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ABSTRACT

This paper describes the use of formal methods to verify a very simple microproces-
sor. The hierarchical structure of the microprocessor implementation is formally
specified in higher-order logic. The behaviour of the microprocessor is then derived
from a switch level model of MOS (Metal Ozide Semiconductor) behaviour using
inference rules of higher-order logic with assistance from a mechanical theorem-
proving system. The complexity of the formal proof is controlled by a multi-level
approach based on increasingly abstract views of time and data. While traditional
methods such as multi-level simulation may reveal errors or inconsistencies, for-
mal verification can provide greater certainty about the correctness of a design.
The main difference with formal verification, and its strength, is that behaviour
at one level is formally derived from lower levels with a precise statement of the
conditions under which one level accurately models lower levels.

.
1. INTRODUCTION

The use of formal methods in hardware design is an increasingly active area of
research fueled by the widespread use of microprocessor systems in real-time con-
trol. [8] suggests that the use of formal methods may soon become a require-
ment in the certification of “safety-critical” devices in such control applications
as nuclear reactors and avionics. The maturity of these methods is not widely
known, yet, formal methods have been used to design or specify (aspects of) sev-
eral commercially-available microprocessor systems including: the British Ministry
of Defense VIPER microprocessor [7,8]; microcode for the floating point unit of
the INMOS T800 transputer [26]; and the Motorola 6800 instruction set [3].

1An earlier version of this paper will appear in: EUROMICRO 88, Proceedings of the 14th Sym-
posium on Microprocessing and Microprogramming, Zurich, Switzerland, 29 August - 1 September,
1988, S. Winter and H. Schumny, eds., North-Holland, 1988,




The very simple microprocessor described in this paper, called “Tamarack”, was
originally developed as a hardware verification example {12]. But unlike other
examples involving commercially-available microprocessors where the use of formal
methods has been limited to higher level aspects of the design, the Tamarack
implementation has been completely specified down to the transistor level. We
have also gained experience with the practical application of these methods by
implementing an earlier version of this microprocessor as a 5,000 transistor CMOS

microchip (Figure 1).

The microprocessor implementation is described by a relation on the externally
visible input and output signals of the microprocessor. This relation is defined hi-
erarchically in higher-order logic following the hierarchical structure of the design.
The very lowest level of specification is defined in terms of primitive behaviours
for CMOS transistors, capacitances and voltage sources. Starting with this struc-
tural specification, the semantics of the microprocessor instruction set are formally
derived through a series of intermediate specifications based on increasingly ab-
stract views of time and data. The highest level of specification describes the
programmer’s model of the microprocessor. ‘

This paper describes the formal specification of hardware in higher-order logic
and outlines the formal proof which derives the behavioural specification of the
Tamarack microprocessor from its structural specification. Thus, the paper pro-
vides both an introduction to the formal specification and verification of micro-
processor systems as well as a description of some steps towards building totally
" verified computer systems for safety-critical applications.

2. FORMAL SPECIFICATION

A variety of languages have been to used to write formal specifications of computer
hardware and architecture. These languages usually fall into one or more of the

following categories.

e A language specifically designed for the description of computer hardware
and architecture.

¢ A language embedded in a general-purpose programming language possibly
requiring extensions.

o A formalism with transformation rules and a well-defined semantics, e.g.
mathematical logic.

ISPS (Instruction Set Processor Specifications) (1] is an example of a hardware
description language which has been specifically designed to describe hardware
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Figure 1: Tamarack Microprocessor, 3.8 by 2.8 mm.



and architecture. Languages in this category provide a design-capture tool as well
as a documentation aid. While this approach offers the advantage of generality, it
depends on ad-hoc simulators or language interfaces for existing simulation tools.

Hardware description within a general-purpose programming language offers the

advantage of an executable specification. Designers of the SCHEME-79 chip used

LISP to specify microcode; by defining functions to simulate primitive machine

operations, the operation of the chip could be simulated by running the microcode

as a LISP program [35]. Hardware description languages in this category usually

exploit distinctive features of the programming language. [6] exploits the relational

nature of PROLOG to model bi-directional signal flow. [18] describes an APL

approach observing that the flow of data from source to destination acted upon

sequentially by various devices in a datapath corresponds well with the way in -
which APL statements are executed from right to left.

