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Summary

A recent development in computer science has been the advent of
local computer networks, collections of autonomous computers in a
small geographical area connected by a high-speed communications
medium. In such a situation it is natural to specialise some of the
computers to provide useful services to others in the network. These
server machines can be economically advantageous if they provide
shared access to expensive mechanical devices such as disecs.

This thesis discusses the problems involved in designing a file
server to provide a storage service in a -local network. It is based
on experience gained from the design and implementation of a file
server for the Cambridge ring.

An important aspect of the design of a file server is the choice of
the service which is provided to client machines. The spectrum of
choice ranges from providing a simple remote disc with operations such
as read and write block, to a remote filing system with directories
and textual names. The interface chosen for the Cambridge file server
is "universal" in that the services it provides are intended to allow
easy implementation of both virtual memory systems and filing systems,

The second major aspect of file server design concerns reliability.
If the server is to store important information for clients, then it
is essential that it be resistant to transient errors such as
communications or power failures. The general problems of reliability
and crash resistance are discussed in terms of a model developed for
this purpose. Different reliability strategies used in current data
base and filing systems are related to the model, and a mechanism for
providing atomic transactions in the Cambridge file server is
described in detail. An improved mechanism which allows atomic
transactions on multiple files is also described and contrasted with
the first version. The revised design allows several file servers in
a local network to cooperate in atomic updates to arbitrary
collections of files.
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Chapter 1

Introduction

Recent years have seen the development of computer local area
networks [Metcal fe75, Wilkes79a, Hopper78]. These are collections of
autonomous computers linked by a common communications medium which
enables them to exchange information. Local area networks represent
an intermediate point in the scale of computer interconnection
techniques. At one extreme are multiprocessor crossbar switches which
serve to connect the processors and memory of a single computer, and
operate at speeds greater than 10 Mbits/second over distances of a few
meters, At the other extreme are international networks which span
thousands of kilometers and have transfer rates of 50 Kbit/second or
less. Local networks occupy a middle range with internode distances
of up to a few kilometers and bandwidths of about 1-10 Mbits/second,
though these limits may be extended in the near future.

The use of a local network gives rise to a certain number of
alternatives not usually available to the software designer. Consider
a program controlling a data structure which provides some generally
useful function. We shall wuse the terms g¢lient and server to
distinguish the requester and provider of a service. The programs
which are the clients of a server are to be distinguished from human
users on whose behalf they act. These terms are of course relative,
since a server for one client may itself be a client of some other
server,

Given a local network, an obvious possibility is the distribution
of the server's functions over a number of cooperating machines. By
arranging for a number of machines each to execute a part of the
server program, it may be possible to perform the service more
quickly, or alternatively to replace a single machine by a cheaper
collection of simpler ones. 1In practice, this advantage is not easy
to achieve due to the difficulty of decomposing many problems into
subproblems which can effectively be solved in parallel. These issues
are discussed further in Stroustrup79 and Dellar80.

A second possibility is the replication of a service's program and
data by arranging for several machines to provide identical functions
to a collection of clients. Replication can increase availability,
since a client will have a better chance of contacting a working
server, and also reliability if the servers compare their results to
detect errors. This idea is well known ¢to hardware designers as
modular redundancy [Randell78a, Randell78b]. In contrast with
distribution, replication makes a given service more expensive to




perform, and brings no increase in performance. A difficult problem
with replication is maintaining the various copies of the service in
an identical state. This problem has been extensively studied in the
context of data bases [Thomas79, Gifford79, Menasce80], where
conflicting updates may arrive simultaneously at different copies of
the data base.

Centralisation is the converse of distribution, and is motivated by
a situation in which each client has access to a private instance of a
service. By replacing the multiple instances by a single shared
server, it may be possible to perform the equivalent function with
less hardware. The advantages of centralisation are mainly economic,
and conflict with the reliability and processing power increases
gained through replication and distribution.

To illustrate these three ideas, consider a local network in which
each computer has a directly attached disc. The disc and its
controlling software can be considered as providing a file service,
with the remainder of each machine's code is its sole client.

In this situation, the centralisation of the file service in a
single machine with attached disecs would probably represent an
economic gain. The private disc units could be replaced by a much
smaller number of large discs attached to the server machine. If
these were also faster than the private discs, the server might be
able to share their use effectively among its clients.

If the centralised file server were unable to cope with the volume
of requests from its clients, its functions could be distributed among
a number of machines. There would be a variety of ways to do this,
but all would have the aim of increasing effective parallelism.
Loosely coupled partitions in which every client request invokes only
some of the distributed functions seem advantageous, since a failure
might not halt service completely. One way to do this is by
partitioning the files among a number of machines each running a
complete copy of the server program. A failure would only prevent
access to files on broken servers, since the distributed parts would
be relatively independent. Reed [Reed79] and Sturgis et al.
[Sturgis80] discuss distributed file systems of this variety.
Distribution with tighter coupling is the aim of the designers of (M¥
[Ousterhout80].

