Technical Report R

Number 150

Computer Laboratory

Simulation as an aid to verification
using the HOL theorem prover

Albert John Camilleri

October 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Albert John Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

October 4, 1988

Simulation as an aid to Verification
using the HOL Theorem Prover!

Albert John Camilleri

University of CarnbridgeI
Computer Laboratory
New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

Abstract

The HOL theorem proving system, developed by Mike Gordon at the University of Cam-
bridge, is a mechanisation of higher order logic, primarily intended for conducting formal
proofs of digital system designs. In this paper we show that hardware specifications writ-
ten in the HOL logic can be executed to enable simulation as a means for supporting
formal proof. Specifications of a small microprocessor are described, showing how HOL
logic sentences can be transformed into executable code with minimum risk of introducing
inconsistencies. A clean and effective optimisation strategy is recommended to make the
executable specifications practical.

tTo appear in the proceedings of the IFIP TC-10 International Working Conference on “Design Method-
ologies for VLSI and Computer Architecture”, Pisa, 19-21 September 1988 (North-Holland), edited by
D. Edwards.

$The author’s new address is: Hewlett-Packard Limited, Information Systems Centre, Filton Road,
Stoke Gifford, Bristol BS12 6QZ, England.

Contents

. W W

Introduction
The HOL Logic
Choosing an Executable Language

Simulating a Computer

4.1 Description of Gordon’s Computer
42 DataTypesRequired.
43 TheHost Machine
431 TheBusDrivers it it i i it
432 TheRegisters o v v it v i it i ittt
433 TheMemory it vt it vt it ie i it e aeen e
4.3.4 The Arithmeticand LogicUnit
435 The Bus i it ittt it ittt i
436 TheDataPath,
437 TheControl Unit ittt v it v s e
4.3.8 The Host Specificationo v v v,
44 TheTarget Machine,
Optimising Executable Specifications
5.1 Inefficienciesin Basic Method
52 Memoisation v . i i it e e e e e e e e e e e
5.3 Memoisation of the Data Path Definition

Executing Programs on Gordon’s Computer
Automatic Generation of Programs

Conclusions and Future Research

List of Figures

Front Panel of Gordon’s Computer
Implementation of Gordon’s Computer
Representation of Memory for Program to Add Two Integers
Representation of Program Executed on Gordon’s Computer
Table Displaying Stages of Simulation

Ov b N

1 Introduction

Recent advances in digital design technology have brought on an increasing concern for
the reliability of digital systems. Conventional approaches for testing hardware such as
simulation and prototyping have become increasingly inadequate with the result that
computer scientists have begun to explore more reliable techniques for demonstrating
correctness of digital designs.

Recently, formal verification has become the preferred approach—a process which in-
volves the use of mechanical theorem provers to verify that a given system actually behaves
in the desired way.

The verification process, however, is complicated and expensive; even proofs of simple
circuits can involve thousands of logical and mathematical steps. Often it can be ex-
tremely difficult to find correct device specifications, and it is therefore desirable that one
sets off to prove a correct specification from the start, rather than repeatedly backtrack
from the verification process to modify the original definitions after discovering they were
incorrect or inaccurate.

A recent idea has been to amalgamate the techniques of simulation and verification,
rather than have the latter replace the former. The result is that behavioural definitions
can be simulated until it is reasonably sure that the specification is correct. Further-
more, proving the correctness with respect to these simulated specifications avoids the
inadequacies of simulation, where it may not be computationally feasible to demonstrate
correctness by exhaustive testing. In other words, simulation here is given a dual purpose:
(1) to discover obvious design bugs, and (2) to get specifications correct as early as pos-
sible in the verification process. Its purpose is no longer to demonstrate the correctness
of the implementation—this is done in the verification stage.

By combining simulation and verification, the process of designing and manufacturing
digital circuits becomes more cost-effective. Simulation helps to track down inaccuracies
in the specifications and thereby reduces the chances of attempting to verify a design
with incorrect specifications, involving a considerable waste of time and effort. The use
of simulation also helps in understanding specifications better, thus shedding some light
on how the specifications can be proven correct.

In [3] it is shown how the facility for conducting simulation can be added to the HOL
theorem proving framework [9] by showing how higher order logic specifications can be
automatically translated into a syntactically similar but executable language. In this
paper we illustrate some of the concepts presented in [3] by considering the specifications
of a small microprocessor, showing how they can be transformed into executable programs
and used for simulation. We do not discuss the correctness of the microprocessor here. A
description of the verification of the computer at the register-transfer level using higher
order logic can be found in [11], whereas the verification of the computer at a lower level
of description is given in [13].

The organisation of the paper is as follows. First we give a brief description of the HOL
logic, and we discuss the various factors that influence the particular choice of executable
language. Next we present a description of a simple microprocessor, followed by a descrip-
tion of its specification and implementation definitions, comparing the non-executable HOL
logic specifications with corresponding executable programs. We go on to discuss certain
efficiency problems encountered when executing the transformed specifications, and show
how they can be cleanly optimised for faster simulations. Finally we describe how the
entire translation process from HOL logic specifications to efficient executable programs
can be automated, and propose some possible areas for future research.

[V

2 The HOL Logic

The HOL logic is a variety of higher order logic based on Church’s Type Theory [4]. In
the HOL logic, one uses standard predicate logic notation such as the propositional logic
connectives denoting negation (~), conjunction (A), disjunction (V), implication (D) and
equivalence (=) for constructing propositions, and the universal (V) and existential (3)
quantifiers for binding free variables. Since the logic is higher order, variables are allowed
to range over functions and the arguments of functions can themselves be functions.
Furthermore, the logic is strongly typed, i.e. every term in the logic must have a type.

The specification of a two-input NOR-gate shown below gives an example of how hard-
ware specifications can be written in the HOL logic.

NOR(iy,iz,0) = Vi:time. (0t = = (i; t V iz t))

The behaviour of the NOR-gate is specified using a higher order predicate NOR which takes
three arguments iy, i3, and o, themselves functions that map time values (represented by
a type time) to booleans. The predicate NOR(i;,12,0) holds if and only if for all time
instants t, the value on o at time ¢ is equal to the negation of the disjunction of the values
on ?; and i, at time ¢.

We do not give any further introduction to the HOL logic in this paper; for this see [9].
We move on straightaway to discuss the choice of executable language into which HOL
specifications can be translated.

3 Choosing an Executable Language

In general, it is not possible to execute specifications written in the HOL logic and so,
for the purposes of simulation, hardware specifications have to be translated into an
executable language. Perhaps the most natural choice of language would be one used by
a special purpose simulator. The main problem here, however, is that the notations used
in the logic and in special purpose simulators are often very different, and this gives rise
to the danger of introducing inconsistencies during the translation process. Of course,
the greater the difference in notations, the greater the risk of introducing errors and thus
obtaining executable definitions which do not model the original specifications. This is
undesirable because we require the simulation process to be an aid to formal verification,
and so it is important that both the non-executable and the executable specifications
model the same design.

Traditionally in HOL, it has been common to model behaviour in a relational way
because it is relatively easy and natural to express the behaviour derived from structure
relationally [2]. With the use of predicates, one merely states boolean conditions which
define the intended behaviour of a device and so has the advantage of:

o only stating the conditions describing the features of a device which are of interest,
thus forming a partial specification, and

o dealing with bidirectional devices by merely defining relations between ports without
distinguishing inputs from outputs.