Programming language notations with well-defined semantics have led to ap-
proaches which combine the advantages of an executable specification with the
advantages of a manipulable formalism. [34] extended Backus’s FP language with
a notion of “state” to describe regular array circuits. Algebraic laws based on the
semantics of uFP can be used to transform a behavioural specification into an
implementation. Similarly, algebraic laws for OCCAM have been used to trans-
form a high-level specification into microcode for the floating unit of the INMOS
T800 transputer [26]. Parallelism in the OCCAM language is used to simulate the
inherent parallelism of hardware.

Several approaches have adapted existing formalisms to the purpose of describing
hardware behaviour and structure. The LCF_LSM system extended Scott and
Milner’s PPLAMDA logic with terms denoting the behaviour of sequential ma-
chines; this was used to produce the original proof of correctness for the Tamarack
microprocessor at the register-transfer level [12]. This register-transfer level imple-
mentation was also proven correct in a PROLOG based approach using a special-
purpose logic similar to LCF_LSM [2]. Another formalism designed specifically
to describe aspects of hardware (and software) behaviour is the CIRCAL calculus
[28].

More general formalisms have also been used as hardware description languages.
[29] used temporal logic to specify the behaviour of the AM2901 bit slice and
proved correctness results about the interconnection of bit slices. An executable
subset of this logic has been implemented as an imperative programming language
and used to execute hardware specifications [30]. Hunt [19] uses the notation
of pure LISP to describe the structure and behaviour of his design for a 16-bit
microprocessor. Recursive functions model sequential logic where registers and
memory appear as function parameters. Each recursive call updates the contents of




registers with combinational logic simulated by the body of the function definition.
The underlying formalism is Boyer-Moore logic, a quantifier-free, first-order logic
with equality and induction schemes. Using the Boyer-Moore theorem-prover,
Hunt has proved the correctness of his implementation addressing issues such as
multiple levels of data representation and asynchronous communication.

The approach described in this paper, inspired by [13], is based entirely on the
formalism of higher-order logic. Higher-order logic can be used to specify aspects
of hardware structure and behaviour which are cumbersome when expressed in less
powerful formalisms. This increased expressiveness is partly due to terms such as
existential quantification which are not executable. The importance of simulation
as a means of exercising a specification is recognized in our approach; [5] describes
the implementation of an executable subset of higher-order logic. However, the
main emphasis in this paper is the formal verification of hardware using inference
rules of higher-order logic to derive theorems expressing the correctness of an
implementation with respect to a specification of its intended behaviour.

3. FORMAL VERIFICATION

Hardware is usually simulated at several levels of detail, e.g. instruction set exe-
cution, register-transfer level, switch level and circuit level. General-purpose pro-
gramming languages are used to simulate higher level aspects of behaviour while
special-purpose simulation tools such as MOSSIM [4] and SPICE [31] are used
at lower levels. The apparent absence of errors at one level is often taken as an
indication that the simulation model at the next higher level is an accurate model
of the hardware. -

While multi-level simulation is an important design tool which may reveal errors
or inconsistencies, it is not a proof of correctness. It is usually impractical to sim-
ulate an entire design at the detailed levels of switch and circuit level simulation;
only sub-systems or worst-case models are investigated at this level of detail. Even
with massive gains in computational power, e.g. parallel processing, the mean-
ingful interpretation of results from large scale simulations is not asimple task.
Furthermore, exhaustive testing is rarely possible and it is a difficult problem to
design a finite but “complete” set of tests. Finally, the relationship between simu-
lation levels is not formally defined and the exact conditions under which one level
accurately models a lower level are not always clear.

Formal verification provides a solution for each of these problems. The incremen-
tal and hierarchical nature of formal proof allows a large design to be investigated
at a detailed level of behaviour. The structure of the Tamarack microproces-
sor is described hierarchically by a network of primitives based on switch level



models for transistors, capacitance and voltage sources. Initial steps in the verifi-
cation procedure prove the correctness of simple components such as logic gates.
For example, the inputs and output of a NAND gate are shown to be related
by the logical NAND function under certain conditions. These results are then
used to prove the correctness of larger components such as an n-bit adder. Once
a component has been verified, its structural specification is replaced by its be-
havioural specification. For instance, the structural specification of the Tamarack
ALU (Arithmetic Logic Unit) is replaced by its behavioural specification defined in
terms of arithmetic functions. At higher levels, the correctness of the microcode is
verified by showing that target level operations, e.g. the execution of instructions
in a program, are correctly implemented by the corresponding sequence of microin-
structions. Microcode verification resembles simulation; however, the state of the
microprocessor system is represented symbolically allowing all possible states to

be tested.

