Technical Report A e

Number 144

Computer Laboratory

An operational semantics for occam

Juanito Camilleri

August 1988

This is an extended version of gﬂ;&;??&%ﬁgue
UCAM-CL-TR-1235, in which we United Kingdom

include the operational semantics of phone +44 1223 763500
priority alternation. hitps:/fwww.cl.cam.ac.uk/

© 1988 Juanito Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

An Operational Semantics for occam™

(EXTENDED VERSION)

Juanito Camilleri
University of Cambridge,
Computer Laboratory,
New Museum Site,
Pembroke Street,
Cambridge CB2 3QG.

Abstract

occam is a programming language designed to support
concurrent applications, especially those implemented on
networks of communicating processors. The aim of this paper is
to formulate the meaning of the language constructs of occam
by semantic definitions which are intended as a direct
formalisation of the natural language descriptions usually found
in programming language manuals [Inmos 5]. This is done by
defining a syntax directed transition system, where the
transitions associated to a phrase are a function of the transitions
associated to its components. This method is by no means novel.
The concepts used here were introduced in [Plotkin 10] and are
applied in [Plotkin 11] where an operational semantics for CSP

- [Hoare 4] was presented. The operational semantics for a subset
of Ada is defined in [Li 8], where tasking and exception handling
are modeled. For simplicity only a subset of 0ccam is defined.
Timing, replicators and BYTE subscription are omitted. Other
features of occam which deal with the association of
components of an 0ccam program with a set of physical
resources (i.e. configurations) are also omitted since they do not
effect the semantic interpretation of a program.

* This is an extended version of technical report n9.125 from the Computing

Lab, University of Cambridge. In this extended version we include the
operational semantics of priority alternation as described in [Inmos 5].

occam is a trademark of the INMOS Grodp of Companies.

1 Introduction

This work was originally intended as an exercise in operational semantics
[Plotkin 10]. In the first version of this report [Camilleri 2], we chose to define the
main constructs of the programming language occam, but, various features of
the language were omittedg.

One of the constructs which wasn't included in the original version of this report,
is priority alternation [Inmos 5]. What exactly is priority alternation? One can
argue that the semantics of priority alternation is very similar to the semantics of
simple alternation. In fact the only extra condition that is imposed on priority
alternation is that at any instant in the computation, if more than one guarded
command can be executed in a PRIALT construct, then the one which comes first
in textual order is executed. This can be rephrased as follows:-

"A guarded command can be executed in a PRIALT construct if none of the
guarded commands which occur previously in textual order can be executed.”

In order to formalise the above statement we need a notion of which guarded
commands can be executed. In this paper we augment the operational semantics

as presented in [Camilleri 2] by including the operational semantics of the PRIALT
construct. To this aim, this paper is divided into the following sections, namely:

i. The introduction of the syntactic categories (i.e. sets) and syntax of the
language to be defined.

ii. The definition of a transition system.

iii. The definition of the static semantics.

iv. The definition of the dynamic semantics.

v. An Appendix to define certain notations used in the paper.

2 The Syntactic Categories

1. numbers Num ranged over by N.
variable identifiers Id oo
locations Loc oo i
channel identifiers Chid oo chi.
channels Chan onom e ch.
abstractions Abs oo abs.
integer expressions lexp eeror e a.
boalean expressions Bexp erornn b

© N o v A~ N

9. conditional commands Ccom ranged overby cc

" n n” " "

10. guarded commands Gcom gc.
11. commands Com oo C.

12. declarations Dec oo d.

13. actual parameters Acts nowoww acts.
14. formal parameters Forms romonom forms.

3 The Syntax

We assume that the syntactic categories Num, Id, Chid are given. Id is an infinite
set of variable identifiers while Chid is an infinite set of channel identifiers.
Locations (Loc) can be thought of as “abstract addresses”. Channels (Chan) can
be viewed as "abstract channels” via which communication takes place. We do
not want to commit ourselves to any machine architecture, but, only to the
needed intuitive properties. A better way to think about locations or channels, is
as entities which have a lifetime (or extent); they are created by a declaration
and they continue to exist throughout the execution sequence, uniess their
existence is terminated by block exit. Finally an abstraction (abs) takes the form
Aforms.c which is a syntactic representation of a set of formal parameters
together with the body of the abstraction c. :

Notation
Suppose S issome syntactic class with typical element s then s denotes a finite

S
list (possibly empty) of elements of S. Therefore s = (sq,...,s5) where for all
1=i=n, s; € S. Note ()denotesthe emptylist. ~

(The ;‘ollowing formation rules illustrate the nature of the syntactic categories
7-14).

lexp

anx=NIXla+ala-ala*al..

