Technical Report A

Number 140

Computer Laboratory

Executing behavioural definitions
in higher-order logic

Albert John Camilleri

July 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/



© 1988 Albert John Camilleri

This technical report is based on a dissertation submitted
February 1988 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Abstract

Over the past few years, computer scientists have been using formal verification
techniques to show the correctness of digital systems. The verification process,
however, is complicated and expensive. Even proofs of simple circuits can involve
thousands of logical steps. Often it can be extremely difficult to find correct device
specifications and it is desirable that one sets off to prove a correct specification
from the start, rather than repeatedly backtrack from the verification process to
modify the original definitions after discovering they were incorrect or inaccurate.

The main idea presented in the thesis is to amalgamate the techniques of
simulation and verification, rather than have the latter replace the former. The
result is that behavioural definitions can be simulated until one is reasonably sure
that the specification is correct. Furthermore, proving the correctness with respect
to these simulated specifications avoids the inadequacies of simulation, where it
may not be computationally feasible to demonstrate correctness by exhaustive
testing. Simulation here has a different purpose: to get specifications correct as
early as possible in the verification process. Its purpose is not to demonstrate the
correctness of the implementation—this is done in the verification stage when the
very same specifications that were simulated are proven correct.

The thesis discusses the implementation of an executable subset of the HOL
logic, the version of Higher Order Logic embedded in the HOL theorem prover. It
is shown that hardware can be effectively described using both relations and func-
tions; relations being suitable for abstract specification, and functions being suit-
able for execution. The differences between relational and functional specifications
are discussed and illustrated by the verification of an n-bit adder. Techniques for
executing functional specifications are presented and various optimisation strata-
gies are shown which make the execution of the logic efficient. It is further shown
that the process of generating optimised functional definitions from relational def-
initions can be automated. Example simulations of three hardware devices (a

factorial machine, a small computer and a communications chip) are presented.
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Chapter 1

Introduction

1.1 Hardware Verification and Simulation

Over the past few years, computer scientists have been applying verification tech-
niques to the correctness of digital systems. This was mainly brought on by the in-
creasing inadequacy of conventional approaches (i.e. simulation, prototyping, etc.)
which could only demonstrate the presence of a bug, never its absence.

Several mechanical theorem provers have been designed and used for the ver-
ification of hardware [27,24,31]. Various techniques and approaches have been
adopted but the goal has always been the same: to verify that a given system
actually behaves in the desired way.

The idea behind hardware verification is to use a mathematical and logical
notation to represent the desired behaviour of a digital circuit (specification) and
to prove it equivalent to the representation of a contemplated implementation
(verification). The verification process is complicated and expensive. Even proofs
of simple circuits can involve thousands of logical steps. Often it can be extremely
difficult to find correct device specifications and it is therefore desirable that one
sets off to prove a correct specification from the start, rather than repeatedly
backtrack from the verification process to modify the original definitions after
discovering they were incorrect or inaccurate.

The idea discussed in this thesis is that the techniques of simulation and ver-
ification should be amalgamated, rather than have the latter replace the former.
The result is that behavioural definitions can be simulated until it is reasonably
sure that the specification is correct. Furthermore, proving the correctness with
respect to these simulated specifications avoids the inadequacies of simulation,
where it may not be computationally feasible to demonstrate correctness by ex-

haustive testing. In other words, simulation here has a different purpose: to



discover obvious design bugs and to get specifications correct as early as possible
in the verification process. Its purpose is not to demonstrate the correctness of
the implementation—this is done in the verification stage.

The process of designing and manufacturing a digital circuit can be summarised
as shown in Figure 1.1. Ideally, the number of times one backtracks along arc 2 is

kept as small as possible by the opportunity of backtracking along arc 1.

Write
Specification

Simulate

Write
Implementation

Definitions

Figure 1.1: The Ideal Verification Process

The process starts at the specification and the design stage where specification
definitions are written, a design to implement the specification is contemplated,
and implementation definitions are written to represent the design. These defi-
nitions are simulated until they are fully understood before proceeding to verify
them. Inaccurate models and specifications can be corrected by backtracking from
the simulation stage to the design and specification stage until one is confident that
the models reflect the desired behaviour. Without simulation, however, it would
only be possible to backtrack from the verification stage, which usually involves a
waste of time and effort. Some backtracking from the verification stage can still
be required since design errors not trapped by simulation should be discovered
during verification. Once the circuit is verified it can be fabricated. Ideally, there
should be no backtracking from the fabrication stage for the purpose of correcting
inaccurate designs since verification should yield design implementations which
are 100% correct.

In this thesis we describe how the facility to simulate and verify digital sys-
tems can be supported in a theorem proving system called HOL, developed by
Mike Gordon at the University of Cambridge [22] and based on the LCF system

2




developed by Robin Milner at the University of Edinburgh [16]. The system uses a
version of higher order logic as a formalism for specifying and verifying hardware.

In the following chapters, we show how hardware specifications written in the
HOL logic (see Chapter 2) can be cleanly transformed into executable programs
which are notationally almost identical to the original non-executable specifica-
tions. This enables one to perform simulation in a formal verification environment,
and avoids many dangers and inconsistencies introduced if different notations and
systems were used for conducting simulation and verification separately.

The ideas presented revolve around the aim of performing simulation and for-
mal verification using the same specifications. The ultimate goal would be to
develop an infrastructure which supported several techniques used for designing
correct hardware (e.g. silicon compilation, synthesis, timing analysis, simulation,
verification), all of which used the same notation. In the rest of this thesis, how-
ever, we only discuss techniques that can be used to execute specifications within
a theorem proving framework, and hence enable simulation. Before moving on to
present the ideas behind the chosen approach, some related works in the areas of

simulation and verification are discussed.

1.2 Background and Related Work

Some mechanical theorem provers combine the two notions of simulation and ver-
ification. The trend, however, has been either to develop a hardware simulator
with no infrastructure for conducting formal proof, or to develop a theorem prover
(or proof checker) which carries out formal proof by manipulating specifications
but which does not do simulation.

Some mechanical systems which have been used for simulation, verification,
or both, are described below. It is impossible to cover all the existing simulators
and theorem provers; there are too many of them. In general, only those which
are directly related to the modelling of digital circuits at the levels of description
presented in this thesis are discussed. Furthermore, the discussions of these sys-
tems only provide a brief outline of their approach to demonstrating hardware

correctness; further details can be found in the bibliography.

1.2.1 Simulators and Hardware Description Languages

Simulation has been the traditional approach for demonstrating the correctness of

hardware devices. It is the process in which hardware descriptions are subjected




to various input stimuli to generate output values which can be examined and
checked for errors.

Over the years, many hardware simulators have been developed to model cir-
cuits at various levels of description. For example, SPICE [51] is a simulator aimed
at the detailed circuit level in which capacitors, resistors, transistors, etc., are
represented in terms of their physical magnitudes such as voltage and current,
and MOSSIM [6] is a switch level simulator in which transistors are modelled as
bidirectional, voltage controlled switches.

In this thesis we will be mainly concerned with writing specifications at the
register-transfer level. A simulator which has become widely used at this level of
description is ELLA [48], developed by the Royal Signals and Radar Establishment
and marketed by Praxis Systems plc.

ELLA

ELLA supports the simulation of both behavioural and structural specifications of
digital systems [55]. In ELLA, circuits are described as networks of nodes connected
by wires, where nodes are described by functions and have at least one input and
one output. Nodes are allowed to operate in parallel to give a realistic model
of hardware, and they can be decomposed into networks of subnodes to allow
a hierarchical description of circuits. The notion of nodes, in fact, is similar to
that of devices used in the logic specifications presented in this thesis. A case
study comparing hardware descriptions in ELLA with those in the general purpose
functional programming language ML is given in Chapter 4.

Like other special purpose simulators, ELLA does not adopt a formal approach
to demonstrating correctness. Because of the absence of verification facilities in
the ELLA system, attempts to introduce formal proof in design processes involving
ELLA simulations have required that the ELLA definitions be translated into formal
specifications used by mechanical theorem provers (see Chapter 6 and [13]). Such
use of different notations is dangerous because inconsistencies can be introduced
in the specifications in the process of translation, and also because the semantic

differences between two languages can impose completely different representations.

VHDL

Hardware description languages (HDL) are often used as input languages for com-
puter aided design (CAD) tools. They provide a textual description of structure

and/or behaviour which can then be input to simulators, silicon compilers, etc.
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Once again, many HDLs have been designed for describing hardware at different
levels of abstraction. One example of a HDL which enables the description of both
hardware behaviour and structure at a register transfer level is VHDL, a language
originated by the United States Department of Defence [57]. The main theme
behind VHDL is to support the design, documentation, and simulation of circuits
irrespective of different technologies, and to offer the flexibility to cope with new
or upgraded CAD technologies.

Circuit descriptions in VHDL make use of ADA constructs to define functions
that map from inputs to outputs. The descriptions are divided into two parts: a
definition of the interface between the design and the outside world (i.e. the ports),
and a functional definition of the circuit.

As is typical of other HDLs, however, VHDL does not have a formal semantics.
For this reason, the approach described in this thesis is to translate formal speci-
fications written in the HOL logic into a language which has a similar semantics,
rather than to interface HOL with a HDL where the lack of formal semantics can

give rise to ambiguous descriptions.

DAISY

One approach to hardware specification which enables simulation and has a for-
mal semantics basis is DAISY, a system designed by Steven Johnson at Indiana
University for conducting synthesis of hardware designs [32]. Specifications in
DAISY are typed recursion equations based on the notation and semantics of the
Scott-Strachey calculus [59)].

It is not possible, at present, to conduct verification using DAISY, although
it would seem that a theorem prover could be added to the system. This would
address the concept of combining verification and simulation using the same spec-
ifications as presented in this thesis, but using the opposite approach (i.e. adding
proof infrastructure to an existing system that supports executable specifications,
rather than adding tools to an existing theorem prover that enable the specifi-
cations to be executed). The DAISY system, however, was mainly intended for
synthesis, a technique for deriving correct implementation designs from specifica-
tions by construction. Hence, an alternative approach to verification is adopted
for demonstrating correctness of designs.

Recent work by John O’Donnell at Indiana University and the University of
Glasgow, has concentrated on automatically constructing the geometrical layout
of hardware designs [52], and is highly influenced by the methodology of DAISY.



1.2.2 Verification
Higher Order Logic
At the other end of the scale, VERITAS, developed by Keith Hanna at the Uni-

versity of Kent at Canterbury, is a mechanical theorem prover which has been
applied to hardware verification [24]. The VERITAS logic is a species of higher or-
der, polymorphically-typed logic [25]; its type structure is based on Martin-Lof’s
Intuitionistic Type Theory [37].

The use of higher order logic for hardware verification was first advocated
by Keith Hanna, and has proved to be a promising formalism for specifying all
aspects of hardware. Other theorem provers based on higher order logic include
HOL (described in this thesis), and a system developed by Mike Fourman at Brunel
University [15]).

The higher order logic used in VERITAS is different from that presented in this
thesis. Currently, specifications in VERITAS cannot be executed so no simulation
is possible using it. It is only possible to conduct formal verification.

Hans Eveking also uses a version of higher order predicate logic for hardware
verification [14]. Both the inadequecies of simulation, and the inability of HDLs
to allow formal reasoning about specifications are identified in [14], and hence,
Eveking’s methods combine the use of HDLs with predicate calculus, replacing
the HDL specifications by logical formulae in order to enable verification. Our
approach is to avoid translating to and from HDLs, and to show that execution of
a subset of the logic provides good enough simulation facilities, making the use of

HDLs and special purpose simulators unnecessary to aid the verification process.

1.2.3 Verification and Simulation

In this subsection, we present descriptions of various systems in which it is possible
to conduct both simulation and verification. Each system has been chosen to typify
a different approach. Some of these systems can seem more natural in supporting
simulation than the approach described for HOL in this thesis. For example, in
BOYER-MOORE and CIRCAL (see below) specifications can be simulated without
requiring any translation into executable languages.

The research explained in this thesis, however, is also intended to show that
although higher order logic sentences do not in general have an executable in-
terpretation, the subset used for modelling hardware can be executed. Predicate
logic specifications are abstract definitions (unlike in the BOYER-MOORE system




where specifications are programs) and so they have to be transformed into an
executable notation if they are to be executed. From the experiences gained with
HOL, the addition of simulation facilities to the system greatly helps the process
of understanding specifications and conducting verification. The transformation
process from abstract specifications to programs is not overly tedious since the
translation process has been automated. It is recognised that it is insufficient to
claim that specifications can be executed; they must be executed with an accept-
able efficiency. It is later shown, therefore, that the execution strategies adopted
enable efficient simulation of large, and real circuit designs.

In the light of the above, the provision of simulation facilities in HOL as de-
scribed hereafter makes a useful contribution to the application of logical inference
theorem provers to formal hardware verification by enabling efficient execution of

specifications to support verification.

BOYER-MOORE

The BOYER-MOORE theorem prover, developed by Robert Boyer and J Strother
Moore, is one of the leading automatic theorem provers [5]. This theorem prover is
a mechanisation of a quantifier-free first order logic. Automatic proof is conducted
by applying a set of heuristics in turn to a goal; if the goal is found to be true it is
returned as a theorem and saved in a data base where it can be used to prove other
theorems. Often, theorems cannot be proven straight away and require simpler and
more general theorems to be proved and inserted in the database before the proof
of the intended theorems can be conducted successfully. Primarily, the BOYER-
MOORE logic is not typed although a form of type restriction can be employed
explicitly by the use of functions which determine the nature of data types.

The BOYER-MOORE prover has been recently used to formally specify and
verify a microprocessor called FM8501 by Warren Hunt Jr. [31]. Since the spec-
ifications are actually LISP programs, the LISP evaluation function eval [65] can

be used to execute the specifications. Thus, hardware specifications written in the

BOYER-MOORE logic can be directly used for both simulation and verification.

CIRCAL

Another formalism which has been applied to both simulation and verification of
hardware circuits is CIRCAL [43], an algebraic calculus developed by George Milne.
CIRCAL (CIRcuit CALculus) is based on the Dot Calculus, also invented by George




Milne [42], and is related to the CCS [45] and SCCS [46] calculi developed by Robin
Milner.

In CIRCAL one can model concurrency (simultaneous occurrence of events),
synchrony (occurrence of events at clocked intervals), and asynchrony (occurrence
of events not controlled by clocks) [44]. These three features are among the strong
points of CIRCAL which make it attractive both as a hardware description language
and as an analytical framework within which to describe, specify and analyse the
behaviour of communicating computing agents.

The general approach of CIRCAL to the description of hardware circuits is
to formulate the behaviour as communications between agents or processes. Be-
haviour is specified by a CIRCAL ezpression which has an associated set of labels
(called a sort) to indicate where devices may interact. A set of CIRCAL laws is used
to manipulate expressions to conduct verification, whereas simulation is performed
by composing expressions describing the behaviour of a device and expressions de-
scribing a single pattern of event stimuli [43]. A detailed account of CIRCAL as a

medium for conducting simulation and formal verification can be found in [61].

BSPL

The behavioural specification language BSPL, developed by Martin Richards, is
the input to an automatic tool designed primarily for the verification of microcode
programs, but which has also been used to specify synchronous circuits [56]. The
only data types available in BSPL are words of a specified number of signals, where
each signal can take one of four values: 0 (low), 1 (high), X (undefined) and Z
(floating). Specifications in BSPL are formal representations of clocked, finite-state
machines with inputs, outputs and internal states. One of the hardware examples
that has been specified in BSPL is the microcomputer presented in Chapter 8 of
this thesis.

ITL

Another approach to reasoning about concurrency and hardware is Temporal
Logic [23,47]. The imperative programming language Tempura, developed by Ben
Moszkowski [50], is based on Moszkowski’s earlier work on Interval Temporal Logic
(ITL) [49]. In Tempura, the programs are themselves temporal logic formulae, so
statements in Tempura can be used to specify, simulate and verify hardware cir-

cuits. In temporal logic, one makes use of special built-in operators (such as always



and sometimes) which have an implicit notion of time to represent time-dependent

concepts when modelling hardware.

uFP

The integrated circuit design language uFP, developed by Mary Sheeran, can de-
scribe both the behaviour and the layout of a circuit [58]. It is a formal design
language with a semantics based on FP [3] but especially geared towards hard-
ware design. The main extension over Backus’s FP lies in the introduction of the
combining form u which is used to represent memory in sequential circuits.
Circuit descriptions in uFP are functions which take sequences of inputs and
return sequences of outputs. These specifications can be manipulated by using
algebraic laws to demonstrate correctness by construction. Interpreters for ex-
ecuting uFP specifications have been written in both functional and imperative
languages, providing the facility of performing logic level simulation. Design tools
also exist for interpreting the specifications to produce a floor-plan of the described

circuit.

1.2.4 Programming Languages and Simulation

Over the years, several attempts have also been made to apply general purpose
programming languages to hardware simulation. Essentially this approach is a
methodology with which features characteristic of programming languages can
be exploited to model and simulate hardware circuits. The use of programming
languages, however, only enables simulation; there is no infrastructure to support
verification. Our approach, therefore, has been to translate formal specifications
used by a theorem prover to programs in a general purpose programming language,
where the syntax and semantics of the subsets of the two notations required to
model hardware at the register transfer level are almost identical.

The fact that general purpose programming languages are expressive enough to
model many aspects of hardware designs has been widely demonstrated. Below are
a few examples of such programming languages that have been used for hardware

simulation.

MIRANDA

In [29] for example, Stephen Hill shows how the lazy functional programming
language MIRANDA [62] can be used to simulate hardware. His techniques rely




heavily on the lazy nature of the language which enables the manipulation of
infinite data structures. The ability to evaluate finite portions of infinite data
structures allows signals to be represented as infinite lists of logic values. The use

of lazy evaluation for hardware simulation is discussed further in Chapter 5.

PROLOG

William Clocksin has used the logic programming language PROLOG [10] in the
role of simulation [9]. Among other features, the relational nature of logic programs
is exploited to enable the modelling of bi-directional flow in low-level representa-
tions of circuits. This is one advantage over the functional approach since with
relations there is no distinction between inputs and outputs. Comparisons between

relations and functions form a major topic in this thesis.

OCCAM

Finally, the features for expressing parallelism in OCCAM [33] were used exten-
sively by David May and David Shepherd to specify, simulate and validate a micro-
processor called the IMS T800 [38]. Hardware circuits are specified in OCCAM as a
collection of concurrent processes communicating via channels. Parallel computa-
tion in OCCAM is very efficient and makes simulation fast. The OCCAM language

has a set of laws which can be used to demonstrate correctness by transformation.

1.3 Overview of Thesis

In this thesis we show how a subset of the higher order logic embedded within the
HOL theorem proving system can be executed to enable simulation of hardware
specifications.

The use of higher order logic as a formalism for specifying and verifying hard-
ware circuits is discussed in [21,7], and some substantial and real circuits which
have been verified using HOL are presented in [11,28,34]. The suitability of higher
order logic as a medium for hardware verification, therefore, has been well estab-
lished. In this thesis we give evidence that the HOL system can also be used for
hardware simulation as a means for supporting verification.

Although logic specifications are in general not executable, we show how the
subset of specifications used for hardware verification can be automatically trans-
formed into executable programs. These programs are also automatically op-

timised to perform at an acceptable speed. In support of the practicality and
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versatility of such automatic tools, the specifications of some major examples pre-
viously verified in HOL are automatically translated into executable programs and
simulated for test data.

Below is a brief description of the organisation of the material presented in this

thesis.

e Chapter 2 provides a brief description of the HOL system. We describe the
species of higher order logic used, the meta-language ML in which the logic
is formulated, and the theorem proving strategies used to conduct proofs in
HOL. The main emphasis in this chapter is on those features of the HOL

system which are used in later chapters of this thesis.

e Chapter 3 shows how hardware can be specified in HOL. The differences
between relations and functions are explained and their respective advan-
tages for modelling hardware are discussed. As an example, an n-bit adder
is specified and verified using both relational and functional definitions. It
is shown that the two different styles are not equivalent and a relationship

between them is described.

e In Chapter 4 the HOL meta-language ML is shown to be a good hardware
simulator at the register-transfer level. Furthermore, the style of writing
programs in ML that model hardware is shown to be extremely similar to

that used in writing HOL specifications in Chapter 3.

e The ML programs, however, are extremely inefficient to execute. In Chap-
ter 5, the nature of the inefficiency is discussed and two optimisation strate-
gies (memoisation and lazy evaluation) are proposed. Both are shown to
provide good solutions, but only one technique (memoisation) is adopted
and discussed further in the rest of the thesis.

e Chapter 6 covers the algorithms for automatically translating HOL relations
to ML functions (or programs). The algorithms are shown to cater for most
of the commonly used techniques in register-transfer level representations
of hardware. An account is also given of which kind of relations can be
automatically translated into executable functions and which do not have

functional interpretations.

e Chapters 7-9 illustrate the techniques presented in Chapter 6 by describing

the translations of the specifications of three hardware examples which were
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previously verified in HOL. The examples are: a factorial machine, a simple
microcomputer, and a communications chip. The problems and success en-
countered with each example are discussed, giving an idea of the practicality
and versatility of the automation. The derived programs in each example
are simulated over test data to show how this tool can be useful as an aid to

verification.

Finally, Chapter 10 evaluates the research described in this thesis. Some
ideas for further research, possible solutions to problems encountered, and

improvements to current strategies are also proposed.
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Chapter 2
The HOL Theorem Prover

The HOL system, developed by Mike Gordon at the University of Cambridge, is
a tool intended primarily for hardware specification and verification using higher
order logic. It is implemented on top of Cambridge LCF [53] and supersedes the
earlier system LCF-LSM [18].

HOL is the name given to the entire theorem proving system which supports
higher order logic as a formalism for writing specifications and conducting proofs.
In cases where it is necessary to distinguish between the computer system and the
species of higher order logic embedded within it, the terminology HOL system and
HOL logic is used respectively.

A detailed account of both the HOL system and the HOL logic can be found
in [22]. In order to make this thesis self-contained, however, a brief introduction
to HOL is given in the following sections. This should enable the reader with
little or no experience with HOL to follow the rest of this thesis. Some familiarity
with predicate logic is assumed. Readers familiar with HOL may wish to skip to
Chapter 3.

2.1 The HOL Logic

The species of higher order logic used within the HOL system is a version of
Church’s Simple Type Theory [8]. The HOL logic uses standard predicate logic
notation in which one makes use of the propositional logic connectives denoting
negation (—), conjunction (A), disjunction (V), implication (D) and equivalence
(=) to connect propositions (such as properties and relations) to form more com-
plicated sentences. Variables in such sentences are bound using universal (V) and

existential (3) quantification.
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Table 2.1 outlines the syntax and informal semantics of predicate logic. In
the table, t, t; and t; stand for arbitrary terms while t[z] stands for some term

containing free occurrences of the variable z.

Notation | Meaning

P(z) z has property P
R(z,y) relation R holds between = and y
-ty not

1, Vi, t; or iy

t Aty ¢, and %,

t Dt t; implies ¢,

tl = tg tl if and only if t2

Vz. t[z t[z] is true for all z

dz. t[z t{z] is true for some z

(t = t1 | t2) | if ¢ is true then ¢, else ¢,

Table 2.1: Predicate Logic Notation

Higher order logic generalises first order predicate calculus by allowing higher
order variables—i.e. variables ranging over functions and predicates. For example,

the induction axiom for natural numbers can be written as:
VP.[P(0) A (Vn. P(n) D P(n+1)) D Vn. P(n)]

Here, the variable P is quantified and ranges over predicates; such variables are

said to be higher order.

2.1.1 Terms

The HOL logic uses four kinds of terms: variables, constants, function applications
and lambda expressions.

Variables and constants are denoted by sequences of letters or digits starting
with a letter. A few other symbols are also allowed in variable and constant
names but will not be mentioned here. For example, z, y1 and gnd can be names
of variables or constants. The difference between variables and constants is not
apparent at this stage but will be dealt with in a later section on the HOL system
when the notion of a theory is introduced.

Function applications have the form ¢,(%;), where the subterm ¢; is called the

operator and t; is called the operand (or argument). Due to the higher order
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nature of the logic, the results of function applications can themselves be functions,
i.e. functions can take functions as arguments or return functions as results.

To minimise bracketing, function applications can be written as f z instead of
f(z). Furthermore, application associates to the left and so, ¢, .. .1, abbreviates
((t1t2)...t0).

Lambda-expressions are the means for denoting functions within higher order
logic. The term Az.t (where t is any expression) denotes the function f, say,

defined by

f(z) =t

If we take t in the above lambda-expression to be the expression z+y such that
we have the term Az.z+y then z is said to be a bound variable, y is a free variable

and z+y is called the body of the A-expression.

2.1.2 Types

The HOL logic is a strongly typed logic, i.e. all terms expressed in this version
of higher order logic must have a type. Without types, the HOL logic would be
unsound as the availability of higher order variables can give rise to a version of
Russell’s paradox. This can be shown using the following definition of a predi-
cate P:

Pz =~(zz)
from which one can derive the paradox:
PP=~(PP)

The above paradox is prevented by the use of types and the reasons for this are
presented in [20].

The type system used in the HOL logic is derived from that of PPLAMBDA [16]
which, in turn, descends from the type system formulated by Alonzo Church [8].
It allows types to be either:

o atomic (e.g. bool to denote the sets of booleans or num to denote natural

numbers), or

e compound (i.e. those types built from atomic (or other compound) types by

using type operators).
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Examples of type operators in the HOL logic are list, — and #, where list is a
unary type operator used to denote a list of values (e.g. num list denotes a list of
natural numbers) while — and # are infixed binary type operators used to denote
sets of functions and pairs respectively. For example, (num#num)—bool denotes
the type of a function with a domain of pairs of natural numbers and a range of
boolean truth values.

Types in the HOL logic can contain variables. In order to demonstrate this, let
us consider the function compose defined below.

compose = Af. A\g. Az. f(g x)
If compose is applied to two functions, f and g say, then the result would be a
function which would apply g to its argument and f to that result.

For example, if not is the boolean negation function of type bool—bool and
even is a function of type num—bool which returns ‘true’ if its arguments are
even natural numbers and ‘false’ otherwise, then the result of applying compose
to not and even in that order would be Az. not(even z) which is a function of
type num—bool.

On the other hand, if rnd is a function of type real—snum which rounds off
a positive real number to the nearest natural number, and log is the arithmetic
logarithmic function of type real—real, the result of applying compose to rnd and
then log is the function Az. rnd (log z) of type real—num.

The function compose, therefore, appears to have two different types:
(bool—bool)—(num—bool)—(num—bool)
and
(real—num)—(real—real)—(real—num)

Indeed it appears that it can have many different types, depending on the types
of the functions f and g it is applied to. In the HOL logic, type variables are used
to allow functions with more than one possible type to be expressed within the
logic. Without type variables, a different function would have to be defined for
every type because a single function is not allowed to denote several types.

In HOL, however, it is only necessary to define a single function compose. If

a, B and v are type variables then compose is given the type:

(B—7)—(a—B)—=(a—7)
These type variables can be instantiated to different types according to the par-

ticular use of the function compose. Types containing type variables are called

polymorphic.

16




2.1.3 Hilbert’s c-operator

Hilbert’s choice operator, €, plays a very important part in the HOL logic. It is
most commonly used to denote values one knows to exist but have no name.

More precisely, if ¢[z] is a boolean term containing a free variable z of type «,
then the term ¢ x. t[z] denotes some value of type a, a say, such that ¢[a] is true.
For example, € z. (7 < z) A (z < 9) denotes 8 while the term ¢ . z > 0 denotes
some unspecified positive number.

In the case that there is no value a such that t[a] is true, then € z. t[x] denotes
a fixed but unspecified value of type a. For example, € n:num. ~(n = n) denotes
an unspecified number. The notation term:type is used within the HOL logic to
explicitly specify the type of a term.

No further detail regarding ¢ is given here. For a thorough discussion of
Hilbert’s e-operator see [36]. A detailed description of how Hilbert terms are
included in HOL to build in the Axiom of Choice [26] is given in [20].

The features of the HOL logic necessary to enable an understanding of the rest
of this thesis have now been covered and we can go on to show (very briefly) how
the logic is implemented in the HOL system. First, however, a brief introduction
to ML, the meta-language embedded in the HOL system and with which most of

the system is coded, is given.

2.2 The HOL Meta-language

The aim of this section is to give an introduction to the ML language; mainly
covering those features which are discussed later on in the thesis. The version of
ML described here as part of the HOL system is not Standard ML [64] but the
LCF meta-language version described in the ML Handbook [12], where a complete
description of the ML syntax and semantics is presented.

ML is a typed interactive functional programming language. At the ‘top-level’

one can:

e evaluate expressions

e perform declarations

The #-symbol is the prompt issued by ML to indicate it is ready for input. An
input sequence is terminated by two consecutive semi-colons, ‘;;’, and ML does not
respond until these terminating characters are input. To avoid cluttering the text

in the following examples, the prompt and terminating characters are only used
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when it is necessary to distinguish between the system’s response and the user’s
input.
Comments in ML are enclosed within two %-characters and are completely

ignored.
# %This is a comment%

Anything else, however, is evaluated. If one types in 5;; to the system, ML returns
the value 5, specifying its type, int. If one tries 9+7;;, the two numbers are added
and the value 16 is returned. The special identifier ‘it’ in ML, recalls the last value
evaluated.

# 553

5:nt

#9+7;;

16 : int

#it;;

16 : int

Several expressions can be evaluated in sequence by separating the expressions

with a single semi-colon. Thus, when an expression ey;...;e, is evaluated, each

sub-expression e; is evaluated in turn and the value of the entire expression is that

of e,. For example,

# 543;
true;;
true : bool

Declarations are performed using let statements. These are of the form letz = e,
where the identifier = is bound to the value of expression e. Several declarations
can be done in parallel by using ‘and’ between individual declarations. Local
declarations make use of the phrase ‘in’ before the body of the expression within

which the declaration applies.

#letz = 5;;
T =25:1int

#lety =2+3and z = 0;;

y=25:nt
z=0::int
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#letz = 10in zxz;;
100 : nt

#2;;
5:int
Destructive assignment is possible in ML provided the variables to be assigned
values are first declared for this purpose. This is done by using the keyword letref
which declares the identifiers and sets them to an initial value. The infix assign-
ment operator ‘:=’ can then be used to assign values to the declared variables. For
example:

# letref y = 0;;
y=0::nt

#y:=5+y;;
y=25::int
Another use of the let declarations is to define functions in ML. For example,

the statement:
let sucn = n+1

defines the successor function, suc, with parameter n and body n+1. To apply

suc to a particular parameter one merely evaluates the application. For example:
# suc 5;;
6:nt

Once a function or other value is defined in ML and bound to an identifier, that

identifier denotes the same function throughout an ML session unless redefined.
In the case of functions with several parameters, the parameters can be either

curried or tupled. For example, the function add can be defined with curried

parameters:
letaddzy = z+y

or with a single parameter of the cartesian product type (int#int):
let add(z,y) = z+y

The advantage of curried functions is that they can be partially applied.
As well as taking tuples for parameters, functions can also return tupled results.
For example, one may wish to define a function order to take a pair of integers z

and y, and return a pair with the two integers in ascending order. One possible
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definition of order is given below which makes use of the ML conditional statement.
let order(z,y) = if z>y then (y, z) else (z,y)

The conditional statement: if a then b else c is often abbreviated to the equivalent
notation: a = b | c.

Functions with two parameters can be, and often are, declared as infix functions
or operators. In our examples so far, we have already made use of several pre-
declared infix operators such as +, =, >, etc.

Recursive functions can be defined in ML in almost the same way as ordinary
functions. The only difference is that letrec is used instead of let. For example,

the factorial function, fact, can be defined recursively as:
letrec fact n = if n=0 then 1 else nx( fact(n+1))

Of course, fact can be defined iteratively but since we will not be using iterative
loops anywhere in this thesis, the reader is referred to [12] for further details.
One can also represent functions in ML as lambda-expressions. The following

two definitions of a function f are equivalent.
(letfza=¢e)=(let f=Az.€)

Lists in ML are represented by a sequence of objects separated by semi-colons
and enclosed within square brackets. All objects within a list must be of the same
type. The expressions [], [1;2;3] and [true; false] are all examples of lists. A list
such as [1;#rue] will not type check as the objects in the list, 1 and true, are of
different types.

