from moment to moment, smoothing must be
applied. The procedure used in the system measures the mean over the
preceding few minutes, weighting the measure in such a way that the most
recent history 1is the most significant and the value of the measure
converges exponentially with a half life of 1.75 minutes towards the
actual number of ready sessions. The following values of the mean number
of ready sessions can be taken as rough guidelines for the load perceived
by users:

up to 5 light

5 to 10 medium

10 to 20 heavy

over 20 very heavy

There is a lacuna in the argument for using the mean number of ready
sessions as measure of load; the mean has been described as a function of
transaction rate and transaction size. It is, however, also dependent on
the efficiency of the time-sharing system itself. An improvement in the
system will produce a corresponding improvement in response precisely
because transactions are completed more rapidly and, for a given
transaction rate, the mean number of ready sessions falls. That is to say,
the mean number of ready sessions is a measure of the apparent load. For a
given time-sharing system, the apparent load varies with the real load, and
may be used as an indicator of the latter in measuring performance at
different times. On the other hand different time-sharing systems may
exhibit different apparent loads for the same real 1load; the more
efficient a system, the lower the apparent load will be.

The mean number of ready sessions, or apparent load, is used below as a
measure of the variation in real load on the current system. It can also
serve as a crude means of comparison between store-to-store swapping and
the former system; crude because the comparison is dependent on rough
indicators of real load such as the number of active sessions.

A measure independent of changes in the system is still needed; such
might be provided by the distribution of execution times of transactions.
Certainly this value seems dependent on the behaviour of the users rather

16

than on that of the time-sharing system. However, major changes in the
time-sharing system will create a different environment as a result of
which users' behaviour may alter; the claim should rather be that, for
sufficiently similar systems, the distribution of transaction execution
times 1s independent of the behaviour of the time-sharing system. Figure 4
shows that this distribution exhibits 1little variation: most observed
distributions lie within the shaded area on the Figure. (The strange time
co-ordinates used in the Figure and elsewhere have been chosen for the
convenience of the logging software; the values are all powers of 2
multiplied by the 1/300 second timing unit common in 370/165 software.) It
may be questioned, however, whether this is a truly independent measure of
load, even under a single time-sharing system; might not the transaction
rate fall as the transaction sizes increase purely as a result of users'
behaviour? In fact higher transaction sizes have been associated with
deteriorations in response times; the two abnormal distributions in
Figure 4 were obtained at times of notably inferior response. The
tentative conclusion is that the distribution of transaction execution
times does indeed form an independent measure of load, provided that it is
not used to compare radically different time-sharing systems.

The manner in which the five time-sharing user regions are treated
separately has been mentioned previously: a session is restricted to the
region in which it is initiated at logon. The analogy with five machines
has been drawn. This arrangement has the disadvantage that the load at any
one time may be unevenly distributed across the five regions. When this
occurs some users will experience a response considerably worse than the
momentary average, some better.

As an example consider the following measurements of load (mean number
of ready sessions) taken by region at the start and end of an eight-minute
period in November 1979:

82 active sessions: .66 0.91 0.50 0.52 1.09 total 4.68

98 active sessions: 1.56 4,12 1.21 1.39 2.73 total 11.03
The overall load changes from light-medium to medium-heavy. However the
users in region 2 perceive a change from an apparent system-wide value of
4,55 (5 ¥ 0.91) to 20.6 - from light-medium to very heavy. For users in
region 1 there would be no perceptible change. Such peaks in the load in
single regions seem generally to be short-lived — about 2 or 3 minutes is
common. Indeed the observed times depend on the degree of weighting used
in the calculation of the mean number of ready sessions; the actual peaks
are likely to be shorter and sharper. One could ensure that a new session
was always started in the region with the lightest momentary load at the
time of logon, but this would do little to mitigate the effects of short-
term peaks, and might rather lead to greater unevenness. In practice the
region with the fewest number of active sessions is chosen, as this
quantity is more stable than momentary load. The only way to solve the
problem of uneven load would be to use a single time-sharing region and
ensure that everyone got the same appalling response.

17

4,3. Measures of response

A value often used to characterise the performance of a time-sharing
system is mean response time; this is clearly unsatisfactory in most cases.
It would perhaps be a useful index of improvement after a modification in
a time-sharing system as long as the load on the system showed little
variation. In comparisons between different periods under one system with
variable load, or between systems at different installations, the mean can
be quite misleading.

First, a low mean response time with a high variance might be less
satisfactory than & higher mean with low variance. Indeed one might
deliberately choose the latter as a feature of the design of a time-
sharing system. Thus to sacrifice rapid response for trivial transactions
to overall steadiness might be desirable if it removed irregularities in
response time for transactions of identical sizes; it is a less convincing
proposition if the smoothing conceals the distinction between trivial and
non-trivial transactions.