Another advantage of this approach is that the verification methodology avoids
the “de-contextualization” of design errors. For example, a design error in the
ALU will prevent derivation of the ALU behaviour before any other aspect of
the design is considered. This contrasts with the simulation approach where the
manifestation of the error may appear in some unrelated part of the simulation
model and often many simulation steps later. A similar point is made in [37].

The complexity of the verification task is controlled by structuring the formal proof
with several intermediate levels of specification based on increasingly abstract
views of time and data. In order of increasing abstraction, these are:

switch level implementation
register-transfer level model
abstract state machine
target machine

Each level of abstraction simplifies one or more aspects of the low-level behaviour
of the microprocessor implementation. The main simplifications introduced in the
register-transfer level view are sequential behaviour and Boolean logic. The next
level of abstraction is principally a structural simplification which replaces the
register-transfer level architecture with an abstract state machine. Correctness of
the microcode is established by symbolic simulation of the abstract state machine
using inference rules of higher-order logic. The highest level of abstraction, the
target machine, specifies the net effect of microinstruction sequences; the main
simplification at this level is the contraction of behaviour over time into a single
state transition for each target level operation.

As with multi-level simulation, this structured approach to verification models
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hardware behaviour at various levels of accuracy and complexity. Indeed, each
level of specification corresponds to a simulation model. The main difference with
formal verification, and its strength, is that behaviour at one level is formally
derived from lower levels with a precise statement of the conditions under which
one level accurately models lower levels.

The use of formal methods in hardware design is not a new idea; Boolean algebra
has always been used to show that networks of logic gates implement specific func-
tions. However, the example described in this paper shows that formal methods
can be applied to a much greater range of digital behaviours and moreover, that
this is possible within a single formalism.

4. HIGHER-ORDER LOGIC

Functions which accept other functions as arguments or return functions as re-
sults are called “higher-order” functions. Such functions often lead to function
definitions which are both simple and powerful [16]. Higher-order logic is a for-
malism for reasoning about functions; this includes higher-order functions as well
as relations, i.e. functions that return Boolean values. Following the higher-order
logic approach presented in [13], hardware is described by relations on input and
output signals where signals are modelled by functions from discrete time to sam-
pled values. Because signals are modelled by functions, these will be higher-order
relations. Thus, higher-order logic provides a formal basis for reasoning about
functions and relations modelling hardware.

Higher-order logic extends first-order logic by allowing variables to range over
functions and predicates. Most of the notation such as “v” (“for all’) and “3”
(“there ezists”) should be familiar to computer scientists. Every term in higher-
order logic has a “type” which is either a primitive type, e.g. Booleans, natural
numbeérs, or built up from other types using type constructors such as Cartesian
product. Every compound term must correctly type-check; for example, a function
from numbers to Booleans can only be applied to a number.

The derivation of non-trivial theorems by hand is usually a tedious and complex
undertaking. However, much of the work can be reduced to simple syntactic
- checks that primitive inference rules have been used correctly. This task has been
automated in the HOL theorem-proving system [14]. This system, a descendant of
Edinburgh LCF [11], is an interactive computer program written in a mixture of
LISP and a functional programming language called ML. Derived inference rules
and powerful proof strategies can be programmed as ML functions to automate
most of the minor steps leaving the user to supply only the main steps in a proof
(32].



In addition to standard logical connectives, the HOL language supports condi-
tional expressions, “b = t1 | t2”, which may be read as “if b then t1i else £2”,
let-expressions, “let x = t1 in t2”, denoting the result of replacing all free oc-
currences of x in t2 by t1, and n-tuples of the form “(t1, ... tn)”. Certain
features of the HOL language have a special syntactic status for improved read-
ability, e.g. the definition of infix functions. The language also includes basic
arithmetic functions and relations.

5. CMOS SWITCH MODEL

A single wire in a CMOS circuit is modelled by a function from discrete time
to a fixed set of MOS values, Hi (high), Lo (low), Zz (high impedance) and Er
(unknown or undefined). The behaviour of a simple logic gate is represented by the
sequence of MOS values sampled at each of its inputs and outputs. For example,
the sequence of input and output values in Table 1 illustrates the behaviour of
a CMOS NAND gate. Interpreting Hi and Lo as the Boolean values T and F
respectively, the output value is always the logical NAND of the input values
when the inputs are “well-defined”, i.e. Hi or Lo. When one of the inputs is not
well-defined, ¢.e. Zz or Er, the output is Er.

t t+1 t+2 t+3 t4+4 t+5
a: Hi Hi Lo Lo Zz Lo
b: Hi Lo Hi Lo Hi Er
out: Lo Hi Hi Hi Er Er

Table 1: NAND Gate Behaviour.