Another possibility for executing HOL specifications, therefore, would be to translate
HOL relations to an executable relational language, such as PROLOG. William Clocksin
has shown that PROLOG can be used to simulate the behaviour of digital circuits by
executing relations [5]. Once again, however, HOL relations and PROLOG clauses do not
bear a strong syntactic and semantic resemblance. Transformation from HOL to PROLOG

3

would either involve the translation of higher order relations to first order relations, or
the restriction of writing HOL relations in first order logic to facilitate translation. In
either case this is undesirable: in the former case direct translation will not always be
possible, and in the latter case one loses the expressive power of higher order logic when
writing specifications. For example, the explicit representation of time and the higher
order parameterisation of functions that map from time to values, as shown above, will
not be possible.

It is desirable, therefore, that the higher order functionality present in HOL specifi-
cations can also be expressed in the executable language chosen. The general purpose
programming language ML [6] has this desired property, and in this paper we show that
it can be used to interpret HOL specifications in a way that greatly reduces the problems
and dangers mentioned so far. The syntax and semantics of both the HOL logic and ML
are based on the lambda-calculus, and so the specifications used for modelling hardware
in HOL and in ML are very similar.

Since ML is a functional programming language, however, we shall be concerned with
executing functional specifications, where parameters are passed as inputs and values
are calculated and returned as outputs. It is therefore useful to translate HOL relational
specifications into HOL functional specifications, as an intermediate form to deriving ML
programs. Many concepts of hardware design at the register-transfer level can be modelled
in HOL by using both relations and functions, and corresponding ML programs can be
written such that they are almost identical to the HOL functional specifications. The
transformation from HOL relations to HOL functions is safe because it can be checked by
formal proof.

In the following sections we present the specifications of a microprocessor to illustrate
the relationship between HOL relations, HOL functions and ML functions, and to demon-
strate that the use of a special purpose simulator at this level is not necessary to aid
verification. Since the transformation from HOL specifications to ML programs is clear
and straightforward, the translation process has been automated [3], thus reducing the
possibility of introducing errors in the translations, and making it easier to obtain exe-
cutable specifications. The choice of ML as a simulation language for HOL is also influenced
by the fact that ML happens to be the meta-language of HOL, and so this enables all the
simulations and proofs to take place within the same system.

4 Simulating a Computer

The design of the general-purpose computer described in the rest of this paper was in-
vented by Mike Gordon in [7] where it was specified and verified using a formalism based
on denotational semantics. Commonly referred to as ‘Gordon’s computer’, it became a
classic example in hardware specification and verification due to its appeal as a simple
yet sufficiently realistic circuit. It has been specified and verified in LCF-LSM by Mike
Gordon [8], in VERIFY by Harry Barrow [1] and in HOL by Jeffrey Joyce [11]. Martin
Richards has written specifications of Gordon’s computer in BSPL [18] while Daniel Weise
has written specifications in a LISP-like language of a modified version of the computer [19)].
Gordon’s computer became the first formally verified computer to be fabricated when an
8-bit version was implemented as a 5000 transistor CMOS microchip as part of a project
conducted by Jeffrey Joyce [12] at Xerox Parc and Calgary.

The computer example described in this paper had previously been specified in HOL
without intentions of simulating the definitions. In the rest of this section, we present re-
lational and functional definitions based on the HOL specifications presented in [11]). The
ML programs shown can be derived automatically using an algorithm described in [3).

The reason for choosing to show the translations and simulations of an existing example,
therefore, is to offer evidence of the extent and generality of the automatic translating
techniques. Inventing a new example would have introduced the danger of writing spec-
ifications in a style which suits the automatic translation, resulting in a biased idea of
how versatile and effective the techniques are. What we venture to show in the rest of
this section, therefore, is the similarity between HOL and ML specifications, and the type
of specifications that can be transformed for simulation using automated techniques.

4.1 Description of Gordon’s Computer

A detailed description of Gordon’s computer is given in [11). A brief outline is presented
below, however, to enable a full understanding of the formal specifications and their
translations presented in the rest of the paper.

At the register-transfer level, the target computer contains a random access memory
which is addressed by 13-bit words each pointing to a 16-bit location, and two registers:
a 13-bit program counter and a 16-bit accumulator.

ddddddddddiddiii ®
SWITCHES BUTTON
12
Y 3 0000000000000 (@)
PC Display Lights READY
KNOB
00000000000 00000 (@]
ACC Display Lights IDLE

Figure 1: Front Panel of Gordon’s Computer

Externally it has four sets of lights used to display output, and a set of buttons and
switches which are used for input. Figure 1 is an illustration of the front panel of the
computer which shows the four sets of output lights, namely:

e a set of 13 lights to display the contents of the program counter (PC),

o a set of 16 lights to display the contents of the accumulator (ACC),

¢ a light which goes on to indicate when the computer is idle (IDLE), and

e alight which goes on to indicate the completion of a major state transition (READY),
and the three input mechanisms:

o a set of 16 switches for loading data into the program counter or the accumulator
(SWITCHES),

e a knob to select the type of instruction to execute (KNOB), and

e a button used to interrupt the computer during program execution and make it
idle, or if the computer is already idle, to execute the instruction selected by the

knob (BUTTON).

Each switch or button can be either on or off; these two states are represented by the
booleans true and false respectively. Thus, a sequence of switches or lights in some
combination of on and off states is used to model sequences of binary digits.

The types of instructions to be executed are determined by the KNOB being in one of

positions 0, 1, 2 or 3, where:
e position 0 = load PC
e position 1 = load ACC
e position 2 = store ACC at PC
e position 3 = start execution at PC.

When the button is pushed and the computer is idle, if the knob is in position 0, the
rightmost thirteen bits indicated by the switches are loaded into the program counter. If
the knob is in position 1 then all sixteen bits are loaded into the accumulator instead.
When the knob is in position 2, no input is read but the current contents of the accu-
mulator are stored in memory at the location indicated by the contents of the program
counter. The knob in position 3 starts the execution of a program (loaded in memory) at
the location indicated by the contents of the program counter. During the execution of a
program, the idle light remains off indicating that the computer is busy; the light going
back on when execution of the program is terminated. If the button is pressed during
the execution of the program then the program is interrupted and the idle light comes on
again.

Programs are written using the following eight microinstructions: HALT (terminates
execution), JMP z (jump to address z), JZR z (jump to address z if ACC=0), ADD z (add
contents of address to ACC), SUB z (subtract contents of address from ACC), LD z (load
contents of address into ACC), STz (store contents of ACC in memory at address), and SKiP
(no operation). Each instruction consists of sixteen bits: the leftmost three denote the
opcode, and the rightmost thirteen denote the address. For example, 001 0000000000111
denotes the instruction JMP 7 where 001 is the opcode for JMP and the address field has
value 7. Further details of all the instructions are presented in [11].

Before showing the formal HOL specifications that represent the above behaviour, along
with their corresponding executable translations, it is necessary to mention the various
data types used to write the definitions describing Gordon’s computer.

