Technical Report A

Number 141

Computer Laboratory

Reliable management of
voice in a distributed system

Roy Want

July 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Roy Want

This technical report is based on a dissertation submitted
December 1987 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Summary

The ubiquitous personal computer has found its way into most office environments.
As a direct result, widespread use of the Local Area Network (LAN) for the pur-
poses of sharing distributed computing resources has become common. Another
technology, the Private Automatic Branch Exchange (PABX), has benefited from
large research and development investment by the telephone companies. As a con-
sequence, it is cost effective and has widely infiltrated the office world. Its primary
purpose is to switch digitised voice but, with the growing need for communication
between personal computers, it is also being adapted to switch data. -However,
PABXs are generally designed around a centralised switch in which bandwidth
is permanently divided between its subscribers. Computing requirements need
much larger bandwidths and the ability to connect to several services at once,
thus making the conventional PABX unsuitable for this application.

Some LAN technologies are suitable for switching voice and data. The additional
requirement for voice is that the point-to-point delay for network packets should
have a low upper-bound. The 10Mbs~! Cambridge Ring is an example of this
kind of network, but its relatively low bandwidth gives it limited application in
this area. Networks with larger bandwidths (up to 100Mbs™!) are now becoming
available commercially and could support a realistic population of clients requiring
voice and data communication.

Transporting voice and data in the same network has two main advantages. Firstly,
from a practical point of view, wiring is minimised. Secondly, applications which
integrate both media are made possible, and hence digitised voice may be con-
trolled by client programs in new and interesting ways.

In addition to the new applications, the original telephony facilities must also be
available. They should, at least by default, appear to work in an identical way to
our tried and trusted impression of a telephone. However, the control and man-
agement of a network telephone is now in the domain of distributed computing.
The voice connections between telephones are virtual circuits. Control and data
information can be freely mixed with voice at a network interface. The new prob-
lems that result are the management issues related to the distributed control of
the real-time media.

This thesis describes the issues as a distributed computing problem and proposes
solutions, many of which have been demonstrated in a real implementation. Par-
ticular attention has been paid to the quality of service provided by the solutions.
This amounts to the design of helpful operator interfaces, flexible schemes for the
control of voice from personal workstations and, in particular, a high reliability
factor for the backbone telephony service. This work demonstrates the advantages
and the practicality of integrating voice and data services within the Local Area
Network.

Preface

I wish to thank Roger Needham, Ian Leslie, David Tennenhouse, Stephen Ades,
and Roger Calnan for their valuable advice and discussions which enabled me to
formulate my own research ideas. I am very grateful to Dan Craft for his time
spent teaching me Concurrent CLU and the motivation he has given me for my
work.

During the preparation of this dissertation I am grateful for the comments provided
by Jean Bacon, Ian Wilson, Mike Burrows and especially Peter Newman’s valuable
pragmatic advice concerning simulating systems.

I also wish to thank all the members of the mechanical workshop, especially John
Knight who put in many hours of work in constructing telephone hardware for the
ISLAND demonstration system.

Throughout the time I have been in Cambridge I have had tremendous support
from many friends. I would particularly like to acknowledge Sue Cock, Farrokh
Poorooshasb, Dan Craft, Michael Seckl, Ninette Premdas (and for excellent proof
reading), The Adventure Society: Nick, Reb, Paul, Marion; and also Flat #42 and
the Canoe Club for providing many a distracting evening’s fun.

I would like to make a special note of thanks to my parents for the support and
encouragement that they have given me throughout my education. I sincerely
hope that my Father’s current battle against his own Cancer is successfully won.

The ISLAND project has also received considerable support from the British Tele-
com Research Laboratory at Martlesham Heath, for which the members of the
project are thankful. Bill Bunn, Bob Turner and Alastair Rogers are also ac-
knowledged for their help and liaison.

During the period of research I received a grant from the Science and Engineering
Research Council and I am grateful for that support. Throughout my fourth year
of research I am extremely grateful for the financial support arranged by Andy
Hopper — Director of research at the Olivetti Research Laboratory, Cambridge.

Except where otherwise stated in the text, this dissertation is the result of my own
work and is not the outcome of work done in collaboration.

I hereby declare that this dissertation is not substantially the same as any I have
submitted for a degree or diploma or any other qualification at any other university.

I further state that no part of my dissertation has already been, or is being cur-
rently submitted for any such degree, diploma or other qualification.

Roy Want 1987

ii

List of Chapters

10.

Introduction

The Evolving Private Automatic Branch Exchange
The ISLAND Architecture

Network Telephone Design

A Model for the Exchange Service

Distributing Control

Fault Detection, Checkpointing and Recovery
Management Coordination

Evaluation

Conclusion

iv

20

35

50

67

78

93

100

110

Contents

1 Introduction

1.1 AimsofthisResearch
1.2 Background
1.3 Overview i i e e e e e e
1.4 Extent of Collaboration

2 The Evolving Private Automatic Branch Exchange (PABX)
2.1 First Generation PABXs v v v i,

2.2 Second Generation PABXs,
2.3 Third Generation PABXS v v v v v v e e e
24 Fourth Generation PABXso v vin ...
2.5 Fifth Generation PABXs
26 Related Work i,
27 Summary e e e e e e e e e e e

3 The ISLAND Architecture

31 TheNetwork
3.2 The CambridgeFastRing
3.3 Network Reliability
3.4 Division of Network Services
3.5 The ISLAND Voice Protocol 0o
3.6 Development Servers0
3.7 Development Systems00 o'u'u.. ..
3.8 Summary e

4 Network Telephone Design
41 Simplicity

T O W = -

42 HumanlInterface i i v v i v i e e i

4.3 Standard Network Interfaces
44 Event Channel,
4.5 FindingaController ue....
4.6 Physical Architecture.
4.7 Timing Considerations v uu....
4.8 A Future Fast Ring Telephone
49 A Gateway toISLAND uu....
410 Summary i e e e e e e e e e e e e e e e

A Model for the Exchange Service

5.1 Advanced RequirementsforaPABX
5.2 Implementinga Director
5.3 Associations and Associators
54 TheFeatureMenu00uuuuuueeo..
55 Guardians e e e e e
5.6 Directory Access ittt e
5.7 Obsolete Features. v i e vnununun..
5.8 Synchronisation of Phone Processes.
5.9 Control Management and Service Objects
5.10 Gateway Objects v v vt ittt e e e e e e
5.11 Summary vttt e e e e e e e e e e

Distributing Control

6.1 Fault Tolerance v v, .
6.2 Models for Fault Tolerance000u.....
6.3 ISLAND’s Approach to Fault Tolerance
6.4 Summary e e,

Fault Detection, Checkpointing and Recovery

7.1 Overview ittt e
7.2 Fault Detection00, ..
7.3 Fault Confinement
7.4 Reconfiguration
7.5 Checkpointing.o i

vi

50
50
52
57
58
62
63
63
64
64
66
66

67
67
70
74
77

76 State Recovery ¢ i i i i it i it ttnneenn
7.7 Miscellaneous Reasons for Recovery
T8 SUmMMATY . . . v i i ittt i et e et e et et e e

8 Management Coordination

8.1 Creating a Distributed Program.
82 MachineSetsttt
8.3 Command LineInterface.
8.4 Alternative Distributed Management
8.5 Implementation: Problems and Solutions.
B6 Summary ittt e e e e e e e e e
9 Evaluation
9.1 Telephone Usage Patternso v.u...
9.2 Simulating the ISLAND System e
9.3 FaultMonitoringo,
9.4 State Distribution
9.5 Imaccuracies in the QueningModel
96 Conclusion e e e
10 Conclusion
10.1 Integration Issues v i i it it e e e e e e
10.2 Management and Controlo veuon..
10.3 Management and Reliability
10.4 Future Work i

vii

93
93
95
96
98
98
99

100
100
101
103
105
108
108

List of Figures

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

6.1

7.1

8.1

9.1
9.2
9.3
9.4

Schematic of a first generation line shef PABX

Cambridge Ring packet formats
Two types of fault tolerant ring network
The ISLAND architecture 0uuu....

A Ringphone’s physical appearance
A mechanism for finding a controller
The essential components of the ISLAND Ringphone
A Cambridge Fast Ring (CFR) telephone
Alternative approaches for decentralisinga PABX
A block diagram of the ISLAND gateway

The main data structures used by a Director
The ISLAND Call Finite State Machine (CFSM)
State transitions allowed by the ECHD interface
Using the ECHD interface to set up a voice connection
The ISLAND featuremenu00..0....

A Virtual Ring of Directors
The abstractions used by the Masternode

Service delays experienced with a variable number of servers
Service delays when using a 2000ms monitor probe
Service delay compared to monitor period

Monitor periods on the basis of recovery time

viii

9.5 Message distribution in the Multicast and Virtual Ring protocols . 107
9.6 A Comparison of Multicast against a Virtual Ring protocol 108
9.7 Projected benefit of Virtual Ring performance over Multicast . . . 109

ix

Glossary of Terms

BBP Basic Block Protocol

BSP Byte Stream Protocol

BCPL A language used to implement the Tripos operating system
CCITT International Consultative Committee for Telephony and Telegraphy
CFSM Call Finite State Machine

CFR Cambridge Fast Ring

CFSM Call Finite State Machine

CODEC Coder-Decoder (commonly used for voice digitisation)
CLU An object-based language developed at MIT

CMDS Cambridge Model Distributed System

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CR Cambridge Ring

CSMA/CD Carrier Sense Multiple Access with Collision Detect
DAC Digital to Analogue Converter

DES Data Encryption Standard

DTMF Dual Tone Modulated Frequency

ECHD Establish, Connect, Hold, Delete interface

ECL Emitter Coupled Logic

EPROM Erasable and Programmable Read Only Memory
FIFO First In First Out

ISDN Integrated Services Digital Network

ISLAND Integrated Services Local Area Network Development
LAN Local Area Network

LED Light Emitting Diode

MAN Metropolitan Area Network

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

PABX Private Automatic Branch Exchange

PCM Pulse Code Modulation

RAM Random Access Memory

ROM Read Only Memory

RPC Remote Procedure Call

SSP Single Shot Protocol

STP State Transition Procedure

STSP State Transition Subprocedure

TASI Time Assignment Speech Interpolation

TDM Time Division Multiplexing

vVCO Voltage Controlled Oscillator

VLSI Very Large Scale Integration

VME Bus Standard Recognised by IEEE P1014 and IEC 821

Chapter 1

Introduction

In the early stages of telecommunications engineering, communications networks
were constructed from analogue circuit-switched systems. In the last decade net-
work designs have been moving towards digital packet-switching techniques. This
change has come about through the development of fast integrated technologies
which have been applied to specific problems in the telecommunications industry.
This revolution brings with it a host of advantages. One important advantage is
flexibility: it is possible to switch digital data, voice, and video within the same
network, and to offer network services which integrate these media in novel ap-
plications. If voice and data are to be integrated in real-time, then the digital
network must guarantee information transport, for which the criteria of low delay
and low error-rate are necessary for the respective media (real-time video has both
requirements). Some Local Area Networks (LANs) have properties which satisfy
both of these criteria, an example of which is the Cambridge Ring, see chapter 3.

Private Automatic Branch Exchanges (PABXs) have followed this technological
trend although, in general, they have remained centralised switches. With the in-
creasing use of Local Area Networks for the interconnection of personal computers
in business, it has become viable to integrate the PABX into the same network,
and hence to provide the traditional services alongside many new ones. Although
technologically feasible, the design and organisation of such an integrated system
presents some new and interesting problems.

1.1 Aims of this Research

This thesis investigates the design of a PABX as a distributed system, and the
problems of providing the reliable service expected of telephone systems in com-
mon use today. In order to investigate these research issues, the ISLAND project
was established in 1983. Its long-term goals were to investigate the provision of
Integrated Services on a Local Area Network. The project was undertaken by
the University of Cambridge Computer Laboratory, with financial support from
British Telecom Research Laboratory.

Initial work involved the design and replication of voice digitising equipment in
the form of network telephones. As a first step towards the development of an
environment that allowed applications integrating voice and data, ISLAND set out
to build a backbone PABX making use of the services already available within the
Cambridge Distributed Computing System. One of the main criteria for the design
was that it should provide a quality of service surpassing that provided by existing
systems. For that reason, considerable thought was put into the ‘human interface’
and the mechanisms for providing control of voice from application programs. A
particular consideration in this research was the attention paid to designing a
reliable system.

A telephone service is expected to be highly reliable: in fact a typical private
exchange supporting 200 extensions has a specified Mean Time Between Failures
(MTBF), for a total loss of service, equal to 17 years (a 10% loss of service is
specified to have a MTBF of 8 months) [BT 83]. A better description of the service
is that it is highly available. If clients are going to consider new approaches to
telephony as a serious alternative to conventional equipment, it is important to
guarantee the reliability and availability of the alternative services. In a distributed
PABX, voice is not switched by a centralised exchange; instead it is distributed
by the addressing structure of the network. The operation of an Ezchange in a
LAN/PABX becomes a management issue. If the Ezchange fails, existing voice
connections continue to operate correctly, but changes in the connective state are
no longer possible. This property allows for an inherently larger recovery time
since it is only the clients who are modifying their connections that become aware
of the failure. The reliability issues are discussed fully in chapters 6 to 9; these
include:

¢ Replication of exchange components
e Distribution of control

Distribution of state

Fault detection

Fault confinement

Reconfiguration

Recovery of state

System re-start

The backbone PABX was designed to be usable in its own right, but could also
incorporate modular functions in the form of services that could be incrementally
added to the distributed system. These services could be made as reliable as
the designers intended them to be, but in the event of their failure the PABX
would ensure a graceful degradation down to a reliable telephony-service. Clients
writing application programs should be able to control resources of the PABX,

2

namely telephones, and make any newly-designed services readily available by a
simple update to the system directory. In this way separate voice and data services
could be integrated to provide future multimedia applications.

1.2 Background

The work behind this thesis has been carried out in an environment shaped by two
major projects undertaken at the University of Cambridge Computer Laboratory:

o The Cambridge Model Distributed System (CMDS)

e Project Universe (in collaboration)

In order to explain the philosophy behind some of the design decisions made (and
the terminology that has grown up with this computing culture), the following
background sections have been provided.

1.2.1 The Cambridge Model Distributed System

In 1978 the University of Cambridge Computer Laboratory began a research
project to design and build a distributed computing system centred around a
Local Area Network. The LAN design was also a laboratory project and became
known as the Cambridge Ring [Wilkes 79]. The raw data rate for the original ring
implementation had an upper limit of 10Mbs~! and was quite suitable for the load
and applications envisaged at that time.

The resulting implementation is usually referred to as the Cambridge Model Dis-
tributed System (CMDS) [Needham 82]. This system is characterised by using the
LAN to separate a client from the machines he or she is working on, and is in direct
contrast to a popular alternative model which uses the network to link together
a large number of client workstations. In general, the latter approach does not
use the network for sharing computing power, but instead for inter-workstation
communication and the sharing of expensive resources, such as a filing system
or printer. In the Cambridge model a client’s interface is a terminal attached
to a Terminal Concentrator [Ody 84] that can handle eight terminal connections
while only requiring a single network-interface. The concentrator establishes a vir-
tual connection between it and remote processors using a protocol known as Byte
Stream Protocol (BSP) [Johnson 81]. The remote processors are unusual in that
they have a network interface as their only peripheral. Processors available for
general use make up a heterogeneous collection of machines called the Processor
Bank. Many of the processors used are based around a 68000 [Motorola 82] micro-
processer utilising an intelligent network interface called a MACE [Garnett 83].

A number of services were identified to be essential for managing the system, for
instance to provide Naming, Resource Management, Authentication, and Loading

functions across the network. These services were established as modular system-
components in dedicated machines known as Small Servers. These Servers were
constructed around Z80 microprocessors and resulted in a cost effective and reliable
implementation, primarily due to their lack of complexity. This kind of system
partitioning allowed the development of modular and reliable software, enforced
by the rigid network service-interfaces.

Naming

Naming is an important issue in network communication. The CMDS uses a static
Name Service which maps names to network addresses and vice versa (a function
referred to as ‘Reverse Lookup’). This kind of indirection allows machines to be
detached from fixed network addresses. In addition, it later became an important
part of the mechanism by which a bridge! [Leslie 83] could be used to extend the
topology and addressing capabilities of the Cambridge Ring.

Resource Management

Resource Management is a necessary strategy for allocating limited heterogeneous-
resources amongst a large population of clients [Craft 85]. In CMDS a client does
not request a particular machine for an application, but instead requests the name
of a system that he or she requires. A set of attributes may also be given (for
example, memory size and type of processor) to ensure that the needs of the
application are met. The request is sent to the Resource Manager (RM) and, in
response, the RM finds the most suitable machine to meet the needs of the request,
or denies it if the request cannot be fulfilled. The RM then initiates the loading
of the required system into the allocated machine. A client gains control of the
machine by a virtual connection set up between the two by RM.

Loading

In order to hide the loading characteristics of a particular processor type, a server
called an Ancilla is associated with each type. The Resource Manager will know
which Ancilla to use in association with any particular type of processor-bank
machine. An additional server called the Boot Server is also available for general
loading but its primary task is to provide a mechanism for re-booting the static
services.

There are many other services available which include: the Active Object Table
(AOT) [Girling 83], the Logger, Date Server, various Print Servers, and the File
Server [Dion 81}, descriptions of which are not appropriate in this text.

1The original Cambridge Ring needed to be partitioned into two separate rings when the number
of stations had risen in excess of 60. The partition was motivated by the large number of stations
leading to a low point-to-point bandwidth, and an increasing instability in the clock phase-locking
mechanism of each station. A ring-ring bridge was designed to allow the two separate networks to
be connected together.

1.2.2 Project Universe

In 1982 the Universe (Universities Extended Ring Satellite Experiment) project
[Leslie 84] was established as an experiment to connect a number of Local Area
Networks at geographically different sites. Universe was a collaborative effort be-
tween British Telecom Research Laboratory, Cambridge University, GEC-Marconi
Research Laboratories, Logica Ltd, Loughbourgh University of Technology, Ruther-
ford Appleton Laboratories and University College London. The LANs used in this
venture were exclusively 10Mbs~! Cambridge Rings and the inter-site connection
was a 1Mbs™! satellite broadcast-channel.

A European Space Agency Orbital Test Satellite (OTS) provided the broadcast
channel, each site having access to a ground station. In the Universe network a
connection between two subnets was called a bridge. If the ring subnets existed
at the same site it was referred to as a ring-ring bridge, but if the connection
was through a satellite, it was simply termed a satellite bridge. Since all inter-
site communication had to travel through the same satellite bridge there were no
routing problems to consider.

The principal aim was to design a composite network in such a way that a host’s
view of communication across the subnets was identical to communication over
a single ring. A noteworthy feature was the lack of an inter-network proto-
col layer. The protocols supported by Universe were lightweight and included:
Universe datagrams, an extended version of the Cambridge Single Shot Protocol
(SSP) [Gibbons 80], and lightweight virtual-circuits with no flow-control or error
checking. The resulting flexibility also made it a test bed for the development
of real-time voice protocols which have their own particular requirement of low
transport-delay. Before Universe it had been claimed that LANs were capable of
supporting integrated service traffic (for example, real-time voice and video, com-
bined with data file-transfer). Universe was one of the first experiments to provide
a practical demonstration.

Work on Universe finished in December 1983. To a large extent it was the inspi-
ration of the ISLAND project. However, a more direct descendant was the Unison
Project.

1.2.3 The Unison Project

Unison [Clark 86] the ‘Child of Universe’ was inspired by the work of Universe
and that of the Cambridge Fast Ring (CFR) [Hopper 86]. The project set out to
provide a land-based network suitable for the provision of integrated services over
a number of remote sites and, for this reason involved many of the collaborators
originally involved in Universe. Unison is part of the Alvey research programme
which is still actively pursuing its research.

Unison adopted a similar virtual-connection strategy to that of Universe but the
physical architecture was based on a new model. The long-promised 100Mbs™?
CFR had been seen in a number of different lights. It could be used as a service

ring in its own right or a fast packet switch confined within a 19-inch card-rack. To
that end, Unison saw it as a means of interconnecting a variety of lower bandwidth
networks, such as 10Mbs~! Rings and 10Mbs™! Ethernets, and using it as the cen-
tre of a hub configuration providing centralised packet-switching for a particular
site. In order to connect the hub rings together 2.048Mbs™! links (e.g. British
Telecom’s Megastream) were used to provide the terrestrial inter-site connections.
This kind of link is very cost effective and is in direct competition with satellite
technology for providing high-bandwidth communication. As fibre technology be-
comes more pervasive, it is increasingly likely that satellite technology will be less
widely used in national communications.

Megastream divides up its bandwidth into time-slots that can be allocated to client
services. This kind of bandwidth sharing is known as Time Division Multiplexing
(TDM). Time-slots are chosen so that standard 64kbs™! voice streams can be sent
8-bits per slot, with the next time-slot available after 125us. At 2.048Mbs™! this
allows 32 x 64kbs~! streams to be multiplexed on to the link. The network is
therefore suitable for data and voice, and other synchronous traffic requiring a
larger bandwidth division, since a number of consecutive slots could be allocated
to a single application. As a result of the CCITT ‘I-Series’ recommendations
[ITU 85], this class of network link has become the basis for ISDN (Integrated
Service Digital Network) communications in Europe. The ‘I-Series’ recommenda-
tions go further to define the use of particular time-slots in a timing frame, and a
signalling standard.

The CFR forms the basis of the Unison Ezchange [Tennenhouse 87]. Connec-
tions of Megastream links are performed by components called Ramps and the
local client networks are connected through Portals. Currently, most of the basic
infrastructure for the network has been built.

Implications for the future include the ability to use services situated at remote
sites as if they were available locally. These services may be data-oriented, relating
to conventional distributed computing requirements, or else combined with audio-
visual applications. The Unison project could, in the future, be used to share

integrated services of the type investigated by this thesis in the environment of
the ISLAND project.

1.3 Overview

This thesis is structured according to the following plan.

Chapter 2 is a survey of systems in the research and commercial world. A
categorisation has been made which follows the advancing trends in PABX design
into the field of distributed computing.

Chapter 3 is a description of the approach taken by the ISLAND project to
provide the required functionality of a PABX integrated into the well established
Cambridge Model Distributed System.

Chapter 4 describes the design issues in building a packet-voice telephone and
interfacing it with a 10Mbs™! Cambridge Ring. Lessons have been learned from
this work concerning the division of hardware and software for the processing of
real-time voice. The chapter concludes with a proposed design for future network-
interfaces for voice.

Chapter 5 discusses a model for the ISLAND Ezchange and its basic non-
replicated operation. Chapter 6 extends this basic model to a system in which
control is distributed amongst an arbitrary number of replicas. The implementa-
tion model has been influenced by the tools and development environment available
to the ISLAND project, and is described in that context. The Ezchange has been
designed and implemented to provide a variety of features with future extensibility
in mind. A mechanism for reliably passing control of network telephones to other
network services is also presented.

Chapter 6 outlines the issues concerning reliability and availability when imple-
menting an Ezchange service. The discussion explains the decision to distribute
the service over many machines and the issues that needed to be considered in
order to implement this type of distributed application. The solutions ISLAND
has adopted are presented in contrast to the various models already in existence
for resilient distributed-computing.

Chapter 7 describes how faults are determined within the Ezchange, a method
for reconfiguring the system in the event of a failure, and how system state may
be replicated and recovered after a server failure. A novel use of a ‘Virtual Ring
Protocol’ for fault monitoring and the distribution of system state is also described
in some detail.

Chapter 8 is a description of the interfaces and functions needed to manage the
distributed Ezchange service. It was necessary to build a tool to manage a gener-
alised set of machines. This tool runs as a separate network service and provides
an access point by which the distributed PABX can be controlled, debugged and
monitored in normal operation.

Chapter 9 is an evaluation of the design and protocols used in the ISLAND
project. ‘Service delays’ and other operational statistics taken from the ISLAND
system, are presented and used to assess how the system would scale for use in a
real application.

Chapter 10 summarises the points learned from the project and concludes with
an assessment of its potential applications.

1.4 Extent of Collaboration

The practical work undertaken by the ISLAND project is extensive and involves
collaboration of several members of the University of Cambridge Computer Labo-
ratory. The overall architectural philosophy for ISLAND was designed by Stephen
Ades [Ades 87b], who carried out much of the ground work for the construction of
server infrastructure. The design of the Voice Provider (chapter 3) was the joint

7

work of Roger Calnan and Stephen Ades. The Translator, also mentioned in chap-
ter 3, was entirely designed and implemented by Roger Calnan. A special note of
thanks is given to all members of the laboratory who helped in porting existing
code from the CMDS to the ISLAND servers, and to those who helped debug these
systems for use in ISLAND applications: Ian Leslie, David Tennenhouse, Roger
Calnan, Jan Wilson and Robert Cooper.

All work concerning the design of network telephone hardware, its control soft-

ware, and the design and implementation of the ISLAND FEzchange service can be
attributed to the author.

Chapter 2

The Evolving Private Automatic
Branch Exchange (PABX)

With the advent of modern solid-state digital-switching in the 1960’s, the expen-
sive telephone exchange, once only feasible as a shared central resource, could be
distributed in the form of the Private Automatic Branch Exchange (PABX)!. In
the last 20 years this technology has undergone evolutionary changes in its design
and application. The catalyst for change has been the development of the micro-
processor in the early 1970’s. This led to the production of many small personal
computers for business applications e.g. the office workstation and, as a result,
many of the office tasks traditionally carried out by people could be automated.
Despite the distribution of processing power there was still a need to share expen-
sive resources such as printers, mass centralised-storage, and additionally a need
for inter-workstation communication providing document transfer and electronic
mail. Local Area Networks (LANs) were designed to meet these demands.

Telephony, an equally important tool in the modern office, had initially remained
a province of the PABX. Moreover, the PABX designers were bending over back-
wards to adapt their systems for data transfer as well as voice traffic [Ellis 84}, but
they could only offer throughput at a rate similar to, and often less than, 64kbs™!
voice channels. In the early 1980’s LANs generally offered data rates between
3Mbs™! and 10Mbs~! [Wilbur 85|, and now LANs are being designed to provide
data rates as high as 100Mbs™! [Hopper 86] [Ross 86] with potential for still faster
data rates in the future. Computer equipment could therefore transfer data at a
rate which was in a totally different league to the conventional PABX, even when
the network access protocol and bandwidth sharing scheme is taken into consider-
ation. The important difference between the bandwidth utilisation of a LAN and
a conventional PABX is that a PABX has a fixed fraction of the switch bandwidth
allocated to each client, whereas a LAN divides the network bandwidth between
the clients who actually require it. A better evolutionary path would be to use
the LAN to carry voice traffic. LAN systems combining PABX and data facilities

1The PABX is sometimes more simply called the PBX, but this term can be misinterpreted to
mean a manually operated exchange. The term PABX will be used throughout this thesis.

9

are now beginning to evolve [Rossi 84] [Kay 83] [Greenway 85].

The following sections refer to examples of systems demonstrating advances in
PABX design. The classification used is purely an invention to illustrate the
methodology of voice/data systems with increasing technological merit as judged
by this text. However the economics of the current time defines a different ordering
on the basis of their commercial viability.

Section 2.1 reviews a first generation PABX that carries only voice traffic. Sec-
tion 2.2 gives examples of second generation PABXs that allows voice and data
applications to be connected to separate extension lines; third generation systems
(section 2.3) use a centralised token-bus to switch voice and data, a technique
employed by a only a few commercial systems. A further advance comes with the
merging of two technologies to form the hybrid PABX/LAN. Section 2.4, fourth
generation PABXs, describes how voice and data are switched by their separate
technologies but fuse together at the call-processing phase by making the PABX
management processor a station on the LAN. Fifth generation PABXs (section
2.5) have made the complete transition by integrating voice and data within a
LAN at the bit-level, and also in the applications that they support.

2.1 First Generation PABXs

These systems behave in the same way as traditional telephone systems but they
incorporate additional control facilities which are accessible through codes dialled
at conventional voice equipment. Switching of voice is carried out through a cen-
tralised private-switch which has facilities that allow exchange lines from the public
network to be connected to it. These systems are becoming increasing popular for
small and large businesses alike and, because the technology is becoming very cost
effective, they are rapidly becoming a standard feature of the modern office.

A typical PABX is the Monarch 120 Call Connect System [GEC 81]. This system is
designed around a line-shelf architecture (see figure 2.1). A line-shelf will usually
contain 8-line cards, each of which support four extensions. A line-shelf thus
supports 32-line circuits (8x4), each with a 64kbs~! voice channel, transferring data
as one 8-bit sample every 125us. The 64kbs™! voice streams are produced from
an analogue signal by the use of a Coder/Decoder (CODEC) which, as the result
of telecommunications, is a common integrated component. Additional signalling
information is carried by attaching a ninth bit to each sample. An extension
data-rate is therefore 72kbs™!. The 32 individual data-pathways are carried on
a backplane which is terminated by a shelf multiplexer circuit. It is here that
the voice and signalling information are separated again. The voice channels are
then multiplexed to form a 32 time-slot Pulse Code Modulation (PCM) group
generating a 2.048Mbs~! data bus which feeds the input stage of a Time Switch.
The signalling bits are multiplexed on to a separate 256kbs~! stream and fed to
the input of a unit which then decodes them.

Speech leaving the Time Switch also leaves on a 2.048Mbs~! bus and is fed to a
multiplexer accompanied by a 256kbs~! control stream. The separate busses are

10

demultiplexed and combined to form a 72kbs~?! stream that is fed to each of the
line circuits. The digital voice is then converted back into analogue form by a
CODEC.

Other Multiplexers

-0- Tnen
<7 72xbps
| 2Mbps 2Mbps
Line P oneit 3 T sheit ¥ Line 4—J
Card Mullipleaer Muluplexer Card
f - Time Switch . rl l
th.
Other Other 3 v Other Other
Exts.
Line Line Exts.
Cards _———] lCFU busl h Cards
Signalling Unit

I ¥ v
tcpuaus

CPU

Figure 2.1: Schematic of a first generation line shelf PABX

2.1.1 Time Switches

The Tsme Switch is a voice-stream switch. It transfers samples between voice
streams flowing into it and voice streams flowing out of it. A typical Time Switch
will take eight 2.048Mbs™! voice streams? and perform a serial-to-parallel conver-
sion in such a way that an 8-bit 2.048Mbs~! bus is produced with data interleaved
and serialised by the line-shelf ordering. Each voice sample is then stored sequen-
tially in a speech RAM (a 256-by-8 Random Access Memory) at an 8-bit location
called a port. Key-presses coded on the 256kbs™! signalling bus are captured by
the system CPU at the start of a phone call and, as a result, data is written to
a location in a second RAM, the connection store. This RAM maps a port in the
speech RAM on to the corresponding time-slot and line-shelf from which it should
be played out. By sequentially accessing the connection store using a counter and
indirecting the data through the speech store, samples are recovered in the order
required by the connection mapping. The resulting samples are passed through
a parallel-to-serial converter and re-assembled back into eight 2.048Mbs™! voice
streams. The streams are then split up and fed to the appropriate line-shelf. The
voice samples are now in the destination time-slots and hence will be played out

2The 2.048Mbs~! bus conforms to the CCITT standard for time-slotted data transmissions
[ITU 85).