The standard functions on lists are:

e hd—returns the head of a list (e.g. hd[1;2] = 1),

e tl—returns the tail of a list (e.g. t{[1;2] = [2]),

e null—boolean function which checks if a list is empty,
e .—infix cons operator (e.g. 1.[2] = [1;2]),

e @—infix append operator (e.g. [1]Q[2] = [1;2]).

Another data type represented in ML is string. Strings are any sequence of
characters enclosed within single quotes (e.g. ‘This is a string‘). There are also

standard functions on strings such as concat, explode and implode.
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Variables and functions in ML can be polymorphic. The notion of polymor-
phism has already been explained in Section 2.1.2 and so it will suffice here to give
an example of how a polymorphic function is defined in ML. Consider the function

map defined as follows:
letrec map f I = (nulll) =[] | f(hd1).(map f (t11))

Since the types of the two arguments f and ! are not specified in the definition of
map, ML assumes the types of f and ! to be polymorphic and defines map to be
a polymorphic function of type:

(k—>*%) — * list — *x list

Sequences of asterisks are used to denote type variables in ML. The difference
between ML and logic types are briefly explained in the next section.

There are three ways in which one can define new types in ML. The first is
by using the command typeabbrev to define new names to abbreviate previously
defined types. This does not really define a new type but simply binds a name
to a previously defined type. It is useful for shortening long type names or for

renaming types more appropriately. For example:
typeabbrev intpair = intgint

defines a type intpair to denote pairs of integers.
The two other ways of defining types are used to define altogether new types
rather than just abbreviations. New types can be defined to be concrete or abstract.
Concrete types are used when the objects in the type can be enumerated into

subgroups. For example, the declaration:
type signal = HI | LO | FLOAT

defines a new type signal which has three possible values: HI, LO or FLOAT.
The other way of defining types is by using abstraction. The ML command
abstype allows one to make an abstract type declaration. While defining a type ty,
say, there are two primitive functions, abs_ty and rep_ty, which are usable within
the context of the type definition. The function abs_ty maps the representation
of ty to ty while the function rep_ty maps ty to its representation. One can also
define, within the type declaration itself, further primitive functions to manipulate

the new type.
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Consider, for example, the type declaration below which introduces a new type

trigger, represented by the type bool.

abstype trigger = bool

with ON = abs_trigger true

and OFF = abs_trigger false

and bool.of = rep_trigger

and inve = abs_trigger (not (rep_trigger c))

and clockn = At.(n = 0) = (abs_triggerfalse) |
((t+n)xn = t) = (abs_trigger true) |
(abs_trigger false)
The type declaration makes use of the two locally available functions abs-trigger

and rep_trigger to define the following primitive functions:

e ON and OF F—two constants of type trigger represented by true and false

respectively.

e bool_of—a function of type trigger—bool which maps a value of type trigger

to its representative of type bool. For example, bool of ON = true.

e inv—a function of type trigger—itrigger which inverts values of type trigger,
i.e. (inv ON = OFF) and (inv OFF = ON).

o clock—a function of type int—int—trigger. The application (clock n) re-
turns a function which models a clock with a pulse interval of n. Thus when n
is 0, clock(0) returns a function which models a clock which is always OFF
(pulse interval is 0, i.e. no pulse). The application clock(1l), on the other
hand, returns a clock which is always ON (pulse interval is 1, i.e. constant
pulse). The application clock(2) models a clock which toggles ON and OFF
alternately, and so on. Hence, in the application (clock n t), n determines
the frequency of the clock and ¢ represents the time at which the clock value

may be evaluated.

Finally, it is worth mentioning the fa:l mechanism built into ML. This can
be triggered by the fail command and is usually followed by an error message
explaining the reason for failure. The fail command is especially useful as an
escape from a program.

The error messages that follow a fail command usually consist of the name of
the function in which the failure occurred, thus indicating the code that caused

the failure. Messages following a failure, however, can be set to anything desired
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simply by using the command failwith s (where s is a value of type string) instead

of fail, thus generating failure with an error message s.

# hd[];;
evaluation failed hd

# failwith ‘main program!

evaluation failed mazn program
Failure can also be trapped. The value of the expression e;?e; is that of e; if e;
does not fail; otherwise it is the value of e;. This feature is useful as a ‘switch’
where the sub-program e, is executed by default but, in the case that e, fails, e;

will be evaluated rather than failing the entire program.

# (1+0)7100;;
100 : :nt

2.3 The HOL System

Terms of the HOL logic are represented in ML by enclosing them in double quotes.
The syntax of HOL terms has been described in section 2.1.1 although in practice,
various combinations of ascii characters are used to represent those logic symbols
not supported by the ordinary ascii terminal.

For example,
Vab.aDb=-aVd
is represented by
tab. a==>b == ~a\/b

In the rest of this thesis we shall use the notation of Section 2.1.1 (i.e. we will
be using V instead of ! and D instead of ==>). For a detailed account of the
representation of the logic in the HOL system see [22].

When a HOL term is entered in ML, it is type-checked (according to the type
rules of the logic—not ML) and, if successful, it is given the ML type term. Care
should be taken here not to confuse the terminology HOL terms and ML expressions

and, moreover, HOL types and ML types. The rule is as follows:

e A HOL term is a special kind of ML expression and is distinguished by a pair
of double quotes enclosing the logical term. HOL terms have an ML type
called term.
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e A HOL type is the type of a HOL term and forms an ML type called type.

HOL types are expressions of the form “:...”.

For example:

(1,2) is an ML expression with type (int#int).

e “(1,2)” is an ML expression with type term (since anything enclosed within
double quotes represents a HOL term). The HOL type of this term is

(num#gnum).

e Likewise, (“17,“2”) is an ML expression with type (term#term) where each

term has HOL type num.

e “:num” is an ML expression with ML type type. It represents the HOL type

num.

2.3.1 Theories: Definitions, Axioms and Theorems

In [20], a theorem is defined as a sequent that is either an aziom or follows from

other theorems by rules of inference, where

e a sequent is a pair (I',t) consisting of a finite set of boolean terms I' (called

assumptions) and a boolean term ¢ (called a conclusion),
e an aziom is a sequent postulated to be a theorem, and

e rules of inference are procedures for deducing new theorems from existing

ones (see Section 2.3.2).

When a sequent (I',¢) is a theorem it is written as I' I ¢ or, if I" is empty, as |- t.

Certain types of axioms are classed as definitions. Definitions are those axioms
of the form I ¢ = t where c is a constant not previously defined and ¢ is a term
containing no free variables. Of course, this kind of axiom is always safe as it
merely defines an abbreviation. Ideally, all axioms should be of a definitional
form since the freedom to postulate arbitrary axioms allows the introduction of
inconsistencies.

To make a definition, prove a theorem, or declare a new HOL type, one must
first enter a theory. A theory is a collection of types, type operators, constants,

definitions, axioms and theorems.
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New constants and types can be declared within theories. The distinction be-
tween variables and constants is, therefore, that variables are those terms (exclud-
ing function applications and A-expressions) which are not declared as constants
within a theory.

Theories can have other theories as parents. If one is working within a theory,
th say, and an object from theory th’ is required in th, then th’ must be declared
a parent of th. If th' is a parent of th then all the types, constants, definitions,
axioms and theorems available in th’ are available in th. Thus, th is said to be a
descendant of th'.

2.3.2 Primitive Inference Rules

Theorems in HOL are represented by values of type thm and must be distinguished
from values of type (term list)#term. For one to obtain a new value of type thm,
one must apply a sequence of events (constituting a proof) to either axioms or
previously proved theorems.

Such procedures for deriving new theorems are called rules of inference. The
following is an example of a rule of inference called modus ponens. The example
uses standard natural deduction notation where t; and ¢, denote arbitrary terms,
the theorems above the horizontal line are called the hypotheses of the rule and
the theorem below the line is called the consequent.

'iFtyDt, TLHt
Hur,kFt

Hence, if we have a theorem of the form I'1 F#, Dty,sayy > 1y >y Dy? >y,
and we also have the theorem which says that I y > y (i.e. the antecedent of the
implication in the first theorem is true, I'; - ¢;), then by the rule of modus ponens
the theorem y > 1 F y? > y is derived. In the example above, the assumption I'y
is empty.

Inference rules are represented in the HOL system as functions in ML. The core
of the HOL system is made up of a small set of inference rules called primitive
inference rules and a small number of definitions and axioms from which all the
standard rules of logic can be derived. Indeed, one can derive further inference
rules (called derived inference rules) which can be justified solely on the basis of
these primitive inference rules and axioms.

The choice of primitive inference rules and primitive axioms in HOL is, to a
certain extent, arbitrary, although it is desirable to keep them as small in number

as possible so that the implementation of the logic can be kept simple and clean.
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For the purpose of this thesis it is not important to list all the inference rules and
axioms. The reader is referred to [20] for further details including a complete list

of axioms and inference rules in the current version of HOL.

2.3.3 Tactics and Tacticals

In the previous section we described rules of inference and how they can be used
to carry out a proof. One starts with a set of definitions and theorems and ma-
nipulates them using the inference rules until the desired theorem to be proved
is achieved. In other words, truth is preserved from truth. This form of proof is
sometimes called forward proof.

The HOL system supports another way of carrying out a proof called goal
directed proof or backward proof. The problem with forward proof is that it can
often be difficult to foresee which definitions and theorems are required to prove
the end result, especially if the proof is long and complicated. The idea of goal
directed proof is to do the proof backwards, i.e. start from the desired result (called
the goal) and manipulate it until it is reduced to a subgoal which is obviously true.

A tactic is an ML function which reduces goals to subgoals. The concept of
tactics was invented by Robin Milner [16]. They are used for goal directed proving
as described above. Tactics are written in a similar notation to inference rules,
but with a double horizontal line. For example, mathematical induction can be

coded as a tactic of the form:

Vn. P[n]
P[0] Vn.P[n]D P[n+1]

If the induction tactic is applied to a term of the form Vn. P[n], then the two
subgoals P[0] and Vn. P[n| D P[n + 1] are generated.

A goal consists of a pair of values and has ML type (term list)#term. The
first element of the pair denotes the assumption list and the second element is
the term to be proved. A theorem is proved by applying tactics to every subgoal
generated until all subgoals are shown to be true, without the addition of invalid
assumptions (see [22]).

Tactics can be combined together by using certain ML functions called tacticals.
An example of a tactical is THEN where, if T} and T, are tactics then 7y THEN T,
evaluates to a tactic which first applies 77 to a goal and then applies T, to the

resulting subgoal or subgoals.
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In fact, what really happens when tactics are sequentially applied to goals is
that a proof tree is built at the same time as new subgoals are generated. Consider
a tactic T and a goal g. If (T g) is evaluated, a pair ([g;;...;gx],p) is obtained,
where p is a justification of the reduction of goal g to subgoals ¢;,..., ¢, (i.e. p can
be seen as a forward proof that can ‘reverse’ the tactic if the subgoal reduction is
correct). Hence, if one proceeds to apply more tactics to the subgoals ¢1,...,9x
until all further subgoals are reduced to empty lists of subgoals, and if all the steps
reducing [g1;. .. ; ¢gn] to [] are justified by a justification p/, then p'[] evaluates to a
list of theorems [ thy;...;F thy,] such that p[thy;...;th,] evaluates to a theorem
F th achieving g.

In the next chapter we move on to show how HOL can be applied to specifying
and verifying hardware. This chapter, although not intended as a HOL manual, has
served as an introduction to the main features of HOL which will enable a thorough
understanding of the rest of this thesis. Further information on all aspects of the
HOL theorem proving system can be found in the various references suggested
throughout the text (e.g. [20,22]).

27



Chapter 3

Specifying and Verifying Hardware

The first stage in the process of hardware verification is to write down the mathe-
matical and logical definitions that describe the behaviour of the particular hard-
ware to be verified. The next stage is to design a circuit which operates in the
manner specified in the behavioural definitions, and to write down definitions that
describe the implementation.

In this chapter we show various ways in which the HOL logic can be used to
write hardware specifications and implementation definitions. We also demon-
strate how these definitions are used in proof to verify hardware, and illustrate the
general ideas presented on the specification and verification of hardware by the

example of an n-bit adder.

3.1 Relational and Functional Specifications

In HOL, behaviour can be modelled in two different ways: by relations or functions.
The relational style is the usual way of writing specifications but the functional
style is necessary to facilitate simulation, as described later in the thesis.

Consider the device D shown below, with input line a and output line b.

D

a— —

The behaviour of this device can be modelled by defining a relation as follows:
Drei(a,b) = t[a,b]

where D, is a predicate symbol of two arguments which abbreviates some boolean
term ¢ [a, b] involving a and b. D,.(a,b) holds if and only if a and b are allowable

values on the corresponding lines of D.
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The behaviour of D can also be modelled using a function:

Dsun(a) = t[d]

where Dy, is a function symbol of one argument and ¢ [a] is some term involving a.
The application Dy,,(a) computes the output value on line b of device D given an
input value a.

The two models are different. In the relational model all ports of the device
are parameters to the specification and no distinction is made between inputs and
outputs. In the functional style, however, one is only interested in evaluating the
values on the output ports as functions of the inputs. Only the input lines are
needed as parameters.

For simple cases, the correspondence between the two styles of definitions is:

Dei(a,b) = (b = Dyyn(a))

In this chapter, however, we show that this is not generally the case, and an
alternative correspondence is explained.

Not only are the two styles different, but in certain cases a relational model
is possible when a functional model is not. For example, a delayless CMOS

n-transistor shown below:

a— 1L—y
can be modelled using a relation as follows:
Ntran(g,a,8) = (g > (a = b))

where Ntran is a predicate symbol abbreviating the definition of the behaviour of
an n-transistor [7]. The above definition states that Ntran(g, a, b) holds if and only
if a and b are equal whenever g is true. The predicate Ntran specifies a bidirectional
device because there is no distinction between inputs and outputs for the ports a
and b. The definition can be used to model port a as input and port b as output,
or vice-versa.

With functions, however, a model like the above is not possible. One would
have to define functions which model the transistor as a unidirectional device,
either with a as an input port and b as an output port, or vice-versa. Reasons
supporting the use of both relations and functions are given on page 31.

To see how structure can be specified in logic, consider a simple case when
internal lines are involved. The diagram below shows the connection of two devices

R and S via an internal line 4 to form a larger device with external ports a and c.
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The relational definition for the overall device is:
Dev,.(a,c) = 3b. Rye(a, b) A Syei(b, c)

while the functional definition is:
Devsun(a) = (let b = Ryyn(a) in (Ssun b))

The let statement used in the definition above is part of the HOL syntax. In fact
it is merely syntactic sugaring for the lambda abstraction used in the alternative

definition of Devy,,, below.

Devyun(a) = (Ab. (Ssun 5))(Ryun(a))

In order to be consistent, let statements will be used in functional definitions
throughout this thesis. Reasons for using let expressions instead of A-abstractions
are given in Chapter 4.

Two aspects of the above definitions come to attention here.

e The first is that of composition. In the relational model, this is represented by
conjunction (A). In the functional definition this is represented by evaluating
the output of the first ‘block’ in a structure and passing it on as input to the
next ‘block’.

e Hiding is the other aspect. In the relational model, the use of existential
quantifiers (3) enables one not to mention the internal line variables as pa-
rameters to the external relation. The same hiding effect is achieved in the

functional model by the use of let statements to declare local variables.

Traditionally, in HOL, it has been more common to model behaviour in a relational
way because it is relatively easy and natural to express the behaviour derived
from structure relationally. With the use of predicates, one merely states boolean
conditions which define the intended behaviour of a device and so one has the

advantage of:

¢ only stating the conditions describing the features of a device which are of

interest, thus forming a partial specification,
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e dealing with bidirectional devices by merely defining relations between ports
without distinguishing inputs from outputs (as seen in the transistor example

above).
Functional definitions, however, also have advantages.

e They are necessarily total. This will be demonstrated in the following sec-

tions discussing the verification of an adder.

e Given a suitable interpreter, they can be executed.

Hence, both relations and functions have advantages. It is therefore desirable to
have a theorem prover which supports both styles, and perhaps to translate from
one style to another.

Comparisons like “how both relations and functions cope with common tech-
niques such as hiding or structure” are important in developing some form of au-
tomatic mapping between relational and functional definitions, and are discussed
in a later chapter.

The relations and functions shown above are indeed very similar. This is
not, however, always the case, and the verification of an n-bit adder described in
later sections illustrates this. We first describe general statements that could be
proved to demonstrate the correctness of hardware designs using both relational

and functional models.

3.1.1 Verification using Relations

In this section, we present the general form of correctness statements that can be
proved using relational specifications. For simple devices it is possible to prove that
the implementation definition and the behavioural specification are equivalent.

The correctness statement is of the form:

Vii...0m 01...0p.
Imp,./(%15. - y%m,01,--.,0n) = Spec,(t1,y .. ytm,01,...,00)
where Imp,,; and Spec,,; are predicate symbols representing the implementation
and specification respectively, ¢, ... %, represent the input ports, and oy ... o, rep-
resent the output ports.
When modelling complex devices, however, the correctness statement is gen-

erally formulated as an implication of the form:

Vil...z'mol...o,,.
Imp,.;(31,- - y8m;01,.-.,04) D Spec, ,(Abs (i1, .. . ,im, 015 -, 0n))
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instead of as a logical equivalence.

In the above definition, Abs is some data abstraction function. The implemen-
tation and specification definitions can model a device using different data types
to represent external ports and internal lines and so a data abstraction function
can be required to convert the data representations of the implementation to that
of the specification [39].

The above implication is the typical form of a correctness statement using
relational definitions. An explanation of why it is usually wrong to require that
the implementation be logically equivalent to the specification when modelling
complex devices is given in [7] along with an account of the false implies everything

problem which can result from correctness statements like the above.

3.1.2 Verification using Functions

The kind of theorem which has to be proved when using functional definitions
looks like:

Viy...tm. Abs' (Imp sy (i1, .. ,0m)) = Abs” (Specy,,(Abs (1,...,im)))

where Abs, Abs’ and Abs” are some data abstraction functions. Again, a data
abstraction function Abs can be required to convert data representations of the
implementation to that of the specification. Furthermore, the functional defini-
tions need not be equal for all valid data values and so data abstraction functions
Abs’ and Abs” are also required to restrict and select the data for which the im-
plementation and specification definitions can be shown to be equal. The use of
data abstraction to select and restrict the domain of a function is analogous to
defining partial specifications when using relations. An example of the use of data
abstraction functions for this purpose is given in Section 3.4.2. In the case that
the specification and the implementation definitions are equivalent for all values
of data then Abs’ and Abs” are the identity functions.

Examples of the correctness statements explained above are given in following
sections describing the formal specification and verification of an n-bit adder. In
the next section we first define some data abstraction functions for handling bit-

strings which will be required to carry out the adder proof.

3.2 Representation of n-bit Words

Bit-strings, or n-bit words, are sequences of values called bits, used to represent

binary digits. In the adder example that follows, we represent n-bit inputs and
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outputs with functions from integers (representing bit positions) to booleans (rep-
resenting bits). For example, the 4-bit word TFTT is represented by a function f
say, such that f(0) = T, f(1) = T, f(3) = F and f(4) = T. The bit positions
start at 0, the position of the least significant bit (the rightmost bit in the above
example). The n*® bit, therefore, is at position n—1.

To perform arithmetic computations on the input values of the adder, we define
a function bitval which maps the boolean truth-values, T and F, to the integer

values, 1 and 0, respectively:
bitval(z) = (z = 1| 0)

In order to relate bit-strings to natural numbers we also define a function val by

primitive recursion, as follows:

val(0, f) = bitval(f(0)) A

val(n+1, f) = (2**1 x bitval( f(n+1))) + val(n, f)
The higher order function val computes the natural number corresponding to the
n-bit word represented by some function. This is done by using bitval to convert
the n** bit to 1 or 0, multiplying it by 2" to obtain the integer value denoted
by that bit at position n, and adding this result to the value represented by the
remaining n—1 bits computed recursively. The recursion halts when the word is
only one bit long (i.e. when n=0) and hence, returns an integer value of either 1
or 0.

We also need to define a function boolval which maps natural numbers to binary

words, i.e. the inverse of the function val. The higher order function boolval is
defined recursively on n, the number of bits which the word representation of a

number v should have. The application (boolvaln v) returns a function f say, such
that f(n) f(n—1) ... f(0) is the word representation of:

o v,if 0 < v < 27
e 27+l _ 1 the largest number that can be represented by n bits, otherwise.
The formal definition of boolval is given below.
boolval 0v = (Am. (m = 0) = (v > 1) | ARB_.VAL) A
boolval n+1v =
(Am. (m = (n+1)) = (2" < v) |

(2! < v) = (boolval n (v—-2"*1) m) |
(boolval n v m))
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The base case of the definition above defines the representation of a one-bit
word. The values of v that can be represented (as one bit) are either 1 or 0,
which map to T or F respectively. Hence, the application (boolval 0 v) returns
a function which, when applied to 0, returns the bit that represents the value
of v. For example, if v = 1 then (boolval 0 v) returns a function f say, such that
f(0) = true. If the function is evaluated for any other bit position, the result is
undefined and so it is desirable to return some arbitrary value.

This can be done by defining a constant ARB_VAL which represents an arbitrary
value of type bool by using Hilbert’s choice operator €. The constant ARB_VAL is
defined as follows:

ARB_VAL = ¢ z:bool. T
The definition states that ARB_VAL is that boolean value such that T holds, i.e. any

value. Because of the way ¢ is axiomatised in higher order logic, nothing can be
proved about ARB_VAL that does not also hold for every value of type bool; it
therefore represents an arbitrary value.

In the recursive case of the definition of boolval, a function is returned which
recursively computes the bit at the required position. For example, the application
(boolval n+1 v) returns a function g say, which when evaluated for bit position
n+1, returns T if v > 2"*1: F otherwise. When g is evaluated for bit positions less
than n+1, the bit is computed recursively from the integer v if the value of v is
less than 2"*!; from the result of v—2"*! otherwise.

The abstraction functions described above for relating natural numbers to bi-
nary digits, are required to specify and verify the n-bit adder presented in the

following sections.

3.3 A 1-bit Full-Adder

This section illustrates the proof of a 1-bit full-adder in preparation for the verifi-
cation of the n-bit adder discussed in the sections following.

A full-adder cell consists of two components, SUM and CARRY, which generate
a sum and carry-out from two inputs and a carry-in. Together, the components
SUM and CARRY (shown in Figure 3.1) compute the binary addition of three
bits. For example, if 7y, ¢, and cin have values 1, 1, and 0 respectively, then SUM

computes the binary sum 0 and CARRY computes the carry-over value of 1.

The desired behaviours of the components SUM and CARRY are specified by
the predicates SUM,.; and CARRY,.;, or by the functions SUMy,,, and CARRY 4,,,
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i1 iz cin

SUM CARRY

out cout

Figure 3.1: A Full-Adder

as follows:

SUM,«1(41, 12, cin, out) = (out = (023 A nig Acin) V (-8 Adg A =cin) V
(i] A _"iz A —|cin) A (21 A ig A czn))

CARRY, (1,13, cin, cout) = (cout = (i3 Aiz) V (i1 Acin) V (i3 A cin))

SUM (21, 82, cin) = (miy A mig A cin) V (—ip A A —ein) V
(il A _\1:2 A —Icin) \% (Zl A iz A czn)

CARRY f, (31,43, ctn) = (i1 At3) V (i1 Acin) V (iz Acin)

The above definitions of SUM and CARRY are derived from the truth tables
describing their behaviour. The implementations of the SUM and CARRY devices,
as shown in Figure 3.2, consist of simpler components, namely or-gates, and-gates

and xor-gates.

cin @ P4
: OR cout
iy — :@_ D2
D ey
i @7 D1 i XOR out

Figure 3.2: Implementations of CARRY (left) and SUM (right)
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These logic gates are defined as primitives using the relations:

ORrel(il7 iz’ 0) = (O =uV 22)
ANDrel(ilvi%o) = (0 =1 A 1’2)

XORrel(ily i27 0) = (0 = (21 A _'i2) \' (_‘il A 7‘2))
or, in the case of SUMy,,, and CARRY,,, the functions:

ORjun(t1,82) = (51 V 42)
AND fun(i1,32) = (31 A 42)
XORfun(ila 7‘2) = (1’1 A —‘i2) v (_‘il A 22)

As shown in the previous section, the two styles of expressing behaviour are
sometimes closely connected. The similarity between the corresponding relational
and functional models of the logical gates above is obvious. Slightly less obvious
is the connection between the implementation definitions of SUM and CARRY.
Consider the definitions for SUM. The relational definition based on the structures
shown in Figure 3.2 is defined using a predicate SUM_IMP,.;:

SUM_IMP, (31, 22, cin, out) = Ip. XOR,e(21, p, out) A XOR,«(z2, cin, p)
The functional definition, however, uses a function SUM_IMPy,,,, where
SUM_IMP ¢, (21, 22, cin) = (let p = XORfyn (22, cin) in XORfyn (%1, p))

The technique of hiding the internal line p is demonstrated in both definitions.
In one case p is bound using an existential quantifier, while in the other case
it is bound within a let statement on the right hand side of the equation. The
definitions for CARRY follow a similar style:

CARRY_IMP,.(t1, 22, cin, cout) =

3p1p2paps.
AND,.el(il, iz,pl) A ANDrcI(ily Cin,p2) A

AND'rel(iZa Cin')p4) A ORreI(pl,p%pS) A
ORrel(piia D4, COUt)

CARRY_IMP syn(21, 22, cin) =
let h = ANDfun(ilai2)
and p; = ANDy,, (%1, cin)
and pg = ANDy,,.(2, cin)

in

let ps = ORyyn(p1,p2)
in

ORfun(pS’ p4)
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From these definitions it is routine to prove the four theorems below [7].
F SUM, (41,12, cin, out) = SUM_IMP,(34, %3, cin, out)
F CARRY (21,12, cin, cout) = CARRY_IMP,.(31, 22, cin, cout)
F SUM (31, 2, cin) = SUM_IMP £, (24, 23, cin)

F CARRY jun(i1, é2, cin) = CARRY_IMP 1., (i1, i3, cin)

An outline of the proof of correctness for the implementation of SUM using rela-
tional definitions is given in [7] and the proof for the implementation of CARRY is
almost identical. The proofs for the functional implementation definitions of SUM
and CARRY are also very similar. Below is an outline of the proof of the functional
definitions of SUM.

1. The theorem we wish to prove is:

SUMy,,,.(41, t2, cin) = SUM_IMP 4,,(31, %2, cin)
2. Expanding using the definition of SUM_IMPy,,,, gives:

SUM 44, (41, 22, cin) = (let p = XORyun (32, cin) in XOR ty5(1, p))
3. Expanding using the definition of XORy,, yields:

SUM_fun('l:l, 1:2, czn) =
let p = ((32 A —cin) V (-1 A cin))

n
(t2A=p) V (miy Ap)

4. Eliminating the let statement gives:

SUMy,,.(%1, 22, cin) = (43 A 2((32 A —cin) V (—ia A cin))) V
(721 A ((32 A ncin) V (—ig A cin)))

5. Expanding using the definition of SUMy,,, we obtain:

(_‘il A —‘ig A CZTL) Y (_‘il A 7:2 A —vcin) A%
(31 A =i A mcin) V (i3 Adg A cin)

(i] A _|((1:2 A —|cin) A% ("11:2 A czn))) \
(=1 A ((32 A =cin) V (=ig A cin)))
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which can be proven by simple boolean algebra, hence proving the original

term.

A full-adder, ADD1, can now be defined as a ‘block’ by combining the defini-
tions for SUM and CARRY. Relationally, we obtain:

ADD1, (31,12, cin, out, cout) =
SUM, (21, 22, cin, out) A CARRY (31, 22, cin, cout)

and functionally:

ADleun(il, i2, CZTI,) =
let out = SUM (1,22, cin)
and cout = CARRY g4, (%1, 32, cin)
in (out, cout)

3.4 An n-bit Adder

We now outline the verification of an n-bit adder, showing how it can be modelled

in HOL using both relational and functional definitions.

a b

43l
ADDER

cin — — cout

v

out

Figure 3.3: Specification of a Binary Adder

Figure 3.3 shows the specification diagram of the adder. It shows a device
ADDER which takes three inputs: two n-bit words a and b, and a carry-in bit cin;
and returns two outputs: the n-bit sum out, and the carry-out bit cout. The single
bit values on cin and cout are represented by booleans, and the n-bit word values
on a, b and out are represented by functions of type num—bool (as explained in
Section 3.2).

The relational specification of the behaviour of the adder given below uses val
and bitval to relate the outputs out and cout to the inputs a, b and cin by showing
that the integer representation of the outputs is equal to the sum of the integer

representations of the inputs.

ADDER.SPEC,(n,a, b, cin, out, cout) =
(2™*! x bitval(cout)) + val(n, out) = val(n, a) + val(n,b) + bitval(cin)
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The functional specification for the adder, ADDER_SPEC;,,, can be defined as

shown below:

ADDER.SPECy, nabcin =

let int_sum = (val n a) + (val n b) + bitval(cin)

in

let sum = (boolval (n+1) int_sum)

in

(sum, sum(n+1))
It uses val and bitval to compute the integer sum of a, b and cin, and converts
the result to a binary word by using the inverse of val, boolval. The function
ADDER_SPEC;,, returns a pair of values: the first element sum is a function
which represents the result of adding a, b and cin, and the second element is the
carry value evaluated by sum(n+1), the most significant bit of the n-bit addition

of a, b and cin.

a(0) b(0) a(n—1)b(n—1) a(n) b(n)
|| Ll L
i ADD1 R ADD1 ADD1 L cout
1 1 |
out(0) out(n—1) out(n)

Figure 3.4: Implementation of a Binary Adder

Figure 3.4 above, showing iterated 1-bit adder slices, can be represented in
logic in several ways [21]. The most straightforward way to achieve a relational

model is to use a primitive recursive definition as follows:

ADDER_IMP,.(0, a, b, cin, out, cout) = (cout = cin) A
ADDER_IMP,.(n+1, a, b, cin, out, cout) =
3 en. ADDER_IMP,o(n, a, b, cin, out, cn) A
ADD1,.(a(n), b(n), cn, out(n), cout)
Here, if the value of n is 0 then no addition is performed but cin is wired straight
through to cout (i.e. we have a 0-bit adder). There is no value associated with
out in the base case of the relational model shown above so the specification is
only partial. This brings up a problem when defining the functional model. All
functions in HOL must be total functions, and so it is not possible to partially
specify behaviour as in the case of relations. The function must be defined in all

cases—even in the don’t care cases.
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To solve this we could define a constant ARB_FUN which represents an arbitrary
function of type num—bool in a way similar to the way that ARB_VAL was defined
on page 35. The constant ARB_FUN is defined as follows:

ARB_FUN = ¢ finum—bool. T

Arbitrary values, however, provide a commonly used technique for choosing
don’t care values, especially when converting partial specifications to total func-
tions. It is therefore convenient to define an arbitrary value of polymorphic type a

as follows:
ARB=¢z:a. T

Separate definitions for ARB_.FUN and ARB_VAL are hence no longer necessary,
since the constant ARB can be used in either case with its type « instantiated to
num—bool and bool respectively.

When defining the implementation of the adder functionally, now, the out-
put out can be set to ARB in the case when n is 0, thus making the function
ADDER_IMPy,, total.

ADDER.MPy,, 0 a b cin = (ARB, cout) A
ADDER_IMPy,, n+labcin =
let (out,cn) = (ADDER_IMPy,, na bcin)in
let (outn, cout) = ADD1y,,(a(n), b(n),cn) in
((Am. (m=n) = outn | out(m)), cout)
The function ADDER_IMPy,,,, is recursive and curried over its parameters. It com-

putes a pair with the following elements.
e The first is a function which represents the n-bit output.

e The second is the carry-out (or overflow).