4.2 Data Types Required

Signals in HOL and ML can be represented by functions from time (represented by non-
negative integers) to values. Such functions with a domain of type time are often referred
to as history functions.

Values denoting sequences of bits can be represented in HOL in several ways. A basic
way is to represent an n-bit sequence by functions mapping from bit positions to boolean
values [2,13]. It is more natural, however, to use specialised data types to represent such
bit sequences, and in the HOL specifications presented in this paper, bit sequences are
represented as values of type wordn, where n is the number of bits represented by the

6

parti¢ular type. For example, values stored in the program counter are represented by the
type wordl3 and values stored in the accumulator are represented by the type wordl6.

The wordn types are defined in HOL as primitive data types and a number of axioms
and theorems are defined and proved which describe their properties. A description of
the formal axiomatisation of wordn types in the HOL logic is described in [15).

The HOL definitions modelling Gordon’s computer use the following data types to rep-
resent n-bit words: word2, word3, word5, wordl3, wordl6 and word30. There is also a
tri_wordn data type defined for every wordn which allows the values on data lines to be
floating, and two data types: mem5.30 and mem13_16 used to represent memory. The
data type memz_y represents a memory addressed by z-bit words, each pointing to a
y-bit word location.

There are several ways for defining data types in ML. One way is to use abstract data
type definitions using the declarator abstype. The data type for sixteen bit words, for
example, can be defined as follows:

abstype word16 = bool list

with VAL16 w = val 16 (rep.word16 w)

and WORD16 n = abs_word16 (int_to_list 16 n)

and BITS16 = rep_word16

and NOT16 w = abs.word16 (map not (rep-wordl6 w))

and OR16 v w = abs_word16 (word.or (rep-word16 v) (rep-word16 w))
and AND16 v w = abs_word16 (word_and (rep_wordl16 v) (rep-word16 w))

This type declaration introduces a new type wordl6 represented by the type bool list
denoting lists of booleans. It makes use of the two locally available functions abs_word16
and rep_.wordl6 [6] to define a set of primitive functions for manipulating the new data
type, namely VAL16, WORD16, BITS16, NOT16, OR16 and AND16. Further explanation of the
above definition or the definitions of the other data types is not given in this paper.
Detailed descriptions of ML definitions for all the above different data types are presented
in [3].

With a systematic formalism as presented in [15] it is promising that an algorithm can
be found to automatically translate the HOL data type specifications into ML. Keeping
the representations of data types consistent in the two formalisms enables a cleaner and
easier translation of specifications.

4.3 The Host Machine

The implementation of Gordon’s computer at the register-transfer level, referred to as
the ‘host machine’, is shown in Figure 2. The implementation is composed of a random
access memory, a number of registers, a bus, several bus drivers, a read-only memory, an
arithmetic and logic unit, and a decoder. We consider below each of these components,
and show how each of them can be modelled.

4.3.1 The Bus Drivers

We begin by the five tri-state bus drivers G0, G1, G2, G3 and G4 used to control the data
that goes onto the sixteen bit wide bus. To model these devices, two bus drivers are first
defined as primitives, one to model word13 input drivers and one to model word16 input
drivers. These devices, GATE13 and GATE16, convert thirteen and sixteen bit words to the
corresponding sixteen bit triwords.

@ BUS
N\
BUF
ALU
i DECODE [- ddle
ARG
acc
rbuf
bution aluent] @
warg ———— - —— ready
. IR
knob rir
wir
rom racc @
wace —t—+ aee
ROM rpe L ACC
wpe
mpe mementl
(61)
MPC wmar N
—————— ”
o PC
nexrtaddress MEM
MAR
(7o)
©
switches 1

Figure 2: Implementation of Gordon’s Computer

The traditional way for writing the two definitions in HOL is to use relations as follows:

GATE13,(i, cntl, 0) = Vt. o(t) = cntl(t) => MK.TRI16 (PAD13.16 (t)) | FLOAT16
GATE16,.(3, entl, 0) = Vt. o(t) = cntl(t) = MK.TRI16 i(t) | FLOAT16

where the notation a = b | c is an abbreviation for the conditional expression ifathenbelsec.
In the case of GATE13, the word13 input is padded up to a 16-bit word using the function
PAD13.16. In both cases, the 16-bit word is converted to a triword and output if the value
on cntl is true. If the value on cntl is false, an undefined value FLOAT16 is output. There
is no delay modelled in these devices.

The definitions of these bus drivers can alternatively be written as functions in HOL as
follows:

GATE13j,, i cntl = let o(t) = (cntl(t) = MK_TR!16 (PAD13.16 i(t)) | FLOAT16) in o
GATE164,, ¢ cntl = let o(t) = (cntl(t) = MK_TRI16 i(t) | FLOAT16) in o

In these functional models, the style is to use let expressions to show how outputs are
evaluated, instead of merely stating relationships between the ports.

The relational and functional definitions are indeed similar, but differences do exist.
For example, in the relational models, all the ports to the devices are parameters to
the specifications, and no distinction is made between inputs and outputs. With the
functional models, however, it is necessary to know which ports of a device are inputs,
and which are outputs, because one is interested in evaluating the values on the output
ports as functions of the inputs. Only the input lines are needed as parameters.

It is possible to write ML programs to model the bus driver primitives in a way which is
almost identical to the functional approach above. As can be seen from the ML programs
below, the only syntactical difference to the HOL functions is the presence of the external
ML let expression.

let GATE13,,; ¢ entl = let o(t) = (cntl(t) = MK_TRI!16 (PAD13.16 (%)) | FLOAT16) in o
let GATE16,,; ¢ cntl = let o(t) = (enti(t) = MK_TRI16 i(t) | FLOAT16) in o

The gates G0, G2, G3 and G4 are defined as instances of GATE16 above while G1 is defined
as the only instance of GATE13. The relational definitions and their functional translations
are trivial and similar for all the bus drivers.

4.3.2 The Registers

The simplest register in the computer is the register BUF which merely acts as a delay
mechanism used to store the output of the ALU for one unit of time. The HOL and ML
definitions to model the register are shown below:

BUF,.i(alu, buf) = Vt. buf (t+1) = alu(t)
BUF sy, alu bufval = let buf t = (t=0) = bufval | alu(t—1) in buf
let BUF,; alu buf_val = let buf t = (t=0) = buf-val | alu(t—1)in buf
Three important points come through from these specifications. The first point is that
in the HOL relational model, unit delay is modelled by setting the value of the output at
time t+1 to some function of the input at time ¢, the previous time cycle. The model is
only partial since the output at time 0 is not defined. Functions in HOL and ML, however,

need to be total so functional definitions model delay by setting the value of the output
at time ¢ to some function of the input at time ¢—1 instead.

9

The second point is that since time is represented using the non-negative subset of the
integers (the natural numbers), one must ensure that statements of the form t—1 do not
result in a negative time representation (i.e. when t=0). In the functional models above,
a conditional statement is used to check for the special case when t=0; in such a case
it assigns an initial value, buf-val, to the output at time t=0. One can think of buf.val
as the value present on the output line buf when the register is in its initial state. The
initial value buf_val is passed as a parameter to the external definition, thus enabling one
to simulate the specification with different (or perhaps all) values of buf_val.