11

at the destination extensions. The Time Switch can thus transfer voice in both
directions independent of the number of the connections/ports in use at that time.
It is termed a fully-available non-blocking switch.

Tone Generators, Conference Units, and Direct Dial lines will usually occupy one of
the shelves and have ports reserved in the switch for their use. This does, however,
restrict the number of extensions that the architecture can support. Clearly the
connectivity is extensible by combining many Time Switches together, although
there is a square-law relationship between the number of switches needed and the
number of extensions that are to be handled.

2.2 Second Generation PABXs

Commercial pressure and competitiveness combined with client demands has meant
that the ability to carry voice and data traffic, other than by using a MODEM,
is a necessary requirement to sell a PABX in the current market place. The lead-
ing manufacturers, therefore, are providing this kind of facility, examples include
‘Plessey’s ISDX and Northern Telecom’s SL-1. The design changes are minor since
it is easy to carry data in the time-critical slots of a voice stream, providing that
the error rate is acceptable. The modifications are associated with the line card,
rather than the switch, and involve the addition of interface circuits which provide
a standard data transfer protocol such as RS232 or V24. Typical line rates for
such interfaces are 9600 baud, and thus a number of these could be multiplexed
on to a single time-slot. The important characteristic of this generation of PABX
is that data time-slots are permanently allocated and they use up slots that are
normally available for voice.

2.3 Third Generation PABXs

Sydis corporation have developed a centralised PABX system using a 128Mbs™!
token bus architecture [Nicholson 83]. It is composed of many 68000 processors
providing multiple services across the bus; these include: file storage, voice connec-
tion coordination, voice compression, workstation interface-modules, a standard
PABX interface making it compatible with other systems, and a gateway to other
Sydis systems across Symnet. Workstations are connected to the Sydis system by
standard four-wire twisted-pair cabling and are terminated at an interface card.
The wires are used to provide four 64kbs™! links: two of which are used for data,
another provides a voice link, and the remainder is used for signalling. Sydis work-
stations contain an integral telephone and keyboard in front of a compact display
unit. The 128Mbs~! bus is used to switch data and voice between the workstations
and the storage/compression units. The system can achieve integrated voice and
data functions but only between a set of its own homogeneous workstations. The
bus offers some attractive advantages. Firstly, bandwidth is shared out on demand
amongst bus contenders. Secondly, the system is easy to maintain and thirdly, it

12

uses cheap technology to switch data since the short backplane allows a parallel
bus to be used and clocked at a rate an order of magnitude slower than the LAN
equivalents. Moreover, it makes use of existing PABX type wiring.

The problem left unsolved by this project is the inability to connect to the many
types of personal workstation already in existence. The outlay of buying sophis-
ticated telephones without integrating any pre-existing workstations may not be
practical. However, this kind of centralised approach tends to be favoured by tele-
phone companies. AT&T have their own version of a token-bus PABX [Barrett 85]
which uses a number of distribution boxes for linking to telephones and terminals.
High-bandwidth fibre-links join these boxes to a centralised token-bus switch. As
with all centralised systems so far considered, there are potential reliability prob-
lems which result from the system being dependent on one centralised component.
In conclusion: the bus systems have good properties for sharing bandwidth but
they do not have all the advantages of a totally distributed system.

2.4 Fourth Generation PABXs

These systems have made important contributions to PABX call processing, rather
than in the actual voice switching techniques used. In first and second generation
systems, call processing is centred around a processor of moderate capability, for
example the Monarch 120 System uses an 8080 microprocessor. The processor
is primarily concerned with decoding signalling information, keeping track of the
state of a call (represented by a finite state machine) and managing the tables
of a Time Switch. Often such a system is controlled by a program written in
machine assembly code. New features require a reassembly of the source code and,
furthermore, it is the proprietary information of the manufacturers. More recently,
a few research-orientated systems have been built which explore the management
and integration possibilities when a PABX switch is attached to a computer system
that is running an operating system such as UNIX [Ritchie 74]. Examples are the
Berbell and MICE systems being developed at Bell Laboratory’s Morristown site.

2.4.1 The Berbell System

Berbell [Redman 87] is a user-programmable telephone-switch which combines a
VAX 11/750 with a Modular Switching Peripheral (MSP) built by Redcom Labs.
The MSP provides basic interfaces which allow dialled digits and other client-
initiated events to be read from a digital interface. Voice connections may be
established through the same interface. The advantage of separating out man-
agement and switching issues is made apparent by the small number of suitably
chosen primitives that are necessary to access the MSP. Berbell contains a num-
ber of routines, written in C, which perform the interface function and these
have been incorporated into an interpreted language called BERPS (BER Phone
Script). These routines are run as the result of dialling in the usual way. The di-
alled numbers are mapped to a code reference by a simple table. This table can be

13

changed dynamically, allowing new features to be added without recompiling all
of the code. The interpreter provides the client programmer with I/O commands.
These include synthetic generation of speech, conditional statements, functional
operations and execution control, in much the same way as conventional computer
languages. Moreover, calls to the operating system allow access to conventional
programming tools. The result is a flexible control language which can provide
standard feature packages in the form of a library of scripts, and the ability for
client programmers to write their own features tailored to a specific need. The
advantages are even more apparent when the telephone dialling operations can be
derived, either from the telephone, or from one of the VAX terminal lines, allowing
an interface of much greater sophistication.

2.4.2 MICE

MICE [Woodbury 87|, another project at Bell Morristown, uses a hybrid approach
to control a Redcom switch. A number of client workstations are connected in
a distributed environment by an Ethernet, and are linked to the switch by a
serial control line. Each of the workstations runs a background task which co-
ordinates control over the switch, but inter-workstation communication is carried
out through the Ethernet. The primary aim of the research is to develop integrated
services incorporating conventional office applications and the telephone system.
One of the main research issues is to determine the type of human interfaces that
are suitable for such a system.

Redman’s approach used a completely centralised scheme for switching voice and
exercising control over the system. It should be pointed out that this system
represents an architecture that is at the opposite end of the spectrum to the one
proposed in this thesis. In both the Bell systems, voice and data are not integrated
at the Physical layer of communication and, as a result, it is not very easy to store
them on a common medium for the purpose of manipulating them alongside each
other.

The 4th generation design approach is not desirable because specialised commu-
nication equipment is required for each kind of medium. If real-time video were
to be incorporated into the system, further specialised cabling would be neces-
sary between the access points. Furthermore, centralised systems generally have
a single-point dependency for the reliable operation of the service. If the VAX
used by Berbell fails, so does the telephone system. The MICE project is clearly
more resilient to component failures but the switch is a potential weak link in the
system.

2.5 Fifth Generation PABXs

Fifth generation PABXs are characterised by their totally distributed approach
and the use of high-speed digital-networks. Using high-bandwidth packet-switching
networks has two well-known advantages:

14

e Network bandwidth is divided equally amongst requestors and thus is not
wasted on idle clients.

e Silence suppression can make more efficient use of bandwidth.
Implementation difficulties are caused by:

e The increased complexity of the network interfaces having to cope with the
higher data rates due to the integration of voice and data, and the serial
nature of the transmission encoding.

¢ Buffering is needed to ensure smooth playback of digitised samples, and thus
delay is introduced.

e A suitable access protocol must ensure minimal and relatively constant de-
lays for voice applications.

The problems are solved by good design and increased technological support in the
form of VLSI circuits and cheap bulk memory. The third difficulty is related to
the choice of network architecture. Once these problems have been addressed, the
benefits can be reaped. The work carried out at Xerox PARC (Palo Alto Research
Centre) is the most significant in this field, and the most similar to the practical
work (ISLAND) used to investigate voice management in this thesis. There are,
however, some important differences between Xerox’s approach and the approach
taken by ISLAND. These differences will be emphasised in chapters 3 and 4.

2.5.1 Xerox’s Distributed Telephone System

In 1983 Xerox PARC published a paper [Swinehart 83] describing an experimental
telephone system built from distributed processors interconnected by an Ethernet.
The project is still making a valuable contribution to the field today |Terry 87).
A key component is the server called an Etherphone®, which performs digital-
voice sampling and packet assembly/disassembly for the transfer of voice across
an Ethernet. Control is achieved by using Remote Procedure Call (RPC) through
the same Ethernet. Etherphone can operate in the same way as a normal telephone
or in conjunction with an office workstation. The latter allows expansion of the
user interface, and hence the provision of useful features which are easy to use. The
interface also makes it possible for clients to write programs to control Etherphones
for specialised applications. Xerox has also built a special purpose Voice File
Server which can be used in conjunction with Etherphone to store and retrieve
voice from a conventional disk. Experiments have also been carried out with voice
incorporated into text documents. Editing of voice presented in this way has

been achieved by the use of specialised software tools provided at a workstation
[Ades 87a.

3Etherphone is a trade mark of the Xerox corporation.

15

2.5.2 Etherphone

The physical interface of the Etherphone resembles a conventional telephone but,
unlike a telephone, it connects to a box containing both an Ethernet server and
hardware suitable for most voice I/O applications. It can also be controlled re-
motely from a variety of different workstations supporting the Cedar programming
environment [Swinehart 86] and RPC [Birrell 83]. Etherphone’s processing power
is limited to simple network-control functions and the transmission and reception
of voice. This allows it to be small and economical enough to be made in the re-
quired quantities. A standard subscriber line interface to each Etherphone enables
calls to be made to the outside world, and provides a backup in the case of system
failures.

An Etherphone is based on a dual-processor architecture. Its main processor (an
Intel 8088) controls a DES peripheral (Data Encryption Standard) for the en-
cryption of voice, along with an Ethernet controller working at 1.5Mbs™!, and an
RS232 controller to provide local interfacing, for example when testing the server.
The control program is coded in the C language and occupies 8K bytes of EPROM.
The slave processor runs a highly-optimised assembly-language program to per-
form: real-time control of digital voice-samples, CODEC control, silence detection
and the management of voice buffers. The master and slave processors communi-
cate with each other through a 48K block of shared memory. Both processors are
overlooked by a Watchdog timer providing checks on the integrity of the device
and the detection of intermittent faults.

2.5.3 Xerox’s Telephone Control Server

The Control Server is a non-replicated component in Xerox’s distributed system
which is responsible for handling Etherphone call-processing. It does not need to
carry out any voice switching as this is performed by the addressing structure of
the Ethernet. The Control Server is responsible for providing the intelligence of the
Etherphone, and interpreting key-strokes at an Etherphone console. In response
to valid sequences of keys it will set up or clear down virtual connections using the
Etherphone RPC interface. Call accounting and statistics are also carried out here.
The Control Server can access system databases such as directories, repositories of
information relating client locations and the relative positions of workstations to
Etherphones. By making use of this data, it can synchronise operations between
workstations and Etherphones. Regular monitoring of Etherphones enables it to
assemble a maintenance log for repair staff. The Control Server can automatically
load and reboot Etherphones which is necessary when an Ethernet is powered on,
but is also the first line of attack for correcting a failure that may have resulted
from a transient error. In either case, an Etherphone’s Watchdog will signal this
event to the Control Server using the Ethernet broadcast mechanism.

16

2.5.4 Design Issues in the Xerox System

Due to the operational characteristics of an Ethernet, it is necessary to buffer
voice into large packets. The Xerox voice protocol uses a packet containing 160 x
8-bit samples with an additional 36 bytes of packet overhead. For a 64kbs~! voice
stream the resulting transmission rate is 50 packets/second. If data users were also
present on this network and running applications such as file transfer, it would not
be possible to guarantee the time in which voice packets could be delivered. As a
result the Etherphones, the Control Server, and the Voice File Server are connected
to their own 1.5Mbs~! Ethernet. A low speed 1.5Mbs~! Ethernet is used in this
prototype system to take advantage of a VLSI Ethernet controller in the design
of an Etherphone. Access to existing services, and in particular workstations, is
made possible by a packet gateway connected between the Ethernet used for voice
and a 3Mbs™! Ethernet (a part of the Xerox distributed system).

An interesting feature of their approach is the detection and suppression of trans-
mitted silence. It has long been realised by telephone companies that by suppress-
ing silence in digital-voice transmission, a greater utilisation of shared channel-
bandwidth may be achieved. A conservative estimate of the increased utilisation
is 1.6 times the channel bandwidth [Brady 68]. This factor is usually referred to
a the TASI advantage (Time Assignment Speech Interpolation) [Bullington 59].
Using this value, combined with the 0.2 Erlang occupancy? likely to be found for
a private office telephone, leads to the following calculation.

Calculation:

Voice sampling rate 64k bits-per-second
Voice packet size = 160 bytes + 36 bytes (overhead).
Voice packet rate B0 packets-per-second
Using a 1.5M b/s Ethernet, at worst case, 50% utilisation
(to avoid collision problems)
=> 760k b/s available data rate to avoid unacceptable delays.

Number of voice streams possible:
= Bandwidth / (Packet rate x Bits per packet)
= 760k / (50 x (196x8)) = 9.56

Taking advantage of statistically distributed pauses in speech
(TASI) gives a further advantage of 1.6 (see text).
=> 0.66 x 1.6 = 15.3
By considering a phone occupancy equal to 0.2 Erlang (see text)
=> int(15.3/0.2) => 76 subscribers or 38 two-way conversations

If a standard 10Mbs~! Ethernet is used, a similar calculation can be made, which

4The Erlang |Bear 76] is a dimensionless unit of ‘traffic flow’ or ‘occupancy’. A telephone with
0.2 Erlang implies that if it is monitored for an hour it will be in use for 12mins. This value is only
the mean of an assumed distribution and the period may not necessarily be sequential. A more
usual figure used by traffic flow calculations for public telephones is 0.1 Erlang.

17

indicates at least 28 simultaneous two-way conversations are possible. Using the
TASI advantage combined with a 0.2 Erlang telephone occupancy, this figure im-
plies that greater than 225 subscribers may be supported [Swinehart 83].

2.5.5 The Ztel System

Ztel were one of the first commercial ventures to step away from centralised Time
Division Multiplexing (TDM) or linear-bus orientated switching-strategies. Their
approach adopted the IEEE 802.5 token-ring standard [IEEE 83|, integrating voice
and data in a loosely-coupled distributed-system. A principal advantage of this
standard is that a priority ‘voice’ (in preference to ‘data’) token can be established,
ensuring the harmonious coexistence of the two media. Their system, called a
Private Network Exchange (PNX), uses the programming methodologies found in
a distributed system to control and synchronise telephone equipment with terminal
activities [Kay 83]. High speed data applications may be connected directly to
the ring: phones and terminals can be linked up to 1600m away. Inter-node
bandwidth can be increased incrementally by connecting many rings in parallel;
the architecture has béen designed to make provision for up to forty rings combined
in this way. An advantage of this design is that the alternative routes through
the network increase the reliability of the system. There is, however, very little
published information on the distributed control techniques adopted by the Ztel
system.

2.6 Related Work

There are numerous other projects which have carried out work in this area,
many of which have been concerned with the representation of voice in docu-
ments, and the human factors involved in the use of voice with systems. Some
of the more well-known research projects include: ‘Diamond’ at BBN labora-
tories, New Jersey (US) [Thomas 85]; ‘Minos’ at Waterloo University, Ontario
(Canada) [Christodoulakis 86]; ‘MAGNET’ at Columbia University, New York
(US) [Lazar 85]; and various experiments at the multimedia laboratory of MIT
Boston (US) [Schmandt 85]. Furthermore, there are a number of experimental
LANs which are being developed for voice and data integration, for example:
‘Fasnet’ at Bell Labs, New Jersey (US) [Limb 82]; and ‘Orwell’ at British Telecom
Labs (UK) [Falconer 85].

A major contribution in standardising Integrated Service Digital Networks (ISDN)
has been made by the International Telegraph and Telephone Consultative Com-
mittee (CCITT) [Davidson 85]. In Europe the CCITT recommendations have
been applied to the 2.048Mbs™! networking standard [ITU 85] which uses syn-
chronous Time Division Multiplexing (TDM). This type of network operates on
the same principles used in conventional PABXs i.e. combining and transport-
ing several 64kbs™! data streams in time-slots carried by a higher capacity bus.
Such slots can be allocated to voice connections and meet the requirements for its

18

transport delay. The importance of CCITT’s contribution is that it has led to a
standard for the customer service interface and to a proposed signalling standard
[Robin 84]. However, the problems ISDN are trying to solve are oriented towards
producing end-to-end voice and data communication in a wide area network. The
mechanisms by which applications can integrate voice and data into new services
is not the main goal.

The work in this thesis differs considerably from the examples above. The following
chapters are concerned with the organisation and management issues that are
necessary in order to design a PABX around a Local Area Network, primarily
with a view to providing a reliable service.

2.7 Summary

Using the five generation classification for PABX design, it is clear that substan-
tial effort is being put into systems to meet voice/data integration demands. The
PABX and LAN technologies are beginning to merge but, as yet, an unresolved
commercial battle remains between the centralised time-switch, the centralised
linear-bus architectures, and the totally distributed systems. The centralised sys-
tems are much better researched than the distributed approaches because of their
simplicity, cost effectiveness and longer existence in the commercial world. It is
only in recent years that high-speed VLSI support for LAN implementation has
made the distributed approach a more favourable proposition. The architecture
and control issues of distributed computing systems are similar to those required
in a distributed PABX and, as such, can be readily applied.

19

Chapter 3

The ISLAND Architecture

One of the aims of the ISLAND project was to investigate the design and architec-
tural issues involved in the construction of a distributed PABX. In the following
sections the key components of a distributed PABX are discussed, and a general
architecture is proposed as a design solution from a research perspective. A great
deal of this architecture has already been implemented and from now on this will
be referred to as the ISLAND demonstration system.

3.1 The Network

To a large extent the properties of Cambridge Rings were responsible for the
initial proposal of the ISLAND project. There are many other networks which
can support integrated media in the local context, for example: FDDI [Ross 86]
and IEEE 802.5 token rings [IEEE 83], TDM networks [Davidson 85] and Binary
Routing Networks [Newman 88]. When ISLAND was proposed, the Cambridge
Fast Ring (CFR) project predicted that it would have a 100Mbs~! slotted ring
available for use in a relatively short period of time. The high available-bandwidth
would allow many multimedia applications to run concurrently. However, to avoid
delays, the ISLAND project began its work using a 10Mbs~! Cambridge Ring.
Two 10Mbs™! rings were already in considerable use in the laboratory, and were
relied upon by a large population of research students. To increase the available
facilities would be of benefit to them, and give the ISLAND services a significant
test-bed. Initial development began using an additional 10Mbs~! Cambridge Ring.

3.1.1 The Original Cambridge Ring

The 10Mbs~! Cambridge Ring is an example of a slotted ring. It consists of a
number of stations connected in a ring topology. A circulating logical-sequence of
slots, each containing a minipacket, is established by a monitor station, in conjunc-
tion with the other stations in the network. A small gap between the first and last
slot is necessary to distinguish the beginning and the end of the sequence. Each

20

minipacket contains 38-bits with the format shown in figure 3.1a. The full/empty
bit is initially marked empty. Stations can transmit a minipacket by finding a free
slot and then filling in the destination and source address, along with the 16-bits
of data to be sent. The circulating slot passes through all the stations which,
noticing the slot is full, compare the destination field with their own address. If
they match the data is copied out. Furthermore, the receiving station will change
the two minipacket response bits that follow the data. These bits indicate four
types of low-level response: accepted, busy, unselected, and ignored. Busy indicates
that the station contains data which has not been read from its receive buffer, a
situation that occurs when the station’s host processor is busy with another task.
Unselected is a means of signalling that the station is currently receiving from
another source and, therefore, the sender should delay before transmitting again.
An ignored minipacket has the response bits unchanged and indicates that the
destination is not operational and, most likely, is turned off. A transmitter can
thus deduce which course of action is appropriate in each of these eventualities.

An important part of the design is that it is the transmitting station that must
empty a slot that is used for transmission and not the recipient. In addition, the
same slot cannot be used for two consecutive transmissions from the same station.
The transmitter knows how many slots there are in the ring and counts the slots
going by after making a transmission. It therefore knows which slot to empty and
can pass this slot on to the next station in the ring. If an unusual situation arose
in a one-slot ring, whereby all the stations wished to transmit a minipacket at
the same time, the slot would be passed from station to station on a round-robin
schedule.

Minipackets only contain 16-bits of data. A higher-level data link protocol is used
to gather minipackets into a larger and more useful unit of data transfer, the Bassc
Block. This protocol is referred to as the Basic Block Protocol (BBP) [Walker 78].
The reception of Basic Blocks is serialised at a receiver by the use of a selection
mechanism. The unselected response signal is used to enforce serialisation.

This design gives rise to the following network properties:

e Bandwidth is shared out equally between equal requestors: this
property results from stations passing on a slot after every transmission.
The available bandwidth is also independent of the offered load. This is in
direct contrast to CSMA/CD systems which experience a higher probability
of packet collision with large loads, and thus network utilisation decreases.

e Low access delay: minipackets are small packets of data that are passed
between requestors, in the worst possible case, at the packet rate divided
by the number of stations in the ring. In some Token Bus or CSMA/CD
systems the packets are considerably longer, typically up to 1Kbyte, and
are necessarily long to reduce the overhead of the packet preamble. It is
therefore, in general, not possible to guarantee the transport time for a
packet, and hence the requirements of voice cannot be met.

It can be concluded that if data users and voice services coexist on the same ring,
each will have access to a slot with little delay. Moreover, the low-bandwidth voice

21

user’s requests will be met in full, leaving the remaining bandwidth divided among
the needs of the data users.

3.1.2 Suitability of the Cambridge Ring as a PABX

So far the number of stations in a ring have not been considered as a cause of
significant point-to-point delay. However, an increase in the number of stations in
the ring increases the point-to-point delay, and there will be a limiting number of
stations that can be inserted into the ring while still guaranteeing the requirements
of voice. A simple calculation can be made to find the limiting number of stations
for standard 64kbs™! voice streams.

Approximate calculation for a i1OM bits-per-second ring:

Voice bit-rate 64k bits-per-second
Ring bit-rate 10M bits-per-second
Bit-latency per station = 3 bits

Data bits-per-packet 16 bits

Bits per packet 38 bits

Let N be the number of stations in the ring:

Maximum voice packet delay = data bits-per-packet/voice bit-rate
16/64k = 256 microseconds ... (1)

(Bits per ring/ Ring bit-rate) x N
Transmission delay > =--=----------c-o--ooommcomomoooo ...(2)
(Maximum) (Number of slots)

> (3N/10M) x N/ INT(3N/38)

=> N < 66 [INT() is a function returning the integer value]

This restriction puts a worst-case limit on the number of telephones to be 65.
By taking advantage of the probabilistic nature of telephone calls, and by adding
management to block calls when they exceed a critical number, more ring stations
can be added. If half the voice users were replaced by data users in a 65 station
ring, the data users could only obtain the same available bandwidth as the voice
users. A typical real-life PABX/LAN would need to support between 100 to 200
extensions and data users. A 10Mbs~! Cambridge Ring cannot support a load of
this size.

22

Full /Empty

Parity
. 4 h 4
Start -3 || |8Bit 8 Bit 8 Bit 8 Bit
Destination Source Data Data
+ +*
Monitor passed 2 Response Bits
Full /Empty 3.1a 10Mbps CR Minipacket
: s Unused
v v —_——
16 Bi 16 Bi 2B i
Start . 4 6 Bit 6 Bit 32 Bytes 12 Bit
Destination | Source Data CRC
<> === '
Monitor passed Response

3.1b 100Mbps CFR Packet

Figure 3.1: Cambridge Ring packet formats

3.2 The Cambridge Fast Ring

It had always been the intention of the ISLAND project to develop its environment
on the Cambridge Fast Ring (CFR) [Hopper 86]. However, the CFR project was
hindered by problems that delayed the fabrication of a VLSI chip-set until early
1986. As a result the ISLAND demonstration system was constructed on the
original 10Mbs~! ring, but designed for the characteristics of the CFR with a view
to transferring the system as soon as it became available. A description of the CFR
packet is shown in figure 3.1b. One of the criteria on which ISLAND based its
design is that bandwidth is plentiful in a 100Mbs~! Local Area Network, and thus
a realistic population of voice and data users are able to coexist. The calculation
made for the 10Mbs™! ring can be repeated for the CFR.

Ring bit rate = 100M bits-per-second
Bits per station latency = 30 bits
Data bits-per-packet = 256 bits
Bits per packet = 304 bits

266/64K = 4 milliseconds from (1)

Voice packetisation delay
(30N/100M) x N / INT(30N/304) < 4 milliseconds from (2)

=> N < 1311

23

This figure implies that 655 (1310/2) full duplex conversations are possible, using
1310 stations. Of course this figure is an impractical number of stations to have in
a single ring. However, it does imply that 200 extensions could easily be supported.
In pragmatic terms this would probably be implemented by a ring with 50 or less
stations in which several telephones were multiplexed on to one station. In this
situation there would still be plenty of bandwidth available for data users (note
that this calculation assumes no silence suppression in the voice streams and no
blocking of subscriber calls).

A small number of stations in a ring is, in fact, a necessary requirement as there are
other factors limiting the number of stations (relating to the problems of phase-
locking the clocks at each network node). Every station introduces a certain
amount of bit-delay jitter, and this will become an unstabilising factor above a
critical number of stations. The original 10Mbs~! Cambridge Ring developed in
the laboratory began to experience locking problems when it contained between
50 and 60 stations.

The CFR was designed as a kit of parts [Temple 84] which can be assembled into
stations, monitors, or packet bridges. Packet bridges allow the network to be
extended to other CFRs using a 16-bit global addressing structure. The network
could therefore be extended to a topology utilising many inter-connected rings,
each ring containing only a small number of stations. The resulting network has
different properties for voice and data depending on the topology used. Acceptable
delays may be ensured by providing different routes, in the form of specialised
bridges, for voice and data. These problems are being considered under a separate
research proposal [Porter 86].

3.3 Network Reliability

The ring networks have a high degree of reliability for transferring data. A typi-
cally measured figure for the 10Mbs~! Cambridge Ring is one bit in 10! bits lost
due to noise effects [Temple 84]. This is an ideal medium for conventional data
transfer. When transporting voice, such a high degree of network integrity is not
so important. Small volume errors do not degrade voice by a significant factor.
In fact a packet of a voice stream with a duration as long as 4ms can be lost one
percent of the time without significant reduction in the clarity of a client’s speech
[Gruber 83]. This size of packet is equivalent to a CFR packet that is completely
filled with voice samples. This property makes it possible to use the CFR packet
as the basic unit for a protocol between two real-time devices transferring voice
which do not need, or have time, to acknowledge reception of packets. This is
because an occasionally corrupted packet can simply be thrown away. A more
acute problem is network availability. The Cambridge Rings are research tools,
and as such, have only been built to a tolerance acceptable in a research environ-
ment. In the experience of the ISLAND project the mean time between failure
(MTBF) is about one month. The mean time to repair (MTTR) can be up to a
day. Most computer users expect this kind of disruption every now and again, but

24

a telephony service is expected to be highly available.

The network failure problem can be solved by using redundant links between
stations. There are two well known ways to do this.

e A Braided Ring: one in which every nth station is connected to the
(n+1)th and (n+2)th, allowing failed stations or links to be bypassed if
a failure is detected (see figure 3.2). The scheme can be extended further to
cope with two adjacent failures by extending links to (n+3)th stations. If
this approach is taken to its logical conclusion there is no difference between
a totally connected topology and a fully braided ring. As always, a compro-
mise must be made between cost, reliability and pragmatics [Falconer 83].

o A Self-Healing Ring: a popular redundancy model using two parallel
counter-rotating rings (see figure 3.2). The two rings connect the same set
of stations. This model allows full utilisation of both rings in the fully
operational state, and so twice the normal bandwidth is available. If a single
link fails, one ring is still intact and availability is maintained. If two links
fail in the same segment (occurring in the case when the ring is severed), the
two stations adjoining the fault contain hardware which bridge the two rings
together. Thus a new ring is created which is twice as large but excludes the
failed segment. The mechanism also recovers from a single station failure, or
any number of adjacent station failures, by excluding them in the same way
as described for a segment. Non-adjacent station failures result in network
partitioning. If voice users are present, the recovery mechanisms should
allow them to continue to access a useful subset of the network. An example
of a ‘Self-healing’ ring is the FDDI Ring [Ross 86| currently being proposed
as a standard for Metropolitian Area Networks (MANs) in IEEE 802.6.

Self Healing Ring Braided Ring

Figure 3.2: Two types of fault tolerant ring network

The Ztel system described in chapter 2 is a further example of redundant inter-
connection. In this system an arbitrary bandwidth and reliability factor can be

25

obtained by connecting rings in parallel.

It is important to realise that the gains in reliability (an elusive parameter to
estimate before implementation), are offset by the complexity of their solution. A
complex recovery strategy will have its own kind of failure modes. Self-healing
rings have a significant recovery mechanism because failure of a station executing
a recovery will generally be isolated at that station, causing the ring to recover at
an adjacent station along the ring structure.

3.4 Division of Network Services

In the Cambridge Model Distributed System (CMDS), network services were par-
titioned into separate servers. ISLAND has adopted a similar approach to take
advantage of modularisation and fault confinement, already demonstrated to be
of value in CMDS (see figure 3.3).

3.4.1 Telephones

A detailed description of ISLAND telephones is given in chapter 4. The summary
given here outlines the design principles. Ringphone is the ISLAND name for
its network telephone. Ringphones are, in principle, simple system components
containing a network interface, a processor, and a peripheral responsible for digi-
tising voice. A network service-interface allows simple operations to be activated
remotely, examples of which are:

e Relay key-presses to a particular station
e Send voice to station named p and receive voice from station named q
o Generate a tone

e Display some text

In an attempt to provide a more suitable human interface than that which is
normally provided by the telephone, a single-line text-display has been attached to
its front panel. The design is functionally simple in order to reduce the number of
failure modes it may have. It is also the only system component which is replicated
in large numbers in a real system, possibly 100 to 200 times. Any incremental
cost must therefore be multiplied by a comparatively large number and must be
justifiable. Because ISLAND is purely a research project, the hardware used for
implementing the Ringphone is much more elaborate than it needs to be. The
Ringphone, as it stands, cannot be easily streamlined because it is designed around
a network server which is general enough to develop all the ISLAND network
services.