Bexp

b::=TRUE | FALSEla =a | bORb I NOTb I bANDbla<=ala>=al..
Ccom

ccii=b-—wclc] cc

Gcom

gc:i=chi?X —» clgcllgc

Com

ci:=skiplstoplX:=alc;clcllclIFccl WHILE b ¢ ALT gc |
PRIALTgc | chi? X I chita l d;c | X(acts)

Dec

d::=DEF X =al VAR X | CHAN chi | PROC X(forms) cl d;d

Forms

forms :: = VALUE X, VAR X, CHAN chi

For ease of presentation the occam syntax has been altered in this paper. For
example:

SEQ
o ; C4 denotes o

o]
3

PAR
collcq denotes)
<1

We are replacing n-ary combinators with binary anes and have altered the syntax
ofda list of parameters so that VALUE, VAR and CHAN parameters occur in that
order. ‘

4 Definition of a transition system.

Definition 1: A transition systemisatriple <I', T, -->> where:
' isthe set of configurations.

TCT isthesetof terminal configurations.

--> C I'? isthetransition relation

suchthat VRET VB €T —(f -> P

5 Static Semantics.

The aim of the static semantics is to distinguish the well formed commands from
those commands which are not well formed. A command is not well formed if:-

(a) it consists of two processes running in parallel such that they both can
write to a common variable. Forexample y:= 10 Il y:= 5.(None the
less two processes can read from a common variable).

(b) there are two communicating processes which do not conform with the
concept that a channel is a unidirectional and indivisible means of
communication. That is

i. A channel should not be used for input and output by the same
process.

ii. The same channel cannot act as an input (or output) to more
than one process.

/

(c) it contains a call to a process such that the actual parameters do not
conformin nature and number to the formal parameters.

Since a call to a process must conform to its declaration we require a command to
be well formed relative to some static environment SEnv which associates
process names with their declarations as defined hereafter. Let

| —> Abs where | C. Id then we can define

=1fin

SEnvI

2 SEnv, (=1d —>fi Abs)

tC
“fin

SEnv

We shall use a to range over SEnv.

We need to define a transition system <TDgat, Tstat, ~>stat> Which elaborates
the static environment whenever a procedure declaration is encountered. We
extend Dec by adding the production rule:

di:i=a

What this means is that the abstract syntax of declaration configurations
includes static environments; it does not mean that the abstract syntax of
declarations does so.

{<d>}

{<a>}

Lstat

il

Tstat

~>csat C I'stat X Tstat

Rule
a + < PROC X (forms)c > -->gtat < a[X+—> Aforms.c] >
The above rule is read — Given the static environment a the definition of the

abstraction PROC X (forms) ¢ is well formed and yields the augmented
environment a[X —> Aforms.c].

Let the property of being well formed be denoted by .

For example a ¢ means that c is well formed relative to the static
environment a.

Before defining + on the structure of the syntax let us define the following
functions which will be required in the definition of + .

RI(c) — isthe set of read variables of command c.

WI(c) — isthe set of write variables of command c.

INCH(c) — isthe set of channel identifiers being used forinputin c.
OUTCH(c) — is the set of channel identifiers being used for outputin c.

We also need to formalise the meaning of actual parameters conforming in
nature and number to formal parameters. Consider the command X(acts) such
that a(X) = Aforms.c.Note that acts is a list of actual parameters and forms is
a list of formal parameters. These two lists should have the same length (say n).
Then forall 1= i =n, the nature of a; € acts must conformto the type expected
by f; € forms. We use k= acts]forms to denote that the actual parameters
conform to the corresponding formal parameters as defined hereafter.

EOT0 where () isthe empty list.

= af VALUE X' where a is an integer expression and X' is a VALUE
parameter.

EXTVAR X" where X is an identifierand X" is a VAR parameter.

= chi T CHAN chi’ where chi is a channel identifier and chi' is a CHAN
parameter.

The following is a definition of RI, Wi, INCH, OUTCH by structural induction,
expressed in tabular form, instead of using the format of rules, to keep the
definitions concise.

Forinteger expressions

n X ao Op a,
RI %) {x} Rl(ao) U Ri(a,)

whereop € {+, -, *, ..}
Wi(a) , INCH(a) , OUTCH(a) areall &.

For boolean expressions

t NOTb bo bop b, ao relop a,
0 et . e |
Rl [0} RI(b) RI{bo)U RI(b,) Ri(ao) U Ri(a,)

where t € { TRUE, FALSE }
relop € {=, <= ,>=, ...} and bop € {AND, OR}

WI(a) , INCH(a) , OUTCH(a) are all &.