The behaviour of a NAND gate can be derived from a switch level model of CMOS
behaviour. This model, motivated by [9], is related to the simulation model pre-
sented in [4]. P-type and N-type transistors are modelled as switches, but unlike
[4] these models are uni-directional and delay-less. Even though fabricated transis-
tors are bi-directional and have delay, these primitives provide a reasonable model
of behaviour for the restricted circuit style and clocking scheme used to implement
the Tamarack microprocessor. The validity of the model in this design style could
be established by traditional analysis techniques such as circuit simulation, timing
verification and signal flow analysis or formally derived from more accurate circuit
models such as those described in [17,24,38].

The predicates Ptran and Ntran are defined as relations on input and output
signals. These signals are explicitly declared as functions from discrete time to

MOS values by the type abbreviation “wire”. Function application is denoted
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by juxtaposition; for example, “g t” is the MOS value of the transistor gate at
time t. The right-hand sides of the output equations use conditional expressions
to determine the output value. Universal quantification is used to state that the
output equations hold for all times t.

F Ptran (g:wire,i:wire,o:wire) =
Vt. ot =(gt ="Lo) =it | (gt ="Hi) = 2z | Er

I Ntran (g:wire,i:wire,o:wire) =
Vi.ot=(gt=Hi) == it | (gt ="Lo) = 2z | Er

Capacitance in a CMOS circuit is modelled explicitly by the Cap primitive which
is the only primitive expressing a temporal relationship. This primitive provides

a model of charge storage used to derive the behaviour of clocked registers in the
Tamarack implementation.

I Cap (i:wire,o:wire) = Vt. o(t+1) = (i(t+1) =2z) = ot | 1(t+1)
To model the result of joining two wires, the four MOS values are ordered to form

a lattice with a top, Er, and a bottom, Zz, as shown in Figure 2. The infix function
Ll computes the least upper bound of two MOS values based on this ordering,.

Er
Hi Lo
Zz

Figure 2: Lattice of MOS Values.
FxUy=(x=y) =x| (x=12z) =y | (y=12z) = x| Er)
The Join primitive determines the result of joining two wires by taking the least
upper bound of their current values. This models the dominating effect of a non-
floating value over Zz and the even greater dominance of Er over the other three

MOS values. Primitives for voltage sources are also shown below.

I—v Join (il:wire,i2:wire,o:wire) = Vt. ot = (i1 t U i2 t)

F vdd (o:wire) = Vt. o t = Hi

F Gnd (o:wire) = Vt. o t = Lo



These switch level primitives are used to specify implementations of CMOS cir-
cuits. When the formal parameters of a behaviour predicate are replaced by the
actual names of wires and busses in an implementation, the result is a behaviour
term describing the effect of the component in the implementation. The behaviour
of an implementation can be expressed by the logical conjunction of behaviour
terms for each of the components in the implementation. Existential quantifi-
cation is used to hide internal wires, f.e. signals not connected to the external
ports of the implementation. The following specification illustrates the use of log-
ical conjunction and existential quantification to describe the implementation of a

CMOS NAND gate (Figure 3).

 NAND (a:wire,b:wire,out:wire) =
3 wi w2 w3 wd wb w6 w7.

vdd wi A

Ptran (a,wl,w2) A
Ptran (b,wl,w3) A
Join (w2,w3,wd) A
Join (w4,wb,out) A
Ntran (a,w6,wB) A
Ntran (b,w7,w6) A

Gnd w7
vdd
]
v v
| Ptran " |Ptran
L ]
vV
Join

Join f[————» out

Figure 3: CMOS NAND Gate Implementation.

10




Behaviour composition and signal hiding provide a basis for the hierarchical spec-
ification of hardware structure. Circuits are defined structurally at one level of
specification and then used as components at higher levels. Another specifica-
tion technique is iteration, for example, of stages in an n-bit adder. This can
be expressed in higher-order logic either by primitive recursion or by bounded
quantification. A third method of controlling structural complexity in a hardware
specification is based on the use of generic structures [22].