The application of centralisation and distribution to the original
situation will have decreased reliability. 1Initially, the failure of
a single instance of the server (the local disc or its controlling
software) would have affected only one client. After centralisation,
however, a failure of the server would affect all clients.
Distribution may also decrease reliability by requiring more machines
to be operating correctly for the service to be performed.




Reliability can be increased by replication. By adding enough
identical instances of the file service - each possibly distributed -
it would be possible to arrange that the reliability of the file
service approached that of its only centralised component, the local
network. Given replication, the failure of a single instance of the
file service would affect no eclient.

This thesis describes the first step in the above example, the
centralisation of management of backing store in a file server for the
Cambridge ring. The principal issue was not whether a file server
could be built, since the filing system of most operating systems
could fairly easily be moved to a separate machine, but rather what
design choices would lead to an interface which was useful in a wide
range of applications, and an implementation which would share its
storage and bandwidth efficiently. Clearly, a centralised file server
has the potential of becoming the major bottleneck in a distributed
system. Replication or distribution of the file service was not a
central issue, since this would have offset some of the economic
advantages. However, a method of allowing a number of cooperating
file servers on a network is discussed in chapter six as an extension
of the basic design.

Distribution of a computation, such as between a client operating
system and a file server, brings not only 'advantages, but also
complications in the way failures can occur. In a single machine with
cooperation processes, inter-process messages do not get lost, and
individual processes do not fail at arbitrary times. In the
distributed case, both of these events can occur due to communications
errors and machine crashes. These errors will tend to lead to a loss
of synchronisation in which the participants in the computation do not
agree on how far it has progressed. In a distributed data base, for
instance, the crash of one of the participating machines can cause it
to lose all knowledge of the transaction in progress. In a file
transfer from a client to a file server, the loss of a message in the
network can leave a file in a partially updated state.

The problem of maintaining consistency between a file server and
its clients is examined in chapters two and three. Chapter two
presents the file server interface and describes how communications
errors are handled. The file server interface is carefully designed
so that all operations are repeatable without side effects; a client
receiving no reply will simply retransmit a request without concerning
itself whether it was the request or the reply which was lost in the
network.

Chapter three discusses the problem of maintaining consistency in
the presence of machine failures and concurrency. This problem is not
confined to local networks, and has been recognised in data bases for
some time [Gray78]. The solution used in data bases has also been




adopted in the Cambridge file server; to allow complex updates to be
made safely, an atomic transaction mechanism is used. An atomic
transaction has two important properties; it regulates concurrency by
appearing to occur either completely before or completely after other
conflicting transactions, and it is indivisible over machine failures
of a particular kind called interruptions. An interruption occurring
a transaction leaves either the initial state of the transaction or
the final state, but never exposes an intermediate inconsistent state.
The atomic transaction abstraction can be used by clients of the file
server to make apparently point-like indivisible changes to files, and
thus provides a means for controlling the unpredictable effects of
concurrency and interruptions. '

There are two main areas of research on which this work is based.
One is the relatively new area of local networks [Metcalfe75,
Hopper78, Wilkes79a]l and of file servers for them. The initial
suggestion for this work was a proposal for a "universal" file server
by Birrell and de [Birrell80]. Descriptions of two working file
servers have appeared in the literature. Swinehart et al. describe
the simple WFS file server with page-at-a-time access to files.
Sturgis et al. describe the Juniper file server which is perhaps most
directly comparable to the Cambridge file server [Sturgis80]. An
important feature of their work is that there may be several servers
in the network, each controlling a different set of files, which can
cooperate to perform atomic transactions on a set of files.

The other main areas of research which have influenced this work
are those of concurrency control and error recovery. Eswaran et al.
[Eswaran76] give an excellent description of locking as a method of
preventing interference between concurrent transactions. Concurrency
control has also been studied where identical copies of data must be
kept in step [Thomas79, Gifford79, Menasce80], and where the data are
distributed [Bernstein80].

Error recovery as a general problem has been defined by Randell
[Randell78a, Randell78b, Randell79], and this work is used in chapter
three to define a c¢lass of error which can be recovered from
automatically by the file server. Pragmatic approaches to error
recovery in large systems has been extensively studied in operating
systems [Fraser69, Stern7l4] and data bases [Rappaport75, Giordano76,
Lorie77]. An excellent case study is presented by Gray [Gray78] and a
survey of techniques is to be found in Verhofstad78. Most of the
practical mechanisms appear to be variations of the two-phase commit
protocol [Gray78] which itself seems to have been derived from the
intentions 1lists of CAL-TSS [Sturgis7d4]. This subject is pursued
further in Chapter three.




