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Michael J.C. Gordon

Computer Laboratory SRI International

New Museums Site Suite 23

Pembroke Street Millers Yard

Cambridge CB2 3QG Cambridge CB2 1RQ

Abstract

Formal reasoning about computer programs can be based directly on the
semantics of the programming language, or done in a special purpose logic
like Hoare logic. The advantage of the first approach is that it guarantees
that the formal reasoning applies to the language being used (it is well
known, for example, that Hoare’s assignment axiom fails to hold for most
programming languages). The advantage of the second approach is that
the proofs can be more direct and natural.

In this paper, an attempt to get the advantages of both approaches is
described. The rules of Hoare logic are mechanically derived from the
semantics of a simple imperative programming language (using the HOL

system). These rules form the basis for a simple program verifier in which
verification conditions are generated by LCF-style tactics whose valida-
tions use the derived Hoare rules. Because Hoare logic is derived, rather
than postulated, it is straightforward to mix semantic and axiomatic rea-
soning. It is also straightforward to combine the constructs of Hoare logic
with other application-specific notations. This is briefly illustrated for var-
ious logical constructs, including termination statements, VDM-style ‘re-
lational’ correctness specifications, weakest precondition statements and
dynamic logic formulae .

The theory underlying the work presented here is well known. Our con-
tribution is to propose a way of mechanizing this theory in a way that
makes certain practical details work out smoothly.

1Earlier versions of this paper appear as University of Cambridge Computer Laboratory Technical
Report No. 145, and in the book Current Trends in Hardware Verification and Automated Theorem

Proving , edited by G. Birtwistle and P.A. Subrahmanyam, Springer-Verlag, 1989.
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1 Introduction

The work described here is part of a long term project on verifying combined hard-
ware/software systems by mechanized formal proof. The ultimate goal is to develop
techniques and tools for modelling and analysing systems like computer controlled
chemical plants, fly-by-wire aircraft and microprocessor based car brake controllers.
These typically contain both software and hardware and must respond in real time
to asynchronous inputs.

This paper concentrates on software verification. A mechanization of Hoare logic
is constructed via a representation of it in higher order logic. The main experiment
described here is the implementation, in the HOL system [13], of a program verifier
for a simple imperative language. This translates correctness questions formulated in
Hoare logic [16] to theorem proving problems (called ‘verification conditions’) in pure
predicate logic. This is a standard technique [17], the only novelty in our approach is
the way rules of the programming logic are mechanically derived from the semantics of
the programming language in which programs are written. This process of generating
verification conditions is implemented as a tactic2 in HOL whose validation part uses
the derived Hoare rules; it is thus guaranteed to be sound. This way of implementing a
verifier ensures that theorems proved with it are logical consequences of the underlying
programming language semantics.

Work is already in progress [20] to prove that the semantics used by the verifier
(which is described in Section 5 below) is the same as the semantics determined by
running the programs on a simple microprocessor. When this proof is completed,
it will follow that theorems proved using the verifier are true statements about the
actual behaviour of programs when they are executed on hardware.

To explore the flexibility of representing programming logics in higher order logic,
three well-known programming logics are examined. Although we do not construct
mechanizations of these here, it is shown that doing so would be straightforward.

There is no new mathematical theory in this paper. It is purely a contribution
to the methodology of doing proofs mechanically. We hope that our example verifier
demonstrates that it is possible to combine both the slickness of a special purpose logic
with the rigor of reasoning directly from the reference semantics of a programming
language. We hope also that it demonstrates the expressiveness of higher order logic
and the flexibility of Milner’s LCF approach [11, 30] to interactive proof. The contents
of the remaining sections of the paper are as follows:

Section 2 is a description of the example programming language that will be used.

Section 3 is a brief review of Hoare logic. The presentation is adapted from the
book Programming Language Theory and its Implementation [14].

Section 4 outlines the version of predicate logic used in this paper.

Section 5 gives the semantics of the language described in Section 2 and the
semantics of Hoare-style partial correctness specifications.

Section 6 discusses how partial correctness specifications can be regarded as abbre-
viations for logic formulae. The axioms and rules in Section 3 then become derivable
from the semantics in Section 5.

Section 7 is an account of how the derived axioms and rules of Hoare logic can be
mechanized in the HOL system.

Section 8 is a brief introduction to tactics and tacticals.

2Tactics are described in Section 8 below. The idea of implementing verification condition gen-
eration with tactics was developed jointly with Tom Melham.
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Section 9 shows how verification conditions can be generated using tactics.
Section 10 explains how a weak form of termination statements can be added

to Hoare logic and the necessary additional axioms and inference rules derived from
suitable definitions. Additional mechanized proof generating tools (in HOL) are also
described.

Section 11 explains how VDM-style specifications, weakest preconditions and dy-
namic logic can be represented in higher order logic.

Section 12 contains concluding remarks and a brief discussion of future work.

2 A simple imperative programming language

The syntax of the little programming language used in this paper is specified by the
BNF given below. In this specification, the variable N ranges over the numerals 0,
1, 2 etc, the variable V ranges over program variables3 X, Y , Z etc, the variables E ,
E1, E2 etc. range over integer expressions, the variables B, B1, B2 etc. range over
boolean expressions and the variables C, C1, C2 etc. range over commands.

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

B ::= E1=E2 | E1 ≤ E2 | . . .

C ::= skip

| V := E
| C1 ; C2

| if B then C1 else C2

| while B do C

Note that the BNF syntax above is ambiguous: it does not specify, for exam-
ple, whether if B then C1 else C2 ; C3 means (if B then C1 else C2) ; C3 or
if B then C1 else (C2 ; C3). We will clarify, whenever necessary, using brackets.
Here, for example, is a command C to compute the quotient Q and remainder R that
results from dividing Y into X.

R := X;

Q := 0;
while Y ≤ R do

(R := R − Y ; Q := Q + 1)



















C

3 Hoare logic

In a seminal paper, C.A.R. Hoare [16] introduced the notation {P} C {Q} for speci-
fying what a program does4. In this notation, C is a program from the programming

3To distinguish program variables from logical variables, the convention is adopted here that the
former are upper case and the latter are lower case. The need for such a convention is explained in
Section 5.

4Actually, Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter form is now
more widely used. Note that some authors (e.g. [15]) use {P} C {Q} for total correctness rather
than partial correctness.
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language whose programs are being specified (the language in Section 2 in our case);
and P and Q are conditions on the program variables used in C.

The semantics of {P} C {Q} is now described informally. A formal semantics in
higher order logic is given in Section 5 below.

The effect of executing a command C is to change the state, where a state is simply
an assignment of values to program variables. If F [X1, . . . , Xn] is a formula containing
free5 program variables X1, . . . , Xn, then we say F [X1, . . . , Xn] is true in a state s if
F [X1, . . . , Xn] is true when X1, . . . , Xn have the values assigned to them by s. The
P and Q in {P} C {Q} are logic formulae containing the program variables used in
C (and maybe other variables also).
{P} C {Q} is said to be true, if whenever C is executed in a state in which P is

true, and if the execution of C terminates, then Q is true in the state in which C’s
execution terminates.

Example

{X = 1} X := X + 1 {X = 2}. Here P is the condition that the value of X is 1, Q is
the condition that the value of X is 2 and C is the assignment command X := X + 1
(i.e. ‘X becomes X + 1’). 2

An expression {P} C {Q} is called a partial correctness specification; P is called
its precondition and Q its postcondition.

These specifications are ‘partial’ because for {P} C {Q} to be true it is not nec-
essary for the execution of C to terminate when started in a state satisfying P . It is
only required that if the execution terminates, then Q holds.

Example

{T}
R := X;

Q := 0;
while Y ≤ R do

(R := R − Y ; Q := Q + 1)



















C

{X = R + (Y × Q) ∧ R < Y }

This is {T} C {X = R + (Y × Q) ∧ R < Y } where C is the command indicated by
the braces above. The formula T making up the precondition is the universally true
formula; the symbol ∧ denotes logical conjunction (i.e. ‘and’). The specification is
true if whenever the execution of C halts, then Q is the quotient and R is the remainder
that results from dividing Y into X. It is true, even if X is initially negative. 2

A stronger kind of specification is a total correctness specification. There is no
standard notation for these. We will use [P] C [Q].

A total correctness specification [P ] C [Q] is true if and only if the following con-
ditions apply:

(i) Whenever C is executed in a state satisfying P , then the execution of C termi-
nates.

(ii) After termination Q holds.

The relationship between partial and total correctness can be informally expressed
by the equation:

5A free occurrence of a variable is one that is not bound by ∀, ∃ or λ etc.
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Total correctness = Termination + Partial correctness.

It is usually easier to prove total correctness by establishing termination and partial
correctness separately. We show how this separation of concerns is supported by our
program verifier in Section 10.

3.1 Axioms and rules of Hoare logic

In his 1969 paper, Hoare gave a deductive system for partial correctness specifications.
The axioms and rules that follow are minor variants of these6. We write ` {P} C {Q}
if {P} C {Q} is either an instance of one of the axiom schemes A1 or A2 below, or
can be deduced by a sequence of applications of the rules R1, R2, R3, R4 or R5 below
from such instances. We write ` P , where P is a formula of predicate logic, if P can
be deduced from the laws of logic and arithmetic. We shall not give an axiom system
for either predicate logic or arithmetic here. In the little program verifier that we
describe in Section 9, such logical and arithmetical theorems are deduced using the
existing proof infrastructure of the HOL system [13]. The goal of the work described
in this paper is to gracefully embed Hoare logic in higher order logic, so that the HOL

system can also be used to verify progams via the axioms and rules below.
If ` P , where P is a formula of predicate calculus or arithmetic, then we say ‘ ` P

is a theorem of pure logic’; if ` {P} C {Q} we say ‘ ` {P} C {Q} is a theorem of
Hoare logic’.

A1: the skip-axiom. For any formula P :

` {P} skip {P}

A2: the assignment-axiom. For any formula P , program variable V and integer
expression E:

` {P[E/V]} V := E {P}

where P[E/V] denotes the result of substituting E for all free occurrences of V in P
(and free variables are renamed, if necessary, to avoid capture).

Rules R1 to R5 below are stated in standard notation: the hypotheses of the rule
above a horizontal line and the conclusion below it. For example, R1 states that if
` P ′ ⇒ P is a theorem of pure logic and ` {P} C {Q} is a theorem of Hoare
logic, then ` {P ′} C {Q} can be deduced by R1.

R1: the rule of precondition strengthening. For any formulae P, P ′ and Q,
and command C:

` P ′ ⇒ P ` {P} C {Q}
` {P ′} C {Q}

R2: the rule of postcondition weakening. For any formulae P , Q and Q′, and
command C:

6The presentation of Hoare logic in this paper is based on the one in Programming Language

Theory and its Implementation [14].
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` {P} C {Q} ` Q ⇒ Q′

` {P} C {Q′}

Notice that in R1 and R2, one hypothesis is a theorem of ordinary logic whereas
the other hypothesis is a theorem of Hoare logic. This shows that proofs in Hoare
logic may require subproofs in pure logic; more will be said about the implications of
this later.

R3: the sequencing rule. For any formulae P , Q and R, and commands C1 and
C2:

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1; C2 {R}

R4: the if-rule. For any formulae P, Q and B, and commands C1 and C2:

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} if B then C1 else C2 {Q}

Notice that in this rule (and also in R5 below) it is assumed that B is both a
boolean expression of the programming language and a formula of predicate logic.
We shall only assume that the boolean expressions of the language are a subset of
those in predicate logic. This assumption is reasonable since we are the designers of
our example language and can design the language so that it is true; it would not
be reasonable if we were claiming to provide a logic for reasoning about an existing
language like Pascal. One consequence of this assumption is that the semantics of
boolean expressions must be the usual logical semantics. We could not, for example,
have ‘sequential’ boolean operators in which the boolean expression T ∨ (1/0 = 0)
evaluates to T, but (1/0 = 0) ∨ T causes an error (due to division by 0).

R5: the while-rule. For any formulae P and B, and command C:

` {P ∧ B} C {P}
` {P} while B do C {P ∧ ¬B}

A formula P such that ` {P ∧ B} C {P} is called an invariant of C for B.

3.2 An example proof in Hoare logic

The simple proof that follows will be used later to illustrate the mechanization of
Hoare logic in the HOL system.