The low-level behaviours of the switch level primitives are expressed directly in
terms of relations on MOS values. Using techniques to exploit hierarchy, iteration
and generic structure, the structural specification of a circuit in higher-order logic
results in a system of simultaneous constraints on inputs and outputs of the circuit.
The behaviour defined by these constraints is also a relation on MOS values but
this will almost always be too complex to express directly in terms of MOS values.
Instead, behaviour is expressed at higher algebraic levels such as Boolean logic
and arithmetic functions by defining formal relationships between MOS values and
higher levels of data representation. This higher level view of behaviour is then
formally derived from lower levels. For example, the following theorem states the
correctness of the CMOS NAND gate in terms of an equation on Boolean values
using the abstraction function BoolAbs to interpret MOS values as Boolean values
and the predicate WellDef to describe the conditions under which this abstraction
holds. '

F VY ab out.
NAND (a,b,out)
=
Vt.
WellDef (a t) A WellDef (b %)
—y
BoolAbs (out t) = “(BoolAbs (a t) A BoolAbs (b t))

The above theorem states that the behavioural specification of a NAND gate is
implied by its structural specification. The function BoolAbs interprets MOS
values as Boolean values by mapping Hi to T and Lo to F. Because all functions
are total in higher-order logic, BoolAbs maps the other two MOS values, Zz and
Er, to arbitrary but fixed values. Since the output equation only holds when the
input values are either Hi or Lo, the predicate WellDef is used to express this
validity condition.

F WellDef m = (m = Hi) V (m = Lo)

Simple logic gates can be used to implement n-bit wide structures such as an n-bit
adder. Functions from bit positions to MOS values are used to model n-bit words.
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For example, the binary value 011 is represented by the function f where f(0) is
Hi, f(1) is Hi and f(2) is Lo. An n-bit bus is a function from discrete time to n-bit
words. The following definition shows the formal specification of an n-bit adder
using the higher-order relation Iterate to specify n iterations of a 1-bit adder.
Iterate has a primitive recursive definition which uses existential quantification
to hide internal carry signals.

I ADDERn n (a:bus,b:bus,out:bus) = Iterate n (a,b,out) ADDER1

The correctness of the n-bit adder can be stated in terms of ADDn which denotes
an addition operation for n-bit words. The n-bit adder is then combined with
other n-bit structures to implement the 3-function ALU used in the Tamarack
datapath. The following theorem states the correctness of the ALU with respect
to its register-transfer level behaviour.

FVn £f0£f1l ab out.
ALUn n (£f0,f1,a,b,out) A
BusWidth n out
R
Vt.
WellDef (fO t) A WellDef (f1i t) A
WellDefn n (a t) A WellDefn n (b %)

=
dw.
out t =
(((£0 t,f1 &) = (Hi,Hi)) = w |
((£f0 t,f1 t) = (Lo,Hi)) = INCn n (b t) |
((£f0 t,f1 t) = (Lo,Lo)) = ADDn n (a t,b t) |

SUBn n (a t,b %))

Both the structural and behavioural specifications of the ALU are parameterized
by n, the word size of the microprocessor. In addition to the constraints imposed
by ALUn, the predicate BusWidth is used to declare the width of the output bus.
For well-defined control signals and well-defined inputs, the output of the ALU is
determined by nested conditional expressions describing the output for each of the
four possible pairs of well-defined control values. One of these pairs, (Hi,Hi), is
not used in the Tamarack microcode; the unspecified value computed by the ALU
for this pair of control values is hidden by existential quantification. The other
three operations are described by INCn, ADDn and SUBn. These functions describe
simple arithmetic operations on n-bit words.

The above theorem illustrates how a complex relation on MOS signals can be
succinctly expressed in terms of simple arithmetic relations. The functions INCn,

12




ADDn and SUBn are defined in terms of arithmetic functions on the natural numbers
using abstraction functions which convert n-bit words to numbers and numbers to
n-bit words. For instance, the definition of ADDn converts the two n-bit operands
into numbers and then converts their sum back into an n-bit word. The abstraction
functions Wordn and Valn have straightforward definitions based on the unsigned
binary representation of a number and the representation of n-bit words in higher-
order logic by functions from bit positions to MOS values.

 ADDn n (wil,w2) = Wordn n ((Valn n wi) + (Valn n w2))

Following the verification strategy outlined in Section 3, the derived behaviour of
the ALU is then used to reason about the function of the ALU in higher level

aspects of the Tamarack design.