For conditional commands

RI Ri(b) U Ri{c) Rl(cco) U Ri(cc,)
Wi Wi(c) Wi(cco) U Wi(cc,)
INCH I INCH(c) INCH(cco) U INCH(cc,)

OQUTCH I OUTCH(c) OUTCH(cco) U OUTCH(cc,)

For guarded commands

chi?X-—»¢ g¢o [] gc,
RI Ri{c) Rl{gco) U Rl(gc,)
Wi {X} U Wi(c) Wl(gco) U Wi(gc,)
INCH {chi} U INCH(c) INCH(gco) U INCH(gc,)
OUTCH OQUTCH(c) OUTCH(gc,) U OUTCH(gc,)
For commands
skip stop chi?X | chil a Co i €,

R o | o | o | n@ Ri(co) U RI(c,
wi %) %) {xX3} %) Wl(cq) U Wi(c,)
INCH %) & {chi} %) INCH(co)U INCH(c,)

OUTCH I %) & %) {chi} | OUTCH(co)UOUTCH(c,)

Rl Ri(co) U Rl(c,) Rl(cc) Ri(a)
Wi Wi(co) U WI(c,) Wi(cc) {X}
INCH INCH(co) U INCH(c,) INCH(cc) &
OUTCH OUTCH(co) U OUTCH(c,) | OUTCH(c) %

WHILE b ¢ ALT gc PRIALT gc d;c

RI RI(b) U Ri(c) Ri(gc) " Rl(ge) Rl(c)

wi I Wi(c) Wi(ge) Wi(gc) Wi(c)
INCH I INCH(c) INCH(gc) INCH(gc) INCH(c)
OUTCH | OUTCH(c) OUTCH(gc) | OUTCH(gc) OUTCH(c)

To define INCH(c), OUTCH(c), RI(c), Wi(c) when ¢ is a call to a process P:
Suppose a(P) = Aforms.c where the list of formal parameters

forms = VALUE X', VAR X", CHAN chi'.
The call to the process P should take the form P(acts) where the list of actual

parameters acts = n, X, chi conforms in nature and number to the
list of formal parameters (l e. t=acts1‘forms as discussed previously).

RI RiCc [X/ X"
Wi WiCc [X/ X"])
INCH INCH(¢ [chi / chi'l)

OUTCH I OUTCH(¢ [¢chi / ¢chi'T)

Finally we can define a k¢ by structural induction.

We assumethat aka and ab b holdforanyinteger or boolean expression.

For conditional commands

abk-c

akb b ¢

For quarded commands

abc¢

alb chi?X—» ¢

For commands

a kcco a kccq

ak-cco] caq

a bl gcp a k- gcy

a b gcoll gt

a F-skip a Fstop a-X::=a abchi?X ablchila
abcc akc abgc ablgc atc¢p ak-cy
a IFcc aWHILEb ¢ aFALTge ab PRIALTgc abl cg;cq
a k¢ a ¢y
- if (WIi(co) U Rl{cg)) N Wi(cy) = O
abkco ll ¢ and (Wl(c1) U Rl(cy)) N Wi{cp) = &
and INCH(cg) N OUTCH(cp) = O
and INCH(c1) N OUTCH(cy) = &
and INCH(cg) N INCH(cq) = &
and OUTCH(cg) N OUTCH(cy) = &
akd - >stat a' a kc
alk d;c
akc
................ If a(X) = Aforms.c and F acts T forms
a b X(acts)

10

6 Dynamic Semantics

(a) Semantic Domains

Given the syntax and syntactic categories defined earlier the following semantic
domains can be constructed to be used in the dynamic semantics. The first
semantic domain represents that section of the environment which associates
a finite set of identifiers with numbers, locations or abstractions. Let

LEnv, = | — (Num + Loc + Abs) wherel C, Id then we candefine

LEnv = Ed LEnv, (=Id —fin (Num + Loc + Abs))
c 1 :

fin

We shall use p torange over LEnv.

The next semantic category to be introduced represents the remaining section of
the environment which associates channel identifiers with abstract channels. Let

CEnv,, = CH — Chan where CH C, Chid then we can define

CEnv = X CEnvy, (= Chid —>fin Chan)

CH C chid
fin

We shall use y torange over CEnv.

The semantic domain which represents the store is defined as follows:

Storesy = L — Num where L C.. Loc then we candefine

fin

Stores = 2 Storesy (= LoC —>fn Num)

LC toc
fin

We shall use g torange over Stores.