The final point is that for the functional models, the HOL and ML type checkers infer
that ¢ is of type time from the subterm #=0, but are unable to determine the types
of buf(t), alu(t—1) or buf-val. The variables alu and buf are, therefore, assigned types
time—a where a is a type variable. The advantage of not stating the types of alu and
buf explicitly in the definitions of BUF is that, by forcing the type checker to use type
variables, one is able to define general specifications of a register which can be used for
storing values of different types. For example, in the ML model, if 7, is a variable of type
time—bool and i, is a variable of type time—int, then (BUF,; t; false) denotes a register
storing boolean values with an initial state of false, while (BUFp; 2 0) denotes a register
storing integers with an initial state of 0.

The similarity between the HOL functional definitions and the ML programs should by
now be obvious. In presenting the specifications of the rest of the computer components,
therefore, only the HOL relational definitions and the ML programs will be presented. HOL
functions corresponding to the ML programs can in each case be written in an almost
identical manner as already demonstrated, but will be omitted to avoid repetition.

To model the remaining registers of the computer two registers are first defined as
primitives, one to store thirteen bit words and one to store sixteen bit words. Their HOL
definitions are as follows:

REG13,.(, 1d, 0) = Vt. o(t+1) = (ld(t) = CUT16.13(i(2)) | o(2))
REG16,.(3 : num—wordl6,ld,0) = Vt. o(t+1) = (ld(t) = i(t) | o(t))

These two specifications are partial and recursive. In both cases, the word16 value on i
is sampled at time ¢. In the case of the thirteen bit register, the least significant thirteen
bits are extracted using the function CUT16.13 and output on o at time t+1 if the value
on ld at time ¢ is true. In the case of the sixteen bit register, the entire input word is
passed on to the output o at time 41 if the value on /d at time t is true. In both cases,
the output at time t+1 is set to its previous value at time ¢ when the value on Id at time
t is false.

The translations of the above two relations need to cope with feedback as well as delay.
This is done by using the recursive letrec declaration as shown in the definitions below
to recursively compute values on the output functions. The technique of parameterising
initial values is once again used to convert the partial specifications to total functions.

let REG13,,; ¢ Id o_val =
letrec o(t) = (t=0) = o_val | Id(t—1) => CUT16.13(i(t—1)) | o(t—1) in 0

let REG16,,; ¢ ld o_val =
letrec o(t) = (t=0) = o.val | ld(t—1) = i(t—1) | o(t—1) in o

The implementation of the computer has two thirteen bit registers: the program counter
PC and the memory address register MAR, and three sixteen bit registers: the accumulator
ACC, the instruction register IR and a register ARG used for storing arguments to be
processed by the arithmetic and logic unit. These registers are defined as instances of
the thirteen and sixteen bit registers defined above. The relational definitions and their
functional translations are trivial and similar for all the registers.

10

4.3.3 The Memory

The memory device is modelled by a device MEM which takes three inputs: a two bit wide
control signal mementl, the output of the memory address register mar, and the value
on the bus bus. MEM returns one output line mout, which writes the fetched contents
from memory directly to the bus. In addition, the actual memory representation mem is
parameterised and is also treated as an output. The relational definition of MEM is shown

below.

MEM, . (mem, mar, bus,mementl, mout) =

Vt. (mout(t) =
(VAL2 mementl(t)) = 1 = MK_TRI16 (FETCH13 mem(t) mar(t)) |
FLOAT16) A
(mem(t+1) =
(VAL2 mementl(t)) = 2 = (STORE13 mar(t) bus(t) mem(t)) |
mem(t))

Once again, the definition is recursive. The contents of the memory are changed only
when the value on memecentl is equivalent to 2. In this case, the value on the bus is stored
in memory at the address specified by the memory address register. In other states, the
memory stays the same. When the value on mementl is equivalent to 1, the value stored
in memory at the address specified by mar is fetched and written to the bus as a triword
via mout. In other cases, FLOAT16 is written to the bus. The derived program modelling
MEM is shown below:

let MEM,,,; mar bus mement] mem val =

letrec mem(t) =
(t=0) = mem_val |
(VAL2 mementl(t—1)) = 2 = (STORE13 mar(t—1) bus(t—1) mem(t—1)) |
mem(t—1)

and mout(t) =

- (VAL2 mementl(t)) = 1 = MK_TRI16 (FETCH13 mem(t) mar(t)) | FLOAT16

in (mem, mout)

4.3.4 The Arithmetic and Logic Unit

The arithmetic and logic unit is also defined as a primitive at this level of description.!
Three arithmetic functions are performed by the ALU on sixteen bit words, namely incre-
mentation, addition, and subtraction. The two bit input control line alucnt! determines
which function is performed on the data present on lines arg and bus. The result of
an ALU computation is output on line alu at the same instant of time. The relational
definition is shown below:

ALU,.i(arg, bus, alucntl, alu) =
Vt. alu(t) = (VAL2 aluentl(t)) = 0 = bus(t) |
(VAL2 alucntl(t)) = 1 = INC16 bus(t) |
(VAL2 alucntl(t)) = 2 = ADD16 arg(t) bus(t) |
SUB16 arg(t) bus(t)

The specification is total and not recursive. The functional translation is therefore
straightforward.

1A switch-level description of the arithmetic and logic unit can be found in [13].

11

let ALU,,; arg bus aluentl =
let alu(t) = (VAL2 alucntl(t)) = 0 = bus(t) |
(VAL2 alucntl(t)) = 1 = INC16 bus(t) |
(VAL2 alucntl(t)) = 2 => ADD16 arg(t) bus(t) |
SUB16 arg(t) bus(t)

in alu

4.3.5 The Bus

All the devices described so far, except BUF, either read from or write to the BUS. The five
selectively loadable registers and the ALU read sixteen bit words from the BUS, the five
tri-state bus drivers write sixteen bit triwords to the BUS, and the memory both reads
from and writes to the BUS. Hence, the BUS device takes six triwords of type triword16
as inputs and returns a word of type wordl16 as output.

Relationally, BUS is modelled as:

BUS,ci/(mout, go, g1, 92, 3, 94, bus) =
Vt. bus(t) = DEST_TRI16 (mmout(t) U16 go(t) U16 gy (2) U16 go(t) U16 g3(t) U16 g4(t))
where U16 is the infix function for merging two triwords, and DEST_TRI16 is the function
which converts sixteen bit triwords to sixteen bit words. The derived program is, once
again, almost identical:
let BUS,; mout go g1 92 93 94 =
let bus(t) = DEST-TRI6 (mout(t) U16 go(t) U16 g1(t) U16 g2(t) U16 ga(t) U16 gu(t))
in bus

4.3.6 The Data Path

The specifications we have presented so far are models of the behaviour of the devices
that specify the data path of the computer implementation. This data path, therefore,
can be specified by structuring all the devices described so far as shown in Figure 2.
The relational definition which models the data path is shown below, together with its
functional translation.
DATA,.i(switches, rsw, wmar, mementl, wpc, rpc, wace, racc, wir,
rir,waryg, alucntl, rbuf, mem, mar, pc, acc, ir, arg, buf) =
3 go 91 92 gs g4 mout alu bus.

