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Introduction. The main aim of this project was to achieve

as full an implementation as possible of BCPL on a floppy
disc based Z80 microcomputer, running CP/M or CDOS (the two
being essentially compatible). On the face of it, there
seemed so many limiting factors, that when the project was
started, it was not at all clear which one (if any) would
become a final stumbling block. As it happened, the major
problems that cropped up could all be programqed round, or

altered in such a way as to make them soluble.

The main body of the work splits very conveniently into
three sections, and I hope in covering each section
separately, to be able to show how the whole project fits

together into the finished implementation.
The Sections are:
{A] - The Z80 Code Generator

[B] - The Run-time system (BCPLMAIN and BLIB)

[(C] - The Bootstrap and final implementation
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Section A

A Z80 Code Generator for BCPL

A.1 Background

This was by far the most important, and in fact the
most difficult of the programs to write, the reason being
the stringent limitations that a processor such as the Z80
places on the compiler writer. By far the worst of these
limitations was the amount of real memory available. The
machine on which the final compiler had to run had 48K bytes
of memory, of which about 10K bytes was taken by the
operating system, leaving about 38K bytes of workspace.
Another space limitation is that of the size of the floppy
dises. Nominally, these were single sided, double density
five inch discs, having a capacity of about 180K bytes each.
When the system tracks have been removed (directory track,
and two tracks of operating system), about 150K bytes 1is
available to the user.

A.2 Initial Design Decisions.

This section contains references to OCODE, Z80
assembler code and INTEL standard OBJ modules.
Specifications of these items can be found in references
[2], [10], and Appendix I respectively.

The task of any BCPL code generator is to take as
input, OCODE produced by the frontend of the compiler, and
produce as its result, some form of target machine code.
OCODE 1is designed in such a way as to deal with the
idealised BCPL machine, and the <code generator must be
capable of ¢translating, and optimising the code for this
'ideal' machine, tailoring it for the hardware available.
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A.3 An OCODE interpreter.

For sheer simplicity, there is a tendency to
macro-generate machine code from 0OCODE, producing a
semi-interpretive OCODE machine with a run time system
designed to provide the OCODE primitives. Advantages of
such a system are that the code generator is small, easy to
write, wordsize independent, and hopefully, easy to debug.

An example of such a macro expansion might be:

OCODE Machine code

STACK 12 // no code

LN 3 CALL $LN s DW 3,12
LP y CALL $LP ; DW 4,13
PLUS CALL $PLUS ; DW 12
RV . CALL $RV s DW 12
LP 5 CALL $LP ; DW 5,13
STIND CALL $STIND ; DW 13

In each case, there is a routine in the run time system
to deal with the OCODE operator, and this is followed by one
or more words of information needed by the interpreter. For
instructions that deal with the stack, the current stack
size is needed, so the code for RV has a word containing 12
(the current stack size) after it. For OCODE statements
that require arguments, these are also stored after the
routine call. Thus statements 1like LP or LN which require
both an argument and a stack size have two parameters
stored.

The above machine code is no more than a glorified
interpretive code. There would be very little difference to
the running speed of the code if the 'CALL $xxxx!
instructions were replaced by a byte representing '$xxxx'
this would then be a true interpretive code, and much more
compact than the example given above.

There were two possible problems with designing a code
generator on these principles. Firstly, since the
translator has no internal optimisations of its own, the
OCODE itself is not of particularly good quality. Secondly,
there is the problem of inefficiency, and an interpreter
based on OCODE did not have the makings of one of the
world's fastest programs.

Unperturbed by these considerations, a code generator
which generated interpretive code was written, just to see
how big and poor the resulting compiled code would be. The

- A2 -




code generator was small - about 800 1lines of BCPL to be
precise, and its structure was extremely simple. After all,
it was no more than an OCOQODE translator. The major drawback
with this system as it stood, was that these 800 lines macro
generated into about 50K bytes of very poor machine code.
Considering that the implementation had to be accomplished
on a 48K byte machine, this method was somewhat unfortunate.

At this point it was clear that an optimising code
generator would have to be written. The ideal situation
would be to reach the trade-off point between the quality
and compactness of the compiled code, and the size and
complexity of the code generator itself.

A.Y4 Initial structure of the code generator.

After reading carefully three other BCPL code
generators (those for the IBM/370, NOVA and PDP11) it became
clear that the task was nowhere near as daunting as it had
first appeared. All three of the code generators were based
on the same basic structure, and it was only the machine
dependent detail that varied.

There seemed little point in redesigning a system that
had obviously worked many times before, and so the essential
logic of the code generator was taken from these three. The
overall structure is adapted heavily from the IBM/370's code
generator, whereas most of the fine detail was taken from
the PDP11's, a machine whose internal architecture is much
more akin to that of the Z80. Another major reason for
keeping to a well proven algorithm 1is that it would be
possible to find out where the bugs were 1likely to show
themselves, and, when they did, how they had been fixed on
previous systems.

The next step was the design the abstract machine for
which to generate the code. - Primary considerations were
simplicity of structure, leading hopefully ¢to a code
generator small enough to fit on the target machine, and
compactness of compiled code. Speed was a somewhat
secondary issue, though as it turned out, the code produced
by the BCPL compiler is as fast, if not faster in some
cases, than that produced by its FORTRAN counterpart.

Since the Z80 possesses two index registers, it seemed
natural to use these to point to the stack and global
vector, (IX and IY respectively). This 1left the other
registers and the Z80's stack. At first, it seemed feasible
to operate a two stack system - the BCPL stack running
upwards, holding parameters to procedures, local variables
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etc., and the Z80's stack running downwards, holding stacked
return addresses. This scheme would work fine on most BCPL
programs, except those using the library procedures APTOVEC
and LONGJUMP, the 1latter now requiring three parameters,
rather than the usual two. The idea was scrapped very early
on,

The Z80's stack is used to pass arguments to routines
in the run time system, while the registers are treated as
three general purpose BCPL registers, HL - DE - BC, with an
eight bit work register, A.

Code Generator Data Structures

A.5 Fundamental Structures

The code generator depends very heavily on two items of
data structure, both of which are defined to be interfaces
between the abstract BCPL machine represented by OCODE, and
the actual target machine. These are the SIMULATED STACK
and the REGISTER SLAVE .

Since most of the information about the flow of control
of a BCPL program has been lost once the OCODE stage 1is
reached, there is very little that the code generator can do
to optimise this aspect of the program. On the other hand,
OCODE 1is 1ideal for stack access optimisation 1i.e. the
simulation of the run time stack and the slaving of
registers within the code generator. It is not possible to
know the exact values of all items on the run time stack,
nor is it possible to know exactly the values in the machine
registers at a particular time. However, through cunning
use of simple data structures, it is possible to hold all
information needed to run an efficient register slave, and
to optimise the code compiled to access the run time stack.
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Each simulated stack item can be considered as a
triplet containing information about the item at a
corresponding position on the real run time stack.

A general simulated stack item (triplet) is given below:

H W2 H3

TEM | NUMERIC
DESCRIPTOR | DESCRIPTOR

STACK
POSITION

Fig A.5.2 A Generalised Simulated Stack Item

All items which deal with the simulated stack data
structure are BCPL pointers, i.e. ARG1 points to the triplet
representing the top item on the 'simulated stack. The one
exception to this rule is the variable 'SSP' which is set to
the numerical position of the next free 4item on the
simulated stack. Position zero 1is considered as the base of
the current stack frame.
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A.6 Simulated Stack Item descriptors.

The item descriptor can have one of nine values,
representing the possible item on the run time stack. The
numerical descriptor in item H3 of the triplet 1is here
referred to as 'x'.

Type Meaning...

LocC The value of the local variable found at
offset 'x' from the current stack pointer.

GLOB The value of the global variable found at
offset '"x' from the current global pointer.

NUMB The value of the numerical constant 'x!'.

LAB The value held in the STATIC location at
CG label 'x'.

LVLOC The address of local variable 'x'.
LVGLOB The address of global variable 'x'.
LVLAB The address of static variable 'x'.
REG The value currently stored in machine

register 'x',

STCK The item currently on the top of the Z80's
stack.




A.7 The Register and ZSTACK slaves.

Related to the REG and STCK items are two more pieces
of data structure, the REGISTER SLAVE and the ZSTACK slave.

HL  H2  H3 H4

RHL

R.DE

R.BC

Fig A.7.1 The Register Slave

Here the triplet has become expanded by the addition of
one more word. This word holds the internal manifest value
of the register concerned, for use in the routines which
generate code. This does not affect the actions of the
slave at all, and the register slave should be thought of as
being composed of triplets, just like the simulated stack.
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Fig A.7.2 The ZSTACK Slave

The ZSTACK slave 1is a one-triplet slave holding
information about the item currently on the top of the Z80's
stack. As far as slaving is concerned, the ZSTACK 1is
treated almost as another register.