The semantic domains LEnv and CEnv give the notion of an environment when
paired to form the semantic domain Env as used hereafter.

Let Env = (LEnv, CEnv) then Envis made up of:

1. the associations between a finite set of identifiers (found in LEnv), with
either locations, numbers or abstractions.

2. the association between a finite set of channel identifiers (found in CEnv)
with abstract channels.

Envis ranged over by (p, y) with the understanding that p ranges over LEnv
and y rangesover CEnv.

11

In the above model of an environment the distinction between channel
identifiers and variable identifiers is explicit (i.e. channel identifiers and
identifiers are syntactically distinguished). One can adopt a different model
where any identifier falls under one class hence:

Env = Id —fin (Num + Loc + Abs + Chan)

In this case an identifier must be "tagged” with a type (i.e. whetheritis
associated with a channel or otherwise) and “type checking” isrequired.

Going back to the original model, in the environment (p, y) an identifier X can
be associated with :-

(a) anumber — when X is defined to be a constant. Therefore

p(X) = n.
(b) alocation — when X isdefined to be a variable. Therefore p(X) = I

Given a store 0 with domain L (denoted by 0::L) such
that | € L then o(l) = n, where n isthevalue held
in location I. However if | isinthe range of p, but,
not in the domain of o ,then the dangling
reference problem is encountered.

(¢) anabstraction — when X isthe name given to a process of the form
: PROC X (forms) c. Thatis p(X) isdenoted by Aforms.c.

On the other hand a channel identifier chi is associated with an abstract
channel. Thatis y(chi)=ch. :

(b) The handling of declarations

Before proceeding with the dynamic semantics, it is useful to discuss the
declaration of constants, variables, channels and abstractions. A declaration in
occam is used to introduce an identifier for use in the current block. There
are channel identifiers. These are introduced by a CHAN declaration and
associate a channel identifier with an abstract channel. There are also
identifiers which refer to locations (or constant values) which are introduced
by a VAR (or DEF) declaration. Finally there are named processes which are
introduced via a PROC declaration. When a new identifier X is declared
within a block, it has scope only within the block. If X already exists in the
environment outside the block of the new declaration then the latter
declaration hides the former one. Hence a gap is created in the scope of the
former declaration of X. We use the following notation to denote the above.

12

Let B::B meanthat § hasdomain B.
Forany By, By and B :: By, By :: B, wedefine B = Bo[B;1] :: Bo UB, by:

Bu(X) if (X €B;)
BX) =

Bo(X) if (X €Bp\B,)

Using the above definition, we denote the updating of environment
(pos Yo) :: (To, Co) by (p1,v1) :: (11, Cy), @s (polp1l, volyr 1) (I UL, (CoUCy))

(c) The transition relations

The transition relations, encountered in the various transition systems to be
defined later, are relative to the environment. Therefore if s is an element of
some syntactic category we write :

(p,Y) = <s,0> ->5 <s',0'>

and read — In a given environment (p, y), one step in the execution of s in
store ¢ yields s’ and store ¢’. For the purpose of keeping the rules concise,
certain rules deal with more than one possible outcome of an evaluation. For
example ‘ :

(p,y) H<s,0> ->; <s',0'> | <s",0"'>

is read as — Inenvironment (p,y), one step in the evaluation of s instoreo
can eitheryield s’ and stored’, or, s’ and store "’

Note : In any of the transition rules that follow, failure
denotes failure to satisfy a boolean condition while abortion
denotes the explicit failure to reach a final state (i.e. the explicit
non-termination of a construct which leads to the abortion of a,
program)

13

(d) The transition systems

Integer Exgressions

For integer expressions we have the transition system <T'z, Ta, -->5 > such

that

=3
o
]

{<a,o>} U Z

Evaluation of numbers.

(p,Y) = <N,g> -->53 n

Evaluation of identifiers.

(p,Y) F <X,0> -->5 p(X)

(p,Y) F <X,0> >3 o p(X))

Evaluation of binary operations

sum

(p,y) F <ag,0>->5 <ag’, 0>

(p,y) = <ag+ay,0>-->5 <ap' +aq,0>

(p,Y) - <a1, 0>->5 <at’, o>

(p,Y) - <n+aq, ¢>-->3 <n + a1’, o>

(p,Y) - <n+m,0>->3 n+m

Similarly for - * e.t.c

14

where n is the number
representing the piece of syntax N.

if p(X) isanumber or abstraction

if p(X) = | and o(l) is a number

Lists of Integer Expressions

For Jists of integer expressions we have the transition system <T'a, Ta, —~>a >
such that