26

Terminal
Concentrator

: | Processor .
: Ringphone

¢ {Processor | :

The ISLAND

Distributed System
; Terminal
Rlngphone Conecrel:{::tor
ﬁ@
'Y
GATEWAY

Termiral
Concentrator

Exchange e v' =
(Part of Processor Bank)

Figure 3.3: The ISLAND architecture

3.4.2 The Exchange Service

This service is the focus of voice management in the ISLAND system. The design
criteria already stated is that a distributed PABX must provide reliable operation.
Various scenarios for a redundantly linked network have been proposed, but a
detailed study is not part of this work. The voice interface has been made simple
because it is the only economic way to reduce the possibility that the interface
will fail. However, Ringphones are replicated by a large number and as with
conventional telephones, if one fails, there is likely to be a working one nearby.
The important issue is that the exchange service should not fail. The remaining
system dependency therefore lies in the ISLAND Ezchange Service. This is an area
well suited for distributed programming techniques. Chapters 5 to 9 are devoted
to the design of this service and are previewed below.

The only way to construct highly-reliable systems out of unreliable components is
to replicate critical components and critical data, or to add information coding,

27

so as to remove any single-point dependency. Hardware and software can be
replicated for the Ezchange Service in order to provide availability, but service
integrity can only be achieved by distributing any dynamic ‘state’ created during
the system’s operation. For a specific application it is possible to tailor a state
distribution mechanism to be optimal in relation to the level of state recovery
required. A basic design for the service is explained in chapter 5. The design is
taken further, as explained in chapter 6, to allow it to be distributed and highly
available. In chapter 7 a mechanism is described that would allow it to recover
critical-state in the event of a server failure. Finally chapter 9 evaluates this design
for use in a system of a realistic size.

The Ezchange Service is also designed to allow access to a number of other modular
services, for example, a message leaving service or a conference service. A gen-
eralised mechanism for passing control of a Ringphone to other services enables
fixed and experimental services to be accessed. A fail-safe solution is adopted to
ensure that Ringphones will always be able return control to the highly available
Ezchange Service, and then relinquish control from the external service.

3.4.3 The Conference Servicé

Most modern PABXs have conference facilities. This feature can also be achieved
in a distributed architecture. If a network has a broadcast facility, a voice con-
ference can be achieved by arranging that the parties involved send their samples
to the broadcast address. Hardware support at the telephones could then be used
to combine voice packets, thus establishing the conference. The approach used in
ISLAND keeps the telephone operation simple and, to this end, was not seen as the
correct place to implement the conference function. In order to allow Ringphones
to use just one voice protocol, an additional network module, the Conference
Server, has been specified. Conferencing for a group of n Ringphones, (where
n> 2), could be achieved as the result of the Ezchange service instructing the n
Ringphones to send their voice streams to a Conference Server. This server would
perform a summing operation!, and generate n new streams, each containing the
sum of all the voice streams except the one originating from the Ringphone it was
destined for. The last condition is used to prevent any echo in the system. A look-
up table could be used to perform the summing function and would preferably be
implemented as part of the loaded service, rather than using a specialised ROM. It
is important to make services independent of specialised hardware so that a wide
choice of alternative machines can run the application when the host server fails.
Moreover, if a service is becoming overloaded, more general-purpose servers can
be loaded with the service in order to meet the system’s demands.

1Due to the logarithmic coding function used in standard A-law encoded 64kbs~! voice streams
[CCITT 72|, the summing of voice samples is not straightforward arithmetic. Because of the speed
required in this real-time application, a look-up table is needed to perform this operation.

28

3.4.4 Voice Message Services

Public telephone systems, and most PABXs, do not have a voice messaging service
as an integral part of the system. It is far more common to have separate automatic
answering machines to record messages on an analogue tape and then for the
owner of the machine to play them back as he, or she, desires. Digital voice
in a distributed system can be packaged up into blocks of data and stored in a
conventional filing system. Voice messaging can therefore be an integral part of
a PABX that is integrated into a distributed system. The ISLAND approach has
been to use a server called a Translator? to act as an intermediary between a phone
and a File Server. The Translator converts between voice streams delivering blocks
at a high rate, and large blocks delivered to the filing service at a lower rate. This
is necessary to avoid degrading the filing service by dominating its processor with
the overhead of handling many small blocks. Furthermore, this approach is in line
with the ISLAND philosophy which requires that a Ringphone should only use one
voice protocol in order to implement PABX services.

A message service can be constructed from a program running in the same ma-
chine as the Translator, or another network server, which acquires the control of
a Ringphone by interaction with the Ezchange Service. Control of both the Ring-
phone and the Translator is necessary in order to synchronise voice recording and
playback with events at the Ringphone. A service of this kind would also offer fea-
tures typically provided by electronic mail systems but involving voice files rather
than text files.

3.4.5 The ISLAND Gateway

A voice gateway has been constructed to allow the ISLAND PABX to be linked to
a conventional PABX’s extension line. The work was carried out for the following
reasons:

® Due to a limited pool of project resources it was not possible to produce
more than ten ISLAND Ringphones, and thus extending the new ISLAND
services to the departmental PABX was a simple way of providing ISLAND
facilities for a wide cross-section of clients.

¢ Easier access would mean greater usage and generate useful feedback about
the system and, in particular, the human interfaces.

The design allows an external client the possibility of dialling from any telephone
extension provided with DTMF? key signalling, and connecting with the ISLAND
gateway which would automatically answer the call and provide a secondary di-
alling tone. Further Ringphone extensions could then be dialled by continuing to

2The design and construction of the Translator [Calnan 87] has been the work of Roger Calnan.

%Dual Tone Modulated Frequency (DTMF) is a coding standard which has been universally
used for signalling information in touch-tone telephone networks.

29

press keys on the active line. These key presses are ignored by the conventional
exchange but would be interpreted by the gateway as a one-to-one mapping on to
Ringphone keys. All of the ISLAND services normally available at a Ringphone
would be remotely accessible in this way.

3.5 The ISLAND Voice Protocol

The voice protocol [Ades 86] was originally designed for the CFR, but due to
delays in the fabrication of CFR components, the ISLAND project implemented
a similar protocol on the 10Mbs™! Cambridge Ring. ISLAND’s voice protocol
addressed two network issues:

e Network delay

o Network error rate

- The principal cause of delay in the ISLAND network is the result of buffering
voice samples during packetisation. This is necessary to make optimal use of the
network bandwidth when sending voice using a Data Link layer protocol. On the
10Mbs™! Cambridge Ring data is universally transported using the Basic Block
Protocol (BBP). This protocol is implemented as a layer on top of the Physical
layer which transfers data in 16-bit units. The data part of the block must be
significantly longer than the header for the transfer to be performed with a small
overhead. However, when using a CFR, the Unison Data Link (UDL) protocol
[Tennenhouse 86] can be used to take advantage of the 256-bit data fields present
in a CFR packet. A small block of data may be transported in a single network
packet when using this protocol. ISLAND’s Voice Protocol is designed around a
2ms unit (16 x 8-bit samples) of voice. A 2ms unit of voice will comfortably fit
into a CFR packet transferred using the UDL protocol. However, for the time
being, the demonstration system transfers voice as Basse Blocks.

The protocol operates by periodically transmitting 2ms blocks along with a se-
quence number and a flag indicating whether the packet’s average sample level is
below a fixed silence threshold. Voice blocks are sent without acknowledgement
and hence without retransmission for unacknowledged blocks. The sequence num-
bers allow the received voice to be placed in the correct position of a playback
buffer. If a block is lost, the subsequent packets will still be placed in the correct
position in the receive buffer, and thus played back at the correct time. The value
of the playback pointer referencing the playback buffer is always incremented at
the sample rate. The reception pointer is incremented by a value equal to the
product of the blocking size and the pairwise difference of the last two sequence
numbers to be received. These two pointers are initially synchronised with each
other and, on reception of the first voice block after a voice stream is established,
the pointers move as described. The reception buffer is made logically circular
to restrict buffering space to a sensibly sized region. If the transmitter station
clock and the receiver station clocks are not matched, the playback and block

30

reception pointers will begin to drift, relative to each other, in the period of time
that the link is operational. To cope with this problem, a regular check on their
separation is made, and if it exceeds a critical value the protocol brings them back
into alignment once a consistent error has been determined. A consistent error is
the important trigger which must not be confused with a delayed packet due to
congestion, or any other reason which causes transient delay. Chapter 4 describes
the hardware designed to compensate for the clock synchronisation problems that
can be used when holding a two-way conversation.

The transmit section of the protocol must also use a circular buffer to cope with
the case when there are network delays while launching a voice block on to the
network. A transient loss of the ring integrity may cause this problem. In this case,
by buffering voice blocks it may still be possible to deliver voice to the destination
within the delay restrictions.

Voice blocks are flagged to be either above or below a silence threshold. The
Xerox Etherphone avoids transmitting silence blocks to preserve bandwidth for
other clients on the network. For ISLAND it was considered that the silence
blocks should not be removed if the local bandwidth is plentiful. This is the case
for the CFR network, since it has already been shown that it may support over 600
two-way conversations without silence suppression. Moreover, the reconstruction
of voice from a silence-suppressed source produces results which are variable in
quality. Pathological cases can occur in which low-level background noise is heard
in the speech periods, but miraculously disappears in the silent periods.

However, when digitised voice is required to be stored on a physical medium the
capacity problem becomes a limiting factor. Although the future promises opti-
cal discs and larger winchesters with 1 gigabit capacities, current disc technology
must be treated with an economic respect for space. The Translator mentioned
in an earlier section is responsible for removing silent blocks before storage, and
reconstructing these periods on playback. Inserting white noise during the silent
periods, at an attenuation equal to an average of samples taken from the back-
ground noise, is an additional technique which can be used to produce a more
natural concatenation of stored voice-blocks.

3.6 Development Servers

For the initial ISLAND development a great many servers were needed. The
8MHz 68000s built into the processor bank of the CMDS could have been used
for ISLAND purposes. At that time many of the processors in the processor bank
were already in use during the working day. Combining this factor with the need
to attach specialised hardware to some of the ring stations, for example voice
digitising equipment, prompted the ISLAND group to develop its own modular
68000 server.

31

3.6.1 Server Hardware

In Cambridge, general purpose network processors had, in the past, been con-
structed from purpose-built hardware which, in itself, merits little research value.
To allow, in principle, the speedy development of basic infrastructure, ‘off the
shelf’ boards were used as a kit of parts to build a system in a 19in rack. SEEL
Cambridge Ring 10Mbs™? station/repeater cards were mapped into the local ad-
dress space of a 68000 processor card manufactured by Microsys. The processor
card was chosen because of its use of the VME bus standard [VMEbus 85]. The
VME bus may accommodate VME peripherals which can either be purchased com-
mercially or designed in the laboratory. The basic ISLAND server can become a
general processor simply by adding VME memory or, by adding suitable VME
peripherals it can become a printer, a file server, or a specialised server such as
a Ringphone. The uniformity of server design was of great benefit allowing in-
terchangeable parts to be moved between servers while constructing the system.
Some of the early ISLAND servers had faults that were found more easily by swap-
ping parts. The choice was undoubtably a good one for the future, and the project
should continue to benefit from this approach.

3.7 Development Systems

There were two main choices for porting an operating system on to an ISLAND
VME processor: Tripos [Richards 79] or Mayflower [Bacon 87]. Both had desirable
attributes and both were modified to run on the new processors. An operating
system and its language support have a great deal of influence on the design of a
service, and for that reason a brief summary of the issues which influenced the use
of these two systems are given here.

3.7.1 Tripos

Tripos is a portable, multitasking, single-user operating system, and is based on
message passing principles for inter-task communication. It is implemented in the
BCPL language and provides optimal support for system applications written in
the same language.

Compiled BCPL forms an efficient translation of a problem into executable code.
However, it is a typeless language, that is to say, the machine word is the only
type. All program structuring and data validation is left to the programmer. This
can be exactly the requirement needed when designing small real-time services
such as the Translator, but it is generally unsatisfactory for a large-scale system
development.

32

3.7.2 Mayflower

Mayflower is a purpose-built, single-user operating system, providing concurrency
and synchronisation orientated around the Monitor construct [Hoare 74). The
kernel is written in the CLU language [Liskov 81] and purely intended to support
applications written in Concurrent CLU. The Cambridge version of CLU is an
extended version of the original providing concurrency control in the form of the
fork and semaphore operations. Other language level synchronisation constructs
such as Monitors and Critical Regions [Cooper 85b] have also been added. For
the development of distributed programs, Remote Procedure Call (RPC) is by
far the most useful addition [Hamilton 84]. Two classes of RPC are offered to
programmers, Ezactly Once and At Most Once, thus allowing a choice of protocol
overhead suitable for the problem in hand. CLU is an object-based language:
abstraction of data and information hiding are features that allow the definition
of new abstract types and the enforcement of interfaces. For the development
of large systems, modules are compiled separately. Their procedural interfaces
are allocated Unique Identifiers (UIDs) which are stored in a library file and only
change when the interface is modified. The UIDs of modules must be self-consistent
at link time and thus type-checking extends to link time. Furthermore, the UIDs
of inter-server RPCs must match at runtime, thus guaranteeing that the interface
specifications are enforced at all points in the development of a distributed system.

A disadvantage of Mayflower is that program development is not carried out on
the target machine. Instead a 68000 compatible compiler and linker run under
UNIX on a VAX, and object modules are transferred across to the Tripos filing
system where the Mayflower kernel can retrieve and then run the code. Another
disadvantage is that CLU garbage collects to recover heap storage. In Mayflower
a synchronous garbage collector is used, and thus an application is stopped while
storage is being recovered. The delay incurred by the application is dependent on
many things. Good design can reduce this problem to have minimal effect on the
real-time service provided by an application.

The advantages of language level concurrency control and distributed communica-
tion far outweigh the disadvantages. CLU running under Mayflower was therefore
chosen for the design and implementation of the Ezchange Service.

3.8 Summary

The 100Mbs~! Cambridge Fast Ring (CF R) has bandwidth sharing properties
which allow it to support a realistic population of voice and data users. If only
voice users access the network, more than 600 two-way conversations would be
possible. In principle, the design of the CFR network could be extended to a
‘Braided’ or ‘Self-healing’ structure, and thus provide highly-available connection-
paths between stations.

The ISLAND design for a distributed PABX architecture uses the same modular
philosophy that has already shown itself to be successful in the computing envi-

33

ronment of the CMDS. Separate servers in the form of telephones, gateways, ex-
changes, conference servers, and translators are the key components of the system.
These may all utilise the computing facilities already available on the network.

The voice protocol has been designed to use 2ms voice blocks ~ a unit which can
be thrown away on occasion without being particularly noticeable to the human
ear. The protocol utilises streams of these blocks which are sent without acknowl-
edgement and hence without retransmission in the event of an error. However,
sequence numbers are used to allow the correct management of pointers referenc-
ing the reception buffer. Silence flags are also sent with blocks, but these are only
used if the voice is to be stored on a filing system with limited capacity.

ISLAND servers are general purpose and based on 68000’s. These servers may
be used to construct any of the required PABX services. Two operating systems,
Tripos and Mayflower, have been ported to run on these servers. The ability of
Mayflower to run implementations written in an extended version of the CLU lan-
guage has been particularly useful in the research and development of a distributed
Ezchange Service.

34

Chapter 4

Network Telephone Design

To distinguish between conventional telephones and those used in the ISLAND
project, the network telephone has been given the name Ringphone. In the design
of the ISLAND demonstration system, it was of prime importance to ensure that
the Ringphone acquired the correct division of functionality in relationship to other
system components. Emphasis was placed on three issues:

¢ Simplicity: to gain reliability
e The Human Interface

e The Network Interface

4.1 Simplicity

This criterion is one which characterises the ISLAND approach to designing a
network telephone server. Simplicity is a step towards achieving reliabilsty.

At Xerox PARC, a site where similar research is being carried out, their Ether-
phone has also employed a simple approach, although some of the design issues
have introduced a level of complexity which ISLAND has tried to remove. Ether-
phone uses two processors: one for driving the Ethernet, and the other for control-
ling voice digitisation. It also employs three protocols: an RPC control interface, a
voice protocol between phones, another to a dedicated voice file server. To achieve
a conference call, additional mechanisms working in combination with the phone-
phone voice protocol are required to sum all the conferenced voice-streams at each
Etherphone.

The Ringphone has a more simple design concept. An interface to the Cambridge
Ring is provided by the same processor which drives the voice hardware. Func-
tionally, only two protocols are used:

* The Single Shot Protocol (SSP) [Gibbons 80] for control

¢ The Voice Provider [Ades 86] for all voice connections

35

4.2 Human Interface

A well thought out human interface was considered to be essential. Of the many
commercial PABX’s in service today (ISDX, BTex, SL-1) only a small fraction of
the facilities are used by clients on a daily basis, mainly because the interface is
far too cryptic. Many special numeric codes have to be remembered and typed at
various stages of a feature call. Most people cannot remember the codes and often
need to access the facility in too much of a hurry to look them up. If mistakes are
made, there is no feedback to indicate where the error has occurred.

ISLAND considered that the problem could be tackled by adding a 40-character
display. In retrospect a larger display would have been even more appropriate.
The display can provide elementary help information and lead a client through a
series of options towards a target operation. Moreover, it can be used to provide
warnings about mis-keyed options and additional information about incoming calls
(see figure 4.1).

Four indicator LEDs and eight extra switches, in addition to the 12 keys found on
most push-button phones, were also also added. These were intended for indicating
the state of a call, for example ‘New calls waiting’ and ‘Calls held’. The extra
switches were supplied as a means of invoking help information and local editing-
functions.

EAR 40 CHARACTER DISPLAY
112 {3 |H
new () 41516|G| (O wow
LED O 71819 C OLED
*10 |#|D
MIC

Switches

Figure 4.1: A Ringphone’s physical appearance

4.3 Standard Network Interfaces

Within the CMDS the SSP protocol is commonly used for the purposes of inter-
server control. SSPs are request/response message pairs. In the event of a protocol

36

failure, re-tries must be carried out as a higher-level function. They provide the
same functionality as an At Most Once RPC system, without language level
support. SSPs can be generated easily by clients working on the CMDS and were
a natural choice for Ringphone control. The BBP protocol uses addresses and
ports (subaddresses) to deliver data in the form of a Basic Block to a station. The
arrival of an SSP at a port requires an SSP handler to process the request. Several
different SSP interfaces can therefore be present at different ports within the same
station. The control interface has been partitioned into two logical channels to
distinguish state investigation from a control function:

e The Investigation Channel
e The Control Channel

4.3.1 Investigation Channel

This is an interface which allows any network server to execute a group of in-
vestigation functions returning local information about a Ringphone’s state. An
example is a function to determine where voice is being transmitted or from where
it is being received. The channel is not authenticated in any way, and for this
reason does not permit any modification of a Ringphone’s internal state.

4.3.2 Control Channel

This is an authenticated SSP interface for manipulating a Ringphone’s state. Ex-
amples include setting up voice channels, generating tones, and displaying text.
The first argument of all requests made on this channel is a 64-bit UID! (an au-
thenticated session key). The UID is compared with a privately stored UID, which
must match before the function is executed, otherwise a non-zero return-code is
sent in the reply. A particular function call allows the UID to be changed, but in
such a way that the old UID and the new UID are both accepted until a second
access of the channel has been made using the new UID. If the controlling body
obtains a valid response, it will know the UID has been adopted. If the controller
has to pass this new capability around to other agents it can do so before commit-
ting the Ringphone to take on a new private UID. If a new UID is not confirmed,
the next invocation of the change function will establish the original UID and the
last installed version to be valid. Thus if the controlling machine fails while estab-
lishing the initial update, a second machine could take over control, even though
the private UID has not yet been distributed.

1A UID is a Unique Identifier and implemented by using a random binary number selected from
a sparsely used number space. At Cambridge 64-bit numbers are used for this purpose,

37

4.3.3 Authentication

The purpose of authentication on the control channel is to ensure that the use
of the telephone resource is restricted to authorised clients. There is of course a
‘start of day’ problem when a Ringphone is reset, powered up, or re-booted. In
this case, the private UID must default to a known value, and for a period of time
the resource is vulnerable. As soon as the authorised controller discovers that the
reset has occurred it can change the UID to a secret one. If an impostor takes over
control in this vulnerable period, the genuine controller will obtain a return code
indicating that its own UID is invalid. If the genuine controller finds the same
problem with the default UID, a message can then be sent to a human operator
who can act on the situation.

4.4 Event Channel

Asynchronous events, such as key-presses or the raising of a handset, need to be
signalled to the controlling entity. This information could be obtained by providing
an investigation channel function permitting key-presses to be polled for. However
this would be an unnecessary waste of CPU cycles. A more efficient approach is
to supply the Ringphone with an SSP interface to signal events to the controller.
This technique has been implemented in the form of an outgoing SSP channel.
Events that need to be signalled are:

¢ Handset off-hook

o Key event

(3 3]

key event (see chapter 5)

Voice channel established

e Handset on-hook

Note that for simplicity a key event simply indicates that the key buffer needs
reading. It is the responsibility of the controlling server to respond in the correct
way to an event. In the case of a key event the key buffer should be read through
the Control Channel.

The destination of signalled events is set by the use of an event vector and this
may be assigned to by calling a set_event_vector procedure through the Con-
trol Channel. This is an important part of a mechanism for passing control of a
Ringphone between control servers.

The overall control mechanism is analogous to that used by a processor and a
peripheral device. Events produced by a Ringphone are similar to a peripheral
device generating interrupts indicating that it should be serviced by its processor.
In our model the controlling server corresponds to the processor and the Ringphone
to the peripheral. In the LAN environment communication is more difficult; the

38

servers are loosely coupled and as a result event signals need to be re-tryable.
However, the model of a dumb peripheral and a controlling entity provides a
simple design framework.

4.5 Finding a Controller

In ISLAND it was chosen to distribute the Ezchange Service to gain reliability.
Each individual exchange component has been termed a Director?. When a Ring-
phone has an event to signal, the name of a Director must be found so that the
event can be passed to it and then processed. The location of components of a
distributed service is a problem which is not addressed by the Naming Service
used in the Cambridge Model Distributed System. As a result ISLAND had to
find its own solution. Several design options were open:

e Broadcast
¢ A Name Service supporting sets of names

e A table of names maintained locally

If a broadcast mechanism were available on the slow ring, it would be possible to
broadcast a request for a service using its textual name, and listen for the replies
returning from the machines supporting it. The Dsrectors could then reply with
their name and a current-loading factor. The Ringphone initiating the call could
then select the least busy controller. Alternatively, a centralised name service
could contain service names as well as machine names. A service name look-up
would return a set of machine names providing the service. The scheme suffers
from a single-point dependency at the naming service. A preferable solution would
combine both techniques, using a centralised name service but allowing a client
to broadcast in the event of its failure, or in the case of an invalid entry. Such a
technique uses the name service as a hint at the correct address.

Broadcasts do not scale well: therefore if a broadcast mechanism were implemented
it should only extend to one network. However, a site may contain many networks,
and important distributed services should also be spread out so that some of their
components exist on all of the inter-connected LANs. For this reason and the lack
of reliable naming support in CMDS, an alternative half-way solution has been
adopted.

The Ringphone solution has been to maintain a set of names in a table which
is initialised by each Director. On raising the handset, a random choice is made
from the table, and the resulting name is looked up to determine the address to
which the event should be sent (see figure 4.2). The Name Server is still a single-
point dependency in the demonstration system. A solution to this problem is to

%In previous ISLAND literature the term General Operations Director has been used and ab-
breviated to GOD. Throughout this thesis Director is the preferred name.

39

use a table of addresses rather than names. However, in the CMDS environment
the communication path to a Director may be through a bridge in which case,
without a name look-up, the path through the bridge would eventually time-out.
If the design is moved to the CFR, 16-bit global addresses could be stored in
the Ringphone event table instead of using names. This solution removes the
dependency on the name server and thus solves the problem.

Event Current
Vector ¢ —— | Director
Tt
\ Key / /‘
Director 1
Table of Director 2
Exchange
Components Director 3
(the Directors) Y
Di 4
irector Random Choice
________ at Handset off-hook
Director N

Figure 4.2: A mechanism for finding a controller

A new controller name is only re-selected by a Ringphone when the handset is
raised, and thus, once call processing has begun with a particular Director, all
other events are also sent to it. A handset on-hook event ends call processing,
and further handset off-hook events make another random selection. The period
between an off-hook and an on-hook event will from now on be referred to as a
sesston. If the selected Director fails to respond to an off-hook event within a
reasonable time-out another name is chosen. It is up to the remaining Directors to
remove the bad name from the table in order to avoid delays in obtaining future
controllers.

The above mechanism is simple, but assumes that a random selection will dis-
tribute the load evenly across all Director components. For large numbers of
extensions in proportion to Directors this may be true, but if the ratio is smaller
it may not work out so conveniently. A Multicast protocol® making use of the
table of names would have a similar result to a broadcast. The selection could
then have been made on the basis of least loading. Clearly, it would be advanta-
geous to all system components to choose the least busy controller. Multicast is,
however, a time consuming operation on the Cambridge Ring, and if the requests
are to be overlapped in order to reduce the time penalty, the protocol handling
is complex. If the number of Ringphones is small, the load on any one Director
will also be small, even with an imbalanced load distribution. Multicasting was

3Using the Cambridge Ring network, a Multicast would have to be implemented by explicitly
sending n messages to n servers and waiting for n replies.

40

therefore rejected.

4.6 Physical Architecture

Ringphones were to be constructed around the standard ISLAND VME server.
VME Voice equipment was not available commercially, and as a result a custom
VME Ringphone Card was designed. Figure 4.3 shows the essential components
required by the Ringphone design.

voice & | oot VOICE
OUTPUT BUFFER INPUT
BELL mf Analogue
) LEVEL SILENCE
FLTER T erecr DETECT
[1.28MHz . SWITCHES
| VvCO » CODEC Control AND
D Clock BKHZ LEDS

T Digital /O I Interrupt
DAC
T+ 3

i soit GENERAL DISPLAY
OUT| sampte | IN PURPOSE
8BIT Buffers INTERFACE

LATCH t I

T I Interrupts I
1 v

VME BUS

Figure 4.3: The essential components of the ISLAND Ringphone

The VME bus provides mechanisms for data transfer, interrupt handling and
arbitration for multiple processors wishing to access the bus. The Ringphone
card simply decodes a region of VME memory enabling four functional blocks to
be accessed:

e The voice I/O buffers

A software-controlled oscillator

A general purpose I/O peripheral

Display hardware

4.6.1 The Voice Interface

A voice CODEC is responsible for coding and decoding standard CCITT 64kbs~!
voice-streams (8-bit samples every 125us). This device can operate at a variety of
different clock speeds. A 1.28MHz clock has been chosen, it allows a convenient

41

frequency division of 160 to provide an 8kHz interrupt signal for servicing the
voice buffers. The CODEC is buffered from the VME bus by two 8-bit latches,
one of which is readable by the processor, and the other which is writable. Control
hardware ensures that the buffers contain the last sample taken and the next to
be played out. The buffers are needed so that the service time of the CODEC
interrupt is non-critical, and may, in fact, occur any time within a 101.6us window
of the 125us inter-sample time period.

The 1.28MHz clock is generated by a crystal oscillator derived from a hybrid
voltage controlled oscillator (VCO). A standard TTL component forms the basis
of the VCO but with a crystal placed across its capacitive timing pins it oscillates
preferentially at the crystal frequency. However, if a control voltage is applied, the
crystal frequency can be trimmed on either side of its resonance value by up to
0.1%. As explained in chapter 3, the voice protocol can run into difficulties when
two Ringphones send samples to each other at different rates. By connecting the
control pin of the VCO to a Digital to Analogue Converter (DAC), and supplying
the DAC with a value derived from an 8-bit latch mapped into the VME memory
space, it is possible to change the sample frequency in a small range divided into
256 steps. The exact adjustment depends on many parameters, which include
the DAC reference-voltage, and individual characteristics of the crystal and the
oscillator. This variability made it impossible to work out an absolute adjustment
for the VCO when exchanging samples between two Ringphones, but because the
crystal oscillators have an operating frequency stability of better that 0.01%, a
simple solution is possible. Software is now implemented to measure when there
is a significant difference between the rate of samples received and those played
back. In this event the latch is adjusted by only 1 part in 256, either up or down in
value, in order to make the sample clocks slowly converge on a common frequency.
The process is that of a heavily damped negative-feedback system. The voice
buffer pointers are then put in their corrected positions and the process continues.
If many calls are made, all the voice-sampling clocks in the system will begin to
converge on a common value, thus reducing the minor loss of fidelity due to this
problem.

4.6.2 Silence Detection

Silence detection is a feature required by the ISLAND voice protocol. Each block
of voice is flagged either silent or noisy. Such information could be derived by
software carrying out an averaging function over the voice samples in a block and
comparing it with a threshold level. Because of the rate at which voice is sampled,
such processing would lead to a considerable increase in overhead per block. A
simple solution was adopted which uses hardware components. The analogue
signal fed into the CODEC is also routed to a filter removing frequencies that do
not normally occur in speech. The result is passed to an analogue comparator and
compared against a threshold reference set manually with a potential divider. The
comparator output is high or low for each half cycle of the signal that is greater
than the threshold. Its output is not a useful representation of silence. The signal

42

is processed further by feeding it to a re-triggerable monostable with a manually
adjustable period. The period is set to be long enough to extend between two
peaks of the lowest discernible tone (10Hz), but not so long that it spans between
normal inter-word pauses. A period of 0.2 seconds was found to be satisfactory for
this value. The silence threshold is far more experimental and has to be manually
adjusted so that a loud whisper can be discerned. However, in a noisy room a
higher threshold level is more appropriate. The boolean output of the monostable
is fed into the general purpose I/O peripheral and is thus readable by processor
during the period when a block is being prepared for transmission. Silence can
now be determined with an overhead of only one memory-access.