From the definitions of ADDER_IMP,.; and ADDER_IMPy,,, it is evident that
the function is not an obvious translation of the relation because the functional
definition contains more information. In the base case, the function gives the value

on out at time 0. In the recursive case, the output out is defined as a \-expression:
Am. (m=n) = outn | out(m)

which computes the entire n-bit wide bus output by an n-bit adder. A direct
translation of the relation would not include such a definition of out, and although

all n bits on out would be recursively computed, only the last value out(n) would
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be returned, but such a functional definition would not be an accurate model
of the n-bit adder shown in Figure 3.4 where all n output lines are specified as
external ports. The problem here is that in the relational definition it is enough
to model the structure of the device by showing the way in which components are
connected. In the functional definition, however, it is also necessary to ensure that
the outputs computed by the function model exactly the outputs of the device.
Automatic translation from relations to functions is by no means straightfor-
ward and is dealt with in Chapter 6. Verification is needed to show that the

functions and relations do model the same behaviour.

3.4.1 Formal Proof of Relational Specifications

To show that the implementation of an n-bit adder correctly performs binary

addition, we prove the following theorem about the relational models of the adder.

Vn.Vabcin out cout.
ADDER_IMP,(n+1, a, b, cin, out, cout) D
ADDER_SPEC,(n,a, b, cin, out, cout)

The correctness statement above, unlike those for the SUM and CARRY compo-
nents on page 38 formulated as logical equivalences, is expressed as an implication
as explained in Section3.2.

The proof of the relational models of the adder proceeds as follows by perform-

ing mathematical induction on n. The basis and step cases obtained are:

Y a b cin out cout.
ADDER.IMP,(0+1, a, b, cin, out, cout) D
ADDER.SPEC, (0, a, b, cin, out, cout)

and

V a b cin out cout.
ADDER_IMP,(n+1, a, b, cin, out, cout) D
ADDER_SPEC,y(n,a, b, cin, out, cout)

D

Va b cin out cout.
ADDER_IMP,(n+1+1, a, b, cin, out, cout) D
ADDER.SPEC,,(n+1, a, b, cin, out, cout)
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Proving the basis case is straightforward but the step case is tedious though

not difficult. A brief outline of this proof is given below.

1. The proof of the basis case is done by repeatedly expanding using the defi-
nitions of ADDER_IMP,.; and ADDER_SPEC,.; to obtain:

(3 en.(en = cin) A ADD1,.(a(0), b(0), cn, out(0), cout)) D

(2°+1 x bitval(cout)) + val(0, out) = val(0, a) + val(0,b) + bitval(cin)
which is proved by eliminating the existential quantifier, expanding using
the definitions of ADD1,,;, SUM,.;, CARRY,;, val and bitval, and using the
excluded middle axiom to perform boolean case analysis on a(0), 5(0) and

cin.

2. The induction step is proved by expanding using the definitions of val,
ADD1,, SUM,., CARRY,., ADDERSPEC,. and ADDER_IMP,;, assuming
the induction hypothesis, and performing modus-ponens with the assump-

tions to obtain:

V n a b cn out cout.
(out(n+1) = (—~a(n+1) A =b(n+1) Acn) V
(ma(n+1) A b(n+1) A =cn) V
(a(n+1) A ~b(n+1) A ~en) V
(a(n+1) A b(n+1) A cn)) A
(cout = (a(n+1) A b(n+1)) V (a(n+1) A cn) V (b(n+1) A cn))
)
(2™ x bitval(out(n+1))) + (2" x bitval(cout)) =
(2! x bitval(a(n+1))) + (2! x bitval(b(n+1))) +
(27! x bitval(cn))

which can be proved by eliminating the universal quantifiers, assuming the
hypothesis, rewriting using the assumptions, and repeated use of the ex-

cluded middle axiom.

3.4.2 Formal Proof of Functional Specifications

From the definitions of ADDER_SPEC;,, (page 40) and boolval (page 34), it is
clear that if n is the number of bits in a and b being added together then sum
only evaluates to non-arbitrary values for arguments between 0 and n+1 inclusive.
For example, looking back to the definition of ADDER.SPECy,, it can be seen
that:

ADDERSPEC,, 4 a bcin
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returns a function sum and an overflow sum(5), where sum evaluates to non-ARB
values for parameters 0, 1, ..., 5. Furthermore, only the first 4 values of sum
correspond to the out bus shown in Figure 3.4 (i.e. the sum of a and b without the
overflow) so we would like to abstract only the first four bits of data from sum in
order to compute the value returned on out.

To do this we define a data abstraction function Data_Abs as follows:
Data_Absn = (valn)® I

where I is the identity function and ® is an infix operator which takes two functions

as arguments and applies them to the respective elements of a pair as defined below.

Iz=z
(f ®9)(z,y) = ((f 2),(9 y))
When Data_Abs(n) is applied to ADDER_SPEC;,, it applies val(n) to sum and
I to sum(n + 1) thus restricting the domain of sum to 0, 1, ..., n to represent
out, and leaving the overflow cout represented by the second element of the pair
untouched.
To show the correctness of the functional definitions of the adder, therefore,

we prove the theorem:

Vnabcin.
Data_Abs n (ADDER_IMPy,,, n+1abcin) =
Data_Abs n (ADDER_SPEC;,, n a bcin)

The proof of this correctness statement is long and complicated, and makes use
of several lemmas. A brief outline of this proof is shown below, but without
stating any of the lemmas used. The outline is not intended to provide a thorough
understanding of the proof, but merely to provide an idea of what is involved and
how it proceeds.

Each of the functional definitions in the correctness statement above computes
a pair of type ((num—bool)#bool). Therefore, each pair p say, can be rewritten
as (fst(p), snd(p)), simplified using the definitions of Data_Abs, I and ®, and the

resulting equality rewritten as a conjunction of two equalities using the theorem:

F ((a,b) = (¢, d)) = ((a=c) A (b=d))

to obtain the statement consisting of two separate equations for the values on the

output busses out and the carry lines cout, as shown below.
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Vnabcin.
(val n (fst (ADDER_IMPy, n+1 abcin)) =
val n (fst (ADDERSPEC;,, n a bcin))) A
(snd (ADDER_IMPy,, n+1 a b cin) = snd (ADDER_SPECy,, n a b cin))

The proof proceeds by performing induction on n. The basis and step cases

obtained are:

Vabcin.
(val 0 (fst (ADDER_IMPy,,, 0+1 abcin)) =
val 0 (fst (ADDERSPECy,,, 0 a bcin))) A
(snd (ADDER_IMPy,, 0+1 a b cin) = snd (ADDER_SPEC;,,, 0 a b cin))

and

(Vabcin.
(val n (fst (ADDER.IMP,, n+1abcin)) =
val n (fst (ADDER.SPECy,, na bcin))) A
(snd (ADDER_IMPy,,, n+1 a b cin) = snd (ADDER_SPEC,,,, n a b cin)))

D)
(Mabcin.
(val n+1 (fst (ADDER_IMPy,,, n+1+1abcin)) =
val n+1 ( fst (ADDERSPEC;,, n+1a bcin))) A
(snd (ADDER-IMP,, n+1+1abcin) =
snd (ADDER_SPEC;,, n+1 a b cin)))

The proof of the basis case is done by repeatedly expanding using the definitions
of ADDER_IMP¢,,,, ADDER.SPEC,, and ADD1y,,, by changing the let statements
to A-expressions, and by using 3-conversion to eliminate the A-expressions to ob-

tain:

Vabcin.

(val 0 (Am. (m=0) = SUM¢,,.(a(0), b(0), cin) | ARB(m)) =

val 0 (boolval 0+1 ((val 0 a) + (val 0 b) + bitval(cin)))) A

(CARRY y4n(a(0),(0), cin) =

boolval 0+1 ((val 0 a) + (val 0 b) + bitval(cin)) 0+1)
The above goal is a conjunction of two equations: the first conjunct compares the
sum components, and the second conjunct compares the overflows. The goal is
proved by specialisation of the universally quantified variables, expanding using
the definitions of SUMy,,,, CARRY 4,,, val, boolval and bitval, using S-conversion
to evaluate A-expressions, simplifying using simple laws of exponentiation and
boolean algebra, and using the excluded middle axiom to perform boolean case
analysis on a(0), b(0) and cin.
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The induction step is proved by assuming the induction hypothesis, expanding
using the definitions of ADDER_IMP,,, ADDER_SPEC;,, and ADD1;,,, changing
the let expressions to A-expressions, and applying S-conversion to obtain the goal

below, once again separating the sum from the overflow.

Yabcn.
(valn+1
(Am. (m=n+1) =
SUM¢,,(a(n+1),b(n+1), snd (ADDER_IMP ,,, n+1 a b cin)) |
fst (ADDER_IMP,, n+labcin) m) =
val n+1
(boolval n+1+1 ((val n+1 a) + (val n+1b) 4 bitval(cin)))) A
(CARRY f,.(a(n+1),b(n+1), snd (ADDER_IMP,,, n+1 a b cin)) =
boolval n+1+1 ((val n+1 a) + (val n+1 b) + bitval(cin)) n+1+41)

The goal is proved by expanding using the definitions of val and boolval, per-

forming B-reduction and modus-ponens, and rewriting using the assumptions and

several lemmas.

3.5 Proofs Relating Functions and Relations

In the previous sections we have shown that functional definitions sometimes carry
more information than relational definitions, especially when the relational defini-
tions are partial or when extra information is required to specify the outputs in
the functional definitions.

It is clear, therefore, that in cases like the above it is not possible to prove the
functional definitions equivalent to the corresponding relational definitions. When
the two styles of definitions carry the same amount of information, it is possible

to prove them equivalent; otherwise the following relationship will hold:

‘v’il...z'mol...on.
((01,--.,0n) = Defun(i1, ... ,0m)) D Defra(y, ... im,01,...,0q)

The two theorems relating the functional and relational definitions of the adder

are:

((out, cout) = (ADDER_IMPy,,, (n+1) a bcin)) D
(ADDER_IMP,; (n+1) a b cin out cout)

and

((out, cout) = (ADDERSPEC;y, nabecin)) D
(ADDER-SPEC, 1 a b cin out cout)
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The converses of the above implications do not hold because in both cases the
functional definitions are more detailed.

For example, in the proof of the first correctness statement above concerning
the implementation definitions of the adder, induction on n is performed, and the

basis case subgoal is reduced to the following term:
((out, cout) = (ARB, cin)) D (cout = cin)

which is easily shown to be true. The same term would clearly be false, however, if
the implication were to be replaced by an equivalence since there is no information
regarding out on the right hand side of the implication. This example provides a
simple yet typical case to explain why the more detailed definitions imply the less
detailed, but not vice-versa.

Once again, both proofs are rather long, tedious and complicated, needing
many supporting lemmas. Induction on n is essential in both cases and several
different techniques (such as rewriting, modus-ponens and J-reduction) are re-
quired to conduct the proofs. Automatic tools, such as a tautology checker and a
partial decision procedure for Presburger arithmetic! were useful in conducting the
final stages of the proofs where the theorems were reduced to instances of propo-
sitional logic or Presburger arithmetic. Both decision procedures work purely by

inference so their application within a proof preserves the soundness of that proof.

ADDER_IMP;.; n+1abcin out cout C ADDER (l(’z:/'d;;caut) =+1 boi
- fun n+labcin

Data_Abs n (ADDER-'M Pf,m n+1labcin)

v [
Data_Abs » (ADDER_SPEC;yy nabcin)
ADDER_SPEC,..; nabcinout cout C (out,cout) =
ADDER-SPECfu,, nabcin

Figure 3.5: Correctness Theorems

1These automatic tools were developed and implemented by the author, but are at the moment
still undocumented.
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Figure 3.5 shows how the four adder definitions are related in proof, and how
the functional definitions are found to be more detailed. It is interesting to note
the directions of the implications in the theorems as shown in the diagram, where
the definition containing least detail is shown to be the relational specification of
the adder.

The proofs of all the above mentioned theorems and lemmas were carried out

using the HOL theorem proving system.
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Chapter 4

Executing Specifications

In Chapter 3 we discussed how the behaviour and structure of digital circuits can
be expressed in the HOL logic. The example of an n-bit adder was used to illustrate
how specifications are written and how they are used in correctness proofs.

Even in the relatively easy example of the adder, however, it was by no means
straightforward to show that the specifications were satisfied. The process of writ-
ing down correct specifications involves much checking by hand; the specifications
have to be simulated on paper over a range of cases until sufficient confidence is
gained that the specifications are correct.

Simulating specifications is, therefore, unavoidable and a mechanical tool to
conduct such simulations is of course a natural solution since complicated defini-

tions are too tedious, or impossible, to check by hand.

4.1 ML as a Simulation Language

In this chapter we discuss the application of ML to simulation. In Chapter 1
various attempts to apply programming languages to hardware simulation were
mentioned, but few of these were done in the context of a formal proof system.
ML is of special interest to us because it is the meta-language of HOL and will
therefore provide a natural target language for the execution of the HOL logic
discussed in Chapter 6.

Since ML is primarily a functional programming language, we shall be con-
cerned with executing functional specifications. With certain languages it is pos-
sible to execute relations, such as in [9] where William Clocksin has used PROLOG
to simulate digital circuits using relations. With ML, however, it is necessary for
the specifications to be in a functional form, where parameters are passed as inputs

and values are calculated and returned as outputs.
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In Chapter 6 we will show how ML simulation models can be automatically
generated from relational HOL specifications. Often there are several ways of
writing the same specification, but in this chapter we stick to one style only; a
style that suits automatic translation. This style does not always provide the
most straightforward model, but it is consistent in the sense that all the hardware
features discussed can be expressed in the same manner. The reason for adhering
to the same style of writing specifications, rather than writing specifications in an
ad-hoc fashion is that we need a 1-1 correspondence between HOL relations and ML
functions to facilitate automatic translation. The choice of style is not arbitrary;
it is the style which provides the strongest resemblance to the HOL specifications.
In the following sections we give a detailed explanation of this style, and with the
aid of several examples we show how it can be used to model many aspects of

hardware design.

4.2 Combinational Circuits

There are many levels of detail at which hardware circuits may be described. The
level at which circuits will be specified, simulated and discussed in this thesis is
called the register-transfer level.

At the register-transfer level one makes use of the standard logical gates as
primitives for building circuits by structuring these simple components into larger
blocks. The flow of data between registers is modelled as signals which are ap-
proximated by sequences of digital values. At this level, time is treated as discrete
(i.e. it is represented by integers in ML) and so these sequences constituting signals

consist of values that are valid during successive clock cycles.

4.2.1 Modelling Logic Gates

Combinational devices such as the inverter are assumed to have no delay. Their
outputs are computed as instantaneous results of applying functions to their in-
puts. The three basic logic operations, ‘and’, ‘or’ and ‘not’, can be performed by
using the ML infix operators & and or, and the prefix operator not respectively.

So the logic gates shown below:

“anD “o
(4] R (e} a (4]
b— b—

in which a and b are the inputs and o is the output, can be modelled by defining
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corresponding functions AND, OR and INV as follows:

let ANDab=leto=a&bino
letORab=Ileto=aorbino
letINVa=Ileto=notaino

Immediately the style we adopt for writing definitions becomes obvious. Sim-

pler and more natural definitions could have been used, such as:
let AND' a b = a&b

but instead we use a style in which a function modelling the behaviour of the
device is applied to the inputs, and the result is bound to an output using a local

let declaration. There are three main reasons for this:

e The adopted style provides a very descriptive model of the contemplated
hardware circuit; it shows how the function describing the behaviour of the
device is applied to the values on the input ports to evaluate the values that
should appear on the output ports. In the alternative definition of AND'
shown above, this detail is somewhat obscured because there is no mention

of an output port.

o Functional programs written in this style show an obvious relationship to
relational specifications written in HOL. For example, the corresponding HOL

relational model for a two-input AND gate is commonly written as:
AND(a,b,0) = (o =a Ab)

The functional definition written in the adopted style is closer to the above
relation than the alternative function AND’, once again, mainly due to the
modelling of the output ports. The difference is much more pronounced in

more complicated examples.

e The adopted style is necessary to model certain features of hardware design,
namely feedback in sequential circuits. Keeping to the same method for
all models, therefore, makes automatic translation from HOL relations to
ML functions easier. Examples on how sequential devices are modelled are

presented later on in the chapter.

Other gate primitives such as NOR and NAND can be modelled by composition

of the basic logic operations. For example, a two input NAND gate can be modelled

by
let NANDab=Ileto=not(a&bd)ino
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while a two input NOR gate can be modelled by
let NORa b =leto=not(aorb)ino

Logic gates with more than two inputs can similarly be specified by simply per-
forming the logical operations of the gate on two of the inputs and then repeatedly
applying the operation on the result and the next input until the logic operation

is performed on all inputs. For example, the four-input AND gate shown below:

aq —
b —
c —

d —

can be specified as:
let ANDabcd=leto=((a&b)&c)&dino

Both & and or are commutative and associative on variables! so the order in which

the operation is applied to the inputs in such cases is irrelevant.

4.2.2 Modelling Behaviour

Once we have established a technique for specifying logic gates, more complicated
devices can be modelled by composing several gates together. Indeed, it soon
becomes tedious to describe large circuits using their logic gate components and it
becomes necessary to group together various components of a circuit into ‘black-
box’ devices.

For example, consider a device D with input ¢ and output b.

D

a— b

The behaviour of the above circuit can be modelled by using the ML let declaration:
letDa=Iletb=t[a]inbd

where the value on the output line b is set to the result of the expression t[a] which
models the behaviour of device D.
The previous models for logic gates, therefore, were merely special cases of this

model for an arbitrary device. For example, in the model for the inverter, INV

1They are not, of course, commutative and associative for arbitrary expressions, e.g. fail& false
is not equal to false & fail.
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can be seen as a particular case of D and the expression t[a] which specifies its

behaviour is the application not(a).
In fact, in general, a device D may have several inputs and outputs as shown in

the diagram below where ay,...,a, are the inputs and by,. .., b, are the outputs.
a, —D — by
a; — — bs
a, —| —— b,

The general model for the above device is achieved by using tuples to represent

the multiple input and output lines.
let D(ay,...,a,) = let (by,...,bn) =t[ay...as]in(by,...,bn)
Once again, the abbreviation:
let D(ay,...,a.) =t[ay...an)
is equivalent to the above definition; we use the former version for consistency and
ease of translation (as explained on page 51).

An optional (and equivalent) way to specify the behaviour of the above device

is to curry the parameters of D to obtain:
letDay...a, =let (by,...,bn) =t[ar...an]in (by,...,by)

The advantage of defining functions with curried parameters, of course, is that the
functions can be partially applied, i.e. a function can be applied to one argument
at a time, each time returning a function with one less argument. With the
arguments in a cartesian product form, however, the function must be applied to

all parameters at once.

4.2.3 Modelling Structure

Devices can be connected in parallel or in series. For example, consider a device D

consisting of two devices, D; and D,, connected as shown below:

.............................




The structure of such a device can be specified using the and construct in a let
statement which allows simultaneous declarations. This neatly captures the notion
of devices connected in parallel where the values on the output lines are calculated
as function applications of the input lines independent of one device to another.
The order in which the output values are calculated in a simultaneous declaration

is irrelevant.

letDa=letb=D;a
andc=D;a
in (b,¢c)
The and construct used in the above specification is part of the syntax of the ML
let statement used for simultaneous declarations and must not be confused with
the & operator used previously as a logical ‘and’ operation.
Devices connected in sequence, such as in the example below, are modelled by

using the in construct to join let statements together.

D] b Dg

The specification shown below uses two local declarative statements in sequence
where the output value of the first device is evaluated and passed on as input to
the second device. The order in which the declarative statements appear in the

specification is, this time, obviously important.

letDa=Iletb=D;a
in
letc=Dyb
inc
Only external inputs to a device are parameterised in the functional specification
definition. In the above example, b is an output with respect to D; and an input
with respect to Dj, but it becomes an internal line once D; and D, are grouped
to form a larger device D. It is, therefore, said to be hidden from the external
representation of device D.
At this stage, the reasons for writing ML specifications in the particular style
chosen begin to become obvious. The specifications reflect very closely the struc-
ture of the circuit; they show the functional specification of a device being applied

to its inputs, and the result declared to the outputs.
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Of course, the above programs for representing parallel and serial composition

can be abbreviated to:

let D a = ((D1 a), (D2 a))
and

let D =D;0D,

respectively. These abbreviated versions, however, do not offer such an obvious
representation of structure.

Furthermore, the specifications expressed in ML in the chosen style, and those
expressed in HOL in Chapter 3 are very similar. The syntactic sugaring sup-
ported by the implementation of the HOL logic makes use of let statements, tu-
ples, etc. much in the same way as ML, and specifications written in HOL are very
similar to those written in ML in the described style. The similarity in the way
circuits are expressed in HOL and in ML will be useful when translating HOL defi-
nitions into ML programs (discussed in Chapter 6) because it makes the mapping

clean and straightforward.

4.2.4 Dealing with Partial Specifications

Very often, when writing a specification for a device, only certain features of its
behaviour are of interest. One designs a device to behave in a certain way under
certain conditions, but does not care about how it behaves under other conditions.
A partial specification is therefore used to describe the required behaviour of the
circuit; anything else remaining unspecified.

For simulation purposes, however, some result must be computed for all data,
and so the functions used need to be total. Whenever only a partial specification
of the behaviour of a device is available, therefore, it is necessary to construct
a total function which models cases outside the scope of the partial specification
as don’t care cases. In ML, this can be done by using a conditional statement to
branch off to a fa:l command in unspecified cases.

For example, consider the following device ELEM which takes two inputs: a

four-bit wide bus b and an integer n, and returns one output: a bit & corresponding
to the n' bit of b.

_~\JELEM
b

7 ——»
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Before describing the specification for this device, the ML representation of
busses must be described. Busses can be modelled in several ways; one way is
to use higher order variables as described in Chapter 3 for the representation of
binary words in HOL. Thus, we can represent the bus b in the above diagram by
a function of type int—bool such that b(0) returns the first bit, (1) returns the
second bit, and so on.

The informal specification of the device ELEM: to select the nt* bit of bus b,
and output the bit on line z, is partial. It assumes that the input to the device
will always be valid, i.e. for a bus b containing exactly four bits, n is always within
the range 1 < n < 4. Nothing is said about the behaviour of ELEM when the
inputs do not comply to the above assumptions (e.g. if n is outside the specified
range). In fact, one does not care about such cases; the device only ‘makes sense’
when presented with the right kind of input and one should ensure that the input
is valid before operating the device.

If the partially specified device forms part of a larger circuit such that the
inputs to the device are generated by the preceding circuitry, then the generation
of invalid inputs is an indication of bad design or inaccurate modelling of the
preceding circuit. In other words, if the circuit functions correctly, inputs should
always be valid and failure should never occur.

The ML specification for the ELEM device, therefore, forces failure upon an

attempt to evaluate the output line for unspecified cases.
letELEMnb=letz=(1<n)A(n<4)=bn-1)]| failinz

The function checks that the bit selector n lies within the range 1 through 4 before
attempting to compute the appropriate bit. The advantage of this technique is
that it points out errors during simulation and it enables one to trace inaccuracies
in the specifications.

Once again, the above definition could be abbreviated to:

let ELEMnb=(1<n)A(n <4)=bn-1)| fai

4.3 Sequential Circuits

The kind of circuits described so far have been straightforward to model. Very
often, however, circuits are more complicated and it becomes necessary to model

features like:
o delay—where the input signals take time to propogate to the output signals,
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o clocks—where the flow of data through a circuit is controlled to ensure that

events occur in the right order.

e feedback—where output lines are fed back in as inputs to a device,

4.3.1 Time, Delay and Clocks

In order to model delay, feedback, clocks, etc., we need to incorporate the notion
of time into our definitions. As mentioned earlier, time at the register-transfer
level is treated as discrete and so it may be represented in ML by a type time

represented by the integers.
typeabbrev tzme = int

Signals can then be represented as functions from time to values rather than just
variables denoting particular values. Such functions with a domain of type time
are often referred to as history functions.

So, for example, devices with no delay such as logic gates can be modelled by
using higher order functions which take history functions for inputs and return

corresponding history functions for outputs.
i —W 0

let INVi=letot=mnot(it)ino

For example, the inverter,

can be represented as

where ¢ and o are functions of type time—bool. If ¢ had the following values for

the first five time cycles,

time 0 1 2 3 4
1 T F F T F

then (INV ¢) would return a function, o say, which when mapped over the first five

instants of time, the corresponding output values are returned.

time 0 1 2 3 4
o FTTFT

Once again, there are many ways of writing down the same specification. The

inverter above could have been specified as:
let INV' ¢ = At. not (3 t)
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or even:
let INV' i = noto

but the INV definition was chosen to conform with the style described earlier.
The use of history functions to represent signals makes it easy and natural to
model delay. For example, a simple register REG with an input ¢ and output o can

act as a storage buffer of one time unit.

REG

7~ o

This can be modelled by the definition:
let REG ¢ initval = let ot = (¢=0) = initval | i(t—1)ino
Three important points result from this specification:

e Delay is modelled by setting the value of the output at time ¢ to some function

of the input at time t—1, the previous time cycle.

e Time is represented using the non-negative subset of the integers, with time 0
denoting the starting point to halt recursive computations involving time.
Hence, one must ensure that statements of the form ¢—1 do not result in
a negative time representation (such as if t=0). In the above example a
conditional statement is used to check for the special case when t=0 and
in such a case it assigns an initial value, nitval, to the output at time
t=0. One can think of initval as the value present on the output line o
when the register is in its initial state. The initial value initval is passed
as a parameter to the external definition, thus enabling one to simulate the

specification with different (or perhaps all) values of initval.

e The ML type checker infers that ¢ is of type t2me from the subterm ¢=0, but
is unable to determine the types of o(t), i(t—1) or initval. The variables 7
and o are, therefore, assigned types tzme—* where * is a type variable. The
advantage of not stating the types of : and o explicitly in the definition of
REG is that by forcing the type checker to use type variables, one is able
to define specifications of ‘blocks’ which can have different applications. For
example, if ¢; is a variable of type time—bool and i, is a variable of type

time—int, then

REG i, false
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denotes a register storing boolean values with an initial state of false, while
REG:, 0

denotes a register storing integers with an initial state of 0.

Clocks are just a special kind of signal. They are represented in a very similar
way to other signals, but to distinguish them, one can define a new type, trigger
say, to have two possible values, OF F' and ON (see the example definition and
explanation on page 22). Clock lines can then be represented by functions of type

time—trigger, and can be distinguished from boolean signals of type time—bool.

4.3.2 Feedback

The combination of history functions and recursion are used to model feedback in
sequential circuits. Consider the following example of a general representation of

a finite state machine to see how feedback can be modelled in ML.

COMB

g —

DEL

The finite state machine consists of two devices:

e A combinational device COMB with no delay—the behaviour of this device

can be defined as:
let COMB ‘i] iz = let O(t) = beh[zl(t), Zz(t)] ino

where i, ¢; and o are history functions, and beh[i;(t), i2(t)] is some expression

which models the behaviour of COMB.

o A delay device DEL which delays the propogation of the input to the output

by one time unit—the behaviour of this device can be defined as:

let DEL ¢ tval = let o(t) = (t=0) = ival | i(t—1)ino
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where ¢ and o are history functions modelling the input and output lines
respectively, and ival is the initial value parameter corresponding to the

value on o at time 0.

The formal definition of a finite state machine FSM, therefore, can be written

as follows:

let FSM ¢ tval =
letrec o(t) = COMB i d¢
and d(t) = DEL oivalt
ino
The initial state of FSM is parameterised via ival which also provides a basis
value to the recursive definition, avoiding infinite recursion. At first glance, the

above definition of FSM would seem to involve an infinite loop, since all functions

are evaluated at time ¢. The application
DEL o tvalt

however, is expanded to
(t=0) = ival | o(t-1)

and so d(t) gets evaluated from o(t—1), thus evaluating the signals at a previous
time unit at each call to DEL until =0 when the recursion is halted. The recursive
definitions of history functions provide a good representation of feedback since one
can evaluate the value of a function at any time prior to the present time ¢ and
use it to evaluate the value of a function at time ¢.

The style used in the above specification of FSM is the standard way for writing
recursive definitions in ML. Other equivalent specifications may be possible, but in
this case this is the most natural, simple and straightforward. The style used for
writing the specifications presented earlier in the chapter is based on this syntax

for recursive declarations.

4.4 Example of a Simple Counter

We now present the specification of a simple example which demonstrates several
of the techniques for modelling the behaviour and structure of register-transfer
level descriptions of hardware discussed in the preceding sections of this chapter.

The device we wish to specify is a counter with two input ports, cnt! and in,

and one output port out, as shown in Figure 4.1.
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in — COUNTER

— out
centl —

Figure 4.1: Specification Diagram of a Counter

The intended behaviour of COUNTER is that the value on out is incremented
on each cycle unless a new value is input via in by setting cntl to true. We can
model the input and output ports cntl, in and out by the history functions of type
(time—bool), (time—int) and (time—int) respectively. An ML specification of
the behaviour of COUNTER can then be written as:

let COUNTER in cntl countval =
letrec out t = (t=0) = countval |
entl(t—1) = in(t-1) |
(out(t—1))+1
in out
In other words, when cntl is true at some time, then the input value at that time is
passed on to the output line at the next time cycle. When cntl is false, however,
the output value at that instant of time is set to the increment of the output
value in the previous time cycle. The output port out, therefore, is modelled as a

recursive function with an initial value countval at time 0.

entl in
"""""" COUNT
MUX q
INC
D
REG
out

Figure 4.2: Implementation of a Counter
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Figure 4.2 shows one possible way of implementing the COUNTER device. The
implementation makes use of the same three external ports, in, cnt! and out, and is
made up of three device components: a multiplexor, a register and an incrementer.

The general behaviour of the multiplexor, MUX, with three input ports 1;,
32 and sw, and an output out, is such that the value on the switch at time ¢

determines the value on out at time ¢ as either one of the values on ¢, or z,.
let MUX 2, i3 sw = let out t = sw(t) = #1(t) | 22(2) in out (4.1)

The register REG merely stores data for one unit of time, so the output value
at time ¢ is set to the input value at the previous time unit, t—1. At time t=0,

the output is in its initial state.
let REG in initval = let out ¢t = (t=0) = initval | in(t—1) in out (4.2)

Like REG, the incrementer INC only has one input port and one output port.
The purpose of the incrementer is to add one to the input value at time ¢ and pass

the result on to the output port.
let INCin = let out t = in(t) + 1in out (4.3)

Having established specifications for the behaviour of MUX, REG and INC, we
define the structure of the implementation of the counter, COUNT as:

let COUNT in entl countval =

letrec pt = (MUXin g entl)

and out t = (REG p countval) t

and gt = (INCout)t

in out
The applications (MUX in g cntl), (REG p countval) and (INC out) are themselves
history functions which represent the histories of values output by the multiplexor,
the register and the incrementer respectively. The internal lines p and ¢ are also
represented by history functions in the same way as the external lines, but they
are hidden from the external definition.

We have, therefore, defined a specification of the intended behaviour of the
counter and of a possible implementation of it. The two definitions can now be
executed using test data until it is demonstrated that the described implementation
does model the device.

For example, if in and entl are functions of type time—int and time—bool

respectively, which evaluate to the values shown in the following table over the
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first eleven time units, 0 through 10:

time 0 1 2 3 4 5 6 7 8 9 10
in 8 7 6 9 8 7 7 °6 5 3 2
entt T T F F F F F F T F F

then if the definitions of COUNTER and COUNT are executed with the same initial

values, 0 say:

let out = COUNT in centl 0
let out’ = COUNTER in cntl 0

the histories of out and out’ can be examined, checking that the results are equal.

time 0 1 2 3 4 5 6 7 8 9 10
out 0 8 7 8 9 10 11 12 13 5 6
out 0 8 7 8 9 10 11 12 13 5 6

Exhaustive simulation is impossible, however, even in cases as simple as this
because there are infinitely many possible input sequences. One can never be
absolutely certain of an implementation merely on the basis of inexhaustive sim-
ulation so verification of these definitions should be the next move. This is not
yet possible because our definitions are only programs expressed in the functional
programming language ML—they are not formal specifications expressed within
the context of a formal proof system.