'a = {<g,o>} u z
Ta = _Z___
Rules

(pY)F <a,0>-->3 <a’,a> | n

(p.Y)F<(a,a), 0> >3 <(a’,3a),0>1 (n, <a,o>)

(p,y) F<a,o>->a n

(p:Y)"'—<(g: ())IU> "->_§_ g

Boolean Expressions

For boolean expressions we have the transition system <T'p, Tp, —->p > such
that

'y = {<b,0>} U {true, false}
Tpb = {true, false}
Rules

(p,Y) = <TRUE, 0> -->p true

(p,y) - <FALSE, 0>-->}, false

15

Relational operators

(p,y) F <ag, 0> >, <ag’, o>

- - -

(p,Y) F <ag=aj,0> ~->p <ap'=ai, o>

(p,Y) - <ay, 0> -->; <ay’, o>

(p,Y) - <m=aq,0>-->p <m=aq’, 0>

(p,y) =<m = n,o> -->p true if m=n

(p.Y) - <m=n, o> -->p, false if mMm# n

Similarly for >= <= et.c

Boolean operators.

NOT

(p,Y) - <b,0> -->p true | false | <b’,0>

(p,Y) = <NOT b,0> -->}, false | true | <NOTb', 0>

AND

(p,y) F <bg, 0> -->p false | true | <bg’, 0>

(p,yY) = <bpAND by, 0> -->} false | <bq,0>1<bg’ AND by, 0>

(p, y) = <bg, 0> -->p true | false | <bg', o>

(p,Y) = <bg OR by,0>-->p true | <bj, 0> 1 <bp’ OR by, 0>

16

Conditional Commands

For conditional commands we have the transition system <T¢, Tee, -->cc >
such that

Tee = {<c,0>} U {<c, 0>} U {failure}
Tee = {<¢,a>} U {failure}
Rules

(p,y)i——<b,a> ->p true | false | <b’,o>

(p, V) <b-—»c, 0> --> <c, 0> | failure | <b'—»c¢,o>

(p,Y) F <cep, 0> > <c, 0> | <ccp',0>

(p,y) F <ceg [lecy, 0> —->¢ <c,0> | <ccp' [} ccp, 0>

(p,y) — <ceg, 0> —->¢ failure

(p,) F <ceolleeq, > ->¢ <failureflccy, 0>

(p,y) F <cct, 0> > <c 0> | <ccy',0>

(p,y) - < failure[lcci, 0> ~->¢c <c¢, 0> | <failure [] ccq1’, 0>

(p.Y) F <ccp, 0> > failure

(p,y) F <failure[lccy, 6> -->c failure

Declarations

For Declarations we have the transition system < Tq, T4, -->4 >. We extend
Dec by adding the production:

d::=(p,y)
As before this means that the abstract syntax of declaration configurations

idncludes environments; it does not mean that the abstract syntax of declarations
0es so.

T4

Ta= {<(p.y)>}

{<d>}

17

Rules

Constant declarations

(py) H<a,o> ~->5 <a’,o>

(p,Y) W<DEF X = a> -->4 <DEF X = a'>

(p, Y) F<DEF X = n> >4 <(p[X —n],y)>

Variable declarations

(p,y) F<VARX> -->¢4 <(p[X+=>1],y)>

Channel declarations

(p, Y) = <CHAN chi> -->4 <(p, ylchi—> ch})>

Procedure declarations

(p, y) F<PROC X {forms) ¢> -->4 <(p[X > Aforms.c], y) >

Composition of declarations

(p, V) F <do> >4 <do'>

(p.Y) F <do; d;> -->¢4 <do'; d,>

(plpol, ylyol) F <d,> >4 <d,'>
(p, V) F <(po,Yo) : d;> —->d <(po, Yo); d,'>

(pl Y) I_ <(P01 Yo) ' (plu Yl) > '"'>d <(PO[P1]: YO[Yll) >

18

Commands

Definition 2: A labelled transition system is a quadruple <I', T, ®, -->> where:
T isthe set of configurations.

TCT isthesetof terminal configurations.

® isasetoflabels.

~> C(I'x®xT)+(I'xT) isthetransition relation

suchthat VB €T VB' €T Vped — (B 2 B)Y A —(B --> B

For Commands we have a labelled transition system <T¢, T¢, ®¢, -->> where
@c= {chi7n | n € Num} U {chi!n | n € Num}. The labels specify the
direction of flow of information when a communication takes place.” One
understands the execution of ¢g Il ¢1 as the interleaved execution of “grains of
action” of co and c1. For example when ¢ starts a grain of action, it completes it
before ¢y can interrupt by interleaving. When two processes running in parallel
synchronize to communicate via some channel chi, (i.e. one process inputs from
channel chi, while simultaneously the other outputs to the same channel), this is
considered as an atomic (unlabelled) transition.