By the assignment axiom:

Th1 : ` {X = X + (Y × 0)} R := X {X = R + (Y × 0)}

Th2 : ` {X = R + (Y × 0)} Q := 0 {X = R + (Y × Q)}

Hence by the sequencing rule:

Th3 : ` {X = X + (Y × 0)} R := X; Q := 0 {X = R + (Y × Q)}
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By a similar argument consisting of two instances of the assignment axiom followed
by a use of the sequencing rule:

Th4 : ` {X = (R − Y ) + (Y × (Q + 1))}
R := R − Y
{X = R + (Y × (Q + 1))}

Th5 : ` {X = R + (Y × (Q + 1))} Q := Q + 1 {X = R + (Y × Q)}

Th6 ` {X = (R − Y ) + (Y × (Q + 1))}
R := R − Y ; Q := Q + 1
{X = R + (Y × Q)}

The following is a trivial theorem of arithmetic:

Th7 : ` (X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y ) + (Y × (Q + 1)))

hence by precondition strengthening applied to Th7 and Th6:

Th8 : ` {(X = R + (Y × Q)) ∧ Y ≤ R}
R := R − Y ; Q := Q + 1
{X = R + (Y × Q)}

and so by the while-rule

Th9 : ` {X = R + (Y × Q)}
while Y ≤ R do (R := R − Y ; Q := Q + 1)
{(X = R + (Y × Q)) ∧ ¬Y ≤ R}

By the sequencing rule applied to Th3 and Th9

Th10 : ` {X = X + (Y × 0)}
R := X;

Q := 0;
while Y ≤ R do (R := R − Y ; Q := Q + 1)
{(X = R + (Y × Q)) ∧ ¬Y ≤ R}

The next two theorems are trivial facts of arithmetic:

Th11 : ` T ⇒ X = X + (Y × 0)

Th12 : ` (X = R + (Y × Q)) ∧ ¬Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y

Finally, combining the last three theorems using precondition strengthening and post-
condition weakening:

Th13 : ` {T}
R := X;

Q := 0;
while Y ≤ R do (R := R − Y ; Q := Q + 1)
{(X = R + (Y × Q)) ∧ R < Y }

In the example just given, it was shown how to prove {P}C{Q} by proving prop-
erties of the components of C and then putting these together (with the appropriate
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proof rules) to get the desired property of C itself. For example, Th3 and Th6 both
had the form ` {P}C1;C2{Q} and to prove them we first proved ` {P}C1{R} and
` {R}C2{Q} (for suitable R), and then deduced ` {P}C1;C2{Q} by the sequencing
rule.

This process is called forward proof , because one moves forward from axioms via
rules to conclusions. In practice, it is much more natural to work backwards: starting
from the goal of showing {P}C{Q}, one generates subgoals, subsubgoals etc. until
the problem is solved. For example, suppose one wants to show:

{X = x ∧ Y = y} R:= X; X:= Y ; Y := R {Y = x ∧ X = y}

then by the assignment axiom and sequencing rule it is sufficient to show the subgoal

{X = x ∧ Y = y} R:= X; X:= Y {R = x ∧ X = y}

(because ` {R = x ∧ X = y} Y := R {Y = x ∧ X = y}). By a similar argument
this subgoal can be reduced to

{X = x ∧ Y = y} R:=X {R = x ∧ Y = y}

which clearly follows from the assignment axiom.
In Section 9 we describe how LCF style tactics (which are described in Section 8) can

be used to implement a goal oriented method of proof based on verification conditions
[17]. The user supplies a partial correctness specification annotated with mathemat-
ical statements describing relationships between variables (e.g. while invariants).
HOL tactics can then be used to generate a set of purely mathematical statements,
called verification conditions (or vcs). The validation of the vc-generating tactic (see
Section 8) ensures that if the verification conditions are provable, then the original
specification can be deduced from the axioms and rules of Floyd-Hoare logic. The
following diagram (adapted from [14]) gives an overview of this approach.

Goal: to prove {P} C {Q}

?

• human expert

Annotated version of {P} C {Q}

?

• HOL tactics

Set of logic statements (vcs)

?

• interactive proof using HOL

` {P} C {Q} proved

The next section explains the version of predicate calculus underlying the HOL

system; the section after that is a quick introduction to Milner’s ideas on tactics and
tacticals.
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4 Higher order logic

The table below shows the logical notations used in this paper.

Predicate calculus notation

Notation meaning

T truth
F falsity
P (x) (or P x) x has property P
¬t not t
t1 ∨ t2 t1 or t2
t1 ∧ t2 t1 and t2
t1 ⇒ t2 t1 implies t2
t1 ≡ t2 t1 if and only if t2
t1 = t2 t1 equals t2
∀x. t[x] for all x it is the case that t[x]
∃x. t[x] for some x it is the case that t[x]
(t → t1 | t2) if t is true then t1 else t2

Higher order logic extends first-order logic by allowing higher order variables (i.e.
variables whose values are functions) and higher order functions (i.e. functions whose
arguments and/or results are other functions). For example7, partial correctness
specifications can be represented by defining a predicate (i.e. a function whose result
is a truth value) Spec by:

Spec(p, c, q) = ∀s1 s2. p s1 ∧ c(s1, s2) ⇒ q s2

Spec is a predicate on triples (p, c, q) where p and q are unary predicates and c is a
binary predicate. To represent command sequencing we can define a constant Seq by:

Seq(c1, c2)(s1, s2) = ∃s. c1(s1, s) ∧ c2(s, s2)

The sequencing rule in Hoare logic (which was explained in Section 3) can be stated
directly in higher order logic as:

` ∀p q r c1 c2. Spec(p, c1, q) ∧ Spec(q, c2, r) ⇒ Spec(p, Seq(c1, c2), r)

These examples make essential use of higher order variables; they can’t be expressed
in first-order logic.

The version of higher order logic that we use8 has function-denoting terms called
λ-expressions. These have the form λx. t where x is a variable and t is an expres-
sion. Such a λ-term denotes the function a 7→ t[a/x] where t[a/x] is the result
of substituting a for x in t. For example, λx. x+3 denotes the function a 7→ a+3

7The examples here are explained in more detail in Sections 5.1 and 5.2 below.
8The version of higher order logic used in this paper is a slight extension of a system invented by

Church [5]. Church’s system is sometimes called ‘simple type theory’; an introductory textbook on
this has recently been written by Andrews [1].
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which adds 3 to its argument. The simplification of (λx. t)t′ to t[t′/x] is called β-
reduction. λ-expressions of the form λ(x1, . . . , xn). t will also be used; these denote
functions defined on n-tuples. For example, λ(m, n). m + n denotes the function
(m, n) 7→ m + n.

To save writing brackets, function applications can be written as f x instead of f(x).
More generally, we adopt the standard convention that t1 t2 t3 · · · tn abbreviates
( · · · ((t1 t2) t3) · · · tn) i.e. application associates to the left.

The notation λx1 x2 · · · xn. t abbreviates λx1. λx2. · · · λxn. t. The scope of a
λ extends as far to the right as possible. Thus, for example, λb. b = λx. T means
λb. (b = (λx. T)) not (λb. b) = (λx. T).

4.1 Types

Higher order variables can be used to formulate Russell’s paradox: define the predi-
cates P and Ω by:

P x = ¬ (x x)
Ω = P P

Then it immediately follows that Ω = ¬ Ω. Russell invented his theory of types
to prevent such inconsistencies. Church simplified Russell’s idea; HOL uses a slight
extension of Church’s type system9.

Types are expressions that denote sets of values, they are either atomic or com-

pound . Examples of atomic types are:

bool, num, real, string

these denote the sets of booleans, natural numbers, real numbers and character strings
respectively. Compound types are built from atomic types (or other compound types)
using type operators. For example, if σ, σ1 and σ2 are types then so are:

σ list, σ1 × σ2, σ1→σ2

where list is a postfixed unary type operator and → and × are infixed binary type
operators. The type σ list denotes the set of lists of values of elements from the set
denoted by σ; the type σ1 × σ2 denotes the set of pairs (x1, x2) where x1 is in the set
denoted by σ1 and x2 is in the set denoted by σ2; the type σ1→σ2 denotes the set
of total functions with domain denoted by σ1 and range denoted by σ2. Lower case
slanted identifiers will be used for particular types, and greek letters (mostly σ) to
range over arbitrary types.

Terms of higher order logic must be well-typed in the sense that each subterm can
be assigned a type ‘in a consistent way’. More precisely, it must be possible to assign
a type to each subterm such that both 1 and 2 below hold.

1. For every subterm of the form t1 t2 there are types σ and σ′ such that:

(a) t1 is assigned σ′→σ

(b) t2 is assigned σ′

(c) t1 t2 is assigned the type σ.

2. Every subterm of the form λx. t is assigned a type σ1→σ2 where:

9The type system of the HOL logic is the type system used in LCF’s logic PPλ [11, 30].
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(a) x is assigned σ1

(b) t is assigned σ2.

Variables with the same name can be assigned different types, but then they are
regarded as different variables.

Writing t:σ indicates that a term t has type σ. Thus x:σ1 is the same variable
as x:σ2 if and only if σ1 = σ2. In Church’s original notation (which is also used by
Andrews) t:σ would be written tσ.

In some formulations of higher-order logic, the types of variables have to be writ-
ten down explicitly. For example, λx. cos(sin(x)) would not be allowed in Church’s
system, instead one would have to write:

λxreal. cosreal→real(sinreal→real(xreal))

We allow the types of variables to be omitted if they can be inferred from the context.
There is an algorithm, due to Robin Milner [27], for doing such type inference.

We adopt the standard conventions that σ1→σ2→σ3→ · · · σn→σ is an abbreviation
for σ1→(σ2→(σ3→ · · · (σn→σ) · · · )) i.e. → associates to the right. This convention
blends well with the left associativity of function application, because if f has type
σ1→ · · · σn→σ and t1, . . . , tn have types σ1, . . . , σn respectively, then f t1 · · · tn is
a well-typed term of type σ. We also assume × is more tightly binding than →; for
example, state × state→bool means (state × state)→bool.

4.2 Definitions

In addition to the ‘built-in’ constants like ∧, ∨, ¬ etc, new constants can be introduced
by definitions. The definition of a constant, c say, is an axiom of the form:

` c = t

where t is a closed10 term. For example, the definition of Seq given in Section 5 below
is:

` Seq = λ(C1, C2). λ(s1, s2). ∃s. C1(s1, s) ∧ C2(s, s2)

which is logically equivalent to:

` Seq(C1, C2)(s1, s2) = ∃s. C1(s1, s) ∧ C2(s, s2)

New types can also be defined as names for subsets of existing types; see Melham’s
paper for details [25]. A particular collection of constants, types and definitions is
called a theory . Theories can be hierarchically structured and stored on disk [13].

5 Semantics in logic

The traditional denotation of a command C is a function, Meaning(C) say, from ma-
chine states to machine states. The idea is:

Meaning(C)(s) = ‘the state resulting from executing C in state s’

10A term is closed if it has no free variables; i.e. all variables are bound by ∀, ∃ or λ.
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Since while-commands need not terminate, the functions denoted by commands will
be partial . For example, for any state s and command C

Meaning(while T do C)(s)

will be undefined. Since functions in conventional predicate calculus are total,11 we
cannot use them as command denotations. Instead we will take the meaning of
commands to be predicates on pairs of states (s1, s2); the idea being that if C denotes
c then:

c(s1, s2) ≡ (Meaning(C)(s1) = s2)

i.e.

c(s1, s2) =











T if executing C in state s1 results in state s2

F otherwise

If cwhile is the predicate denoted by while T do C, we will simply have:

∀s1 s2. cwhile(s1, s2) = F

Formally, the type state of states that we use is defined by:

state = string→num

The notation ‘XY Z‘ will be used for the string consisting of the three characters X,
Y and Z; thus ‘XY Z‘ : string . A state s in which the strings ‘X‘, ‘Y ‘ and ‘Z‘ are
bound to 1, 2 and 3 respectively, and all other strings are bound to 0, is defined by:

s = λx. (x = ‘X‘ → 1 | (x = ‘Y ‘ → 2 | (x = ‘Z‘ → 3 | 0)))

If e, b and c are the denotations of E, B and C respectively, then:

e : state→num

b : state→bool

c : state × state→bool

For example, the denotation of X + 1 would be λs. s‘X‘ + 1 and the denotation of
(X + Y ) > 10 would be λs. (s‘X‘ + s‘Y ‘) > 10.

It is convenient to introduce the notations [[E ]] and [[B]] for the logic terms repre-
senting the denotations of E and B. For example:

[[X + 1]] = λs. s‘X‘ + 1
[[(X + Y ) > 10]] = λs. (s‘X‘ + s‘Y ‘) > 10

Note that [[E ]] and [[B]] are terms, i.e. syntactic objects. In traditional denotational
semantics, the meanings of expressions are represented by abstract mathematical
entities, like functions. Such abstract entities are the ‘meanings’ of [[E ]] and [[B]]; but

11There are versions of predicate calculus than can handle partial functions; for example, the
Scott/Milner ‘Logic of Computable Functions’ (LCF) [30] and the Scott/Fourman formulation of
intuitionisitic higher order logic [24]. The HOL system used in this paper is actually a version
of Milner’s proof assistant for LCF [11] which has been modified to support higher order logic.
Although programming language semantics are particularly easy to represent in LCF, other kinds
of semantics (e.g. the behaviour of hardware) are more straightforward in classical logic.
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because we are concerned with mechanical reasoning, we work with the terms and
formulae themselves, rather than with the intangible abstract entities they denote.