Conventionally, concurrency control and error recovery have been
considered different problems to be approached with different
techniques. Both are required in a working system, however, to
prevent transient and wunpredictable events from destroying the
consistency of a data structure. In a novel approach, Reed shows that
by explicitly maintaining the history of changes to data, a more
unified approach can be taken [Reed78, Reed79]. A particularly
important aspect of Reed's design is that transactions can be combined
in a higher-level transaction in a completely general way. This is
not true for other reported mechanisms, in which no method for
construction of modular transactions is provided.

The work described here is essentially a pragmatic approach to a
problem in operating system design. The main requirement was to build
a file server which would allow a large number of computers to share a
relatively expensive bulk storage resource. The attributes required
of it were generality to allow diverse uses, access control to prevent
interference between clients, and reliability in order that the
consistency of important data could be maintained. Most of all, these
requirements had to be met in an implementation which combined
effective sharing of the server's storage and processing power with a
transfer bandwidth as close as possible to the maximum permitted by
the network. Efficiency has thus been an overriding consideration.




Chapter 2

Desipgn of a File Server Interface

The design of a file server interface involves many implicit
decisions about its intended use. These lead to choices which are
hopefully advantageous in the particular environment, and flexible
enough for other unforeseen uses to be accommodated. There is thus no
"best" interface for a file server, because the compromise between
simplicity and generality will lead to different solutions in
different circumstances. In this chapter, the factors leading to the
choice of interface for the Cambridge file server will be discussed.

The environment in which the Cambridge file server operates has had
a substantial influence on its design. This environment consists of a
number of autonomous computers attached to the Cambridge ring
[Wilkes79a, Hopper78]. Some of the processors run directly under the
control of users, and others provide shared services for general use
[Wilkes80]. The ring is extremely reliable and allows point-to-point
communication at about one megabit per second for several simultaneous
conversations. Although this transfer rate is lower than that of fast
disc units by an order of magnitude, it is sufficient to make high
speed bulk transfers between hosts on the ring a feasible proposition.

This organisation imposes a number of constraints on the design of
a file server. Firstly, a server which is used for all secondary
store accesses from several different machines must be capable of high
transfer rates to each individual machine, and of sharing its
resources among competing clients at a fine grain. If attention were
not paid to providing an efficient design, the file server would
become an obvious performance bottleneck in the system. As in many
other problems of operating system design, a number of alternative
solutions to a given problem can be made to work, but the difficulty
lies in choosing one which will give acceptable performance.

Secondly, the file server will have no control over the programs
which run in the machines which access it. As opposed to designs for
distributed file systems such as Reed's [Reed78], no assumptions can
be made about the trustworthiness of the programs runmning in the file
server's client machines. Access control barriers are thus clearly
needed between the clients and the server, and no reliance can be put
on the correctness of any client requests.




2.1 TLocal Network Communications

To identify the effects of separating a file server and its clients
by a local network, we can take as a basis for comparison the
corresponding parts of a single-machine operating system. These would
consist of a "file server" process through which all secondary store
accesses would be funnelled, and a number of user process "clients".
These processes would communicate using the inter-process
communication facilities provided by the operating system. We shall
see that the essential differences between this centralised model, and
the distributed one are in the areas of reliability, of communication
bandwidth, and of the possibility of loss of synchronisation between
client and server.

To the general advantage are the obvious benefits of distributing a
computation. There is at least the potential of more work being done
in the same time simply due to the increase of available processor
cycles. The net reliability of the system may also increase, since
the local network provides an excellent barrier to the propagation of
errors., In the uniprocessor, a particularly serious error by a user
process may bring the entire collection of processes to a halt, and
exhausting some implicitly shared resource can cause side effects
which propagate to other processes. 1In the distributed case, however,
unless the offending client program floods the local network, it can
only affect the operation of its own processor. The network thus
provides a convenient firewall against software errors. Hardware
reliability may decrease, however, since the minimal amount of
hardware which needs to be functional may be greater. Not only must
the processor running the file server be in running order, as in the
centralised case, but the local network and at least one client
processor must also be working correctly. This effect may be reduced
by replicating the file server so as to have a number of identical

copies.
The other major effects of distribution are due to the
characteristics of local network communication. Firstly, by not

allowing server and client to share the same memory, access to
secondary storage will require store-to-store transfers over the
network., A transfer will thus be lengthened by at least the network
transmission time required for the data, and correspondingly more if
any but the simplest protocol is used to control the transfer.
Particular care in the choice of the file server interface is thus
required if the potential network point-=to-point transfer rate is to
be attained or even approached.