I'e= {<c,0>} U {<o>} U {abortion}

Te = {<o>} U {abortion}

The Refusal and Acceptance sets

Earlier on we mentioned that in order to define the operational semantics of the
PRIALT construct, we need a notion of which guarded commands can be
executed. For example, consider the following construct:

(PRIALT chig ? Xg —»co [] chii 2X3 —»cq) 1l ¢

According to the semantics of the PRIALT construct, the guarded command
chi1?X1 —»cq1 will only execute provided a construct of the form chijln can
execute in ¢z and a construct of the form chig!n cannot execute in c3. In other
words we might say that chij?Xy —»cq can be executed provided ¢ refuses to
communicate via channel chig, but, does not refuse to communicate via channel
chii. In order to formalise this concept of a piece of syntax refusing
communication via some channels, we define the relation ref CCom X P, (Chan)
by rules (i) - (xiii). If (p, y) - c ref R holds, we say c refuses R in environment
(p,Y)- We call R a refusalset of ¢ in environment (p, y). :

(i) (p,y) Fskip ref R foranyR. (i) (p,y) F stop ref R foranyR.
(iii) (p,y) =X:=a ref R foranyR. (iv) (p,y)chi?X ref R foranyR.

(v) (p,y)FALTgc ref R foranyR. (vi) (p, Y)FPRIALT gc ref R foranyR.

19

(vii) (p,)i WHILEDb c ref R foranyR. (viii) (p, y)F IF cc ref R foranyR.
(ix) (p,y)F X{acts) ref R foranyR. (x) (p,y)d;cref R foranyR.
(xi) (p,y)F chita ref R forany R provided an.

(xii) {(p,y)chitn ref R forany R provided y(chi) ¢ R.

(xiii) (p, y)co ref R
foranyR.

(p, Y)F coic, ref R

(xiv) (p,Y)Fc ref R (p,y) ¢ ref R
______ - foranyR.
(p, V) collc, ref R

Given a construct of the form (PRIALT gcg [] gc1) Il ¢ we will only allow gcq to be
evaluated provided c; refuses communication via any of the channels included in
gcp. Therefore we need to know which channels are included in gcp. In order to
formalise this notion we define the relation acc C GCom X P, (Chan) by
rules (i) - (ii) below. If (p, Y)F-gc ace A holds, we say gc accepts A in environment
(p, V). We call A the acceptance set of gc in environment (p, y).

(i) (p, Y)Fchi?X —»c ace {ch} where y(chi) = ch.

(i) (p,y)Fgco acc A (p,y)Fgecq ace A

(p, Y)Fgeollgerace AUA'

For example, in an environment (p, y), if y(chig)=chg and y(chij) =chy then
(PRIALT chig ? Xg —cg [] chiq ? X1 —»¢1) accepts {chg, cht}.

When we are dealing with the syntactic category of commands, ¢, the transition
relation takes the form:

(p,y) FR <co> ->¢ <, 0'>

This means (p,y) — <c¢, 0> -->¢ <d,0'>, provided the following restriction
holds; if ¢ is executing in parallel with any construct ¢g, then ¢g refuses R.

¢ ¢
Similarly (p,y) FRr <¢, 0> -->¢ <c,0'> means (p,y) - <¢ o> --> <, a'>
provided the same restriction as mentioned above holds. (Note ¢ denotes a label)