6. THE TAMARACK MICROPROCESSOR

Figure 4 shows the register-transfer level architecture of the Tamarack micropro-
cessor. Even though this microprocessor was designed as a hardware verification
example, it has features found in real designs such as microcoded control. Earlier
work on this example is presented in [12,20,21]. Gordon’s design has also been
used by several other researchers to describe their own approaches to hardware -
specification and verification [2,33,37]. '

The externally visible state of the microprocessor consists of the program counter
PC, accumulator ACC and external memory. Unseen by the user, the internal
architecture involves several more registers used by the microcoded control to
implement target level operations. In addition to registers and external memory,
the datapath includes a 3-function ALU implementing addition, subtraction and
incrementation. Datapath components are interfaced to a single bus using tri-state
bus drivers. The control unit is implemented by the microcode ROM, a 5-bit latch
MPC for the current microinstruction address and combinational logic to compute
the address of the next microinstruction. The implementation also includes latches
for external inputs from the function-select knob and data switches.

The microprocessor is always in one of two possible modes of operation. In “idle”
mode, the user can use the button, knob and switches on the front panel of the
computer to load values into the PC, ACC and external memory or start exe-
cution of a program. In “run” mode, program execution continues until a HALT
instruction is encountered or the user interrupts by pushing the front panel button.

The simple instruction set precludes the possibility of illegal operations and con-
ditions such as arithmetic overflow cannot be detected. As shown in Table 2, the

13
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Figure 4: Register-Transfer Level Architecture.
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microprocessor has eight instructions each consisting of a 3-bit opcode and an ad-
dress field. In Gordon’s original specification, the address field was thirteen bits
wide but we consider a more general specification where the width of the address
field is parameterized by a variable.

000—address— HALT Stop execution
001—address— JMP  Jump

010—address— JZR Jump if ACC =0
0l11—address— ADD  Add contents to ACC
100—address— SUB  Subtract contents from ACC
101—address— LD Load contents into ACC
110—address— ST Store ACC

111—address— SKIP Jump to next instruction

Table 2: Tamarack Instruction Set.

The register-transfer level architecture of the Tamarack microprocessor is formally
specified in higher-order logic with the same specification techriques used to spec-
ify lower levels, i.e. hierarchical specification and iteration. For example, separate
specifications for the control unit and the datapath are composed using logical
conjunction to describe the top level structure of the microprocessor. Existential
quantification is used to hide the internal connections between the control unit
and datapath. Implementations of the control unit and datapath are specified in
terms of register-transfer components such as the ALU. The result is a complete
specification of the microprocessor implementation down to the level of switch
level primitives.

7. TARGET MACHINE SPECIFICATION

The target machine is a high level behavioural specification of the Tamarack mi-
" croprocessor describing both the semantics of the instruction set and the control
structure. The target machine is defined as an abstract state machine whose state
is a 4-tuple consisting of the current memory state, contents of the program counter
and accumulator and a flag indicating whether the microprocessor is currently in
idle mode. Each target level operation such as the execution of an instruction
corresponds to a single state transition by the target machine. The next state of
the machine is computed directly from the current state and the current input
values,

Following the relational style of specification used to specify lower levels of be-
haviour, the target machine is formally defined in higher-order logic as a relation
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on the externally visible signals of the microprocessor. Four of thése signals cor-
respond to the components of the target machine state. The program counter,
accumulator and idle flag are physically available as output signals. The memory
signal is only a virtual signal but it is still considered to be externally visible.
Memory states are modelled by functions from memory locations to n-bit words
and a memory signal is a function from discrete time to memory states. In addi-
tion to the state signals, the target machine relation involves three input signals.
The specification is parameterized by the number of bits n in the address field of
an instruction. Since the remaining bits form the 3-bit opcode, the word size of

the microprocessor is n + 3.

F TARGET_MACHINE n (
(button:wire,knob:bus,switches:bus),
(mem:memsig,pc:bus,acc:bus,idle:wire)) =
Vt.
(mem(t+1) ,pc(t+1) ,acc(t+1),idle(t+1)) =
NEXT_STATE n (
(button t,knob t,switches t),(mem t,pc t,acc t,idle t))

The state of the machine at time t+1 is computed by the function NEXT_STATE
directly from the state and inputs at time t. The formal specification of the
target machine is completed by defining NEXT_STATE just as one would define this
function in a functional programming language. Using a structured programming
style, NEXT_STATE could be defined in terms of a function which computes the next
state during an idle cycle and another function which computes the next state
during a run cycle. The latter could be defined in terms of individual next state
functions for each of the eight instructions. For instance, the following function
specifies the semantics of an ADD instruction.