Second, in order both to understand the performance of one system and
to compare different systems it is necessary to take account of the
relationship between response time and transaction size. The mean response
time does not reflect this relationship.

The procedure used in the current system at Cambridge takes account of
both these issues. The response time of a transaction is defined as simply
its elapsed time; this excludes delays in the communications system. For
each transaction the response factor is calculated:

response time
response factor =

execution time

Frequencies are counted for the distributions of both response and (the
logarithm of) execution time over all transactions. The result is a matrix
of the kind illustrated in Figure 2. The timing unit is 1/300 second.
Transactions with execution times less than this value (about 10% of all
transactions) cannot be counted in the same way. For these the system
simply records the proportion with response times less than 0.853 second.

If one wanted a single figure to characterise response, one might give
the percentage of all transactions with response time less than a certain
value; but this would not make allowance for transactions with execution
times comparable to or longer than the chosen value. Yet to quote the
proportion of transactions with response factors less than a certain value
would distort the picture for short transactions: for a transaction of
10 msec a response factor of 20 is as good as one of 4. The solution is to
use a combination of the two. The figure used at Cambridge is the
percentage of transactions with response time less than 0.853 second or
(4 *¥ execution time), whichever is the greater. This figure generally lies
between 75% and 95%.

18

4.4, Observed performance

This subsection presents and discusses performance figures for the store-
to-store swapping system. Subsection 4.1 mentioned the difficulty of
assembling a universal set of statistics. The method adopted here is to
present measurements made during a particular period and then to indicate
the sorts of variations encountered. The eight-minute period chosen was
characterised by a large number of active sessions and a moderate-heavy
load. Figure 2 gives details of response times and certain other measures.
Figure 3 represents the movement of sessions between region, store and
disc and 1indicates the frequencies with which particular routes were
traversed. The distribution of transaction execution times for the period
under study is marked on Figure 4.

Figure 2 will be discussed first. Item (a) in Figure 2 shows that the
load in the period was medium-heavy. There was little variation across
regions, or for each region between the start of the period and the end;
compare the figures for another eight-minute period in November 1979
quoted in subsection 4.2.

A transaction has been defined as the period of activity of a session
between terminal input or output waits. However, performance evaluations
sometimes use a slightly different definition of the term, whereby a
transaction is a period between input waits only, so that terminal output
wait states are counted as part of the transaction. The mean transaction
rates for both definitions are given in Figure 2(b); generally about 88%
of transactions (in the sense normally used here) end in terminal input
waits, that is, are transactions according to the second definition. The
mean rate of transactions is commonly in the range 4.5 to 5.5 per second
for heavy loads.

Figure 2(b) 1includes a table showing the frequencies of different
values of the response factor and transaction execution time. The value to
the left of each row in the table indicates the upper limit of the range of
execution times for that row; the lower limit is equal to the value of the
upper 1limit for the row above. For example, the third row includes
transactions with execution times between 0.053 sec and 0.107 sec. The
first row is for execution times between 0.0033 sec (1/300) and 0.027 sec;
the last row covers execution times greater than 6.827 sec. Each position
in the table shows, as a percentage of all transactions, the proportion of
transactions whose execution times and response factors lie within the
appropriate ranges. Only transactions whose execution times are greater
than 0.0033 sec are included in the table; they comprise 91.27% of the
total. Commonly this figure is in the range 88% to 90%.

The column totals, giving the overall distribution of response factors,
show a considerable variance. In 25.86% of all cases the response factor
was greater than -14. However, the largest contribution to this total comes
from transactions in the first row of the table. In fact many of the
transactions included in the figure of 20.67% in that row will have had
execution times nearer to 0.0033 sec than to 0.027 sec; in such cases large
response factors may yet be consistent with good response. Only 2.9% of
transactions had execution times in this range and response times greater

19

than 0.853 sec. If we exclude the first row from the calculation, the
column totals become

<2 2-4 4-6 6-8 8-10 10-12 12-14 >14
9.56 14.05 5.69 3.51 2.11 1.86 0.93 5.19
The variance is now lower, but it is still significant. It is unlikely that
it could be reduced to insignificance with the current hardware.

8.73% of transactions had execution times less than 0.0033 sec, but only
C.04% had both these short execution times and response times greater than
0.853 sec.

The overall figure for response is 79.55%; typically the value lies
within the range 75% to 95%, depending on load.