Sometimes it is necessary for pre and postconditions to contain logical variables
that are not program variables. An example is:

{X = x ∧ Y = y} Z := X; X := Y ; Y := Z {X = y ∧ Y = x}

Here x and y are logical variables whereas X and Y (and Z) are program variables.
The formulae representing the correct semantics of the pre and post conditions of this
specification are:

[[X = x ∧ Y = y]] = λs. s‘X‘ = x ∧ s‘Y ‘ = y
[[X = y ∧ Y = x]] = λs. s‘X‘ = y ∧ s‘Y ‘ = x

The convention adopted in this paper is that upper case variables are program vari-
ables and lower case variables are logical variables (as in the example just given).
Logical variables occurring in pre and post conditions are sometimes called ghost

variables or auxiliary variables. In our little programming language the only data
type is numbers, hence program variables will have type num. The definition of [[· · ·]]
can now be stated more precisely: if T [X1, . . . , Xn] is a term of higher order logic
whose upper case free variables of type num are X1, . . . , Xn then

[[T [X1, . . . , Xn]]] = λs. T [s‘X1‘, . . . , s‘Xn‘]

In other words if T is a term of type σ then the term [[T ]] of type state→σ is obtained
as follows:

(i) Each free upper case variable V of type num is replaced by the term s‘V‘, where
s is a variable of type state not occurring in P .

(ii) The result of (i) is prefixed by ‘λs.’.

5.1 Semantics of commands

To represent the semantics of our little programming language, predicates in higher
order logic that correspond to the five kinds of commands are defined. For each
command C, a term [[C]] of type state × state→bool is defined as follows:

1. [[skip]] = Skip

where the constant Skip is defined by:

Skip(s1, s2) = (s1 = s2)

2. [[V := E ]] = Assign(‘V‘, [[E ]])

where the constant Assign is defined by:

Assign(v, e)(s1, s2) = (s2 = Bnd(e, v, s1))

where:

Bnd(e, v, s) = λx. (x = v → e s | s x)
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3. [[C1; C2]] = Seq([[C1]], [[C2]])

where the constant Seq is defined by:

Seq(c1, c2)(s1, s2) = ∃s. c1(s1, s) ∧ c2(s, s2)

4. [[if B then C1 else C2]] = If([[B]], [[C1]], [[C2]])

where the constant If is defined by:

If(b, c1, c2)(s1, s2) = (b s1 → c1(s1, s2) | c2(s1, s2))

5. [[while B do C]] = While([[B]], [[C]])

where the constant While is defined by:

While(b, c)(s1, s2) = ∃n. Iter(n)(b, c)(s1, s2)

where Iter(n) is defined by primitive recursion as follows:

Iter(0)(b, c)(s1, s2) = F

Iter(n+1)(b, c)(s1, s2) = If(b, Seq(c, Iter(n)(b, c)), Skip)(s1, s2)

Example

R := X;

Q := 0;
while Y ≤ R

do (R := R − Y ; Q := Q + 1)
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denotes:

Seq

(Assign(‘R‘, [[X]]),
Seq

(Assign(‘Q‘, [[0]]),
While

([[Y ≤ R]],
Seq

(Assign(‘R‘, [[R − Y ]],
Assign(‘Q‘, [[Q + 1]]))))

Expanding the [[· · ·]]s results in:

Seq

(Assign(‘R‘, λs. s‘X‘),
Seq

(Assign(‘Q‘, λs. 0),
While

((λs. s‘Y ‘ ≤ s‘R‘),
Seq

(Assign(‘R‘, λs. s‘R‘ − s‘Y ‘),
Assign(‘Q‘, λs. s‘Q‘ + 1)))))

2

It might appear that by representing the meaning of commands with relations,
we can give a semantics to nondeterministic constructs. For example, if C1 ‖ C2

is the nondeterministic choice ‘either do C1 or do C2’, then one might think that a
satisfactory semantics would be given by:

[[C1 ‖ C2]] = Choose([[C1]], [[C2]])

where the constant Choose is defined by:

Choose(c1, c2)(s1, s2) = c1(s1, s2) ∨ c2(s1, s2)

Unfortunately this semantics has some undesirable properties. For example, if cwhile

is the predicate denoted by the non-terminating command while T do skip, then

∀s1 s2. cwhile(s1, s2) = F

and hence, because ∀t. t ∨ F = t, it follows that:

skip ‖ cwhile = skip

Thus the command that does nothing is equivalant to a command that either does
nothing or loops! It is well known how to distinguish guaranteed termination from
possible termination [31]; the example above shows that the relational semantics
used in this paper does not do it. This problem will appear again in connection with
Dijkstra’s theory of weakest preconditions in Section 11.2.
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5.2 Semantics of partial correctness specifications

A partial correctness specification {P} C {Q} denotes:

∀s1 s2. [[P ]] s1 ∧ [[C]](s1, s2) ⇒ [[Q]] s2

To abbreviate this formula, we define a constant Spec by:

Spec(p, c, q) = ∀s1 s2. p s1 ∧ c(s1, s2) ⇒ q s2

Note that the denotation of pre and postconditions P and Q are not just the log-
ical formulae themselves, but are [[P ]] and [[Q]]. For example, in the specification
{X = 1} C {Q}, the precondition X = 1 asserts that the value of the string ‘X‘ in
the initial state is 1. The precondition thus denotes [[P ]], i.e. λs. s‘X‘ = 1. Thus:

{X = 1} X := X + 1 {X = 2}

denotes
Spec([[X = 1]], Assign(‘X‘, [[X + 1]]), [[X = 2]])

i.e.
Spec((λs. s‘X‘ = 1), Assign(‘X‘, λs. s‘X‘ + 1), λs. s‘X‘ = 2)

Example

In the specification below, x and y are logical variables whereas X and Y (and Z)
are program variables.

{X = x ∧ Y = y} Z := X; X := Y ; Y := Z {X = y ∧ Y = x}

The semantics of this is thus represented by the term:

Spec([[X = x ∧ Y = y]],
Seq(Assign(‘Z‘, [[X]]),

Seq(Assign(‘X‘, [[Y ]]), Assign(‘Y ‘, [[Z]]))),
[[X = y ∧ Y = x]])

which abbreviates:

Spec((λs. s‘X‘ = x ∧ s‘Y ‘ = y),
Seq(Assign(‘Z‘, λs. s‘X‘),

Seq(Assign(‘X‘, λs. s‘Y ‘), Assign(‘Y ‘, λs. s‘Z‘))),
λs. s‘X‘ = y ∧ s‘Y ‘ = x)

2

6 Hoare logic as higher order logic

Hoare logic can be embedded in higher order logic simply by regarding the concrete
syntax given in Sections 2 and 3 as an abbreviation for the corresponding semantic
formulae described in Section 5. For example:

{X = x} X := X + 1 {X = x + 1}
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can be interpreted as as abbreviating:

Spec([[X = x]], Assign(‘X‘, [[X + 1]]), [[X = x + 1]])

i.e.

Spec((λs. s‘X‘ = x), Assign(‘X‘, λs. s‘X‘ + 1), λs. s‘X‘ = x + 1)

The translation between the syntactic ‘surface structure’ and the semantic ‘deep struc-
ture’ is straightforward; it can easily be mechanized with a simple parser and pretty-
printer. Section 7 contains examples illustrating this in a version of the HOL system.

If partial correctness specifications are interpreted this way then, as shown in the
rest of this section, the axioms and rules of Hoare logic described in Section 3 become
derived rules of higher order logic.

The first step in this derivation is to prove the following seven theorems from the
definitions of the constants Spec, Skip, Assign, Bnd, Seq, If, While and Iter.

H1. ` ∀p. Spec(p, Skip, p)

H2. ` ∀p v e. Spec((λs. p(Bnd(e s, v, s))), Assign(v, e), p)

H3. ` ∀p p′ q c. (∀s. p′ s ⇒ p s) ∧ Spec(p, c, q) ⇒ Spec(p′, c, q)

H4. ` ∀p q q′ c. Spec(p, c, q) ∧ (∀s. q s ⇒ q′ s) ⇒ Spec(p, c, q′)

H5. ` ∀p q r c1 c2. Spec(p, c1, q) ∧ Spec(q, c2, r) ⇒ Spec(p, Seq(c1, c2), r)

H6. ` ∀p q c1 c2 b.
Spec((λs. p s ∧ b s), c1, q) ∧ Spec((λs. p s ∧ ¬(b s)), c2, q)
⇒
Spec(p, If(b, c1, c2), q)

H7. ` ∀p c b.
Spec((λs. p s ∧ b s), c, p)
⇒
Spec(p, While(b, c), (λs. p s ∧ ¬(b s)))

The proofs of H1 to H7 are routine. All the axioms and rules of Hoare logic, except

for the assignment axiom, can be implemented in a uniform way from H1 – H7. The
derivation of the assignment axiom from H2, although straightforward, is a bit messy;
it is thus explained last (in Section 6.7).

6.1 Derivation of the skip-axiom

To derive the skip-axiom it must be shown for arbitrary P that:

` {P} skip {P}

which abbreviates:

` Spec([[P ]], Skip, [[P ]])

This follows by specializing p to [[P ]] in H1.
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6.2 Derivation of precondition strengthening

To derive the rule of precondition strengthening it must be shown that for arbitrary
P, P ′, C and Q that:

` P ′ ⇒ P ` {P} C {Q}
` {P ′} C {Q}

Expanding abbreviations converts this to:

` P ′ ⇒ P ` Spec([[P ]], [[C]], [[Q]])
` Spec([[P ′]], [[C]], [[Q]])

Specializing H3 yields:

` (∀s. [[P ′]] s ⇒ [[P ]] s) ∧ Spec([[P ]], [[C]], [[Q]]) ⇒ Spec([[P ′]], [[C]], [[Q]])

The rule of precondition strengthening will follow if ` ∀s. [[P ′]] s ⇒ [[P ]] s can be
deduced from ` P ′ ⇒ P. To see that this is indeed the case, let us make explicit
the program variables X1, . . . , Xn occurring in P and P ′ by writing P [X1, . . . , Xn]
and P[X1, . . . , Xn]′. Then ` P ′ ⇒ P becomes

` P ′[X1, . . . , Xn] ⇒ P[X1, . . . , Xn]

Since X1 , . . . , Xn are free variables in this theorem, they are implicitly universally
quantified, and hence each Xi can be instantiated to s‘Xi‘ to get:

` P ′[s‘X1‘, . . . , s‘Xn‘] ⇒ P[s‘X1‘, . . . , s‘Xn‘]

Generalizing on the free variable s yields:

` ∀s. P ′[s‘X1‘, . . . , s‘Xn‘] ⇒ P [s‘X1‘, . . . , s‘Xn‘]

which is equivalent (by β-reduction) to

` ∀s. (λs. P ′[s‘X1‘, . . . , s‘Xn‘]) s ⇒ (λs. P [s‘X1‘, . . . , s‘Xn‘]) s

i.e.
` ∀s. [[P ′[X1, . . . , Xn]]] s ⇒ [[P [X1, . . . , Xn]]] s

The derivation sketched above can be done via higher order matching applied to H3.
This is, in fact, how the HOL derived rule PRE_STRENGTH_RULE described in Section 7
is programmed. Systems like Isabelle [29], which have higher order unification built
in, would handle such rules very smoothly.

6.3 Derivation of postcondition weakening

To derive the rule of postcondition weakening, it must be shown that for arbitrary
P, C, and Q and Q′ that:

` {P} C {Q} ` Q ⇒ Q′

` {P} C {Q′}

The derivation of this from H4 is similar to the derivation of precondition strength-
ening from H3.
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6.4 Derivation of the sequencing rule

To derive the sequencing rule, it must be shown that for arbitrary P, C1, R, C2 and
and Q that:

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1; C2 {R}

Expanding the abbreviations yields:

` Spec([[P ]], [[C1]], [[Q]]) ` Spec([[Q]], [[C2]], [[R]])
` Spec([[P ]], Seq([[C1]], [[C2]]), [[R]])

The validity of this rule follows directly from H5.

6.5 Derivation of the if-rule

To derive the if-rule, it must be shown that for arbitrary P, B, C1, C2 and and Q
that:

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} if B then C1 else C2 {Q}

Expanding abbreviations yields:

` Spec([[P ∧ B]], [[C1]], [[Q]]) ` Spec([[P ∧ ¬B]], [[C2]], [[Q]])
` Spec([[P ]], If([[B]], [[C1]], [[C2]]), [[Q]])

This follows from H6 in a similar fashion to the way precondition strenthening follows
from H3.