F ADD_INSTRUCTION n (mem:memstate,pc:word,acc:word) =
let inst = FETCH mem (Valn n pec) in
let addr = ADDRESS n inst in
let operand = FETCH mem (Valn n addr) in
let nextpc = INCn n pc in
let nextacc = ADDn (n+3) (acc,operand) in
(mem,nextpc ,nextacc,Lo)

"

ADDRESS is a function which extracts the n-bit address field from the instruction
word and FETCH is a function constant representing a memory fetch. When an
ADD instruction is executed, the program counter is incremented by one and
a value from memory is added to the accumulator. The above definition also
specifies that the memory state is left unchanged by an ADD instruction. The
fourth element of the 4-tuple indicates that the microprocessor remains in run
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mode after executing an ADD instruction. The semantics of the other seven
instructions are defined in a similar manner.

8. CLOSING THE STRUCTURE-BEHAVIOUR GAP

The behaviour of the target machine has been formally derived from the structural
specification of the Tamarack microprocessor using inference rules of higher-order
logic. The behaviour of the internal architecture is derived entirely from the switch
level model presented in Section 5 while external devices such as the memory
unit are specified in terms of behavioural models. The complete proof required
over three million primitive inference steps but almost all of these steps were
automatically generated by the HOL system.

Section 3 outlined the structured methodology used to control the complexity
of the verification task. One of the main simplifications was illustrated with the
behavioural specification of the ALU in terms of arithmetic functions. Abstraction
functions such as BoolAbs, Wordn and Valn are used to relate low level forms of
data to higher algebraic levels. Another powerful abstraction technique involves
formal relationships between various levels of timing in the microprocessor.

Three distinct levels of timing are modelled in the formal specification of the
Tamarack microprocessor. The lowest level of timing corresponds to the gener-
ation of two-phase, non-overlapping clock signals. At this level, the sequential
behaviour of the clocked registers is derived from the behavioural specification of
the externally-generated clock signals and the model of charge storage provided
by the capacitor primitive. The next level of timing is used to describe register-
transfer level behaviour. A single interval of time on the register-transfer level
time scale corresponds to a complete two phase clock cycle. The most abstract
level of timing in the Tamarack specification is the time scale used to define the
behaviour of the target machine. A single interval on this time scale corresponds
to one target level operation such as the execution of an instruction.

Both [17] and [27] describe the use of higher-order functions to define formal re-
lationships between time scales. Once a relationship between two time scales
has been formally defined, behaviour at the fine-grained time scale is related to
behaviour at the coarser grain of time by symbolic simulation of the low-level be-
haviour through an interval of course-grained time, This proof technique is used
to relate behaviour at the level of two-phase clocking to behaviour defined in terms
of the register-transfer level time scale. Symbolic simulation is also used to relate
register-transfer level behaviour to the behaviour of the target level machine. For
example, the target level machine is shown to correctly implement the semantics
of an ADD instruction by symbolic simulation of the ten microinstructions im-

17



plementing an ADD instruction. The simulation takes the form of a sequence of
forward inferences in higher-order logic. It is symbolic becauses variables are used
in place of real data; alternatively case analysis is used to consider a finite number
of possibilities, e.g. eight possible values for the 3-bit opcode in a target level in-
_struction. Further details on the symbolic simulation of the Tamarack microcode
using higher-order logic may be found in [20]. The use of multiple specification
levels and symbolic simulation within higher-order logic is also described in [7].

9. PRACTICAL APPLICATIONS

. An important aspect of the work described in this paper is the practical application
of formal methods in a VLSI design methodology. By specifying the structure of
hardware in terms of switch level primitives, we hope to eventually write formal
specifications which can be mechanically checked for consistency with the mask
level layout used to fabricate the design.

The use of intermediate levels of specification to structure the verification proce-
dure can also be exploited in a VLSI design methodology. Each level of specifica-
tion defines a virtual machine whose behaviour can be investigated by simulation.
[6] describes how a simulation can be generated from a hardware specification writ-
ten in higher-order logic. This would allow a specification to be exercised before
attempting to relate it to a higher level using formal proof. Formal specifications
could also be used to generate to circuit descriptions for special-purpose simula-
tion tools through language interfaces. In this regard, higher-order logic would be
used as a universal hardware description language.

The type-checking facilities of the HOL system provide valuable assistance in
checking the consistency of a hardware specification even before attempting for-
mal proof. Simply getting the HOL system to successfully type-check a non-trivial
specification usually requires considerable effort. However, this effort often reveals
errors which would go unnoticed without the scrutinizing eye of the type-checker.
Thus, type-checking is a third way, prior to simulation and formal verification, of
validating a hardware specification.