Further work* on silence-suppressed stored-voice, found that the efficient recon-
struction of silent blocks with white noise could only be successful if an average
value of low-level noise in the silent blocks were known. Again this could be carried
out by software, but with great overhead. A better hardware solution would have
been to keep a running total of the samples taken by the CODEC in a latch with
its value readable in VME memory. If a block of voice is ready for transmission
the total could be read with little overhead, and then cleared before the start of
another block. Instead of a boolean flag this value would represent an average
amplitude for the block, and could be used to adjust the attenuation of a white
noise ‘filling’ routine when playing back silence compressed in this way.

4.6.3 Interrupt Layering

Due to the real-time properties of voice, the relative importance of concurrent
Ringphone tasks had to be chosen carefully and then allocated suitable interrupt
priorities. The most time critical operation is that of transferring samples to and
from the CODEC. Because only one sample is buffered per interrupt, CODEC
interrupts must be given the highest priority.

The reception of a block from the network is notified by an interrupt from the
station at a lower interrupt priority and the corresponding received-block up-call
is serviced at this level.

All network transmissions are carried out at a priority lower than the previous
two. This makes them independent of any foreground process which may idle too
long causing transmissions to fall behind schedule. It is important to place receive
priority above that used for transmission, in order to ensure that packets placed on
the network are mopped up before more are allowed to be transmitted. It should
be noted that receive up-calls handle both voice and SSP (data) receptions and,
as far as the interface is aware, there is no difference between the information it
is handling.

Finally, the lowest priority tasks are carried out in a foreground poll-loop. The
poll-loop checks for any events that need signalling, it reads the state of the hand-
set and, amongst other mundane tasks, it is responsible for setting up the voice
channels.

4 All research on stored voice in the ISLAND project has been carried out by Roger Calnan.

43

4.7 Timing Considerations

The previous section describes a priority ordering for interrupt handling. It is im-
portant to remember that the processor’s time is spread across all of its tasks, and
that heavy processing at the highest level reduces the number of cycles available
at a lower priority level, and likewise for other levels below it. If the high prior-
ity routines are not made efficient, it can lead to a situation in which there are
not enough processor cycles available to handle data in lower priority tasks. The
network load cannot be reduced with flow control when real-time data is present
because it must be handled within a narrow time constraint. When designing and
implementing the voice provider, it was difficult to estimate how much processor
time would be used up in executing the protocol. As a result some timing prob-
lems occurred. The voice channel consisted of three protocol layers built on top
of the 10Mbs~! Cambridge Ring (the Physical layer).

e The CODEC handling routine
¢ The Voice Provider: (Voice Protocol)

o The Basic Block protocol (Data-Link layer)

The combined overhead of all three layers left the processor with very few cycles
to spare. It is unfortunate that modularisation, which is so necessary in designing
predictable programs, usually results in a degree of inefficiency. The lesson learnt
from the first Ringphone implementation was that 16 samples per Basic Block®
overwhelmed the capability of the processor to transmit and receive voice simul-
taneously. The CODEC service time, combined with the overhead of receiving
and transmitting a Basic Block, was too great. A demonstration of the problem
could be achieved by configuring a Ringphone to transmit to itself and listening to
the disjoint results. An interesting observation was that the adjustable software
sample-clock began to change the sample rate on the basis that it was too fast for
its partner Ringphone. By allowing the oscillator an artificially greater frequency
range, the sample rate was thus slowly reduced until the processor could keep up
with the data rates. The final settling frequency of the sample clock was a good
indication of how much more efficient the implementation had to be made. The
main inefficiency resulted from the overhead of handling a Baste Block in relation
to the number of minipackets it contained.

To solve this problem the number of samples transmitted in each block was in-
creased. An early implementation using an incomplete voice protocol was found to
be workable with 32-samples per block. A full implementation required 64-samples
per block to guarantee a margin large enough to allow monitoring routines to be
added without pushing the processor too close to its limitations. The ISLAND
demonstration system therefore uses 8ms of voice in a single Basic¢ Block. For the
purposes of normal use this has produced an acceptable overall delay of 24ms. This

516 samples are equivalent to 16 x 125us = 2ms of voice

44

is due to one block being buffered at the transmitter while it is being assembled,
and two others being buffered at the receiver to cope with jitter in the transport
delay. Transport jitter delays may result from several transmitters competing for
one receiver.

Despite these problems the ISLAND Ringphones performed well and have been
sufficient to demonstrate the problems in building a packet-voice telephone on
a Cambridge Ring (CR). However with this experience, if the Ringphone were
re-implemented, the buffering of voice samples would have been carried out in
hardware, thus reducing the overhead of servicing the CODEC at 8KHz. Further
advantages would be gained if a Cambridge Fast Ring were used. This is because
a 2ms voice block can be transported by a single CFR slot and thus a host would
only incur a reception overhead per block rather than for every 16 bits of voice
delivered in a CR minipacket.

4.8 A Future Fast Ring Telephone

The Cambridge Fast Ring station is implemehted from two components:

e An ECL chip providing a serial interface with the ring

e A CMOS chip providing a parallel interface and the characteristic station
function

The CMOS chip utilises two FIFOs 32-bytes deep for buffering reception and
transmission packets. These buffers can be accessed through the host interface
of the chip, along with various other registers for its control. For the purposes
of easy development, the station chip can be mapped into the address space of a
small microprocessor and can be configured to interrupt the processor on packet
arrival.

Developments on the Cambridge Fast Ring have only been possible recently. One
example is a simple prototype server developed for the CFR and called the Tiny
Server. It utilises a Motorola 8-bit 6803 processor to perform the function of a
host. The Tiny Server can easily be extended to accommodate more peripherals
on to its bus and thus the voice I/O design described earlier could be mapped into
its address space. A CFR telephone could be constructed around such a simple
server if it was given suitable hardware support. Two 16-byte FIFOs could be
used in place of the single packet buffers and an interrupt generated only when
the sampling buffer is full. The responding service routine could then sit in a
tight loop filling and emptying the two voice FIFOs. A separate interrupt service
routine for the station chip could also be in operation to handle incoming voice
blocks and execute the transfer between the receive FIFO of the station and the
playback FIFO attached to the CODEC. Such a scheme would greatly reduce a
voice block’s assembly time.

Figure 4.4 shows a possible hardware configuration for this design, and includes an
optional dedicated hardware component to transfer data between the voice FIFOs

45

and the station FIFOs. If this hardware support were used an interrupt would
still be issued when the voice FIFO was full, but the CPU would simply write
to the hardware controller to initiate the transfer which could take place at full
component speed (an order of magnitude faster than possible with the processor).
By freeing up so much of the 6803’s time, more voice I/O circuits could be placed
in the Tiny Server’s address map, sampling in parallel, but accessed for the 16-
sample transfer in quick succession. The advantage of attaching, say four, pieces of
voice equipment to a single CFR interface is primarily cost: network attachments,
especially to fibre links, will always be expensive. The CFR has the advantage that
several stations (CMOS chips) may be connected to a single ECL ring-interface
[Temple 84]). However, it will still be more cost effective to have a telephone
concentrator constructed around one processor and one station chip, rather than
four of each. Unfortunately, attaching more devices to a single station causes a
reduction in availability; when using a telephone concentrator, if a station fails,
four extensions fail rather than one.

SEQUENCER N
To other

...... ¢ . CFR

= 100Mbps CODECs
Bus controller £

which can execute a y ..

block transfer between

the voice FIFOs and the ECLCHIP EAR

station chip on command :

from the CPU 1 '

rom the CODEC |
¥
CFR
STATION
MEMORY CcPU CHIP FIFO FIFO FIFO FIFO

(CMOS)

Interrupts T l T
v y A

VOICE-BLOCK TRANSFER BUS

A

CPU LOCAL BUS

Figure 4.4: A Cambridge Fast Ring (CFR) telephone

The CMDS model uses the concept of a Terminal Concentrator to connect many
clients to the network rather than directly to a host. A station connecting sev-
eral pieces of voice equipment uses a similar philosophy and could be considered
as a Telephone Concentrator. A Telephone Concentrator is also basically dumb
in its operation. It provides a source and a sink for voice, controlled by either
the Ezchange managing virtual connections between Ringphones, or from other
applications such as the storage and playback of voice from a disk.

ISLAND approached a telephone design by taking the opposite extreme of the
closely coupled PABX architecture used in conventional systems (for example
ISDX, BTex, and Monarch), and has reached a compromise. The Telephone Con-
centrator is analogous to a line card supporting 4 to 8 phones, and the CFR serves

46

the same purpose as a Time Switch. Figure 4.5 shows the various arrangements
possible for different degrees of decentralisation, including a further intermedi-
ate design using the line shelf principle to multiplex a number of line cards onto
a 2.048Mbs~! bus, but is then attached to a special purpose station interfacing
it with the ring. This hybrid configuration could be used in conjunction with
Telephone Concentrators and individual Ringphones, if it were necessary, to suit
several different needs at a particular installation.

TIMESWITCH LINE-CARDS + MULTIPLEXER TELEPHONE

F—] j CONCENTRATOR
¢ ; RINGPHONE
T] 2.048Mbps 100Mbps
. RING A
- LAN €13
OF €F 7 IF ,
. l . i 2.048Mbps

LINE SHELF PABX LINE SHELF

Figure 4.5: Alternative approaches for decentralising a PABX

4.9 A Gateway to ISLAND

Chapter 3 discussed the need for an ISLAND gateway to the existing laboratory
PABX. An interface was designed and built to connect a Ringphone and a single
PABX extension line (see figure 4.6).

Isolation was the first consideration. The second criterion was simplicity, with the
intention of using as much of the existing Ringphone and conventional extension
hardware as possible. Electrical isolation between the audio circuits used standard
1:1 isolation transformers. An unused parallel port on the Ringphone processor
provided control and sense lines for the purposes of controlling the extension hard-
ware. The mechanical operations were put into effect by buffering the signals with
isolation relays and using their contacts to bridge the switches.

Incoming calls were the most difficult events to deal with. A bell detector was
implemented by driving an optoisolator with the bell current and converting the
isolated signal into a logic level which, in its active state, causes a processor in-
terrupt. The service routine responds by logically lifting the handset and thus
answering the call while also generating a Ringphone handset off-hook event.
The ISLAND Ezchange responds with a dialling tone which is now heard by the
caller. It was realised that the DTMF tones, which would be superimposed on

47

VME BUS

;2 ; 2

CPU
RINGPHONE
CARD VME CARD
SPARE 16 BIT PORT
5 BITS ANALOGUE
CONNECTIONS
DTMF . |PRE RINGPHONE
DECODER|'T |AMP [3| HOUSING
(ONLY DISPLAY

DOWN X USED)

TONE

DETECT 4 out IN'1 IsoLaTioN

- TRANSFORMERS
EAR MIC
|
L o PHONE
4-16 LINE \— COMPANY
» secoper | 0T EXTENSION
- |
RELAYS BRIDGING .

PHONE KEY-SWITCHES BELL OPTO-

DETECT | ISOLATOR

Figure 4.6: A block diagram of the ISLAND gateway

the voice signal when the connection was complete, could be used to initiate Ring-
phone key presses. A DTMF decoder was built from standard telecommunication
devices and attached to the isolated audio signal. The resulting digitally-decoded
output was further arranged to cause interrupts, and the decoded key placed in
the Ringphone key buffer, thus generating a key event signal as if it had been
physically pressed on the key pad. By mapping the extension keys to the most
functional Ringphone keys it is possible to access all of its features remotely. The
standard configuration of keys shown in figure 4.1, and used by ISLAND, has been
adopted by most telecommunication companies. Once a call has been answered
automatically the only way it can be cleared down is by detecting that the remote
party has replaced the handset. The laboratory PABX in fact responds with a
tone of characteristic frequency at 1645Hz. A decoder was built to detect this
tone and generate yet another source of interrupts, causing the replacement of the
handset and a Ringphone handset on-hook event, thus closing down the call in
both systems.

The gateway could be further enhanced by providing the remote party with in-
formation that would normally appear on the Ringphone display. Commercial
devices, of which DecTalk™ (a DEC product) is an example, are now available
and make an excellent attempt at speaking ASCII text. The output signal of such

48

a device could be combined with the voice signals in the Gateway station. The
Ringphone could simply route its text to the ‘Talkers’ input with the result that
the remote caller would hear help information that is normally only available at a
Ringphone.

4.10 Summary

The ISLAND Ringphone is functionally very simple. However, some complexity
has been added to improve the human interface. This involves the addition of a
single-line text-display, some lights, and some extra switches.

Ringphone utilises two SSP-based network-interfaces for the purpose of investigat-
ing and controlling its own state. These are the Investigation Channel and Control
Channel respectively. In addition, events occurring as the result of client actions
are signalled by an outgoing Event Channel. The destination to which events are
sent is governed by the event vector. The event vector is randomly set to point
at one of its controlling entities by randomly choosing a name from an internal
table after a handset off-hook event. However, the event vector can be further
modified by use of the Control Channel service interface.

The hardware employs a voice CODEC to code and decode digital voice samples.
These samples are collected by a handling routine and used in the voice protocol
described in chapter 3. The overhead found in executing the protocol, in addition
to servicing the CODEC and the network interface, was high enough to push a
Motorola 8MHz 68000 to its limits when using 16-samples per voice block. A larger
block size of 64-samples per Bassc Block is now used to provide a less time-critical
implementation. If future network telephones are designed for the CFR, hardware
support could be given to the current design to reduced the overhead of handling
the CODEC. This improvement, combined with the fact that 2ms of voice will fit
into a single CFR packet, would also allow a much smaller processor to be used
for the telephone’s control.

49

Chapter 5

A Model for the Exchaﬁge Service

The ISLAND Ezchange was designed to fulfil the following requirements:

e An advanced PABX service
¢ Extensible on-line addition of features
¢ Mechanisms for transferring control of Ringphones to other services

¢ An ensured highly available service

Clearly, there are numerous implementations which could satisfy these require-
ments. The intention was to find a model which would lend itself to the require-
ments of a growing multi-feature system, and be suitable for extending it to a
distributed implementation (chapter 6). The ISLAND demonstration system was
implemented around this model. The main body of this chapter describes the
design and the issues involved.

5.1 Advanced Requirements for a PABX

The ISLAND Ringphone, by the use of a text display, enables a variety of new
features to be incorporated into the service which would normally be too complex
for the standard telephone interface. The following features were considered as
advanced facilities and designed as an integral part of the distributed PABX.

Multi-lining: Conventional telephones have the ability to connect to only one
extension at a time. It is only the switchboard facilities that have the ability
to manipulate many lines at once. Some PABX products allow a ‘hold and call’
facility. This allows the current call to be held while another is made, with the
possibility of switching back to the original. All connections within ISLAND are
virtual by the very nature of the system and thus there is no reason to limit
the number of connections associated with a Ringphone. Multi-lining, a facility
designed to take advantage of virtual connections, is the ability to set up arbitrary

50

numbers of logical connections at any telephone, and select between them using
a random access scheme. Incoming calls to a busy telephone are indicated by an
LED on the front panel® and a client is given the option of accepting the call. The
accepted call simply becomes another virtual connection and can be selected in an
identical way to the others.

Profiles: Conventional telephone systems are relatively impersonal. Numbers
are dialled to contact telephone equipment associated with those numbers, and
traditionally, also associated with a person or group of people. ISLAND wanted
its clients to be able to personalise a telephone. Incoming calls were not to be
signalled with the impersonal bell, but a tone characteristic of the person the call
was destined for and, furthermore, provide textual information about a caller’s
name or number.

In the ISLAND system Ringphones and clients are distinguished as separate en-
tities and have numbers divorced from each other. Temporary associations allow
clients to move between extensions, informing the exchange of the location at
which they would currently like to receive calls. A client has the choice of calling
a location or a person. Any entry in the directory can be associated with a profile
that defines parameters which include:

e Bell tone: the tone used to summon the called party
e Short codes: a short hand version of a number

e Hate and Love lists: calls to be rejected or those only to be accepted

Pick-up groups: lists of trusted numbers that are allowed to pick-up calls

Banner: default banner display-text

Hotdial: makes the telephone into a hot-dial telephone e.g an alarm phone

A client or a Ringphone can have a profile. At the ‘start of day’ for the Ezchange,
all Ringphones would have their own default profile. Whilst clients worked with
the system, Ringphones would take on the required personalisation. The most
recently invoked profile at a particular Ringphone would be the one which was
active. Underlying profiles would now merely mark the location to deliver a call
relating to that profile.

5.1.1 The Directory

Directories traditionally contain an ordered association of names to numbers and
locations. ISLAND has extended the function of the directory because it is the
logical place to store references to the extra data needed for personalisation. The
record entries for the directory were finalised as:

!There are 4 LEDs, only two of which have been used, one to indicate that new calls have
arrived and the other to indicate that some calls are held.

51

e Number: the number actually dialled

e Status: ‘S’ in Service, ‘W’ Withdrawn (temporary repair)

o PIN: Personal Identification Number (secret)

e Station Name: the textual name

e Computer User-id: the owner or default owner

e Owner name: the name in real life

e Class: (Phone, Person, Gateway, Service)

e Location: location of the default telephone associated with this entry

e Profile: the file name of a client’s profile

The directory is stored as a restricted-access system-file, but a client is given
tools to browse public information in the file from a Ringphone. It may be read
sequentially or hunted through using a binary chop mechanism to home in on an
entry.

These enhancements combined with conventional PABX features, provide an im-
proved human interface at the telephone without needing any additional help from
a personal workstation. Facilities for conferencing and automatic voice messaging
were not designed as an integral part of the exchange because they were considered
as external services?. As such they should be implemented in separate network ser-
vices which interact with the exchange to establish control of telephone resources.

5.2 Implementing a Director

The Director, a single component of the distributed exchange, was developed in
the Mayflower/Concurrent CLU environment, for reasons considered in chapter
3. CLU is an object-based language allowing systems to be defined in terms of
abstracted data. The choice of abstraction boundaries is the most daunting task
in specifying a design. Early mistakes can make the system awkward to expand
and force further bad choices of abstraction as it grows. A trial system was made
to determine the problems faced by the design. The resulting implementation was
adopted with a software model satisfying the aims already set out. The following
sections describe key components of the model used.

2Conferencing and message-leaving services had not been integrated into the ISLAND demon-
stration system at the time of this work. However, voice storage has been achieved as a separate
demonstration.

52

5.2.1 The Event Handler

Events at a Ringphone are signalled by SSPs which are sent to a controller (see fig-
ure 5.1), the name of which is randomly selected from an internal table of all known
Ezchange servers (the Directors). A new controller is selected at the beginning of
every session’. All Directors will initialise the table in each Ringphone after their
own initialisation procedure and will then listen for incoming SSP events. When
an SSP arrives, the format is checked, the events are copied, and a reply is sent
back. If the reply is not returned within a fixed period of time, the Ringphone
repeats the request. The destination name of the reply is determined by perform-
ing a ‘reverse look-up’ of the incoming request at the Name Server. The source
address itself is not enough to determine the name because the request may have
travelled through one or more bridges on its journey*. Once the textual name of
the Ringphone that produced the SSP has been determined by the chosen Direc-
tor, the information can be passed to an internal object which is responsible for
processing the event.

B

: Ringphones
LoGIcAL BT H LoaicaL sp
—— s
DEVICE|
e ST MAP
EVENT
HANDLER
GLOBAL
- LOCK

PHONE PHONE PHONE PHONE

A B C D

N/ NS women

Asingle component
ASSOC ASSOC of the Exchange Service

Figure 5.1: The main data structures used by a Director

3 A session is defined to be initiated by a handset off-hook event and terminated by a handset
on-hook event.

4The problem arises from the fact that inter-connected Cambridge Rings do not use a global
addressing scheme.

53

5.2.2 The Device Map

At the initialisation of the Ezchange, a directory (see section 5.6) is used to find
out which Ringphones are present in the system. Each Director then creates an
identical set of objects to provide a replicated model of each Ringphone’s state.
These objects are represented by instances of the abstract type phone (see figure
5.1). To allow the Event Handler and other components of each Director to obtain
a handle on these objects, a Device Map is created associating the station names
of Ringphones with the objects themselves. Thus a ‘find name’ operation can be
performed on the Device Map by the Event Handler and a phone object returned.
The events are passed on to phone objects through a procedural interface which
queues them inside the object for processing. It should be pointed out that the
Event Handler can set a concurrency level to handle a number of SSPs in quick
succession. Thus the first handling process does not have to return before another
is fired up. The concurrency level was set to 10 to ensure that this was not a
bottleneck in handling the load presented by many Ringphones.

5.2.3 Phone Modelling

Phone objects are instantiated with a create operation. A process is attached
by forking an activation process that waits on a semaphore for the notification of
events placed in its own event queue. Thus each phone object has its own thread
of control for processing events.

Phone is defined as a monitor for which a global lock (at one Director) is used to
serialise the processing of all events that are destined for any instance of a phone
object contained in that Director. The reason for this choice will be explained in
section 5.8 along with a description of an alternative approach for controlling the
concurrency of phone operations.

Once an event has been queued at a phone object and the semaphore on which the
activation process has waited is signalled to, the Event Handler process is free to
deal with more event SSPs. The activation process is now free to run and process
the event in its own time.

5.2.4 The Call Finite State Machine (CFSM)

A telephone call can be modelled as a finite state machine, the state changes
of which are effected by events from a telephone console. The ISLAND model
implements a CFSM using a group of procedures which represent the inter-state
transitions (see figure 5.2). These procedures are defined in the specification of the
type phone, an instance of which also contains the state of a related Ringphone.
The states themselves are waiting periods which are associated with a Choice set
containing Event/Transition pairs. After execution of a state transition procedure,
the next valid Choice records are constructed and placed in the Choice set. Events
are represented by integers in a FIFO event queue. When an event arrives, the

54

activation procedure matches it against those in the Choice set. If a match is
found then the corresponding transition procedure is called, the execution of which
causes a state change at the Ringphone. These changes will then prompt a client
for further events, thus executing the Call Finite State Machine.

;o BuEsTatE G | START CALL
HANDSET OFF-HOOK

................... 3

i RESTART CALL

* KEY EVENT

-

{NEW!

A\ 4

h 4 ACCEPT
AWAIT NUMBER
BAD ot Em s am - — SELECT
NUMBER 1 DECODE NUMBER |
1 femme e —————— . I
i {RE-ESTABLISH T ENGAGED Other menu options
e imem i -
: HANDSET ON-HOOK ! ! RINGINGSTATE !
— h 4 EVENT i HANDSET OFF-HOOK !
CHOICE RECORD REPLY L
SET UP E * *

s] st TERMINATE CALL |

Figure 5.2: The ISLAND Call Finite State Machine (CFSM)

5.2.56 State Transition Procedures (STP)

A state transition is necessarily made up of a number of sequential actions. Some
actions will affect state in a Director, others will affect the telephone. All opera-
tions carried out on a Ringphone are remote operations, and need to be packaged
up in a modular unit that handles error conditions and performs retries. The re-
mote operations are carried out by SSPs. Return codes have to be dealt with and
converted to relevant CLU signals. Returned results must also be converted into
a CLU type. To hide the complexity of these low level tasks a type phi (PHone
Interface) is defined.

Ideally, the state transition procedures would be atomic operations. The various
actions which compose them must all succeed for this to be true. The remote
actions carried out in phi objects will not necessarily complete, and despite a

55

sensible retry period may signal an SSP failure. Each procedure has an exception
handler which will catch the failure and provide either a tidying up operation or
simply return. Thus the transition will always commit or fail resulting in the
Ezchange adopting a valid state. Failures will always return a phone object to
the state before the last event, and it is left up to a client to repeat an action.
Some phi operations are not idempotent. For instance, reading a key buffer will
also clear it. Lost results will cause the exchange to read it again on a retry. All
cases of lost results have been arranged to produce controlled effects. For example,
a digit-less number read as the result of a previous lost message would produce
an unobtainable response and thus prompt the client to try again. There are only
a few cases for which this is known to occur and exception handlers have been
written to correctly deal with the situation.

5.2.6 State Transition Subprocedures (STSP)

Some state transition procedures can in fact be broken down into a number of
subprocedures. These were identified when it became clear that a number of state
transitions shared the same sequence of actions. The shared actions must be
sequential and typically only the last will establish a new Choice set. Figure 5.2
shows an example of an STSP called by an STP. The start_call procedure is an
example of a sequence of actions terminating in the STSP of restart_call, even
when the state transition is the procedure first executed after a handset off-hook
event. Its purpose is to allow the restart operations to be used by later transitions,
for example the engaged_state and bad_number transition procedures.

Some STPs were found to need multiple exit points. That is to say, there are
sometimes several conditions in which a state transition procedure could return
before executing in full. This may be as a result of a value read from the Ringphone
key-buffer. For each exit the Choice set must be correctly reconstructed.

There is another kind of state transition that needs to be dealt with. Some events
are unconditional. That is to say the action taken in response to an event is
not related to the current state. Two Ringphone events are of this category:
handset on-hook and attention. Handset on-hook is unconditional because
of its unequivocal signal to terminate the activity of a Ringphone’s sessson and
establish the idle state. The attention signal originates from the ‘*’ key being
pressed, and indicates the activation of special features. In fact it causes the
Ringphone to enter a state at the top of the feature menu described in 5.4.

These unconditional events may be considered as parallel to the non-maskable
interrupt found in the hardware model for a processor /peripheral pair, while other
events, such as key-presses, are maskable by the Choice set. The ISLAND model
for control is similar, using an intelligent controller and a peripheral of simple
design to interface with its environment.

56

5.3 Associations and Associators

Mechanisms for leading a single Ringphone through a CFSM have been described.
The procedure by which it can be associated with another Ringphone or service
requires additional consideration. Traditional telephones use real circuits for inter-
connection. The modern PABX and the ISLAND connections are virtual circuits
transporting packetised voice samples. The connection descriptions are nothing
more than associations. The ISLAND approach has been to model these associa-
tions with an abstraction of type assoc (an abbreviation for associator). Assoc
objects provide a level of indirection between associated components, which may
be Ringphones or service objects (see 5.9.1). An associator also contains state
information that is attached to a connection rather than to the parties involved
e.g. accounting and connection statistics. Furthermore, it is a repository for the
essential state information relating to a telephone call and can easily be trans-
ferred between machines to distribute state about the connectivity of the system.
In general an association object will only last the duration of a call and for that
reason they have been termed ‘transient objects’ containing ‘transient state’.

A four-function procedural interface was found to be sufficient to implement a
protocol allowing phone objects to switch between many associations:

¢ establish signals(engaged, deleted)
¢ connect signals(engaged, wait, deleted)
* hold signals(failed, not_established, deleted)

o delete signals(failed)

These routines represent the four types of state transition which an association
can make, and is referred to in this text as the ECHD interface. A description of
legal state transitions is given in figure 5.3. When dialling a number, an associator
is constructed by a phone object with a create operation which takes arguments
containing the numbers of both parties and the station name that originated the
call (since the calling number may be associated with a person at the Ringphone
rather than with that station itself). Once created, the associator is added to a
local association store and then the establish procedure is called, which in turn,
in the case of a phone object, calls the establish procedure at the target object.
Appropriate actions will be taken according to its state, for example if it is busy,
an engaged signal is given. If it is free, the bell tone will be activated by the
corresponding transition procedure, and information will be displayed about the
caller which is derived from the association object.

In all service features, ISLAND has tried to make the rights of a caller and a called-
party equal. An incoming call has traditionally taken an unjustified precedence
over other activities in its locality. The display of caller information combined
with the incoming call filters (‘Love’ and ‘Hate’ lists), provide a suitable means
for a client to be protected against the intrusiveness of a phone call.

57

ECHD
E (0111 ASSOCIATION STATES
Clo111 - HOLD
plot11a - E ESTABLISHED
1001
DELETE C CONNECTED
DELETE
H Hew
CREATE
»
DELETE D DELETED

CONNECT

ESTABLISH DELETE

Figure 5.3: State transitions allowed by the ECHD interface

Once the called Ringphone has its handset lifted, it responds to establish by call-
ing the connect procedure on the current association object, and also prepares its
related Ringphone to receive voice from the calling party. Originally, on receiving
the establish call it will also have assumed that the calling party’s phone object
has prepared its own Ringphone to receive voice and will instruct the called Ring-
phone to start transmitting voice (see figure 5.4). Onreceiving connect the calling
party’s object will also instruct its Ringphone to transmit voice at the destination
and hence the association is now active and complete. A delete operation, caused
by a handset on-hook event, may be invoked by either of the two parties and
close down the call: transmissions first, followed by the voice reception handlers.
So far hold has been omitted from this sequence of events, because it is necessary
to have a prior knowledge of how special features are activated (hold is described
in section 5.4.1).

5.4 The Feature Menu

The ‘*’ key has been described earlier as a means of causing an unconditional
event. The CFSM will respond by providing a client with a feature menu. The
menu will provide a prompt on the display for a numeric entry which leads a
client through a tree of options. The ‘leaves’ of the tree contain pointers to the
procedures that implement the features. The result of activating these routines
may further prompt for parameters which are used to carry them out. Figure 5.5
is a textual description of the tree structure. With a standard numeric key-pad
a maximum of ten options are available at every menu level. The ‘0’ key has a
special function meaning ‘ascend one level in the tree’. ‘*’ will always return a
client to the top of the menu —an invaluable operation when a client is lost in the
intricacies of a little-used and unfamiliar feature.

58

ESTABLISH

1 RX) RX 2
CONNECT

4 RX +TX ¢ RX + TX 3
HOLD

RX ¢ > RX
DELETE
CLOSED ¢ > CLOSED
RX :setup reception TX: set up transmission

Figure 5.4: Using the ECHD interface to set up a voice connection

A 40-character display is not sufficient to show all the necessary information at
any particular menu level. The client can access the complete help line by using
the ‘HELP’ key which will cyclically guide a client through many 40-character
multiples of text. It is hoped that an initially unfamiliar client will make full use
of the help facility to determine the sequences of key-presses necessary to reach
a feature, but the common sequences will become well known. A client can be
reassured that the help mechanism can always be reverted to, even when he or she
becomes forgetful.