6.6 Derivation of the while-rule

To derive the while-rule, it must be shown that for arbitrary P , B and C that:

` {P ∧ B} C {P}
` {P} while B do C {P ∧ ¬B}

Expanding abbreviations yields:

` Spec([[P ∧ B]], [[C]], [[P ]])
` Spec([[P ]], While([[B]], [[C]]), [[P ∧ ¬B]])

This follows from H7.
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6.7 Derivation of the assignment axiom

To derive the assignment axiom, it must be shown that for arbitrary P , E and V:

` {P[E/V]} V := E {P}

This abbreviates:
` Spec([[P[E/V]]], Assign(‘V ‘, [[E]]), [[P ]])

By H2:
` ∀p x e. Spec((λs. p(Bnd(e s, x, s))), Assign(x, e), p)

Specializing p, x and e to [[P ]], ‘V ‘ and [[E ]] yields:

` Spec((λs. [[P ]](Bnd([[E ]]s, ‘V‘, s))), Assign(‘V ‘, [[E ]]), [[P ]])

Thus, to derive the assignment axiom it must be shown that:

` [[P[E/V]]] = λs. [[P ]](Bnd([[E ]]s, ‘V ‘, s))

To see why this holds, let us make explicit the free program variables in P and E
by writing P [V, X1, . . . , Xn] and E[V, X1, . . . , Xn], where X1, . . . , Xn are the free
program variables that are not equal to V. Then, for example, P [1, . . . , n] would
denote the result of substituting 1, . . . , n for X1, . . . , Xn in P respectively. The
equation above thus becomes:

[[P [V, X1, . . . , Xn][E[V , X1, . . . , Xn]/V]]]
=
λs. [[P [V, X1, . . . , Xn]]](Bnd([[E [V , X1, . . . , Xn]]]s, ‘V ‘, s))

Performing the substitution in the left hand side yields:

[[P [E[V, X1, . . . , Xn], X1, . . . , Xn]]]
=
λs. [[P [V, X1, . . . , Xn]]](Bnd([[E [V , X1, . . . , Xn]]]s, ‘V ‘, s))

Replacing expressions of the form [[P [· · ·]]] by their meaning yields:

(λs. P [E[s‘V ‘, s‘X1‘, . . . , s‘Xn‘], s‘X1‘, . . . , s‘Xn‘])
=
λs. (λs. P[s‘V‘, s‘X1‘, . . . , s‘Xn‘])(Bnd([[E [V, X1, . . . , Xn]]]s, ‘V ‘, s))

Performing a β-reduction on the right hand side, and then simplifying with the fol-
lowing easily derived properties of Bnd (the second of which assumes ‘V‘ 6= Xi):

` Bnd([[E [V , X1, . . . , Xn]]]s, ‘V ‘, s) ‘V‘ = [[E [V, X1, . . . , Xn]]]s

` Bnd([[E [V , X1, . . . , Xn]]]s, ‘V ‘, s) Xi = s Xi

results in:
(λs. P [E[s‘V‘, s‘X1‘, . . . , s‘Xn‘], s‘X1‘, . . . , s‘Xn‘])
=
λs. P [[[E [V, X1, . . . , Xn]]]s, s‘X1‘, . . . , s‘Xn‘]

which is true since:

[[E [V, X1, . . . , Xn]]]s = E [s‘V‘, s‘X1‘, . . . , s‘Xn‘]

21



Although this derivation might appear tricky at first sight, it is straightforward and
easily mechanized. The HOL derived rule ASSIGN AX described in Section 7 performs
this deduction for each P, E and V .

It is tempting to try to formulate the assignment axiom as a theorem of higher
order logic looking something like:

∀p e v. Spec(p[e/v], Assign(v, e), p)

Unfortunately, the expression p[e/v] does not make sense when p is a variable.
P[E/V] is a meta notation and consequently the assignment axiom can only be
stated as a meta theorem. This elementary point is nevertheless quite subtle. In or-
der to prove the assignment axiom as a theorem within higher order logic it would be
necessary to have types in the logic corresponding to formulae, variables and terms.
One could then prove something like:

∀P E V. Spec(Truth(Subst(P, E, V )), Assign(V, Value E), Truth P )

It is clear that working out the details of this would be lots of work. This sort of
embedding of a subset of a logic within itself has been explored in the context of the
Boyer-Moore theorem prover [3].

7 Hoare logic in HOL

In this section, the mechanization of the axioms and rules of Hoare logic using the HOL

system [13] will be illustrated. We will try to make this comprehensible to readers
unfamiliar with HOL, but it would help to have some prior exposure to Milner’s LCF

approach to interactive proof [10, 11].
The HOL system is a version of Cambridge LCF [30] with higher order logic as object

language12. Cambridge LCF evolved from Edinburgh LCF [11]. Some of the material
in this and following sections has been taken from the paper A Proof Generating

System for Higher Order Logic [13].
The boxes below contain a session with a version of the HOL system that has

been extended to support Hoare logic using the approach described in Section 6.
The actual code implementing the extensions is not described here; it is mostly just
straightforward ML (but the parser and pretty-printer are implemented in Lisp). To
help the reader, the transcripts of the sessions with HOL have been edited so that
proper logical symbols appear instead of their ASCII representations13.

The user interface to HOL (and LCF) is the interactive programming language ML.
At top level, expressions can be evaluated and declarations performed. The former
results in the value of the expression and it ML type being printed; the latter in a
value being bound to a name. The interactions in the boxes that follow should be
understood as occurring in sequence. For example, variable bindings made in earlier
boxes are assumed to persist to later ones. The ML prompt is #, so lines beginning
with # are typed by the user and other lines are the system’s response.

The ML language has a similar type system to the one used by the HOL logic. It
is very common to confuse the two type systems. In this paper small teletype font

12LCF has the Scott/Milner ‘Logic of Computable Functions’ as object language.
13An interface to HOL that supports proper logical characters has been implemented by Roger

Jones of ICL Defence Systems. This interface is also used to support a surface syntax based on the
Z notation [33]. ICL use HOL for the specification and verification of security properties of both
hardware and software.
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will be used for ML types and slanted font for logical types. For example, the ML

expression 1 has ML type int, whereas the HOL constant 1 has logical type num.
The first box below illustrates how the parser and pretty-printer have been modified

to translate between ‘surface’ and ‘deep’ structure. The curly brackets { and } func-
tion like [[ and ]] of Section 5; i.e. "{F [X1, . . . , Xn]}" parses to "λs.F [s‘X1‘, . . . , s‘Xn‘]".
Evaluating pretty_on() switches the pretty-printer on; it can be switched off by
evaluating pretty_off().

#"{(R=x) ∧ (Y=y)}" ;;
"λs. (s ‘R‘ = x) ∧ (s ‘Y‘ = y)" : term

#"R:=X" ;;
"Assign(‘R‘,(λs. s ‘X‘))" : term

#pretty_on();;
() : void

#"R:=X" ;;
"R := X" : term

The ML function ASSIGN_AX has ML type term -> term -> thm and implements the
assignment axiom.

ASSIGN AX "{P}" "V := E" 7→ ` {P[E/V]} V := E {P}

#let hth1 = ASSIGN_AX "{(R=x) ∧ (Y=y)}" "R:=X" ;;
hth1 = ` {(X = x) ∧ (Y = y)} R := X {(R = x) ∧ (Y = y)}

#let hth2 = ASSIGN_AX "{(R=x) ∧ (X=y)}" "X:=Y" ;;
hth2 = ` {(R = x) ∧ (Y = y)} X := Y {(R = x) ∧ (X = y)}

#let hth3 = ASSIGN_AX "{(Y=x) ∧ (X=y)}" "Y:=R" ;;
hth3 = ` {(R = x) ∧ (X = y)} Y := R {(Y = x) ∧ (X = y)}

The ML function SEQ_RULE has ML type thm # thm -> thm and implements the
sequencing rule.

SEQ RULE ( ` {P} C1 {Q}, ` {Q} C2 {R}) 7→ ` {P} C1; C2 {R}

#let hth4 = SEQ_RULE (hth1,hth2);;
hth4 = ` {(X = x) ∧ (Y = y)} R := X; X := Y {(R = x) ∧ (X = y)}

#let hth5 = SEQ_RULE (hth4,hth3);;
hth5 =
` {(X = x) ∧ (Y = y)}

R := X; X := Y; Y := R
{(Y = x) ∧ (X = y)}

If the pretty printing is switched off, the actual terms being manipulated become
visible.

23



#pretty_off();;
() : void

#hth5;;
` Spec

((λs. (s ‘X‘ = x) ∧ (s ‘Y‘ = y)),
Seq
(Seq(Assign(‘R‘,(λs. s ‘X‘)),Assign(‘X‘,(λs. s ‘Y‘))),
Assign(‘Y‘,(λs. s ‘R‘))),(λs. (s ‘Y‘ = x) ∧ (s ‘X‘ = y)))

#pretty_on();;
() : void

Using ML it is easy to define a function SEQL_RULE of type thm list -> thm that
implements a derived rule generalizing SEQ_RULE from two arguments to a list of
arguments.

SEQL RULE

[ ` {P} C1 {Q1}; ` {Q1} C2 {Q2}; . . . ; ` {Qn−1} Cn {R}]
7→
` {P} C1; . . . ;Cn {R}

For readers familiar with ML, here is the definition of SEQL_RULE.

#letrec SEQL_RULE thl =
# if null(tl thl) then hd thl
# else SEQL_RULE
# (SEQ_RULE(hd thl,hd(tl thl)).tl(tl thl))
SEQL_RULE = - : proof

#let hth6 = SEQL_RULE[hth1;hth2;hth3];;
hth6 =
` {(X = x) ∧ (Y = y)}

R := X; X := Y; Y := R
{(Y = x) ∧ (X = y)}

The ML function PRE_STRENGTH_RULE has type thm # thm -> thm and implements
the rule of precondition strengthening.

PRE STRENGTH RULE ( ` P ′ ⇒ P , ` {P} C {Q}) 7→ ` {P ′} C {Q}

The ML function POST_WEAK_RULE has type thm # thm -> thm implements the rule
of postcondition weakening.

POST WEAK RULE ( ` {P} C {Q}, ` Q ⇒ Q′) 7→ ` {P ′} C {Q}

POST_WEAK_RULE is illustrated in the sessions with HOL below.

In the box below, the predefined constant MAX and lemma MAX_LEMMA1 are used.
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#MAX;;
` MAX(m,n) = (m > n → m | n)

#let hth7 = ASSIGN_AX "{R = MAX(x,y)}" "R := Y" ;;
hth7 = ` {Y = MAX(x,y)} R := Y {R = MAX(x,y)}

#MAX_LEMMA1;;
` ((X = x) ∧ (Y = y)) ∧ Y > X ⇒ (Y = MAX(x,y))

#let hth8 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth7);;
hth8 = ` {((X = x) ∧ (Y = y)) ∧ Y > X} R := Y {R = MAX(x,y)}

The ML function IF_RULE has type thm # thm -> thm and implements the if-rule.

IF RULE ( ` {P ∧ B} C1 {Q}, ` {P ∧ ¬B} C2 {Q})
7→
` {P} if B then C1 else C2 {Q}

MAX_LEMMA2 is used in the next box; it is a pre-proved lemma about MAX.

#let hth9 = ASSIGN_AX "{R = MAX(x,y)}" "R := X" ;;
hth9 = ` {X = MAX(x,y)} R := X {R = MAX(x,y)}

#MAX_LEMMA2;;
` ((X = x) ∧ (Y = y)) ∧ ¬ Y > X ⇒ (X = MAX(x,y))

#let hth10 = PRE_STRENGTH_RULE(MAX_LEMMA2,hth9);;
hth10 = ` {((X = x) ∧ (Y = y)) ∧ ¬ Y > X} R := X {R = MAX(x,y)}

#let hth11 = IF_RULE(hth8,hth10);;
hth11 =
` {(X = x) ∧ (Y = y)}

if Y > X then R := Y else R := X
{R = MAX(x,y)}

The ML function WHILE_RULE has type thm -> thm and implements the while-rule.

WHILE RULE ` {P ∧ B} C {P} 7→ ` {P} while B do C {P ∧ ¬B}

To illustrate the while-rule, a HOL transcript of the example proof in Section 3.2
is now given. The while-rule is used to prove Th9 below. For completeness, all the
proofs of the pure logic theorems that are needed are included. These are performed
using tactics; readers unfamiliar with tactics should either skip the proofs of Th7, Th11
and Th12, or read Section 8 below.