MEM, . (mem,mar, bus, mementl, mout) A

MAR,;(bus, wmar, mar) A

Pcrel(bus1 wpc, pC) A

ACC,(bus, wace, acc) A

IR,ei(bus, wir,ir) A

ARG, i(bus, warg,arg) A

BUF,.;(alu, buf) A

GO, i(switches, rsw, go) A

Glrel(pca Tpe, gl) A

G2,o(ace,racc,g2) A

G3re1(ira Tif', 93) A

G4rcl(buf1 rbuf, 94) A

ALU,.(arg, bus, aluentl, alu) A

BUS"G’(mouta g0, 91, 92, 93: 94, bus)

12

let DATA,,; switches rsw wmar memcntl wpc
rpc wacc racc wir rir warg alucnt! rbuf
memuval marval peval accval irval argval bufval =
let go = (GO switches rsw) in
letrec mem(t) = (fst (MEMm; mar bus mementl memval)) t
and mout(t) = (snd (MEM,,; mar bus mementl memval)) ¢
and mar(t) = (MAR,, marval bus wmar) ¢
and pc(t) = (PCpu peval bus wpc) t
and acc(t) = (ACC,y accval bus wacc) t
and ir(t) = (IR irval bus wir)t
and arg(t) = (ARG argval bus warg) t
and buf(t) = (BUF; bufval alu)t
and g,(t) = (Glm perpe)t
and g;(t) = (G2 acc racc) t
and g3(t) = (G3ms ir rir)t
and g4(t) = (G4 buf rbuf)t
and alu(t) = (ALU,,; arg bus alucntl)t
and bus(t) = (BUSy,; mout go g1 92 93 94) t
in (mem, mar, pc, acc, ir, arg, buf)

In the relational model, composition of devices is represented by conjunction. In the
functional definition this is represented by and and in constructs of let expressions. The
and construct in a let declaration is used to model a parallel connection of devices, and
the in construct is used to model a serial connection.

There is also a contrast in the way hiding is modelled in the definitions above. In the
relational definition, existential quantification is used to quantify over variables represent-
ing hidden lines, whereas local declarations are used to the same effect in the functional
definition.

4.3.7 The Control Unit

The three devices in the implementation of Gordon’s computer shown in Figure 2 which
have not yet been specified are MPC, ROM and DECODE.

The microcode program counter MPC is another non selectively-loadable register and is
defined in almost the same way as BUF. The only difference is that the inputs and outputs
to MPC are represented by functions of type time—word5. The register is used to store a
5-bit address for the read-only memory.

The read-only memory ROM outputs the 30-bit word stored in the microcode at the
address specified by the MPC. The microcode is addressed by 5-bit words, each pointing
to a 30-bit instruction. The HOL representation of the microcode is generated by a
function as a set of axioms which relate the contents of the memory to their corresponding
address [11]. In ML the microcode is defined as a function which takes an argument of type
word5 (the address) and returns a value of type word30 (the contents). The function is
parameterised in the definition of ROM which makes use of the primitive function FETCH5
to fetch the contents from the microcode. The definition of ROM and its translation are
as follows:

ROM,; mcode (mpc, rom) = Vt. rom(t) = FETCH5 mcode mpc(t)

let ROM,,; mcode mpc = let rom(t) = FETCHS mcode mpe(t) in rom

The decode unit DECODE reads in the instruction from ROM and decodes it into the
relevant signals which control the operation of the data path DATA. It also computes the
next address to index the ROM by examining the values on knob, button, acc and ir.

13

The specification of DECODE and its translation are rather long and are therefore omitted
here. As can be seen from [11], though, the definition is purely combinational and so its
translation is straightforward. In the rest of this section, the relational and functional
specifications will be referred to as DECODE,.; and DECODEn, respectively.

The three devices MPC, ROM and DECODE can now be grouped together to form a top-
level component of the computer implementation. This component is called the control
unit and is relationally specified using the predicate CONTROL,.; below:

CONTROL,¢;
mcode
(knob, button, acc, ir, rsw, wmar, mementl, wpc, rpc,
wacc, racc, wir, rir, warg, alucntl, rbuf, ready, idle) =
3 mpc rom nextaddress.

ROM,; mcode (mpc,rom) A MPC,; (neztaddress, mpc) A

DECODE,.;(rom, knob, button, acc, ir, nextaddress, rsw, wmar, mementl,
wpe, rpe, wace, racc, wir, rir, warg, aluentl, rbuf, ready, idle)

4.3.8 The Host Specification

The overall specification of the host machine is obtained by joining together the control
unit and the data path. The usual techniques for modelling structure are used, namely
conjunction and existential quantification. The relational specification of the computer
implementation is defined using the predicate HOST,;.

HOST,.i(knob, button, switches, mem, pc, ace, ready, idle) =
3 ¢r rsw wmar mementl wpc rpc wacc racc

wir rir warg aluentl rbuf mar arg buf.

CONTROL,¢;
microcode :
(knobd, button, acc, ir, rsw, wmar, mementl, wpc, rpc, wace, racc,

wir, rir, warg, alucntl, rbuf, ready, idle) A
DATA,.i(switches, rsw, wmar, mementl, wpe, rpc, wace, racc, wir,
rir, warg, alucntl, rbuf, mem, mar, pc, acc, ir, arg, buf)

The value microcode in the definition of HOST,. is a constant which represents the mi-
crocode.

The translations of CONTROL,,; and HOST,.; are straightforward and involve the same
techniques used to translate models which describe the structure of other devices, such
as the definition of DATA already presented. The programs CONTROL,,; and HOST; are
therefore omitted here.

4.4 The Target Machine

The behaviour of Gordon’s computer described in Subsection 4.1 is formalised by the
definition of the predicate COMPUTER,,; shown below. The parameters of the specification
denote the memory, the input ports, and the output ports of the computer; all represented
by history functions of the appropriate type. The definition recursively equates the values
at time ¢+1 of the memory, the program counter, the accumulator, and the idle light with
an expression involving the values at time ¢ of knob, button, switches, mem, pc, acc, and
idle.

This definition is a straightforward model of the behaviour of the computer. It uses
a conditional statement to define the different actions of the computer for the different
situations determined by the values of idle, button and knob. Each terminal branch of
the conditional represents a single target machine operation.

14

V knob button switches mem pc accidle.
COMPUTER,;(knob, button, switches, mem, pc, acc,idle) =
(mem(t+1), pc(t+1), acc(t+1),idle(t+1)) =
(idle(t) =
(button(t) =
((vAL2 (knob(t)) = 0) =
(mem(t), CUT16.13(switches(t)), acc(t), T) |
(VAL2 (knob(t)) =1) =
(mem(t), pe(t), switches(t),T) |
(VAL2 (knob(t)) = 2) =
(STORE13 pe(t) ace(t) mem(t)), pe(t), ace(t), T) |
(mem(2), pel(t), acc(t), F)) |
(mem(t), pc(t), ace(t), T)) |
(button(t) = (mem(t), pe(t), acc(t), T) |
EXECUTE(mem(t), pe(t), ace(t))))

The function VAL2 returns the integer value of a two-bit word and is used to check
whether the value on knob at time ¢ is set to 0, 1, 2 or 3. The function CUT16.13 returns
a thirteen bit word consisting of the thirteen least significant bits of a sixteen bit word.
It is used to load the thirteen rightmost bits set up on the switches into the program
counter when the knob is set to zero.