5.4.1 Multi-lining: a Switch-Board in Every Telephone
This mechanism has been achieved using four menu features:

® new
e accept
e select

o list

If a call has been established between two parties A and B, and B wishes to
establish a second line, then the new feature can be invoked. The result will
be a call on the current associator to hold, forcing both parties into the held
state, a situation in which transmitted voice is stopped but voice reception is not
cancelled. B will then re-enter the CFSM and a number will be prompted for
creating a new associator and thus establishing the new call. The select feature
allows the current association to be held and an old one resumed. Of course, the

59

1: NEW
2: ACCEPT 8: UTILITIES
3: SELECT 1: SPEAKER/EAR
4: FORWARD 2: TIME
5: LIST 3: ALARM
1: SET
6: DIR 2: CLEAR
1:SCAN 4: TONE TEST
2: NUMBER-ENTRY 5: LAMPTEST
3: NUMBER-STATION 6: NORM/SERVER
4: NUMBER-ID/OWNER
9: LOGIN
7: IN-CALL 1: LOGON
1: REVEAL 2: WHO
2: PULL-COST 3: VISITING
3: COST 4: LOGOUT

Figure 5.5: The ISLAND feature menu

remote party A may have already held the call or even deleted the association, in
which case appropriate messages will be sent to B. Each phone object maintains a
linear list of its associations and allocates integers to them. A client therefore has
a handle on a call, and can use the integers as arguments to the select function.
Deleted associators are marked to be in the delete state, but not removed from a
Ringphone’s association list until it has also put its own handset on-hook. This
scheme allows the ordering of associators to be maintained. An associator can also
be re-used: on selecting a deleted associator there is an option to ring the remote
party again. Associators are useful tokens and should not be thrown away until a
sesston has been ended.

When a Ringphone is engaged it is informed about incoming calls by an LED on its
front panel. The accept function will cause the current association to be held and
the incoming call selected and added as the next entry in the list of associations.
Incoming calls are in fact stored in a FIFO list to cater for many calls arriving at
once. The new call LED is only extinguished when the last call has been accepted.
An additional mechanism causes the new calls to ring the bell if the handset
is replaced with outstanding associations. When building a generalised scheme
several so called ‘special features’ automatically become available; for instance in
this model an engaged tone no longer means ‘try again later’, but ‘wait until you
are connected’.

60

5.4.2 Call Forwarding

A common feature supplied by PABXs is the ability to redirect a call. ISLAND’s
model is slightly different from most. In figure 5.6, Ringphone A calls B and sets
up an association. After a discussion with B, A realises that he wanted to talk to
C but doesn’t know the number. B can forward the call by manufacturing an
associator which is queued in the new call FIFO of A and C. If C is free, the bell
will ring and A can select the call using accept. The advantage is that A now
has two associations and can select between them. If B hangs up and A selects
that association, a request will be made asking A if the call is to be re-established.
This scheme gives a client the control that most people would like when phoning
into a large company and having their calls uncontrollably forwarded about the
building. The ISLAND system ensures that a caller can always return to any of
the intermediate associations, after all, in the example C may still not have been
the target for A’s call, and B may be the only person who could help.

PHONE PHONE PHONE
A C

N S N S

ASSOC ASSOC
1

Forwarded
Association ASSOC

Figure 5.6: Call forwarding: a special approach

5.4.3 Logging-on to a Ringphone

A Ringphone can be associated with a phone-number identifier by using a com-
bination of a publicly known number and a secret number passed to authorised
people allowed to masquerade as that number. In the Cambridge Computer Labo-
ratory, public numbers have been derived from the initials that normally make up
their computer user-ids (user identifier) by implementing a simple letter to num-
ber encoding scheme similar to that found on older telephones in England. When
using the logon function both numbers are prompted for in order to check the
authenticity of the client before making the corresponding profile the active one
associated with that station. Calls for that number will now be directed to the
associated Ringphone which will also be personalised with the features described
in the profile. Other features extending the logon function are:

61

e who: indicating the profile number active at a telephone
e visiting: a temporary logon without bringing up any features

e logout: returns a Ringphone to its default profile

5.4.4 Utilities

It was thought that some utility functions would be useful to satisfy a customer
that the Ringphone equipment was working. Lamp and tone tests are provided
for this purpose. Additional features allow conversations to be played from an
amplifier, provide the cost of a call, and read the time. A Ringphone can also
be made into an auto-answering telephone and may be useful for providing voice
services e.g. ‘dial a disc’.

Continuing on the theme of equal rights for both parties, a pull_cost feature
enables both clients to be able to claim an arbitrary percentage of a call’s cost.
The payable percentage can of course only be increased while decreasing the cost
to the connected party. The traditional reverse charge call is achieved by pulling
100% of the cost but for a costly call it may be better to split the cost equally at
50%.

5.4.5 Alarm Calls

Another common PABX feature is the alarm call. ISLAND has provided two
alarm control functions. Set and clear permit an alarm call using a 24-hour
clock to be set or cleared. Once setting an alarm to ring at a specific number, an
associator is created and a process is forked which waits on a semaphore with a
time-out set to coincide with the alarm time. On timing out, the process simply
calls establish at the initiating phone object and the Ringphone is activated in
the usual way with the caller displayed as ‘ALARM’.

5.5 Guardians

Ringphones send events to a particular Director by randomly selecting a name
from an internal table. When a Director is initialised it establishes its own entry
in the table of every Ringphone known about by the directory (see section 5.6).
An entry in this table is established by a Director for every phone object that is
created. However, if a Ringphone were to fail in some way and its program were
reloaded, the new table would be empty and event signals would not be signalled
anywhere. To allow for Ringphone failures of this kind, a safety mechanism was
designed. When a phone object is created, an additional process given the name
of ‘Guardian’ is forked which sends an enter_name command to the correspond-
ing Ringphone every 30 seconds. This function is implemented idempotently by
checking to see if the name already exists in the table before entering it again. The

62

5.8 Synchronisation of Phone Processes

The mechanism described for associating phone objects had to be carefully syn-
chronised to ensure that neither inconsistency nor deadlock could result from con-
current activities. A shared globally-accessible monitor lock (at one Director) had
to be acquired by the event handling procedures for each instance of a phone ob-
ject, but not by the ECHD interface. Atomicity is thus preserved at a level which
serialises the state transitions of each phone object. If this had not been done,
two active telephones might decide to call each other resulting in an inconsistent
state. If, however, each object had its own monitor lock, events could be processed
concurrently by many phone objects, and thus the ECHD interface would also
need to acquire the same monitor lock. However, if two telephones simultaneously
called each other, deadlock might result. The global lock has the advantage that
state transitions are serialised at a level which can be seen to work effectively; how-
ever, the scheme is wasteful of processor time. Each state transition carries out a
number of actions, some of which execute remotely. In the transit time for these
remote actions the processor is idle, locking out all phone objects on the global
monitor lock. Most CFSM transitions are implemented with on average three re-
mote actions, and as a result the state change is relatively quick. This property has
made it a workable implementation for the current experimental scheme. It would,
however, be more important to optimise the use of processor time if many more
client extensions were added to the system, making the probability of processing
simultaneous telephone-events much higher.

An alternative approach is to use separate monitor locks on each phone object
and extend the lock to monitor the association interface (ECHD), but to include
a semaphore wait operation at the entry point of all association-object interface-
procedures. The semaphore would need to be globally accessible to all association
objects (at one Director) and could be initialised to allow the first queued process
to continue execution without waiting, but to queue all that followed it. All
exit points from the associator interface would notify the global semaphore. In
this way all processes calling across association boundaries are serialised on the
global semaphore. Associator interface procedures represent a considerably smaller
percentage of the time spent in executing state transition procedures. When using
this model, interleaved state transitions involving many parallel remote actions
are possible without inconsistency or deadlock problems.

5.9 Control Management and Service Objects

One of the most desirable properties of a PABX/LAN system is that client Ring-
phones could be controlled from a workstation. Three mechanisms were designed.
The first is a simple SSP interface to the Ringphone. It causes Ringphone events
to be generated artificially. A client can dial and activate menu options without
physically touching a telephone before it is necessary to pick up the handset to
engage in conversation.

64

Activation Name: phone-con-<station name>

Function code: 4000

String Character Arguments:

"an -> Handset off-hook w-n -> Handset on-hook
"<0-9>" -> Normal digits gt -> Attention

"y -> Enter key

This mechanism has only limited use in conjunction with a workstation, because
it only offers features that are normally available in the Ringphone feature menu.
However, it does offer a client access to common operations in a form which requires
minimal effort to implement. For instance, a five-line shell-script can be written
for Tripos which will activate any of the menu features at a particular Ringphone.

A second mechanism is needed to allow the workstation to be informed about
incoming calls without the Ringphone sounding its bell. A possible scheme (al-
though unimplemented) would be to put a field in the profile file which would
contain the name of an interested party. The workstation would simply have to
log that profile on to the Ringphone in order to tell the Ezchange where to send
the additional information. However, for a completely generalised control scheme
the mechanism described in section 5.9.1 needs to be put into play.

5.9.1 The Service Selection Mechanism

Service numbers can be entered in the directory file along with those representing
telephones, clients, and gateways, and given the class attribute of ‘Service’. When
a directory object is initialised, Service objects are created at the same time as the
phone objects. They provide the same association interface as phone objects and
an additional remote ECHD interface. Thus a remotely implemented service can
use the same association protocols as the Ringphone. The only difference is that
the Ringphone should not be configured to transmit voice to the associated service.
The association is simply there to tell the service machine that it is entitled to take
control of the Ringphone and may redirect the events it produces by rewriting its
event vector. Control reliability is ensured through the ‘*’ key which will always
redirect the event vector to send events to the Ezchange. Service machines are
assumed to take absolute commands from the Ezchange and to contain a network
ECHD interface. A hold function call on the service from the Ezchange will
signal that it is taking back control, and the service should release the controlled
Ringphone until it obtains a connect call.

All service implementations must take precautions to avoid interference with the
FEzchange. If there is an occasion in which the Ezchange and a service are in
disagreement (for example due to a protocol error) about who is controlling a
Ringhone, the service must always back-down. Some precautions can be taken
by the Ezchange to protect the Ringphone against a disobedient server. One
possibility would be to modify the Control Channel UID. This area would be
suitable for further investigation.

65

5.10 Gateway Objects

A Gateway is not represented by a unique type but instead by the phone type,
which is configured in a special mode of operation. This design decision was made
because of the similarity of Gateway and Ringphone operation. Numbers dialled
on ISLAND telephones which are intended for connection outside the network are
prefixed by the digit ‘9’. The directory recognises a number to station search of
this kind to be special and responds by returning the gateway-station name and a
subname. Subnames are stored in an associator and normally contain null strings
when associating two Ringphones. The Gateway acts as an auto-answering service,
responding to calls when it is not engaged®. If it finds a subname which is not a null
string, it will dial the digits contained in the string on the connecting telephone
network. Incoming calls from the connecting network are also handled by auto-
answering the call and then interpreting the digits as if they had been dialled on
a Ringphone at that station. Thus associations between outside telephones and
Ringphones can be set up in either direction through a Gateway.

5.11 Summary

A model has been described which is suitable for implementing numerous features,
many of which are easier to use than those provided by commercial PABXs. The
feature menu allows for incremental additions to the Ezchange facilities, although
it is intented that most new services should be provided by additional network
servers called up by dialling numbers. These numbers may be made available by
creating new entries in the directory. The mechanism for achieving an association
with an external service permits control of telephone resources to be passed to
that service. Reliable access to the Ezchange is maintained by providing the ‘*’
key on a Ringphone console, the operation of which will always return control to
the Ezchange service. A client may then select the required telephone function by
using the feature menu.

The essence of ISLAND’s model for the Ezchange is that telephones, services, and
associations are modelled by objects which are assembled into a data structure
representing and controlling the real situation. An important aspect of associating
two objects is that only four primitives (the ECHD interface) are needed to change
the status of an association. This property is made full use of when extending
control of associations between Directors and is fully described in chapter 6.

5The Gateway only connects to a single external extension-line, and can only handle one outside
call at a time.

66

Chapter 6

Distributing Control

A principal aim of the ISLAND demonstration system is that it should offer a qual-
ity of service which surpasses the abilities of most commercial systems. Chapters 4
and 5 have already demonstrated the flexibility and variety of features made possi-
ble by integrating a PABX into a computing environment. This chapter describes
the mechanisms by which the service can be distributed over many machines in
order to ensure highly available operation.

Typical private PABXs supporting 200 extensions are designed to have a mean
time between complete system-failures of 17 years [BT 83]. This standard is sup-
ported by field trials of existing systems over a long period of time. It is very
difficult to predict this kind of information from first principles because of the
number of system variables involved. If the distributed PABX/LAN is to compete
with these requirements it must overcome several problems. A major factor is that
it is exposed to more environmental conditions than a centralised system. The net-
work, however, can have connective redundancy (in the form of braided rings and
self-healing rings) in order to solve this problem. If the CMDS processor-bank
philosophy is used, the processors can be given the same kind of environmental
protection as a centralised exchange.

A far more difficult problem is to find ways of correctly handling faulty server-
hardware or faulty software, while continuing to provide a service. ISLAND has
designed a system which can be scaled, through distributed control, to provide
arbitrary fault tolerance in many of the common failure situations.

6.1 Fault Tolerance

Reliability of a system can be measured as the the Mean Time Between Failures
(MTBF) [Shooman 79], but this is insufficient to describe the effect that the failure
has on its environment.

67

A second parameter, the Mean Time To Repair (MTTR), defines the period of time
for which the machine is likely to be unavailable. The availability can therefore
be defined as a percentage.

(MTBF/(MTBF+MTTR)) x 100

If a system’s MTBF and its MTTR are very small, the overall effect will be high
availability, even though the system components are clearly unreliable. Provided
that the loss of state between failures has no significant effect, the poor reliability
of components will not be noticed and the system will be considered to be reliable.
Such systems are termed fault tolerant or resilient. An availability figure must be
quoted along with the MTTR otherwise it is not possible to judge the effect that
it has on an application. If a resilient system interacts with a human operator in
real-time, the MTTR must be chosen so that it is not perceivable. In other words
a MTTR below human reaction time must be chosen together with an availability
so that the loss in performance of the system is not obvious: perhaps as much as
a 30% loss of performance would not be noticeable.

Fault tolerance is achieved by adding redundant parts to a system in such a way
that the system no longer depends on single components for correct operation.
In general, it is possible to increase the redundancy of a system to produce an
arbitrarily small probability of failure (this proposition is based on the assump-
tion that the probability of failure of any redundant component is independent of
the others). Unfortunately this is difficult to guarantee, and situations are often
possible in which a fault will propagate across all redundant parts. Therefore it is
essential to ensure that faults are confined to the area in which they have occurred.

A PABX must have high availability of service and a low MTTR. The reliabil-
ity of conventional processing components and their operating systems is noto-
riously bad because of the complexity and interdependency of components con-
tained therein. Processor replication was therefore a necessary design approach.
The CMDS processor-bank provided an important resource for the design and
implementation of a replicated system.

6.1.1 Manifestations of Failure
Network servers may experience faults which cause the following types of failure:
e Fail-stop

e Erroneous but continued operation

e Transient or intermittent failure

A fault is realised as an inconsistent machine state. Faults which cause the proces-
sor to fail and halt its operation are the least undesirable because the fault state

68

can be isolated, examined and, hopefully the cause determined in full. Erroneous
operation is a rare event because of the destructive effects that most faults have
on a system. Transient failures may be related to either of the other two cases,
and are the most difficult to detect because the cause of the problem may not be
obvious.

In a distributed system, failures may occur in the host hardware or the network
interface. Servers may contain faulty software resulting from many causes. There
may be timing errors in an operating system, for example when synchronising
concurrent activities. The compiler with which a system was built may have
generated incorrect code and of course the application program may contain logical
faults. A new application program is more likely to fail than one which has been
in use for a long time. However some failures may result from the occurrence of a
probabilistic event combined with a rare system state. Long term testing may be
the only way to find this kind of a problem.

6.1.2 Byzantine Failures

A generalised study of the difficulty of reaching agreement in the presence of faults
in a distributed system is given in ‘The Byzantine Generals Problem’ [Lamport 80].
An analogy is made between generals on a battlefield trying to reach co-operative
agreement on their battle strategy despite some traitors among them, and that of
network servers trying to perform a unified network task even though some servers
may be operating erroneously and sending misleading messages. The problem is
to determine the ratio of m traitors to n generals that can be tolerated before an
incorrect action is taken. The result is n > 3m + 1. An interesting aspect of the
problem is to reduce the communication costs to a minimum whilst still tolerat-
ing the maximum number of traitors given by this condition. There have been
many solutions [Dolev 81] [Chor 85], some with connectivity constraints between
the generals. The problem, however, is slightly removed from reality because it
assumes that a traitor may be malicious in its activity. ISLAND has assumed that
failures will result in inactivity at a network server. Intermittent failures of this
kind are also considered to be possible. This is a reasonable assumption because
the coupling between network servers through the LAN is very loose, and a failed
server would have to send self-consistent but malicious messages before it could
cause this kind of effect. The probability of this happening as the result of random
failure is very small. The Byzantine Generals problem is far more suited to a net-
work in which some of the nodes are subject to malicious human intervention. The
components of a processor-bank can be protected from this eventuality by keeping
them in a secure environment, and the messages themselves can be protected by
using encryption to guarantee their authenticity.

69

6.1.3 Enhancements for Fault Tolerance

There are no solutions which guarantee that an implementation will be totally
resilient to faults, but some steps can be taken to remove single component de-
pendencies or to prevent the propagation of errors.

N-version programming. This technique uses a specification language or a for-
mal description to define a problem. N different implementations are then made
to work in parallel and compare their intermediate and final results by taking a
majority vote on the correct solution [Chen 78]. The method aims to derive N
perfect implementations, but if any of them have hidden logical errors or ambigu-
ous states it is less likely that they will be made in the same places by different
programmers. The solution is further enhanced by applying the same technique
to the compiler or by using different languages. A related example of this kind of
work is in the flight computer of NASA’s Space Shuttle. In normal operation it
uses a four-processor parallel-computation system which votes on the validity of
calculated data before offering its results. There is a fifth, completely separate,
flight computer [Gifford 84] which operates in a listening mode, gathering up-to-
date flight information. At any time it can be manually switched in by the crew
to function as the primary computer. However, the fifth computer runs software
written independently of the other system in order to remove the possibility of a
generic programming error.

N-version programming requires a large investment of time and resources to re-
move generic errors. Common pragmatic restrictions are economics and a system
designer’s obligation to ensure correct operation: these two factors will ultimately
dictate the degree of fault-tolerant design in a system.

Proving Programs Correct. There has been a great deal of work in recent
years to provide formal specifications of programs and methods of verifying that
a program’s implementation meets its specification. The scope of this subject
has great potential for the future, but currently it is confined to relatively simple
systems. Functional programming languages show great promise for this kind of
work but provide little support when building systems which require concurrent
techniques, synchronisation primitives, and support for remote operations.

6.2 Models for Fault Tolerance

6.2.1 Hot-standby Systems

This is an approach to fault-tolerance in which a system is replicated but where
only one of the components actively carries out its operation. In the event of failure
a comparatively ‘fail-safe’ mechanism will switch in one of the standbys making
it the new active component. Crude systems will simply switch in alternative
hardware when faced with failure, even though previous system state may be
lost. A more general system in which the integrity of state is important, will

70

regularly deposit state or Checkpoints to the dormant components enabling them
to take over control at a state close to that of the active instance when it fails.
If a system adopts a policy whereby it assumes a previously defined state, it is
commonly termed a roll-back mechanism. If the backup system can calculate the
state it should currently be in using a previous checkpoint and the elapsed time,
it is termed a roll-forward mechanism. Examples of systems designed using the
hot-standby philosophy include:

Tandem Systems.

Tandem/16 non-stop systems [Bartlett 81] was the first commercial organisation
to venture into fault-tolerant computer-systems, and has been a leader in the
field since 1977. Their systems are built from up to 16 processors on a bus,
operating independently and linked by dual data-paths. All peripherals are dual-
ported, permitting two independent access points and are powered in isolation.
Tandem /16 executes a multi-tasking operating system which supports the reliable
implementation of applications run as process pairs. Each active process, the
primary, makes checkpoints to a secondary process on another processor providing
state backup in the event of failure. Every processor is monitored by all the others.
Each one must broadcast an ‘aliveness’ message over the inter-processor bus every
2 seconds. If any processor fails to do this, the remainder consider it to have failed.
When a single-point processor failure occurs removing half of some process pairs,
the remaining single processes become the primary and continue operation. If the
faulty processor is fixed, the presence of aliveness messages causes the primaries
to generate new secondaries and the redundancy is restored. The mechanism only
guarantees recovery from a single point of failure. If the processors are reliable
enough, this is normally long enough for an operator to effect the repairs to the on-
line system. The system architecture will sometimes do better than to tolerate a
single point of failure, since a number of faults may independently disrupt different
process pairs. These systems are successful because the MTBF is much greater
that the MTTR and thus the system hardly ever experiences more than one fault
and does not appear to stop.

Rebus

Rebus [Ayache 82] is a fault-tolerant distributed system designed for real-time
control applications. It has been used in the MODUMAT 800 industrial general-
purpose control system sold by Sereg-Schlumberger. Rebus uses a distributed
architecture without relying on any centralised memory or any central processing
component. Servers are connected by a linear bus that uses a dual data-path to
increase its reliability. A number of servers are allocated for an application, one of
which becomes the primary. The primary checkpoints its data to the other servers.
If it fails, a virtual ring protocol [Le Lann 77] is used to sequence the order in which
secondaries become the primary. This protocol ensures an orderly agreement on
the server that takes over control of the application. Rebus has been successfully
used in industrial situations in which the reliability requirements have been met.

71

ISI1S

ISIS [Birman 85] is an experimental system for the development of resilient ob-
jects in a distributed environment. The project set out to design a system which
could implement a distributed application with an arbitrary degree of fault tol-
erance. The ISIS system tolerates k failures out of k+1 processors!, and allows
the automatic restart of hardware and software components after repair. ISIS
employs roll-forward techniques which enables progress to be made in the event of
failures and the system as a whole behaves as if no failures occur.

Objects and processes are replicated and distributed by the system k times in the
form of process groups. Each process group contains a Coordinator and k-replicated
component parts called Cohorts. Checkpoints are continuously sent by the active
Coordinator to the Cohorts using various broadcast protocols which guarantee the
order in which messages are delivered. If the Coordinator fails, then the Cohorts
elect a new Coordinator amongst themselves, and the application continues. To
enable a conventional distributed object-oriented program to be made k-resilient,
ISIS provides a preprocessor to carry out the automatic conversion of objects into
this resilient form.

Atomic Stable Storage

Argus [Liskov 82] is an example of a distributed development environment that
employs atomic stable-storage. This system achieves fault tolerance by backing up
state at a remote server containing a non-volatile storage medium, such as a disk.
This system also employs Atomic Transactions to ensure consistency of system
state in the event of failures. An Atomic Transaction is a sequence of actions that
must complete in full or roll-back to establish a state as if the transaction had
never begun. The execution of atomic actions in a concurrent environment must
be atomic with respect to a single thread of control and equivalent to some serial
execution of these actions.

Objects in Argus may be defined to be volatile or non-volatile. Volatile objects
will be lost if their host fails. When non-volatile objects are created or modified
their state is backed-up by sending messages to a stable disk. It is necessary to
use a two-phase commit protocol [Gray 78] to ensure that the state of the disk
is atomically updated. If a machine fails and is later reinstated, it will execute
recovery procedures to recover its stable state and reconstruct the non-volatile
objects. The volatile objects can then be reinitialised with a state representation
that is acceptable for restarting the system.

6.2.2 Parallel Replicated Systems

An alternative to the ‘Hot-standby’ approach to ensure fault tolerance is the ‘Par-
allel replicated’ system. These systems utilise replicated processors to carry out
the same computation in parallel, the results are then compared in a similar way

1This property has been given the term ‘k-resilience’ in literature on this subject.

72

to N-version systems. This technique can be applied equally well to single-version
replicated-systems. A majority function is a typical means of combining parallel
results and thus deciding on a course of action. There are a number of systems
which have adopted this technique. In general it is more applicable to systems
that need to make fast calculations with a high degree of integrity and cannot
afford to tolerate a recovery delay.

August systems.

August [Wendsley 85] is an American company which produces industrial con-
trol computers. Their products have been used for flight-control in aviation, in
components of the space programme and also in public telephone systems. The
August /300 systems are pitched at applications where reliability is far more im-
portant than just guaranteeing availability. In some systems the occurrence of
even small failures while a system reconfigures itself can lead to catastrophic re-
sults. The main principle of operation is the use of ‘Triple Modular Redundancy’
(TMR). Input data is collected by interface modules and independently passed
on to three separate processing units where parallel calculations are performed.
The results are collected, synchronised, and then fed to a voter which performs a
logical majority function on the data. The system can therefore tolerate a single
processing failure. The majority function must also deal with failures amongst
its own components. A redundant design has been used which allows for a sin-
gle internal failure. Some of the designs adopted by August systems originated
from the design of the SIFT flight computer [Melliar-Smith 82] which also used
correctness proofs to validate the software architecture of its system.

Stratus

Stratus [Wilson 85] is a highly resilient system which uses a combination of repli-
cated hardware and transaction based software. Stratus hardware is characterised
by processor boards that contain dual logic, dual data-pathways and a compara-
tor component. On a processor board two simultaneous calculations are carried
out and fed to the comparator, signalling a failure when they differ. In a system
configured for a high degree of fault tolerance, these processor boards are mounted
(and operate) in pairs. If one board operating to provide the primary output fails,
the other will be switched in as a backup. Stratus is therefore able to confine
faults effectively.

Circus

Circus is a project undertaken at the University of California, Berkeley, to re-
search into a mechanism for constructing reliable distributed programs [Cooper 85a].
The approach used in Circus is to replicate the objects in a distributed program
into sets called troupes, the replication factor of which may be changed dynami-
cally. The state of each troupe member is kept in step with the others by parallel
execution of the distributed task. Although inter-troupe calls are specified as or-
dinary procedure calls between objects, the run-time system converts them into
a multicast/broadcast protocol termed ‘Replicated Procedure Call’. Failures will
not stop the program executing, provided that they are not malicious failures and

73

Ve AOMALNLI B ApPpliUudadlll LU LTauly Lviltianve

Parallel replicated systems achieve fault tolerance without having to employ a
recovery phase and thus failures do not incur a time penalty. However, such
systems are costly on resources and do not gain any performance benefits for
increased replication, in the short term. Furthermore, because computation results
must be synchronised and combined in the parallel replicated approach, they are
more easily implemented by closely-coupled hardware than by distributed systems.
ISLAND’s needs are more oriented towards a highly available service rather than
to maintaining data to a high degree of integrity.

Stable storage was an option for backing-up state associated with the ISLAND
Ezchange. However, recovery must be carried out in a real-time environment, and
must be carried out fast enough to avoid annoyance to the subscriber community.
In the CMDS, the filing service is often heavily loaded by client demands, and
recovery of information may be slow. A more significant problem is that there
is no guarantee that it will be available. The filing system, although of high
integrity, would have to provide a service as available as the Ezchange or else it
would become a dependency for the service. Its use as a means of backing-up state
was therefore rejected.

A Hot-standby system can utilise replicated hardware to increase fault tolerance
and performance at the same time and as a result, this approach is the most
applicable to distributing the ISLAND FEzchange. ISLAND’s building blocks are
not tightly coupled processors, but distributed servers which can be dynamically
allocated to a task. This environment provides a flexible foundation for a resilient
design because a service can be created with dynamic fault-tolerance and on-line
replacement of faulty components.

In ISLAND an extensible system is needed to provide a high quality of service
for a growing population of extensions and subscribers, whilst at the same time
maintaining fault-tolerance. Performance may be increased by distributing the
load on a system equally over a number of processing elements. Fault tolerance
may be gained by using each processor to back-up its active state to the others.
Thus a server would be both active in managing the system, and acting as a
repository for backing-up state from the other system components. Such a scheme
also has the advantage that all the code is being exercised all the time and therefore
removes the possibility that a dormant failure in a server will only show itself when
it becomes the active management component.

74

6.3.1 Distributing Control

If a load is to be distributed over a number of processors, this gives rise to the prob-
lem of dividing the computation task up in a way that minimises inter-processor
communication. The ISLAND Ezchange is a very specific application and can be
dealt with in a way that is tailored to its needs.

Some observations can be made about this kind of distributed exchange service.
Firstly, if the load on the service provided by a population of Ringphones is spread
over a number of servers, the only time an inter-server control-message needs to be
sent is when a Ringphone attempts to contact another Ringphone which is found
to be ‘engaged’ and is being controlled by a different Ezchange server. All calls
made to Ringphones which are not ‘engaged’ will be handled by the same server
and clearly, this will sometimes be true of a Ringphone which is engaged.

Another observation is that the only phone-associator-phone interactions nec-
essary are those using the ECHD interface explained in chapter 5. In order to
extend this interface across server boundaries, the component procedures need to
be made available as remote operations. CLU remote procedure call makes this
extension possible with a minimal amount of extra coding.

A mechanism to make use of these properties is described here. Ringphones can
be considered as the shared resource of the Ezchange components (the Directors).
In order to enable synchronisation between the Directors, a concurrency-control
locking operation was added to the Ringphone network interface. The lock is not
physically enforced on the premise that the Directors will never act maliciously.
This boolean lock is controlled by the atomic procedure ‘Test, Set and Read’
(TSR). The request takes a boolean value and a name string. It returns a boolean
value and the name of the last machine to set the lock. Trying to set a lock that
is already set will return a true value and the name of the Director currently in
control. If it is free, the lock will be acquired establishing the requester’s name
as the controller. It is an extended form of the more conventional ‘Test and set’
operation but provides a handle on the server currently in control. Figure 6.1
shows how the lock can be used to synchronise control fought for by two servers
over one Ringphone. Ringphones B and C are involved in an association set up
by Director 2. A trys to ring B, and B’s corresponding phone object determines
that its physical Ringphone is engaged by executing an establish operation on
B’s object. One of the first actions in the establish (part of the ECHD interface)
tests the internal lock of Ringphone B using the TSR operation, and determines
that it is engaged and controlled by Director 2. It is not enough to only report
this event back to A, because an association needs to be made for A and B at
Director 1. The remote version of establish is therefore called at Director 2. The
associator is the only data that needs to be conveyed in the RPC?, because the
data structures representing all the Ringphones are replicated in all the Directors.

2CLU RPC allows the dynamic binding of RPCs to network addresses. A network address can
be calculated from the textual name of the destination server and the subaddress (port) on which
it is to be received.

75

A similar mechanism is used to extend connect, hold and delete to be remote
operations. The overall effect is that phone objects make calls to other phone
objects through associators, but the control mechanism is hidden from the client
when control is extended to a remote server.