The mean swap rate of 21 per second given in Figure 2(c¢) is typical of a
busy system; under quieter conditions the rate falls to well below 10 per
second. The mean swap time of 5.5 msec compares with a value of about
30 msec before the introduction of store~to-store swapping. The mean swap
time generally lies in the range 5 to 6 msec. On occasions when the fixed-
head disc has been out of order and the swap file has been on a moving-head
disc, the mean swap time has increased only a little, about 7 msec
apparently being the maximum. On the other hand, the value may rise above
7 msec if there is a shortage of store for granules, even though the fixed-
head disc is in use. These observations are consistent with the dictum
that in a virtual-memory time-sharing system the quantity of main storage
is often more important than the speed of the swapping devices; store-
to-store swapping does to some extent imitate a virtual-memory system.

Figure 2(d) concerns granule management. The number of granules in
existence varies considerably over time. It is unlikely often to be near
83, the maximum in the period under study; a normal figure would be 50, or
1300 Kbytes. This is still a large amount of store; it is worth bearing in
mind that without store-to-store swapping this store would be unused, and
that the store manager has granules removed whenever their store is needed
for other purposes. The 54% failure rate of granule requests due to lack of
store is typical of heavy loads coupled with scarcity of store in the
dynamic area. With a light load the figure is far lower, sometimes as low
as 2%. On the other hand, there is little variation in the rate of refusals
which occur because the store manager is busy; a figure between 10% and 15%
is common.

It is noteworthy that the failure rate for requests for swap buffers -
1.6% in Figure 2(e) - is much lower than the 70.2% failure rate for granule
requests. The former figure is invariably low, sometimes only a fraction of
a percent, bearing witness to the success of the algorithms in the granule
manager.

Figure 2(f) states that 85% of migrations were initiated by the granule
manager, 15% by the store manager. These proportions can vary considerably
with load. Here are the figures compared with two other sets of readings
from the end of 1979:

migrated by granule manager 85% 30% 2.5%
migrated by store manager 15% 70% 97.5%

In general a heavy load and scarcity of store produce a high proportion of

20

Figure 2: observed performance during an eight-minute period.

Period: 12:06 to 12:14 on 29.11.79, duration 8 minutes
107 - 115 active sessions

(a) mean number of ready sessions by region and overall,
at beginning and end of period
1.71 2.13 2.28 1.60 2.17 total 9.89
1.76 2.08 2.40 1.62 2.19 total 10.05

(b) transactions and response:
frequencies are given as percentages of all transactions

5.5 transactions per second, 4.8 terminal input waits per second

response factor against transaction execution time,
for transactions with execution times > 0.0033 sec:

exec | range of response factor itotals
times | <2 2-4 L4-6 6-8 8-10 10~-12 12-14 >14 |
0.027 | 0.19 4.03 6.22 4.82 4.70 4,10 3.64 20.67 | Uu8.37
0.053 | 0.k6 1.60 0.46 0.30 0C.04 0.16 0.04 0.56 | 3.62
0.107 | 2.24 2.88 0.83 0.23 0.16 0.26 0.04 0.91] 7.55
0.213 | 2.35 2.50 0.42 0.26 0.23 0.19 0.07 1.57 ! 7.59
0.427 | 2.43 2.85 1.25 0.68 0.65 0.38 0.19 0.91 ! 9.34
0.853 | 1.44 2.13 0.95 0.76 0.38. 0.23 0.26 0.72 1} 6.87
1.707 | 0.53 1.18 1.06 0.53 0.42 Q.42 0.26 0.34 | 474
3.413 | 0.07 0.57 0.42 0.57 0.19 0.11 0.07 0.18] 2.18
6.827 | 0 0.26 0.19 0 0.04 0.11 0 01 0.60
i 0.04 ©.08 0.11 0.18 0.04 0.11 0 01 0.1

totalsi 9.75 18.08 11.91 8.33 6.81 5.96 4.57 25.86 | 91.27

2.9% had execution time between 0.0033 sec and 0.027 sec,
and response time > 0.853 sec
8.73% had execution time < 0.0033 sec
0.04% had execution time < 0.0033 sec and response time > 0.853 sec
about 73% had response time < 0.853 sec
79.55% had response time < maximum (0.853 sec, 4 ¥ execution time)

(c) Swaps:
10.5 swaps per second
mean one-way swap time 5.5 msec
mean residence time 322 msec.

(d) Granules:
maximum number 83, totalling 2158 Kbytes

- 5790 requests to store manager, or 12 per second
54% failed through lack of store
16.2% failed because store manager was busy

(e) Swap buffers:
6420 requests to granule manager, or 13.4 per second
1.6% failed

(f) Migrations:
37% of swaps to store subsequently migrated
85% initiated by granule manager (squeeze on store)
15% initiated by store manager (to reclaim specific granules)

21

migrations initiated by the granule manager.