Our goal is, therefore, to execute the HOL logic specifications in a similar way
to ML programs. One can then simulate and verify hardware using the same
definitions. The implementation of an executable subset of the logic is presented
in Chapter 6 and various examples of hardware devices specified and simulated in

the logic are discussed in Chapters 7, 8 and 9.

4.5 ML or ELLA

The purpose of this chapter has not been merely to show that a general purpose
language can be used for simulation, but to show that the meta-language of HOL
can be used to model many aspects of hardware design in a style that is very
similar to the way hardware is modelled in logic.

It is interesting to look at how ML compares with special purpose, register-
transfer level simulators. To do this, we briefly compare ML to ELLA, a simulator
designed by the Royal Signals and Radar Establishment and marketed by Praxis
Systems plc (see Section 1.2.1). We use the example of a two-input half-adder

to carry out the comparison. We do not give any introduction to ELLA (for this
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see [55]), but simply explain the ELLA specification for a half-adder, and discuss
how it compares with ML and HOL.

The implementation of a two-input half-adder is shown below, where 11 and 2,
are the inputs, ¢ and s are the carry and sum outputs respectively, and p; ... p4 are
internal lines. The logic gates are labelled for the purpose of the ELLA specification

described later, where n; and n, are inverters, a; ... as are and-gates, and o, is an

or-gate.
il aiy } C
ni h
az )—— D3
01 8
ng D2
a Dy

Figure 4.3: Implementation of a Half-Adder

In each of the three languages (HOL, ML and ELLA), there are many ways
of writing specifications. Table 4.1 shows three specifications for the half-adder
above: a HOL relational specification written in the conventional way, an ML
functional specification written in the style described earlier, and an ELLA specifi-
cation. In all three specifications, the logic gates are represented using functions or
predicates with the names AND, OR and NOT. The definitions of these primitives
are, of course, different for each specification; the same names are used in all the
specifications only for the purpose of comparison.

The HOL and ML models should by now be familiar. In HOL, existential
quantification is used for hiding internal lines, and conjunction is used to denote
composition. In ML, local let declarations are used to hide internal lines, and
constructs are used to denote parallel composition, and in constructs are used to
denote serial composition.

In ELLA, the specification shown is referred to as a function declaration. In

the first line, a node HA is specified to have two inputs of type bool, i; and 25, and
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HOL Relation

ML Function

ELLA Function

HA(il, ig, S, C) =

3p1 p2 p3 pa.
AND(il,ig,C) A

HA’I,l ‘i2 -

let c = AND i] 2.2
and p; = NOT ¢,

FN HA = (bool : i, i3) — [2]bool :
BEGIN
MAKE NOT : ny ng,

NOT(Zg,pl) A and P2 = NOT 7:1 AND : a; as as,
NOT(Zl,pg) A in OR: 01.
AND(py,%1,p3) A | letps =AND p; ¢ JOIN (#1,12) — ay,
AND(p3,i2,ps) A | and ps = AND p; i, i1 — ng,
OR(p3,p4,3) in Z.2 —n,

|et s = ORp3 y 22 (il,nl) — as,

(¢2,n2) — a3,
(ag, 03) — 0q.
OUTPUT (o01,a4)
END.

(s,0)

Table 4.1: Specifications of a Half-Adder in HOL, ML and ELLA

two outputs (no names specified) also of type bool.? In the rest of the function
enclosed between BEGIN and END, the network is described as follows:

e a MAKE statement is used to declare instances of gates,
o a JOIN statement is used to explicitly interconnect the gates, and

e an OUTPUT statement is used to return the computed values that should

appear on the output lines of the circuit.

The use of MAKE and OUTPUT is straightforward; their purpose is simply declar-
ative. The interesting part of the function lies in the JOIN section, particularly in
the way in which the connections are described. The statement uses expressions
of the form exp, —ezp, to represent connections from a single node (or tuple of
nodes) ezp; to another node exp;. A node in ELLA can be the name of any inter-
connecting device. External inputs are also treated as nodes, but ones which can
only be used as inputs.

This way of representing structure in ELLA is different to that of HOL:

e In ELLA, structure is described as a connection of nodes. There is no mention

of internal lines; the outputs of devices are labelled as nodes which them-

2The type bool is assumed to be previously declared for the purpose of the definition. For details
on type declarations in ELLA see [55]
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selves become inputs to other nodes. Instances of devices, therefore, have to
be defined (by using the MAKE statement) in order to distinguish between
connections with identical devices. The devices are labelled, and these labels

denote the output of a node, or act as inputs to other nodes.

In HOL, structure is represented by a conjunction of relations, the parameters
of which describe how wires connect to the ports of a device. The wires are
labelled in this case, not the devices, so the connections involving identical
devices are distinguished by the wires they connect. General models for

devices can therefore be used and no labelling of devices is necessary.

Three points emerge from the three specifications above:

Of the two functional models, the ML model is closer to the HOL model.
Structure is modelled in a very similar way by labelling internal lines, using
them as inputs or outputs according to the appropriate connection, and

hiding them from the external definition.

No superior techniques were evident in the ELLA model which were lacking
in the ML model. This suggests that ML is adequate for simulation of logic
specifications, and a special purpose simulation language such as ELLA is

therefore not necessary.

Although the representation in ML is closer to HOL, the ELLA model is not
too far off from the HOL and ML models. The concept of inter-connecting
nodes is similar to connecting devices by labelling wires. This suggests that
it could be possible to establish a mapping which translates from logic spec-
ifications to specifications of a special purpose simulator, if so required. Of
course, the example considered is trivial and further research is necessary to

explore the latter point by considering more complex circuits.

A tool for translating HOL specifications to a special purpose simulator like ELLA
could enable more effective simulation of circuits via the HOL system. This is
not the idea behind this thesis, however, and is an alternative topic suggested
for future research. What we are interested in here is the execution of the logic
specifications themselves, which can be achieved by translating into an identical
executable representation. The ML language is not identical but seems to be

extremely close in its representation of hardware, as shown in the earlier sections.

In the next chapters we show how ML can be used effectively for simulation; we

show how HOL relational specifications can be automatically transformed to ML
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programs; and we suggest in the concluding chapter how the transformation from
logic to programs can be done with minimum risk of introducing inconsistencies.
We do not consider ELLA specifications any further. The reasons for choosing

to use ML instead of ELLA as a simulation language can be summarised as follows:

e ML happens to be the meta-language of HOL. This makes it more convenient
for the automatic translation of HOL specifications to an executable form,

as discussed in Chapter 6.

o There is a strong resemblance between specifications written in the HOL logic
to ones written in ML. This is important because it helps to minimise the

risk of introducing inconsistencies in the specifications during translation.

e The way in which the subset of ML programs required for specifying hardware
is executed is analogous to expanding definitions and using B-reduction in the
logic. It is easy to see how an ML program is executed and straightforward
to check that the execution of the program correctly models the operation
of the intended circuit. Perhaps a connection could be found between an
operational semantics for this subset of ML, and the inference rules in the

logic.

All considered, the ML approach seems a step closer to the logic formalism
than the ELLA approach.
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Chapter 5

Faster Simulation Techniques

Before moving on to discuss the execution of the HOL logic, there are certain
features in the simulation methods described in the previous chapter which will be
explained further, showing how they can be modified to improve the performance

of simulation.

5.1 Inefficiencies in Basic Method

The application of ML to hardware simulation, outlined in Chapter 4 is quite
elegant. Most aspects of register-transfer level descriptions of hardware circuits
can be modelled naturally using standard functional programming techniques.
When attempting to simulate large and complex circuits, however, a major
problem is encountered: certain simulations are far too slow. While many circuits
can be simulated successfully at a reasonable speed, others are totally unpractical.
The problem is tracked down to circuits with models that have the following

properties:

e too many recursive calls on history functions (generally resulting from feed-

back)

e too many repeated computations (generally resulting from fanout)

In general, therefore, the problem arises to varying extents in most sequential
devices.

Consider the example shown in Figure 5.1. The device is kept simple but
includes features such as feedback and fanout, typical of the inefficient modelling
mentioned above.

The device DEV is made up of four components D, E, F and G, and two external

ports, an input in and an output out. The behaviour of the four components can
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n p q

Figure 5.1: Example Device for Illustrating Inefficient Modelling

be specified as shown in the equations 5.1 through 5.4, using the style explained

in the previous chapter.

let D ab = let ot) = da(t), b(£)] in o (5.1)
let E a bival = let ot) = (t=0) = ival | e[a(t—1),b(t—1)]in o (5.2)
let F a b = let o(t) = fla(t), b(t)]in o (5.3)
let G a = let o(t) = g[a(t)]in o (5.4)

In the equations above, d[a(t), b(t)] and f[a(?), b(t)] are some expressions involving
occurrences of a(t) and b(t), e[a(t—1), b(t—1)] is some expression involving a(t—1)
and b(¢—1), and g[a(t)] is an expression involving a(t).

The inputs and outputs of the above devices are modelled by history functions.
The devices D, F and G have no delay; the output at a time ¢ is a function of the
inputs at time t. The device E, however, has a unit delay and the output at a time
t is a function of the inputs at time t—1 unless =0 in which case the output is in
its initial state, parameterised by ival.

The structure of DEV can therefore be specified by the program below. A

recursive declaration is used to compute the values on the output out, and internal
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lines of the device, p, ¢ and r. The initial state of the device is parameterised by

sval and the recursion halts at time ¢=0.

let DEV inival =
letrecpt = (Dinr)t
andgt=(Fpr)t
andoutt = (Epgqival)t
andrt = (Gout)t
in out

The inefficiency in the execution of the model is not immediately evident. If
an attempt is made to investigate what is involved in evaluating various values on
the output line, however, the problem becomes obvious.

For a given history function in and value ival, the expression
let out = DEV in ival

returns a history function out. In order to evaluate the value on out at a particular

time, 5 say, the following computation is involved.

e From the definition of DEV:

out(5) = (Ep gival)5
= (At. (t=0) = ival | e[p(t—1),¢(t-1)]) 5 ...from 5.2
= e[p(4), q(4)] ... evaluation

Hence, the values of p(4) and ¢(4) are required to compute out(5).

o From the definition of DEV:

q(4)=(Fpr)4
= (At. f[p(2),r(¥)])4 ...from 5.3
= flp(4),r(4)] ...evaluation

The value of g(4), therefore, requires that of p(4) and r(4).

e From the definition of DEV:

p(4)=(Dinr)4
= (At. d[in(t),r(¢)]) 4 ...from 5.1
= d[in(4),r(4)] .. .evaluation
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The value of in(4) is known since it is an input value. The computation of

p(4), therefore, requires the value of r(4).

e From the definition of DEV once again:

r(4) = (Gout)4
= (At. glout()]) 4 ...from 5.4
= g[out(4)] ...evaluation

Hence, all the values required for the calculation of out(5), require the value of
out(4). This completes one cycle of the recursion and further recursive calls are
performed until out(0) terminates the recursion, allowing the value of out(5) to be
calculated.

A summary of the computation involved for one recursive call in the calculation

of out(5) is shown in Figure 5.2. The inefficiencies mentioned earlier are now

out(5)

)

in(4) r(4) p4) r4)

N

out(4) in(4) r(4) out(4)

out(4)

Figure 5.2: Tree Illustration of Inefficient Evaluation

obvious. The computation of out(5) involves that of p(4) and q(4). After the
value of p(4) is evaluated, recursively from time 0, the process must be repeated
in order to evaluate g(4) since ¢(4) also requires the value of p(4). This kind of
repetition is also involved in the calculation of r(4), required by p(4) and ¢(4), and
in the calculation of out(4), required every time r(4) is calculated.

In fact, in order to compute out(5), one needs to compute p(4) twice, r(4) three
times, g(4) once, and out(4) three times. Now each time a value is computed at
time ¢, the computation is recursive all the way to time 0. So if the value of ¢

is large (say 100 instead of 5) and many more internal lines are involved making
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the recursive definition more complex, then the problem of recalculating several
values recursively from time 0 is escalated and the effect is disastrous.

Worse still, once the value of out(5) is successfully computed, it is not used
in further computations of out at time values > 5. If the value of out(6) say, is
required after the evaluation of out(5), then out(5) is still recalculated whenever
required for the computation of out(6).

The nature of the problem suggests the solution. For every value required in a

computation, either

e it is evaluated and stored for possible later use, or

e evaluation is delayed until the last possible moment when the value is eval-
uated once and assigned to all instances where the value is required in the

course of the computation.

Both optimisations are standard techniques and are presented in the following
sections. The former technique is called memoisation while the latter is called lazy

evaluation.

5.2 Memoisation

The first technique presented as an optimising solution to the inefficiency prob-
lems encountered in the simulation of circuits in ML, is called memoisation. The
technique of memoisation was originally invented by Donald Michie and was used
as an aid for improving performance of programs as well as an ‘artificial learn-
ing mechanism’ [41]. A more recent and detailed description of the memoisation

algorithm (also called tabulation) and its implementation in LISP is found in [1].

5.2.1 The Algorithm

Memoisation can make a vast difference in the performance of a program. The idea
is to define higher order functions called memo-functions which take an inefficient
function as a parameter and return an optimised function.

A memo-function remembers all arguments it is applied to as well as the results
computed from them by maintaining a table in which values of previous calls to
the function are stored using the arguments that produced the values as keys.

When a memoised function is applied to a set of arguments to compute a value,
it first checks the table to see if the function has already been applied to these

arguments, and if so, it merely returns the previously computed value stored in
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the table. If the function has not already been applied to the arguments before,
however, then the new value is computed in the ordinary way, stored in the table
with the function’s arguments as keys, and returned as the result of the function.

The Fibonacci function is a classic example of the optimising effect memoisation
can have upon inefficient algorithms. The function computes the n** Fibonacci

number and can be written in ML as follows:

letrec fibn =
(n=0)=0|
(n=1)=1|
fib(n—1) + fib(n—2)
The function is recursive in n and each call of fib generates two recursive calls
with smaller arguments. One way of writing the memoised version of this function
is:
letrec memo_fib =
memotse (An. (n=0) = 0 |
(n=1)=1|
memo_fib(n—1) + memo_fib(n—2))
where memoise is the memoisation function which will be defined in the next
section.
Consider now, the application memo-fib(3) in order to analyse the computa-

tion involved when using memoised functions.

1. The first call of the function is memo_fib(3). The table is checked, but no

entry is found under key 3.

2. So the function is invoked. The conditional tests ‘is (n=0)?" and ‘is (n=1)?’
are both false, hence the default memo_fib(n—1) + memo_fib(n—2) is cal-
culated.

3. The computation resumes with memo_fib(2). Checking the table is once
again unsuccessful, resulting in the function being invoked with n=2 which

requires memo_fib(1) + memo_fib(0).

4. The function call memo_fib(1) fails once again to find an entry in the table
but, the function this time evaluates to a result since the condition ‘is (n=1)?’
is true yielding an answer 1, terminating one recursion branch. The answer

is now stored in the table under key 1 and the computation continues.
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5. The remaining call to memo_fib from step 3, memo_fib(0), results in the
value 0 in a similar way to the computation process in step 4. The value
for n=0 is also stored in the table, and the computation of step 3 is ended
by evaluating 140 which equals 1—the answer of memo_fib(2) (called from
step 2) which is also stored in the table.

6. Back to step 2, finally, the value of memo-fib(1) is still required. This time,
at last, the result is already stored in the table and is retrieved without
recomputation. The result of memo_fib(3), therefore, is evaluated by the
expression 141 resulting 2. This value also is stored, resulting in a table with

Fibonacci numbers for 0 < n < 3 after computing the value for memo_fib(3).

If, now, the next call to memo_fib is memo_fib(4), then the table lookup fails
for n=4, the condition ‘is (n=0)?" and ‘is (n=1)?’ are both false, but the recursive
calls memo-fib(3) and memo_fib(2) both have their answers stored in the table
(as a result of the previous computation), these being 2 and 1 respectively, and
so the result of memo-_fib(4) is evaluated without further calls to memo_fib and
stored in the table as well.

It is obvious, therefore, that it is not enough to optimise the Fibonacci function

by applying a memoisation function to the original function fib as in:
let memo_fib’ = memoise fib

since this allows fib to operate inefficiently, and only to store the result for the
top-level parameter of the function call. Thus, with the above incorrect optimi-
sation of memo_fib’, the computation memo_fib'(3) only memoises the result for
argument 3, not the results for all arguments 0-3. The optimisation must be done
at every recursive call to the Fibonacci function.

Three points stand out from the function memo_fib:

e The cost of computing the n** Fibonacci number is reduced from exponential
in n to linear in n, since memo_fib(n) is computed only once for each value
of n. Some overheads such as the look-up time for accessing tables are
involved, but these are negligible for efficiently implemented data structures

and functions to access them.

e Subsequent requests for the n* Fibonacci number are not recomputed and
the value is returned immediately. In general, of course, this is the major

advantage since recomputation does waste time.
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o The structure of the algorithm for calculating the Fibonacci numbers (as
viewed in the definition of fib) remains unaltered after memoisation. This is
important because the optimisation of functional specifications can be kept
clean—i.e. the structural representation of a circuit is not modified for the

sake of performance, introducing the danger of incorrect modelling.

5.2.2 Implementation

A natural way to implement memo-functions in ML is to use association lists as
tables. An association list is a list of pairs such that every element of the list has
the form (a,b), where a is the key and b is the value stored associated with that
key.

A function make_table can be defined to represent an empty list of pairs.

let make_table = ([]: (a#pB) list)

The type variable a will be instantiated by the type of the key and S will be
instantiated by the type of the stored values. Whenever a new table is required,
therefore, one makes declarations specifying the types of the pairs intended to be

stored in that table. For example:
letref tablel = make_table : (intgint) list

declares a new table, tablel, which stores pairs of integers, while
letref table2 = make_table : (int#bool) list

declares a new table, table2, in which the keys stored will be integers but their
associated values will be booleans. Obviously, values of different types cannot be
stored in the same list.

Once a data type for storing values is defined, we can define functions to
manipulate this data type. In fact, only two functions are required for the purpose

of memoisation.

e lookup—a function which checks whether there is an entry in a table for a

particular key, and if so, returns the associated value:
let lookup key table = snd (assoc key table)

where assoc is a function which returns the first pair in a table, (a, b), with
a matching the key required. If no entry for a key is found in the table,
then assoc (and hence lookup) fails. Otherwise, lookup returns the second

element of the pair returned by assoc.
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e insert—a function to add on a new pair of values to the beginning of a list:
let insert key value table = (key,value).table

A memoisation function memoise (such as that used in the previous section
to optimise the function for computing Fibonacci numbers), can now be defined

using lookup and insert.

let memotse f =
Az. (lookup x table) ?
(let result = f(=)
in
(table := (insert z result table);
result))
The function memoise takes a function f as an argument and returns another
function which, when applied to a value z, the value of (lookup x table) is returned
or, if that fails, the result of f(z) is returned after being stored in the table.
Notice that table would have to be globally declared in an ML session and is
not a parameter to the memoise function. This is because ML does not allow
the operation := to operate on parameters of functions. It is of no use either, to
declare the table locally in the memoise function as that way, a new table will be

declared on every call to memoise (i.e. table is reset to [] each time).

5.2.3 Memoisation of the Counter

As an example of the use of memoisation in the execution of hardware specifi-
cations, consider once again the implementation of the counter described in Sec-
tion 4.4 and illustrated in Figure 4.2.

To recap, the specification of the counter, COUNT, was:

let COUNT in entl countval =

letrecpt = (MUXin g cntl) ¢

and out t = (REG p countval) t

and gt = (INCout)t

in out
The functions in this definition that need to be memoised are the history functions
P, ¢ and out which represent the outputs of MUX, INC and REG respectively. Now
this would require three different tables in order to store values of p, ¢ and out
distinctly. Also, due to the way in which tables have to be globally declared, a

memoisation function would have to be defined for each table since the use of
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memo-functions is restricted to one table only and so, three memo-functions also
have to be defined.

It does seem rather superfluous to have to declare a table and a memoisation
function for every function to be memoised, especially if there are a large number
of functions.

An improvement on the representation of tables suggested in the previous sec-
tion, therefore, is to use one table to store all values of functions of the same type.
This is achieved by using another key in the association list which represents a
name that uniquely identifies which functions denote which values. This new form
of table, therefore, is represented by an association list in which the keys are names
denoting different functions and the associated values are themselves association
lists representing the history of the named functions.

A function make_table’ is defined in a similar way to make_table, this time

represented by a list of lists:
let make_table’ = ([]: (v # (a#p)list)list)

In the example of COUNT, all functions to be memoised (p, ¢ and out) are of
type int—int (deduced from the definitions 4.1, 4.2 and 4.3 in Section 4.4). It is
only necessary to declare one table, therefore, instead of the three required if the

previous method were used:
letref count_table = make_table' : (string # (int # int) list) list

where the type string is an ML type for strings of characters which will be used
to name the association lists.

The functions lookup’, insert’ and memoise’ are defined in a similar way to
lookup, insert and memoise—they are only extensions to support the named
association lists.

let lookup’ name key table =
snd (assoc key (snd (assoc name table)))

let insert’ name key value table =
(let (subtable, rest) = assoc_split name table
in
(name, ((key, value).(snd subtable))) . rest)
? ((name, [(key, value)]).table)
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let memotise’ name f =
Az. (lookup’ name x count_table) ?
(let result = f(z)
in
(count_table := (insert’ name « result count_table);
result))

where assoc_split returns a pair whose elements are the table entry returned by
assoc and the remainder of the table after removing that entry.

The memoised definition of COUNT, therefore, is written as:

let COUNT 2n entl countval =
letrec pt = memoise’ ‘p* (MUX in g entl) ¢t
and out t = memoise’ ‘out* (REG p countval) t
and ¢t = memoise’ ‘¢ (INCout) ¢
in out
The changes done to the definition do not upset the modularity in the structure
of the definition.

Both the inefficient and the memoised models of COUNT were simulated for var-
ious test data, each time computing the values on the output function for 126 time
cycles. The average run time taken for the inefficient definition was 84secs; the
memoised version took only 38secs. The improvement in the performance of the
memoised definition is evident even for this simple example. The improvement in
performance can be much greater for larger and more complicated examples which

can be impossible to simulate without optimisation, as shown in Chapters 7-9.

5.3 Lazy Evaluation

The second optimising solution presented in this thesis is the use of lazy eval-
uation [54]. Lazy evaluation is a method of computation where the evaluation
of arguments to user-defined functions is delayed until their value is absolutely
necessary. The required arguments are then evaluated once and assigned to all
instances where they are used in the body of the function.

For example, the function f defined below takes two arguments ¢ and b and

computes the value b+b if a is non-negative; returns the value of a otherwise.
f(a,b) =(a>0) = b+b | a
If the function f is applied to two arguments, g(z) and h(z) say:
fg(z), h(z))
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then two kinds of optimisations are possible if the application is evaluated lazily.

e First, the value of parameter h(z) is not evaluated in the event of g(z) having

a negative value since it is not involved in the result returned by f.

e Secondly, if the value of g(z) is positive, the value of parameter h(z) is
evaluated only once in the computation of h(z)+h(z), instead of twice, as

would be the case with normal order evaluation.

Thus, lazy evaluation can improve the performance of certain programs by avoiding
unnecessary computations of parameters.

The idea of using a lazy functional programming language for hardware sim-
ulation is not new. For example, Stephen Hill describes the application of the
functional language MIRANDA [62] to simulation in [29}; his techniques rely heav-
ily on the lazy nature of the language.

In this section we describe the techniques used to simulate hardware using
LAZY ML—LML for short—a strongly typed, lazy, purely functional language de-
veloped by Lennart Augustsson and Thomas Johnsson at Chalmers University of
Technology, Géteberg. No attempt is made here to describe the syntax or seman-
tics of LML; for this see [2]. This section is merely intended to give a general
description of the techniques used for simulation, comparing them to those used
with ordinary ML.

5.3.1 General Simulation Principles

The use of LML to simulate combinational circuits is identical to that of ordinary
ML.:

e values on ports can be represented by the booleans true and false,
e logic gates can be represented using the boolean operators, and
e behaviour of devices can be represented using functions.

In fact, the syntax of the two languages are very similar and the same specifi-
cation techniques used in ML to represent hiding, structure, etc. are used in LML.
For this reason we do not go through explaining the role of LML in such cases.

The two languages do, however, differ in the approach needed to simulate se-
quential circuits (or any circuit in which time is taken into account). The difference

lies in the data type chosen to represent signals. While it is perfectly possible to
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use history functions to model signals in LML, they do not exploit the lazy nature
of the language, and do not make any improvements over the performance of the
ML programs.

The reason is that laziness only delays the evaluation of parameter identifiers,
not of function applications in the body of a definition. For example, in the

application:

(Az. t[z, z]) f(n)

where t[z, z] represents some term t involving two free occurrences of z, the ap-
plication f(n) of some function f to an argument n is only computed once and
substituted for each occurrence of z in %[z, z]. Laziness here successfully reduces
the number of times f(n) has to be computed.

In the application:

(Az. t{g(z), 9(2)]) f(n)

however, although f(n) is only computed once, the application of g to the value of
f(n) is still computed twice. Laziness does not reduce the number of times g(z)
is computed because it does not remember results of previous computations—it
does not perform memoisation.

Likewise, in the recursive function

f(n) =t[f(n—1), f(n—2)]

results of applying the function to certain arguments are not remembered when
the function is next applied to the same arguments. Thus, if f(5) involves the
computation of f(4) and f(3), the result of f(3) computed in order to evaluate
f(4) is not re-used when next required in the computation of f(5), but f(3) has
to be recomputed.

Laziness, therefore, only avoids superfluous evaluation of parameters. For this
reason the lazy approach to the evaluation of history functions does not improve
performance because it does not avoid the unnecessary recomputation of results
of previous function applications.

In LML, therefore, signals are best considered as streams of bits represented by
lists of booleans. The advantage of this form of representation is that the lists are
infinite objects. In a lazy language, infinite data structures are allowed since they
are not evaluated when defined.

The method of using infinite lists to represent signals is based on the ideas

proposed by Stephen Hill in [29]. The approach to modelling hardware presented
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in this thesis, however, differs from that of Hill’s in several ways. For example,
our specifications are based on a two-valued logic (instead of three-valued), and
initial values of signals are parameterised (instead of being set to a value denoting
an undefined state). A brief description of the way infinite lists are used to model
hardware in LML is given below.

In LML, lists can be defined to be infinite as long as only finite portions of
them are evaluated. For example, a clock line which is always ON can be defined

as:
ON_CLOCK = ON . ON_CLOCK
and a clock line which toggles ON and OFF consecutively can be defined as:

CLOCK = [ON; OFF] @ CLOCK

where . and @ are the infix ‘cons’ and ‘append’ operators.
If the first six values of CLOCK are required, say, then the built-in function
head is used as follows:

head 6 CLOCK
which only evaluates the first six values on the clock:
[ON;OFF;ON;OFF;ON;OFF]

These lists can therefore be viewed as sequences of values sampled at discrete
intervals of time. Two consecutive values @ and bin alist [...;a;b;...] can be seen
as though a is a value at time ¢ and b is the next value at time ¢+1.

The map function obviously plays a big part in writing specifications using

lists. For example, if Not is the negation operator then an inverter INV can be
defined as:

INV = map Not
so that if 7 is the list

[true;true; false;true; false;. . ]
then (INV ¢) returns the list

[false; false;true; false; true;.. ]
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Delays and feedback are easy to model. A delay of one time unit is effected on
a list by putting an arbitrary value on the front of the list, which has the effect of
‘shifting’ all values in the list one place to the right. So if a list has values

[a; b;¢;d;. . ]
a delay of one time unit is introduced to give the list:
[del val;a; b;¢;d;. . ]

If a is the value at time 0 in the original list, then in the second list it is the value
at time 1. The delay value, del_val, can be parameterised in the specifications of
circuits in the same way initial values were parameterised when using ML.

For example, consider the following register-transfer level description of a

D-type flipflop to illustrate some of the above principles.

DTYPE
d— —7

ck—p - —4

The D-type flip-flop shown above takes two inputs: a data line d and a clock ck,

and returns two outputs: a data line ¢ and its compliment §. Informally, the
specification of DTYPE is:

If the clock at time ¢ is high, then the value on ¢ at time #41 is set to
the value of d at time £. Otherwise, if the clock is low at a time ¢, then
the value on ¢ at time t+1 is set to the previous value on ¢q at time ¢.

The value on 7 is the complement of that on ¢ at all times.

The formal definition of DTYPE, therefore, can be written in LML using infinite

lists as follows:

DTYPE d ck gval =
letrecqg =
qual . (map3 (Aa. Ab. Ae. (a =ON) = b|c)ckdq)
and gbar = map Not q
in
(g, gbar)

where map3 is defined as:

map3 fabc=(f(hda)(hdbd)(hdc)).(map3 f (tLa) (¢t b) (tl c))
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The value of ¢ at time 0 is set to gval by putting gval at the start of the list.
Subsequent values of g are then computed using the previous value of ¢ in the list
as well as the values of ck and d corresponding to a time previous to that in which
q is computed.

The length of the delay, in fact, can be arbitrary since a delay of n units long

can be represented by adding n delay values at the start of the list.

5.3.2 The Counter using Lazy Evaluation

For a slightly larger example, consider the simple counter presented in Section 4.4.
The specification of the COUNTER device shown in Figure 4.1 can be written as:

COUNTER in entl countval =
let rec out =
countval . (map3 (Aa. A\b. Ac. a = b | (c+1)) entl in out)
in out

The next value of out in the list (say the value at position n+1) is equal to the
increment of the last value in the list (the one at position n) if the value of cntl
at position n is false; otherwise it is equal to the value of in at position n.

The implementation of COUNT shown in Figure 4.2, on the other hand, can
be defined by:

COUNT in entl countval =
let rec p = MUX in g entl
and out = REG p countval
and ¢ = INC out
in out

where the behaviours of the components MUX, REG and INC are specified as:

MUX = map3 (Aa. Ab. Ac.a = b | ¢)
REG in tnitval = initval . in

INC = map (Aa. a+1)
The definition of COUNT above is very similar to the one in ordinary ML.

The only difference is that the recursion is over lists instead of history functions.
Otherwise, the structural representation of the device is modelled in exactly the
same style. The behavioural definitions of MUX, REG and INC, however, are very
different to the ones in ML. The LML definitions are more compact, but this makes
them slightly harder to understand.
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The approach, therefore, has not been to optimise existing ML definitions (as
with memoisation), but rather to choose a different data representation which can
be efficiently manipulated using a lazy language. This of course leads to a different

style of writing specifications.

5.4 Memo-functions or Infinite Lists

The LML definitions are simple though their way of expressing timing properties
does not seem as natural as that of history functions. With history functions,
time is expressed relative to a reference point ¢, and the instant of time at which
a value is calculated in relation to t is immediately obvious from the definition.
With lists, however, the definition has to be examined carefully before it becomes
obvious as to how the signals are timed.

The advantage of using the lazy approach and infinite list representations is
that the definitions are efficient to execute without requiring further optimisation.
With the strict approach of ML, however, optimisation is essential if the execution
of the definitions is to be practical.

In this thesis we do not investigate any further the role of lazy evaluation. We
shall instead stick to the ordinary ML approach and show in the next section how
the optimisations can be automated, making this approach more practical. The
choice of using ML as opposed to LML as an execution language for the HOL logic
(as described in the next chapter) is mainly due to the expressiveness of history
functions and the strong resemblance between specifications written in the HOL
logic to ones written in ML. The fact that the meta-language of HOL happens to
be ML and not LML also makes it more practical to translate the logic into ML.
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Chapter 6

Executing the HOL Logic

In the previous two chapters we have shown how ML can be used as a hardware
simulator at the register-transfer level. The goal now is to show how these ideas
can be applied to the execution of specifications written in the HOL logic.

The conventional approach to the hardware design process has been to use sim-
ulators and other informal design tools to demonstrate the correctness of circuits.
If formal methods and verification are at all considered, the circuit often ends up
being formally specified and verified in a completely different notation to that used
by the simulators. The processes of simulation and verification, therefore, have
been kept apart and the benefits of one not used to aid the other.