When the value of idle at time t is F (i.e. the computer is executing a program) and the
value of button is F (i.e. the computer is not interrupted) then the next values of mem,
pc, acc and idle are determined by a function EXECUTE which describes the execution of
a single target level instruction. .

The definition of EXECUTE is shown below, where the function FETCH13 is used to fetch
the contents of the memory stored at the location specified by the 13-bit program counter.
The opcode op and the address addr are extracted from the 16-bit word fetched from mem-
ory and are used to evaluate the next values of memory, program counter, accumulator
and idle. An eight branch conditional is used, one branch for every possible value of
the opcode. Each conditional evaluates the instruction corresponding to the particular
opcode. For example, when the value of op is 0 the instruction to be executed is the
HALT command, and so the current values in the memory, the program counter, and the
accumulator are retained while the value on the idle line is changed to T to indicate the
computer has finished executing the program.

V mwal peval accval.

EXECUTE (mval, pcval, accval) =

let op = VAL3 (OPCODE (FETCH13 mval peval)) in

let addr = CUT16.13 (FETCH13 muval pcval) in

(op=0) = (mval, pcval, accval,T) |

(op=1) = (mval, addr,accval,F) |

(op=2) = ((VAL16 accval)=0 = (mval, addr, accval,F) |

(mwal, INC13 pcval, aceval, F)) |

(op=3) = (muval, INC13 pcval, ADD16 accval (FETCH13 mval addr),F) |
(op=4) = (mwal, INC13 pcval, SUB16 accval (FETCH13 mval addr),F) |
(op=5) = (mwal,INC13 pcval, FETCH13 mval addr, F) |

(op=6) = (STORE13 addr accval mval, INC13 pcval, accval, F) |

(mval, INC13 peval, accval, F))

15

The two definitions above fully model the behaviour of the target machine at the
register-transfer level. Since EXECUTE is already defined as a HOL function (rather than a
relation), translating it to the corresponding ML function is trivial.

The function COMPUTER,,; recursively computes the output functions which represent
the output mechanisms and the random access memory. Although the memory is an
internal mechanism, it is included among the outputs of the definition, since this makes
it possible for the contents of the memory to be examined when simulating the functional

definitions.

5 Optimising Executable Specifications

Before moving on to present an example simulation of the computer, there are certain fea-
tures in the executable models described in the previous section which must be explained
further to show how they can be modified to improve the performance of simulation.

5.1 Inefficiencies in Basic Method

The application of ML to hardware simulation outlined so far seems satisfactory. Many
aspects of register-transfer level descriptions of hardware circuits have been modelled nat-
urally using standard functional programming techniques. When attempting to simulate
large and complex circuits, however, a major problem is encountered: certain simulations
are far too slow. While many circuits can be simulated successfully at a reasonable speed,
others are totally impractical.

The problem is due to circuits with models that have the following properties: too
many recursive calls on history functions (generally resulting from feedback), and too
many repeated computations (generally resulting from fanout). In general, therefore, the
problem arises to varying extents in most sequential devices.

The functional translation of DATA,. is a good example for demonstrating this effect
of inefficiency due to the many repetitions of recursive calculations it involves. For ex-
ample, the evaluation of the value on the bus at time ¢, bus(t), requires mout(t) and
go(t),...,94(t). Now the computations of ¢, g2, g3 and g, at time ¢ require the computa-
tions of pe(t), acc(t), ir(t) and buf(t) respectively, each requiring, among other data, the
value for bus(¢—1). Furthermore, mout(t) requires mem(t) and mar(t), which in turn
also require bus(t—1). Thus, to compute bus(t), bus(t—1) is calculated six times. At
time t, therefore, bus({—n) is calculated a maximum of 6" times, i.e. bus(t—10) could
be calculated well over 60.5 million times! Each time a value is computed at a time ¢,
the computation is recursive all the way down to time 0. For a large t, the effect of
recalculating the same functions over the entire time scale is disastrous.

The nature of the problem suggests the solution. For every value required in a computa-
tion, either it is evaluated and stored for possible later use, or evaluation is delayed until
the last possible moment when the value is evaluated once and assigned to all instances
where the value is required in the course of the computation.

Both optimisations are standard techniques, called memoisation and lazy evaluation
respectively. Below we explain how memoisation can be used to optimise naively coded
functions in a way that is clean and simple.

5.2 Memoisation

The technique of memoisation was invented by Donald Michie and was used as an aid
for improving the performance of programs [16]. Memoisation can make a vast difference

16

in the performance of a program. The idea is to define higher order functions called
memo-functions which take an inefficient function as a parameter and return an optimised

function.
A memo-function remembers all arguments to which it has been applied as well as the

results computed from them. This is done by maintaining a table in which values of
previous calls to the function are stored using the arguments that produced the values as
keys.

When a memoised function is applied to a set of arguments to compute a value, it first
checks the table to see if the function has already been applied to these arguments, and if
so, it merely returns the previously computed value stored in the table. If the function has
not already been applied to the arguments, however, then the new value is computed in
the ordinary way, stored in the table with the function’s arguments as keys, and returned
as the result of the function.

Definitions of memoisation functions in ML are given in [3], along with representations
of tables and definitions of lookup and storing functions. We merely present, below, the
optimised function DATA,; to demonstrate the clarity of the memoisation transformation.

5.3 Memoisation of the Data Path Definition

The function DATA,, below is the memoised definition of the data path in which the
parameters ending in val represent initial values, and the rest of the parameters are
history functions representing the various input data lines. The functions memo,, are
memoisation functions that store and retrieve values of type ty.

let DATA,,; switches rsw wmar memcentl wpc
rpc wacce racc wir rir warg alucntl rbuf
memval marval pcval accval irval argval bufval =
let go = (GOm; switches rsw)in
letrec mem(t) = memomen (fst (MEMy,; mar bus mementl memval)) t
and mout(t) = memoy,i6 (snd (MEM,,,; mar bus mementl memual)) t
and mar(t) = memoya13 (MARy marval bus wmar)t
and pc(t) = memoyas (PCmi peval bus wpe) t
and acc(t) = memoya6 (ACC,y accval bus wacce) t
and ir(t) = memoyae IRy irval bus wir)t
and arg(t) = memoyae (ARG argval bus warg) t
and buf(t) = memoyde (BUFm; bufval alu)t
and ¢,(t) = memoyri1e (Glmi pcrpe) t
and g;(t) = memoyi16 (G2mi acc racc) t
and g3(t) = memoyrine (G3my ir rir) t
and g4(t) = memoyrire (Gami buf rbuf)t
and alu(t) = memoyu6 (ALUp arg bus aluentl) t
and bus(t) = memoi16 (BUSmi mout go g1 92 93 94) t
in (mem, mar, pc, acc,ir,arg, buf)

The optimisations performed on the naive DATA,, functions are clean and simple. The
structure of the naive function can still be seen clearly embedded in the efficient one.

17

6 Executing Programs on Gordon’s Computer

In the previous two sections we showed functional specifications to model the computer
at the host level and the target level. The optimised program which models the target
machine, COMPUTER,,;, takes seven arguments: three history functions modelling the input
mechanisms, and four initial values for the memory, the program counter, the accumulator
and the idle button. It computes four history functions modelling the values displayed in
the memory, the program counter, the accumulator and the idle button.