Figure 3 illustrates the internal dynamics of store-to-store swapping.
The percentages on upward routes in the Figure are of all swaps-out during
the period, those on downward routes of all swaps-in. There is a
discrepancy in these figures: 37.7% of swaps-out arrive on disc, whereas
transfers from disc constitute 38.1% of swaps-in. The explanation is that
each session begins at logon with a swap of a standard session framework
from disc, and ends at logoff also with a swap-in. Hence every complete
session contributes an unpaired swap-in from disc.

The figures for swaps directly between regions and disc, and for swaps
out to store, generally exhibit little variation with load; the values here
may be taken as typical, though slightly high for the disc swaps. The
figures for preswapping and migration, however, are noticeably high. An
overnight period in February 1979 registered 14% migrations and 28%
preswaps, with a corresponding 61% swaps-in from the keep and don't-keep
chains; compare 36.3%, 74.7% and 13.8% respectively for the period under
study. In fact these three values tend to vary in unison.

Some observations are not included in the Figures. In the period under
study 1.2% of all preswap attempts failed (because no swap buffer was
available); this value is generally below 1%, though it has been seen to
exceed 10%. A small number of sessions were preswapped or swapped in while
in the process of migrating (see subsection 3.3). Such cases constituted
about 0.1% of all swaps-in; this figure is typical.

The Cambridge system may be further characterised by extrapolating and
interpreting the sorts of statistics described so far: thus one can obtain
figures which more readily permit direct comparison with other systems.
Naturally such extrapolations can serve only as rough guidelines. The
estimates quoted here for moderate-heavy loads are examples.

The first table indicates the proportions P of transactions with
execution times less than E secs which have response times less than R
secs.

P E R
8C% 0.85 sec 0.85 sec
88% 0.85 sec 1.70 sec
85% 1.70 sec 1.70 sec

The proportions P of all transactions with response times less than R secs
are as follows:

|4 R
75% 0.85 sec
88% 3.50 sec
93% 7.00 sec

4.5. Costs of store-to-store swapping

An adverse effect of store-to-store swapping is to introduce delays into
the process of region allocation. Frequently the store manager must wait
for granules to be freed before it can hand over a new region. Tests show
that the mean delay per allocation is 50 msec, rising to 90 msec at busy

22

Figure 3: path flow for change of state of sessions.

disc
C
36.6%
I F
l 26.6%
keep chain
and
don't-keep
chein
YF
A 11.5%
. D
B 48.1%
1.1%
preswapped
A AN
98.9% V
F
13.8%
Y =
ThTh
region
A: swap out to store
B: swapout to disc
C: migrate
D: preswap in store
E: preswap from disc
F: swap in from store
G: swap in from store, from preswapped state
H: swap in from disc

The percentages indicate the traffic along each route; those on upward
paths are of all swaps-out, those on downward paths of sll swaps-in.

23

times.

The major cost, however, is in cpu time. To move the mean swap size of
22 Kbytes within store takes about 2.53 msec. During the period studied in
subsection 4.4 there were 21 swaps per second, 93.7% of which were within
store. Hence the time spent in store-to-store swaps was 49.8 msec per
second, or about 5% of the total cpu capacity. In addition there is some
overhead for granule management and the new functions in TSC and the store
manager.

Against this we may set the savings in cpu and channel time gained by
the reduction in disc traffic. In the period studied there occurred only
about 38% of the disc transfers that would have been required to maintain
the same swap rate without store-to-store swapping. Thus the number of
transfers saved was 62% of 21, or 13 per second. The actual time needed to
transfer 22 Kbytes to or from the fixed-head disc is 15 msec. Hence the
channel capacity saved was 195 msec per second, or about 20% of the total
capacity. The cpu cost of 13 disc transfers is about 10 msec, which more
than balances the extra housekeeping costs in store-to-store swapping.

We see that in the period under study store-to-store swapping cost
about 5% of the cpu capacity and saved 20% of the capacity of the channel
serving the fixed head disc. In general the cpu of the Cambridge 370/165 is
not utilised 100%. Store-to-store swaps do in part soak up what would
otherwise have been cpu idle time; the real cpu cost will have been below
5%. The saving in channel utilisation reduces contention and so improves
the retrieval time for 0S and HASP overlays.

The figures quoted here refer to busy periods; with a lower swap rate
the cost is considerably lower.

24

distribution of transaction execution times.