ESTABLISH
RPC

DIRECTOR1 .= .. DIRECTOR 2

PHONE
B

N .. LOCK BELONGS
\ . TODIR.2

COPIED
OBIJECT

CONNECT

RPC . e
(IF B ACCEPTS e - <7, oK
THECALL) _“i=eeoo.--
(F = —
N A
NEW CALL CURRENT CALL
A B ENGAGED Cc

Figure 6.1: Distributing control between the Directors

6.3.2 Failure Modes when Distributing Control

Failed remote ECHD operations will always secure the association to a safe state
and prompt the client for retry action. There is, however, a synchronisation pitfall
which can occur in this association model. The single server model enjoyed the
benefit of a global lock to ensure that only one Ringphone was making a CFSM
transition at any time, and hence the ECHD procedures did not need to be mon-
itored. The global lock cannot be shared by all instances of the Director unless a
complex remote locking scheme is designed at a much greater cost to normal oper-
ation. The situation results in the possibility that two remote operations may be
executed on mutual phone objects across a server boundary, causing inconsistent
data. The solution is to force the remote ECHD interface to acquire the monitor
lock at the server in which it is executing. This solution resurrects one of the
problems considered when evaluating the use of a separate lock on each instance
of a phone object. There is now a danger of deadlock between two servers making
simultaneous calls on each other through the same associator. However, because
the operations are remote, each will be timed-out by its own client and the condi-
tion caught by an exception handler that prompts the client for a repeated action.
The effect is sufficiently random that the event is unlikely to occur often. In fact,
this event seems to be so rare that it has never been observed whilst the ISLAND

76

experimental system has been running.

6.4 Summary

This chapter has described the various options available for designing a distributed
fault-tolerant service. In the ISLAND application, faults are assumed to be in the
fail-stop category and the designs have not considered the possibility of a mali-
ciously operating server. N-version programming is a powerful way of removing
implementation faults but is too costly on resources to be practical in most cases.
The ‘Hot-standby’ approach is more applicable than the ‘Parallel replicated’ ap-
proach for designing a distributed exchange service, because it is primarily con-
cerned with supplying a highly available service. By the equal sharing (as the
result of random Director selection) of the load presented to the service across a
number of servers, performance may also be increased. It is possible to distribute
control in this way because the interaction that must occur between servers is
very small and it can be achieved by extending the ECHD interface (described in
chapter 5), to the server network-interfaces.

Chapter 7 considers how the design described so far can be taken a stage further to
allow: the distribution of critical state information, the detection of server failures,
and the recovery of state after a failure.

77

Chapter 7

Fault Detection, Checkpointing
and Recovery

7.1 Overview

Chapters 5 and 6 have described a framework whereby a replicated fault-tolerant
exchange service can be performed by a variation on the ‘Hot stand-by’ design
approach. The primary benefit of this choice is that it is possible to enhance both
fault tolerance and performance by increasing the replication factor. Furthermore,
in the event that some replicated components fail, service performance will only
be reduced in proportion to the loss.

To achieve fault-tolerance in a system that contains backed-up state the following
issues must be considered:

¢ Fault Detection

Fault Confinement

Reconfiguration
e State Recovery

Re-start

These operations must be carried out within a ‘critical’ period of time for a recovery
action to be acceptable. The key word is critical. In the context of an exchange,
an order of magnitude times that of typical human reaction time (0.3s [Smith 85]),
i.e. about 3 seconds, is a reasonable upper limit on this delay. However, if the
fault-tolerant system were controlling the flight path of a rocket, for example
in NASA’s space shuttle guidance system, the critical time would be about 20
milliseconds [Gifford 84]. A recovery taking significantly longer than this would
not be considered fault-tolerant for obvious reasons. ‘State recovery’ implies a

78

previously shared knowledge of the overall system state prior to failure. This
can be carried out in the normal operation of a distributed system by exchanging
state information contained in inter-server messages. These state descriptions are
usually called checkposnts and for the purpose of efficiency, they usually contain a
compressed version of the state they represent. At a recovery stage this information
can be used by the operational servers to rebuild the data structures which were
present in the failed servers. In a system which can dynamically allocate servers
to an application, new servers may be made available automatically to replace the
failed ones. Alternatively, a failed server may simply be removed from service and
it is up to a human operator to allocate more servers to the application.

The following sections describe the pragmatic issues and solutions which were
designed to detect faults and to recover from them.

7.2 Fault Detection

A fault in a system may be defined as an event which causes erroneous information
(an error) to be present in that system. A fault may cause a system to adopt a state
that is inconsistent with its own specification, and when this state is read by the
processes executing within the system will result in a system failure [Randell 78].

Faults may cause data to be lost, corrupted into a nonsensical state, or trans-
formed into valid but misleading information. In a distributed environment lost
messages may be detected by time-out strategies. Corruption can be determined
to an arbitrarily small probability by using redundancy codes e.g. Hamming Codes
[Peterson 72]. A corrupted but nevertheless self consistent message is only recog-
nizable in the context of other information. However, as explained in chapter 6,
these kind of errors are considered to be extremely unlikely and as a result no
defence has been offered against them:.

ISLAND has only concerned itself with faults of the first and second type. The
Basic Block Protocol (BBP), used as the basis for all communication on the Cam-
bridge Ring, contains a checksum for the purpose of detecting transient errors in
inter-server messages. A block with a bad checksum is simply thrown away. In a
higher-level request/reply protocol a bad checksum must result in the same action
as if the the request or its reply had been lost in transit. A corrective solution is
for the client to time the reply out and then retransmit the request block again.

In the context of the ISLAND Ezchange the detection of a fault in a remote
machine can be established by its lack of response to network messages.

Most faults manifest themselves as a complete server failure; however, in many
operating systems there is one notable exception. If a process fails due to some
logical error, it is often only that thread of control which is halted, and its failure
may not be detected by a remote message probe. There are also many cases when
a process may have acquired a monitor lock during its execution, and when that
process fails the monitored objects will continue to be locked. The locks may

79

block other processes from running and partially inhibit, if not stop, the normal
operation of the system.

ISLAND has assumed that logical failure will cause processes which experience
failure to stop executing. For the Ezchange to detect failures in its component
servers a probe mechanism was required. The following issues were relevant to its
design.

A very simple way to probe a remote server is to make use of an existing remote
procedure call mechanism. The failure of a procedure offered by one server and
remotely called by a party periodically monitoring it, can be an effective way of
determining the failure of that server. In the Mayflower/CLU environment when
an At most once remote procedure call is activated at a destination machine it
will generate a new process to handle the call. This will terminate in due course
when the procedure returns. If a critical error occurs in the server hardware or in
the execution of server code, it will not be possible to reply and the call will time
out, indicating failure.

One method of detecting a failure amongst many different threads of control in a
server is to use the probe to call a procedure that tests all of the major monitor
locks within the probed server. If any of these are held for more than a short
period of time, the remote probe will time-out. Within the ISLAND Ezchange the
shared monitor-lock, used to serialise all events destined for a phone object, is a
necessary target for such a test. A lock can be tested very easily by calling a nuil
procedure which needs to acquire the lock before it can execute. The type phone
has a procedure defined for this purpose.

An additional mechanism is necessary to allow all the replicated components to
be informed about the fault. A significant issue is that no server should have the
sole responsibility for detecting failure, as this would result in a single-point de-
pendency, and thus defeat the availability requirement. Instead, the responsibility
should be equally distributed. One possible scenario would be for each server to
probe every other server. This satisfies the requirement, but leads to a cost of
order n? messages for n nodes. If many servers were used and the fault detection
period was required to be small, the servers would experience an excessive load. In
practice it would not be necessary to have more than about five servers to ensure
the required availability of service. Nevertheless a less costly and more scalable
approach was considered.

If all the servers are arranged into a logical-ring ordered by their station name,
each server can be given the responsibility of monitoring the failure of the next
server in the ring. When the replicated service is established each server can also
be informed of the names of the other servers in the ring. The servers making up
the logical-ring, and any attributes each of them may have, will be referred to as
a view of the set. If a failure is detected, the remainder of the logical-ring can
be checked for its integrity, and the information passed on to the other members.
If the server distributing this information fails, the probe that is monitoring it
will detect the failure, and thus the information will be propagated. In normal

80

operation this scheme only generates the same number of probes-per-validation as
there are servers. It is only when a failure has occurred that the cost increases.
From now on this ring arrangement will be referred to as a Virtual Ring (Note:
the use of the Virtual Ring described in this text is different from the uses of a
virtual ring in the mutual exclusion scheme of G. Le Lann [Le Lann 77] and also

in the virtual resource ring used as a resource manager at the Univ. of Sussex UK
[Hull 84]).

This kind of fault monitor was adopted in the ISLAND Ezchange. Its imple-
mentation was based around a process called a kicker and a remote procedure
called a sink. The kicker periodically tests the remote server by calling its sink
procedure (see figure 7.1). All servers must have a kicker and a sink and each
server must asynchronously call the next server in the ring in order to ensure that
the operations are independent. The asynchronous operation makes the technique
perfectly scalable, because the fault detection time is independent of the number
of servers in the Virtual Ring.

A call on the sink procedure will signal an exception in the event of unrecoverable
conditions such as the lack of a response from the destination server or failure
of the network. Because the Cambridge Ring is an active network many types
of communication failure are distinguishable. The hardware provides low-level
data about the way a destination server has rejected a minipacket. The lack of
a valid train of ring slots is also distinguishable at the network interface. An
active network has a distinct advantage over passive networks (e.g. Ethernet)
for diagnosing faults of this type. However active components are more prone to
failure. In the case of a network break all inter-node communication is brought
to a standstill and therefore retrying is the only sensible thing to do. A network
server! should assume that the network will eventually be repaired, and that its
request will eventually be satisfied.

1The servers referred to here are the type used in the CMDS processor bank. Each server
contains memory and has a network interface as its only peripheral.

81

MONITOR
KICKER SINK

TERMINATATION
CONDITION

FAILURE

Degd

Node

o E
D

VALIDATE

RING
VIRTUAL RIN:\

OF DIRECTORS

Figure 7.1: A Virtual Ring of Directors

7.3 Fault Confinement

Once a fault has been detected in a system which must be highly available, it is
important that the fault should not be propagated to other components which are
still operating correctly. In a distributed system, the loosely coupled architecture
has a natural bounding effect on the propagation of faults. The failure of hardware
in a server generally confines itself to that network node. The only way a fault
can propagate is by way of inter-server communication. Modularisation is the key
to fault confinement. Object-orientated programming extends this philosophy to
the development of system software.

There is, however, a further consideration that must be made. A recovery mech-
anism introduces the possibility that a failed server may inadvertently spread
faults to the distributed components while recovering a failed servers state. If a
system were being designed to make arbitrary distributed-programs fault tolerant,
it would be a difficult design issue. In the ISLAND system the state held by the
Ezchange is of a very specific nature, and the consequences of its recovery can
easily be checked for the propagation of these errors, therefore no further consid-
erations have been made. In a system which cannot afford to take this kind of
risk in the event of a failure, a safer way to make a recovery is to introduce a new

82

server? before any of the remaining servers recover state. In this system, if the
fault propagates, there will always be a pool of working servers. If the system is
designed well the remaining servers could continue the service although probably
with a lower performance due to the recurring recovery problem.

7.4 Reconfiguration

A fault detected amongst the replicated components of the Ezchange must be an-
nounced to all other components, enabling a valid view of the set to be established
at each server. There were three main techniques by which this information could
have been distributed.

e Broadcast
e Multicast

e A Virtual Ring protocol

If a network supports a Broadcast protocol, this is the fastest and least costly
method to distribute data. However, a broadcast mechanism is difficult to scale
when several networks are linked together. Multicast is a more costly® but scal-
able method with an equivalent effect. One disadvantage is that a single server
has all of the responsibility for distributing the information to all other servers.
Furthermore, additional problems occur when one or more servers fail during the
state distribution. The result will be several servers trying to distribute a view
that each considers to be the correct representation of the set. There are no guar-
antees about the order in which messages will be processed by the servers; it will
require a complex scheme to ensure that some servers do not adopt a view that is
out of date. A Virtual Ring protocol was adopted as a more effective means for
distributing the view of a set. The principles behind this protocol are described
below.

7.4.1 A Virtual Ring Distribution Protocol

The essence of the Virtual Ring protocol is a recursive RPC between members of a
logical-ring that is terminated by a call which is about to be made to the originating
server (see figure 7.1). A possible specification of this recursive procedure is given
below.

2A ‘new server’ in this context may be one which has simply been reloaded with a fresh copy of
the application program. Logical failures in a program are unlikely to cause any physical damage.

3The Multicast is expensive because it involves sending and receiving all the distribution mes-
sages when implementing it on a Cambridge Ring.

83

VALIDATE_RING = remoteproc(start: string,
new_view: array[string])
returns(array[stringl)
signals(starter_failed)

In this example view is represented as an array of strings, each string is the station
name of an Ezchange server making up a Virtual Ring. The network address of
a server can be obtained by applying a simple function to its name string. The
procedure validate_ring has the following skeleton implementation.

(1) view := new_view
(2) Determine the new value of next_name and next_address
(3) IF start = next_name THEN return(view) END
(4) view := CALL validate_ring(start_name, view) AT next_address
EXCEPT WHEN rpc_failure:
(4.1) IF the network has failed THEN repeat (4) END
(4.2) Remove next_name from new_view
(4.3) Recalculate next_name and next_address
(4.4) IF start = next_name THEN return(view) END
(4.5) repeat (4)
END
(6) RETURN(view)

This procedure is conceptually simple, it has the same communication cost as the
Multicast, and spreads the responsibility for state distribution over many servers.
It also recovers easily from errors occurring in intermediate servers while the re-
cursive RPC is still being executed. Automatic re-routing of a call around failed
servers and their removal from a view is carried out in steps 4.1 to 4.5. The next
section (7.4.2) has been included to explain the significance of RPC failures in the
Cambridge Concurrent CLU implementation.

The function employed to calculate nezt_name is implemented by searching for the
host server’s own name in the circularly ordered list and selecting the next entry.
The recursive remote procedure will terminate if it finds itself about to contact the
server in which the RPC originated, in which case it returns the validated view.
If one of these servers fail at this point, the call will be further propagated by the
preceding servers.

It is also worth considering that two or more failures determined simultaneously
by several kicker routines will cause many validate_ring procedures to be in
progress at the same time. However this eventuality should have no effect on the
validity of the final view held by each server. In this case the last return from an
execution of the validation procedure will cause all the servers to reach the same
consistent view irrespective of previous validations.

84

7.4.2 The Cambridge CLU RPC Mechanism

Remote Procedure Call and concurrency features were additions made to the
original CLU specification at the University of Cambridge Computer Laboratory
[Hamilton 84]. Two types of RPC were designed for use in distributed applications.

e Maybe RPCs [At most once]

e Zealously RPCs [Exactly once]

Maybe RPCs are lightweight calls employing a one-off transmission and a time-
out for reception. Maybe RPCs were considered for use with the Virtual Ring
protocol, but the calculation of time-out values is clumsy. Consider n servers
involved in the Virtual Ring protocol and two arbitrary servers in the ring r and
r-1. If we consider a fault is indicated by a time-out t when r-1 calls r, then the
time-out used by r-2 making the call on r-1 must be 2t since r-1 may fail, and
r-2 may have to call r directly. The time-out used for the first server in an n
server ring must therefore be 2%t. The shortcoming of this technique is that on
the majority of occasions an RPC failure will cause a client server to wait a longer
amount of time than necessary before the failure is acted upon. This is because on
the majority of occasions only one intermediate server will have failed. The server
preceding the failed one must wait the additional time as it cannot be certain that
other time-outs are not taking place further around the ring.

Zealously RPCs, however, adopt a protocol that ensures the request is delivered
to the destination with a high degree of certainty, and that despite an automatic
retry mechanism the server executes the request only once. While the call is
executing, a mini-probe RPC is sent every 2 seconds to check the aliveness of
the server. If 50 successive mini-probes fail before the results are returned, the
RPC is aborted. The results are also sent back as many as 50 times until an
acknowledgement is received. The retry and time-out parameters for Zealously
RPCs were not adjustable in the original implementation. A complete failure of
the target server would therefore result in a 100 (50 x 2) second time-out, a time
too great to be used for ISLAND purposes. However, the mini-probe used by the
Zealously RPC mechanism makes it unnecessary to calculate time-outs if used in
the Virtual Ring protocol. Each intermediate stage of a recursive RPC will have
its own mini-probes acknowledged when the call takes longer than 2 seconds to
execute due to other failures. The mini-probe, a simple RPC, provides evidence
that the call is still in progress and should not be timed-out. In a more common
failure mode there will be only one failure, the one detected by the kicker, and
the resulting reconfiguration will be a straightforward recursive procedure without
any mini-probe calls.

In order to take advantage of this Zealously RPC mechanism, ISLAND per-
formed a number of small modifications to its implementation. The number of
retrys and time-out per retry information had originally been bound into the net-
work_address object as manifest constants. The ISLAND version added another

85

kind of create operation for objects of the type network_address so that the
retry and time-out period could be reduced. The new operation allows the RPC
mechanism to use arbitrary time-out and retry parameters. A time-out can now
be set which is suitable for the ISLAND application while still taking advantage of
the mini-probe mechanism. Thus nested RPCs which take a long time to execute
will not cause an inappropriate time-out signal.

7.5 Checkpointing

If a distributed service of the type described in ISLAND is to back-up state
amongst its own components, two issues need to be considered. Firstly, the de-
gree of recovery required from a server failure must be assessed in order to decide
the content of state checkpoints. Secondly, a suitable distribution mechanism for
checkpoints must be found.

7.5.1 Classification of System State

Four types of state have been identified to be characteristic of data in the Ezchange.
The following classifications have been used.

Transient state is the information necessary to hop between menu options in prepa-
ration to selecting a particular feature. Short term state is anything relating to
the state of an association. Profile data has been classified as medium term state
because it contains information which lasts longer than a session. Finally, long
term state has been defined as data held in the directory; this is changed relatively
infrequently in comparison to profile data.

ISLAND wanted to create a service in which long, medium, and short term state
were recoverable, but transient state was vulnerable. This distinction was chosen
to provide a trade off between usability and performance. If recovery was to be
totally transparent, the time spent checkpointing data for a large population of
clients would be detrimental to the service’s performance. Furthermore, in this
event recovery time would also be considerably increased. For a PABX application,
it seemed reasonable to tailor the back-up and recovery mechanism to ensure that
all current associations and profile updates were maintained. The position a client
had reached in the feature menu may be returned to a different, but well defined
state.

Changes in directory data are made on a longer term basis. Directory updates are
never made at a Ringphone, instead they are made by updating a single central file
and then distributing this information to the replicated components. If the File
Server is not operational for a period of time, it is only a minor inconvenience that
one or two entries may be out of date in the version contained in the Ezchange.
Long term state is therefore not an issue that has to be considered here.

It can be concluded that only a relatively small amount of state information needs

86

to be distributed between the components of the Ezchange. The following sections
describe the way this state may be represented and the techniques by which it can
be passed between machines.

7.56.2 Distribution Options

The methods available for state distribution are the same as those considered for
providing a consistent view of the operational members of a replicated set. The
choice amounts to either a Multicast or a Virtual Ring distribution scheme. As
described before, the Virtual Ring has the advantage that it distributes the work-
load evenly among the component servers and automatically re-routes data in the
event of a server failure. A Virtual Ring protocol was therefore chosen for the
distribution of state checkpoints. Chapter 9 describes the effect this choice has on
the service delays for the system.

7.5.3 Associator State Checkpoints

At any point in time, only one server will contain a phone object which is actively
representing a particular Ringphone. All the other phone objects representing
that Ringphone will be in the ‘idle’ CFSM state. The active objects, however,
will be distributed evenly amongst all the servers as a result of a randomly spread
load. A convenient way to make a state checkpoint involves taking state from an
active object and attaching it to all the idle replicated versions.

Checkpoints for active associations may be made by copying an association object
and then distributing it to the other servers. A procedure almost identical to the
validate_ring procedure (described in 7.4.1), can also be used for checkpoint dis-
tribution. Associators can then be deposited in the replicated phone and service
objects in which they were held in the original server. This process amounts to
placing the associators in the equivalent internal lists in which their host object
originally held them. If the event vectors at the relevant Ringphones were to be
pointed at a server containing an idle object it would now continue to handle events
as if nothing had really changed.

An identifier can be used to allow associations to be overwritten when the corre-
sponding association has changed its internal state. This process has the additional
effect that updates are totally idempotent. If a checkpoint is repeated as the result
of a server failure during state distribution, the effect is harmless.

Checkpoints should be created whenever there is a change in the state of an associ-
ation. The distribution process can be made to have a minimal effect on the state
transition time of a phone object by forking a process to carry it out. In the event
of failure, that is to say the view of the logical ring observed in the checkpoint is
not that of the current view, a validate_ring procedure can be initiated to correct
the current view. The checkpoint can then be re-tried after a consistent state has
been recovered, and the property of idempotence ensures this will not cause an

87

invalid state.

At the end of a sesston the handset on-hook event is normally used to cancel
all associations which are in the current association list of an active object. This
event can also be distributed to remove checkpoints at all the replication sites.

7.5.4 Profile State Distribution

Profile objects are replicated in all the exchange components. A profile update
is derived from a client file. It contains state which lasts longer than a single
Ringphone session. A profile can also be modified at a Ringphone. For instance,
when logging-on to a Ringphone a number to station association is established and
this data is stored in the corresponding profile object. A profile update must be
distributed to the other servers if they are to be made aware of this new state.
Therefore a profile object must be copied to all members of the replicated set if it
has been modified. The distribution of state may be achieved in a similar way to
that described for associators.

88

7.6 State Recovery

In the event of a failed Ezchange server, the remaining operational servers must
recover its state. The recovery procedure must also cope with the following issues.

o Failure of a server while already recovering state in another
o Failure of a server that is recovering state

o Additions of new servers to boost resilience

In addition to adopting a new view created by an activation of the validate_ring
procedure it is necessary to execute a state recovery procedure. The following
skeleton description of a procedure is suitable for recovering state in the ISLAND
demonstration system. The concept of a view in this context has been extended
to include the ‘Age’ parameter.

RECOVER_STATE =
PROC(new_view, old_view: array[record[name: string, age: int]])

(1) Calculate difference in the new and old views:
Difference := Difference_0f(old_view, new_view)
(2) Calculate oldest member: 0ldest := Oldest_Of (new_view)
(3) FOR all names D in Members_0f(Difference) DO
(3.2) IF Own_Name ~= Oldest
THEN Change all Ringphones with the Controller
named D to 0ldest and RETURN
ELSE Remove D form the table of event vectors
at every Ringphone.
(3.3) FOR all phone objects P with a Controller = 0Oldest DO
(3.3.1) IF Ringphone P's state disagrees with its checkpoints
THEN validate the checkpoint state
(3.3.2) Put the phone P into Call State (CFSM) of MENU_TOP
(3.3.3) Change P to have a Controller = Oldest
(3.3.4) Change Ringphone P to have a Controller = Oldest
(4) LET old_view := new_view
END recover_state.

This procedure is designed to be executed at every server as the recursive vali-
date_ring routine returns by way of the servers in the Virtual Ring. The essence
of the algorithm is that one server will take over the state of the failed server and
that the others will recognise this server as the new controller of the recovered
state. It operates as follows:

The servers making up the distributed application are considered to be part of a
set. Each member of the set has an ‘Age’ which is represented by a simple integer

89

to define the order in which servers joined the set. Servers may only join the set
one at a time.

The oldest remaining server is calculated. The server executing the routine then
checks to see if it is in fact the oldest server. If it isn’t then it must tag all phone
objects that were controlled by the failed server to now be controlled by the oldest
server. In this case it must now return.

However, if it is the oldest, the failed server’s name is removed from the table
of event vectors contained in every Ringphone. This operation can be performed
through the SSP interface, and will prevent any new sesstons trying to contact
the failed server. Every phone object in the oldest server that was controlled
by the failed server must now confirm that its checkpoints agree with the voice
association established at the real Ringphone. It must correct any that are not
in agreement with it. These phone objects must now be placed in a standard
call state, because ‘transient’ state cannot be recovered. The top level of the
feature menu was thought to be a suitable state for this purpose. Finally, the tag
indicating the controller of the recovered phone objects must be set equal to the
oldest server’s name, and the corresponding event vector of the related Ringphones
must also be changed to this name. At this point any events which these devices
had accumulated during the recovery process as the result of clients impatiently
pressing keys, can now be handled by the oldest server. The oldest server has a
correct model of the association state and can continue processing these events in
the normal way.

It is essential to use the oldest server for the recovery action to ensure that the
maximum amount of checkpointed state is available. A newly-added server will
contain a relatively small amount of state information. However, association state
is thrown away at the end of a session, nominally after 180 seconds (see chapter 9).
Therefore a new server will acquire a similar cache of state to the other members of
the set in a short period of time. Alternatively, association state could be passed
in its totality when a new server joins the set. Because it is unlikely that servers
will fail at a rate which would make this worthwhile, the existing servers should
be spared the overhead of this transfer.

The recover_state procedure must be encapsulated in a monitored region to en-
sure the serialisation of recovery tasks when other servers are executing a recovery.
The algorithm will cope with simultaneous failures of servers because the recov-
ery operation is performed on all the servers indicated by the difference between
the old view and the new view. If a server fails during a recovery in which it is
not the oldest member, a recovery procedure would be serialised after the current
one to handle the new failure. If the oldest server, say a, were to fail while it
was performing a recovery, the failure would be detected by the kicker process
responsible for monitoring it, and a recovery by the next oldest server b would
begin. However, the other servers will have changed the name of the controller of
all objects that were already being recovered by a to have the tag of the server
a. The server b that must recover the two outstanding failures will now recover
both sets of objects by simply recovering those marked a. The requirements for

90

handling failure during recovery have therefore been satisfied.

7.6.1 Replacing Failed Servers

So far a mechanism for adding new servers to a replicated application has not been
considered. There were two approaches to the problem. In the event of failures
new servers could be automatically allocated to replace them, or else they could
be replaced through human intervention; the fault tolerance mechanisms of the
remaining set of servers will keep the application running. The failure modes that
could occur when automatically adding a new server were found to be complex and
could be the subject of further investigation. Chapter 8 describes a management
service which can be used by an operator to allocate new servers to a distributed
application, and manipulate their existing views to include it amongst them. The
service can also be used to upgrade the fault tolerance of a correctly operating
distributed application. An important part of its design is that it has not created
a single-point dependency for the continued operation of the application.

7.7 Miscellaneous Reasons for Recovery

State recovery may also be triggered by the memory management-processes of a
run-time system. One example is Garbage Collection. CLU is a language in which
heap memory is dynamically allocated for the creation of objects. Mayflower recov-
ers un-referenced memory from the heap by the use of a marking garbage collector
which is run synchronously with the application. The result is an occasional ‘dead’
period of time for an application while the garbage collector is performing its op-
eration. If a very large heap is allocated at link time, garbage collections will
be infrequent, but when they occur they will last for a long time. However, if
a heap which is just large enough to store a handful of new data structures is
used, garbage collections will be frequent but only occupy a short time. The latter
example must be used in the case of a server that must be highly available. The
mechanism for fault detection requires response times that are within a critical
time-out period; long garbage collections will cause a validate_ring procedure.
One approach is to ensure that all servers in the set have a random but large heap
size, and therefore will definitely be removed from the view while they are garbage
collecting. Different heap sizes should imply that individual servers are affected
at different times. The heaps should be chosen so that there is a sufficiently large
amount of time to recover totally from one failure before another begins. If the
heap is very large it may actually be faster to use the resilience mechanisms to
recover state than waiting for the garbage collector to do its job. Of course all
these problems could be solved if the development system were to support an
asynchronous garbage collector.

It is perhaps a good philosophy to cause artificial failures on a regular basis.
Recovery code is normally executed considerably less frequently than the code in

91

everyday use of a system. Implementation errors are far more likely to be spotted
during a trial period if the recovery code is regularly tested. Many models have
been made to try and predict the diminishing rate of failures due to the correction
of these errors. An example is the Musa model [Musa 75] which assumes that
logical faults in software occur as independent random processes, and thus have
a Poisson distribution with respect to time. In this model the faults are always
successfully repaired and every fault has an equal effect on the reliability of the
program. The model is shown to predict that the rate of fault correction falls off
with a negative exponential function. Such models are generally too idealistic and
have limited application for making useful predictions.

7.8 Summary

In this chapter a mechanism has been proposed for a self-monitoring distributed
service. The method has been described in the context of ISLAND’s distributed
Ezchange service. The development of a convenient method for distributing data,
the Virtual Ring protocol, has provided a way in which all servers making up a
distributed set can agree on the membership. This method can also be extended
to the checkpointing of state information between servers.

State in the Ezchange which needs to be protected has been classified as either
association state, or state held in a profile object. These objects are relatively small
and can be passed between servers efficiently. Checkpoint copies of associations
can be attached to the idle replicas of the objects that originally created them.
When a server fails, recovery of previously active objects state by another server
amounts to little more than informing its idle versions of those objects that they
are now the active version. It is also necessary to tell the relevant Ringphones to
send their events to the server now responsible for them.

A detailed comparison of the Multicast and Virtual Ring protocol is found in
chapter 9 along with an evaluation of the effect they have on the service delays of
the Ezchange.

92

Chapter 8

Management Coordination

This chapter discusses the problems associated with managing a distributed pro-
gram, coordinating its component parts, and providing a suitable interface for an
operator to carry out routine checks and statistics on the distributed task. Early
experience of this kind of problem is found in John Shoch’s work at Xerox PARC
[Shoch 82].

8.1 Creating a Distributed Program

So far it has been assumed that a program can be compiled, linked and loaded into
many servers as a matter of course. Furthermore, each server has been assumed
to have a working knowledge of the members composing the replicated set. This
type of distributed program requires a tool or a specialised service to provide a
mechanism for instantiating the component parts. This was realised early on in
development and a service was created with the following properties:

¢ The ability to load a program into an arbitrary number of machines forming
a machine set

e The ability to manage the resilience of a set dynamically.
e Provision of a central point to log component failures
e Provision of a mechanism for managing several sets

e Provision of an interface for managing the distributed task
—in this case PABX control

® Machine sets should not be reliant on the creating service’s operation

This service functioned as a central control point and was referred to as the Master.
Its implementation was based on an interface with the Resource Manager (RM)

93

[Craft 85]. RM is normally accessed through the Session Manager that allows a
byte stream to access the RM function at a remote terminal. RM also offers a
network SSP interface which takes a string argument and interprets it as if the
characters had been typed over the byte stream. RM presides over an abstraction
which can be considered as a ‘pool’ of free machines (the processor bank). On
request for a system, a machine is chosen which is best suited for running it and
then the system is loaded into that machine by an Ancilla. The service making the
resource request also passes a token of authentication to RM, allowing the allocated
machine to set up its own byte stream to the terminal. Systems will usually present
some sort of command line interface across this connection. The Master is initially
established in a processor bank machine using the same mechanism(see figure 8.1).
The Master provides the operation create with the following semantics:

CREATE <k-resilience: int> <load_file: string>

The Master then makes a request for a machine loaded with the Mayflower operat-
ing system k+1 times, passing its own authentication token so that each machine
can establish a connection with the same terminal as the Master!. Once k+1
machines have been allocated, the Master uses the Mayflower RPC mechanism
(accessible at each machine) to load the load_file given as the second argument.