Their view as two separate issues is not cost effective since doing both sepa-
rately is expensive. Furthermore, because of the many different notations used, one
is never sure whether the simulation definitions and formal specifications model
precisely the same circuit. It is desirable to be able to use the same specifications
for both simulation and verification, and the necessity of executing specifications
which form part of a formal proof system is increasing as chip design becomes
more complex.

One example in chip design where several notations were used to attempt to
demonstrate correctness is the design of the VIPER chip manufactured by the
RSRE [13]. The chip was specified in LCF-LSM but the lack of simulation facilities
in the proof system led to translating the specifications into ELLA [48], ML and
ALGOL 68. With so many notations and languages involved, errors can be intro-
duced into the models by inaccurate translation between the different notations.
Aspects of the VIPER chip have now been specified and verified in HOL by Avra
Cohn [11], but once again no simulation facilities to aid with the verification were

available in the proof system.
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With the facility of executing the HOL logic specifications, the processes of
simulation and verification can be combined to demonstrate correctness. The
danger of introducing inconsistencies in the models is also reduced when translating
the HOL logic to executable code if:

e only a subset of the HOL logic which has a clean and clear representation in

ML is used,

e the style of writing specifications is restricted to one in which the specifica-
tions can be expressed both in the logic and the meta-language in an almost

identical manner,

e the executable code is automatically generated from the HOL logic, thus

reducing the chance of manual errors in translation.

It has already been shown in Chapters 4 and 5 that ML is suitable as a simula-
tion language at the register-transfer level and that a subset of it can be adequately
used to write specifications in a style which is almost identical to functional spec-
ifications written using a subset of the HOL logic. In this chapter we describe in
detail that subset of the HOL logic and the style of representation we must adhere
to. We show that despite these restrictions in style and notation, most features
in register-transfer level descriptions of hardware can be modelled, and we outline
how the specifications can be automatically translated into executable code.

In Chapter 3 we showed that specifications in the HOL logic can be written
as relations or functions. A program for translating HOL terms into executable
code, therefore, must cope with both styles of representation. The algorithm for
automatically defining ML programs corresponding to given suitable HOL speci-
fications is discussed, therefore, showing how relations can be first automatically

translated into functions which can then be mapped into ML programs.

6.1 From Relations to Functions

The first step towards executing specifications in the HOL logic is to derive func-
tional definitions for them. This is done by either:

e writing functional specifications from the start, or

e writing relational specifications and later translating them into functional

ones.
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The second alternative may seem superfluous but is in fact very useful. There are
two main reasons why the translation of relations into functions can be required:
one may find it more natural to express properties as relations, or one may want
to simulate circuits already specified using relations. It would be rather time
consuming to have to manually translate existing relational specifications into a
form in which they can be executed.

Of course, not all relations have a functional interpretation and, for those
that do, it is not always possible to automatically translate them into functions.
Furthermore, not all functions can be executed so the relations which we want to
automatically translate to functions for the purpose of simulation are restricted to
a subset of the HOL logic which can be interpreted as executable functions.

Relations written in the HOL logic can be divided into two sets: the set of
relations which can be interpreted as functions and the set of those which have
no functional interpretation. Figure 6.1 illustrates this classification of relations

in the HOL logic and shows how they can be divided into further subsets.

B A

Q@)

Figure 6.1: Relational Expressions in the HOL logic

In Figure 6.1:

e A represents the set of those relations which do not have a functional inter-

pretation.
e B represents the set of all relations which can be interpreted as functions.

o C represents the subset of B which contains those relations which can be

interpreted as executable functions.

o D represents a subset of C which contains relations which can be interpreted
as executable functions and are commonly used for specifying implementa-

tions of hardware circuits.

The boundary enclosing set C in the above diagram is difficult to define and is

subject to interpretation. The purpose of the diagram is not to present a precise
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classification of the infinite number of relations that can be written in the HOL
logic, but to explain which set of relations we are interested in translating (set D)
and how that fits in with the other relations we do not translate.

Examples of relations which are used for specifying hardware but which are
classified in sets A or B (i.e. either they do not have a functional translation or
they have a non-executable functional translation) are presented in Section 6.3.
In the next section we describe those relations classified in set D—those relations

which we automatically translate into functions.

6.2 Automatically Translating Relations

The main syntactic difference between relational and functional specifications was

explained in Chapter 3:

¢ In a relational model there is no distinction between inputs and outputs—all

ports are parameterised.

e In a functional model, only the inputs are parameterised from which the

function computes the values on the output ports.

The translation from relations to functions, therefore, can only be automated
if information is given as to which parameters of the predicate are to be inputs of

the function and what form the output should take. An ML function
Rel_to_.Fun : term #term list # term — term

can be defined to translate relations to functions by:
Rel_to_Fun (relation,input_list, output) = function

The form of relations presented below can be automatically translated into
functions using the function Rel_to_Fun, written in ML. Important algorithms used
in the definition of Rel.to_Fun are explained informally throughout this section by
showing how various relations translate into functions. The form of relations which
can be translated by Rel_to_Fun is based on the style used for specifying hardware
implementations, and in Chapters 7-9 a number of examples are presented to
illustrate this. Of course the relations which Rel_to_Fun can translate do not need
to describe hardware devices. We merely present hardware oriented examples
since our theme of executing definitions is aimed as a simulation aid for hardware
verification. A full grammar describing the relational definitions which can be

automatically translated by Rel_to_Fun is given in Appendix A.

90



6.2.1 Translating Predicates

A relation
PRED(z1, 2, T3, T4)
translates to
let z3 = FUN 21 2, 24
by evaluating the application
Rel_to_Fun “PRED(z1, z2, T3, z4)” [“z1”; “z2”; “z4”] “z3”

To avoid restating the application of Rel_to_Fun to its arguments for each example,
to indicate which parameters are required as inputs and which should form the
output, we will use the identifier inlist to denote the list of input variables, and
output to denote the required output. In the above example, therefore, one would

9, Gy 9, &

refer to [“z,”; “z2”; “z4”] as inlist and “z3”

as output. Furthermore, the notation
PRED will be used to denote some predicate and FUN to denote its translation
for a given inlist and output. Finally, the double quotes in the above expression
are used to identify HOL terms. Using quotes whenever a HOL term is written,
however, tends to clutter the text and so, they will only be used when it becomes
necessary to distinguish HOL terms from ML expressions. Otherwise, all relations
and functions described in this chapter should be taken to be HOL terms.

The way in which the parameters of a relation are ordered before translation is
unimportant but the order is preserved for those parameters which represent inputs

when generating the parameters of the functions. So, in the above example,
PRED(z4, 3,2, )

would have translated into
letz3 = FUNz4 2z, 7,

A function must always have an output but the number of input variables is
arbitrary. For example, a relation can model a device with no inputs which always

generates a constant output. The relation
PRED z
is translated to

let 2 = FUN

where FUN is a function with no arguments (called a 0-ary function or a constant).
A function, of course, can only return a single output but this can represent several

values by returning the output values in tuple form.
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6.2.2 Simple Relational Definitions
In general, a relational definition takes the following form of an equivalence:
PRED(z1,...,2n) = t[Z1,...,Txs)

where t[z,,...,2,] is some boolean term t involving free occurrences of the vari-
ables z1,. .., Z,. The left hand side represents the predicate being defined and the
right hand side describes the properties which define the predicate.

A new function name FUN; is generated to define a function corresponding to
a relational definition with a name PRED;. Also, once a function is generated,
its name must be stored with the name of the corresponding relational definition
so that whenever the predicate is used in other definitions, the same function is
recalled each time.

The simplest of these definitions are relations of the form:
PRED;(%1,. -+ ,%m;01,---,0n) = PRED3(41,...,%m,01,...,0n)
which translate to:
let FUN;(31,...,0m) = let (01,...,0,) = FUN2(Z4,...,%n) in (01,...,04)

given that inlist contains ¢, ..., i, and output = (0y,...,0,). Of course, the above

definition can be simplified to:
let FUNl(il, PN ,Zm) = FUNg(il, e ,im)
or even:

let FUN; = FUN,

The first definition, however, is easier to translate to when using a general algo-
rithm. Apart from the reason of facilitating automatic translation, all relations are
automatically translated to functions in this style for reasons that were explained
in Chapter 4.

The right hand side of a definition can be a conjunction of predicates instead
of just one predicate as above. One common use of conjunction is in the represen-

tation of structure in hardware circuits. For example, the relation

PRED(Z], S ,im,Ol, - ,On) =
PREDl(il, ‘e ,imaol) A
PREDg(il, e ,im,Og) A

PRED,(i1,. .., im, On)
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is translated to

let FUN(zy,...,0m) =
let 01 = FUNl(ila RS Zm)
and 0, = FUN,(%,...,%m)

and o, = FUN,.(¢1,...,%m)

in(01,...,0n)
All parameters to the functions above are inputs with known values so all the
output values are computed simultaneously. When internal lines are involved,
however, it is necessary to evaluate the outputs in the right order. In the general
case, an existential quantifier on the right hand side of the equivalence binds the
variables denoting internal lines. These lines act as outputs to some devices and
inputs to others so it becomes necessary to know when an identifier denoting an
internal line represents an input or an output within a set of parameters.

This is achieved by keeping an input-output specification of the parameters
of every defined predicate such that later reference to the predicate will demand
the same ordering in its parameters. This information can be stored in the form
of a table with the predicate names as keys and parameter models as associated
values. A parameter model takes the form of a list of values 1 and 0 such that, for
every identifier denoting an input, a 0 is stored and, for every identifier denoting

an output, a 1 is stored. For example, if inlist = [z1; 22| and output = z3, then
PRED,(zy, 22, 3)

would generate a model
[0; 0; 1]

Hence, this model can be consulted in later uses of PRED; to determine whether

internal lines represent inputs or outputs. For example, the relational definition
PRED(Z], iz, 7:3, O) = Eip PREDl(il,p, 0) A PREDl(ZQ, i3,p)

makes use of PRED, twice. In the first instance, it can be deduced from the
input=output specification that the parameters representing inputs are ¢; and p,
and the parameter representing an output is o. Since the value of p is unknown, o
cannot be computed yet and so, the second instance of PRED; is considered. Here,
the inputs are i; and i3 (both known values) so p can be computed by applying
the function corresponding to PRED; to i; and i3. Now the value of p is known
and so the value of 0 can be computed from the inputs ¢; and p. The relational

definition, therefore, translates to the function shown below.
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let FUN(i],ig,i:g) =
Ietp = FUNl(ig,i;;)
in
let 0 = FUN;(%;,p)

ino

In general, the algorithm for determining the order in which relations contain-

ing existentially quantified variables should be translated, is as follows:

1.

Strip off the existentially quantified variables and form a list of all the con-

juncts, called conjl.
Examine each conjunct in conjl, doing steps 3 and 4 for each relation.

Match the parameters of the predicate with their model, thus obtaining a list
of parameters which are inputs and a list of parameters which are outputs.

Call these lists inl and outl respectively.

If all parameters in the input list sn/ have known values, i.e. inlist—inl = [],
then the relation can be translated. Delete the relation from conj! and add
it to a list called known_inpl (originally with a value []).

If inlist—inl # [], i.e. some parameters in the input list do not have known

values, then the relation cannot be translated yet and it is left in conjl.

Translate all relations in known-inpl using a single declarative statement of

the form
let var = FUN(args)and ... in

leaving a trailing in at the end to join onto the rest of the translation. The

list known_inpl is reset to [].

If there are any relations left in conjl go back to step 2. If not, then all

relations have been translated into functions and the process terminates.

The relations on the right hand side of an equivalence in a relational definition

are not always predicates applied to a set of parameters. As in the case for speci-

fications of primitives, they are often equations of the form shown in the example

below:

PRED(%1,...,%m,01,...,0,) =

0 = tl[ila"')im] A

Op — tn[il, e ,Zm]
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where %;[i;,...,im| denotes some term ¢; involving free occurrences of 2q,...,%m,
for1<j<n.

Here, of course, the translation is easier as the outputs are already separated
from the expressions which will evaluate their values. Hence, the functional def-
inition is obtained by inserting let statements in the appropriate places. In the
example above if inlist=[t1;...;im] and output=(oy,...,0,), then the following

definition is obtained:

let FUN(Gy,. .., im) =

let o0 = tl(ila ‘e ,im)
and o, = t,(%1,. -« 0m)
in(01,...,0n)

6.2.3 Primitive Recursive Definitions

Primitive recursive definitions are often used to describe the structure of several
identical hardware devices iteratively connected together, such as in the relational
definition of the n-bit adder presented in Chapter 3.

In the HOL logic, primitive recursive relational definitions are expressed as a

conjunction of two relations defining the base and recursive cases as follows:

PREDO(Zl,...,Zm,Ol,...,OT) = to[o,il,...,im,Ol,...,Or] A
PRED n4+1 (21, %m,015--+,0:) = 1[0, 21, .« yim, 01,. .., Of)
where t;[n,%1,...,%m,01,...,0,] denotes some boolean term involving free occur-
rences of n,%1,...,%m,01,...,0;.
Relational definitions of the above form can be translated into recursive func-

tions of the form:

letrecFUNnR iy ...2,, =
let (01,...,0,) = (n=0) = 5[0, ¢4, ..., im] | tin—1,01,. .., tm]

in(01,...,0r)
where inlist = [i3;...;1,], output = (o01,...,0.) , ti[n—1,71,...,%,] is the func-
tional translation of (t1[n,%1,...,im, 01,...,0r])[n—1/n] and ¢; represents the func-

tional translation of ty. The notation A[B/C] means “B is substituted for all free

occurrences of C in A”.
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6.2.4 Relations Involving History Functions

Finally, consider relational specifications which make use of history functions to
describe timing features in sequential circuits. One commonly used form of such
relations 1s:

PRED (il,...,im,ol,...,on) =
V. Ol(t) = tl[ilw .o ,im,t] A

Vt. 0,(t) = talin, .« tm, 1]
The same rules for translating relations not involving history functions apply. The
universal quantification is removed and declarative statements are inserted. If the
values of inlist and output are [iy;...;4,] and (oy,...,0,) respectively, the above
relation translates to:

let FUN (i1, .. ., im) =
let Ol(t) = tl[il, e ,Z.m,t]

and 0, () = t,[i1, - -, tm, 1)
However, extra checks must be made for detecting feedback. If o; occurs free in the

corresponding term t;, then feedback occurs and o; must be declared recursively.

For example, in the relation
PRED(z,0) = Vt. o(t+1) = t'[i(?), o(2)]

the value of the function o at time #+1 is defined in terms of some expression t'
involving the values of i and o at time ¢. The function o is, therefore, recursive and
a letrec statement must be used to declare o as a function. Moreover, recursive
functions have to be defined at time ¢ rather than 41 so all values of t+1 in the
expression are replaced by ¢ and all values of ¢ are replaced by t—1 during the

translation. The last problem is that the expression
o(t+1) = t'[s(t), o(t)]

is only a partial specification of o; it does not define a value for o at timme 0. The
translation, therefore, must introduce a new identifier (which does not already
occur in the overall definition) to parameterise the initial value of 0. A conditional
statement is used in the definition of o such that the initial value is returned at
time t=0 and the value t'[¢(t—1), 0o(t—1)] is returned otherwise. The initial value
is then added on to the list inlist which contains the list of variables which will

be parameterised when defining the overall function. The functional translation
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of the relational definition of PRED above, therefore, is:
let FUN i oval = letrec ot = (t=0) = oval | t'[i(t—1), o(t—1)]

Information on the number of initial values parameterised when generating
functional definitions and their types must be stored in relation to the names of
their corresponding functions. Thus, whenever the name of a pre-translated pred-
icate forms part of another definition and its functional translation is found to
require initial value parameters by consulting the stored information suggested
above, identifiers denoting initial values are generated according to the types re-
quired and are inserted in the functional application and parameterised in the
overall new definition.

When internal lines are involved, the same algorithm on page 94 used for
determining the order in which relations should be translated can also be used,

but a slight modification is necessary. Consider the example:
PRED(z, 0) = 3p. PRED;(¢,0,p) A PRED,(p, 0)

where inlist=[i], output=0 and the parameter models of PRED, and PRED; are
[0;0; 1] and [0; 1] respectively.

According to the algorithm on page 94, the existential quantifiers are first
stripped off from the right hand side of the equivalence and the two conjuncts are

put in a list called conjl.
conjl = [PRED,(z, o, p); PRED(p, 0)]
The parameters of each relation in the list are matched against their models:

e for the first relation, PRED;, the model is [0;0;1], yielding inputs ¢ and o,
and output p. Now o does not have a known value so PRED; cannot be

translated yet and the relation is left in conyl.

e for the second relation, PRED,, the model is [0; 1], indicating that p should
act as input and o as output. Once again, the relation cannot be translated

yet since p is an unknown and so the second relation is also left in conjl.

So after one pass over the list conjl, no relations are found to be ready for trans-
lation, therefore the list which should contain the new relations for translation,
known_inpl is empty and step 5 of the algorithm fails. In models of combinational
circuits, feedback should not occur, so the failure of the algorithm is justified since
any attempt to model feedback in the absence of timing parameters would result

in an infinite recursion.
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The algorithm should therefore be modified such that step 5 reads:

5. If known_inpl # [] then translate all relations in known_inpl using a single

declarative statement of the form
let var = FUN(args)and ... in

leaving a trailing in at the end to join onto the rest of the translation. The
list known_inpl is reset to [].
Otherwise, if known_inpl = [], a recursion is detected and all relations still

in conjl are translated using a recursive declaration of the form
letrec var(t) = FUN (args)tand ... in

leaving a trailing in at the end to join onto the rest of the translation. The

list conjl is set to [].
The relational definition in the current example translates to:

let FUN: =
letrec p(t) = (FUN; ¢ 0) ¢
and o(t) = (FUN, p) ¢
ino
The relations which can be automatically translated into functions as described
above are relations of a form commonly used for specifying the structure of hard-
ware and the behaviour of simple components. Chapters 7 through 9 demonstrate
that translating such types of relations is enough to generate functional specifica-
tions which can be used for simulating complex hardware devices.
Relations describing the abstract behaviour of a device, however, are often in
a form which does not have a functional translation. Examples of such relations
and of relations which translate into non-executable functions are dealt with in

the next section.

6.3 Relations Not Automatically Translated

Relations cannot always be translated into functions and are often preferred for
writing definitions simply because the behaviour being modelled cannot be ex-
pressed functionally.

In this section we present a few examples to explain the problem. Since it is

impossible to give a general example which models the infinite number of relations
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which cannot be translated, the examples below are specific and are only intended
to give an idea of some of the reasons why certain relations have no functional

translation.

6.3.1 Relations with No Functional Interpretation

One problem with functions is that they must have an output. Often, a definition
is composed of a series of conditions which, if they hold, then they imply some
boolean facts. For example, consider the definition of a predicate STABLE given

below:
V't ty sig. STABLE (1,1;) sig = Vt. (31 < t) A (t < t3) D (sigt) = (sigty)

This definition is commonly used in the context of hardware specification and
verification [7,21,39,60]. The parameters of STABLE are two identifiers ¢; and ¢,
of type time and a signal sig of type time—bool. An informal interpretation of

the definition is:

STABLE (#1,12) sig holds if for all times ¢ between time ¢, and time %,
where t, is the earlier time, the value of sig remains constant, equal to

the value at ¢;.

In other words, the value of sig does not change between the times t; and ¢;. So,
for example, if ¢, = 1, t, = 8 and sig(t,) = F, then the value of sig will also be F
for times 2 through 7 if the STABLE condition above is to hold.

The definition of STABLE has no notion of output whatsoever and for this
reason it is not possible to model it as a function. The definition is merely a set
of boolean conditions which define when the value on a signal can be assumed to
be stable. The problem of not obtaining a function here is not in the automation
process discussed in the previous section but in the fact that none of the parameters
can be output. There is nothing to compute.

Another simple example is the definition of NEXT below which is also com-

monly used in the behavioural descriptions of hardware circuits.

VSZg tl t2.
NEXT (¢1,t;) sig =
(t1 < t2) A
sig(t2) A
(VE. (f < 1) A (t < t3) D —~(sig )
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The definition of NEXT says that:

NEXT (t,,%;) sig holds if for any two instants in time, t; and t,, and
any signal sig, t; occurs after t1, sig is true at ?; and sig is false at
all times between #; and t,. NEXT is true if ¢, is the first time after ¢,

at which sig 1s true.

One possible interpretation of NEXT as a function would be to attempt to
compute t,, i.e. to compute the next time the signal sig becomes true. There is
not much use for such a function, however, because it can only compute a value
if sig does become true at some time. The function does not make sense if sig is
never true. Once again, therefore, no functional translation is possible since none

of the parameters can be sensibly interpreted as outputs.

6.3.2 Relations Requiring Normalisation

Certain relations pose an entirely different problem. Often the problem is not in
choosing which parameters should be the outputs but in finding the right function
that computes the outputs. This kind of problem is generally associated with
equations in a non-definitional form.

For example, consider a two-bit binary adding device ADD shown below which

adds two input bits @ and b and returns the result as a sum bit s and a carry bit c.

a—ADD |—¢

b— — s

The behaviour of the device can be specified relationally as follows:
ADD(a, b, s, c) = bitval(s) + 2x bitval(c) = bitval(a) + bitval(b)

where bitval is defined on page 34. The parameters which should be treated as
outputs in a functional specification are obviously s and ¢ which represent the
result of adding a to b. The problem here, however, is that s and ¢ cannot be
computed from the above equation. The specification would have to be rewritten
either using two equations such that only the identifiers s and ¢ appear on the left
hand side of each equation or, using a single equation with the pair (s, c) on the
left hand side. Equations like the above cannot be automatically manipulated to
compute the value of an output unless information regarding appropriate inverse
functions is given. This would make the task of translating relations to functions

very complicated. Inverse functions do not always exist and when they do, if one
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is to take the trouble to find and define them, one might as well restructure the
specification to the form where only the identifiers appear on the left hand side.
For this reason, the relations in the form of equations that were presented in the
previous section to show the way in which they were translated were all of the form
outputs = expression, where expression is an executable expression (composed of
primitive recursive or boolean functions). Presently, equations in any other form
cannot be translated although it might be worth while exploring the possibility of

introducing some automatic basic equation manipulation for simple arithmetic.

6.3.3 Relations with Non-Executable Interpretations

Certain relations can have a functional translation which is not executable. A
feature in hardware specification which results in the translation to non-executa-
ble functions at a register-transfer level is the joining of two or more output lines.
Consider for example, a device D composed of two devices D1 and D2 connected

as shown in the diagram below.

D2

The relational specification of D is:
D,ei(a, b,0) = D1,u(a,0) A D2,,(b,0)
which translates to the functional specification:

let Dfun ab=
let o = D1y, a
and o = D2y, b

ino

The problem with the functional specification above is that the output identifier o
is declared more than once. An attempt to parse Dy,,, therefore, would fail and

the following error message would be produced:

multiple occurrence of a variable in left hand side of a definition
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At the register-transfer level, joining of wires is seldom modelled since it is this
feature that most commonly gives rise to the ‘false implies everything’ problem [7]
by using false relational models of implementation designs. A simple example is a

device in which a power source is connected to ground:

The relational definitions of Pwr and Gnd are:
Pwr,(0) =(o=T)
Gnd,q(0)=(o=F)

The relational definition of Dev, therefore, is:
Dev,(0) = Pwr,(0) A Gnd,i(0)

which is obviously always false since the above definitions of Pwr and Gnd assert
that the value on the output o should be both true and false simultaneously.
Attempting to execute the functional translation of Dev, would result in a similar
error message as the one above given for any general output join.

A simulation tool at the register-transfer level, therefore, traps instances of fan-
in in circuit designs. These fan-in features can give rise to false implementations at
the register-transfer level and should be avoided. The notion of using simulation
to track down occurrences of false implementation definitions is very much in line
with the main theme of this thesis and in Figure 1.1 it was shown how one should
backtrack from simulation to design until confident that the definitions are correct
before moving on to verification.

Another feature which can cause relations to translate into non-executable
functions is feedback that results in an infinite recursion. For example, the diagram
below shows an inverter INV with the output connected to its input. Since logic

gates are modelled without delay at the register-transfer level, such a connection

e

The relational definition for the above device is:

cannot be allowed.

DEV,u(z) = INV,g(z, )
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where INV,.; is a relational model of the inverter defined as:
INV,c(a,b) =b=—a

By expanding the definition of INV,; in that of DEV,. we obtain:
DEV,u(z) =z =~z

which is clearly false for all z.

The functional translation of the above definition should be:
DEVjy, =letz = -zinz

but this cannot be defined since the same identifier z appears on both sides of the
declaration let = —z. An identifier can only appear on both sides of an equation
in a recursive definition. In such a case, however, the identifier must denote a
recursive function instead of a value. Of course, a recursive declaration does not
provide a solution in this case since the methods we use only deal with primitive

recursion. Thus, the recursive definition:
letrecz t = ~(z t)

loops indefinitely.

6.4 Automatic Translation of HOL to ML

Having covered which forms of relations we are interested in translating into func-
tions in Section 6.2, we outline in this section the method used for translating
these relations into executable functions.

We wish to translate terms in the HOL logic to some form of executable code
representing ML programs, optimised as explained in Chapter 5. To do this, it is
convenient to translate the HOL terms to some intermediate form which is simple
to manipulate. This intermediate form, itself a HOL term, can then be translated
into a code representing the corresponding ML program.

The structure chosen for representing the intermediate form is based on the idea
of constructor functions. In the HOL framework there are certain ML functions
called constructor functions that can be used to build up HOL terms [22]. They
are used to input HOL terms and types to the ML system as an alternative to

quotation. For example, the ML expression:
mk_type(‘bool,[])
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returns the HOL type “ : bool”, and the expression:
mk_var(‘z‘, “ : bool”)

returns the HOL term “z”, where z is a HOL variable of type bool.

Obviously, using these constructor functions to input HOL expressions is ex-
tremely tedious when one can merely type in the quoted HOL expression di-
rectly. The functions are useful, however, for building HOL expressions in a non-
interactive manner, such as in programs which generate HOL terms.

What is needed, therefore, for representing ML programs is a set of HOL con-
structor functions (instead of the ML ones mentioned above) which can be used in
HOL terms to form an intermediate representation of ML programs as discussed
above. For example, if “mk_ml_type” is the HOL function for constructing atomic
types in ML, the HOL term:

“mk_ml_type(‘bool*,[])”

would represent the ML type bool, and if “mk_mlvar” is the HOL function for

constructing ML variables, the term:
“mk_ml_var(‘c‘, mk_mli_type(‘bool‘,[]))”

would represent an ML variable of type bool. These representations of ML programs
can then be transformed to optimised ML programs which can be evaluated.
The process of translating HOL relations into ML programs can be summarised

using the following diagram:

HOL translate HOL optimise Opt;_lIISILsed encode ML
relations constructs constructs prograrms

The first branch in the above diagram represents the transformation of HOL
relations to an intermediate HOL term, which consists of HOL constructors that
represent ML programs. The second branch in the diagram shows that this rep-
resentation of an ML program is converted into a representation of the efficient
version of the program (a second intermediate form), and the third branch repre-
sents the final stage at which the optimised HOL constructs are converted into the
ML program.

The intermediate forms represented by HOL constructs are usually long and

over detailed. Even simple relations explode into an almost incomprehensible
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term. This form of coding terms, however, is simple to manipulate mechanically.
It only forms an intermediate stage in the transition of translating HOL relations
to ML programs and it is not output by the program unless specifically requested.
Because these intermediate forms are so incomprehensible, no examples of them
are presented here.

The second stage of the transformation is to pass through the constructs pro-
duced from the first stage and check for instances where optimisation is required.
The construct is optimised at every recursive declaration.

The optimisation stage produces yet another construct which replaces the inef-
ficient subterm in the overall term. This makes use of another constructor function,
used for constructing memo-functions. The constructor function’s arguments con-
sist of the necessary information for memoisation in the final stage of the process.
The first argument is an automatically generated alphanumeric string which de-
notes the name of the memoised function; the second argument is the type of
the function used for determining which table to store results in; and the third
argument is the inefficient construct.

An optimisation construct is inserted for every recursively declared function.
If memoisation constructs are introduced in a definition, a naming parameter for
the overall definition must be introduced. The reason for this is that if a memoised
function is used in more than one place to compute output using different data,
the output must be stored in, and retrieved from, different locations. Otherwise,
the results of one function will overwrite those of another.

Consider as an example a circuit composed of two identical D-type flip-flops.
The functional definitions of the D-types are recursive and so they are memoised. If
one requests the output of a particular D-type, A say, at time ¢, the memo-function
computes the result and stores it in a table. If, then, the output of D-type B at
time t is requested, then if the same function models both D-types, the result
previously computed for D-type A is retrieved from the table and returned as
the output of D-type B. This is obviously wrong and the problem is solved as
suggested above by parameterising a name to memoised functions.

Therefore, at the optimising stage, not only must memoisation constructs be

introduced when recursive declarations are encountered but also:

e an extra string parameter must be added to the overall definition if memoi-

sation constructs are used;

e the extra appropriate string parameters must be added on to the calls of

memoised functions encountered in the body of a definition.
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The concept of naming to provide unique addressing for the memoisation functions
is further explained and illustrated in the examples presented in Chapters 8-9.

The final stage in the transformation from HOL relations to ML functions is to
generate ML code that defines a function corresponding to the optimised construct
produced in the previous stage. In general, the program that goes straight from
the HOL relations to the ML programs is invoked; Appendix B gives an example
interactive session to illustrate how the translator can be used. Other programs
can be used, however, which return the output at intermediate stages in the trans-
formation in case this information is required.

The final parse that encodes the ML programs involves the translation of pre-
defined operators and constants. For example, the symbol — denoting negation
in HOL is translated to the corresponding ML function not. Of course there is no
reason why the same symbols cannot be declared to denote the same constant or
operator as long as they do not already denote something. The existing parser,
however, makes use of predefined symbols and translates from HOL symbols to
ML symbols when these differ. Other examples of differing constant symbols are
T and F in HOL and true and false in ML.

The HOL constant ARB (defined in Chapter 3) is translated as a special case.
There is no corresponding ML constant since ARB cannot be executed. It repre-
sents any arbitrary value and this cannot be evaluated. The constant ARB, how-
ever, is only used in partial specifications where part of a definition is undefined.
The definition should not be executed under those conditions which generate ARB,
therefore, since the result is undefined. Thus, the constant ARB is translated into
the ML fail command which fails the program if it is executed under undefined
conditions.

Finally, there is one side effect which takes place when parsing constructs in-
volving optimised functions. Whenever a memoisation construct is encountered,
the parser checks whether a memo-function and table have been defined corre-
sponding to the type of the function being memoised. If such a memo-function
and storing table had previously been defined, then the memoisation construct is
parsed with no side effects. Otherwise, a memo-function and table of the appro-
priate types are defined as a side effect before resuming with the parsing,.

The following chapters present examples of hardware devices which have been
specified using HOL relations and whose specifications are transformed into ML
programs using the methods described in this chapter. The resulting programs

are executed using some example test cases.
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Chapter 7

Simulating a Factorial Machine

In this chapter, and in the following two chapters, examples of hardware devices
are presented which have been previously specified in HOL without intentions
of simulating the definitions. The simulation of these devices offers evidence of
the extent and generality of the automatic translating techniques explained in
Chapter 6; inventing new examples introduces the danger of writing specifications
in a style which suits the automatic translation, resulting in a biased idea of how
versatile and effective the techniques are.

The first example is a sequential device which computes the factorial function.
The design of the device is the same as in [17] where the factorial machine was first
specified and verified by Mike Gordon using a formalism based on denotational
semantics. The same device was later specified and mechanically verified in HOL
by Tom Melham [7].

This chapter shows how the existing HOL relational definitions of the device,
described in [7], are automatically translated into executable ML functions. The
derived programs are later executed to demonstrate the behaviour of the device.

The ML programs presented in this chapter are the final optimised versions
derived automatically from HOL relations. At first glance, this final product can
look rather different from the original relations. On closer examination, however,
one can distinguish the ‘naive’ ML functions embedded in the larger optimised
functions. The strong similarity between the naive (inefficient) ML functions and
the corresponding HOL functions was shown in Chapter 4. The optimised func-
tions are achieved by simple and clear transformations performed on the inefficient
functions as described in Chapters 5—6. With the inefficient version of the function
in mind, therefore, the optimised result becomes more obvious.