There is one extra type of item for these two slaves.
Since it is possible that the states of registers, or of the
280's stack are undefined, a type "NONE"! has to be
introduced to represent this.

It is worth pointing out at this juncture that the
register and ZSTACK slaves can never contain information
about themselves. The reason for this is to avoid recursive
definitions of slave information. For instance, it 1is
theoretically possible for the ZSTACK slave to contain
information leading to the stunning conclusion that the top
item on the Z80's stack is in fact the ZSTACK item, i.e. the
top item on the Z80's stack...

A.8 Summary of Information held in Slaves.

At any point in the compilation of a program, the code
generator knows the state and size of the run time stack,
the state of the machine registers, and the state of the top
item on the Z80's stack. The information is stored simply,
but by the way that the various parts of the data structures
inter-relate, it provides a full description of the state of
the run time machine, and facilitates the production of
respectably good machine code.
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A.9 Inter-relation of the slaves

It is essential at this point for the reader to be
familiar with the simulated stack item descriptors 1in
relation to the run time objects which they represent. By
example, I hope to show how the REGISTER and SIMSTACK slaves
interact as items are brought into registers, and then
stored again. By analogy, the ZSTACK slave acts just as a
single item register slave, and is treated as such by the
Code Generator.
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A.10 Examples of Slave Manipulation

SSp=5

R.HL | NONE _? ?
RIE[  Gloe 76 7
RBC|  Nump 2 4
Mt [ e | @7 4
A2 | Lloc | 2 3
NUMB - 20 2
Loc 1 - 1
Loc ) 1)
Fig. A.10.1 Initial state of the Slaves

- A1l -




Examples - 2

RH.| NONE 7 ?
RIE GLog 76 7
RBC| Nump 12 4
. S6P=6
ARat [ Glos 100 5 |
ARR2 |  IMAB | 427 4 T
NuMg. 20 2 L
LoC 1 K
Loc 7% 7}
Fig. A.1b.2 State after the OCODE statement 'LG 100!
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Examples - 3

RHL [ GLos o0 5

RDE GLoB 76 £

R.BC NuMB 12 | 4

ARGL [ REG T RHL G

ARG2 | LNLAB PF 4

| Loc 2 3
Nve | 20 [ 2
Loc 1 K
Loc o )

Fig; A.10.3 State after.ARG1 loaded into HL
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Examples - 4

i [ GLos 100 5 &
R | GLoB 76 7 |
REC | NuMB 12 4
-
SSP=56
mat [ Loc 5 5 e
ARG2 LVLAB 27 4
Loc 2 3
NUMB - 20 2
LoC A y
Loc @ @
Fig. A;10;4 étate after HL stored onto the stack
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Code Generator Primitives

Having described the data structures, it is now
necessary to introduce the code generator primitives
required for manipulating these structures in a useful and
efficient manner.

At any point in the compilation, the code generator must be
able to:

(1) Move any simulated stack item 1into a machine
register of its choice.

(2) Dump any machine register in the store location of
its choice.

(3) Set the Simulated Stack to be any arbitrary size.

(4) Set the Simulated Stack to be in some pre-defined
standard state.

(5) Load any item onto the Simulated Stack.
(6) Search the Register Slave for a particular item.

(7) Discard the values held in any or all of the
slaves.

Routines providing the Code Generator Primitives

A.11 Move a Stack item into a Register.

There are three routines provided for ¢this purpose,
Wwith varying degrees of generality.
These are:

MOVETOR ( <register> , <SIMSTACK item> )
R := MOVETOANYR ( <SIMSTACK item> )
R := MOVETOANYBUT ( <register> , <SIMSTACK item> )

Here a <register> is a pointer to a triplet in the
register slave, such as one of the variables R.HL, R.DE or
R.BC . A <SIMSTACK item> is a simulated stack item, i.e. a
pointer to a triplet on the simulated stack, such as ARG1 or
ARG2.
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The purpose of 'MOVETOR' is to move a specific stack
item into a register, used for example, when code for an
operator 1is about to be compiled. All updates to the
SIMSTACK and register slave are done in this routine.

A typical call might be:
MOVETOR ( R.HL , ARG1 )

which would result in the top item on the SIMSTACK being
moved into the HL register pair, and the triplets for R.HL
and ARG1 being updated.

MOVETOANYR and MOVETOANYBUT are used in more general
cases, MOVETOANYR will move a simulated stack item to the
most suitable register available, whereas MOVETOANYBUT will
move the item to any register BUT the one specified. Both
these routines necessitate a search of the register slave
table to find, if possible, a register with the required
value already available. If this is not possible, then the
function NEXTR returns the next available register for use
by the code generator.

NEXTR uses the following algorithm for the allocation
of registers:

(1) Allocate an UNDEFINED and UNUSED register
(2) Allocate an UNUSED register

(3) Allocate the register which was least recently
referenced, dumping its current value at the required
position.

UNDEFINED in this context means that the register slave
contains 'NONE' in the data type field for this register;
UNUSED means that there are no references to it on the
current simulated stack. It can be seen that an UNUSED
register is not necessarily undefined, although the converse
is usually true.

In all the above cases, NEXTR would allocate the
registers in the order HL - DE - BC, i.e. the most general
and usable register first.

MOVETOANYBUT is analagous, but will never allocate the
register specified in 1its arguments. Here +the register
allocation is done by the routine NEXTBUTR, corresponding
exactly to NEXTR, but never allocating the specified
register.

A typical use of each of these routines might be:

MOVETOANYR ( ARG1 )
MOVETOANYBUT ( R.HL , ARG2 )

R
R :
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Both MOVETOANYR and MOVETOANYBUT actually load the item
into the allocated register using MOVETOR. The result is
that all register slave and simulated stack updating is done
within the central routine, rather than in its more general
dependents.

A.12 Storing of Registers

There are two completely separate occasions when this
is necessary:

(1) When an OCODE 'Sx' instruction is being dealt with, and
the top item on the SIMSTACK has to be explicitly
stored.

(2) When a register is required for another purpose, and
the value needs to be dumped for use later. This 1is
needed specifically when the stack needs to be in a
standard state for a transfer of control.

These two occasions are treated independently. For the
first, there is a routine 'CGSTORE"! which takes two
arguments: the type and position of where to store the top
item on the SIMSTACK (ARG1). For example the OCODE 'SG 100’
would result in a call 'CGSTORE( GLOB, 100 )'.

The philosophy adopted by the code generator is that an
item cannot be stored until it has first been loaded into a
machine register. If the item is not already in a register
(H1 ' ARG1 \= REG) then ARG1 is moved 1into an available
register. Once loaded into a register, the item can be
stored by a mechanism which is effectively the reverse of
that for loading.

The other possible reason for dumping a register is
that, either the register is needed for another purpose, and
the value in it is too valuable to ignore, or to get the
stack into a standard state ready for a transfer of control,
e.g. a JP (jump) 1instruction, or a procedure call. The
routines provided to do this are 'STORE'! and its
subsidiaries 'STORET' and 'FREEREG'.

FREEREG takes two arguments: a register, represented by
a pointer into the register slave like R.HL, and a simulated
stack item. Its purpose is to free the register given as
the first argument, from all references on the simulated
stack OTHER than that given as the second argument. This is
useful, especially in the routine MOVETOR described earlier,
where the register given needs to be freed of all
references, other than the one which will eventually be
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loaded into it.
A typical call might be:
FREEREG ( R.HL , ARG1 )

which has the effect of removing all references to the
HL register pair in the simulated stack, apart from the one
in ARG1 (if any).

STORE alsoc takes two arguments: low and high water mark
references to the simulated stack. A call of 'STORE(x,y)'
has the result of putting locations between positions x and
y on the current stack frame into a standard state, 1i.e.
actually stored on the real run time stack. STORE is most
useful in conjunction with the variable 'SSP', which is the
position of the next available simulated stack item. Thus a
call of 'STORE( 0, SSP )' has the effect of stacking all
items between the base and the top of the current simulated
stack, i.e. putting the whole of the current stack frame
into a standard state. Similarly, 'STORE( 0, SSP-2 )' has
the effect of stacking all but ARG1. (In this context 'SSP!
and 'SSP-1' have the same meaning, as SS3SP holds the position
of the first free cell, and not the top item on the stack).

Subsidiary to STORE is the routine STORET which stores
a simulated stack item, if necessary, onto the run time
stack. It does this by inspecting the triplet passed to it,
and generating code to do the store if the item is not of
the form 'LOC, n, n', (i.e. already stacked).
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A.13 Manipulation of Simulated Stack Size

The two routines provided to do this are STACK and
INITSTACK, both of which take as arguments, the size which
the simulated stack will be after return from the routine.

A call of 'INITSTACK( n )'! has the effect of
initialising a new simulated stack frame to the size 'n'.