Resilience PABX

Control Control

Master . Resource
Node o —> Manager

Set 1 EG Set 2
Red | A iToF Blue
Gold DIRECTORS Silver
Grey Violet
Carver
Polaris

Figure 8.1: The abstractions used by the Master node

On completion, the names of the set are entered into a data abstraction called a
machine set, of which there may be an arbitrary number. A remote initialisation

In practice this option was only necessary while the system was being developed and debugged.
A further parameter could also be set up to prevent reverse connection.

94

procedure called by the Master at each machine, gives each set member knowl-
edge of its fellow members, the load_file, and the name of the machine currently
running the Master. At this point, the program in each instance of the machine
set will begin execution. However, the mechanism by which the checkpointing and
recovery mechanism operates and the details of the application program defined
in the load_file, are not part of the Master’s operation.

8.2 Machine Sets

The Master became an important tool for distributed program development. Fur-
ther enhancement allowed multiple sets of machines to be created in association
with integer handles, enabling an operator at the Master to selectively control
any particular set. This kind of functionality allowed a service Ezchange to be
executing in one set, while developing the next incremental version in another.

A number of operations were found to be a necessary part of the Master Command
Line Interface (CLI). These operations are summarised below:

e CREATE <k-resilience: int> <load-file: string>
Creates a machine set with an integer handle

o CHANGE <new-resilience: int>
Increases or decreases the k-resilience of the current set

¢ MEMBERS
Lists the names of machines in the current set

e KILL MACHINE <name>, KILL_SET
Renders the specified machine(s) inoperative (kill is a useful command for
testing the fail-stop resilience mechanisms of an application)

e STATE <name>
Returns a list of machines, a load_file, and the Master name which a spec-
ified machine believes to represent its current state (such an operation can
be used to check that a machine has a consistent view of its own set)

o VALIDATE

Corrects the view of the current set, so that each component has a view that
agrees with the Master’s model

Further operations are required on multiple sets and are also listed below:

e LIST
Lists all machine sets, their handles, and their contents
e KILL_ALL

Performs the same function as kill, but works on all machines in all sets

95

¢ MERGE <setl: int> <set2: int>
Joins two sets together giving it the ‘handle’ of the first, merge will automat-
ically perform a validation operation. This tool is available to the operator
should it become apparent that a machine set has become partitioned due
to a network break, or network congestion.

e LOCATE

The master node is not replicated and is not relied upon for its operation,
it is merely a device for communicating with a distributed program. If
the Master crashes, its state will be lost. When an operator reinstates the
Master, a locate operation can be invoked to send investigation RPC’s to
all machines known to exist in the processor bank. If a reply is obtained, the
data contained in the returned result enables a model of the machsne sets
still in existence to be reconstructed.

e LOG < operation(+, -, @, >, <): string> , <level: int>

A system operator should be informed of erroneous system states as a matter
of course. Log messages are incorporated in key positions in the Ezchange
software, and interface to the Master through an RPC interface. Messages
are tagged with a priority level from 1 to 10. The levels to be reported are
controlled by a filter. A convention of larger numbers for more important
events is used. The filter is set up remotely in the log command and pre-
vents unnecessary RPCs being sent. The filter is represented as a set of
values. Log levels can be added or removed by using a ‘4 or ‘-* operation
respectively. Logging can be set to an absolute level with the @ operation,
or a range of levels using ‘<’ or *>*. For example, ‘< 7°, means log all mes-
sages in the range from 1 to 6. Logger messages are reported at the Master’s
terminal with a machine name and log level prefix. Messages are further
suppressed if they do not originate from the currently selected machine set.
This scheme has proved an effective way of determining the condition of
remote machines without being swamped by an unmanageable quantity of
debugging information.

8.3 Command Line Interface

The operations described have been implemented as a Command Line Interface
(CLI) at the Master’s terminal session. The executive program, a part of the
Mayflower libraries [Craft 85], can switch in a number of different CLIs in addi-
tion to a global set of commands available from all of them. This arrangement
allows operations which have a logically similar function to be grouped together
and prevents a client operator having to sift through numerous options when de-
ciding upon an action. Three CLIs were identified as useful sets of commands.
MASTER as already described, SM as an alternative interface to the Resource
Manager, and PABX as an operational interface to manage and coordinate the
PABX operations.

96

8.3.1 The SM CLI

The SM CLI provides a set of enhanced RM commands. The need for a better
interface was the primary motivation for implementing SM. A secondary benefit is
that it saves the need to create another byte stream to the terminal, and the need
to switch between Mayflower and it using the Terminal Concentrator commands.

SM commands include:

LIST <status> <attribute> <owner>
WITHDRAW <machine name>
DEPOSIT <machine name>
FREE <machine name>

The list command gives a condensed view of the state of processors known about
by RM. Attributes include the size of the machine in kilobytes and the processor
type (68000, LSI4, 68020). The status field can be set to one of the following:
free, allocated or withdrawn (a state used for testing). The owner field specifies
the name of the machine that the resource is allocated to. A ‘*’ parameter is
interpreted as a wild-card match: an unspecified field will default to ‘*.

The remaining three operations change the status of a machine. The Free opera-
tion should be used with care otherwise it may result in a client losing a session.

8.3.2 The PABX CLI

The Master CLI is a generalised tool for the creation and manipulation of a repli-
cated distributed program. For the purpose of interacting with the Ezchange it
is necessary to have a specialised CLI providing an interface with specific PABX
functions. There are two benefits from putting the PABX interface into the Master
machine, rather than into each of the components of a set.

Firstly, all operations updating state in the PABX, for instance when instantiating
a new directory, must be repeated at each component of the set. These operations
can be easily automated by code in the Master, which has the complete knowledge
of the set.

Secondly, user-interface code is verbose, it must cope with all erroneous cases and
prompt for missing information. The result is usually a code module of some
considerable size which would have to be replicated throughout a machine set.
The Master is a place where this code can reside uniquely and communicate with
the machine set through a relatively naive RPC interface.

8.3.3 PABX Control Operations

The following operations have been supplied in the CLI interface.

97

e READ_DIR <file: string>
A command causing each Director to read the directory file specified and to
instantiate a new directory object

e REINCARNATE <phone: string>
Recreates a phone process and its guardian process in the event that an
error has caused either to fail

e ACCOUNT c<file: string>
Turns the accounting mode on and logs data in the specified file

e STATISTICS
Returns the total number of associations that are currently active and the
number that have ever been active

e ASSOCIATIONS <phone: string>
Lists all associations that the named Ringphone has attached to it, along
with the state of that association

e DEBUG <flag: bool>
A debug state can be set up in which all log information is sent to the local
byte stream, if one is present.

8.4 Alternative Distributed Management

The method described is a simple approach to the problem and was implemented
successfully. It is worth mentioning an alternative strategy which was under con-
sideration when the Master was designed.

If the mechanism for requesting a machine from the ‘free pool’ is instantiated in
every loadable program, it then becomes possible to write a recursive program
to generate a set with an arbitrary resilience, by a single create call. A create
operation would take the same form as before, but a single machine request would
be converted into a recursive call, each stage adding a machine to the set while
reducing the passed parameter k by one (the termination condition being k equal
to zero). Such a scheme is more complicated to code and, in particular, the error
conditions are more difficult to handle than centralised allocation. Moreover, there
still needs to be an equivalent of a Master to provide an operator interface. The
recursive scheme is therefore far less attractive than the centralised one.

8.5 Implementation: Problems and Solutions

A notable implementation problem is the time it takes to allocate and load a free
machine with an operating system, for example, 15-20 seconds must be allowed
for the Mayflower Kernel. If it is found that the k-resilience of a machine set has

98

fallen below some critical value and needs to be restored, there will be some delay
before a machine can be brought into place. If the k-resilience is initially made far
higher than need be, this is not a problem, but servers may be scarce and needed
by other system components, or clients, at peak times. A potential solution is
to fill the ‘free pool’ with a number of dormant standbys, adding this property
to the attribute list and thus these machines will be allocated in preference to
a non-preloaded server. There is, however, a danger that the dormant server
will experience some undetected transient memory-fault, making it inoperative
when it attempts to execute a program. However, this would be detectable at the
initialisation phase, and only in the event of this rarer error would the full loading
delay be experienced. This scheme requires modification of the RM service and
was not carried out.

A second problem was relatively unexpected and needed special software support.
Some free pool servers could be loaded with an operating system but would fail
to load the application program. If the machines were released and a new RM
request made, they would still be the most suitable machines free, and would be
reallocated demonstrating the same problem. An abstraction termed the ‘Hate
pool’ was added to the Master’s operation and used to deposit machines which
failed in this way. In practice, the pool was initialised with servers which were
known to fail in this way and, by making a comparison at allocation time, were
disposed of during the create operation. Operations were added to the Master
CLI to add, remove and list members of the Hate pool, allowing an operator to
find out which machines should be considered for repair or replacement.

8.6 Summary

A centralised tool for creating a distributed program was essential for experi-
mentation with the checkpointing and recovery mechanisms in the ISLAND dis-
tributed PABX. When designing this kind of tool it is necessary to ensure that
the distributed application is not dependent on the tool’s operation, otherwise the
system will be dependent on a single machine to guarantee its own availability.
The Master server has also allowed a sophisticated operator interface to reside in
a single machine, and thus to reduce the complexity of code within a replicated
machine set.

99

Chapter 9

Evaluation

This chapter evaluates whether the ISLAND demonstration system will scale.
Measurements of delays experienced by a single telephone are scaled in a sim-
ulation model in order to predict the service delays expected in a larger system.
The same model is used to make a comparison between a Multicast protocol (im-
plemented on a Cambridge Ring as a set of separate messages) and a Virtual Ring
protocol, as a checkpointing mechanism, to ascertain their relative merits.

9.1 Telephone Usage Patterns

Studies carried out by telephone companies as long ago as the 1920’s determined
that a large population of subscribers generates calls in a random and independent
fashion and also that the duration of a phone call is governed by a random process.

The effect of these processes are that the number of calls in progress over a period
of time has a Poisson distribution. This gives rise to a useful mathematical model
that can be used to make predictions about the system. A property of a Poisson
source of telephone subscriber traffic is that the inter-call arrival times have a
negative exponential distribution.

Queuing theory has been applied to the analysis of these systems, a detailed study
of which is found in work by L. Kleinrock [Kleinrock 75|, a more specific applica-
tion of the techniques to telecommunications may be found in work by D. Bear
[Bear 76].

The theory analyses systems that can be represented by a source of traffic, a queue,
and a server. The source puts work into the queue and the server takes work out.
Usually FIFO queuing disciplines are considered. The mean number of items in
the queue and the mean service delay are typical predictions of the theory. An
alternative approach to obtain these results is to use an event simulation model.
A computer can be used to model the load functions and the data processing-rate
of servers in a relatively condensed period of time.

100

Event - | Caller Key Press | Remote | Remote | On-Hook
Time ¢ | Off-Hook | (4 Events) | Ringing | Off-Hook | (2 Events)
20ms Ticks | 11 Tx4 54 39 26 x 2

ms 220 140 x 4 1080 780 520 x 2

Table 9.1: Time taken by CFSM events.

In a conventional telephone system the theory can be used to determine the util-
isation of a switch. Another useful prediction is the probability that a call will
have to wait for a line before it can be connected. Utilisation is given the unit
of the Erlang (named after the Danish mathematician who made major contribu-
tions to the subject of Queuing theory). Measurements of utilisation are quoted
for the busiest hour of the day, usually about 3pm. Typical public telephones have
a utilisation of 0.1 Erlangs. An office telephone has a higher usage and is usually
considered to be between 0.15 and 0.2 Erlangs; 0.15 Erlangs is the figure used in
the following sections. The mean call holding time is usually considered to be 180
seconds for the purpose of simulation and analysis.

The utilisation (p) can be defined in terms of the mean call arrival-rate (A) and
the mean holding-time (Z).

p=AT where AN l<z

This assumes that an equilibrium exists between the arrival rate of work and the
rate of data processing at the server. If the condition shown on the right does not
hold the queue will be unstable and may grow to an infinite length.

9.2 Simulating the ISLAND System

In the ISLAND system the Ezchange service is concerned with the call processing
period of an association (a small percentage of the total call holding-time). Even
though the holding time has a Poisson distribution the processing time of telephone
events is deterministic. Furthermore, there is a high probability that the number
of events associated with each call lies close to an expected value. However, this
does assume that special features are hardly ever used. For example, a typical
call may consist of the following events: handset off-hook, 5 key events, a second
handset off-hook (for an answered call), and two handset on-hook events at the
end of the call. The timings measured for a single telephone call can be used to
constrain a model which simulates the arrival of many call events at the exchange
using a queuing model.

The ISLAND demonstration system (with only 9 extensions) was used to measure
these deterministic delays with a view to measuring the delay of service with up
to 500 extensions. Table 9.1 shows the delays experienced for the various state
transitions of a call determined by inserting monitoring code into a non-replicated

101

Server(s) {1 |2 3 4 5
Max Ext. [90 | 190 | 265 | 365 | 490

Table 9.2: Maximum number of extensions before service is poor.

version of the exchange server. The processing time for events is measured to the
nearest 20ms. The results shown are for a single Ringphone initiating a call with
the Ezchange, and are averaged over 10 trials conforming to the simple model of
call set up.

To make a simple model of a call the average of these 9 events were taken to give
the average time to process a telephone event. 409ms was calculated as the mean
holding time for an event.

A batch of key presses were made on a push button telephone, in a manner which
reflects normal dialling, this determined the mean separation of key events to be
500ms. The call model consisted of 7 events that were all 400ms long, each in a
period of 500ms, and two others at an exponentially distributed period of time
later with a mean of 180 seconds. Note that the initial model is for a single server
with no checkpointing or monitoring events to be considered.

However the simulation model was taken further to consider busy extensions. Calls
in progress are added to a busy set. The creation of a new call must come from an
extension outside this set. A called party is chosen randomly and if it intersects
with the busy set, the telephone call will terminate immediately.

A Poisson source can be simulated by using a random-number generator with a
rectangular distribution and biasing the values returned with a logarithmic func-
tion. To measure the mean service delays the sample time must be long enough to
smooth out the fluctuations that result from stochastic processes and have a lead
time sufficiently large to allow the queuing model to reach a statistical equilib-
rium. This time period was determined experimentally by continuously averaging
the time that a call event spent in the queue, and examining the relative values
of successive means. A lead time of 10’ms was used and an elapsed time of 10®ms
provided the termination condition. The results shown in figure 9.1 are the mean
delays experienced by clients expecting service from a server with a population of
between 0, 10, 50, 100, 200 and 500 extensions. Note the results are presented as
smooth curves which have been derived from an interpolation (cubic) of 6 points.
The intermediate points are not intended to be more accurate that 5% as the sim-
ulation is only a guide to the scaling factor (the simulation queue lengths were only
ever stable to 5% of their measured size). The results given from 0-50 extensions
are less accurate than this due to the small sample having an adverse effect on the
distribution of engaged calls. Similar restrictions hold for figures 9.2 9.3 and 9.6.

In order to assess the quality of service, one second or more is defined to be an
unacceptable service delay. If the service delay is under one second, it is considered
to be acceptable. Using this criterion figure 9.1 implies that the maximum number
of extensions supportable by one server is about 90. A point to note about the

102

3400.0 B
32000
3000.0
2800.0
2600.0
2400.0
2200.0
2000.0
1800.0
1600.0
1400.0
1200.0
1000.0

800.0

600.0

400.0

200.01

oo—Lt—Lt v 111
"0 50 100 150 200 250 300 350 400 450 500

Number of Extensions

; 2 Servers

1 Server

Mean Service Delay (ms)

——

Figure 9.1: Service delays experienced with a variable number of servers

result is the rapidly increasing gradient of the graph, indicating an infinite delay at
about 250 extensions. This is because the increasing number of extensions implies
a decreasing mean inter-arrival period which approaches the processing time of
an event. For 220 extensions the two quantities are almost equal and thus the
utilisation approaches unity, the condition for instability.

The model can be extended to simulate the multiple server scheme adopted by
ISLAND. When the simulation creates a call, a further uniformly random choice
is made to select a server out of a defined server pool. Simulations were carried
out for 1 to 5 servers, and these results are also illustrated in figure 9.1.

As expected, a greater number of servers reduces the service delay for a given
number of extensions and thus more extensions can be added while maintaining
low service delays. If the ‘one second’ rule of thumb is used, a maximum value for
the number of extensions in each case can be read from the graph, and is shown
in table 9.2.

As yet no consideration has been taken of the resilience mechanisms put into play
for more than one server, namely monitoring and checkpointing. Such mechanisms
can be modelled as events which are added to the server queues in the same way
as telephone events.

9.3 Fault Monitoring

Inter-server monitoring is carried out by executing a remote procedure call (RPC)
at regular periods of time. The delay experienced by a CLU RPC has been doc-
umented in G. Hamilton’s original work [Hamilton 84]. Many changes have been

103

34000
32000+
3000.0+
28000
2600.0
2400.01
22000
2000.0+
1800.0
1600.0—
1400.0
12000}~
1000~ /A
80001~ A o e e
2888 """""""""" —___ 2000ms monitor
2000 00 No monitor
00—~ 101
0 50 100 150 200 250 300 350 400 450 500
Number of Extensions

. 2 Servers

1 Server

3 Servers

— 4 Servers
- 5 Servers

Mean Service Delay (ms)

Figure 9.2: Service delays when using a 2000ms monitor probe

made since then, but it does allow a maximum mean delay to be estimated. For
the benefit of a simple model, an RPC is considered as a message pair with each
transmit and receive component taking 15ms of processor time. This value is cer-
tainly an upper bound on the time taken to process the kind of messages/data
sent in the demonstration system. The processing time for a complete message is
2x15 = 30ms. In practice this is an overestimate —the round trip time for a null
RPC may be as low as 12ms. All inferred results from the simulation are therefore
conservative estimates.

Figure 9.2 repeats the results in figure 9.1 with additional information showing
the effect of a 2000ms monitor-probe on the service delay. The mean delay in the
server queue has only been calculated for telephone events because it is this aspect
of service delay which defines whether or not its usage is tolerable.

The results show that the delays are not significantly increased. It is therefore
interesting to determine the maximum rate of monitoring that can be carried out
without significantly degrading the system performance.

Figure 9.3 shows the effect of monitoring with a period ranging from 100ms to
5000ms, for a 200 extension system with up to 5 servers. The monitor only has an
effect when its period approaches the event holding-time. The graph shows that
below a 750ms monitor period the delay is no longer constant but begins a steep
upward-trend and thus adversely affects the event handling time.

Another factor which determines the minimum sensible time for the monitoring
period is the time taken to recover from a server crash. If this is longer than the
monitor period, a fast monitor will not be very effective. In the demonstration
system recovery time is deterministic and proportional to the number of active

104

3500.0
32500 \
3000.0— 1 Server

27500+
2500.0
2250.01
2000.0+
1750.0
15000 *

12500\ “-.

10000 T e 2 Servers
7500 Nl TiT I TIT U IIT oo NNeS

s000- 0000 T T TTmem——— S Servers

250.0~

0.0 L 1 ! 1 J
0 1000 2000 3000 4000 5000

Monitor Period (ms)

Mean Service Delay (ms)

Figure 9.3: Service delay compared to monitor period

extensions, but inversely proportional to the number of servers. The mean time
to take over the data structures associated with a call has been measured to have
a lower bound of approximately 50ms. This value is taken from an experimental
version of the recovery procedure. Given 200 extensions and 2 servers we can
estimate that the monitor period should not be less than (200/2) x 50ms = 5
seconds. This is already considerably longer than the 750ms period derived from
the simulation model.

In figure 9.4, the monitor time is defined in terms of the recovery time. The line
labelled ‘Min value’ at 750ms indicates the lower bound based on performance loss.
It can be seen that the limitations imposed by the recovery time is, in general, the
dominating factor.

9.4 State Distribution

Two alternative schemes for checkpointing state were considered for the imple-
mentation of the ISLAND system: Multicast and Virtual Ring distribution. To
determine which has the least impact on service delay, two separate simulations
were carried out for these protocols.

For the degree of recovery expected, checkpoints are only necessary when there
is a change in association state between two callers. In the simplified Call Finite
State Machine (CFSM) used for the simulation model there are four state changes:
(1) Establish (2) Connect (3) Delete(caller) (4) Delete(remote), and thus four
checkpoints are made. (1) and (2) when establishing the call, and (3) and (4)

105

10000.0 2 Servers
9000.0—
_3 Servers

~~ ’ ,
2 80000 P
~ . L7
> 70000} .
% e _ 4 Servers
O 60000 ~ s -

b Ve -
g 50000} o0 o7 5 Servers
2 7 - _-
g 40000 S T
M I" 4 7 4 ’ - - -
S 30000 NP e
S 2000 e

10000 -2~ Min Value
0.0 Y N R T N S B N
0 50 100 150 200 250 300 350 400 450 500
Number of Extensions

Figure 9.4: Monitor periods on the basis of recovery time

when each of the two parties close down the call. Multicast involves the server,
which is executing the state transition, sending a checkpoint to every other server
in the exchange. The Virtual Ring protocol causes the controller to send a single
RPC to another server which then propagates it recursively on to the next server
in a logical ring and so on until every server has been visited by the call. For
the purposes of distribution of state, the termination condition is that the next
RPC will be made to the originator of the checkpoint. The two methods generate
the same number of message pairs during a back-up process. The only difference
between them is the distribution of time spent by particular servers carrying out
the checkpoints. The relative distribution of load for up to five servers is shown
in figure 9.5.

Multicast and the Virtual Ring protocol have the same load distribution for two
servers, and a similar one for three (although the greatest load falls upon the next
server in the ring after the checkpoint initiator in the Virtual Ring scheme, rather
than on the initiator, in the Multicast protocol). For more than three servers the
distribution of load becomes linearly more biased against the checkpointing server
in Multicast, whereas the Virtual Ring maintains a more even load over all servers.
It is the server initiating a checkpoint which is most likely to be processing events
at that time, and therefore to increase its work load during this period causes
a reduction in performance. The Virtual Ring, however, distributes the load to
servers which are more likely to be idle, thus reducing the processing delays. A
simulation was carried out to find out if this reduction was significant for the
system configurations used by ISLAND.

Figure 9.6 shows that the mean delays for a Virtual Ring are certainly less than
with Multicast, but that the service delay is not significantly changed by either.
However, there is a trend which becomes noticeable at high loads with 5 servers.

106

ACTIVE
O sacxup

2 Servers

Multicast Virtual Ring

3 Servers

4 Servers

S Servers

Figure 9.5: Message distribution in the Multicast and Virtual Ring protocols

As the number of servers increases the benefits of the Virtual Ring are more
significant.

On the assumption that a Virtual Ring will have a linear advantage over Multicast
when increasing the number of servers, figure 9.7 shows the extrapolated improve-
ment of the Virtual Ring protocol over Multicast. A load of 500 extensions with
between 2 and 5 servers is used to predict the improvement at up to 10 servers. The
graph is expected to be linear because the work load on the controller has a linearly
increasing overhead in Multicast, but in the Virtual Ring distribution-scheme the
overhead is constant. The graph allows us to predict that a 10% improvement can
be obtained with 6 servers and a 20% improvement with 11. This number may
be considered an overkill in added redundancy in order to take advantage of the
necessary gains in performance. The conclusion must therefore be that for the
purpose of performance in the ISLAND system, it makes little difference which
scheme is implemented. A further consideration is the ease of implementation and
ease of error recovery. The novel recursive RPC did, however, turn out to be a
very concise way of implementing a state distribution procedure, and if similar
control systems are designed with larger numbers of control servers (i.e. greater
than 10), it may be possible to benefit from this technique.

107

1 Server , 2 Servers

3 Servers

4 Servers

5 Servers

Mean Service Delay (ms)
S
S
o

l I]] | 1 1 ! J

]
"0 50 100 150 200 250 300 350 400 450 500
Number of Extensions

Figure 9.6: A Comparison of Multicast against a Virtual Ring protocol

9.5 Inaccuracies in the Queuing Model

Strictly speaking, a server running under the Mayflower Operating System does
not process events in a FIFO queuing order. When events arrive they are handled
by processes which in some cases queue work to be done, but in others simply
wait on monitor locks or semaphores for the scheduler to activate them when the
corresponding lock is released or the semaphore notified. The scheduling scheme is
not necessarily a FIFO. Also a scheduler will perform time slicing between active
processes. Mayflower currently uses 100ms per slice. Events which take longer
than this time will be pre-empted in favour of another. At first sight this looks
very detrimental to the model of telephone events taking 400ms. However, the
current implementation assumes a global monitor lock for all phone objects and
thus phone CFSM transitions cannot pre-empt each other. Further, checkpoints
on phone objects also need to acquire the lock and are FIFO serialised. On the
other hand, it is possible that incoming monitoring calls may be scheduled out of
sequence and ahead of events already queued, making delays slightly longer than
predicted by the model. Provided that the model is not being used to predict
delays from the very heavily loaded sections of the graphical results, the model
should still produce valid conclusions about this implementation.

9.6 Conclusion

A typical business PABX may be expected to support 200 extensions. An ISLAND
PABX could not meet this demand using only a single server. The server used to

108

18.0[
16.0-
14.0—
120~
10.0(~
8.0~
6.0
4.0

2.0~

0.0 | | l 1 l | 1 l]

0 1 2 3 4 5 6 7 8 9 10
Number of Servers

Percentage difference in delay

Figure 9.7: Projected benefit of Virtual Ring performance over Multicast

provide the timing measurements for this simulation was one of the original servers
used in the CMDS processor-bank. It utilises an 8MHz 68000 with an intelligent
network interface, the MACE. The communication path to the Ringphones was
through two ring-ring bridges. Although the bridges are efficient they will certainly
have increased the transit time of SSPs. In addition, no time has been spent
optimising the event handling routines. It can be concluded that the timings
could be considerably improved upon.

Two servers only just provide a reasonable quality of service, but three servers
meet the delay requirements fairly easily. Three servers and 200 extensions give
rise to a mean delay of about 800ms and a redundancy capable of surviving two
complete server failures. Information about the performance of commercial sys-
tems is difficult to obtain. It is likely that such systems will respond faster in a
closely coupled processing environment. However, if the delays for a distributed
system are low enough, the service will be acceptable. It is worth remembering
that the model only considers loading at the busy hour and that the response time
will be much faster throughout the rest of the day. Also with three servers a single
failure will still result in a tolerable system response.

Another factor affecting the validity of these simulations is that the simulation
model has not represented the effects of a client interacting with the special features
that are provided by the Ezchange. It may be that the improved interface and
remote Ringphone-control from a workstation will increase the usage of features
and thus generate a greater load on the Ezchange. In this case the assumed traffic
patterns may be rendered invalid. This possibility can only be clarified by practical
experience derived from a larger implementation.

109

Chapter 10

Conclusion

In recent years there have been a great many proposals for the implementation of
integrated communication systems. Without direct experience of the benefits of
an integrated system it is difficult to assess their usefulness. The ISLAND demon-
stration system has provided an environment in which voice and data have been
integrated at the physical level. Additionally, the ISLAND distributed manage-
ment scheme provides highly available control of network telephones while also
allowing clients to write their own control application-programs. The mechanisms
described for checkpointing and recovery of associations have, as yet, only been
demonstrated in a limited way and have not been included in the current demon-
stration system. Apart from the physical benefits of using a single network for
integrated media, it is an environment in which multimedia applications of the
future can be designed and implemented.

10.1 Integration Issues

It is the view of this thesis that multimedia applications are part of the natural
evolutionary path of merging the Local Area Network with the PABX. To date
only a limited number of organisations use distributed systems which are based on
networks suitable for the integration of real-time media. This results mainly from
the proliferation of Ethernet as the industrial standard (IEEE 802.3). In chapter 2
several systems were discussed which demonstrate the new ways in which designers
are beginning to visualise the PABX.

Undoubtedly some features invented by PABX manufacturers are created to make
their products look competitive, others are there as the genuine result of client
demands. There are many examples of PABXs that are sold with custom software
to suit the needs of a particular organisation. Features such as specialist on-line
directories and automatic call-routing between departments, are ways in which
an organisation can increase the productivity of its workers. After all, idle time
spent on the telephone when multiplied by a large work force costs a considerable
amount of money. Changes in the custom software require further interaction with

110

the manufacturers. It would be far better if a system could be purchased and then
tailored by its clients to satisfy their own needs. Integration of the PABX into a
computing environment can provide this kind of control.

Both the centralised PABX and distributed LAN technologies are contenders for
a position as the physical medium for transporting integrated voice and data.
The centralised switch technology has dominated the commercial market. This is
mainly because of its cost effectiveness and the large research and development
investment made by telephone companies to produce custom-made devices that
perform specialised coding, multiplexing, and switching functions.

Currently, LAN technologies are becoming worthy competitors for integrating
data, voice and video. Firstly, bandwidth is becoming plentiful and less costly,
that is to say, technologies for producing fast VLSI components are becoming cost
effective and are being applied to network design (the Cambridge Fast Ring is an
example). LANs also have the advantage that bandwidth is shared out to clients
actually requesting service, rather than permanently dividing up bandwidth be-
tween clients, some of whom may rarely use it. It is the access rules of a network
that define the time constraints by which data can be transported. Only a subset
of LANs have properties that are suitable for the transport of voice as well as
data. The Cambridge Fast Ring (CFR) has properties that allow bandwidth to be
shared equally between requesters at a granularity which satisfies the requirement
for the maximum transport delay of voice. Moreover, it is designed to have a data
rate of 100Mbs™! and if clocked at that speed would be capable of supporting 600
active telephone conversations (on the assumption that voice is the only medium
on the network). A community of 200 extensions (chapter 3) are supported more
easily in an integrated environment and will still leave sufficient bandwidth for
data applications to operate comfortably.

The CFR is built from a two-chip set: a 100Mbs~! serial-bus interface and an 8-bit
parallel-bus component performing the station function. The latter is designed in
such a way that it allows a cluster of station chips to be connected together using
an 8-bit parallel bus. The cluster can then be connected to the serial ring through
a single network attachment. Fast networks will almost certainly use fibre-optic
cable as the communication medium, and require a high-precision component to
tap the network. Reducing the number of network taps makes the system more
economical. For example, a single network tap in a corridor may provide for
several network-telephone extensions in its connecting rooms, with only a small
incremental cost for each one.