#let Th1 = ASSIGN_AX "{X = R + (Y × 0)}" "R := X" ;;
Th1 = ` {X = X + (Y × 0)} R := X {X = R + (Y × 0)}

#let Th2 = ASSIGN_AX "{X = R + (Y × Q)}" "Q := 0" ;;
Th2 = ` {X = R + (Y × 0)} Q := 0 {X = R + (Y × Q)}

#let Th3 = SEQ_RULE(Th1,Th2);;
Th3 = ` {X = X + (Y × 0)} R := X; Q := 0 {X = R + (Y × Q)}
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#let Th4 = ASSIGN_AX "{X = R + (Y × (Q + 1))}" "R := (R − Y)" ;;
Th4 =
` {X = (R − Y) + (Y × (Q + 1))}

R := R − Y
{X = R + (Y × (Q + 1))}

#let Th5 = ASSIGN_AX "{X = R + (Y × Q)}" "Q := (Q + 1)" ;;
Th5 = ` {X = R + (Y × (Q + 1))} Q := Q + 1 {X = R + (Y × Q)}

#let Th6 = SEQ_RULE(Th4,Th5);;
Th6 =
` {X = (R − Y) + (Y × (Q + 1))}

R := R − Y; Q := Q + 1
{X = R + (Y × Q)}

In the next box, a simple arithmetical fact called Th7 is proved. Some systems can
prove such facts fully automatically [2]; unfortunately this is not so with HOL and
the user must supply a proof outline expressed as a tactic. Tactics are described in
Section 8 below, and readers unfamiliar with them might want to read that section
now. To make this paper less dependent on detailed knowledge of HOL’s particular
repertoire of tactics, some of the ML code used in the sessions that follow has been
replaced by English descriptions. For example, the actual code for proving Th7 is:

#let Th7 =
# TAC_PROOF
# (([], "(X = R + (Y * Q)) /\ (Y <= R)
# ==> (X = (R - Y) + (Y * (Q + 1)))"),
# REPEAT STRIP_TAC
# THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
# THEN ONCE_REWRITE_TAC[SPEC "Y*Q" ADD_SYM]
# THEN ONCE_REWRITE_TAC[ADD_ASSOC]
# THEN IMP_RES_TAC SUB_ADD
# THEN ASM_REWRITE_TAC[]);;

Th7 = |- (X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))

which can be read informally as:

#let Th7 =
# TAC_PROOF
# (([], "(X = R + (Y × Q)) ∧ (Y ≤ R)
# ⇒ (X = (R − Y) + (Y × (Q + 1)))"),
# ‘Move conjuncts of antecedent of implication to assumption list’
# THEN ‘Simplify using lemmas about + and ×’
# THEN ‘Expand assumptions using ` n ≤ m ⇒ (m − n) + n = m ’
# THEN ‘Simplify using assumptions’ );;

Th7 = ` (X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))

Subsequent sessions will contain similar informal English descriptions of tactics, rather
than exact ML code.

Continuing our session: if Th7 is used to strengthen the precondition of Th6, the
result is then a suitable hypothesis for the while-rule.

26



#let Th8 = PRE_STRENGTH_RULE(Th7,Th6);;
Th8 =
` {(X = R + (Y × Q)) ∧ Y ≤ R}

R := R − Y; Q := Q + 1
{X = R + (Y × Q)}

#let Th9 = WHILE_RULE Th8;;
Th9 =
` {X = R + (Y × Q)}

while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ ¬ Y ≤ R}

#let Th10 = SEQ_RULE(Th3,Th9);;
Th10 =
` {X = X + (Y × 0)}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ ¬ Y ≤ R}

The proof of Th10 could have been done in a single complicated step.

#SEQL_RULE
# [ASSIGN_AX "{X = R + (Y × 0)}" "R := X";
# ASSIGN_AX "{X = R + (Y × Q)}" "Q := 0";
# WHILE_RULE
# (PRE_STRENGTH_RULE
# (DISTRIB_LEMMA,
# SEQL_RULE
# [ASSIGN_AX "{X = R + (Y × (Q + 1))}" "R := (R − Y)";
# ASSIGN_AX "{X = R + (Y × Q)}" "Q := (Q + 1)"]))];;
` {X = X + (Y × 0)}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ ¬ Y ≤ R}

Two lemmas are now proved that will be used to simplify the precondition and
postcondition of Th10.

#let Th11 =
# TAC_PROOF
# (([],"T ⇒ (X = X + (Y × 0))"),
# ‘Simplify’ );;
Th11 = ` T ⇒ (X = X + (Y × 0))

#let Th12 =
# TAC_PROOF
# (([],"(X = R + (Y × Q)) ∧ ¬ Y ≤ R
# ⇒ (X = R + (Y × Q)) ∧ R < Y"),
# ‘Move antecedent of implication to assumption list’
# THEN ‘Simplify using assumptions and ` ¬(m < n = n ≤ m)’
Th12 = ` (X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y

The pre and postconditions of Th10 can now be simplified in a single step.
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#let Th13 = POST_WEAK_RULE(PRE_STRENGTH_RULE(Th11,Th10),Th12);;
Th13 =
` {T}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ R < Y}

This completes the mechanical generation of the proof in Section 3.2.

The proof of Th13 could be done by rewriting Th10 without recourse to Hoare logic
at all. First the lemma ` ¬(Y ≤ R) = (R < Y ) is proved:

#let Th14 =
# TAC_PROOF
# (([],"¬ (Y ≤ R) = (R < Y)"),
# ‘Simplify using ` ¬(m < n = n ≤ m’ );;
Th14 = ` ¬ Y ≤ R = R < Y

Then Th10 is rewritten using Th14 and elementary properties of addition and multi-
plication.

# ‘Simplify Th10 using Th14 and properties of + and ×’ ;;
` {T}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ R < Y}

To see how this works let us look at the ‘deep structure’ of Th10.

#pretty_off();;
() : void

#Th10;;
` Spec

((λs. s ‘X‘ = (s ‘X‘) + ((s ‘Y‘) × 0)),
Seq(Seq(Assign(‘R‘,(λs. s ‘X‘)),Assign(‘Q‘,(λs. 0))),

While
((λs. (s ‘Y‘) ≤ (s ‘R‘)),
Seq
(Assign(‘R‘,(λs. (s ‘R‘) − (s ‘Y‘))),
Assign(‘Q‘,(λs. (s ‘Q‘) + 1))))),

(λs. (s ‘X‘ = (s ‘R‘) + ((s ‘Y‘) × (s ‘Q‘))) ∧
¬ (s ‘Y‘) ≤ (s ‘R‘)))

Rewriting Th10 with ` m× 0 = 0 will replace (s ‘Y‘) × 0 by 0. Rewriting with
` m + 0 = m and Th14 works similarly.
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# ‘Simplify using Th14 and properties of + and ×’ ;;
` Spec

((λs. T),
Seq(Seq(Assign(‘R‘,(λs. s ‘X‘)),Assign(‘Q‘,(λs. 0))),

While
((λs. (s ‘Y‘) ≤ (s ‘R‘)),
Seq
(Assign(‘R‘,(λs. (s ‘R‘) − (s ‘Y‘))),
Assign(‘Q‘,(λs. (s ‘Q‘) + 1))))),

(λs. (s ‘X‘ = (s ‘R‘) + ((s ‘Y‘) × (s ‘Q‘))) ∧
(s ‘R‘) < (s ‘Y‘)))

Thus although the pretty-printer makes it look as though Y ×0 is rewritten to 0,
what actually happens is that (s ‘Y‘) × 0 is rewritten to 0. This direct application
of a HOL theorem proving tool to the semantics of a partial correctness specification
illustrates how reasoning with HOL tools can be mixed with reasoning in Hoare logic.
We suspect such mixtures of ‘axiomatic’ and ‘semantic’ reasoning to be quite powerful.

In Section 9 it is shown how tactics can be formulated that correspond to reason-
ing based on verification conditions. This enables all HOL’s infrastructure for goal
directed proof to be brought to bear on partial correctness specifications. Before
describing this, here is a quick review of tactics and tacticals abridged from [13].
Readers familiar with Cambridge LCF or HOL should skip this section.

8 Introduction to tactics and tacticals

A tactic is an ML function which is applied to a goal to reduce it to subgoals. A
tactical is a (higher-order) ML function for combining tactics to build new tactics14.

For example, if T1 and T2 are tactics, then the ML expression T1 THEN T2 evaluates
to a tactic which first applies T1 to a goal and then applies T2 to each subgoal produced
by T1. The tactical THEN is an infixed ML function.

8.1 Tactics

It simplifies the description of tactics if the following ML type abbreviations are used:

proof = thm list -> thm
subgoals = goal list # proof
tactic = goal -> subgoals

If T is a tactic and g is a goal, then applying T to g (i.e. evaluating the ML

expression T g) will result in an object of ML type subgoals, i.e. a pair whose first
component is a list of goals and whose second component has ML type proof.

Suppose T g = ([g1;. . .;gn],p). The idea is that g1 , . . . , gn are subgoals and p
is a ‘validation’ of the reduction of goal g to subgoals g1 , . . . , gn. Suppose further
that the subgoals g1 , . . . , gn have been solved. This would mean that theorems th1

, . . . , thn have been proved such that each thi ‘achieves’ the goal gi. The validation
p (produced by applying T to g) is an ML function which when applied to the list
[th1;. . .;thn] returns a theorem, th, which ‘achieves’ the original goal g. Thus p is a
function for converting a solution of the subgoals to a solution of the original goal. If
p does this successfully, then the tactic T is called valid . Invalid tactics cannot result

14The terms ‘tactic’ and ‘tactical’ are due to Robin Milner, who invented the concepts.
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in the proof of invalid theorems; the worst they can do is result in insolvable goals or
unintended theorems being proved. If T were invalid and were used to reduce goal g
to subgoals g1 , . . . , gn, then a lot of effort might be put into into proving theorems
th1 , . . . , thn achieving g1 , . . . , gn, only to find that these theorems are useless
because p[th1;. . .;thn] doesn’t achieve g (i.e. it fails, or else it achieves some other
goal).

A theorem achieves a goal if the assumptions of the theorem are included in the
assumptions of the goal and if the conclusion of the theorem is equal (up to renaming
of bound variables) to the conclusion of the goal. More precisely, a theorem t1, . . . ,
tm |- t achieves a goal ([u1;. . .;un],u) if and only if t1, . . . , tm are included among
u1 , . . . , un and t is equal to u (up to renaming of bound variables). For example, the
goal (["x=y";"y=z";"z=w"],"x=z") is achieved by the theorem x=y, y=z ` x=z

(the assumption "z=w" is not needed).
A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T

solves g if T g = ([],p). If this is the case, and if T is valid, then p[] will evaluate
to a theorem achieving g. Thus if T solves g then the ML expression snd(T g)[]
evaluates to a theorem achieving g.

Tactics are specified using the following notation:

goal

goal1 goal2 . . . goaln

For example, the tactic CONJ_TAC is specified by

t1 /\ t2

t1 t2

CONJ_TAC reduces a goal of the form (Γ,"t1/\t2") to subgoals (Γ,"t1") and (Γ,"t2").
The fact that the assumptions of the top-level goal are propagated unchanged to the
two subgoals is indicated by the absence of assumptions in the notation.

Tactics generally ‘fail’ (in the ML sense [13]) if they are applied to inappropriate
goals. For example, CONJ_TAC will fail if it is applied to a goal whose conclusion is not
a conjunction.

8.2 Using Tactics to Prove Theorems

Suppose a goal g is to be solved. If g is simple it might be possible to think up a
tactic, T say, which reduces it to the empty list of subgoals. If this is the case then
executing

let gl,p = T g

will bind p to a function which when applied to the empty list of theorems yields a
theorem th achieving g. The declaration above will also bind gl to the empty list of
goals. Executing

let th = p []

will thus bind th to a theorem achieving g.

To simplify the use of tactics, there is a standard function called TAC_PROOF with
type goal # tactic -> thm such that evaluating

TAC PROOF(g,T)
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proves the goal g using tactic T and returns the resulting theorem (or fails, if T does
not solve g).

When conducting a proof that involves many subgoals and tactics, it is necessary
to keep track of all the validations and compose them in the correct order. While
this is feasible even in large proofs, it is tedious. HOL provides a package for build-
ing and traversing the tree of subgoals, stacking the validations and applying them
when subgoals are solved; this package was originally implemented for LCF by Larry
Paulson [30].

The subgoal package implements a simple framework for interactive proof in which
proof trees can be created and traversed in a top-down fashion. Using a tactic, the
current goal is expanded into subgoals and a validation, which are automatically
pushed onto the goal stack. Subgoals can be attacked in any order. If the tactic
solves the goal (i.e. returns an empty subgoal list), then the package proceeds to the
next goal in the tree.

The function goal has type term -> void and takes a term t and then sets up the
goal ([],t).

The function expand has type tactic -> void and applies a tactic to the top goal on
the stack, then pushes the resulting subgoals onto the stack, then prints the resulting
subgoals. If there are no subgoals, the validation is applied to the theorems solving
the subgoals that have been proved and the resulting theorems are printed.