S5P=n

- — -
— ———
&

- un aswn

ARl | Loc 1 | n

AR| loc- | n2 | n-2

Fig A.13.1 An initialised Simulated Stack Frame
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A triplet of the form 'LOC, n, n' has the meaning of a
LOCAL variable, already stored at its pre-destined position
on the run time stack.

A typical call might be:
INITSTACK ( 2 )

which initialises a new simulated stack frame of size
2. This is the state of the run time stack frame just on
entry to a procedure, with only two items on the stack: the
return address and old stack pointer.

INITSTACK is essential in all situations when a new
stack frame is being set up. Examples of this are on entry
to a procedure, on setting a code generator label, or if a
relative stack size change would cause overflow.

STACK is a more general routine, which sets the
simulated stack size to its argument without re-initialising
the stack. This is related directly to the OCODE 'STACK n'
directive, but is applicable to many other situations as
well. The majority of stack operations are relative: e.g.
code for a diadic operator has just been compiled, and the
stack needs bringing down by 2. Again the variable S3P
comes in useful here, as all relative stack size changes are
just increments or decrements of this variable. Thus
'STACK ( SSP - 2 )' would bring the simulated stack down by
the required amount after generating code for the diadic
operator.

Depending on the magnitude of the size change, STACK
changes the stack size in three different ways.

Firstly, if the change, either wup or down, is
greater than 4, then the entire stack frame is 'STORE'd, and
the new stack frame is initialised using INITSTACK.

Secondly, if a stack increment of <= 4 is
required, then this is accomplished by 'LOAD'ing items of
the form 'LOC, SSP' until the stack is of the required size.
(The LOAD routine 1is discussed more fully in the next
section).

Thirdly, if a stack decrement of <= 4 is required,
then this is done by repeatedly decrementing ARG1, ARG2 and
SSP until either the bottom of the stack is reached, in
which case a new stack frame is 'INITSTACK'ed, or the
required stack size is reached.
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A.14 Loading a new SIMSTACK item

The routine provided for this facility is LOAD, which
takes as its arguments the first two parts of a simulated
stack triplet. The third part is redundant, and can be
filled in by the system from the variable S8SP, which holds
the position of the next available simulated stack cell.

Given the current state of the simulated stack:

.

v

et | Lo | £

a2 | Loc & |-6 -

Fig. A.14.1 Simulated stack before a LOAD.
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ARGL

ARG2

After the execution of
of the simulated stack would be:

."’

1
!

'"LOAD ( GLOB

76 )' the state
sspP =9

GLOB

76

LOC

Loc

& 6

Simulated stack after a LOAD

Fig. A.14.2

This <corresponds directly to the OCODE instruction

'LG 76°'. LOAD is also used to stack the result, after code
has been compiled for an operator.

Typically the code to deal with a diadic operator runs like:

MOVETOR ( R..., ARG1 )
MOVETOR ( R..., ARG2 )

STACK ( SSP - 2 )
LOAD ( result... )

A.15 Searching the Register Slave

The function LOOKINREGS is .provided to seach for an
occurrence of a particular stack item within the register
slave. It returns as its result, a pointer to a register in
the register slave, if the item has been found, or -1 if
not.

The mechanism is a scan of the pairs of descriptive
cells in the slave (items H1 and H2), comparing them with
the item given as argument to the function.
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A typical call might be:
R := LOOKINREGS ( ARG1 )

which returns a pointer to a register if the item ARG1
were already in a register, or another item with the same
description was found. Given the following states of the
simulated stack and register slave, the above call would
have resulted in R.DE being handed back as the result.
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RHL| LoC 3 | | I
RDE| NuMmB 100 ) e
RBC[ NONE ? 7 ‘,
|
B
—— = Direct Relation
——— = Indirect Relation -
| |
| | | u
ARGA NUMB 100 5 _J
ARG2 Loc 4 4 |
REG R.HL -3 T
| Glog 20 2 |
T 1oc 4 4
LoC @ D
Fig A.15.1 LOOKINREGS - relationship between

the Simulated Stack and the Register Slave
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A.16 Discarding Slave Information

There are several occasions when the information held
in particular slaves has to be discarded. The ZSTACK slave
needs to discarded after an item has been POPped from it
into a register. The entire register slave must Dbe
discarded after encountering a label, an indirect
assignment, or a procedure call. This is because, in the
first case, the label can be accessed from any part of the
compiled program, and so the registers will be in an
undefined state at the label.

In the second case, this is the rather unfortunate side
effect of the generality of the BCPL indirect assignment,
which could have updated any word in store, and in
particular, one referred to by an item in the register
slave. Although the chances of this happening are somewhat
unlikely, there is no alternative but to lose all
information at this point.

The third case is similar to the first, 1i.e. the
registers will be in an undefined state on return from a
procedure call, and so the register slave must be discarded
to take account of this.

The routines provided are:

DISCARDSTACK, which discards the information 1in the
ZSTACK slave.

DISCARDREG(R), which discards the information in the
register slave, relating to register 'R'.

DISCARDREGS, which discards the information in the
entire register slave.

DISCARDADDRESS(R), which discards the information about
register 'R' if it refers to a LOCAL variable which happens
to be above the current simulated stack pointer. This is of
necessity whenever the size of the simulated stack 1is
reduced.
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A.17 Routines to generate Code

A1l routines which generate code begin with the prefix
'CODE.', and take arguments related to the instruction they
represent. For example, consider the 'INC' instruction.
The routine provided to generate code for this instruction
is 'CODE.INC', and takes the manifest value of a 16 bit
register pair.

So:
CODE.INC ( K.HL )

would cause an 'INC HL' instruction to be compiled. Certain
routines take a variable number of arguments, e.g. the
routine to generate code for the 'LD! instruction,
'CODE.LD'. On generating code for a register to register
load, the call might be:

CODE.LD ( K.A, K.L )

whereas, if an indirected 1load were being compiled, e.g.
‘LD L,(IX+10)', the call would be:

CODE.LD ( K.L, K.IX, 10 )

Other types of arguments to be passed to these routines are:

K.I.HL HL indirected, i.e. (HL)

K.LAB The address of a label, followed by the
label number

K.I.LAB The contents of a labelled static cell,
again followed by a label number

K. NN A 16 bit numeric quantity

K.N An 8 bit numeric quantity

A.xxx The addresses of routines in the run time
system.
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The Top-Down Structure of the Code Generator

A.18 Introduction

Given the primitives described in the previous section,
it 1is possible to design an arbitrarily optimising code
generator on top of them. It is in the macro-structure of
the code generator that the major optimisations occur, not
as would first appear, in the primitives themselves. Once
the primitives have been tried and tested, then it is the
changes to the way they are used, and in particular, to when
they are used, that make by far the most striking
differences to the compactness and quality of the compiled
code.

Always at the back of my mind when designing the
optimisation tacties for the code generator, was the
somewhat sobering thought that the program eventually had to
run in 38K bytes of memory. This is a fact which I hope
Wwill help to defend some of the decisions taken, and
especially, explain why certain blatant optimisation
opportunities have been ignored completely.

A.19 The Main Program

The code generator is entered at START - a routine
which does no more than print a logon message, and set up
the workspace areas for the rest of the program. The rest
of the driving program is taken up by the routine MAIN,
which initialises essential variables, enters a main 1loop,
generating code for successive BCPL sections.

The sizes of the individual work vectors are given by
manifests in the header file "Z8OHDR". Typical values are
given in the following table for the three machines on which
the code generator is now implemented.

Machine
North Star Cromemco Z2/H IBM 370/165
48K 64K 200K
PROGSIZE 2500 5000 10000
RELOCSIZE 650 1000 2000
DATASIZE 650 1250 2000
LABSIZE 600 600 1000
Fig. A.19.1 Workspace allocations
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A.20 Other Data Structures

<

Most of the variables initialised by MAIN are related
to the remaining data structures used by the code generator.
These consist mainly of buffers, holding essential
information about forward references, data items or
relocation addresses.

These buffers are:

PROGBUFF length=PROGSIZE words. Holds a packed
buffer of all code compiled so far. PROGBUFFP is a byte
pointer, marking the high water mark of the compiled code.

RELOCBUFF 1length=RELOCSIZE words. Holds a buffer
of all addresses in the current compiled section which
require to be relocated by the linker. RELOCBUFFP is a word
peinter to the high water mark.

DATAV length=DATASIZE words. Holds a
two-word buffer of data items. The first word is the 'type'
of them item, the second, a numerical descriptor of the
first. Types can be DATALAB, ITEML or ITEMN, and correspond
directly to the OCODE statements. All data is buffered until
the end of the program. DATAP holds a word pointer to the
high water mark.

LABV length=LABSIZE words. Holds a word
buffer of all translator and code generator
'generated labels'. Entries have the following meaning:
Zero means an undefined label; Negative means Label already
defined - negate to get the address; Positive means a
pointer to a chain of label references in the PROGBUFF. The
chain is terminated by a zero.