At the host level, the specification HOST,,; takes eleven arguments: three history func-
tions modelling the input mechanisms, and eight initial values needed to initialise the
various registers as well as the memory. In addition to the four history outputs modelling
the memory, the program counter, the accumulator and the idle light, another history
function is also returned to model the ready light. This last output is not included in the
target level description of the computer.

These specifications can be used to simulate the execution of programs by the computer.
For example, consider the following interaction to add two integers:

Starting with an empty memory, store an integer a in location 0 of the memory
and store an integer b in location 1. From location 3 of the memory onwards,
store the instructions which compute a+b and store the result in location 2
of the memory.

Figure 3 illustrates the layout of the contents of the memory: the data in the first two
locations, the program starting at location 3 and the result in location 2.

Ofa

1|b

2 {a+bd

3 | program
i

Figure 3: Representation of Memory for Program to Add Two Integers

The simulation of the computer running this interaction is performed by setting up
the appropriate values on the input mechanisms to load the program and the data into
memory. The program is expressed using the microinstructions of the computer, described
in Subsection 4.1. Figure 4 uses an assembler style notation to code the sequence of -
events loading the program and data, and executing the program. In fact, one can define
a small assembler language for the computer which would set the values on the input
history functions automatically.

In the program of Figure 4, the integers 40960, 24577, 49154 and 0 on line numbers
3, 6, 9 and 12 respectively are the integer representations of the 13-bit instruction codes
explained in the adjacent comments.

Both the specifications COMPUTER,,; and HOST,,; were used to simulate this interaction
running on Gordon’s computer. Figure 5 shows a table of the input values for the first
25 time cycles used to execute the target level specification COMPUTER.,. The figure
also shows the output values for the corresponding 25 time cycles. The initial values on
the program counter and the accumulator are set to zero, the initial value of the idle
light is set to T and the memory is cleared using the primitive constant EMPTY13.16. In

18

this example, the values of the numbers a and b added together are set to 54 and 85
respectively.

1 ; Load Program

2 Lb PC 3

3 LD ACC 40960 ; Instruction code for “Load ACC with a”
4 ST ACC PC

5 LD PC 4

6 LD ACC 24577 ; Instruction code for “Add b to ACC”

7 ST ACC PC

8 LD PC 3
9 LD ACC 49154 ; Instruction code for “Store ACC at Location 2”

10 ST ACC PC

[«

11 LD PC
12 LD ACC O ; Instruction code for “HALT”

13 ST ACC PC

14 ; Load Data
15 Lb PC 0

16 LD ACC a

17 ST ACC PC

18 1D PC 1
19 D ACC b
20 ST ACC PC

21 ; Execute
22 1D PC 3
23 EX PC

Figure 4: Representation of Program Executed on Gordon’s Computer

The table shows the different stages in the execution of the program. The outputs
displayed at time t+1 are the results of the instruction executed at time ¢. For example,
at time 0, all outputs are set to their initial values. Then at time 1, the value 3 is loaded
in the program counter and at time 2, the number 40960, which codes the instruction
for loading the accumulator with the contents of location 0 in memory, is loaded in the
accumulator. At time 3 no change is apparent in the tabulated outputs because at this
stage the contents of the accumulator are stored in memory at the location specified by
the program counter. The loading of the program and the data in memory proceeds until
time 19. Execution of the stored program begins at time 20 when the idle light goes off.
The result of a+b is shown in the accumulator at time 22, when it is stored in memory.
The halt command is executed at time 23 and the idle light goes back on at time 24.

The program HOST,, produces a similar but much longer table of outputs when sim-
ulated over the same example. In fact, 96 time cycles are necessary to show the entire

19

output history. This is because each instruction is split into several microinstructions at
this level of abstraction and so an instruction executed in one time unit at the target
level takes several time units at the host level. The tabulated results of the host machine
simulation are not presented here.

The results shown over 24 time units in Figure 5 are computed by the optimised function
COMPUTER,,; in an overall time of 288 seconds cpu time. The results over 96 time units
(including those for the extra line ready) computed by the optimised function HOST,,; for
the same example took 623 seconds cpu time. The simulations were carried out on an
8-megabyte SUN 3 machine running UNIX.

[time [knob | button | switches ! pc] acc | idle | Comment |
0 0 T 3 0 0 T
1 1 T 40960 3 0 T
2 2 T 40960 3140960 T
3 0 T 4 3140960 T
4 1 T 24577 4 140960 | T
5 2 T 24577 4 {24577 T Program
6 0 T 5 4 124577 | T is loaded
7 1 T 49154 5 124577 | T
8 2 T 49154 5 149154 | T
9 0 T 6 5149154 T
10 1 T 0 6 149154 | T
11 2 T 0 6 0 T
12 0 T 0 6 0 T
13 1 T 54 0 0 T
14 2 T 54 0 54 T Data
15 0 T 1 0 54 T is loaded
16 1 T 85 1 54 T
17 2 T 85 1 85 T
18 0 T 3 1 85 T | Go to location 3
19 3 T 3 3 85 T | Execute program
20 3 F 3 3 85 F
21 3 F 3 4 54 F
22 3 F 3 5| 139 F
23 3 F 3 6| 139 F
24 3 F 3 6 | 139 T | Computer is idle

Figure 5: Table Displaying Stages of Simulation

The times are certainly acceptable, especially when compared with the performance
of the non-optimised versions of the specifications. Executing the unoptimised version
of COMPUTER,,; took over two hours of cpu time to terminate, and that of HOST,, was
allowed to run for over 24 hours on an ATLAS 10 mainframe computer—after which it was
still not finished. The bulk of the inefficiency was traced to the large amount of repetitive
recursive calculations involved in the definition of the data path DATA. Memoisation
avoids recalculation and transforms highly inefficient functions to relatively efficient ones
by enabling recursive functions to remember previously computed values.

7 Automatic Generation of Programs

In the previous sections we have shown that ML can be used as a hardware simulator at the
register-transfer level and that it is a good medium for executing specifications written
in the HOL logic. Apart from reducing the chance of introducing inconsistencies, the
similarities between the two languages also make it possible for the translation from HOL
specifications to ML programs to be automated. Such an automatic tool has been designed
to translate both HOL relations and HOL functions into ML programs, since hardware
specifications in HOL can be written using both styles. Translating from HOL functions
to ML programs is easy because the definitions are very similar. HOL relations, however,
are a more common way of writing specifications and to facilitate their translation to ML
programs, it is convenient to translate the HOL relations into HOL functions first, as a
stepping stone to translating to ML programs. '

The main syntactic difference between relational and functional specifications explained
earlier on is that:

e in a relational model there is no distinction between inputs and outputs—all ports
are parameterised, whereas

e in a functional model, only the inputs are parameterised from which the function
computes the values on the output ports.