8.3 Tacticals

A tactical is an ML function that returns a tactic (or tactics) as result. Tacticals may
take various parameters; this is reflected in the various ML types that the built-in
tacticals have. The tacticals used in this paper are:

ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If T1 and T2 are tactics, then the ML

expression T1 ORELSE T2 evaluates to a tactic which first tries T1 and then
if T1 fails it tries T2.

THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T1 and T2 are tactics, then the ML

expression T1 THEN T2 evaluates to a tactic which first applies T1 and then
applies T2 to all the subgoals produced by T1.

THENL : tactic -> tactic list -> tactic

If T is a tactic which produces n subgoals and T1, . . . , Tn are tactics, then
T THENL [T1;. . .;Tn] is a tactic which first applies T and then applies Ti

to the ith subgoal produced by T . The tactical THENL is useful for doing
different things to different subgoals.

REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until
it fails.
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9 Verification conditions via tactics

If one wants to prove the partial correctness specification {P} V:=E {Q} then, by
the assignment axiom and precondition strengthening, it is clearly sufficient to prove
the pure logic theorem ` P ⇒ Q[E/V]. The formula P ⇒ Q[E/V] is called the
verification condition for {P} V:=E {Q}.

More generally, the verification conditions for {P} C {Q} are a set of pure logic
formulae F1, . . . , Fn such that if ` F1, . . . , ` Fn are theorems of pure logic
then ` {P} C {Q} is a theorem of Hoare logic. Verification conditions are related to
Dijkstra’s weakest liberal preconditions [6], see the definition of Wlp in Section 11.2.
For example, the weakest liberal precondition of Q for the assignment command V:=
E is Q[E/V]. The verification conditions for {P} C {Q} is P ⇒ Wlp(C,Q) and it is
possible that the treatment of verification conditions that follows could be improved
by formulating it in terms of Wlp.

The generation of verification conditions can be represented by a tactic

{P} C {Q}

F1 F2 . . . Fn

where the validation (proof) part of the tactic is a composition of the functions
representing the axioms and rules of Hoare logic. For example, the tactic ASSIGN_TAC

is:

{P} V:= E {Q}

P⇒Q[E/V]

Here is a little session illustrating ASSIGN_TAC.

#goal "{X=x} X:=X+1 {X=x+1}" ;;
"{X = x} X := X + 1 {X = x + 1}"

#expand ASSIGN_TAC;;
OK..
"(X = x) ⇒ (X + 1 = x + 1)"

#expand ‘Move antecedent to assumptions and then simplify’ ;;
OK..
goal proved
` (X = x) ⇒ (X + 1 = x + 1)
` {X = x} X := X + 1 {X = x + 1}

Previous subproof:
goal proved

Each of the Hoare axioms and rules can be ‘inverted’ into a tactic which accom-
plishes one step in the process of verification condition generation. The composition
of these tactics then results in a complete verification condition generator.

The specification of these tactics is as follows.
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SKIP TAC : tactic

{P} skip {P}

SKIP_TAC solves all goals of the form {P} skip {P}; it generates an empty
list of verification conditions.

ASSIGN TAC : tactic

{P} V:= E {Q}

P⇒Q[E/V]

SEQ TAC : tactic

To make generating verification conditions for sequences simple, it is con-
venient to require annotations to be inserted in sequences C1;C2 when
C2 is not an assignment [14]. Such an annotation will be of the form
assert{R}, where R is a pure logic formula. For such sequences SEQ_TAC

is as follows:

{P} C1; assert{R}; C2 {Q}

{P}C1{R} {R}C2{Q}

In the case that C2 is an assignment V:=E, the postcondition Q can be
‘passed through’ C2, using the assignment axiom, to automatically gener-
ate the assertion Q[E/V]. Thus in this case SEQ_TAC simplifies to:

{P} C; V:= E {Q}

{P} C {Q[E/V]}

IF TAC : tactic

{P} if B then C1 else C2 {Q}

{P∧B} C1 {Q} {P∧¬B} C2 {Q}

WHILE TAC : tactic

In order for verification conditions to be generated from while-commands,
it is necessary to specify an invariant [14] by requiring that an annotation

invariant{R}, where R is the invariant, be inserted just after the do.

{P} while B do invariant {R}; C {Q}

P⇒R {R∧B} C {R} R∧¬B⇒Q

Here now is a continuation of the session started above in which tactics for Hoare
logic are illustrated. First the individual tactics are illustrated, then it is shown how
they can be combined, using tacticals, into a single verification condition generator.

The first step is to set up the specification of the simple division program as a goal.
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#pretty_on();;
() : void

#goal "{T}
# R:=X;
# Q:=0;
# assert{(R = X) ∧ (Q = 0)};
# while Y ≤ R
# do (invariant{X = (R + (Y × Q))};
# R := R − Y; Q := Q + 1)
# {(X = (R + (Y × Q))) ∧ (R < Y)}" ;;
"{T}
R := X;
Q := 0;
assert{(R = X) ∧ (Q = 0)};
while Y ≤ R do invariant{X = R + (Y × Q)}; R := R − Y; Q := Q + 1

{(X = R + (Y × Q)) ∧ R < Y}"

The command in this goal is a sequence, so SEQ_TAC can be applied.

#expand SEQ_TAC;;
OK..
2 subgoals
"{(R = X) ∧ (Q = 0)}
while Y ≤ R do invariant{X = R + (Y × Q)};
R := R − Y; Q := Q + 1

{(X = R + (Y × Q)) ∧ R < Y}"

"{T} R := X; Q := 0 {(R = X) ∧ (Q = 0)}"

The top goal is printed last; SEQ_TAC can be applied to it.

#expand SEQ_TAC;;
OK..
"{T} R := X {(R = X) ∧ (0 = 0)}"

#expand ASSIGN_TAC;;
OK..
"T ⇒ (X = X) ∧ (0 = 0)"

The goal T⇒(X =X) ∧(O =0) is solved by rewriting with standard facts. The subgoal
package prints out the theorems produced and backs up to the next pending subgoal.

#expand ‘Simplify’ ;;
OK..
goal proved
` T ⇒ (X = X) ∧ (0 = 0)
` {T} R := X {(R = X) ∧ (0 = 0)}
` {T} R := X; Q := 0 {(R = X) ∧ (Q = 0)}

Previous subproof:
"{(R = X) ∧ (Q = 0)}
while Y ≤ R do invariant{X = R + (Y × Q)};
R := R − Y; Q := Q + 1

{R < Y ∧ (X = R + (Y × Q))}"
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The remaining subgoal is a while-command, so WHILE_TAC is applied to get three
subgoals.

#expand WHILE_TAC;;
OK..
3 subgoals
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

"{(X = R + (Y × Q)) ∧ Y ≤ R}
R := R − Y; Q := Q + 1

{X = R + (Y × Q)}"

"(R = X) ∧ (Q = 0) ⇒ (X = R + (Y × Q))"

The first subgoal (i.e. the one printed last) is quickly solved by moving the antecedent
of the implication to the assumptions, and then rewriting using standard properties
of + and ×.

#expand ‘Move antecedent to assumptions’ ;;
OK..
"X = R + (Y × Q)"

[ "R = X" ]
[ "Q = 0" ]

#expand ‘Simplify using assumptions’ ;;
OK..
goal proved
.. ` X = R + (Y × Q)
` (R = X) ∧ (Q = 0) ⇒ (X = R + (Y × Q))

Previous subproof:
2 subgoals
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

"{(X = R + (Y × Q)) ∧ Y ≤ R}
R := R − Y; Q := Q + 1

{X = R + (Y × Q)}"

The first subgoal is a sequence, so SEQ_TAC is applied. This results in an assignment,
so ASSIGN_TAC is then applied. The resulting purely logical subgoal is the already
proved Th7.

#expand SEQ_TAC;;
OK..
"{(X = R + (Y × Q)) ∧ Y ≤ R} R := R − Y {X = R + (Y × (Q + 1))}"

#expand ASSIGN_TAC;;
OK..
"(X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))"

Th7 is used to solve the first subgoal.
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#expand ‘Use Th7 ’ ;;
OK..
goal proved
` (X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))
` {(X = R + (Y × Q)) ∧ Y ≤ R}

R := R − Y
{X = R + (Y × (Q + 1))}

` {(X = R + (Y × Q)) ∧ Y ≤ R}
R := R − Y; Q := Q + 1

{X = R + (Y × Q)}

Previous subproof:
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

The previously proved theorem Th12 solves the remaining subgoal.

#expand ‘Use Th12 ’ ;;
OK..
goal proved
` (X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y
` {(R = X) ∧ (Q = 0)}

while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ R < Y}

` {T}
R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1

{(X = R + (Y × Q)) ∧ R < Y}

Previous subproof:
goal proved

The tactics ASSIGN TAC, SEQ TAC, IF TAC and WHILE TAC can be combined into a
single tactic, called VC TAC below, which generates the verification conditions in a
single step.

The definition of VC TAC in ML is given in the next box; it uses the tacticals REPEAT

and ORELSE described in Section 8.3.

#let VC_TAC = REPEAT(ASSIGN_TAC
# ORELSE SEQ_TAC
# ORELSE IF_TAC
# ORELSE WHILE_TAC);;
VC_TAC = - : tactic

This compound tactic is illustrated by using it to repeat the proof just done. The
original goal is made the top goal, and then this is expanded using VC_TAC. The result
is four verification conditions.
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#goal "{T}
# R:=X;
# Q:=0;
# assert{(R = X) ∧ (Q = 0)};
# while Y ≤ R
# do (invariant{X = (R + (Y × Q))};
# R := R − Y; Q := Q + 1)
# {(X = (R + (Y × Q))) ∧ (R < Y)}" ;;
"{T}
R := X;
Q := 0;
assert{(R = X) ∧ (Q = 0)};
while Y ≤ R do invariant{X = R + (Y × Q)};
R := R − Y; Q := Q + 1

{(X = R + (Y × Q)) ∧ R < Y}"

#expand VC_TAC;;
OK..
4 subgoals
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

"(X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))"

"(R = X) ∧ (Q = 0) ⇒ (X = R + (Y × Q))"

"T ⇒ (X = X) ∧ (0 = 0)"

Notice how VC_TAC converts the goal of proving a Hoare specification into pure logic
subgoals. These can be solved as above.

#expand ‘Simplify’ ;;
OK..
goal proved
` T ⇒ (X = X) ∧ (0 = 0)

Previous subproof:
3 subgoals
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

"(X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))"

"(R = X) ∧ (Q = 0) ⇒ (X = R + (Y × Q))"

#expand ‘Move antecedent to assumptions and then rewrite’ ;;
OK..
goal proved
` (R = X) ∧ (Q = 0) ⇒ (X = R + (Y × Q))

Previous subproof:
2 subgoals
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

"(X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))"
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#expand ‘Use Th7 ’ ;;
OK..
goal proved
` (X = R + (Y × Q)) ∧ Y ≤ R ⇒ (X = (R − Y) + (Y × (Q + 1)))

Previous subproof:
"(X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y"

#expand ‘Use Th12 ’ ;;
OK..
goal proved
` (X = R + (Y × Q)) ∧ ¬ Y ≤ R ⇒ (X = R + (Y × Q)) ∧ R < Y
` {T}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ R < Y}

Previous subproof:
goal proved

Finally, here is the proof in one step.

#prove
# ("{T},
# R:=X;
# Q:=0;
# assert{(R = X) ∧ (Q = 0)};
# while Y ≤ R
# do (invariant{X = (R + (Y × Q))};
# R:=R − Y; Q:=Q + 1)
# {(X = (R + (Y × Q))) ∧ R < Y}",
# VC_TAC
# THENL
# [ ‘Simplify’ ;
# ‘Move antecedent to assumptions and then simplify’ ;
# ‘Use Th7 ’ ;
# ‘Use Th12 ’ ]);;
` {T}

R := X; Q := 0; while Y ≤ R do R := R − Y; Q := Q + 1
{(X = R + (Y × Q)) ∧ R < Y}

10 Termination and total correctness

Hoare logic is usually presented as a self-contained calculus. However, if it is regarded
as a derived logic, as it is here, then it’s easy to add extensions and modifications
without fear of introducing unsoundness. To illustrate this, we will sketch how termi-
nation assertions can be added, and how these can be used to prove total correctness.

A termination assertion is a formula Halts([[P ]], [[C]]), where the constant Halts is
defined by:

Halts(p, c) = ∀s1. p s1 ⇒ ∃s2. c(s1, s2)

Notice that this says that c ‘halts’ under precondition p if there is some final state
for each initial state satisfying p. For example, although while T do skip does not
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terminate, the definition above suggests that (while T do skip) ‖ skip does, since:

` Halts([[T]], Choose([[while T do skip]], [[skip]]))

(‖ and Choose are described in Section 5). The meaning of Halts([[P ]], [[C]]) is ‘some
computation of C starting from a state satisfying P terminates’ this is quite different
from ‘every computation of C starting from a state satisfying P terminates’. The
latter stronger kind of termination requires a more complex kind of semantics for its
formalization (e.g. one using powerdomains [31]). If commands are deterministic,
then termination is adequately formalized by Halts. It is intuitively clear (and can
be proved using the methods described in Melham’s paper [25]) that the relations
denoted by commands in our little language (not including ‖) are partial functions.
If Det is defined by:

Det c = ∀s s1 s2. c(s, s1) ∧ c(s, s2) ⇒ (s1 = s2)

then for any command C it can be proved that ` Det [[C]]. This fact will be needed
to show that the formalization of weakest preconditions in Section 11.2 is correct.