Fig. A.20.1 gives a diagrammatic representation of the work
vectors, along with their associated pointers, showing
inter-relations between thenm.
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Selected Code Generation Examples

A.21 Introduction

Given the shortage of available space in this
dissertation, it would neither be practical, nor
particularly informative, just to treat each OCODE statement
in turn, and discuss the code which it compiles into. I
therefore propose to treat in more depth the overall
strategy of the generated code, and to illustrate this with
examples of specific constructs which proved especially
difficult or interesting.

A.22 The Inadequacy of the Instruction Set

The Z80's instruction set is particularly badly suited
for the code generation of high level languages for the
following main reasons.

Firstly, it is enormous - over 150 instructions in
all, It would be impossible in a code generator which must
fit on to the target machine, to exploit to its full
advantage this amazingly diverse instruction set.

Secondly, the 280 is essentially an 8 bit
processor, which means that, on average, two instructions
must to be compiled to deal with the the wordsize of
16 bits. An example of this is the code required to load a
register from a directly addressable item on the stack, or
in the Global Vector. This requires two 8 bit LD (load)
instructions, each three bytes long.

Thirdly, the 280 possesses only two index
registers, the IX and IY registers, which are only
addressable to + 128 bytes from their current base. This
means that, for maximum addressability, these registers must
point 128 bytes (64 words) above the area they are needed,
i.e. the current stack frame, or base of the global vector.
Even this provision will mean that Globals over 127 and
stack frames with large vectors, will contain variables not
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directly addressable from the index registers, and special
provision will have to be made for these items. The way
round this addressability problem is to use a call to the
run time system. The routines which deal with 1local and
global variables which are out of range are $LIX, $LIY, $3IX
and $SIY, each loading or storing, indexed off the IX and IY
registers respectively. The item loaded or stored is always
passed on the ZSTACK, as with other calls to the run time
system.

Fourthly, the instruction set suffers from being
extremely unorthogonal, with each register being different,
and specific for particular instructions. This means that
much time 1is spent in shuffling registers, to ensure that
the right things are in the right registers at the right
time.

A.23 Initial Optimisation Decisions

There are two main areas where optimisation is possible
in any programming language. These are flow of control, and
data access. OCODE is especially badly designed for flow of
control optimisation, for the simple reason that by the time
the code generator 1is reached, all information as to the
flow of —control has been removed completely by the
Translator. On the second count, OCODE scores much better,
and there is much scope for for simulated stack manipulation
and register slaving.

It was because of this, and the essentially
incompatible nature of Z80 machine code, that most of the
compiler's optimisation effort goes into minimising the
number of memory accesses and optimising the code compiled
for various operators. Very 1little +time 1is spent in
optimising jumps, and other transfers of control, for
example, the chance of replacing some of the long JP (jump
absolute) instructions by the shorter JR (jump relative).
The amount of effort needed teo drive such an optimisation is
much 1larger than the benefits gained in space saving on
including it. The NET size of the compiled code generator
increases dramatically when this optimisation is included,
and hence it is an advantage to omit it.
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A.24 Housekeeping of the Slaves

To aid adaptations, and further additions to the code
generator, most of the work needed to maintain the simulated
stack and various slaves is done by the various underlying
code generator primitive routines discussed earlier,
Optimisation of stack and global access stem directly from
using these facilities sensible, and most importantly, only
at the last possible opportunity given by the OCODE. If the
handling of operators is done efficiently, then the rest of
the optimisation comes as a by-product. It has already been
shown that OCODE statements such as 'LG 100' do not cause
any code to be compiled, but merely alterations in the state
of the simulated stack. The item (GLOB,100) will not be
accessed until absolutely necessary, either because it is
needed as one of the operands for an operator, or because
the state of the stack needs to be standardised for a change
in the flow of control.

Very 1little can be done te optimise the stack
standardisations, as all information about the flow of
control has been lost by this stage. Operators on the other
hand, can be dealt with much less rigidly, and hence, there
is much greater scope for optimisation in this area.

A.25 Generation of Code for Operators

The main prospect for the optimisation of code for
operators comes from the possibility of delay tactics,
putting off the compilation of any code at all until the
last possible moment. This introduces the concept of a
PENDINGOP - an coperator which has been read from the OCODE
stream, but which has not yet had code compiled to deal with
it.

Thus the OCODE sequence:
LN 100 LG 150 EQ

Will cause the items (NUMB, 100) and (GLOB, 150) to be LOADed
onto the simulated stack, and the PENDINGOP to be set to
'EQ’.

If the next OCODE sequence were:
LP 5 LOGAND
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then, since the operator LOGAND requires to work on the item
(LOC,5) and the result of the previous operator, then there
is no choice but to compile code for the previous operator
before the item (LOC,5) can be loaded on to the simulated
stack., What in fact would happen, is that the code for 'EQ'
is compiled, (LOC,5) is loaded on to the simulated stack,
and the PENDINGOP is set to 'LOGAND',

If, on the other hand, the next OCODE sequence were:
JF L25

then this presents an ideal opportunity to produce optimal
code for a conditional jump, by compiling instructions which
set the Z80's condition codes, and then wutilising the
'JP cc,address' instructions.

In this case, the optimal code is to subtract 100 from
G150, and to jump on a non-zero (NZ) result. Assuming that
HL contains G150 and DE contains 100, the code compiled is:

AND A s clear the 'C'arry flag
SBC HL,DE : subtract G150 and 100
JP NZ,L25 ; jump on NZ result to L25

a piece of code which not only runs efficiently, but is only
6 bytes in length. Compare this to the code produced if the
operator were not held in a pending state:

PUSH HL s ARG1 onto the stack

PUSH DE ;s ARG2 v " "

CALL $EQ s leaves T or F on the stack
POP BC : answer into BC

LD A,B : test to see if BC=false

OR C ; sets 'Z' flag if BC=0

JP Z,L25 ; jump on Z result to L25

which not only runs slower, but 1is approximately twice as
big - 11 bytes in fact.

A.26 The routine CGPENDINGOP

CGPENDINGOP, as its name suggests, generates code to
deal with the current PENDINGOP. It is called whenever

a) The stack requires to be in a standard state
b) The result of the operation is required
¢c) Another operator is read in

It is 1inside CGPENDINGOP that all shuffling of
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operands, or calculation of purely numerical quantities is
done. :

All possible numeric calculations are done within
CGPENDINGOP, so BCPL statements like:

LET A = 100 ¥* 200

will cause the number 20000 to be assigned to 'A', and not
compile code to multiply 100 and 20. This may seem an
unlikely thing to optimise, because any normal user would
actually assign 20000 to 'A' in the first place. A more
likely occurrence where numeric calculations are needed is
where MANIFEST variables are used. These are turned 1into
'numbers' by the Translator, so the code generator sees no
difference between the two.

There are, however, operators which must always have
code compiled for them, even 1if the operands are both
numeric. These are operators which deal with essentially
run time quantities, such as RV (!) and GETBYTE (%).

Taking the more complicated example of operators with
variable operands, CGPENDINGOP sorts the operators into
three categories:

(1) In-Line operators. Code is compiled for these
operators directly. They correspond to the operators for
which the Z80 has 16 bit instructions, i.e. Add and
Subtract. All code is compiled by CGINLINEOP.

e.g. ADD HL,DE

(2) Logical Operators. All operations go via the
'A' register. These operators correspond to those for which
the 7280 has 8 bit instructions, i.e. AND, OR and XOR. All
code is compiled by CGLOGOP.

e.g. LD A,H
OR D
LD H,A
LD A,L
OR E
LD L,A

(3) "ARITH" operators. These are the operators
for which no comparable instructions exist, and so must be
implemented by means of calls to the Run Time System. All
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operands are passed on the Z80's stack, which is where the
result is placed. i,e. MULT, DIV, REM and the relational
operators. All code is compiled by CGARITHOP.

e.g. PUSH HL

PUSH DE
CALL $REM
POP HL

Certain obvious chances of optimisation for the In-Line
operators are taken. Examples of this are:

<item> + 0

is optimised out. This may seem a trivial optimisation, but
the structure of OCODE 1is such that the BCPL expression
'Vi0' is translated as:

Lx [V] LN O PLUS RV

and access to the zero'th element of a vector is far from
rare! Despite its simplicity, it is remarkable how few code
generators take the opportunity to include this
optimisation.

Another example is:
<item> + <small number>

which is converted into loading the item into a register,
and then INCrementing or DECrementing to the required value.
For <small number> 1lying between 1 and 3, there is quite a
considerable space saving over the register to register adds
or subtracts, and alsc, a register which would have been
needed, is free for allocation elsewhere in the program,.