Since the translations presented in this chapter (and in Chapters 8-9) are

from HOL terms to ML programs, it is necessary to distinguish between the two

107



notations. In these chapters, therefore, HOL terms are enclosed within double

quotes whereas ML expressions are not.

7.1 The Specification

The factorial machine, as presented in [7], is a device Factorial which has one input

line in and two output lines ready and out as shown in Figure 7.1.

_ Factorial L out
in —

—— ready

Figure 7.1: A Factorial Machine

Its behaviour is defined as follows:

At any time t, if the value on the boolean line ready is true, then the
integer value, n say, on the input line in at time ¢ is read by the device.
The factorial of n is calculated and output on line out at time t4n+1.
During the time taken for the factorial of n to be calculated, i.e. from
time ¢ to time t4n, the value on the output line is maintained at 0.
Also, the value of ready becomes false over times t+1 through t4+n+1
so that no further input is loaded into the device while the factorial of
n is being calculated. The factorial value is displayed on the output
line for one unit of time (at time t+n+1) and at time t+n+2 the value
on the ready line becomes true once again, ready to read the next

input.
Formally, the above specification can be written as a relation as follows:

“Factorial(ready, in, out) =
Vn t. ready(t) A n=in(t) D

NEXT(t, t+n+2,ready) A

V' (1<t A t'<t+n+1) D (out(')=0) A

out(t+n+1) = FACT(n)”
where t is a value of type time (modelled by integers), n is an integer, in and out
are history functions mapping time to integers, and ready is a history function
from time to booleans. NEXT is the relation defined on page 99, and FACT is the

factorial function defined below.
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“FACT(0)=1A
FACT(n+1) = (n+1) x FACT(n)”

Unfortunately, this specification, as presented in [7], is a relation which cannot
be translated to a function. The behaviour of the device is defined using implica-
tions and conjunctions of boolean conditions which together cannot be executed.
For example, one of these conditions involves the predicate NEXT discussed in Sec-
tion 6.3.1. Since this is a relation with no functional interpretation, it is impossible
for the overall definition of Factorial to be interpreted as a function.

Of course, it may be possible to find an equivalent specification which has a
functional interpretation but this is beyond the scope of this chapter. Here we are
interested in translating existing definitions to find out how effective our techniques
for translating relations to functions really are, and writing definitions which have
a functional interpretation whenever some are found which do not is not relevant.

In this chapter, therefore, we do not investigate further the simulation of the
specification, but that of the implementation which can be used to check that the

specification conditions hold.

7.2 The Implementation

In this section we investigate the translation of the existing relational definitions
which model the implementation of the factorial device, simulate the functional
definitions over sample data and check that the results of the simulation conform
with the specification conditions.

The design of the factorial device is presented in a top-down manner. The
implementation is defined in terms of the definitions of three smaller devices Down,
Mult and Test connected as shown in Figure 7.2 to form the device Fact.

In [7], the devices Down, Test and Mult were treated as primitives because the
proofs of the implementations of these devices were not relevant to the paper.

Their behaviour is defined using the following relational definitions.

“Down,i(t, ready, l;) =
Vt. i (t+1) = ready(t) = «(t) | L(t)-1"

“Mult,¢i(ready, I, ;) =
V. lp(t+1) = ready(t) = 1| lo(t)x1y(t)”

“Test,(ready, Uy, lz, out) =
(Vt. ready(t+1) = ((L(t) = 0) A =(ready(t)))) A
(vh. out(t) = ((h(¢) = 0) A ~(ready(£))) = b(t) | 0)"
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......................................................

Test Mult

out ready
Figure 7.2: Implementation of Factorial Device

The definition of Down,; states that the value on [; at time t+1 is set to the value
of 7 at time ¢, if the value on ready at time t is true; it is set to the decrement of
its previous value otherwise. The definition of Mult,; is similar: the value on /; at
time t+1 is set to 1 if ready is false at time ¢; the product of the values of /; and
I, at time t otherwise. In the definition of Test,;, if the value of /; at time ¢ is 0
and the value of ready at time t is false, then ready at time t+1 becomes true
and out at time t is set to the value of I, at time #; otherwise, ready at time t+41
is set to false, and out at time ¢ is set to 0.

The behavioural specifications above are in a form that can be translated to
functions since the devices are defined in terms of equations of a definitional form.
The inputs and outputs of each device are easy to identify from the specifica-
tions and so, with the appropriate information on inputs and outputs, the above
relations can be automatically translated to ML programs.

From the specification of Down,; it can be seen that the device Down requires
two inputs, in and ready, and returns one output, /;. With this information, the
definition of Down,.; is translated to:

let Down,, name i ready l; val =
letrec [;(¢') =

(memo_num
(name " ‘down_I1%)

(At. (t = 0) = Lwal | ready(t—1) = i(t—1) | L(t—=1)-1)) ¢/

in ll
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The above program Downy,, which models the device Down is an optimised
translation of the definition of Down,.;. The program returns a history function L
which is computed recursively. The presence of a recursive computation triggers
the automatic translator to optimise the calculation by introducing memoisation.
If no memo-function has yet been defined for the type of /1, a new memo-function
and table are defined as a side effect before Downy,, is defined. The function
I, maps time to numbers and so the function memo_num in the above program
represents a memo-function which stores number values.

The relational definition Down,; is only a partial specification; it does not
define the function /; at time t=0. An initial value /; val is therefore automatically
introduced in the functional definition to halt the recursion at time t=0. This
initial value is a parameter of the overall definition.

Finally, since memoisation is used to store values computed by the program
which models the Down device, a further parameter is introduced to represent
a name for each occurrence of such a device. By using the infix concatenate
operator, *, this parameter of type string is used to prefix further names generated
for uniquely identifying memoised functions.

Automatically generated names involve special sequences of symbols which
are unlikely to be input interactively and in any case, they are always checked to
ensure they do not already denote some value. Since such automatically generated
sequences are often long and unreadable, they are replaced by shorter names in
this thesis.

The relational definitions of Mult,.; and Test,.; are translated in the same way.
In the translation of Mult,.;, ready and [, are specified as inputs and /3 as output

to obtain the function Multy,, below.

let Multy,,, name ready Iy l;_val =
letrec I(t') =
(memo_num
(name ™ ‘mult_i2)
(At. (t = 0) = lyval | ready(t—1) = 1 | L(t—1)xL(t—1))) ¥’
in lg
Because the history function to be memoised, I, is of the same type as [; used in
the definition of Downy,,, the same memoisation function used in the definition of
Downy,y,, namely memo_num, is used in the definition of Multy,,.
The translation of the definition of Test,.;, shown below, makes use of two mem-

oisation functions: one for storing and retrieving number values, memo_num, and
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the other for storing and retrieving booleans, memo_bool. From the parameters of

Test,.;, Iy and I; are selected as inputs while out and ready are the outputs.

let Testy,,, name |, I ready_val =
letrec ready(t’) =
(memo_num
(name ™ ‘test_ready’)
(At. (t = 0) = readywal | (l1(t—1) = 0) & not(ready(t—1)))) t'
and out(t') =
(memo_-bool
(name " ‘test_out')
(At. (lL1(t) = 0) & not(ready(t)) = L(t) | 0)) '
in (out,ready)

The structure of the device Fact is defined relationally in the standard way by
joining together the definitions of Down, Test and Mult using conjunction and by

hiding the internal lines using existential quantifiers.

“Fact,e(z, out, ready) =
Al ly. Down,. (3, ready, l;) A
Mult, o (ready, Iy, 1) A
Test,(ready, Uy, I3, out)”

This is translated to the function Facty,, which makes use of the previously

defined functions Downy,,, Mults,, and Test;,,.

let Facty,, name 1 tvaly wal, tvals =
letrec [(t) =
(memo_num
(name ™ ‘fact 1)
(Downy,,, (name * ‘ fact_down‘) i ready ivaly)) t
and l,(t) =
(memo_num
(name” ‘fact_12")
(Mult,, (name” ‘fact-mult') ready I, tvaly)) t
and out(t) =
(memo_num
(name” ‘ fact_out)
(fst (Testsyn (name”™ ‘fact_test’) Iy I; ivals))) ¢
and ready(t) =
(memo_bool
(name ™ ‘fact_ready‘)
(snd (Testyy, (name " ‘fact_test') ly 5 ivals))) t
in (out,ready)
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The translator detects that the functions Downy,,, Multy,, and Test;,, require
extra parameters to those identified as inputs in the translation of the predicates
Down,.;, Mult,,; and Test,;. The appropriate parameters are generated which
denote initial values and unique string names. All identifiers denoting initial values
are parameterised in the overall program. It is only necessary to parameterise one
naming identifier which will be used to name different instances of the program
modelling multiple occurrences of the same device. This parameter is concatenated
to a uniquely generated string to supply a different name for each device requiring
such identification and for each memo-function.

The functions fst and snd are used to select the appropriate members of the
tuple returned by the function call to Testy,, since in ML the declarations of out(t)
and ready(t) have to be made separately and it is not possible to declare tuples

of recursive functions in the following way:
letrec ... (out(t),ready(t)) = Testsyn ...

It is also possible to translate the relational definition of Fact if the applications
of Down,.;, Mult,.; and Test,.; are first expanded in the definition of Fact,.;. Such

an expansion results in the definition Fact’,:

“Fact’,ei(2, out, ready) =
al 1,.
(Vt. [1(#+1) = ready(t) = i(t) | L(H)—1) A
(Vt. L(t+1) = ready(t) = 1| L(t)x11(2)) A
(Vt. ready(t+1) = ((li(t) = 0) A —~(ready(t)))) A
(Vt. out(t) = ((li(t) = 0) A =(ready(t))) = () | 0)”
which can be translated to the program Fact's,, below, using techniques similar

to those used in translating Fact,e;, Down,¢, Mult,,; and Test,,;. Of course,
Fact,.; = Fact/,;

and
Factys,, = Fact/s,,

The complexity of the optimised programs derived so far supports the necessity
for automatic translation. Example simulations of these programs are shown in

Section 7.4 together with those for the programs derived in the next section.
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let Fact’ sy, name i tvaly ival; tvaly =
letrec [1(t') =
(memo_num
(name” ‘fact'_11')
(t. (t = 0) = L val | ready(t—1) = i(t—1) | (LL(t—1)-1))) ¥/
and l(t') =
(memo_num
(name” ‘ fact’_12")
(At. (t = 0) = l,val | ready(t—1) = 1| L(t—-1)xl(t-1))) ¢’
and out(t') =
(memo_num
(name ™ ‘ fact' _out‘)
(At (t = 0) = readyval | (L(t—1) = 0) & not(ready(t—1)))) '
and ready(t’) =
(memo_bool
(name ™ ‘fact' ready")
(At (lLi(t) = 0) & not(ready(t)) = l(t) | 0)) '
in (out,ready)

7.3 Implementation Using Simpler Primitives

In this section we consider the translations of relational definitions which model
the implementations of Down, Mult and Test using simpler devices for primitives.

Nine primitives are used altogether:

e Two devices, And and Not, to perform the logical operations of conjunction

and negation. The relational definitions for these are:
“Not,.(z,0) = Vt. o(t) = = (i(t))”
“And,ei(21,22,0) = V. o(t) = 11() A i2(2)”

which are translated to the functions:
let Noty,,, ¢ = let o(t) = not(:(¢)) in é

and
let Andy, @1 ¢ = let o(t) = 4,(t) & i3(t) ino

respectively.
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o Two devices, Zero and One, to generate the constants 0 and 1. The relational

definitions for these are:
“Zero,q(0) = Vt. o(t) =07
“One,q(0) = Vt. o(t) =17

which translate to:
let Zerog,, = leto(t) =0ino
let Onejf,, = leto(t) = lino

e A decrementer Dec which subtracts one from the input. The relation:

“Dec,¢i(2,0) = Vt. o(t) = i(t)—1”

translates to:
let Decsyn t = let o(t) = i(t)—1lino

The subtraction used in the HOL term ranges over natural numbers such
that 0—n = 0. Since the predefined ML subtraction operator ranges over
integers, a natural number subtraction operator was defined and used in the
definition of Decy,, shown above. To avoid the use of two different symbols

b

to denote subtraction, only the symbol ‘~’ is used in this chapter and it

represents natural number subtraction.

¢ A multiplier Multiply which multiplies two natural numbers. The relational

definition:

“Multiply, (31,22, 0) = Vt. o(t) = 11(t) x22(2)”
translates to:

let Multiply (., i1 22 = let o(t) = 41(t)x22(t) ino

e A multiplexor Mux to select which input to pass on to the output. The

relational definition:

“Muxyer( 5w, i1, 2, 0) = VE. 0o(t) = sw(t) = i1 (t) | ia(t)”
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translates to:
let Mux s, sw 17 iy = let o(t) = sw(t) => i1(t) | i2(t) ino
e A device Eqzero for testing equality with zero. The relational definition:
“Eqzero,(i,0) = Vt. o(t) = i(t)=0"
translates to:
let Eqzeroy,,, i = let o(t) = i(t)=0ino

If the input is zero, Eqzero returns true; otherwise false.

o A register Reg for storing values. The relational definition:
“Reg,(1,0) = Vt. o(t+1) = i(t)”
translates to:
let Reg;,, i oval = let o(t) = (t=0) => oval | i(t—1)ino

The definitions are polymorphic thus modelling registers for storing values

of any type.

None of the above definitions require recursive computation so no optimisation
is introduced. The definition of Reg,,, is only partial and so an initial value is
introduced in the functional definition.

The devices Down, Mult and Test can be implemented using the primitives
described above. The implementation of Down is composed of a decrementer Dec,
a multiplexor Mux and a register Reg as shown in Figure 7.3.

The implementation of Down is very similar to that of the counter described
in Chapter 4. The only difference is that the input of the counter is incremented
whereas that of Down is decremented. The Mux device checks if the value on the
ready line at time t is true. If it is, then the value on the input line ¢ at time ¢ is
passed on to Reg. Otherwise, 1 is subtracted from the value on the output line [
at time t by the device Dec and the result is passed on by Mux to Reg. The output

of Down at time t+1 is equal to the value input to Reg at time ¢.
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The structure of the implementation of Down can be defined relationally by:

“Down_lmp,(i,ready, ;) =

dp: ps.
Decrcz(ll,pl) A
MUXrel(T'eady, iv D, p?) A

Regrcl(p2 ’ ll )”

which is translated to the program:

let Down_Impy,,, name i ready regval =
letrec py(t) =
(memo-num (name * ‘downi_pl‘) (Decysy, 1)) t

and py(t) =
(memo-num (name ™ ‘downi_p2‘) (Muxsy, ready i p1)) t

and [(t) =
(memo_num (name ™ ‘downi_I1‘) (Regy,, ps regval))t
inly
The program computes the value of [y recursively and is therefore optimised using
appropriate memo-functions.

The implementation of Mult consists of four components: Multiply, One, Mux
and Reg, connected as shown in Figure 7.4. The multiplexor Mux tests the value
on the ready line at time ¢. If this is ¢true then the constant 1 computed by One
is input to the register Reg. If it is false, however, the result of multiplying the

Dec

Figure 7.3: Implementation of Down
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L4
P2 Mux o2
One Multiply
p3
Reg
Mule
ly

Figure 7.4: Implementation of Mult

values on the input /; and output l; computed by Multiply is input to Reg. The
value input to Reg at time ¢ is output one time unit later at time t+1; this also
being the output of the overall Mult device.

The structure of the implementation of Mult can be defined relationally as:

“Mult_Imp,(ready, i, 1) =
3p1 p2 ps.
MUItiPIYTel(lz7 lla pl) A
Onerel(p2) A
Muxrcl(readyap27pl)p3) A
Regrel(p3’ l2)”

which is translated to the program:

let Mult_Impy,,, name ready I, regval =
let p; = Oneyyy,

in
letrec py(t) =

(memo_num (name " ‘multi_pl) (Multiply ,,, I, 1))
and ps(t) =

(memo_num (name ™ ‘multi_p3‘) (Mux;,, ready p; p;)) t
and l,(t) =

(memo-num (name ® ‘multi_12) (Regy,, ps regval)) t
in lz

The computation of the values on line p, is not recursive and so, there is no need for

it to be optimised along with the rest of the computation. It is declared separately
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from the rest of the lines which are declared recursively.
Finally consider the implementation of Test; the largest of the three original
devices. This has six components: Eqzero, Not, And, Reg, Mux and Zero connected

as shown in Figure 7.5.

Iy L
Test || T
Eqzero Not
D1 P2
Zero And
ps P4
Mux Reg
out ready

Figure 7.5: Implementation of Test

The value on the input /; at time ¢ is tested by Eqzero. If the value is equal to
zero, then the negation of the value on ready at time ¢ computed by Not is passed
through And to py. This value is output via the register Reg as the next value on
ready at time t+1. The value on p, at time ¢ is also used to compute the value
on out at time ¢t. The Mux tests the value on pg4; if it is true then the value on
the input line I; at time t is output, otherwise the constant 0 computed by Zero

is output.
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The relational definition describing the structure of Test is as follows:

“Test_Imp,(ready, 1y, 1y, out) =

3p1 p2 p3 pa-
querorel(l17p1) N
Not,.(ready, p2) A

Andrel(plap?ap4) A
Zerorcl(p3) A
Reg'rcl(p4, ready) A
Mux,ei(pa4, l2, ps, out)”

This translates to:

let Test_Imp,,,, name l; l; regval =
let py = Eqzeroy,,, Iy
and p3 = Zerogy,
in
letrec po(t) =
(memo_bool (name " ‘testi_p2‘) (Noty,, ready)) t

and py(t) =
(memo_bool (name " ‘testi_p4‘) (Andsun p1 p2)) t
and ready(t) =
(memo_bool (name " ‘testi_ready‘) (Reg;,, ps regval)) t
and out(t) =
(memo_num (name " ‘testi_out) (Muxsun ps la p3)) t
in (out,ready)

In the above definitions of Downy,, and Multy,,, the function Reg fun 18 used to
model registers for storing numbers whereas in Test sy, it is used to model a register
for storing booleans. This multiple use of the program Reg;,, to model repeated
occurrences of the device Reg does not require naming to uniquely identify the
particular devices since the program in this case is not involved in memoisation
and there is no storage of values which need to be labelled to the device from
which they were computed. The same applies for the multiple occurrences of Mux.

The overall implementation of Fact can now be redefined using the implemen-
tation definitions of Down, Mult and Test. The definitions are identical to those
of Fact,, and Facty,, except that the implementation predicates and functions
Down_lmp,;, Down_lmp,, ., etc. replace the behavioural ones, Down,.;, Downy,,,

etc. as shown in the definitions of Fact_Imp,,; and Fact_Imp,,, below.

Fact_Imp,.,(7, out, ready) =
3l ;. Down_lmp, (¢, ready, ) A
Mult_Imp, . (ready,ly,l3) A
Test_Imp, . (ready, l1, I, out)
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let Fact_Impy,,,, name i tval, ival; tvals =
letrec [(t) =
(memo_num
(name” ‘fact_I1)
(Down_Impy,,, (name * ‘ fact_down') i ready tvaly)) t
and [(t) =
(memo.num
(name ™ ‘fact_12)
(Mult_lmpy,,, (name * ‘ fact_mult') ready Iy ivaly)) t
and out(t) =
(memo-num
(name” ‘ fact_out')
(fst (Test_Impy,, (name " ‘fact_test') Iy I, tvals))) t
and ready(t) =
(memo_bool
(name” ‘fact_ready‘)
(snd (Test_Impy,,, (name ™ ‘fact_test') I Iy ivals))) ¢
in (out, ready)

The definitions of Down_Imp,;, Mult_Imp,.; and Test_Imp,,; can be expanded
in the definition of Fact_Imp,,; as was done with the definitions of Down,.;, Mult,.;
and Test,.; in the definition of Fact,. in Section 7.2. This results in an expanded
form of Fact_Imp,,; which can be easily translated in exactly the same manner as
Fact,; and Fact_Imp,,, were translated. The functional translation, however, is long
and presents nothing of interest which has not already appeared in the previous
translations. For this reason, the expanded cases of the Fact_Imp definitions are

not presented here.

7.4 Example Simulations

The automatically derived programs described in the previous sections can be
executed to show that the implementations model the intended behaviour of the
devices. Only example simulations of the overall factorial machine are presented
here. An example session to show how the ML programs can be generated from
the HOL relations that model the implementation of the factorial machine, is given
in Appendix B.

For example, take the first ten values on the input line i of the factorial machine
to be:

4,2,5,6,9,1,3,7,8,10

121




The functions:

o Facty,,—the function modelling the implementation of Fact using the be-

havioural definitions of Down, Mult and Test as primitives;

o Fact_Imp,,,—the function modelling the implementation of Fact using the

implementation definitions of Down, Mult and Test;

can be simulated by evaluating the expressions:

let (out,ready) = Factyy, ‘Fact'i00T
let (out’,ready’) = Fact_lmpy,, ‘Fact_ Imp'i00T

respectively. The initial values are consistent in both simulations, in this case 0,

0 and T. The results of the above simulations are sampled over the relevant time

units as shown in the table below.

time 0 1 2 3 4 5 6 7 8 9 10 11
: 4 2 5 6 9 1 3 7 8 10
out 0 00 00 24 000 0 6 o

out 0 0 O 0 0 24 0 0 0 0 6 O

reedy T F F F F F T FF F F T
reaedyYy T F F F F F T FF F F T

As expected, the values computed by both definitions are identical. Further-

more, the simulations show that the results conform to the expected behaviour of

the factorial machine as specified in Section 7.1:

ready(0) is true, i.e. t =0

¢(0) is loaded, i.e. n =4

4! is computed and appears on out at time 5, i.e. at t+n+1

the value on out is 0 for times 0 through 4, i.e. t to t+n

the value on ready is F for times 1 through 5, i.e. t+1 to t4+n+1
ready(6) is true once again, i.e. at t4+n+42

the cycle repeats itself for i(6)
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The times taken for the above computations are tabulated below alongside
those for identical computations using the corresponding non-optimised functions.
The times below are the cpu times (measured in seconds) taken on a SUN 3
computer to compute the first twelve values of the history functions out, out’,

ready and ready’. The effectiveness of the optimisation is obvious from the results.

Runtime Statistics
Output | Memoised | Non-Memoised
out 1.8s 14.3s
ready 0.2s 12.2s
Total 2.0s 26.5s
out’ 10.6s 26.2s
ready’ 0.6s 22.5s
Total 11.2s 48.7s

The computations were carried out in the same order as presented in the table, with
the topmost statistics representing the first computation. The order is important
only to explain the large difference in the times taken to compute the values of out
and ready, and out’ and ready’ in the memoised computations. This is because
several values of ready and ready’ are calculated during the computation of out
and out’ respectively, and are memoised for later use. Thus, when calculating the

values of ready and ready’, only those not already memoised need to be computed.
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Chapter 8

Simulating a Computer

In this chapter we describe how the relational specifications of a simple computer
are automatically translated into executable programs and show how these derived
programs can be used to simulate the mechanisms of the computer.

The design of this general-purpose computer was invented by Mike Gordon
in {17] where it was specified and verified using a formalism based on denotational
semantics. Commonly referred to as ‘Gordon’s computer’, it became a classic
example in hardware specification and verification due to its appeal as a simple
yet sufficiently realistic circuit. It has been specified and verified in LCF-LSM
by Mike Gordon [19], in VERIFY by Harry Barrow [4] and in HOL by Jeffrey
Joyce [34]. Martin Richards has written specifications of Gordon’s computer in
BSPL [56] while Daniel Weise has written specifications in a LISP-like language
of a modified version of the computer [63]. Gordon’s computer became the first
formally verified computer to be fabricated when an 8-bit version was implemented
as a 5000 transistor CMOS microchip as part of a project conducted by Jeffrey
Joyce [35] at Calgary and Xerox Parc.

The relational definitions translated in this chapter are based on the HOL
specifications presented in [34]. A brief description of Gordon’s computer is first
presented, followed by an account of various data types which are set up in ML to
enable a direct translation of the HOL definitions which make use of such types.
Both the specification models and the implementation models are then translated
and the simulation of an example program is presented in the final section.

One of the main features of this chapter is the definition of a data path DATA
presented in Section 8.4 which provides an excellent example of why non-memoised
functional translations can be so inefficient. To explain this, of course, all the
definitions used in the definition of DATA have to be explained. In fact, most of

the definitions in both the specification and the implementation of the computer
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are presented in this chapter. Many translation techniques have already been
illustrated in the previous chapter but are discussed once again in the light of a

bigger example.

8.1 Description of Gordon’s Computer

A detailed description of Gordon’s computer is given in [34]. A brief outline is pre-
sented below, however, to enable a full understanding of the formal specifications
and their translations presented in the rest of the chapter.

At the register-transfer level, the target computer contains two registers, a
13-bit program counter and a 16-bit accumulator, and a random access memory

which is addressed by 13-bit words each pointing to a 16-bit memory space.

ddddddddddddidid ®
SWITCHES BUTTON
1 2
o 3 0000000000000 e}
PC Display Lights READY
KNOB
00000000000 00000 o)
ACC Display Lights IDLE

Figure 8.1: Front Panel of Gordon’s Computer

Externally it has four sets of lights used to display output, and a set of buttons
and switches which are used for input. Figure 8.1 is an illustration of the front

panel of the computer which shows the four sets of output lights, namely:

e a set of 13 lights to display the contents of the program counter (PC).
e a set of 16 lights to display the contents of the accumulator (ACC).
e a light which goes on to indicate when the computer is idle (IDLE).

e a light which goes on to indicate the completion of a major state transition

(READY).
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and the three input mechanisms:

e aset of 16 switches to load data into the program counter or the accumulator

(SWITCHES).
¢ a knob to select the type of instruction to execute (KNOB).

e a button used to interrupt the computer during program execution and make
it idle, or if the computer is already idle, to execute the instruction selected

by the knob (BUTTON).

Each switch or button can be either on or off; these two states are represented
by the booleans true and false respectively. Thus, a sequence of switches or lights
in some combination of on and off states is used to model sequences of binary digits.

The types of instructions to be executed are determined by the KNOB being

in one of positions 0, 1, 2 or 3.
¢ position 0 = load PC
e position 1 = load ACC
e position 2 = store ACC at PC
e position 3 = start execution at PC

When the button is pushed and the computer is idle, if the knob is in position 0,
the rightmost thirteen bits indicated by the switches are loaded into the program
counter. If the knob is in position 1 then all sixteen bits are loaded into the
accumulator instead. When the knob is in position 2, no input is read but the
current contents of the accumulator are stored in memory at the location indicated
by the contents of the program counter. The knob in position 3 starts the execution
of a program (loaded in memory) at the location indicated by the contents of the
program counter. During the execution of a program, the idle light remains off
indicating that the computer is busy; the light going back on when execution of
the program is terminated. If the button is pressed during the execution of the
program then the program is interrupted and the idle light comes on again.

Programs are written using the following eight microinstructions:
¢ HALT—Terminates execution

¢ JMP z—Jump to address z
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e JZR z—Jump to address z if ACC=0
e ADD z—Add contents of address to ACC

SUB z—Subtract contents of address from ACC

LD z—Load contents of address into ACC

o ST z—Store contents of ACC in memory at address

¢ SKIP—No operation

Each instruction consists of sixteen bits; the leftmost three denote the opcode, and

the rightmost thirteen denote the address. For example,
001 0000000000111

denotes the instruction
JMP 7

where 001 is the opcode for JMP and the address field has value 7. Further details
of all the instructions are presented in [34].

Before showing the formal HOL specifications that represent the above be-
haviour and deriving their executable translations, it is necessary to explain how
the representation of the HOL data types used to write definitions describing Gor-
don’s computer can be represented in ML. Keeping the representations of data

types consistent in the two formalisms enables a cleaner and easier translation.

8.2 Setting Up wordn Types in ML

Values denoting sequences of bits are represented in the HOL specifications as
values of type wordn, where n is the number of bits represented by the particular
type. For example, values stored in the program counter are represented by the
type wordl3 and values stored in the accumulator are represented by the type
wordl6.

The wordn types are defined in HOL as primitive data types and a number
of axioms and theorems are defined and proved which describe their properties.
The types are not, however, formally axiomatised; they are introduced in a rather
ad-hoc manner with only certain properties being axiomatised, those required to
conduct the correctness proofs of the computer [34]. A description of how wordn

types can be formally axiomatised in the HOL logic is given in {40].
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The HOL definitions modelling Gordon’s computer use the following data types
to represent n-bit words: word2, word3, word5, wordl3, wordl6 and word30, and
the data types: mem5_30 and mem13.16 to represent the ROM (explained in
Section 8.4) and the RAM respectively. Furthermore, there is also a tri_wordn
data type defined for every wordn which allows the values on data lines to be
floating,.

In the rest of the chapter, values of type wordn are sometimes referred to as
words while values of type tri_.wordn are sometimes referred to as triwords.

The above mentioned data types must be translated into ML, along with certain
functions that manipulate them. Unfortunately such translations cannot be done
automatically while the type definitions are not properly defined because no regular
procedure can be identified in their definitions. With a systematic formalism
as presented in [40], however, it would be interesting to investigate whether an
algorithm can be found to automatically translate the data type specifications
into ML. At the time of this research, the proper wordn definitions were not yet
implemented in HOL and so only the ad-hoc definitions in [34] were available.

Certain strategies were used, however, to define the data types manually. The
type representation is very attractive and the strategy used to define them is
promising for future research in the automatic translation of types. Below is a
description of how the above data types were set up in ML.

Primitive HOL data types can be neatly modelled using abstract data types in
ML. For example, the type of words handled by the accumulator, word16, can be
defined as follows:

abstype wordl16 = bool list
with VAL16 w = val 16 (rep-word16 w)
and WORD16 n = abs_word16 (int_tolist 16 n)
and ARB16 = abs_word16 []
and BITS16 = (bits 16) o rep_wordl6
and NOT16 w = abs_word16 (bits 16 (map not (rep-wordl6 w)))
and OR16vw =
abs_wordl6 (bits 16 (word_or (rep-wordl6 v) (rep-wordl6 w)))
and AND16vw =
abs_word16 (bits 16 (word_and (rep_-wordl16 v) (rep-word16 w)))

This type declaration introduces a new type wordl6 represented by the type
bool lzst. It makes use of the two locally available functions abs_wordl6 and
rep-wordl6 (see Chapter 2) to define a set of primitive functions for manipulating

the new data type.
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The function VAL16 takes an argument of type word16 and uses a previously
defined function val to compute the integer representation of the 16-bit word. The
function WORD16 takes an integer argument and converts it to a 16-bit word us-
ing a pre-defined function int_to_list, which fails if the integer represents a word
larger than 16-bits long. The constant ARB16 represents an undefined value of
type word16, and the function BITS16 simply returns the boolean list representa-
tion of a 16-bit word. The functions NOT16, OR16 and AND16 are functions for
performing the logical operations of negation, disjunction and conjunction on the
boolean representations of the bits making up 16-bit words.

The function (bits n) is used to check that the list representation of a wordn
value contains n bits; it returns the list of bits if n bits are present and fails
otherwise. Thus, since the undefined value ARBn should never be output, any
attempt to evaluate it will fail. Its use is shown in the type definitions of triwords
and in Section 8.4 when the implementation of the computer is described.

The properties of wordl6 are therefore captured in a single declaration by
means of the representation of the type and the definitions of primitive functions.
Type declarations similar to the one above are made for the rest of the wordn
types required for specifying the computer. The corresponding tri_wordn data

types are defined in a similar fashion. The type declaration for tri_word16 is:

abstype tri_wordl6 = wordl6 + void

with FLOAT16 = abs_tri-wordl16 (inr ())

and MK_TRI16 w = abs_tri_wordl16 (inl w)

and DEST_TRI16 w = (out! (rep-tri-wordl6 w)) ? ARB16

and U161, t, = abs_tri_wordl6

tri—word_union (rep-tri_wordl6 t,)(rep-tri-wordl6 t;)

where the new type is represented by the disjoint union of the types wordl16 and
vord.