The informal equation

Total correctness = Termination + Partial correctness.

can be implemented by defining:

Total Spec(p, c, q) = Halts(p, c) ∧ Spec(p, c, q)

Then [P] C [Q] is represented by Total Spec([[P ]], [[C]], [[Q]]).
From the definition of Halts it is straightforward to prove the following theorems:

T1. ` ∀p. Halts(p, Skip)

T2. ` ∀p v e. Halts(p, Assign(v, e))

T3. ` ∀p p′ c. (∀s. p′ s ⇒ p s) ∧ Halts(p, c) ⇒ Halts(p′, c)

T4. ` ∀p c1 c2 q. Halts(p, c1) ∧ Spec(p, c1, q) ∧ Halts(q, c2)
⇒ Halts(p, Seq(c1, c2))

T5. ` ∀p c1 c2 b. Halts(p, c1) ∧ Halts(p, c2) ⇒ Halts(p, If(b, c1, c2))

T6. ` ∀b c x.
(∀n. Spec((λs. p s ∧ b s ∧ (s x = n)), c, (λs. p s ∧ s x < n)))
∧ Halts((λs. p s ∧ b s), c)
⇒ Halts(p, While(b, c))

Although these theorems are fairly obvious, when I first wrote them down I got a
few details wrong. These errors soon emerged when the proofs were done using the
HOL system.

T6 shows that if x is a variant , i.e. a variable whose value decreases each time
‘around the loop’, then the while-command halts. Proving this in HOL was much
harder than any of the other theorems (but was still essentially routine).
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10.1 Derived rules for total correctness

Using T1 – T6 above and H1 – H7 of Section 6, it is straightforward to apply the
methods described in Section 6 to implement the derived rules for total correctness
shown below. These are identical to the corresponding rules for partial correctness
except for having ‘[’ and ‘]’ instead of ‘{’ and ‘}’ respectively.

` [P ] skip [P]

` P ′ ⇒ P ` [P ] C [Q]
` [P ′] C [Q]

` [P ] C [Q] ` Q ⇒ Q′

` [P] C [Q′]

` [P ] C1 [Q] ` [Q] C2 [R]
` [P ] C1; C2 [R]

` [P ∧ B] C1 [Q] ` [P ∧ ¬B] C2 [Q]
` [P ] if B then C1 else C2 [Q]

The total correctness rule for while-commands needs a stronger hypothesis than
the corresponding one for partial correctness. This is to ensure that the command
terminates. For this purpose, a variant is needed in addition to an invariant.

` [P ∧ B ∧ (N = n)] C [P ∧ (N < n)]
` [P] while B do C [P ∧ ¬B]

Notice that since

Total Spec(p, c, q) = Halts(p, c) ∧ Spec(p, c, q)

it is clear that the following rule is valid

` [P] C [Q]
` {P} C {Q}

The converse to this is only valid if C contains no while-commands. It would be
straightforward to implement a HOL derived rule

` {P} C {Q}
` [P] C [Q]

that would fail (in the ML sense) if C contained while-commands.

10.2 Tactics for total correctness

Tactics for total correctness can be implemented that use the derived rules in the
previous section as validations. The tactics for everything except while-commands
are obtained by replacing ‘[’ and ‘]’ by ‘{’ and ‘}’. Namely:
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SKIP T TAC : tactic

[P ] skip [P]

ASSIGN T TAC : tactic

[P] V:= E [Q]

P⇒Q[E/V]

SEQ T TAC : tactic

[P ] C1; assert{R}; C2 [Q]

[P ]C1[R] [R]C2[Q]

[P ] C; V:= E [Q]

[P] C [Q[E/V]]

IF T TAC : tactic

[P ] if B then C1 else C2 [Q]

[P ∧B] C1 [Q] [P ∧¬B] C2 [Q]

WHILE T TAC : tactic

To enable verification conditions to be generated from while-commands
they must be annotated with a variant as well as an invariant.

[P] while B do invariant {R}; variant {N}; C [Q]

P⇒R [R ∧ B ∧ (N = n)] C [R ∧ (N < n)] R∧¬B⇒Q

To illustrate these tactics, here is a session in which the total correctness of the
division program is proved. First suppose that a verification condition generator is
defined by:

#let VC_T_TAC =
# REPEAT(ASSIGN_T_TAC
# ORELSE SEQ_T_TAC
# ORELSE IF_T_TAC
# ORELSE WHILE_T_TAC);;
VC_T_TAC = - : tactic

and the following goal is set up:
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##pretty_on();;
() : void

#goal "[0 < Y]
# R := X;
# Q := 0;
# assert{(0 < Y) ∧ (R = X) ∧ (Q = 0)};
# while Y ≤ R
# do (invariant{(0 < Y) ∧ (X = R + (Y × Q))}; variant{R};
# R := R − Y; Q := Q + 1)
# [(X = R + (Y × Q)) ∧ R < Y]" ;;
"[0 < Y]
R := X;
Q := 0;
assert{0 < Y ∧ (R = X) ∧ (Q = 0)};
while Y ≤ R do
invariant{0 < Y ∧ (X = R + (Y × Q))};
variant{R};
R := R − Y; Q := Q + 1

[(X = R + (Y × Q)) ∧ R < Y]"

() : void

then applying VC_T_GEN results in the following four verification conditions:

#expand VC_T_TAC;;
OK..
4 subgoals
"(0 < Y ∧ (X = R + (Y × Q))) ∧ ¬ Y ≤ R ⇒
(X = R + (Y × Q)) ∧ R < Y"

"(0 < Y ∧ (X = R + (Y × Q))) ∧ Y ≤ R ∧ (R = r) ⇒
(0 < Y ∧ (X = (R − Y) + (Y × (Q + 1)))) ∧ (R − Y) < r"

"0 < Y ∧ (R = X) ∧ (Q = 0) ⇒ 0 < Y ∧ (X = R + (Y × Q))"

"0 < Y ⇒ 0 < Y ∧ (X = X) ∧ (0 = 0)"

() : void

These are routine to prove using HOL. Notice that WHILE_T_TAC has been implemented
so that it automatically generates a logical (or ghost) variable by lowering the case of
the variant. In the example above, r is a logical variable generated from the program
variable R that is given as the variant.

11 Other programming logic constructs

In this section, three variants on Hoare logic are described.

(i) VDM-style specifications.

(ii) Weakest preconditions.

(iii) Dynamic logic.

42



None have these have been fully mechanized in HOL, but it is hoped that enough
detail is given to show that doing so should be straightforward.

11.1 VDM-style specifications

The Vienna Development Method (VDM) [19]) is a formal method for program de-
velopment which uses a variation on Hoare-style specifications. The VDM notation
reduces the need for auxiliary logical variables by providing a way of refering to the
initial values of variables in postconditions. For example, the following Hoare-style
partial correctness specification:

{X = x ∧ Y = y} R:= X; X:= Y ; Y := R {Y = x ∧ X = y}

could be written in a VDM-style as:

{T} R:= X; X:= Y ; Y := R {Y =
↼−
X ∧ X =

↼−
Y }

where
↼−
X and

↼−
Y denote the values X and Y had before the three assignments were

executed. More generally,

{P[X1, . . . , Xn]} C {Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]}

can be thought of as an abbreviation for

{P[X1, . . . , Xn] ∧ X1 =
↼−
X1 ∧ . . . ∧ Xn =

↼−
Xn} C {Q[X1, . . . , Xn,

↼−
X1, . . . ,

↼−
Xn]}

where
↼−
X1, . . . ,

↼−
Xn are distinct logical variables not occurring in C. It should be

straightforward to build a parser and pretty-printer that supports this interpretation
of VDM specifications.

It is claimed that VDM specifications are more natural than convential Hoare-style
ones. I have not worked with them enough to have an opinion on this, but the point I
hope to make here is that there is no problem mechanizing a VDM-style programming
logic using the methods in this paper.

Although the meaning of individual VDM specifications is clear, it is not so easy
to see what the correct Hoare-like rules of inference are. For example, the sequencing
rule must somehow support the deduction of

{T} X:= X + 1; X:= X + 1 {X =
↼−
X + 2}

from

{T} X:= X + 1 {X =
↼−
X + 1}

There is another semantics of VDM specifications, which Jones attributes to Peter
Aczel [19]. This semantics avoids the need for hidden logical variables and also makes
it easy to see what the correct rules of inference are. The idea is to regard the post-
condition as a binary relation on the initial and final states. This can be formalized
by regarding

{P[X1, . . . , Xn]} C {Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]}

as an abbreviation for

VDM Spec([[P [X1, . . . , Xn]]], [[C]], [[Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]]]2)
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where VDM Spec is defined by:

VDM Spec(p, c, r) = ∀s1 s2. p s1 ∧ c(s1, s2) ⇒ r(s1, s2)

and the notation [[ · · · ]]2 is defined by:

[[Q[X1, . . . , Xn,
↼−
X1, . . . ,

↼−
Xn]]]2 =

λ(s1, s2). Q[s2‘X1‘, . . . , s2‘Xn‘, s1‘X1‘, . . . , s1‘Xn‘]

It is clear that [[ · · · ]]2 could be supported by a parser and pretty-printer in the same
way that [[ · · · ]] is supported.

The sequencing rule now corresponds to the theorem:

` ∀p1 p2 r1 r2 c1 c2.
VDM Spec(p1, c1, λ(s1, s2). p2 s2 ∧ r1(s1, s2)) ∧
VDM Spec(p2, c2, r2) ⇒
VDM Spec(p1, Seq(c1, c2), Seq(r1, r2))

Example

If {T} X:= X + 1 {X =
↼−
X + 1} is interpreted as:

VDM Spec([[T]], [[X:= X + 1]], [[X =
↼−
X + 1]]2)

which (since ` ∀x. T ∧ x = x) implies:

VDM Spec([[T]], [[X:= X + 1]], λ(s1, s2). [[T]]s2 ∧ [[X =
↼−
X + 1]]2(s1, s2))

and hence it follows by the sequencing theorem above that:

VDM Spec([[T]], [[X:= X + 1; X:= X + 1]], Seq([[X =
↼−
X + 1]]2, [[X =

↼−
X + 1]]2))

By the definition of Seq in Section 5:

Seq([[X =
↼−
X + 1]]2, [[X =

↼−
X + 1]]2)(s1, s2)

= ∃s. [[X =
↼−
X + 1]]2(s1, s) ∧ [[X =

↼−
X + 1]]2(s, s2)

= ∃s. (λ(s1, s2). s2‘X‘ = s1‘X‘ + 1)(s1, s) ∧ (λ(s1, s2). s2‘X‘ = s1‘X‘ + 1)(s, s2)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = s‘X‘ + 1)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = (s1‘X‘ + 1) + 1)
= ∃s. (s‘X‘ = s1‘X‘ + 1) ∧ (s2‘X‘ = s1‘X‘ + 2)
= (∃s. s‘X‘ = s1‘X‘ + 1) ∧ (∃s. s2‘X‘ = s1‘X‘ + 2)
= T ∧ (s2‘X‘ = s1‘X‘ + 2)
= (s2‘X‘ = s1‘X‘ + 2)

= [[X =
↼−
X + 2]]2(s1, s2)

Hence:

` {T} X:= X + 1; X:= X + 1 {X =
↼−
X + 2}

2

An elegant application of treating postconditions as binary relations is Aczel’s
version of the while-rule [19]:
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` {P ∧ B} C {P ∧ R}
` {P} while B do C {P ∧ ¬B ∧ R∗}

Where R∗ is the reflexive closure of R defined by

R∗(s1, s2) = ∃n. Rn(s1, s2)

and Rn is definable in higher order logic by the following primitive recursion:

R0 = λ(s1, s2). (s1 = s2)

Rn+1 = Seq(R,Rn)

Aczel pointed out that his version of the while-rule can be converted into a rule of
total correctness simply by requiring R to be transitive and well-founded:

` [P ∧ B] C [P ∧ R] ` Transitive R ` Well Founded R
` [P] while B do C [P ∧ ¬B ∧ R∗]

where:

Transitive r = ∀s1 s2 s3. r(s1, s2) ∧ r(s2, s3) ⇒ r(s1, s3)

Well Founded r = ¬∃f : num→state. ∀n. r(f(n), f(n + 1))

Notice how it is straightforward to define notions like Transitive and Well Founded in
higher order logic; these cannot be defined in first order logic.