System reliability must be of a high standard if distributed systems are to be
considered as practical alternatives to supporting telephony applications. At the
physical level, the network and hence the services, are vulnerable to disruption
from simple connectivity failures. In chapter 3, the self-healing and braided-ring
structures are described as a means of providing redundant connection paths.
Although these designs have been documented for some time they have rarely
been implemented in practical systems. Integrated media systems may well be
the catalyst for the implementation of highly-reliable commercial-networks of this

111

kind. One example is the FDDI ring which has been designed to carry voice and
data and contains a self-healing mechanism to address this very problem. The
FDDI ring is currently being proposed as a MAN standard in IEEE 802.6.

The ISLAND project has demonstrated how a PABX may be functionally split up
and distributed across a Local Area Network. Emphasis has been placed on the
simplicity and cost effectiveness of the telephone, while at the same time improving
its human interface. A visual aid in the form of a single-line display has been the
main addition. The reaction obtained from a small sample of clients that used the
system was that a visual display of options is far more desirable than a ‘summary
card’ or manual which accompanies many of the conventional PABXs. The display
would have been even more useful if it could have been extended to contain two
or three lines of text. This kind of display is now much more available than at the
time when the Ringphone was designed.

The essential philosophy behind the ISLAND telephone is that it is simple, it
executes a single voice protocol, and is controlled by a small set of primitives which
configure the telephone in a variety of operating modes. In itself it contains no
inherent knowledge or state vital to the configuration of the surrounding system.
In the ISLAND environment applications wishing to control voice do not have to
know about the real-time properties of the media.

The two principle operations a client may wish to carry out on voice is (a) stor-
age and playback and (b) conferencing. Two servers were designed to perform
these functions: the Translator, which is used to provide a voice interface to a
network file server, and the Conference Server which sums several voice-streams
together and then retransmits the result to the parties involved. Both of these
servers require a control interface similar to the telephone. The conference service
was not built for the demonstration system, mainly because of the problems fore-
seen in achieving the required data-transfer rates through the network interface
of a 10Mbs™! Cambridge Ring. This conclusion was confirmed by the difficulties
encountered in coercing an 8MHz 68000 processor to execute the voice protocol,
and service both the voice digitising hardware and the network interface at the
required speed.

Future implementations will be easier to develop on the CFR than on the original
Cambridge Ring. A single CFR packet can transport an ISLAND voice packet,
containing 2ms of voice samples, and incur only a small fraction of the protocol
overhead found in the 10Mbs™! Cambridge Ring (CR). This is because the CR can
only send 2ms of voice by assembling 14 di-bytes into a buffer and transmitting it
as a Basic Block. Further enhancement of the operation can be achieved by using
extra hardware to buffer voice samples from a CODEC into complete 2ms blocks
before interrupting the processor to initiate a handling routine. Chapter 4 suggests
two architectures which may be suitable to perform this function. The advantages
of improving efficiency at this interface lead to the possibility of connecting several
telephones to one network station. This is a concession to the original architecture
because it reduces availability of service when a single station fails. However, it is
considerably more practical to implement a large system in this way.

112

The voice protocol (chapter 3) produced acceptable voice quality between two
Ringphones. The corrective action taken by the playback pointers in the event
of erroneous block transfers, generally went unnoticed. The automatic synchroni-
sation of voice sample-clocks proved to be unnecessary. The software-controlled
crystal-oscillators used in the demonstration system turned out to be relatively
stable and could easily be adjusted to 1:10* of the required sample rate. The
relative drift of pointers between two telephones would slowly (in the order of
minutes) manifest itself as a buffer pointer consistently out of place for the arrival
of several successive voice blocks. This state is recognised and corrected by the
same mechanism employed in the case of lost blocks.

10.2 Management and Control

For the purposes of controlling a network telephone, the Cambridge SSP protocol
was used. Functions available at the telephone’s network interface permit sim-
ple operations to be carried out such as: start sending voice to a station, receive
voice from a station, display some text, activate a tone. This simple message
request/reply mechanism was found to be lightweight, fast and well suited for exe-
cuting these simple remote actions. To prevent telephone control by unauthorised
parties, the network interface has been protected. A valid unique identifier (UID)
must be presented with any request before it will be executed. UIDs are known
only by authorised controllers.

A telephone call can be represented by a finite state machine. Each state transition
requires several operations to be carried out on the telephone. In the demonstra-
tion system the actions making up the state transitions were predominantly SSP
calls. For a human operator their execution was fast enough to make the overall
state transition appear to be a single event.

Telephone control, by default, originates from either a reliable exchange service,
or from an application running on an arbitrary client or service machine. In
both cases, the controlling party has no knowledge of the voice protocol. By
encapsulating control of voice behind the telephone network interface, modularity
is maintained, and control can be dynamically transferred between machines. The
management of voice is therefore considerably simplified.

Three interfaces were designed for the purpose of Ringphone control. Firstly,
a simple interface to the telephone which allows a session machine to remotely
cause key presses. Secondly, the ability of a machine to register interest in a
telephone; the Ezchange will then send commentary information to the registered
party enabling, for example, a workstation to present the details of an incoming
call on its own display. The third scheme requires a greater time investment by
would-be programmers and constitutes a general mechanism for passing control of
telephone resources to applications. These may be experimental or fixed services
outside the function of the Ezchange. By adding a new number to the directory
with a service attribute (see chapter 5), the service machine can be dialled up

113

by a telephone. The resulting association is created without establishing a voice
channel. While the service remains the current association, it may take over
control of the telephone through the remote interface and, for example, change
the Ringphone key event-vector to send key-presses to its own station. Control
reliability is ensured in the event of a service crash by the use of the ‘*’ key which
always redirects control back to the Ezchange service. It was felt that these three
mechanisms provided for the various degrees of control needed by applications.

To date, only simple applications using the first kind of interface have been im-
plemented. Using relatively simple shell scripts written on machines running the
Tripos operating system and on others running UNIX, it has been possible to dial
numbers from a command shell as if they were being physically dialled on a local
Ringphone. All the menu features described in chapter 5, are accessible in this
way. There are numerous ways in which these scripts can be used, for example in
diary programs to place a call at a particular time, or in association with personnel
files to allow dialling by name.

10.3 Management and Reliability

Considerable effort was put into designing a resilient Ezchange service, for the
following reasons. Most people expect the telephone to be a reliable piece of
equipment and to provide a highly available communication service. If the new
systems are to be adopted they must prove themselves to be dependable and
advantageous to use. There is always a certain amount of prejudice against a new
system and this has to be won over. The human interface and feature content of an
integrated system will generally convince most people of the advantages. However,
the systems are complicated and contain many component dependencies. The
result is a reliability problem and if it is not solved, the system will lose favour.

In chapter 6 several ‘reliable systems’ were reviewed. Universally the solution to
poor system-component reliability has been to replicate the system dependencies.
The two mainstream approaches to the problem are: (1) Parallel replicated systems
and (2) Hot Stand-by systems. There are many variations on the way that these
approaches can be used.

Availability is one of the primary attributes associated with a telephone service.
On the assumption that a LAN can be made into a highly available network, and
that telephones are sufficiently simple that they rarely fail, providing the required
service amounts to ensuring that the control mechanism is also highly available.
A LAN/PABX has the advantage that the telephone controller can fail but the
existing virtual connections continue to operate. It is only the state changes in
telephone associations that are prevented by the failure. This property allows a
recovery task a greater amount of time to perform its operation before the client
community notices the problem.

The Ezchange service needed to be extensible in both its fault tolerance and per-

114

formance characteristics. A variation on the Hot-standby approach was considered
to be the best solution for this service. By replicating the Ezchange with all its
replicated servers actively offering service, the client load can be shared out be-
tween them. This mechanism increases performance when more servers are added.
However, to achieve this kind of distributed control there must also be some inter-
server interaction. When several calls handled by different server components
converge on one Ringphone, synchronisation is required. The four-function as-
sociation interface (ECHD), described in chapter 5, made it possible to build a
simple remote-interface (chapter 6) to extend control in this situation. In some
Hot-standby systems there is a danger of dormant faults in the back-up system
which do not show themselves until recovery occurs. By using all the servers in
an active mode this possibility is reduced.

This kind of parallel operation provides highly available access to the Ezchange
service. However, each server contains essential state information and, in the
event of its own failure, it must copy its state to a place from where it may be
safely recovered. To avoid the dependency of a network filing service, typically
an expensive resource and not replicated, state can be copied to the other control
servers. In this case another server is able to take over the operation of a failed
Ezchange component.

Two state distribution schemes were considered (chapter 7): Multicast, and a Vir-
tual Ring protocol. The impact of these different approaches is assessed in chapter
9. In the context of the ISLAND system using a maximum of five servers, both
methods produced similar performance characteristics. However, the results did
imply that there would be a more significant benefit of the Virtual Ring protocol
over Multicast if a system were to use as many as ten servers. For the purposes
of failure detection the servers were ordered in a logical ring giving each server
the responsibility of monitoring the next server in the ring. An evaluation of the
monitoring period concluded that it could be as low as 750ms, without detrimental
performance loss. However, the recovery period would generally be significantly
longer than this, making a fast monitor unnecessary.

The evaluation predicts that a population of 200 telephones, assuming conventional
telephone usage patterns, can be supported by 3 servers with a mean service delay
of less than one second when handling events. In this configuration loss of a single
server will not increase the mean delay above 1 second. Clearly more servers can
be used to decrease the service delay and increase the fault tolerance.

When managing a distributed program a central control-point is essential for co-
ordinating its component parts. A server suitable for managing ISLAND’s dis-
tributed application is described in chapter 8. An important aspect of its design
was that it should not become a dependency for the reliable distributed system.
The server was used as an operator’s interface to the PABX, and to provide man-
agement of the service’s resilience factor.

To further enhance reliability a Watchdog timer could have been designed to lo-
cally monitor each control server. A Watchdog timer is a device which is connected

115

to a processor bus and, in normal operation, expects to communicate with the pro-
cessor at regular intervals. If the Watchdog timer expires, it responds by resetting
the processor. Throughout the design of the ISLAND system failures have been
assumed to be fail-stop in effect. In the rarer cases of failure this may not be
true. Some errors may cause a machine to malfunction in a way which cannot be
determined by remotely monitoring its operation. A Watchdog timer may detect
some of these cases and convert them to the fail-stop case.

In all cases the measures taken to prevent failure of a system are only effective
against its expected failure modes. There will always be cases which have not
been taken into account. System design can only try and optimise fault tolerance
against the likely causes of failure.

10.4 Future Work

The ISLAND project has shown that reliable integrated systems are feasible and
have interesting applications. However, ISLAND was a small development re-
stricted by network bandwidth and the resources available to build network tele-
phones. A future system could be designed around a Cambridge Fast Ring which
would benefit from an order of magnitude speed-up in both the network data
rate and data throughput in the interface hardware. If a sufficiently large system
were implemented it could be put to use in serious day-to-day applications in a
laboratory environment.

In order to expand the system on the scale required an abundant supply of network
telephones would be needed. The Telephone Concentrator described in chapter 4
would be a necessary part of this new design, allowing several telephones to be
connected to a single network-station and controlled by one processor.

Applications for the immediate future developed with the existing ISLAND system
include a voice mail-service, whereby voice can be sent in a similar way to electronic
mail. Every client would have a voice mail-box from which voice could be played
back at a telephone in the same way that we use telephone answering machines
today. The voice mail-service, however, would be an integral part of the system.

A popular aim of integrated system designers is multimedia ‘Hypertext’, that is,
the non-linear representation of a document which may contain a combination
of text, graphics, voice, or even video. A Hypertext document [Conklin 87] is
designed to be browsed by a program that may display attributes of a topic that a
reader is interested in. This saves a reader having to search through an amorphous
body of information. The approach also allows the association of useful concepts as
a means of choosing different paths by which a document may be read. Hypertext
will therefore represent information in a way more closely related to the way we
think. An example of such a system is the THOTH-II Hypertext browser at Bell
Laboratories [Collier 86]. Some research is being carried out at the University of
Cambridge into the representation of different media in documents which could

116

be extended for use in a Hypertext system. For this purpose, the ISLAND control
primitives are being used to integrate voice into documents displayed on a Xerox
workstation [Anupundi 86]. This project is still in its early stages.

Further work needs to be done to consider how video may be managed within
the system. Real-time video is only just becoming feasible for integration into a
LAN. The new generation of 100Mbs~! LANs combined with cost effective video-
CODECs should encourage research in this area. Currently the project has one
video-framestore connected to a Cambridge Ring for the purposes of capturing and
storing images. It will soon be joined by a second with the intention of carrying
out research into suitable mechanisms for transferring real-time video across a
LAN. This research involves the design of new coding techniques to compress
video without introducing excessive delay and maintaining the essential picture
quality [Nagioff 87].

In the future it may be possible to develop a video-phone using this system com-
bined with a Cambridge Fast Ring network. The management of video streams
will also need to be reliable and highly available. It will be possible to control
video connections with the same reliable management policies that ISLAND has
used for voice.

It is only when Local Area Networks and the services they support have proven
themselves to be dependable alternatives to conventional facilities, that the new
integrated systems will be adopted. If the primitives for managing the various
media are well chosen, many client programmers will create multimedia applica-
tions for their own purposes. We can look to the future for interesting and novel
applications.

117

References

[Ades 86]

[Ades 87a]

[Ades 87b]

[Anupundi 86]

[Ayache 82]

[Bacon 87|

[Barrett 85]

S. Ades, R. Want, R. S. Calnan,

Protocols for Real Time Voice Communications on a
Packet Local Area Network,

Proc. IEEE ICC 86 Conference, Toronto, June 1986.

S. Ades, D. C. Swinehart,

Voice Annotation and Editing in a
Workstation Environment,

Proc. AVIOS 86 Voice Applications Conference,
San Fransisco, April 1987.

S. Ades,

An Architecture for the Provision of Integrated Services,
Ph.D. dissertation, Tech. report No. 114, Univ. of Cambridge,
September 1987.

S. Anupundi,

Presentation and Annotation of

Multi-media Documents,

Ph.D. Thesis Proposal, Univ. of Cambridge, October 1986.

J. Ayache, J. Courtiat, and M. Diaz,

REBUS, A Fault-Tolerant Distributed System for
Industrial Real-Time Control,

IEEE Transactions on Computers, Vol. ¢-31, No. 7, July 1982.

J. M. Bacon, K. G. Hamilton,

Distributing Computing with RPC:

The Cambridge Approach,

Proc. IFIP conference on Distributing Processing,
Amsterdam, October 1987.

(Also Univ. of Cambridge Tech. report No. 117.)

V. P. Barrett,

Integrating Local Networks — the AT&T approach,
Proc. Localnet ’85, Online Publications, Pinner UK,
pp325-336, 1985.

118

[Bartlett 81) J. F. Bartlett,
A NonStop Kernel,
ACM Proc. of the Eighth Symposium on
Operating System Principles, pp22-29, December 1981.

[Bear 76] D. Bear,
Principles of Telecommunication-Trafic Engineering,
Peter Peregrinus Ltd, 1976.

[Birrell 83] A. D. Birrell, B. J. Nelson,
Implementing Remote Procedure Calls,
Xerox PARC Tech. report CSL-83-7, December 1983.

[Birman 85] K. Birman,
Replication and Fault Tolerance in the ISIS System,
Proc. of 11th Sym. on Op. Sys. Principles,
ACM Operating Systems Review, 19, No.4, pp79-86, 1985.

[Brady 68] . P. T. Brady,
A Statistical Analysis of
On-Off Patterns in 16 Conversations,
Bell System Technical Journal, Vol. 47, pp73-91, Jan 1968.

[BT 83] An Explanation of the Loss of Service Requirements
of Strategic Network Plans TP:101/4 and I1S:101/4,
British Telecom Standards, NS2.2.3,
Memorandum 109, Issue 1, October 1983.

[Bullington 59] K. Bullington, J. M. Fraser,
Engineering Aspects of TASI,
The Bell System Tech. Journal, Vol. 38, March 1959.

[Calnan 87] R. S. Calnan,
ISLAND: A Distributed Multimedia System,
Proc. of Conference Globecom ’87,
pp744-749, Tokyo, Japan, Nov. 15-18 1987.

[CCITT 72] Pulse Code Modulation (PCM) of Voice Frequencies,
Recommendation G.711 (Geneva 1972), CCITT Red Book,
Eighth Plenary Assembly, 1984,

[Chen 78] L. Chen, A. Avizienis,
N-Version Programming: A Fault-Tolerance Approach
to Reliability of Software Operation,
Dsg. of FTCS-8, Toulouse, France, pp3-9, 1978.

119

[Chor 85]

B. Chor, and B. A. Coan,

A Simple and Efficient Randomized Byzantine
Agreement Algorithm,

IEEE Transactions on Software Engmcermg,

Vol. SE-11, No.6, June 1985.

[Christodoulakis 86] S. Christodoulakis et al.,

[Clark 86]

[Cooper 85a]

[Cooper 85b]

[Collier 86]

[Conklin 87]

[Craft 85]

[Craft 85]

Multimedia Document Presentation, Information
Extraction, and Document Formation in MINOS:
A Model and a System,

ACM Trans. on Office Information Systems,

Vol. 4, No. 4, October 1986.

P. F. Clark et al.,

Unison —

Communications Research for Office Applications,
Electronics and Power, pp665—667, September 1986.

E. C. Cooper,

Replicated Distributed Programs,

Proc. 11th Sym. on Op. Sys. Principles,

ACM Operating Systems Review, 19, No. 4, pp63-78, 1985.

R. C. B. Cooper, K. G. Hamilton,

Preserving Abstraction in Concurrent Programming,
Tech. report No. 76, August 1985.

Univ. of Cambridge.

George Collier,

THOTH-II: A Hypertext Browser,
Bell Comm. Research, Tech Memorandum,
TM-ARH-002762, May 1986.

J. Conklin,
Hypertext: An Introduction and Survey,
IEEE Computer, pp17-41, Sept 1987

D. H. Craft,

Resource Management in a
Distributed Computing System,
Ph.D. dissertation, Tech report No.73,
Univ. of Cambridge, March 1985.

D. H. Cralft,

Writing Servers in Mayflower,

PERG Meeting No. 73, Project Mayflower Document,
Univ. of Cambridge, October 1985.

120

[Davidson 85] P. J. Davidson,
Review of the CCITT Recommendations for Integrated
Service Digital Networks (ISDN),
British Telecom journal, Vol. 3, No. 4, October 1985.

[DES 77] Data Encryption Standard
Federal Information Processing Standard (FIPS),
Pub. 46, pp651-670, U.S. Department of Commerce Jan 1977.
Also found in C. H. Meyer and S. M. Matyas, Cryptography:
A New Dimension in Computer Data Security,
Appendix A. Wiley Interscience Pub.

[Dion 81] J. Dion,
Reliable Storage in a Distributed System,
Ph.D. dissertation, Tech. report No. 16,
Univ. of Cambridge, February 1981.

[Dolev 81] D. Dolev,
The Byzantine Generals Strike Again,
Report. No. STAN-CS-81-846, March 1981,
Univ. of Stanford, California.

[Ellis 84] C. Ellis,
The PABX as a Local Area Network,
Proc. Networks ’84,
Online Publications pp445-450, London, July 1984.

[Falconer 85] R. M. Falconer, R. L. Adams,
Orwell: a protocol for an integrated services
local network,
British Telecom Tech. Journal, October 1985.

[Falconer 83] R. M. Falconer,
A Study of Techniques for Enhancing the
Reliability of Ring Local Area Networks (LANSs)
Proc. IFIP WG6.4 Unsversity of Kent Workshop,
September 1983.

[GEC 81] The Monarch 120 Call Connect System:
Technical Description Part 1,
General Electric Company, 1981.

[Garnett 83] N. H. Garnett,
Intelligent Network Interfaces
Ph.D. dissertation, Tech. report No. 46, May 1983
Univ. of Cambridge.

121

[Gibbons 80] J. J. Gibbons,
SSP — A Single Shot Protocol for the Ring,
Systems Research Group Note, September 1980
Univ. of Cambridge.

[Gifford 84) D. Gifford,
The Space Shuttle Primary Computer System,
ACM Vol. 27, No. 9, September 1984. pp874-936.

[Girling 83] C. G. Girling,
Representation and Authentication on
Computer Networks,
Ph.D. dissertation, Tech. report No. 37,
Univ. of Cambridge. April 1983.

[Gray 78] J. N. Gray,
Notes on Database Operating Systems,
Operating Systems: An Advanced Course,
Springer—Verlag, pp393-481, 1978.

[Greenway 85] J. Greenway,
The Next Step: An Integrated PBX/LAN,
Localnet ’85 USA, Online Pubs UK pp97-108, 1985.

[Gruber 83] John Gruber, Leo Strawczynski,
Judging Speech in Dynamically Managed Voice Systems,
Telesis 1983 Two (Bell Northern Research), pp30-34, 1983.

[Hamilton 84] K. G. Hamilton,
A Remote Procedure Call System,
Ph.D. dissertation, Tech. report No. 70, Dec. 1984,
Univ. of Cambridge.

[Hoare 74] C. A. R. Hoare,
Monitors: An Operating System Structuring Concept,
Commaunications of the ACM Vol. 17 No. 10 pp549-557, 1974.

[Hopper 78] A. Hopper,
Local Area Computer Communications Networks,
Ph.D. dissertation Tech. report No. 7, April 1978,
Univ. of Cambridge,

[Hopper 86| A. Hopper, R. M. Needham,
The Cambridge Fast Ring Networking System (CFR),
Tech. report No. 90, June 1986,
Univ. of Cambridge.

122

[Hull 84]

[IEEE 83

[ITU 85]

[Johnson 81|

[Kay 83|

[Kleinrock 75]

[Lamport 80]

[Lazar 85]

[Le Lann 77]

[Leslie 83]

R. Hull, F. Halsall, R. L. Grimsdale (Univ. of Sussex UK)
Virtual Resource Ring: Technique of Decentralised
Resource Management in Fault-Tolerant Distributed

Computer Systems,
IEE Proceedings, Vol. 131, Pt. E, No.2, March 1984.

IEEE Project 802, Local-Area Network Standards,

Draft IEEE Standard 802.5, Token-Ring Access Method
and Physical-Layer Specifications,

Working Draft, September 1983.

I-Series Recommendations,
International Telecommunication Union,
CCITT VIIIth Plenary Assembly, Fascicle 111.5, 1985.

M. A. Johnson,

Byte Stream Protocol Specification,
Systems Research Group Doc., April 1981,
Univ. of Cambridge,

P. M. Kay,
A New Distributed PBX for Voice/Data Integration,
Proc. Localnet ’838, Online Pubs UK, pp485-493, New York 1983.

L. Kleinrock,
Queuing Systems Voll: Theory
John Wiley & son Inc., 1975.

L. Lamport, R. Shostak, M. Pease,
The Byzantine Generals Problem,

ACM Transactions on Programming Languages and Systems,
Vol 4, No 3, pp382-401, July 1982. (Originally Pub. Nov. 1980)

A. A. Lazar et al. (Univ. of Columbia),

An Optical Fiber-Based Integrated LAN for
MAGNET’s Testbed Environment,

IEEE Journal on Selected Areas in Comms.,

Vol. 3, No. 6,pp872-882, November 1985.

G. Le Lann,
Distributing Computing - Towards a Formal Approach,
Proc. IFIP, Toronto, Canada, 1977.

I. M. Leslie,

Extending the Local Area Network,
Ph.D. dissertation, Tech. report No. 43,
Univ. of Cambridge, Feb. 1983.

123

[Leslie 84]

[Limb 82]

[Liskov 81]

[Liskov 82]

[Musa 75]

[Motorola 82]

[Nagioff 87]

[Needham 82]

[Newman 88|

[Nicholson 83]

[Ody 84]

I. M. Leslie, R. M. Needham, J. W. Burren, G. C. Adams,
The Architecture of the Universe Network,
ACM Sigcomm ‘84 Symposium, Montreal, Canada, June 1984.

J. O. Limb, C. Flores,

Description of Fasnet —

A Unidirectional Local-Area Communication Network,
The Bell System Technical Journal, Vol. 61, No. 7, Sept. 1982.

B. Liskov et al. (MIT),

CLU Reference Manual,

Lecture Notes in Computer Science No. 114,
Springer- Verlag, Heidelberg 1981.

B. Liskov et al.,

Guardians and Actions: Linguistic Support for

Robust Distributed Programs,

Conf. Record of the Ninth Annual ACM Sympossum on Principles
of Programming Languages, pp7-19, 1982.

J.D. Musa,
A Theory of Software Reliability and its Application,
IEEE Trans. Software Eng., SE-1, 3, pp312-327, 1975.

MCe68000 16-Bit Microprocessor User’s Manual,
Prentice Hall, 1982.

O. Nagioff,

Image Encoding,

Ph.D. Thesis Proposal, March 1987,
Univ. of Cambridge.

R. M. Needham, A. J. Herbert,
The Cambridge Distributed Computing Sytem,
Addison-Wesley, London 1982.

P. Newman (Univ. of Cambridge),

A Broad-band Packet Switch for
Multi-Service Communications,

To be published in IEEE Infocom ’88, March 1988.

Robert T. Nicholson,
Integrating Voice in the Office World,
BYTE Publications Inc., Dec. 1983.

N. Ody,

Terminal Handling in a Distributed System,
Ph.D. dissertation, August 1984,

Univ. of Cambridge.

124

[Peterson 72]

[Porter 86]

[Randell 78]

[Redman 87]

[Richards 79]

[Ritchie 74]

[Robin 84]

[Ross 86]

[Rossi 84]

[Schmandt 85]

W. W. Peterson, E. J. Weldon.
Error-Correcting Codes,
MIT Press, 1972.

J. D. Porter,

MAC Layer Interconnection of Homogeneous LANS,
Thesis Proposal, October 1986,

Univ. of Cambridge.

B. Randell et al.,
Reliability Issues in Computing System Design,
Computing Surveys 10, 2, pp123-165, June 1978.

B. E. Redman,

A User Programmable Telephone Switch,
EUUG Conference, May 1987,

On ship M/S Mariella voyage Helsinki-Stockholm.

M. Richards et al.,

TRIPOS —

A Portable Operating System for Minicomputers,
Software - Practice and Ezpertence, June 1979.

D.M. Ritchie,
The UNIX Time Sharing System,
Communications of the ACM Vol.17, No.7, pp365-375, 1974.

G. Robin,
Customer Installations for the ISDN,
IEEE Communications Magazine, No. 22 No.4, April 1984.

F. E. Ross,
FDDI - a Tutorial,
IEEE Communications Magazine, Vol.24, No.5, May 1986.

B. C. Rossi, M. Coronaro,
Integrated Office Communication System
Localnet ’84, Online Publications, Pinner UK, 1984.

C. Schmandt, B. Arons,

Phone Slave:

A Graphical Telecommunications Interface,

Proc. of the Soc for Information Display, 26(1):79-82. 1985.

[Melliar-Smith 82] P. M. Melliar-Smith, R. L. Schwartz,

Formal Specification and Mechanical Verification of
SIFT: A Fault-Tolerant Flight Computer,

IEEE Trans. on Computers, Vol C-31, Number 7, pp616-630 July
1982.

125

[Shoch 82]

[Shooman 79]

[Smith 85]

[Swinehart 83]

[Swinehart 86]

[Swinehart 87]

[Temple 84]

J. F. Shoch, Jon A. Hupp (Xerox PARC),

The ‘Worm’ Programs—

Early Experience with a Distributed Computation,
Comm. ACM, pp172-180, March 1982.

M. L. Shooman,

Software Reliability,

Ch. 9, pp355-422, Computer Systems Reliability,
Authors: T. Anderson and B. Randell,
Cambridge University Press, 1979.

G. A. Smith, Neil Brewer,

Age and Individual Differences in

Correct and Error Reaction Times,

British Journal of Psychology, 76, pp199-203, 1985.

D. C. Swinehart, L. C. Stewart, and S. M. Ornstein,
Adding Voice to an Office Network,
IEEE GlobeCom ’88 Conference, November 1983.

D. C. Swinehart et al. (Xerox PARC),

A Structural View of the

Cedar Programming Environment,

ACM Trans. on Prog. Languages and Systems, October 1986.

D. C. Swinehart et al.,

An Experimental Environment for

Voice System Development,

IEEE Knowledge Office Engineering, 1(1):39-48, February 1987.

The Design of a Ring Communication Network,
Ph.D. dissertation, Tech. report No. 52, 1984.
Univ. of Cambridge.

[Tennenhouse 86] D. L. Tennenhouse,

The Unison Data Link (UDL) protocol specification,
Unison Project{Alvey Programme), Doc. Ref. UC022, Oct. 1986.

[Tennenhouse 87] D. L. Tennenhouse, I. M. Leslie, and R. M. Needham et al.,

[Terry 87]

Exploiting Wideband ISDN: The Unison Exchange,
InfoComm ’87, San Francisco, March 1987.

D. B. Terry, D. C. Swinehart,
Managing Stored Voice in the Etherphone System,
Globcom ’87, pp48-61, Tokyo, Japan, November 1987.

126

[Thomas 85)

[Walker 78]

[Wendsley 85)

[Wilbur 85]

[Wilkes 79)

[Wilson 85]

[Woodbury 87]

[VMEbus 85}

Robert. H. Thomas, Harry C. Forsdick et al.,
Diamond: A Multimedia Message System
Built Upon a Distributed Architecture,
IEEE Computer, November 1985.

R. D. H. Walker,

Basic Ring Transport Protocol,
Systems Research Group Note,
Univ. of Cambridge, October 1978.

J. Wendsley,

August Systems Industrial Control,

Presented in Resilient Computer Systems by T. Anderson,
Collins, Chapter 13, pp232-246, 1985.

S. Wilbur,
Local Area Networks,
Presented at 4th IEE Vac. School on Data Comm., Sept 1985.

M. V. Wilkes, D. J. Wheeler,

The Cambridge Digital Communication Ring,
Local Area Commaunications Network Symposium,
Boston, USA, May 1979.

D. Wilson,

The Stratus Computer System,

Presented in Resilient Computer Systems by T. Anderson,
Collins, Chapter 12, pp208-231, 1985.

L. Woodbury et al.,

A Modular Integrated Communications Environment,
(MICE): A System for Prototyping and Evaluating
Communications Services

ISS-87 Conference, March 1987.

The VMEDbus Specification: Revision C.1
Motorola Series in Solid State Electronics.
Printex, October 1985.

127