A.27 Relation of "ARITH" operators to the ZSTACK

Not only is the Z80's stack used to pass cperands to
the routines which deal with the ARITH operators, but also
to return the result of the operation. This can be
optimised quite heavily, providing that the Z80's stack is
slaved in the same manner as the registers.
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After compiling code for an ARITH operater, the item
(STCK,SSP) is LOADed onto the simulated stack, and the
ZSTACK slave is updated to hold the item (LOC,SSP,SSP).
This means that if the ZSTACK item is needed in a register,
then this is accomplished by POPping it from the Z80's
stack, and discarding the item in the ZSTACK slave. If, on
the other hand, the item is required as on operand for
another ARITH operator, then it turns out to have been
already stacked, and so will not require stacking again.

Thus, a BCPL statement like:
A := B * C ¥ D
will compile into:

LD HL,[ B 1
Lb DE,[ C 1]

Load item 'B' into HL
Load item 'C' into DE

PUSH HL ; ARG1 onto the stack

PUSH DE s ARG2 onto the stack

CALL $MULT : leave B¥*C on the stack
LD BC,[ D 1 ; Load iten 'D' into BC
PUSH BC s other operand onto stack
CALL $MULT ; leave B¥C¥*D on the stack.

Particular care has to be taken if the operator |is
non-symmetric, and in such a case, the result may have to be
POPped, only to be PUSHed back a couple of instructions
later, just because the operands were in the wrong order.

Since most of the more complicated operators are dealt
with by the ARITH section of BCPLMAIN, the slaving of the
ZSTACK 1is an extremely important part of the code
optimisation strategy. Unfortunately, since the slave is
only one item in size, it is impossible to optimise fully a
BCPL statement like:

A := (B/ C) * (D / E)

where, theoretically, it is possible to leave the result of
(B/C) on the stack while calculating (D/E), and then both
operands would be in the stacked state ready for the call to
$MULT. After much consideration, it was decided not teo
bother with an arbitrarily sized ZSTACK, like +the one
required to cope properly with the above example, but to
keep to the simple, single-item slave. In the example
given, the intermediate result of (B/C) would be POPped into
a register until (D/E) is calculated, and then PUSHed onto
the stack again, ready for the multiplication.
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A.28 Conditional Jumps

It is in compiling code for conditional jumps that the
full advantage of keeping a PENDINGOP can be seen. I have
already given an example of the optimisation possible when
an OCODE sequence like 'EQ JF L25' is compiled. EQ and NE
are in fact extremely easy to generate conditional jumps
for, due to the fact that a comparison for equality can
never suffer from numerical overflow. Other relations, such
as GR or LE suffer from this problem, and it is due to this
that all these types of comparison are done via the routines
in ARITH, where overflow is trapped and catered for.

Exceptions to this rule are comparisons with zero.
These can never overflow, in fact, there are certain tricks
which can be used to optimise such conditional jumps. All
comparisons with zero (especially equality) are so frequent,
that it turns out to be advantageous to optimise heavily
these types of conditional jumps. Examples of the type of
code compiled are:

To jump on HL = O:

LD A,H : high byte of item
OR L ; sets '"Z'ero flag if HL=0
JP Z,Lxx ; jump on zero to...

For HL \= 0 jump on Not Zero.

To jump on HL < O:

XOR A ; clear A
XOR H s sets '"M'inus flag if -ve
JP M,Lxx ; jump on minus to...

For HL >= 0 jump on 'P'ositive.

To jump on HL > 0:

XOR A ; clear A and reset 'C'arry

SBC A,L ; low byte, sets 'C' if carry

LD A,O s clear A again, don't reset carry
SBC A,H s sets M if HL > O

JP M,Lxx ; Jjump on minus...

For HL <= 0 jump on 'P'ositive
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A1l comparisons other than the ones illustrated here
are done by calls to the run time system, and then comparing
the result with zero to check for a false compare.
Advantage is taken here of the fact that the relational
operators can be reversed, and there is only a need for two
routines to deal with them.

A <= B is equivalent to B >
A >

A
B - is equivalent to B A

VaSLll

so, by just swapping the operands for the LE and GR cases,
the two routines, $LS and $GE can deal with all four
operators.

It must be stressed at this point, that relational
assignments such as:

A := B =C

are always compiled using calls to the run time system (in
this case $EQ), because in cases such as this, it is the
TRUTH values which a required, not condition codes.

A.29 Procedure Applications

This introduces for the first time, a problem the
solution to which must be rigidly adhered to, once decided
upon, and as compact and efficient as possible: the
procedure calling mechanism, There is a discussion of the
mechanism, and machine code implementation of this problem
in section B.4, so the description here is purely of the
background to the problem, and the reasons for certain
decisions.

Perhaps the most important aspect of the problem was
that the solution must be efficient. BCPL is built very
much on the philosophy of the modularity of programs, and
undue overheads in this area would distinctly 1limit the
programming capabilities of the implementation.

One piece of advice which turned out to be wise to
follow, was to have as many of the parameters to the
procedure as possible passed in machine registers, and if
the procedure returns a result, then this should be passed
in the register corresponding to the first parameter of the
procedure call, It was decided to pass the first three
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parameters to procedures in the HL, DE and BC registers
respectively, with the returned result from functions being
passed in the HL register.

Another reason for choosing the registers in this
manner was that the implementations of FORTRAN running under
CP/M and CDOS, both use this mechanism for the passing of
parameters, Since I hope soon to produce an interface
package 1linking the two languages, it seemed sensible to
keep as much as possible to the established mechanisms.

Having decided on using all three 16 bit registers for
parameter passing, it was imperative to use the Z80's
alternative register set to pass parameters required by the
BCPL run time system.

The final standardisation of registers is:

Argument register set

HL - Argument one to the procedure
DE — " two n " "
BC - " thr- ee " " "
System register set
HL - Address of routine to be applied
DE - 01d BCPL stack pointer (IX)
BC - Increase in size of o0ld stack frame

This means that the lead up to a typical procedure
application will produce code 1like:

LD HL,[ Arg1 1 ; first argument
LD DE,[ Arg2 1 ; second...

LD BC,[ Arg3 1 third...

; Note - arguments above 3 are already stacked
'

E XX change register sets

ssi = stack size increase
address of the routine
apply the routine.

LD BC,[ ssi 1]
LD HL,[ €ert 1]
CALL $APPLY

The old stack pointer is loaded into DE inside $APPLY,
so that by the time the code for the routine is entered, the
registers are as previously defined.

Return from procedures is equally simple. If a result
is to be passed back to the calling program, then this is
loaded into the HL register. The actual return is via a
routine in the run time system - $RETN, which resets the
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previous stack frame, and jumps to the return address.

A.30 The code generation of SWITCHON commands

By far the most complex OCODE statement is the
SWITCHON. The frontend causes very little change to the
structure of this command from the original source code,
leaving the code generator great freedom to choose the best
way of compiling this construct.

There are two main objectives when compiling code for
this statement. Firstly, the code must be efficient, as
most large programs rely heavily on SWITCHONs for their flow
of control. Secondly, the code must be compact, to make the
use of SWITCHONs advantageous over the multiple
'TEST... THEN... ELSE...' construction.

It does not take much time to realise that it is
impossible to have a single code generation strategy which
is optimal for all possible set of CASEs. A method which
can cope efficiently for a SWITCHON with a very small range
of CASE constants will be disastrously inefficient on space
for occasions with a wider spread. Conversely, code which
is compact for a wide spread of CASE constants, will be
unnecessarily inefficient in execution time when presented
Wwith a much smaller range.

It is for this reason that there are two methods used,
the one chosen depending on the spread of the CASE
constants. As an essential part of both systems, the cases
are sorted as they are read in, so as to aid the setting up
of address look-up tables if needed, or to help with
searching of the data.

The two methods are widely used in most BCPL systems,
and the main algorithms have been taken from those used many
times before. These are the LABVECSWITCH (a label vector
look=-up) and the BINTREESWITCH (a binary chop search,
followed by linear look-up).

Given a SWITCHON with range of cases (difference
between the maximum case and the minumum case) R, and number
of cases N, the following comparison is made:

R *# 2 4+ 20 m=m==> N ¥4 4+ N/ 2

If the left hand side is the lesser, then the LABVECSWITCH
is taken, otherwise, the BINTREESWITCH. The two
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calculations are estimates of the number of bytes each of
the two methods would compile 1into, given the current
SWITCHON to compile. It turns out that if the label vector
would be more than half full, then it 1is advantageous ¢to
take the LABVECSWITCH.

The algorithms for the two systems are as follows.

For the LABVECSWITCH, the SWITCHON item is
compared, first with the maximum case, and then with the
minimum case, jumping to the DEFAULT label if it is greater
than the first or less than the second. Then the address to
jump to is picked wup from LABVEC!(CASE-MINCASE), and the
jump is executed.