11.2 Dijkstra’s weakest preconditions

Dijkstra’s theory of weakest preconditions, like VDM, is primarily a theory of rigorous
program construction rather than a theory of post hoc verification. As will be shown,
it is straightforward to define weakest preconditions for deterministic programs in
higher order logic15.

In his book [6], Dijkstra introduced both ‘weakest liberal preconditions’ (Wlp) and
‘weakest preconditions’ (Wp); the former for partial correctness and the latter for
total correctness. The idea is that if C is a command and Q a predicate, then:

• Wlp(C,Q) = ‘The weakest predicate P such that {P} Q {Q}’

• Wp(C,Q) = ‘The weakest predicate P such that [P ] Q [Q]’

Before defining these notions formally, it is necessary to first define the general
notion of the ‘weakest predicate’ satisfying a condition. If p and q are predicates
on states (i.e. have type state→bool), then define p⇐q to mean p is weaker (i.e.
‘less constraining’) than q, in the sense that everything satisfying q also satisfies p.
Formally:

p⇐q = ∀s. q s ⇒ p s

The weakest predicate satisfying a condition can be given a general definition using
Hilbert’s ε-operator. This is an operator that chooses an object satisfying a predicate.
If P is a predicate on predicates, then εp. P p is the predicate defined by the property:

(∃p. P p) ⇒ P (εp. P p)

15Dijkstra’s semantics of nondeterministic programs can also be formalized in higher order logic,
but not using the simple methods described in this paper (see the end of Section 5.1).
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Thus, if there exists a p such that P p, then εp. P p denotes such a p; if no such p
exists, then εp. P p denotes an arbitrary predicate. Hilbert invented ε and showed
that it could be consistently added to first order logic. Allowing the use of ε in higher
order logic is equivalent to assuming the Axiom of Choice. The weakest predicate
satisfying P can be defined using ε:

Weakest P = εp. P p ∧ ∀p′. P p′ ⇒ (p⇐p′)

Dijkstra’s two kinds of weakest preconditions can be defined by:

Wlp(c, q) = Weakest(λp. Spec(p, c, q))

Wp(c, q) = Weakest(λp. Total Spec(p, c, q))

These definitions seems to formalize the intuitive notions described by Dijkstra,
but are cumbersome to work with. The theorems shown below are easy consequences
of the definitions above, and are much more convenient to use in formal proofs.

` Wlp(c, q) = λs. ∀s′. c(s, s′) ⇒ q s′

` Wp(c, q) = λs. (∃s′. c(s, s′)) ∧ ∀s′. c(s, s′) ⇒ q s′

The relationship between Hoare’s notation and weakest preconditions is given by:

` Spec(p, c, q) = ∀s. p s ⇒ Wlp(c, q) s

` Total Spec(p, c, q) = ∀s. p s ⇒ Wp(c, q) s

The statement of the last two theorems, as well as other results below, can be
improved if ‘big’ versions of the logical operators ∧, ∨ ⇒ and ¬, and constants T

and F are introduced which are ‘lifted’ to predicates. These are defined in the table
below, together with the operator |= which tests whether a predicate is always true.
These lifted predicates will also be useful in connection with dynamic logic.

Operators on predicates

p ∧ q = λs. p s ∧ q s
p ∨ q = λs. p s ∨ q s
p ⇒ q = λs. p s ⇒ q s
¬p = λs. ¬p s
T = λs. T

F = λs. F

|= p = ∀s. p s

The last two theorems can now be reformulated more elegantly as:

` Spec(p, c, q) = |= p ⇒ Wlp(c, q)

` Total Spec(p, c, q) = |= p ⇒ Wp(c, q)

In Dijkstra’s book, various properties of weakest preconditions are stated as axioms,
for example:
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Property 1. ` ∀c. |= Wp(c,F) = F

Property 2. ` ∀q r c. |= (q ⇒ r) ⇒ (Wp(c, q) ⇒ Wp(c, r))

Property 3. ` ∀q r c. |= Wp(c, q) ∧ Wp(c, r) = Wp(c, q∧r)

Property 4. ` ∀q r c. |= Wp(c, q) ∨ Wp(c, r) ⇒ Wp(c, q∨r)

Property 4′. ` ∀q r c. Det c ⇒ |= Wp(c, q) ∨ Wp(c, r) = Wp(c, q∨r)

These all follow easily from the definition of Wp given above (Det is the determi-
nacy predicate defined in Section 10). It is also straightforward to derive analogous
properties of weakest liberal preconditions:

` ∀c. |= Wlp(c,F) = λs. ¬∃s′. c(s, s′)

` ∀q r c. |= (q ⇒ r) ⇒ (Wlp(c, q) ⇒ Wlp(c, r))

` ∀q r c. |= Wlp(c, q) ∧ Wlp(c, r) = Wlp(c, q∧r)

` ∀q r c. |= Wlp(c, q) ∨ Wlp(c, r) ⇒ Wlp(c, q∨r)

` ∀q r c. Det c ⇒ |= Wlp(c, q) ∨ Wlp(c, r) = Wlp(c, q∨r)

Many of the properties of programming constructs given in Dijkstra’s book [6] are
straightforward to verify for the constructs of our little language. For example:

` Wp([[skip]], q) = q

` Wlp([[skip]], q) = q

` Wp([[V := E ]], q) = λs. q(Bnd ([[E ]]s) ‘V ‘ s)

` Wlp([[V := E ]], q) = λs. q(Bnd ([[E ]]s) ‘V ‘ s)

` Wp([[if B then C1 else C2]], q) = λs. ([[B]]s → Wp([[C1]], s) | Wp([[C2]], s))

` Wlp([[if B then C1 else C2]], q) = λs. ([[B]]s → Wlp([[C1]], s) | Wlp([[C2]], s))

The inadequacy of the relational model reveals itself when we try to derive Dijk-
stra’s Wp-law for sequences. This law is:

Wp([[C1; C2]], q) = Wp([[C1]], Wp([[C2]], q))

which is not true with our semantics. For example, taking:

s1 = λx. 0
s2 = λx. 1
c1(s1, s2) = (s1 = s1) ∨ (s2 = s2)
c2(s1, s2) = (s1 = s1) ∧ (s2 = s2)
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results in:

Wp(Seq(c1, c2),T) = T

but

Wp(c1, Wp(c2,T)) = F

The best that can be proved using the relational semantics is the following:

` Det [[C1]] ⇒ Wp([[C1; C2]], q) = Wp([[C1]], Wp([[C2]], q))

As discussed in Section 5.1, the problem lies in the definition of Halts. For partial
correctness there is no problem; the following sequencing law for weakest liberal
preconditions can be proved from the relational semantics.

` Wlp([[C1; C2]], q) = Wlp([[C1]], Wlp([[C2]], q))

With relational semantics, the Wp-law for while-commands also requires a deter-
minacy assumption:

` Det c ⇒ Wp([[while B do C]], q) s = ∃n. Iter Wp n [[B]] [[C]] q s

where

Iter Wp 0 b c q = ¬b ∧ p
Iter Wp (n+1) b c q = b ∧ Wp(c, Iter Wp n b c p)

However, the Wlp-law for while-commands does not require a determinacy assump-
tion:

` Wlp([[while B do C]], q) s = ∀n. Iter Wlp n [[B]] [[C]] q s

where

Iter Wlp 0 b c q = ¬b ⇒ p
Iter Wlp (n+1) b c q = b ⇒ Wlp(c, Iter Wlp n b c p)

The Wlp-law for while-commands given above was not the first one I thought
of. Initially I tried the same tactic that was used to prove the Wp-law for while-
commands on the goal obtained from it by deleting the determinacy assumption and
replacing Wp by Wlp. It soon became clear that this would not work, and after some
‘proof hacking’ with HOL I came up with the theorem above. A possible danger
of powerful proof assistants is that they will encourage the generation of theorems
without much understanding of their significance. I tend to use HOL for simple
mathematics rather like I use a pocket calculator for arithmetic. I have already
forgotten how to do some arithmetic operations by hand; I hope HOL will not cause
me to forget how to do mathematical proofs manually!
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11.3 Dynamic logic

Dynamic logic is a programming logic which emphasizes an analogy between Hoare
logic and modal logic; it was invented by V.R. Pratt based on an idea of R.C. Moore
[32, 9]. In dynamic logic, states of computation are thought of as possible worlds, and
if a command C transforms an initial state s to a final state s′ then s′ is thought of as
accessible from s (the preceding phrases in italics are standard concepts from modal
logic).

Modal logic is characterized by having formulae 2q and 3q with the following
interpretations.

• 2q is true in s if q is true in all states accessible from s.

• 3q is true in s if ¬2¬q is true in s.

Instead of a single 2 and 3, dynamic logic has operators [C] and <C> for each
command C. These can be defined on the relation c denotated by C as follows:

[c]q = λs. ∀s′. c(s, s′) ⇒ q s′

<c>q = ¬([c](¬q))

where ¬ is negation lifted to predicates (see preceding section).

A typical theorem of dynamic logic is:

` ∀c q. Det c ⇒ |= <c>q ⇒ [c]q

This is a version of the modal logic principle that says that if the accessibility
relation is functional then 3q ⇒ 2q [9].

From the definitions of [c]q and <c>q it can be easily deduced that:

` (|= [c]q) = Spec(T, c, q)

` Det c ⇒ ((|= <c>q) = Total Spec(T, c, q))

` Spec(p, c, q) = (|= p ⇒ [c]q)

` Det c ⇒ (Total Spec(p, c, q) = (|= p ⇒ <c>q))

Where |=, ⇒ and T were defined in the preceding section. Using these relationships,
theorems of dynamic logic can be converted to theorems of Hoare logic (and vice
versa).

Dynamic logic is closely related to weakest preconditions as follows:

` Wlp(c, q) = [c]q

` Det c ⇒ (Wp(c, q) = <c>q)

These theorems can be used to translate results from one system to the other.

49



12 Conclusions and future work

The examples in the previous section show that it is straightforward to define the se-
mantic content of diverse programming logics directly in higher order logic. In earlier
sections it is shown how, with a modest amount of parsing and pretty printing, this
semantic representation can be made syntactically palatable. If a general purpose
system like HOL is used, the choice of specification constructs can be optimized to
the problem at hand and to the tastes of the specifier; a particular choice need not
be hard-wired into the verifier. For example, Hoare-style and VDM-style correctness
specifications can be freely mixed. A significant benefit of working in a single logical
system is that only a single set of theorem proving tools is needed. Typical software
verifications require some general mathematical reasoning, as well as specialized ma-
nipulations in a programming logic. If everything is embedded in a single logic, then
there is no need to interface a special purpose program verifier to a separate theo-
rem prover for handling verification conditions. This benefit is even greater if both
software and hardware are being simultaneously reasoned about, because hardware
verification tools can also be embedded in systems like HOL [12].

Although the methods presented here seem to work smoothly, the examples done
so far are really too trivial to permit firm conclusions to be drawn. The next step
in this research is to try to develop a practical program verifier on top of the HOL

system. We plan to extend the methods of this paper to a programming language
containing at least procedures, functions, arrays and some input/output. Various
possibilities are under consideration, ranging from adopting an existing language like
Tempura, Occam or Vista, to designing our own verification-oriented language. It is
intended that whatever language we choose will be supported by a verified compiler
generating code for a verified processor. Preliminary work on this has already started.
Eventually it is planned to verify a reasonably non-trivial program using our tools.
It is expected that this case study will be some kind of simple real-time system. Our
goal is to show the possibility of totally verified systems, and to give a preliminary
idea of their practicability.

One unsatisfactory aspect of the verifier described here is that the parser and
pretty-printer were implemented by descending from ML into Lisp (the HOL system
is implemented in Lisp). This could be avoided if ML were augmented with a general
purpose parser and pretty-printer generator similar to the one in Mosses’ semantics
implementation system SIS [26]. Providing these tools would be quite a lot of work,
but fortunately some progress in this direction has already been made. For example:

(i) Huet’s group at INRIA have interfaced CAML (a version of ML that extends the
ML used by HOL) to the Unix YACC parser generator.

(ii) It is planned that a parser generator (from Edinburgh) will be distributed with
Standard ML of New Jersey, a high performance implementation of Standard
ML from AT&T Bell Laboratories.

(iii) The Esprit project GIPE (Generating Interactive Programming Environments)
is producing a powerful general purpose interface for manipulating formal lan-
guages. This supports a user-specifiable parser and pretty-printer which is
closely integrated with a mouse-driven syntax-directed editor. For example,
the pretty-printer adapts its line breaks to the width of the window in which it
is being used.
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These three projects suggest that tools will soon be available to enable syntactic in-
terfaces to logical systems to be smoothly implemented without the low-level hacking
I had to use.
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