Given such information as to which parameters of the predicate are to be inputs of the
function and what form the output should take, the translation from relations to functions
can be automated. In [3] an algorithm for automatically translating relations in the HOL
logic to ML programs is described in detail. The process of translating HOL relations into
ML programs can be summarised using the following diagram:

HOL |translate| HOL encode ML | optimise opt;rdrilsed
relations functions programs programs

The first step in the above diagram represents the transformation of HOL relations to
HOL functions, the second step in the diagram shows that the HOL functions are converted
into a representation of an ML program, and the third step represents the final stage
at which the naive ML programs are converted into optimised ones. The third stage
of the translation involves the automatic generation of memo-functions and memo-tables
whenever new memo-functions and memo-tables are required, and the automatic insertion
of memoisation strategies wherever appropriate in the inefficient programs.

8 Conclusions and Future Research

The aim of this paper has been to demonstrate how simulation can be performed within
the HOL theorem proving framework in order to help facilitate verification. It is believed
that the combination of simulation and verification could be an effective and efficient way
to obtain correct hardware designs. The verification process would involve writing spec-
ifications and implementation definitions, transforming them into executable definitions,
simulating them until they are fully understood, and finally verifying them.

Few mechanical theorem provers combine the two notions of simulation and verification.
The trend has been either to develop a special purpose hardware simulator with no in-
frastructure for conducting formal proof, or to develop a theorem prover which carries out

21

formal proof by manipulating specifications but which does not do simulation. Examples
of mechanical systems which can be used to conduct both simulation and verification are
the BOYER-MOORE theorem prover [10] and CIRCAL [17}.

More complex examples than the one presented in this paper have been successfully
simulated using the automatic translation tools mentioned earlier to generate simulation
specifications from HOL relations. These include a communications chip with a com-
plexity of about 360 gates. The simulations of these complex examples, conducted by
executing the derived optimised programs, performed at an acceptable speed. Without
the optimisations, however, the programs were impractical to run. It is possible that the
efficiency of the optimisations may be improved further by developing faster techniques
for retrieving and storing computed information.

An interesting improvement on the automatic translation mechanisms would be to at-
tempt to perform the translation from HOL functions to HOL relations by automatic formal
proof using the HOL inference rules. Presently, the tool is merely an ML program which
parses HOL relations and generates HOL functions. Transformation by formal proof would
help in further reducing the chances of introducing inconsistencies in the translations.

Another extension to this research could entail the investigation of executing behavioural
definitions expressed at lower levels of detail. It could be that the same tools can be suc-
cessfully applied to translating most of the aspects of hardware specifications at lower
levels, with little or no extensions to the algorithms. Certain features like bidirectional-
ity, however, will pose problems, and research in tackling such issues will be valuable.

Acknowledgements

I would like to thank all the members of the Hardware Verification Group at the Univer-
sity of Cambridge for their support and motivating discussions. Special thanks to Mike
Gordon for early discussions regarding this paper, and Jeffrey Joyce for later comments.
I would also like to thank various members of Hewlett Packard Laboratory: Derek Cole-
man for encouraging me to write this paper, and Patrick Goldsack, Ajay Gupta and Bob
Welham for making several constructive comments. Thanks are also due to the Com-
monwealth Scholarship Commission in the United Kingdom for funding my research.

References

[1] Barrow H. G., ‘VERIFY: A Program for Proving Correctness of Digital Hardware
Designs’, Artificial Intelligence, 1984, Vol. 24, pp. 437—491.

[2] Camilleri A., Gordon M., Melham T., ‘Hardware Verification using Higher-Order
Logic’, in From H.D.L. Descriptions to Guaranteed Correct Circuit Designs, Bor-
rione D. (editor), North-Holland, Amsterdam, 1987, pp. 43-67, Proceedings of the
IFIP WG 10.2 International Working Conference, Grenoble, France, 9-11 Septem-
ber 1986.

[3] Camilleri A. J., ‘Executing Behavioural Definitions in Higher Order Logic’, Technical
Report No. 140, Ph.D. Thesis, University of Cambridge, Computer Laboratory, July
1988.

[4] Church A., ‘A Formulation of the Simple Theory of Types’, The Journal of Symbolic
Logic, 1940, Vol. 5, pp. 56-58.

22

[5] Clocksin W. F., ‘Logic Programming and Digital Circuit Analysis’, The Journal of
Logic Progra.mmmg, 1987, Vol. 4, pp. 59-82.

[6] Cousineau G., Huet G., Paulson L., ‘The ML Handbook’, INRIA, 1986.

[7) Gordon M. J. C., ‘A Model of Register Transfer Systems with Applications to Mi-
crocode and VLSI Correctness’, Internal Report CSR-82-81, University of Edinburgh,

Department of Computer Scxence, March 1981.

[8] Gordon M. J. C., ‘Proving a Computer Correct’, Technical Report No. 42, University
of Cambridge, Computer Laboratory.

[9] Gordon M. J. C., ‘HOL—A Proof Generating System for Higher-Order Logic’, in VLSI
Specification, Verification and Synthesis, Birtwistle G. and Subrahmanyam P. A.
(editors), Kluwer Academic Publishers, Boston, 1988, pp. 73-128, Proceedings of
the Hardware Verification Workshop, Calgary, Canada, 12-16 January 1987.

[10] Hunt W. A, Jr., ‘FM8501: A Verified Microprocessor’, Ph.D. Thesis, Technical
Report No. 47, Institute for Computing Science, University of Texas at Austin,
December 1985.

[11) Joyce J., Birtwistle G., Gordon M., ‘Proving a Computer Correct in Higher Order
Logic’, Technical Report No. 100, University of Cambridge, Computer Laboratory,
December 1986.

[12] Joyce J., ‘Formal Verification and Implementation of a Microprocessor’, in VLSI
Specification, Verification and Synthesis, Birtwistle G. and Subrahmanyam P. A.
(editors), Kluwer Academic Publishers, Boston, 1988, pp. 129-157, Proceedings of
the Hardware Verification Workshop, Calgary, Canada, 12-16 January 1987.

[13] Joyce J., ‘Using Higher-Order Logic to Specify Computer Hardware and Architec-
ture’, in Design Methodologies for VLSI and Computer Architecture, Edwards D.
(editor), North-Holland, Amsterdam, (this volume), Proceedings of the IFIP TC-10
International Working Conference, Pisa, Italy, 19-21 September 1988.

[14] Melham T. F., ‘Abstraction Mechanisms for Hardware Verification’, in VLSI Specifi-
cation, Verification and Synthesis, Birtwistle G. and Subrahmanyam P. A. (editors),
Kluwer Academic Publishers, Boston, 1988, pp. 267-291, Proceedings of the Hard-
ware Verification Workshop, Calgary, Canada, 12-16 January 1987.

[15] Melham T. F., Ph.D. Thesis, University of Cambridge, Computer Laboratory, Forth-
coming 1988.

[16] Michie D., ‘Memo Functions and Machine Learning’, Nature, April 1968, Vol. 218,
pp. 19-22.

[17] Milne G., ‘Simulation and Verification Related Techniques for Hardware Analysis’,
Technical Report CSR-174-84, University of Edinburgh, Department of Computer
Science, November 1984.

[18] Richards M., ‘BsPL—A Language for Describing the Behaviour of Synchronous Hard-
ware’, Technical Report No. 84, University of Cambridge, Computer Laboratory,
April 1986.

[19] Weise D. W., ‘Formal Multilevel Hierarchical Verification of Synchronous MOs VLsI
Circuits’, Ph.D. Thesis, Massachusetts Institute of Technology, August 1986.

23