For the BINTREESWITCH, the cases are repeatedly
split in half recursively until a section of <= 8 cases
remain. These are then put into a table, along with the
corresponding addresses to Jjump to, and the 1label 1is
searched 1linearly by a routine in the run time system -
$LINSCH.
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Summary

Given more time and space, it would have been possible
to go into greater detail on the aspects of the code
generator which I have covered, and also deal with others
which I have had to omit altogether.

I have tried to include the areas of code generation
which were particularly interesting or difficult, but also
concentrate mainly on those which anybody medifying or
enhancing the code generator would need to know about.

- A42 -




Section B

The Z80 BCPL Run Time System

B.1 Introduction

In this section, the run time system is discussed as a
separate suite of programs, each in isolation, with very
little reference to the rest of the BCPL implementation.

The main part of the run time system comprises two
modules - BCPLMAIN, the machine code library, and BLIB, the
machine independent I/0 library, built on top of BCPLMAIN.
Since BLIB is written entirely in BCPL, and is essentially
machine independent, the version used in this implementation
is heavily adapted from the standard BLIB provided with the
BCPLKIT, and so will not be covered here,

B.2 BCPLMAIN - The machine code library

BCPLMAIN splits very conveniently into three parts:

a) $MAINS initialisation section
b) ARITH arithmetic section
¢) Standard BCPL procedures

These are essentially separate sections, which tend to
inter-communicate very 1little,. Communication with the
outside world is different for each of the sections.

$MAIN$ is entered right at the beginning of a BCPL run,
i.e. at location 0100H, the base of CP/M's transient progranm
area. The initialisation process is irreversible, and this
part of the program is never returned to after START has
been entered.

ARITH is entered via a jump table, starting at O100H+3.
This corresponds to the manifest JUMPTABLE in "“CGHDR".
Within BCPLMAIN, calls are made directly to the routines
concerned, rather then via this jump table. An exception to
this is $APPLY, which may go via location 0103H, if it 1is
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wished that the call should go through DEBUG. There is more
about the interactive debugging facility in section B.7 and
Appendix IV,

The remaining part of BCPLMAIN is made up of routines
with BCPL routine/function linkage conventions. This is the
machine code library, consisting mainly of routines which
implement the BCPL I/O0 facilities.

The rough memory layout of an initialised BCPL program
at run time is given in Fig. B.2.1, along with relevant
globals or symbolic equates.
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On smaller systems, the CONPROC (CP/M console
processor) can be overlaid, giving another 2K bytes of
workspace to the run time system. In such a case, the
CONPROC is rebooted by returning to CP/M via a 'JP 0' rather
than a direct return. The symbolic equate REBOOT governs
whether the CONPROC is rebooted.

B.3 $MAIN$ - The initialisation stage

The main task of $MAIN$ 1is to set up the various
structures used by the rest of the BCPL run time system.
These include the Stack, Global Vector and I/0 buffers. To
do this, the BCPL modules must be scanned to pick up such
information as the first address beyond the compiled code
which can be used as workspace, and the addresses of all
global routines which need to be initialised in the global
vector. In fact, it requires two scans to accomplish this.
The first finds the end address of the compiled code, and
the maximum global number allocated in the routines scanned.
This is needed to determine the absolute size of the global
vector. On their second scan, since the global vector is
now set up, all updates to it can be done.

Each scan is accomplished by picking up the end address
of BCPLMAIN (ENDMAIN), and working backwards from this
address in two-word steps until the '<maxgn>,0' pair 1is
found. This end address is then treated as a possible BEGIN
address for the next module lcaded, if it is present. If it
is, then the first four bytes will be the characters "BCPL",.
This being so, the length of this new module is picked up
from offsets 4 and 5, and this 1s added to the begin
address, to give the new end address of this module. The
whole process is then repeated until the end of the BCPL
modules is reached.
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B.4 ARITH - The Arithmetic Library

Due to the lack of certain essential instructions on
the Z80, e.g. 16 bit compares and Multiply/Divide, these
operations have to be implemented in software by calls to
this section of the run time system,. Here I am indebted to
the writers of the 280 LISP system for providing the
algorithms for implementing software multiply and divide.

ARITH does not only deal with the complex operators,
but also with facilities to aid mechanisms such as procedure
calling, table searching, or out of range indirect data
access. The procedure calling mechanism is worth examining
in detail, because it was specifically designed to be fast,
compact, and also easy to bipass for anybody writing machine
code libraries.

The arguments are passed in either machine registers
(Args 1,2 and 3), or already stacked (Args 4 upwards).
Assuming that the arguments have been set up in advance, the
following code would be produced to apply the procedure (in
this case WRITEF, GT76).

EXX

LD L,(IY+24)
LD H, (IY+25)
LD BC, 20
CALL $APPLY

swap to alt reg set
low byte of GT76

...and high byte
increase in stack size
apply WRITEF

return here.

“o we we we we a¢

So, on entry to $APPLY, the alternative register set
holds the arguments to the procedure, and in the current
register set, HL holds the address of WRITEF, BC holds the
increase in stacksize. DE is used 1later on to hold the
value of the old stack pointer,

$APPLY shuffles the registers, ready for entry to the
procedure.

PUSH IX ; save old stack pointer

POP DE sy ...into DE

EX (SP),HL ; swap calling & return addresses
RET s and jump to the procedure.

On entry to the procedure, HL contains the return
address, DE contains the o0ld stack pointer, and BC, as
before, the increase in stacksize. One of two things now
happens. If the procedure being applied is written in BCPL,
then there is no choice but to set up a new stack frame,
with all the overheads this entails. If, on the other hand
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the procedure is a library routine written in machine code,
which does not call any other routines, then the entire
overhead of setting up a new stack frame can be avoided.
The simplified mechanism for the entry point to a machine
code routine is:

PUSH HL : save the return address
EXX get argument register set

code of the routine

RET

return

Given that a new stack frame has to be set up, the very
first instruction to be executed on entry to a procedure is:

CALL $SETL

which sets up all 1linkage information, ready for stack
accesses relative to the new stack pointer, or another
procedure call. $SETL stacks the o0ld stack pointer and
return address as the first two words of the new stack
frame, and returns with the argument register set restored.

ADD IX,BC s IX +:= increase in stacksize
LD (IX-128),E ; low byte of o0ld IX

LD (IX-127),D ; ...and high byte

LD (IX-126),L : low byte of return address
LD (IX-125),H s ...and high byte

EXX ;y get argument register set
RET s and return

Return 1is accomplished via the run time system call
JP $RETN

which reverses the process of $SETL, restoring the old stack
pointer and jumping to the link address.

LD E,(IX-128) ; low byte of old IX

LD D,(IX-127) s ...and high byte

LD C,(IX-126) 7y low byte of return address
LD B,(IX-125) i ...and high byte

PUSH BC s stack return address

PUSH DE s stack old IX

POP IX s restore IX

RET s return to link address

Note here that the HL register pair cannot be used as a work
register, because it may contain the returned value from a
function.
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B.5 BCPL I/0 Library

The most basic form of BCPL I/0 1library must provide
the following routines:

RDCH FINDINPUT SELECTINPUT ENDREAD INPUT and
WRCH FINDOUTPUT SELECTOUTPUT ENDWRITE OUTPUT

The specification if each of these routines is identical to
the 370 implementation, with one exception. That is the
fact that FINDINPUT and FINDOUTPUT must take File Names
rather that DDnames. Decoding of the filenames is such as
to allow any name of the form:

[ <drive named>:; ] <file name> [ .<extension> ]
so a call like:
X := FINDOUTPUT( "B:GARBAGE.IDW" )

would open the file GARBAGE.IDW on drive B, creating it 1if
necessary. As well as the standard I/O routines, there are
five others provided. These are:

UNRDCH FINDFILE BINRDCH
BINWRCH WRITETOLOG
As in the 370 implementation, UNRDCH will backspace

only one character. The reason for this is that, to avoid
anomalies over characters 1like '*¥N', the 1last character
returned by RDCH is stored, and UNRDCH sets a bit in the
status byte of the SCB, causing the next call of RDCH to
return the saved character rather than a new one,. UNRDCH
from the terminal is a no-op, because all terminal access is
direct, and not buffered.

FINDFILE is a routine which takes advantage of the CP/M
file formatting facility. On typing a command to the CLI
like:

<transient command> <filename>

the transient command is taken to be the first eight
characters of a file with the extension '.COM', and this is
loaded at 0100H, the base of the transient program area. The
filename is formatted into a file control block at O00S5CH,
ready to be used by the transient progran. FINDFILE
exploits this, and opens a stream to this file. Whether the
stream is opened for input or ocutput depends on the argument
to FINDFILE, Similar to the 370's 'FINDTERMINAL', a zero
argument will open the stream for OUTPUT, and a non zero
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(usually 1) argument for INPUT.

BINRDCH and BINWRCH work in just the same manner as
RDCH and WRCH, but no character translation is performed.