20

Rules

STOP

(p,y) R <stop,c> -->. abortion

SKIP

(p.Y) FR <skip, 0> -->. <o>

Assignment
(p,y) - <a,6> ->3 n | <a',o>

(p,Yy) FR<X:=a,0> ->¢ <a[p(X)—>n]> | <a’, 0>

SEQ
(p,y) FR <cg, 0> —->¢ <cg',0'> | <¢'> | abortion

(p,Y) FR <cg; c1,0> —->¢ <cg'; ¢1,0'>1 <cq,0'>1 abortion

PV <cc, 0> > <c o> I <cc’,0> | failure

(p,YY FR<IFcc,o> -—->¢ <c, 0> | <IF ¢/, 0> |abortion

WHILE

(p,y) F<b,o> -->p true I <b', o>

(p,y) - <b, o> -->p false

(p.Y) FR<WHILED ¢, 0> > <o>

21

ALT

yiehi)n
(p,y) FR <ALTchi?X —» ¢, 0> -—->¢ <c, o[p(X)+—> n]>

y(chi)?n
(p,y) FR<ALTgcg,0> -~>¢ <cg,0'>

y(chi}?n
(p,y) FR<ALTgcgllgcr, o> -->¢ <cg,0'>

y(chi)?n
(p,y) FR <ALTgcy, 0> —->¢ <q,0'>

y{ehi}?n T
(p,y) FR <ALTgco [1gci, 0> -—->¢ <cp,0'>

PRIALT

y(chi)?n
(p,y) FR <PRIALTchi?X —» ¢,0> -->¢ <c o[p(X)+—>n]>

y(chi)?n
(p,Y) FR<PRIALT gcg, 0> -->¢ <cg,0'>

ylehi)n

(p,Y) FR<PRIALTgcgllgcr,0 > -—-> <c¢g,a'>

y(chi)?n
(p,Y) FR <PRIALT gcq, 0> > <cq,0'> (p, Y)Fgco ace A
S if ACR
y(chi)?n
(p, Y) =R <PRIALT g¢o [lgct, 0> —->¢ <cy,0'>

It is evident that the rules for ALT and PRIALT are very similar. The only
difference isthat in the last rule above we have added the condition that g¢y can
only be executed in a context where all the elements of the acceptance set of gcg
are refused. :

22

PAR
(i)
(p.Y) FR<Co, 0> —->¢ <cp',0'> | <o'> | abortion (p,Y) -ciref R

(p.Y) FR<co Il €1, 0> —->¢ <co'll ¢q,0'> 1 <cqy,0'> 1 <cq;stop, 0>

(ii)
(p,y) FRr<cl, 0> —->¢ <¢1',0'> | <o'> | abortion (p,Y) Fco ref R

(oY) FR<coll c1, 0> —->¢ <coll ¢1',0'> | <cg,0'>1 <cg; stop, o>

(i)
y(chi)?n
(p,Y) FRy<cCp, 0> -->¢ <cg’,0'> (p,y) ¢ ref Ry

y(chi)!n
(o, V) FR;<c1,0> —->¢ <c1',0> (p,y) 1 ref Ry

(p,Y) FRouR; <coll ¢y, 0> —->¢ <o’ It ¢1',0'>

(i)
y(chi}?n
(p,Y) FRy<Co,0> -->¢ <0’> (p,y) o ref Ry

y(chi)In
(P:Y) lh—Rl <c1lo> -">C <g> (p,Y)I_C‘] I_ﬂ R()

(P, Y) FRoUR,; < ll ¢, 0> —>¢ <o'>

(v) _
y(chi)?n
(B, Y) FRy<C0,0> ->c <¢'> (p,y)Fco ref Ry

y{chi)!n
(p, V) FRy <c¢p,0> -->¢ <ct', 0> (p,Y) - 1 ref Rp

(p,¥) FRyUR, <coll ¢y, 0> —->¢ <¢q',0'>

23

(vi)

y(chi)?n
(p,Y) FRy <co, 0> —->¢ <cg',0'> (p,y) b o ref Ry
y(chi)in
(p,y) FR, <c1,0> —->¢ <o> (p,y)l—q ref Ry

(p,Y) }—ROURX <cllcy, 0> -->¢ <cg',o'>

There are similar rules corresponding to rules (iii) - (vi) when cg is performing an
output and ¢4 is performing an input.

(vii)
y(chi)?n
(p,Y) FR <o, 0> -->¢ <cp',0'> (o, V) Fc1 ref R
y(chi)?n
(p,Y) FrR<coll¢1,0> —->¢ <cg'llcy, o'>
(viii)
y(chi)In
(0, Y) FR <cg, 0> -->¢ <, 0> (p,Y) ¢y ref R
y{chi)in
(e.Y) FR <co ¢y, 0> ->c <cg'lleq, o>
(ix)
y(chi)?n
(p,Y) FR <cg, 0> -> <o'> (p,Y) ¢t ref R
ychi)n
(p,Y) FR<coll ¢1, 0> -->. <cy,0'>
(x) _
y(chi)!n
(p,Y) FR <cp, 0> —->¢ <o> (p,Y) Fci ref R

y(chi)n
(p,Y) FR<coll 10> -->¢ <cq,0>

There are similar rules corresponding to rules (vii) - (x) when ¢4 is involved in a
communication.

Input
y(chi)?n
(p,Y) FR <chi?X,0> -->¢ <g[p(X)—>n]>

24

Output
(p.y) F <a,o>->3<a",o0>

(p,y) FR <chila,o>-->¢ <chila',o>

y(chi)ln
(p,y) FR <chiln,o> > <o>

Block

Informally, to execute d; ¢ from o:
(i) Expand d from o given (p,y) yielding (po, Yo)-
(ii) Execute ¢ from o given (plpol, Ylyol) vielding the resulting state of the

execution.