Figure 4

SPUODDS UT SUT3 UOTINDSXD

LZ8%9 €Iv’ ¢ LOL" T £598°0 LZv o . £€12°0 LOT°0 €50°0 Lz0'0

| 1 | | |

6L°11%6Z UO 90:ZT WOAF
poTied synuTW-3ybTe BUTANP UOTINATIISTP

asuodsex peq jo spoTiad omil
phuUTIND PoAISDSHO SUOCTINJTIISTP.

voIe popeys oYl UT OTT
SUOTINGIAISTIP POAIDSUO JSONW

SOWT] UOTINOIXD UOTIDORSURIY
JO SUOTIINIIISTP SATIBRTRUWND

L. 20071

25

5. CONCLUSION

The store-to-store swapping system has now been operating successfully
for over a year. The original aim, to increase the maximum number of
simultaneously active terminals, has been achieved: the maximum is now set
at 120. It is difficult to make detailed comparisons of performance before
and after the change; no figures on response are available for the
previous system, and patterns of use change. However comparison of the mean
number of ready sessions before and after the change suggest that the
apparent load with 120 sessions is now lower than it was formerly with 90.
The most dramatic change has been in swap time: the mean, formerly 30 msec,
is now 5.5 msec. The cost is less than 5% of the total cpu capacity of the
machine, while there is a saving of up to 20% in use of the channel serving
the fixed-head disc.

Store-to-store swapping was designed and implemented by the author.
Barry Landy provided the new features in the store manager. Important
changes to the driver had previously been made by Tony Stoneley, who also
devised the mean number of ready sessions as & measure of load. Chris
Thompson improved the handling of disc I/0 in the swapper.

I would like to thank those who, through their advice and criticism,
helped in the production of this report.

26

APPENDIX A: GLOSSARY

Terms defined and used in just one subsection are not included in the

glossary.
active session
don't-keep

chain

driver

dynamic area

FREEMAIN
keep chzain

GETMAIN

granule
granule manager
migration

0S dispatcher
POST

preswap

ready session

region

residence time

response factor
response time
SGE

SGE chain

store manager

& session serving a user logged onto the system.

the chain of sessions which have been swapped out to store
and which were not ready to run when the swap-out
occurred.

the TS0 routine responsible for scheduling swaps.

an area of store not occupied by OS/MVT; part of the
dynamic area 1is allocated to system components like TSC
which are regerded as ancillary to OS/MVT, the rest is
available for wusers' jobs, granules and some other
applications.

the SVC used to free a block of store.

the chain of sessions which have been swapped out and
which were ready to run when the swap-out occurred.

the SVC used to obtain a block of store.

a block of store in the dynamic area used for store-
to-store swapping.

a set of routines in the swapper which manage granules and
construct swap buffers.

the transfer of a session from a swap buffer to disc in
order to release the granules for some other use.

a component of O0S/MVT responsible chiefly for allocating
the cpu to tasks.

an SVC by means of which one task can signal another task,
possibly waking the signalled task out of a wait state.

the process of ensuring that a swapped-out session is in a
swap buffer in readiness for a swap-in.

a session which is ready to run, i.e. not in a wait state.

a block of store in the dynamic area allocated to a job,
session or system component.

the time a session spends in its region between end of
swap-in and start of swap-out; this includes the time
taken to reconnect and disconnect the session.

the response time of a transaction divided by its
execution time.

the total time taken by a transaction from start to
finish.
& swap granule element: a dasta structure describing a
granule.

the two-way chain of the SGEs describing all the
allocated granules; the chain is ordered by granule
address.

a system component responsible for managing store in the
dynamic area for regions and granules.

27

swap
swap buffer

swapper

swap time

SVC

time-sharing
user region

transaction

transaction
execution time

TJB

TSEVENT
WAIT

a transfer of a session into or out of a time-sharing user
region.

a set of one or more granules into which a session is
swapped or preswapped.

a TS0 routine which manages swaps, preswaps and
migrations; the swapper also contains the granule manager
routines.

the time between the queueing of a swap by the swapper, or
the start of the swap if no queueing is needed, and the
end of the swap; this does not include the time to
disconnect or reconnect a session. ‘

supervisor call: a call on the operating system to provide
some special service.

a region in which time-sharing sessions execute; there are
five such regions in the Cambridge system.

the period between a session's emergence from a terminal
I/0 wait state and its return to & terminal I/0 wait
state.

the sum of the cpu time and disc I/0 time used by a
transaction.

time-sharing Jjob block: a data structure describing a
session; each session has one.

the SVC used to call the driver.

an SVC by means of which a task can put itself into a wait
state (though a2 task can enter a wait state without
calling WAIT - an example is the terminal I/0 wait state
of a session).

28