WRITETOLOG writes a string ¢to the console without
requiring BLIB to be present, i.e. without using WRITES.
This is useful for printing out error messages if BLIB is
not present, or just for sending some message to the console
without having to de-select the current output stream.

All I/0 transfers to disc are done via the BCPL Stream
Control Block, (SCB), and extension to the CP/M File Control
Block, (FCB). Each SCB is 164 bytes in 1length, and the
number of such available blocks in any configuration of
BCPLMAIN is given by the symbolic equate NBUFFS. The normal
value is 4, At any one time, CP/M has a currently selected
'DMA' address, which is a pointer to a 128 byte area of
store, used to buffer disc sector transfers. On each disc
read or write, the DMA has to be re-selected, the address
being set to SCB+35, i.e. the beginning of the 128 byte
buffer area of the stream control block.

The CP/M file <control block is 33 bytes 1long, and
comprises the drive number, file name, current extent,
current sector number, and a block allocation bit map. The
BCPL stream control block has three bytes added onto the
front of the FCB - a status byte, a pointer into the
character buffer and an ‘'unread' or 'unwrite' character -
and a 128 byte character buffer added to the end. This is
shown diagrammatically in Fig. B.5.1.
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B.6 Overlaying of BCPL modules

For the frontend of the compiler to be implemented, the
Translator must be overlaid on top of the Syntax Analyser.
Since CP/M has no primitives for overlaying, then the
mechanism designed had to be integral to BCPLMAIN.

Overlaying if implemented by 1leaving a 'gap' of
OVLBLKS*128 bytes in BCPLMAIN, defined as a storage area at
assembly time. Specifying the overlay space to be a

specific number of disc blocks makes the check for overflow
much easier, and since the minimum quantity of information
which can be brought from disc at any one time is 128 bytes,
unless each transfer 1is going to be buffered somewhere
before being overlaid, an integral number of sectors is
essential.

Once loaded into this region, (ORG'ed at ODOOH), the
second pass of the initialisation stage of $MAIN$ is called
again to initialise the new global variables brought in with
this overlay. There is no attempt to de-initialise the
globals which where set up by the previous overlay.

Only the function LOAD is provided, since, because
there is no internal space management, one module is
effectively UNLOADed as soon as another one is overlaid on
top. ’

Overlay modules are produced by LINKing the object
modules for the overlay section, setting the starting link
address to be ODOOH. Because the CP/M Loader requires its
HEX file to be ORG'ed at 0100H, another utility had to be
provided. OVERLAY.COM takes a file in HEX format, and
produces an equivalent OVL module, which is absolute binary,
as with the COM files, but ORG'ed at the overlay position.
Examples of the overlaying procedure can be found in the
notes on bootstrapping the compiler, in Appendix II.

Overlaying tends to be slow on a floppy disc system,
d ue to the hopeless inefficiency of the disec block
allocation, and the very slow rotation speeds concerned,
(about 6 revs per second). Typically, the time taken to
overlay about the 12K bytes of the Syntax analyser section
of the compiler frontend is approximately 10 seconds on the
Horizon (5" floppy discs), 6 seconds on a Cromemco System
C/3 (8" floppy discs), and about half a second on the
Cromemco System Z2/H (Winchester Hard Disc).

- B11 -




B.7 DEBUG - An Interactive Debugger

Given the problems of running an unchecked language on
a non-protected machine, there is a need for a run time
debugging system. Machine code debuggers (such as DDT or
Cromemco's TRACE) are unsatisfactory because of the very
small correspondence between the compiled machine code, and
the source BCPL.

The basic design of DEBUG was taken from the debuggers
running under TRIPOS and RSX. As yet, the Z80 debugger is
not as sophisticated as these two, but but still provides a
powerful for debugging runaway BCPL programs.

DEBUG is entered automatically if it is linked with the
other BCPL modules. A break point is set up, and DEBUG
re—-enters itself for servicing the first break point. After
this, DEBUG is entered whenever breakpoints are set, or an
area of program is traced.

As well as being a debugger, DEBUG 1is also a
calculator, working in decimal or hexadecimal arithmetic.
The specification of DEBUG at the time of completion of this
dissertation is given in Appendix 1IV.
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Summary

This section is not intended as a manual to aid the
maintenance of the run time system, but more as an
introduction to some of the ideas and design decisions which
went into this area of the BCPL implementation. In most
cases, I have tried to make the source code as self
explanatory as possible, considering the generally
incomprehensible nature of large machine code programs!

Given more time and space, much more of the detail
could have been discussed, and full specifications of the
library routines given., All that I can say here is that, as
far as possible, I have tried to keep to the specification
set out in the proposed BCPL standard, and in particular,
the implementation was strongly influenced by Ken Moody's
machine code library for the 370.
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Section C

The Z80 BCPL Implementation

C.1 Introduction

In this section, the BCPL implementation as a whole is
discussed, along with the many problems associated with the
bootstrap process, and testing of compiled code and run time
system. This is in contrast te the previous two sections,
which have 1looked at their subject matter in a somewhat
blinkered manner, concentrating on the particular program
concerned, and taking for granted the rest of the
implementation,.

C.2 Choice of Interface Standards

The interfaces which needed to be standardised were:

‘.

BCPL -——-> "FRONTEND" ----> [ OCODE ]
OCODE ---=> "CODE GEN" ----> [ TARGET 1]
TARGET ----> "LINKER" -—-==> Absolute Binary

Thus the two standards which had to be decided upon were
those which affected the input and output interfaces of the
code generator, i.e. the OCODE type, and OBJECT module type.

Already available on the target system were:

An INTEL standard Linker (OBJ to HEX)
An INTEL standard Loader (HEX to COM)
An INTEL standard Z80 Assembler

Given these software tools, the decision to use the INTEL
standard was somewhat predictable.
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A definition of this standard is given in Appendix I.

This left the decision of which OCODE format to wuse.
There were three choices, each with their individual merits:

(1) Mnemonic OCODE. This is OCODE where all keywords and
directives are in their mnemonic form.
e.g. STACK 2 JUMP L5 LAB L6 RTRN
This form is readable, and so could be easily debugged,
but problems with it are, firstly that parsing the
OCODE is somewhat more difficult than it needs to be,
and secondly, the sheer size of an OCODE file is enough
to make its use prohibitive on a floppy disc system.

(2) Numeric OCODE. This is similar to mnemonic OCODE, but
the keywords and directives are given in their numeric
form, i.e the value of the MANIFEST constant which
represents them in the Translator. This has the
advantage of Dbeing both compact, and relatively
readable.

The example given in the previous section becomes
91 2 85 L5 90 L6 97

(3) Binary OCODE. This is one level of compaction further
on from numeric OCODE. In this type, all numbers are
held in binary, and the superfluous 'L's before label
numbers are omitted. The result is the most compact
form of OCODE possible, but one which is difficult to
debug, and more important, difficult to transfer.

After due consideration, the one chosen was the Numeric
OCODE. This had the benefits of being reasonably compact,
and also of being in character form, making the job of
transferring it between machines that much easier.

C.3 Data Transfer

When the code generator was being debugged on the 370,
the code produced had somehow to be transferred to the North
Star Horizon for 1linking, and subsequent running under a
debugger. The interface to PHOENIX is especially bad for
the setting up of any but the very simplest of handshake
protocols, due to the PDP11 which buffers all characters
sent in either direction.

There are distinct problems in either sending data to,
or receiving data from the PHOENIX interface, problems which
have totally different solutions depending on the direction
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of data travel! Transferring data from the 370 is
relatively easy. All that needs to be done is to convince
the PDP11 that the machine on the end of its line is just a
dumb terminal. This was an easy thing to simulate using the
Horizon, so it was possible to maintain the link to PHOENIX
via a second serial port, while still keeping primary input
from the master console. Working on the assumption that the
files being transferred would be small ( <40K bytes ), it
was feasible to buffer all the characters sent by PHOENIX
into memory, and only file them onto the slower floppy discs
when the entire transfer was completed.

The method for transferring data from the 370 to the
Horizon was standardised to the following procedure.
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Transferring files from the Horizon to the 370 is
somewhat more complicated. This facility is needed much
less than its simpler counterpart, but since the only way to
obtain 1listings of files held primarily on the Horizon's
discs is via the 370, there was no option but te try and
make the best attempt possible.

Here, the onus is on the PDP11 to accept characters
sent to it - a job which it does non too well if the
character stream speed is close to that of the maximum speed
of the line being used. Two cunning modifications can be
made to the simple character stream method, both of which
improve the reliablility of data transfer by a significant
amount.

(1) On sending each character, wait for it to be
reflected by the PDP11. On sending <cr>, wait for
both the <ecr> and the <1f> to be reflected.

(2) After sending each <cr>, wait for a short time -
typically up to 1 second - before sending any more
characters. This gives PHOENIX a chance to catch
up with the file being sent.