The declaration defines FLOAT16 by injecting void into the right summand
of the type representation and MK_TRI16(w) by injecting w into the left sum-
mand. Thus, a value of type tri_wordl6 can be created by FLOAT16 if the value
is undefined or by MK_TRI16 if the value is a 16-bit word.

The function DEST_TRI16 attempts to project a defined wordl6 value out
of the left summand representing the triword. If this fails (i.e. the triword is
FLOAT16) then the undefined word ARB16 is returned. The reason why fa:l
cannot be used instead of ARB16 is that the values on certain components of the
computer (namely the bus) are sometimes floating during the execution of certain

microinstructions. This would not be allowed if fa:l is used at this stage, because
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the entire simulation will fail outright when the first floating value is encountered.
The value ARB16 is useful because it represents an arbitrary value which will cause
failure only if an attempt to evaluate it is made.

Finally, the function U16 takes the union of two triwords by using a function
tri_word_union. If either of the triwords is floating, the result is the other triword;
if the two triwords are equal then the result is either one of the values; and if the
two triwords are both non-floating unequal values then the function fails.

The functions defining conjunction, disjunction and union of words ANDn, ORn
and Un are infixed to make the notation easier.

The memory data types are also defined using abstract type definitions. For ex-

ample, the random access memory is defined as a data structure of type mem13_16

which is defined by:

abstype mem13.16 = word13—wordl16
with STORE13 (w;:wordl3) (wy:wordl6) m =
abs_mem13_16 (Aa. (a=w;) = w; | (rep-mem13_16 m a))
and FETCH13 = rep.-mem13_.16
and EMPTY13.16 = abs_mem13_16 (Aa:word13. WORD16 0)

Once again, a set of primitive functions are defined along with the new type rep-
resented by functions from values of type wordl3 to values of type word16. The
constant EMPTY13_16 defines a memory with all contents set to zero. The function
(FETCH13m addr) evaluates the function representing the memory m at the loca-
tion specified by addr. The function STORE13 takes three arguments: an address
(of type wordl3), a value to be stored (of type wordl6) and a memory in which
the value is to be stored (of type mem13.16). The function STORE13 simulates
storing values in memory locations by ‘updating’ the function which represents
the memory in such a way that the stored value is returned (the new contents)
when the function is evaluated for the particular argument (the address). In this
way, values stored in memory can be overwritten since the function evaluates the
first result matching an address, which corresponds to the last value stored.

The type mem5_30 is defined in an identical way using word5 instead of word13
and word30 instead of wordl6. In fact, all primitive HOL types used to specify
the computer which were not already defined in ML are straightforward to define
using abstract type declarations.

Of course, other functions which act on values of these new types can now be

defined. For example, a function to increment a 13-bit word can be defined by:
let INC13 w = WORD13 ((VAL13 w) + 1)
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and a function for testing whether a 16-bit word is equal to zero can be defined

as:
let ISZERO16 w = (VAL16 w) = 0

Non-primitive HOL data types are much easier defined using ML type abbre-

viations. For example, the type declarations:

typeabbrev time = int
typeabbrev sig = time—bool
define a type time represented by integers and a type sig represented by functions
from time to booleans.
Having covered how the HOL types can be defined in ML, the next section
presents the formal specifications of the target machine described in Section 8.1

along with their derived programs.

8.3 The Target Machine

The behaviour of Gordon’s computer described in Section 8.1 is formalised by the

definition of the predicate COMPUTER shown below.

“Y knob button switches mem pc acc idle.
COMPUTER, (knob, button, switches, mem, pe, acc, idle) =
(mem(t+1), pe(t+1), acc(t+1),idle(t+1)) =
(idle(t) =
(button(t) =
((VAL2 (knob(t)) = 0) =
(mem(t), CUT16_13(switches(t)), acc(t), T) |
(VAL2 (knob(t)) =1) =
(mem(t), pe(t), switches(t), T) |
(VAL2 (knob(t)) =2) =
(STORE13 pc(t) ace(t) mem(t)), pe(t), ace(t), T) |
(mem(t), pce(t), ace(t), F)) |
(mem(t), pe(t), acc(t), T)) |
(button(t) = (mem(t), pc(t), ace(t), T) |
EXECUTE(mem(t), pe(t), acc(t))))”

The parameters of the specification denote the memory, the input ports, and the
output ports of the computer; all represented by history functions as listed in the
table overleaf with their corresponding types. The definition recursively equates
the values at time t+1 of the memory, the program counter, the accumulator, and
the idle light with an expression involving the values at time ¢ of knob, button,

switches, mem, pc, ace, and idle.
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Representation of Input and Output Ports
Port History Function | Type

memory mem time—mem13_16
BUTTON button time—bool

IDLE idle time—bool
SWITCHES | switches time—wordl6
ACC acc time—wordl6
PC pc time—wordl3
KNOB knob time—word?2

This definition is a straightforward model of the behaviour of the computer.
It uses a conditional statement to define the different actions of the computer for
the different situations determined by the values of idle, button and knob. Each
terminal branch of the conditional represents a single target machine operation.

The function VAL2 returns the integer value of a two-bit word and is used to
check whether the value on knob at time t is set to 0, 1, 2 or 3. The function
CUT16-13 returns a thirteen-bit word consisting of the thirteen least significant
bits of a sixteen-bit word. It is used to load the thirteen rightmost bits set up on
the switches into the program counter when the knob is set to zero.

When the value of idle at time ¢ is F (i.e. the computer is executing a pro-
gram) and the value of button is F (i.e. the computer is not interrupted) then
the next values of mem, pe, acc and idle are determined by a function EXECUTE

which describes the execution of a single target level instruction. The definition

of EXECUTE is as follows:

“¥Y mual peval accval.
EXECUTE (mual, pcval, accval) =
let op = VAL3 (OPCODE (FETCH13 muval pcval)) in
let addr = CUT16.13 (FETCH13 mval pcval) in
(op=0) = (mwal, pcval, accval, T) |
(op=1) = (mwal,addr, accval, F) |
(op=2) = ((VAL16 accval)=0 = (mval, addr, accval,F) |
(mwval, INC13 peval, accval, F)) |
(op=3) = (mwal,INC13 pcval, ADD16 accval (FETCH13 mval addr), F) |
(op=4) = (mwal,INC13 pcval, SUB16 accval (FETCH13 mval addr),F) |
(op=5) = (mwal, INC13 pcval, FETCH13 mval addr, F) |
(op=6) = (STOREI13 addr accval mval,INC13 peval, accval, F) |
(mwal, INC13 peval, accval, F)”

The function FETCH13 is used to fetch the contents of the memory stored
at the location specified by the 13-bit program counter. The opcode op and the
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address addr are extracted from the 16-bit word fetched from memory and are
used to evaluate the next values of memory, program counter, accumulator and
idle. An eight branch conditional is used, one branch for every possible value
of the opcode. Each conditional evaluates the instruction corresponding to the
particular opcode. For example, when the value of op is 0 the instruction to be
executed is the HALT command, and so the current values in the memory, the
program counter, and the accumulator are retained while the value on the idle
line is changed to T to indicate the computer has finished executing the program.

The two definitions above fully model the behaviour of the target machine at
the register-transfer level. Since EXECUTE is already defined as a HOL function
(rather than a relation), there is little difficulty in translating it to the corre-
sponding ML function. In fact, since EXECUTE has no recursion, no optimisation
is needed and so the ML function looks almost identical to the HOL function. For
this reason, the ML definition of EXECUTE is not presented here and will merely
be referred to as EXECUTE’ when required.

The COMPUTER definition is translated using techniques similar to those pre-
sented in Chapter 7. The inputs are knob, button and switches, and the outputs

are mem, pc, acc and idle.

let COMPUTER,,, name knob button switches tpl val =
letrec mem(t') = (memopem (name” ‘c_mem') (At. (fstexp)))t’
and pc(t') = (memoyais (name ” ‘c_pc') (At. (fst (sndexp)))) t’
and acc(t') = (memoyais (name ™ ‘c_acc’) (At. (fst (snd(sndexp))))) t’
and idle(t') = (memoy,o (name ™ ‘c_idle’) (At. (snd (snd (sndexp))))) t'

in (mem, pc, acc, tdle)

The notation exp used in the definition above is an abbreviation for the expression:

(t=0) =
tpl_val |
(idle(t—1) =
(button(t—1) =
((VAL2 (knob(t—1)) = 0) =
(mem(t—1), CUT16_13(switches(t—1)), acc(t—1), true) |
(VAL2 (knob(t-1)) =1) =
(mem(t—1), pc(t—1), switches(t—1), true) |
(VAL2 (knob(t—1)) = 2) =
(STORE13 pe(t—1) acc(t—1) mem(t—1)), pc(t—1), ace(t—1), true) |
(mem(t—1), pc(t—1), acc(t—1), false)) |
(mem(t—1), pc(t—1),acc(t—1),true)) |
(button(t—1) = (mem(t—1), pc(t—1), acc(t—1), true) |
EXECUTE'(mem(t—1), pe(t—1), acc(t—1))))
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The function COMPUTER,, recursively computes the output functions which
represent the output mechanisms and the random access memory. Although the
memory is an internal mechanism, it is included among the outputs of the defini-
tion, since this makes it possible for the contents of the memory to be examined
when simulating the functional definitions. Optimisation is introduced via four dif-
ferent memo-functions; one for each type of recursive function. The selectors fst
and snd are once again used to split the tuple of recursive functions into separate
computations.

An example simulation of the target computer is given in Section 8.5 using the
definitions above. These are compared with simulations of the implementation of

the computer specified in the next section.

8.4 The Host Machine

The implementation of Gordon’s computer at the register-transfer level, referred
to as the ‘host machine’, is shown in Figure 8.2. In addition to the random access
memory, the program counter and the accumulator, it has a number of other
registers, a bus, several bus drivers, a read-only memory, an arithmetic and logic
unit, and a decoder.

To model the various registers of the computer two registers are first defined
as primitives, one to store thirteen-bit words and one to store sixteen-bit words.
Their HOL definitions are as follows:

“REG13,.(7,1d, 0) = Vt. o(t+1) = (ld(t) = CUT16-13(:(t)) | o(t))”
and
“REG16,(¢ : num—word16,1d, o) = Vt. o(t+1) = (ld(t) = i(t) | o(t))”

These two specifications are partial and recursive. In both cases, the word16
value on ¢ is sampled at time ¢. In the case of the thirteen-bit register, the least
significant thirteen bits are extracted using the function CUT16.13 and output
on o at time t+1 if the value on Id at time ¢ is true. In the case of the sixteen-bit
register, the entire input word is passed on to the output o at time t+1 if the value
on ld at time ¢ is true. In both cases, the output at time t+1 is set to its previous
value at time ¢ when the value on Id at time ¢ is false.

The translations of the above two relations use techniques which were detailed

in previous chapters. The functions REG13;,, and REG16y,, shown below, are
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Figure 8.2: Implementation of Gordon’s Computer
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optimised and make use of initial values since the relations are only partially

defined.

let REG13y,, name ¢ ld oval =
letrec o(t') =
(memoyd13
(name” ‘regl3.o')
(At. (t=0) = oval | ld(t—1) = CUT16_13(:(t—1)) | o(t—1))) ¥/
in o
let REG164,, name ¢ ld oval =
letrec o(t') =
(memoydi6
(name” ‘regl6_o‘)
(At. (t=0) = owal | ld(t—1) = i(t—1) | o(t—1))) '
ino
The implementation of the computer has two thirteen-bit registers: the pro-
gram counter PC and the memory address register MAR, and three sixteen-bit
registers: the accumulator ACC, the instruction register IR and a register ARG
used for storing arguments to be processed by the arithmetic and logic unit. These
registers are defined as instances of the thirteen and sixteen bit registers defined
above. The relational definitions and their functional translations are similar for
all the registers and so only the specifications of the program counter PC are shown

here.
“PC,al,ld, 0) = REG16,(3,1d, 0)”
let PCyyyn name ¢ ld oval = let 0 = (REG16,,, (name ™ ‘pc_o‘) i ld oval) in o

The register models are good examples of cases in which naming of devices is re-
quired. Since they all share the same definitions of REG13y,, and REG16y,,, these
registers must be distinguished when storing and retrieving values from respective
memo-tables.

Another register BUF is defined slightly differently in that it has no selector
input to determine whether the register retains its current value or loads a new
input. The register BUF merely acts as a delay mechanism used to store the output
of the ALU for one unit of time.

Thus, BUF is defined relationally as:

“BUF,e(alu, buf) = Vt. buf(t+1) = alu(t)”
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which is translated to:
let BUF,,,, alu buf-val = let buf(t) = (t=0) = bufval | alu(t—1) in buf

There are five tri-state bus drivers GO, G1, G2, G3 and G4 used to control the
data that goes onto the sixteen-bit wide bus. Once again, two primitive gates
are defined to model wordl3 input gates and wordl6 input gates. These gates,
GATE13 and GATE16, convert thirteen and sixteen bit words to the corresponding
16-bit triwords.

“GATE13,,(3,cntl, 0) =
Vt. oft) = entl(t) = MK_TRI16 (PAD13.16 i(t)) | FLOAT16”

“GATE16,(, cntl,0) =
Vt. o(t) = entl(t) = MK_TRI16¢(t) | FLOAT16”

In the case of GATE13, the wordl3 input is padded up to a 16-bit word using
the function PAD13_16. In both cases, the 16-bit word is converted to a triword
and output if the value on cntl is true. If the value on cntl is false, the undefined
value FLOAT16 is output. There is no delay modelled in these gates. The derived

programs are therefore:

let GATE13;,,, i entl =
let o(t) = (cntl(t) = MK_TRI16 (PAD13_16 i(t)) | FLOAT16) in o

and

let GATE16y,, i cntl =
let o(t) = (entl(t) = MK_TRI16:(¢) | FLOAT16) in o
The gates GO, G2, G3 and G4 are defined as instances of GATE16 above while
G1 is the only instance of GATE13. Once again, the definitions are all very similar

and so only the definitions for GO are given below.
“GOyei(7, entl, 0) = GATEL6, (3, cntl, 0)”

let GOy, ¢ cntl = let 0 = (GATEL6 4y, i cntl) in o

The memory device is modelled by a device MEM which takes three inputs: a
two-bit wide control signal memecntl, the output of the memory address register
mar, and the value on the bus bus. MEM returns one output line mout, which
writes the fetched contents from memory directly to the bus. In addition, the
actual memory representation mem is parameterised and is also treated as an

output. The relational definition of MEM is shown below.
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“MEM,.(mem, mar, bus, mementl, mout) =

V.
mout(t) =
( (VAL(Q)memcntl(t)) = 1= MK_TRI16 (FETCH13 mem(t) mar(t))
| FLOAT16) A
(mem(t+1) =
(VAL2 mementl(t)) = 2 = (STORE13 mar(t) bus(t) mem(t))
| mem(t))”

Once again, the definition is recursive. The contents of the memory are changed
only when the value on mement! is equivalent to 2. In this case, the value on the
bus is stored in memory at the address specified by the memory address register.
In other states, the memory stays the same. When the value on mement! is
equivalent to 1, the value stored in memory at the address specified by mar is
fetched and written to the bus as a triword via mout. In other cases, FLOAT16 is
written to the bus. The derived program modelling MEM is shown below:

let MEM¢,,,, name mar bus mementl mem_val =
letrec mem(t') =
(memopem
(name " ‘mem_m)
(At. (t=0) = mem_val |
(VAL2 mementl(t—1)) = 2 =
(STORE13 mar(t—1) bus(t—1) mem(t—1)) |
mem(t—1))) ¢/
and mout(t') =
(memoyie
(name ™ ‘mem_out*)
(At. (VAL2 mementl(t)) = 1 =
MK_TRI16 (FETCH13 mem(t) mar(t)) |
FLOAT16)) ¢/
in (mem, mout)

The arithmetic and logic unit is also defined as a primitive at this level of
description. Three arithmetic functions are performed by the ALU on sixteen-
bit words, namely incrementation, addition, and subtraction. The two-bit input
control line alucnt! determines which function is performed on the data present
on lines arg and bus. The result of an ALU computation is output on line alu at

the same instant of time. The relational definition is shown below:

“ALU,ci(arg, bus, aluentl, alu) =
Vt. alu(t) = (VAL2 alucnti(t)) = 0 = bus(t) |
(VAL2 alucntl(t)) = 1 = INC16 bus(?) |
(VAL2 aluentl(t)) = 2 = ADD16 arg(t) bus(t) |
SUB16 arg(t) bus(t)”
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The specification is total and non-recursive. The functional translation is therefore
straightforward.
let ALU 4y, arg bus alucntl =
let alu(t) = (VAL2 alucntl(t)) = 0 = bus(t) |
(VAL2 alucntl(t)) = 1 = INC16 bus(t) |

(VAL2 alucntl(t)) = 2 => ADD16 arg(t) bus(t) |
SUB16 arg(t) bus(t)

in alu
All the devices described so far, except BUF, either read from or write to the
BUS. The five selectively loadable registers and the ALU read sixteen-bit words
from the BUS, the five tri-state bus drivers write sixteen-bit triwords to the BUS,
and the memory both reads from and writes to the BUS. Hence, the BUS device
takes six triwords of type triwordl6 as inputs and returns a word of type wordl6
as output. Relationally, BUS is modelled as:
“BUS,i(mout, go, 91, g2, 93, g1, bus) =
Vt. bus(t) =

DEST_TRI16
(mout(t) U16 go(t) U16 g1(¢) U16 ga(t) U16 gs(t) U6 g4(2))”

where U16 is the infix function for merging two triwords (see Section 8.2). The
derived program is almost identical:
let BUSun mout go g1 92 93 94 =
let bus(t) =
DEST_TRI16
(mout(t) U16 go(t) U16 g1(2) U16 go(t) U16 ga(t) U16 g4(t))

in bus

The data path of the implementation of the computer can be specified by
structuring all the devices described so far as shown in Figure 8.2. The rela-
tional definition which models the data path is shown overleaf, together with its
functional translation.

The functional translation of DATA,.; is a good example for demonstrating the
effect of memoisation. The function DATAy,, takes several inputs and returns
a tuple of recursive functions as outputs. If no memoisation is done the func-
tion is extremely inefficient because it involves too many repetitions of recursive
calculations.

For example, the evaluation of the value on the bus at time ¢, bus(t), re-
quires mout(t) and go(t),...,94(t). Now the computations of g1, g2, g3 and g4
at time t require the computations of pc(t), ace(t), ir(t) and buf(t) respectively,

each requiring, among other data, the value for bus(t—1). Furthermore, mout(t)
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requires mem(t) and mar(t), which in turn also require bus({—1). Thus, to com-
pute bus(t), bus(t—1) is calculated six times. At time ¢, therefore, bus(t—n) is
calculated a maximum of 6 times, i.e. bus(t—10) could be calculated well over

60.5 million times!

“DATA, i(switches, rsw, wmar, mementl, wpc, rpe, wace, racc, wir,
rir, warg, alucntl, rbuf, mem, mar, pc, acc, ir, arg, buf) =
3 go 91 92 93 g4 mout alu bus.
MEM,.;(mem, mar, bus, memcntl, mout) A
MAR,(bus, wmar, mar) A
Pcrel(busa wpc,pc) A
ACC,(bus,wace, acc) A
IR, ci(bus, wir, ir) A
ARG, (bus, warg,arg) A
BUF,a(alu, buf) A
GO,ei(switches, rsw, go) A
Glrel(pca rpc, 91) A
G2,q(acc,race, g2) A
G3,a(ir,rir, gs) A
G4rel(bufa rbuf, g4) A
ALU,q(arg, bus, alucntl, alu) A
BUSrcl(mOUt, gos 91, 92, 93, 94, bus)”

let DATA ;,,, name switches rsw wmar mementl wpc
rpc wace racc wir rir warg alucentl! rbuf
memuval marval pcval accval irval argval bufval =
let go = (GOyyn switches rsw) in
letrec mem(t) =
MeMmomen ‘M1* (fst (MEMy,,, ‘nys¢ mar bus mementl memual)) t
and mout(t) =
memoie ‘n2* (snd (MEMy,, ‘nis¢ mar bus mementl memval)) t
and mar(t) = memoyaqs ‘n3’ (MARyy, ‘nig* marval bus wmar)t
and pc(t) = memoyaz ‘na’ (PCrun ‘niz' peval bus wpc) t
and acc(t) = memoygs ‘ns' (ACCryyn ‘nig® accval bus wacce) t
and ir(t) = memoyaie ‘N6’ (IRfun ‘n1o* trval bus wir) t
and arg(t) = memoyais ‘n7‘ (ARGyyn ‘N’ argval bus warg) t
and buf(t) = memoydie ‘ns‘ (BUF 4 bufval alu) ¢
and g1(t) = memoyrite ‘no* (Glyy, pcrpe)t
and g,(t) = memoyrite ‘N1o° (G25un acc race) t
and g3(t) = memoyize ‘nar’ (G3gyy or rir)t
and g4(t) = memoie ‘Nz’ (G4 fun buf rbuf)t
and alu(t) = memoyaie ‘n13* (ALUfun arg bus alucntl) t
and bus(t) = memoyrize ‘n1a (BUS fun mout go g1 92 93 g4) t
in (mem, mar, pc, acc, ir, arg, buf )
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Without memoisation, each time a value is computed at a time ¢, the computa-
tion is recursive all the way down to time 0. For a large t, the effect of recalculating
the same functions over the entire time scale is disastrous. Memoisation provides
a good solution to the problem since it enables recursive functions to ‘remember’
previously computed values.

In the function DATA{,, above, the parameter name is a value of type string,
the parameters ending in val represent initial values, and the rest of the param-
eters are history functions representing the various input data lines. The strings
‘ny‘...‘ng" are abbreviations for names obtained by concatenating the value of
name to a uniquely generated string.

The three devices in the implementation of Gordon’s computer shown in Fig-
ure 8.2 which have not yet been specified are MPC, ROM and DECODE.

The microcode program counter MPC is another non selectively-loadable reg-
ister and is defined in almost the same way as BUF. The only difference is that
the inputs and outputs to MPC are represented by functions of type time—word5.
The register is used to store a 5-bit address for the read-only memory.

The read-only memory ROM outputs the 30-bit word stored in the microcode
at the address specified by the MPC. The microcode is addressed by 5-bit words,
each pointing to a 30-bit instruction. The HOL representation of the microcode is
generated by a function as a set of axioms which relate the contents of the memory
to their corresponding address [34]. In ML the microcode is defined as a function
which takes an argument of type word5 (the address) and returns a value of type
word30 (the contents). The function is parameterised in the definition of ROM
which makes use of the primitive function FETCHS5 to fetch the contents from the

microcode. The definition of ROM and its translation are as follows:

“ROM,; mcode (mpe, rom) = Vt. rom(t) = FETCH5 mcode mpc(t)”

let ROMy,,,, mcode mpc =
let rom(t) = FETCH5 mcode mpc(t) in rom

The decode unit DECODE reads in the instruction from ROM and decodes it
into the relevant signals which control the operation of the data path DATA. It also
computes the next address to index the ROM by examining the values on knob,
button, acc and ir.

The specification of DECODE and its translation are rather long and are there-
fore omitted here. As can be seen from [34], though, the definition is purely

combinational and so its translation is straightforward. In the rest of this section,
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the relational and functional specifications will be referred to as DECODE,, and
DECODE/,, respectively.

The three devices MPC, ROM and DECODE can now be grouped together to
form a top-level component of the computer implementation. This component is
called the control unit and is relationally specified using the predicate CONTROL,¢;

below:

“CONTROL,«
mcode
(knob, button, acc, ir, rsw, wmar, mementl, wpc, rpc,
wace, race, wir, rir, warg, aluentl, rbuf, ready, idle) =
3 mpc rom nextaddress.

ROM, . meode (mpc,rom) A

MPC, (nextaddress, mpc) A

DECODE,
(rom, knob, button, acc, ir, nextaddress, rsw, wmar, mementl,

wpe, rpe, wace, racc, wir, rir, warg, aluentl, rbuf, ready, idle)”

The overall specification of the host machine is obtained by joining together
the control unit and the data path. The usual techniques for modelling structure

are used, namely conjunction and existential quantification. The relational speci-

fication of the computer implementation is defined using the predicate HOST,.;.

“HOST, . (knob, button, switches, mem, pc, acc, ready, idle) =
3 ir rsw wmar memecentl wpc rpc wace racc
wir rir warg alucntl rbuf mar arg buf.

CONTROL, ¢
microcode
(knob, button, acc, ir, rsw, wmar, mementl, wpc, rpc, wacc, racc,
wir, rir, warg, alucntl, rbuf, ready, idle) A
DATA.
(switches, rsw, wmar, mementl, wpe, rpc, wace, racc, wer,
rir, warg, aluentl, rbuf, mem, mar, pc, ace, ir, arg, buf )”
The value microcode in the definition of HOST,,; is a constant which represents
the microcode.

The translations of CONTROL,, and HOST,; are straightforward and involve
the same techniques used to translate models which describe the structure of other
devices already presented. The programs CONTROL;,, and HOSTy,, are ex-
tremely long due to the large amount of tupled recursive functions, each of which
has to be defined separately using the appropriate combinations of the tuple se-

lectors fst and snd.
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8.5 Executing Programs on Gordon’s Computer

In the previous two sections we derived functional specifications to model the
computer at the target level as well as at the host level. All HOL definitions used
by the target and host definitions of the computer were successfully automatically
translated to ML programs. The only two features not automatically translated
required to simulate the computer were the microcode constant and the data types.
In both cases this was due to a rather ad-hoc representation in HOL—it could be
possible to automatically translate such features if a suitable methodology for their
representation was used in HOL.

The program which models the target machine, COMPUTERy,,, takes eight
arguments: a name, three history functions modelling the input mechanisms, and
four initial values for the memory, the program counter, the accumulator and the
idle button. It computes four history functions modelling the values displayed in
the memory, the program counter, the accumulator and the idle button.

At the host level, the specification HOST ¢,,, takes twelve arguments. Besides
a name and three history functions modelling the input mechanisms, eight initial
values are needed to initialise the various registers as well as the memory. In addi-
tion to the four history outputs modelling the memory, the program counter, the
accumulator and the idle light, another history function is also returned to model
the ready light. This last output is not included in the target level description of
the computer.

These specifications can be used to simulate the execution of programs by the

computer. For example, consider the following interaction to add two integers:

Starting with an empty memory, store an integer a in location 0 of the
memory and store an integer b in location 1. From location 3 of the
memory onwards, store the instructions which compute a+b and store

the result in location 2 of the memory.

Figure 8.3 illustrates the layout of the contents of the memory: the data in the

first two locations, the program starting at location 3 and the result in location 2.

The simulation of the computer running this program is performed by setting
up the appropriate values on the input mechanisms to load it into memory. In
order to do this, the program must be expressed using the microinstructions of
page 127. Figure 8.4 uses an assembler style notation to code the sequence of

events loading the program and data, and executing the program. In fact, one can
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Figure 8.3: Representation of Memory for Program to Add Two Integers

define a small assembler language for the computer which would set the values on
the input history functions automatically.

In the program of Figure 8.4, the integers 40960, 24577, 49154 and 0 on line
numbers 3, 6, 9 and 12 respectively are the integer representations of the 13-bit
instruction codes explained in the adjacent comments.

Both the specifications COMPUTER ,,, and HOST 4,,, were used to simulate this
program running on Gordon’s computer. Figure 8.5 shows a table of the input
values for the first 25 time cycles used to execute the target level specification
COMPUTER,,. The figure also shows the output values for the corresponding
25 time cycles. The initial values on the program counter and the accumulator
are set to zero, the initial value of the idle light is set to T and the memory is
cleared using the primitive constant EMPTY13_16. In this example, the values of
the numbers a and b added together are set to 54 and 85 respectively.

The table shows the different stages in the execution of the program. The
outputs displayed at time t+1 are the results of the instruction executed at time
t. For example, at time 0, all outputs are set to their initial values. Then at
time 1, the value 3 is loaded in the program counter and at time 2, the number
40960, which codes the instruction for loading the accumulator with the contents of
location 0 in memory, is loaded in the accumulator. At time 3 no change is apparent
in the tabulated outputs because at this stage the contents of the accumulator are
stored in memory at the location specified by the program counter. The loading
of the program and the data in memory proceeds until time 19. Execution of the
stored program begins at time 20 when the idle light goes off. The result of a+b
is shown in the accumulator at time 22, when it is stored in memory. The halt
command is executed at time 23 and the idle light goes back on at time 24.

The program HOST,,, produces a similar but much longer table of outputs
when simulated over the same example. In fact, 96 time cycles are necessary

to show the entire output history. This is because each instruction is split into
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1

2 LD
3 LD
4 ST
5 LD
6 LD
7 ST
8 LD
9 LD
10 ST
11 LD
12 LD
13 ST
14

15 LD
16 LD
17 ST
18 LD
19 LD
20 ST
21

22 LD
23 EX

PC
ACC
ACC

PC
ACC
ACC

PC
ACC
ACC

PC
ACC
ACC

PC
ACC
ACC

PC
ACC
ACC

PC
PC

3
40960
PC

24577
PC

49154
PC

3

; Load Program

: Instruction code for “Load ACC with a”

: Instruction code for “Add b to ACC”

: Instruction code for “Store ACC at Location 2”

; Instruction code for “HALT”

; Load Data

; Execute

Figure 8.4: Representation of Program Executed on Gordon’s Computer

several microinstructions at this level of abstraction and so an instruction executed

in one time unit at the target level takes several time units at the host level. The

tabulated results of the host machine simulation are not presented here.

The results shown over 24 time units in Figure 8.5 are computed by the opti-
mised function COMPUTERy,, in an overall time of 288 seconds cpu time. The
results over 96 time units (including those for the extra line ready) computed by
the optimised function HOST 4,,, for the same example took 623 seconds cpu time.

The simulations were carried out on an 8-megabyte SUN 3 machine running UNIX.
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time | knob | button | switches | pc | acc | idle Comment
0 0 T 3 0 0 T
1 1 T 40960 3 0 T
2 2 T 40960 3140960 | T
3 0 T 4 3140960 | T
4 1 T 24577 4 140960 | T
5 2 T 24577 4 124577 | T Program
6 0 T 5 4 124577 | T is loaded
7 1 T 49154 5 (24577 | T
8 2 T 49154 5 (49154 | T
9 0 T 6 5 (49154 | T
10 1 T 0 6 | 49154 | T
11 2 T 0 6 0 T
12 0 T 0 6 0 T
13 1 T 54 0 0 T
14 2 T 54 0 54 T Data
15 0 T 1 0 54 T is loaded
16 1 T 85 1 54 T
17 2 T 85 1 85 T
18 0 T 3 1 85 T | Go to location 3
19 3 T 3 3 85 T | Execute program
20 3 F 3 3 85 F
21 3 F 3 4 54 F
22 3 F 3 5| 139 F
23 3 F 3 6 | 139 F
24 3 F 3 6 | 139 T | Computer is idle

Figure 8.5: Table Displaying Stages of Simulation

The times are certainly acceptable, especially when compared with the per-
formance of the non-optimised versions of the specifications. The unoptimised
version of COMPUTERy,,, took over two hours of cpu time to terminate, and that
of HOSTy,, was allowed to run for over 24 hours on an ATLAS 10 mainframe
computer—after which it was still not finished. The bulk of the inefficiency was
traced to the large amount of repetitive recursive calculations involved in the def-

inition of the data path DATA. Memoisation avoids recalculation and transforms

highly inefficient functions to relatively efficient ones.
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Chapter 9
Simulating the ECL Chip

The final example presented in this thesis is the ECL chip, one of the two compo-
nents of the Cambridge Fast Ring [30]. The chip provides the interface between
the ring and the slower access logic in other ring components. It performs modula-
tion and demodulation of data, transforms serial data packets on the ring to 8-bit
wide parallel packets for the slower logic, and does the reverse transformation for
8-bit wide packets from the slower logic.

The ECL chip was designed by Andrew Hopper and was later formally spec-
ified and verified by John Herbert using LCF-LSM and HOL [28]. In this chapter
we present a brief account of the techniques involved in translating the HOL spec-
ification and implementation definitions, mainly concentrating on techniques for
translating models of iterative structure since these were not discussed in the pre-
vious two examples of Chapters 7 and 8.