Experience with the Tamarack microprocessor suggests that writing formal spec-
ifications may also play an active role in the design process. Formal specification
motivates cleanly derived views of behaviours which may influence the design. [21]
describes how untidy aspects of the behavioural specification for an earlier version
of the Tamarack implementation led to improvements in the current design.
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10. FUTURE WORK

The current design of the Tamarack microprocessor assumes that every read and
write request to external memory is completed in a single clock cycle. This as-
sumption could be validated by a detailed analysis of timing characteristics for
both the microprocessor and the external memory. We are now designing a new
version of this microprocessor which has wait states where the microprocessor
waits one or more clock cycles after issuing a read or write request to the exter-
nal memory until the request is acknowledged. Wait states are implemented by
while-loops in the microcode. [23] describes the use of higher-order logic to model
the asynchronous interaction of the microprocessor with external memory using a
four-phase “handshaking” protocol. Our approach differs from [19] in the use of
existential quantification to specify the unpredictable length of wait states. Our
relational specification style also makes it easy to write independent specifications
for the microprocessor and the external memory behaviour.

We have also used higher-order logic to relate the target level behaviour of the
Tamarack microprocessor to the formal semantics of a very simple imperative
language containing constructs such as assignment statements and while-loops.
Both the semantics of this language and a compiler are defihed in higher-order
logic. We have proved that the semantics of the language corresponds to the ex-
ecution of compiled programs. Thus, the semantics of the language serves as a
- high level specification of the microprocessor behaviour. This formal connection
between software and hardware also provides a verified hardware model for soft-
ware verification. We hope to eventually integrate this with work on mechanizing
programming logics in higher-order logic described by [15].

11. SUMMARY AND CONCLUSIONS

Hardware verification is a new science but it has reached a maturity suitable for
practical use in some safety-critical applications. Reliability is more important
than functionality in many of these applications. For instance, in regard to rail-
road control systems, [36] states that “the most complex interlock arrangement
requires a simple combination of Boolean and time-based sequential-state logic, all
well within the capability of the arithmetic unit of a small microprocessor”. The
endorsement of these methods by industry is reflected in the product release an-
nouncements supplied by the manufacturers of the VIPER microprocessor [10,25].

The cost of formal verification is dominated by the expert’s time rather than the
speed of the theorem-proving system. However, the main overhead of producing
the initial specification and writing the ML programs to do the necessary inferences
need only be done once. Thereafter, the finished proof could be easily modified
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to accommodate small changes in the hardware. The correctness of incremental
changes to a design can be verified by editing the specification and verification
procedure, usually in a very minor way, and re-running the proof as a batch
job. This contrasts with the simulation approach which may require less initial
effort but every modification requires the complete re-run and debugging of the
entire simulation test suite. The validity of the simulation approach is seriously
impaired when time constraints do not permit complete re-simulation after last-
minute modifications. Therefore, the initial effort to produce a formal verification
may be rewarded in the long term.

The end product of formal verification is a theorem stating that a behavioural

- specification is a logical consequence of a structural specification and assumptions
about the behaviour of a small set of primitive components which can be imple-
mented as physical devices on a microchip. While formal verification offers greater
certainty than simulation, the mere generation of such a theorem is not completely
satisfactory evidence that a hardware design is correct. First, the validity of the
theorem depends on the behavioural models used for primitive components and
external devices. In Section 5 we suggested that the switch level primitives are a
reasonable model of CMOS behaviour for the restricted circuit style and clocking
scheme used in the Tamarack implementation but this should be verified by a more
accurate model of CMOS behaviour. Second, the behavioural specification may be
misread or its full implications may not be fully understood. Complete solutions
for this second problem are more difficult to propose. However, the problem is
partially solved by relating behaviour to increasingly abstract levels such as the
semantics of a programming language.

A skeptical view of formal verification suggest that this approach is impractical
because the process cannot be completely automated. In our view, complete au-
tomation would undermine the real value of formal verification. As part of a
VLSI design methodology, the actual process of verifying a design may be of more
valuable than the end product. Constructing a formal proof forces a designer to
consider exactly why a design is correct. As suggested in [21], an untidy step in the
proof may indicate the need for a design modification. Furthermore, the designer
is more likely to understand the full implications of a behavioural specification
after the effort of producing the proof. Powerful tools such as the HOL system
automate most of the tedious steps in a large proof. This allows a designer to rea-
son efficiently about a hardware specification. The underlying formalism ensures
that this reasoning process is absolutely correct.
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