Using these ¢two simple devices, there 1is only one
situation in which an error in data transfer can occur.
This is after sending a <cr>, and not allowing quite enough
time for PHOENIX to catch up. The result is that the first
character of the next 1line is sent, but this 1is never
reflected, because it has been missed altogether. This
means that the Horizon goes into a tight loop, waiting for
the character which it has just sent to be reflected, while
PHOENIX hangs, waiting for another input character, not
realising that one has been missed. This is fixed when the
message '¥¥%¥ 5 MINUTE WARNING' is sent by the 370, breaking
the deadlock, and causing the transfer to continue.

The protocol for transferring data TO the 370 is as
follows.
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So far, I have said nothing of how the commands come to
be typed to each machine. The method used is a program
which continuously loops, taking input only from the console
(serial port #1), and selectively sending the typed commands
to Phoenix (serial port #2), or the CLI internal to CP/M.
This very simple program provides the Horizon with the
facility of being an intelligent terminal for any computer
using the RS232 serial interface standard. As is happens,
the Horizon was occasionally connected as a 'TITAN VDU' on
the ring, enabling the transfer of data from its discs to
one of the L3SI/4's or the R3SX system.

I am indebted to the University Computing Service for
the provision of a 1200 baud RS232 Phoenix line to aid the
transfer of data between the two machines. Without it, the
initial bootstrap process would have been painfully slow,
and in no way so reliable or accurate.

The entire Horizon/Phoenix set-up is shown
diagrammatically in Fig. C.3.3, along with the algorithm
used in the 'intelligent terminal' utility.
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C.4 Initial Testing

With the wutilities to transfer data written, it was
possible to start testing in earnest, some of the code
compiled by the code generator. At the very early stages,
it was not at all clear where bugs were 1likely to show
themselves. There were two possibilities. Firstly, they
could be in the logic of the compiled code, in which case
the cause would have to be 1located, corrected, and the
relevant parts of the code generator re-compiled. Secondly,
there were bound to be bugs in the newly written run time
system, and once corrected, the whole of BCPLMAIN would need
to be re-assembled.

Added to this problem, it turned out that the only
interactive debugger available was DDT, CP/M's Dynamic
Debugging Tool. Although a reasonably powerful program, DDT
is written in, and caters for 8080 machine code, causing
havoc when the extra instructions of the Z80 were used.
CP/M itself is an 8080 system, and so all system utilities
assume an 8080 instruction set, even though the majority of
CP/M systems in the world are in fact running on Z80
processors.

The result of this was that DDT was of little or no use
as a disassembler for the compiled code, because 280
instructions (such as those using the IX or 1IY registers)
are invalid 8080 opcodes, causing the disassembler to become
a byte out of step with the actual instructions. Al so,
since the IX and IY registers, and the alternative register
set, are purely 280 additions to the 8080, it was impossible
to ever inspect the contents of these registers, which made
simple jobs, such as locating the global vector, much more
complicated than they needed to be.

The initial form of the compiled code was that of an
Assembly code listing - a form which is easily debugged by
eye, but requires to be assembled before being ready to be
run on the machine. The option to produce a listing of the
compiled code was kept in the code generator, even after the
routines to provide relocatable binary had been added. It
was eventually removed as part of the ‘'code trimming'
process, required before the code generator could be
bootstrapped onto the Horizon.

The very first test programs were of the form:
GLOBAL $( START : 1 y WRCH : 13 $)

LET WRITES ( S ) BE
FOR I = 1 TO S %0 DO WRCH (S %I )

AND START() BE WRITES( "Wake Up!" )
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The run time system at this time was barely minimal.
The only I/O facilities available were RDCH and WRCH working
to the console, and a simple minded version of stop. This
was in fact all that was needed to debug the simple OCODE
constructs, and eventually bootstrap BLIB, to provide more
comprehensive I/0 facilities.

Bugs in the initialisation portion of BCPLMAIN were
soon ironed out , leaving all debugging activities
concentrated on the logic of the compiled code. A very
useful tool for testing all possible OCODE constructs of
BCPL is the utility code generator test program "CMPLTEST",
written by Martin Richards to test an earlier BCPL
implementation, but which has been used successfully ¢to
debug code generators ever since.

CMPLTEST always proved a useful tool to have around,
even after the compiled code had been debugged enough to
cause it to detect no errors. Every time an addition or
modification was made to either the run time system, or the
code generator, CMPLTEST was re-run, and many potentially
elusive bugs were picked up at an early stage as a result of
this. The source of CMPLTEST, and of other programs used to
test specific aspects of the implementation are given in
Appendix VII,

When the basic 1language constructs had been fully
debugged, the rest of the run time system could be added.

These routines fell into two main categories:

a) Short simple routines, written in machine code by
necessity or for efficiency. These include GETBYTE,
PUTBYTE, INPUT, OUTPUT, LEVEL, LONGJUMP and APTOVEC.

b) The I/0 section of the library - a proper RDCH and WRCH,
along with FINDINPUT, FINDOUTPUT, SELECTINPUT,
SELECTOUTPUT, ENDREAD and ENDWRITE. Also to be added
later were UNRDCH, FINDFILE, BINRDCH and BINWRCH.

I have already described the format of the BCPL Stream
Contrel Block, but the standardisation of this format was
only a small part of the problems of designing and debugging
a disc I/0O system to run under CP/M. The code to deal with
this proved to be the hardest to write, and by far the most
difficult to debug of any of the code in the run time
system. It was during the time of debugging the I/0 system
that an undocumented 'feature' of CP/M raised its ugly head.
This was that, when running in a multi-I/O0 Stream
environment, CP/M uses the currently selected DMA disc
buffer as workspace during a system call for OPEN, CLOSE or
CREATE. This had the somewhat mystifying effect of
occasionally corrupting either input buffers, or the last
but one record written to a disec file. Once this had been
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found and fixed, the run time system was in a state where it
could be trusted to test much larger programs than had
previously been possible.

C.5 The Bootstrap of the FRONTEND

The large program selected to test the newly written
run time system was the frontend of the compiler. One more
routine needed to be added to BCPLMAIN before this could be
done. This was the routine LOAD, which deals with the
overlaying of the SYN and TRN sections of the frontend.
Section B.5 contains information about the overlay
procedures used, so there is 1little point on covering it
here.

By the time the overlaying routines were working, the
code generator no longer produced an assembler listing as
its final output, but an OBJ standard INTEL object module.
This added yet another variable to the 1list of possible
causes of bugs in the running of a BCPL program. Al so,
Since many alterations were made to frontend to ensure that
it fitted into 48K bytes, this meant that a slip in an
editing session could cause yet another source of run time
error! Before the frontend was working satisfactorily, bugs
of each kind were detected, each one more obscure than the
last. The most difficult bugs to track down were those
associated with the object module. There was one instance
where a typing error caused a two-byte subtract instruction,
to actually be compiled into a one-byte register to register
load instruction, and a byte of, what was now, a random
instruction.

C.6 Bootstrap of the Code Generator

. Compared with the frontend, the job of bootstrapping
the code generator was exceedingly simple. No overlaying,
and only a fixed number of I/O streams are needed. The
first bootstrap failed, only because certain MANIFEST
declarations in "CGHDR" controlling the workspace size had
be set too high. All subsequent bootstraps have proved
successful.

This now meant that there was yet another way in which
bugs could creep into the system. Now, not only could bugs
come from direct errors in the code generator or run time
system, but also the bugs which only show on the second
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level of compilation, i.e. code produced by the code
generator, compiled by itself.

A bug in the register slaving algorithm caused bad
arguments to a routine of the code generator, which in turn
caused bad code to be compiled for a call the the run time
system,. The bug - an error in handling GLOBAL or LOCAL
variables out of range of the direct IX or 1Y instructions -
took almost two days of constant Ssearching through core
dumps, disassembled programs and OCODE listings before the
error was traced back to a logical bug in the register
slaving. ‘

Since then, no more bugs have shown themselves, and a
compiler, compiled through itself, is successfully running
on a Cromemco system Z2/H. Self compilation on the Horizon
is impractical due to the shortage of available workspace,
but this system has been stretched to its limits, and still
appears to work.
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Summary

No doubt, as time goes on, the more obscure bugs will
show themselves, but hopefully these should be of such a
nature as to still allow the recompilation of the compiler
through itself,. As an assurance against a situation where
this 1is impossible, a version of the code generator is
running on the 370 acting as a cross-compiler, providing,
hopefully, an error free source from which to re-bootstrap
the system.

What I have tried to do in this project, is to write
the BCPL system in such a way as to make the user unaware
that he is working on an 8 bit miecroprocessor., The code
compiled is good considering the size of the code generator,
and the execution speed is comparable to the FORTRAN
implementation on the same system. I hope that the immense
power that BCPL brings to a system, can be harnessed in such
a way as to make the work worth-while, and will be of help
to the many people in the country running Z80 based
microcomputers.
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