With a complexity of about 360 gates, the ECL chip is by far the largest
of the three examples presented in this thesis and, since it is a real circuit, the
success of translating its specifications and simulating them is especially significant.
Full details of the ECL chip and its interface with the Cambridge Fast Ring are
presented in [30] and [28]. Only a brief description of the ECL chip is presented
in this chapter, enough to explain the operations of the chip before presenting its

implementation and the results of example simulations.

9.1 The Specification

The ECL chip is shown in Figure 9.1 as a device with twenty nine pins (the two
busses being eight bits wide): fourteen used for input, and fifteen used for output.
The signals on these pins are represented by history functions of type time—bool

(abbreviated as type data) except for the clock line ck8, represented by a function
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of type time—trigger, and the bus lines lin and lout represented by functions of
type num—data. The type trigger, used in the representation of clocks, ranges
over two values ON and OFF. The bus lines are represented by curried functions

where the first argument denotes the position of the particular data line in the

bus.
gep  gisd se]in ir[b i'rr \JH]/ diUTm/
ECLCHP '

TR ENEN

moderr ck8 lout Ina Tna inb Inb Sserout

Figure 9.1: The ECL Chip

The ECL chip has several operating modes controlled by signals on the input
ports divcopy and gisd. The gisd port is used to select between the modulated
data inputs ina and inb, and the serial data input serin. If the value on gisd is
high then the data on the input port serin is passed on to the serial data output
port serout. When divcopy is asserted the chip is in its normal operating mode,
receiving data being output to the ring from the slower logic chip (the CMOS
chip). Packets of eight bits are input in parallel from the ring via lin, converted to
a serial stream of data, and modulated to be output to the ring via Ina, Inb, Ina
and Inb. Modulated data read in from the ring via pins ina and inb is demodulated
to a single serial stream of data which is output in packets of eight parallel bits
via the bus lout. If a modulation error is detected in the modulated data received
from the ring, the line moderr is asserted. Finally, the remaining two ports gap
and ck8 are used to indicate the end of gap between packets on the ring, and
to clock the data output by the ECL chip when read by the slower access logic,
respectively.

The HOL specification of the behaviour of the ECL chip is given in [28], where
it is explained in detail. The specification is long and consists mainly of boolean
conditions which state timing relations between inputs and outputs. Most of these

conditions cannot be automatically translated to functions and so the overall HOL
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specification of the ECL chip cannot be automatically translated to an ML program
and simulated. Simulations of the programs describing the implementation of the
ECL chip discussed in the next section, however, can be used to demonstrate
that the implementation satisfies the conditions in the behavioural specification

presented in [28].

9.2 The Implementation

The top-level register-transfer implementation of the ECL chip is shown in Fig-

ure 9.2. It is built from six devices:

¢ a demodulator DEMOD

a delay device SHIFT

a device DETGAP for detecting the end of a gap between packets on the ring

a device COUNT for generating clock signals

a set of shift registers SHIFTREGS
e a modulator MOD

Each of these devices is built from smaller primitive devices, namely inverters,
nor-gates and D-type flip-flops. Diagrams showing the structure of the implemen-
tation of each of these devices are presented in [28] and are omitted here.

The behavioural definitions of the primitive devices (inverters, nor-gates and D-
type flip-flops) are of a definitional form and so they are translated using techniques
already explained and illustrated in previous chapters. The structural definitions
of the devices DEMOD, SHIFT, DETGAP, COUNT and MOD are also translated
using techniques shown in previous chapters. These translations are therefore
omitted here.

The only device in the implementation of the ECL chip shown in Figure 9.2
whose definitions require translation techniques not yet illustrated in the examples
of Chapters 7 and 8 is the device SHIFTREGS. In the rest of this section we explain
the implementation of SHIFTREGS and show how its specifications are translated.

The implementation of SHIFTREGS, shown in Figure 9.3, consists of five de-
vices: CK, TOP_REGS, BOT_REGS, LOUT_BUS and DOUT. The device CK is
used to generate two clock lines ckl and ckr, and two data lines right and left.

These outputs are used to control the flow of data through the two shift registers

151



MOD

f————— serout
- ln—b
p———————— Inb
- > Tha

———————— lna

SHIFTREGS
divcopy
Izl. lout
I ck8
SHIFT
COUNT
I moderr
DEMOD DETGAP
ing ——r FTTt
inb
serin
gisd
gap

Figure 9.2: Top-level Implementation of ECL Chip

TOP_REGS and BOT_REGS, and the bus selector device LOUT_BUS. The shift
registers are used to read in data serially from d4, shift it through the registers
and, when the registers are full, output the data in parallel via a bus, and read in
data in parallel from the bus lin and shift the data out of the registers via a serial
output. The device LOUT_BUS selects between the busses top and bot for output
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on the lout bus, and DOUT uses divcopy to select between the serial outputs from

the registers and the external inputs di0 and di1.

lin diveopy di0 dil
Y L]
da TOP_REGS top(8) DOUT

CK ckl

w] U
lin
\L J/ top

p0 ——»
left L{BOT_REGS

bot(8)

\LJ/"” top \L J/ dataout
LOUT.BUS

lout

ck —*

ckr

Figure 9.3: Implementation of the SHIFTREGS Device

As with all the other devices used in the implementation of the ECL chip,
the above five devices used to build SHIFTREGS consist of inverters, nor-gates
and D-type flip-flops. The implementations of LOUT_BUS and DOUT are purely
combinational while that of CK is sequential. The translations of their relational
structural definitions are straightforward. The implementations of the shift regis-
ters TOP_REGS and BOT_REGS are identical. They are built from an iteration of
eight register cells, which is modelled recursively using primitive recursive defini-
tions. The translation of such primitive recursive definitions has not yet appeared
in the previous two examples and is therefore presented in this section. The defi-
nitions of the other devices are omitted.

The implementation of the shift register consists of eight register cells REG
connected together in sequence as shown in Figure 9.4. Each of the bus lines
lin(0) through lin(7) is input to a register which also receives input from a clock
ckl, two data lines left and right, and the output of the previous register in the
iteration. The serial data input to the first register is d4. The output of the device

is an 8-bit wide bus top formed by the output of each register cell in order.
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lin(0)  top(1) lin(6) top(7) lin(7)  top(8)

REG i REG , REG
d4 — P R —

ckl
left
right

Figure 9.4: Implementation of a Shift Register

The implementation of each register cell REG is combinational and consists of
three two-input nor-gates and a D-type flip-flop connected as shown in Figure 9.5.

The behavioural definitions of these primitive components are modelled rela-

tionally using the predicates NOR,.; and DTYPE,,; as shown below:
“NOR,¢i(%1, 19, out) = Vt. out(t) = —(41(¢) V i2(t))”
“DTYPE,q(d, ck,q) = Vt. ¢(t+1) = ((ck(t)=ON) = d(t) | ¢(t))”
The corresponding derived functions are:
let NORf,,, 21 7o = let out(t) = not(i1(t) or i5(t)) in out

let DTYPEy,, name d ck qual =
letrec ¢(t') =
(memo_data
(name” ‘dtype_q‘)
(At. (t=0) = qual | (ck(t—1)=ON) = d(t—1) | q(t-1))) ¢t
inq
The D-type flip-flop is used as a storage device. Data is loaded into the flip-flop
whenever the value on the clock is ON, and data remains stored in the flip-flop

while the value on the clock is OF' F'.

) d DTYPE
q1
q0 ]
ckl

Figure 9.5: Implementation of a Register Cell
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The structure of REG, therefore, is defined relationally as:

“REG,ei(lin,, ckl, qo, g1, Tight, left) =
Al d.
NORrel(left, qo, lO) A
NOR,a(right,lin,, l1) A
NORrel(l07 ll, d) A
DTYPE,.(d,ckl,¢1)”

and translated to the function:

let REG yn name lin, ckl qo right left ival =
let Iy = NORy,,, left go
and l; = NORy,, right lin,

in

letd = NORfun l() ll

in

let ¢; = DTYPE;,, (name " ‘reg_q1) d ckl ival
in ¢

The overall delay effected in REG is equivalent to one time unit, caused by the
delay of the D-type flip-flop.

The structure of the shift register is represented in [28] using a higher order
function to generate a conjunction of n register cells. The problem with this
definition is that it requires ad-hoc translating techniques. Below is an alternative
way of representing the structure of the shift register which uses primitive recursion
to define the general case for an arbitrary number of cells. This definition is
more in the HOL style of representation described in this thesis than the definition
presented in [28]. The technique can be used to model iterative structure in general
and the algorithm for automatically translating such definitions is straightforward

and based on principles similar to the ones used so far.

“(SH_REG,; 0 (Iin, ckl, q,right, left,d4) =
(¢ = Am.(m=0) = d4 | ARB)) A
(SH-REG;, i (n+1) (lin, ckl, q,right,left,d4) =
3¢’ gn. SH.REG, ¢ n (lin, ckl, ¢, right, left,d4) A
REG,e (Iin(n), ckl, ¢'(n), gn, right,left)) A
(g = Am. (m=n+1) = ¢n | ¢'(m)))”

The recursive definition is very similar to that of the n-bit adder presented in
Chapter 3. In fact primitive recursive definitions in HOL are a standard represen-
tation for iterative structure so techniques for translating them are essential.

The base case of the definition describes a shift register with no register cells,

i.e. there is really no shift register but merely a wire through. A 1-bit wide bus
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is defined equal to the input d4. The value ARB defined in Chapter 3 is used
to express the idea that the function ¢ is only defined for position 0, i.e. ¢ only
represents a 1-bit wide bus.

The recursive case defines a shift register with n+1 register cells where the
output of the first n registers ¢', is input to the n+1* register to calculate the
n+1% data line of the output bus gn. The output bus ¢ is represented by a A-
expression which uses its first argument to select the corresponding register cell
output.

The relational definition SH_REG,.; can be automatically translated to the

following recursive function:

letrec SH_REGy,,, n name lin ckl right left d4 1val =
memo_data

(name” ‘shreg‘ " (str_of .int n))
((n=0) = (let ¢ = (Am. (m=0) = d4 | fail)inq) |
(let ¢ = SH_REGy,, (n—1) name lin ckl right left d4 tval
in
let gn = REGyyy, (name " ‘shreg_reg* * (str_of -int n))
lin(n—1) ckl ¢'(n—1) right left ival
in
let ¢ = (Am. (m=n) = ¢qn | ¢'(m))
in g))
The definition SH_REG/,, memoises the outputs of each register cell. The entire
recursive function, therefore, is memoised in the same way as history functions.
The importance of naming memoised definitions is highlighted in the program
above. Each register cell must be given a different name so that the memoisation
functions can distinguish which register cell in the sequence to access. The in-
dividual naming of the cells is achieved by tagging the string representation of n
(obtained by the function str_of _int) to the end of the name generated to represent
the shift register.
Having defined a model for an n-bit shift register, the shift register TOP_REGS
can be defined as a specialisation of the general definition. The relational and

functional definitions are:

“TOP_REGS,(lin, ckl, top,right,left,d4) =
SH_REG,« 8 (lin, ckl, top,right, left,d4)”

TOP_REGSy,, name lin ckl right left d4 ival =
let top = SH_REGy,, 8 name lin ckl right le ft d4 ival
in top
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The definitions of BOT_REGS are similar. The structure of the SHIFTREGS
device is modelled using the shift register definitions in a conjunction with the rest
of the devices. The translation of the overall structural definition is straightforward

and as explained in previous chapters.

9.3 Example Simulations

The overall derived program which models the implementation of the ECL chip
was simulated over various samples of data. Below we present an example of
one such simulation by showing waveform representations of the inputs to the
chip together with the outputs obtained. In practice, a program was written to
transform history functions to waveforms such as the ones shown in Figures 9.6
and 9.7 below. Figure 9.6 shows the inputs used in the simulation and Figure 9.7

shows the outputs.

time O
TP e I s e e e e 1 e e I s Y o 6 s I e 47
false

T2V SRS s s Y I e e 1 o 1 Y 4
false

-
-t
o
sk
[
[
[=}
[~}
(243
w
o
w
(5

. t

serin 1L [ L] LJ LS L "L T

N true
divcopy false
true
gap Jalse

: true
gisd false

: true
lin(0) false
lin(1) ;27;
lin(2) j‘?l‘:e
lin(3) ;:;:e
lin(4) ;27;
lin(5) ;2"1":6
lin(6) tf;?:e

lin(7) :‘,frtll,e
alse

Figure 9.6: Waveforms Showing Inputs to ECL Chip

In the above example, the inputs gap, gisd and divcopy are set such that the

chip is in its normal operating mode. Thus, gap is always set to false to indicate
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Figure 9.7: Waveforms Showing Outputs from ECL Chip

there are no gaps in the ring data, gisd is set to false so that the chip selects
the modulated data inputs rather than the serial data input serin, and divcopy is
asserted true throughout the computation to indicate that data received from the
slower logic chips will be output to the ring.

The output moderr is always false except for a glitch at the beginning when
the values on the lines are still being initialised. This indicates that no modulation
errors are found on the inputs ina and inb when they are demodulated.

The waveform representing the values on the data line d4, although not of
an external output, is included to show the demodulated data that is output in
parallel via the output bus lout, while the input bus lin is output serially via
dataout, another internal line. The waveforms of the two internal lines d4 and

dataout are shown to illustrate how the data is processed by the shift registers.
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The clock line ck8 goes high every eight cycles. If the clock is high at time ¢,
the eight parallel bits of data on lin at time t—1 appear on dataout over times t+1
to t+8, and the eight serial bits of data on d4 over times t—7 to t appear on lout
at time t+1. The transformation of data from parallel to serial and vice-versa is
done by the shift register in a first-in first-out manner. Thus, d4(¢—T7) is output on
lout(7)(t4+1), d4(t) is output on lout(0)(t+1), lin(7)(t) is output on dataout(t+1),
and lin(0)(¢) is output on dataout(t+8). This effect is only noticed after the tenth
time cycle when the clock goes on for the first time. The delay is due to the various
D-type flip-flops in the implementation through which data must propogate.

The internal data line dataout is modulated and output via lines Ina and Inb,
and their inverses Ina and Inb respectively.

The entire simulation shown in the example of Figures 9.6 and 9.7 was com-
puted in approximately 123 seconds of cpu time on a SUN 3 computer. This
involves the computation of all external output lines and the two internal lines d4
and dataout over 35 time cycles. Without memoisation, the computation does not
get past nine time cycles after running for several hours—the inefficiency being

mainly due to the recursion involved in the computation of the shift registers.
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Chapter 10

Conclusions and Future Research

In this chapter we evaluate the research described in this thesis, We present a
summary of the results achieved, discuss the problems arising from the research,

and suggest solutions to these problems as well as ideas for future research.

10.1 Summary of Thesis

The goal of the research described in this thesis was to show that a subset of
higher order logic could be used to specify hardware in a way which is almost
identical to the notation of the programming language ML. This facilitated auto-
matic translation from abstract definitions to executable programs with minimum
risk of introducing inconsistencies. Furthermore it enabled one to perform simu-
lation within a formal verification environment, with the aim of obtaining correct
specifications earlier in the verification process.

The research was done using the HOL theorem proving system and can be

summarised as follows:

e It was first shown that hardware can be effectively described in the HOL logic
at the register-transfer level using both relations and functions. The two
notations are similar, but not necessarily equivalent; relations can express

partial specifications, but functions cannot.

¢ The verification of an n-bit adder using relational and functional definitions
was used as an example to illustrate the general form of correctness state-
ments that can be proved to demonstrate correctness of the relational and

functional models.

¢ The general purpose functional programming language ML was used to sim-
ulate hardware. This was done by writing specifications as programs which
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could then be executed. It was shown that many features of hardware design

at the register-transfer level could be expressed in ML.

e The ML programs were slow to execute. Two optimising solutions were
investigated, and one of them, memoisation, was implemented. The trans-
formation from naive programs to efficient ones is clean and clear since the
optimisation merely involves the application of higher order memo-functions
to inefficient functions. The performance of the optimised functions was a

vast improvement over the unoptimised ones.

o It was shown that the syntax of the HOL logic relations conventionally used
for modelling structure and behaviour of digital systems closely resembles
the syntax of the corresponding unoptimised ML programs. An algorithm for
automatically translating these HOL relations into executable programs was

presented, showing how the optimisation process could also be automated.

o It is not necessary to write hardware specifications in a special form to suit
automatic translations; it was shown that the existing style of writing re-
lational specifications in HOL is suitable to be automatically transformed
into ML programs. To demonstrate this, relational definitions modelling
three hardware systems previously specified and verified in HOL, namely a
factorial machine, a microcomputer, and a communications chip, were au-
tomatically translated into executable functions and simulated over sample
data. In the three cases, all the implementation specifications were success-
fully translated and executed, but only behavioural specifications written in
a definitional form could be translated. This is, therefore, one restriction: if
the behavioural specifications are to be simulated, behaviour must be defined

in terms of functions of the inputs to the device, computing the outputs.

o In the three case studies, the relational specifications that were automati-
cally transformed to functional programs were satisfactorily simulated at an

acceptable efficiency.

Some of the points above are discussed further in the following sections, sug-

gesting how future research can proceed to develop and improve the ideas.
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10.2 Specifying Behaviour

One of the problems encountered above lies in the execution of behavioural spec-
ifications; they often contain boolean relations (such as timing conditions) which
cannot be executed. A possible solution to this could be to omit these conditions
from the specification and include them in the correctness statement instead. Thus,
a general behavioural definition could be written for a device, simulated to estab-
lish a certain degree of correctness and confidence, and used to determine those
conditions required to restrict the behaviour of the device. These conditions would
then be included in the correctness statement of the contemplated device in the
verification stage of the design process.

It is necessary to investigate further hardware examples. This would throw
more light on the versatility of the algorithm for automatic translation and on the
practicality of writing behavioural specifications strictly in a definitional form, de-
termining whether the inclusion of non-executable conditions in correctness state-

ments rather than in specifications is possible.

10.2.1 Automatic Manipulation of Specifications

To make the style of writing behavioural definitions more versatile, it would be
convenient to have the specification automatically transformed to a definitional
form. As discussed in Section 6.3.2, this is not always possible; and, even when
it is possible, information regarding inverse functions is required to manipulate
equations.

One possible extension to the current translating tools, is to introduce basic
automatic equation manipulation for simple arithmetic and boolean algebra. Such
a tool would have built-in information on inverse functions for certain arithmetic
and boolean operators, and all manipulations performed to transform a specifica-
tion to a definitional form could be done by the application of inference rules, such
as rewriting, substitution, etc. Thus, specifications would only be transformed to

equivalent alternatives.

10.3 Executing Logic Specifications

In Chapter 6, the algorithm for automatically generating programs from formal
specifications was described. The translating process was broken down into in-

termediate stages, each stage being useful independent of the overall translation
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process. The stages in the translation process are:
e translating HOL relations to HOL functions;
¢ translating HOL functions to ML functions; and
¢ optimising the ML functions.

These stages form three independent automatic translations which can be used
separately or combined, depending on the intent of the user. Below we suggest
some ideas worth investigating which could improve each of the automatic trans-
lations highlighted above.

10.3.1 From HOL Relations to HOL Functions

Presently, the automatic tool for translating relations to functions does not use
verification strategies to perform the transformation. The tool is merely an ML
program which parses HOL relations and generates HOL functions. An interesting
improvement on this is to perform the translation by automatic formal proof using
the HOL inference rules.

As described in Chapter 3, the relational definitions are not necessarily equiv-
alent to their corresponding functions. Automatically proving that the generated
function corresponds to the relation could therefore be hard. One possibility is to
attempt to prove a theorem of the following form when the relation is not a partial

specification:
F (outputs = Fun(inputs)) = Rel(inputs, outputs)

where Fun is the function which corresponds to the relation Rel. Otherwise, if Rel

is some partial specification, the theorem:
F (outputs = Fun(inputs)) D Rel(inputs, outputs)

could be proved, since Fun would be a total function which makes use of arbitrary
values to represent unspecified values, and cannot be equivalent to Rel.

An alternative way to prove that a derived total function corresponds to a
given partial relation is to first generate a total relational specification by using
arbitrary values to denote unspecified cases in the same way as in forming total

functions. Thus, one would first prove the theorem:

F Rel'(inputs, outputs) D Rel(inputs, outputs)
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where Rel’ is a total relation derived from the partial relation R. The verification

could then proceed to prove that:
F (outputs = Fun(inputs)) = Rel'(inputs, outputs)

where Fun is the functional translation of Rel'.

The translation of logic relations to logic functions by automatic theorem prov-
ing is important because it helps to eliminate the possibility of inconsistencies be-
ing introduced when generating functions for simulation, and because it is a useful
tool in itself to enable automatic proofs between relational and functional models

of circuits.

10.3.2 From HOL Functions to ML Functions

One of the strong points of the simulation tool described in this thesis is that
the restricted syntax used for writing formal specifications closely resembles the
syntax of the derived, unoptimised ML programs. In fact, with sufficient extension
of the HOL logic syntax, the two notations could be made identical.

Work to achieve this is recommended because the elimination of the necessity
for using separate notations for simulation and verification again avoids the in-
troduction of inconsistencies. We would like to be certain that the derived ML
programs are precise models of the HOL functions. If the notations are identical
for the subsets of expressions used, the possibility of syntactic error is eliminated.
Combined with the automatic proof described in the previous section for trans-
forming relations to functions, the derivation of ML programs from HOL relations

in such a manner is robust.

10.3.3 Optimising ML Functions

Unfortunately, the ML programs obtained in the above stage are very inefficient
and it is therefore impossible to use them effectively in large simulation examples.
In this thesis we showed how the programs could be optimised to enable simulation
by using the technique of memoisation.

One good point about memoisation is that the transformation from naive func-
tions to efficient ones is clean and clear, so the risk of introducing inconsistencies in
the process of optimising programs is kept to a minimum in this way. Furthermore,
this optimisation method is completely automated so ad-hoc errors in translation

are avoided. It is uncertain at this stage whether theorem proving techniques can
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be used to make this optimising process more reliable, and it could be that the
reliability of this transformation cannot be improved much further.

Future work in this area could concentrate on further improving the efficiency of
the optimisations. This could be done by developing faster techniques for retrieving
and storing computed information, and by using other data structures for storing

which are more compact than lists.

10.4 Automatically Translating Types

Another area worth investigating is the automatic translation of HOL types to ML
types. In the hardware case studies described in this thesis, type translation was
performed manually. This was mainly because the HOL types used in the examples
were set up in an ad-hoc manner so no general algorithm for type translation could
be established.

In the process of manual translation, however, several repeated patterns were
found when translating the logical types to the meta-language types. These com-
monly occurring features give reason to believe that an algorithm for translating
types is possible. Further work on the matter should be based on a rigorous and
formal approach to the axiomatisation of types in HOL such as that described
by Tom Melham in [40]. Melham describes how higher order logic types can be
automatically defined and axiomatised. It is possible that an algorithm parallel

to this can be found for automatically defining the corresponding meta-language

types.

10.5 Simulation at a Lower Level

Finally, if simulation is to aid verification, it must do so at all levels of description.
Once the techniques for automatically generating efficient executable specifications
from logic specifications of hardware circuits described at the register-transfer level
are refined and made robust, the issue must be investigated for circuits described
at a lower-level.

It could be that the same tools can be successfully applied to translating most
of the aspects of hardware specifications at lower levels, with little or no extensions
to the algorithms. Certain features, however, will definitely pose problems, and
research in tackling these problems will be very valuable.

An example of such problematic issues concerns the modelling of bidirectional-

ity at the switch level of description. This is one aspect where a relational model
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seems most natural because no notion of inputs and outputs is desired; behaviour
can be specified merely as a relationship between ports. With functions, however,
the input and output ports must be identified, and once this distinction is made,
they cannot be interchanged.

It is not yet certain as to what approach should be taken for finding a solution
to problems like the above. William Clocksin uses the technique of executing re-
lations in PROLOG to model bidirectional circuits at low levels of description [9].
Perhaps a relationship can be found between relational specifications in HOL and
specifications in PROLOG, and an automatic translation developed for transform-
ing low level, relational descriptions of circuits in HOL into a form which can be
interpreted as PROLOG programs.

The task of investigating the execution of specifications of hardware at low
levels of description is certainly the most challenging of the future research topics
proposed in this chapter. It may be possible that certain issues cannot be resolved,
but even if techniques are established that facilitated simulation of a subset of

descriptions at lower levels, this will aid the verification process considerably.
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Appendix A

Grammar for Parsing Relations

relational_term ::

relation

boolean

equation

function

predicate

functor

predicator

parameter

tuple

predicate = relation |
predicate = relation |
V variable* . relational_term |
3 variable* . relational term |

relational_term A relational_term

3 variable* . relation | V variable* . relation |

relation A relation | boolean

equation | predicate | variable | true | false
variable = term | function = term

functor [parameter|*

predicator [parameter]*

constant | variable

constant | variable

variable[:type] | tuple | arith_expr

variable[:type] | (variable[:type], tuple)
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arith_expr = constant | variable | function |

arith_expr infix arith_expr | (arith_expr)

infix ::= any declared HOL infix operator
constant ::= any declared HOL constant
variable :»= alphanumeric

type 1= alphanumeric

term = asin HOL term

alphanumeric ::= asin HOL alphanumeric
NOTES:

[word] indicates that word is optional.

word* indicates a sequence of one or more words.
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Appendix B

Example Interactive Session

In this appendix, we present an example session with the HOL system in which
the relational implementation definitions of the Factorial Machine (described in
Chapter 7) are translated into ML functions, and simulated over sample data.

The session does not show any intermediate stages in the translation; it shows
how the overall translating program rel.to_fun can be used to interpret relational
definitions as optimised ML functions. The aim of this session is to give some idea
of what is involved in generating these programs, and how they can be used for
simulation.

Throughout the session, HOL terms and types are enclosed within double
quotes. The HOL types “sig” and “bus” are used to abbreviate the types
“time—bool” and “:time—num” respectively, where the HOL type “time” is

4

represented by the type of natural numbers “:num”. The ML types sig and bus
are used to denote the types time—bool and time—sint respectively; the ML type
time being represented by the type of integers int.

The user’s input in each case consists of the application of the ML function
rel_to_fun to a HOL relation, a list of input symbols, and an output term. The
user’s input follows the ML prompt # and is terminated by a sequence of two
semi-colons. The system’s response then follows, giving the names and types of
any functions and tables it defines. Functions are printed as ‘-’ followed be their
type. When the system’s output is finished, a new prompt is printed and the
user’s input follows once more. Comments are included throughout the session to

explain the translations. The session begins overleaf.
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We first derive programs corresponding to the relational specifications of the

primitive devices.

# rel_to_fun
“AND (71,12, 0) = Vi:time. o(t) = i1(2) A 12(2)”
[“41:8197; “15:5197] “0:81g”;;

AND' = — : sig — sig — sig

# relto_fun
“DEC(3,0) = Vt:itime. ot) = i(t)—1”
[“3:bus”] “o:bus”;;

DEC' = — : bus — bus

# rel_to_fun
“EQZERO (i, 0) = Vt:time. o(t) = i(t)=0"
[“2:bus”] “0:5197;;

EQZERO' = — : bus — sig

# rel_to_fun
“MULTIPLY (¢4, 12,0) = Vi:time. o(t) = 11(t) X i2(t)”
[“31:0us”; “i5:bus”] “o:bus”;;

MULTIPLY' = — : bus — bus — bus

# rel_to_fun
“MUX (sw, i1:bus, i2:bus, 0) = Vi:time. o(t) = sw(t) = 41(¢) | 12(2)”
[“sw:sig”; “31:bus”; “ig:bus”] “o:bus”;;

MUX' = — : sig — bus — bus — bus

# rel_to_fun
“NOT (3, 0) = Vit:time. o(t) = —i(t)”
[“z':sig”] “O:Sig”; ;

NOT' = — : sig — sig

# rel_to_fun
“ZERO (o) = Vt:time. o(t) = 0”
[] “o:bus”;;

ZERO' = — : bus

# rel_to_fun
“ONE (0) = Vt:ttme. o(t) = 17
[] “o:bus”;;

ONE’ = — : bus

# rel_to_fun
“REG (i:time—a, 0) = Vt:time. o(t+1) = i(t)”
[“0:time—a”] “o:time—a”;;

REG' = — : (tnt—*) — * — int—*
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The above translations are straightforward. No optimisation is performed since
no recursive definitions are present. In the translation of the register model REG,
an initial value of type * is parameterised since delay is modelled in the definition.

The next definitions describe the implementations of DOWN, MULT and TEST.

# rel_to_fun
“DOWN (i,ready,ly) =

3p1 pa-
DEC (11,P1) A

MUX (ready, i, p1,p2) A
REG (pg, ll)”

[“2:bus”; “ready:sig”] “ly:bus”;;

memo_int_table = [] : (string # (time #int) list) list
memo_int = — : string — bus — bus
DOWN' = — : string — bus — sig — int — bus

The relational definition DOWN is recursive so its corresponding program is
optimised. Before the function DOWN' is defined, a memoisation table for storing
integers memo.nt_table, and a memo-function memo_int, are defined as a side
effect. The function DOWN’ takes four parameters: a name, the inputs ¢ and

ready, and an initial integer value; it returns the output ;.
Next we consider MULT.

# rel_to_fun
“MULT (ready, l;,13) =
3p1 p2 pa.
MULTIPLY (lg, ll,pl) A
ONE (pz) A
MUX (’ready,pz,pl,p:;) A
REG (p37 l2)”
[“l1:bus”; “ready:sig”] “ly:bus”;;
MULT' = — : string — sig — bus — int — bus

The function MULT' is also optimised, but does not define any new memoisation
functions or tables; it uses the ones already defined since it only optimises functions

of type bus.
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# rel_to_fun
“TEST (ready, I, I, out) =

3p1 p2 p3 pa.
NOT (ready, p2) A

AND (p1, p2, ps) A
ZERO (p3) A
REG (p4, ready) A
MUX (p4, l2,p37 OUt)”
[“ly:bus”; “ly:bus”] “((ready:sig), (out:bus))”;;

memo-bool_table = [] : (string # (time # bool) list) list
memo_bool = — : string — sig — sig
TEST' = — : string — bus — bus — bool — (sig # bus)

Apart from the memoisation of functions of type bus, TEST' requires the memo-
isation of functions of type sig, so a new table and function are defined for type sig.
The factorial definition can now be translated. The optimisations required for

its translation involve the previous definitions of memo-functions and tables.

# rel_to_fun
“FACT (2, out, ready) =
3 1.
DOWN (¢, ready, ;) A
MULT (ready, lh,12) A
TEST (ready, 1, Iz, out)”
[“2:bus”] “((out:bus), (ready:sig))”;;
FACT' = — : string — bus — int — int — bool — (bus # sig)

The function FACT takes five arguments: a name (of type string), an input
signal ¢ (of type bus), and three initial values; it computes a pair out and ready
of types bus and sig, respectively.

We are now ready to simulate the factorial machine. We first set up some test
data by means of an ML function mk_sig defined below. The function takes a list

of values as an argument and returns the corresponding history function.

# letrec mk_sig In = (n=0) = hd(l) | mk_sig (tI1) (n—1);;

mk_stg = — : * list — (time—*)

Test data is set up on history function 7 for the first ten time units.

# leti = mk_sig [4;2;5;6;9;1; 3; 7; 8; 10]; ;

1= —: bus
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The function FACT' is executed for test data ¢ and initial values 0, 0 and T, to

compute the output history functions out and ready.

# let (out,ready) = (FACT' ‘fact* i 00 T');;
out = — : bus
ready = — : 8ig

The outputs are evaluated for the first twelve instants in time, and the re-
sults can be checked to determine whether the factorial machine is performing to

specification.

# map out [0;1;2; 3; 4;5; 6; 7; 8;9; 10; 11}; ;
[0; 0; 0; 0; 0; 24; 0; 0; 0; 0; 6; 0] : int list

# mapready [0;1;2;3;4;5;6;7;8;9;10; 11];;
[T; F; F;F; F; F;T; F; F; F; F; T) : bool list
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