(p.Y) F <d> —->¢4 <d'>

pYHFR <d;c,0> > <d'; ¢,o>

(plpol, YvoD) FR <c, 0> —->¢ <c,0'> | abortion

(p, v) FR <(po, Yo): €, 0> ->¢ <(po,Yo): c',a'> 1 abortion

(plpol, YlYol) FR <€ 0> —->¢ <o'>

(. Y)FR <(po,Yo); €, 0> —~>¢ <a'>

A call toa PROC

S
=
T
A
[¢))
Q
\
Vv
]
>

| <a,o>

0> -->c <P(n, X, chi),a> 1 <P(a', X, chi), o>

<
=
T
w
A
A
||fu
1<
[a)

(P/Y) }——R <P(D_=r 2(___1 C=hi),0>"'>c <C[Q/é|] [

1<

/X"] [chi / chi'], 0>

where p(P) = MVALUE X', VAR X", CHAN chi').c such that k&= acts] forms as
discussed previously. Note: A PROC definition is non-recursive in standard
occam.

25

7 Conclusion

In this report an interleaving semantics of the main constructs of occam has
been presented. The original version [Camilleri 2] has been extended by the
introduction of rules that define the semantics of priority alternation. The

addition of rules for replicators and BYTE subscription should be straight
forward.

8 Acknowledgements

| express my thanks to Prof. Glynn Winskel for encouraging me to work on the
subject and for his advice and comments. | would also like to thank
Dr. Alan Mycroft for his helpful feedback. Thanks are also due to Trinity College
who are kindly supporting my stay at Cambridge.

9 Appendix
The aim of this appendix is to explain some notation used throughout this paper.

Let A and B be sets.

1. AUB denotes the union of A and B.

2. A+ B denotes the disjoint union of A and B.
3. A Cg, B denotesthat Aisa finite subset of B.

4. A —;, B denotesthe set of all partial functions with domains which are
finite subsets of A.

5. A —> B denotesthe set of all total functions with domain A.

6. Psn(A) denotes the finite power set of A.

Let A; besets (for 0=i=n) then) Ai = Ay + ... + Ap

0=<isn
Substitution
f a=(a,..,a,) and b = (b,,..,b,) thenweuse
c [a/b] todenote c [a,/b,], .. ,[an/ bn]

where ¢ [aj/ bj] means substitute all free occurrencesofb; in ¢ by aj.

26

10 References

[Boudol -
Castellani 1]
[Camilleri 2]

[Dijkstra 3]
[Hoare 4]
[Inmos 5]
[Jones 6]
[Khan 7]
{Li 8]
[Milner 9]
[Plotkin 10]
[Plotkin 11]
[Roscoe -

Hoare 12]

[Roscoe 13]

G.Boudol, l.Castellani. Concurrency and Atomicity. INRIA
SOPHIA-ANTIPOLIS 06560 Valbonne, France.

Juanito Camilleri. An operational semantics for occam.
Computing Lab, University of Cambridge. Technical Report
no 125. February 1988.

Edsger.W.Dijkstra. A Discipline of Programming. Prentice-
Hall International Seriesin Automatic Computation.

C.A.R.Hoare. Communicating Sequential Processes.
Prentice-Hall International Seriesin Computer Science.

INMOS Itd. occam Programming Manual. Prentice-Hall
International Seriesin Computer Science.

Geraint Jones. Programming in occam . Prentice-Hall

International Series in Computer Science.

Gilles Khan. Natural Semantics. Rapports de Recherche N°601
INRIA SOPHIA-ANTIPOLIS 06560 Valbonne, France. Février 1987.

Wei Li. An Operational Semantics of Tasking and Exception
Handling in Ada. Department of Computer Science
University of Edinburgh. December 1981.

Robin Milner. A Calculus of Communicating Systems. Lecture
notes in Computer Science. Springer-Verlag series n0.92.

Gordon.D.Plotkin. A Structural Approach to Operational
Semantics. Department of Computer Science, Aarhus
University Denmark. Sept 1981.

Gordon.D.Plotkin. An Operational Semantics for CSP.
Department of Computer Science, University of Edinburgh.
Internal Report CSR-114-82.

A W.Roscoe, C.A.R Hoare. The laws of 0ccam programming.
Oxford University. Technical monograph PRG-53.

A W.Roscoe. Denotational Semantics for occam. Lecture
notes In Computer Science. Springer-Verlag series no.197.

27