As well as being a narrower channel of communication between client
and server, a local network has the more serious disadvantage of
unreliability. The Cambridge ring is in fact extremely reliable, but
of course this does not mean that it can be considered error-free in
the design of a file server interface. In a uniprocessor, the inter-
process communication system will deliver the request from client to
server, and the reply from server to client with near certaihty. This
is not true in a local network, where eitgfr the request or the reply
may be lost or garbled in a number of ways .

Communication errors may cause a client and server to Dbecome
unsynchronised because the client cannot always know whether a request
has been performed or not. In the absence of a reply from the server
it is unclear whether the initial request was lost and no action was
taken by the server, or whether the reply was lost and the request was
in fact successfully performed. The client is thus in potential
difficulty, especially if the request was of the nature "withdraw 50
pounds from account 3751"; has the money been withdrawn or not?

To deal with this inherent uncertainty, the client may be able to
aiscover the server's state by sending it further enquiry requests
until a reply is obtained. By examining enough information, it may be
possible to discover whether or not the request was performed.
Unfortunately, this strategy does not generalise, since the enquiries
depend on the precise nature of the original update. This sort of
error recovery can not be automated without severely restricting the
types of requests which can be made.

An alternative is to require the server to detect duplicate

requests. To do this, the client must agree to include a sequence
number in each request. On receiving no reply from the server, the
client would simply retransmit the request without changing its
sequence number. The server would need to remember the sequence

number of the most recent request, and the reply which was sent to it.
On receiving a request with the same sequence number, the server would
simply retransmit the reply without performing the operation again.

In an actual implementation, this method becomes rather less
attractive. The reply sent to every client request must be retained
until the next request is received, and so in effect, the file server
must maintain a "virtual circuit" describing the state of its
communications with each client. If clients open and close virtual
#*

In larger networks, there is also the potential for messages arriving
out of order. In order for this to happen, there must be two routes
from source to destination with different delays, and the transmitter
must begin sending of the second message while reception of the first
has not yet begun. Neither of these conditions is possible in the

Cambridge ring.




circuits to the file server on each request, then the file server need
only maintain a small number of virtual circuits at any one time, but
performance will be affected by the protocol overheads of managing
them. If, on the other hand, each client opens a virtual circuit once
at the start of day and uses it for all interactions, then the number
of these structures in the file server could be a potential
embarassment.

These difficulties arise because in general performing a remote
request several times will produce a different state from performing
it Jjust once. This is a semantic property of the request, but a
particularly useful subclass of requests is repeatable. A repeatable
request is one which has the same effect when executed any number of
times; it can thus cause a state change the first time it is
performed, but on repeated executions has no observable effect.

Clearly, many of the functions which one would wish a file server
to perform are inherently repeatable. All enquiry requests, such as
reading a file, are repeatable., With a bit of care, writing to a file
can also be made repeatable. This requires that the write request
specify the locations to be written absolutely, perhaps by an offset
within the file and a length, rather than relative to some current

position maintained by the server. In the latter case, repeated
attempts to write could cause the same material to be appended several
times to a file. If absolute coordinates are given, however,

repetitions merely cause the same part of the file to be overwritten
with the same data.

If all operations in a file server interface are repeatable, then a
substantially simplified approach can be taken to network
communications. Since by assumption there is no visible difference
between succeeding in performing a request the first or the fifth
time, retries can be treated exactly as initial attempts. No sequence
numbers are needed, and no virtual circuits need be maintained.

For these reasons the interface for the Cambridge file server is
carefully defined so that each operation is repeatable. In fact, it
is only necessary that repetitions cause equivalent states to be seen
by clients; the same sets of future requests must be valid in each
case, but repetitions need not produce identical states. For example,
repeatedly requesting the creation of a file can result in a new file
each time (and the destruction of its predecessor), but at the end of
the sequence there must still be exactly one file of the required
characteristics. It is not necessary, however, that the file created
on the first attempt be the one returned on all future repetitions.

2.1 -9 =




2.2 The File Abstraction

A file server must provide access to some storage abstraction which
can be read and written freely. The primary job of the file server is
to create and delete such files and to accept requests to read and
write them. ,

The appropriate interface to such a file abstraction is determined
by its expected pattern of use. For the Cambridge file server, a
proportion of the accesses were expected to be from the CAP virtual
memory system [Dellar80a, Dellar80b] as segments or parts of segments
were swapped in and out of main store. Here in particular, it was
important to achieve the maximum possible transfer rates. This
militated against a view of files as a sequence of fixed-length blocks
which could be accessed one at a time, as done in the WFS file server,
for instance [Swinehart79]. In this method, the transfer of a large
file would require many separate accesses to its constituent blocks.
It would incur the network delays of transmitting each request, and
the much more significant software delays at each end to start,
sequence, and stop each block transfer. Swapping might therefore
become an intolerable overhead, especially if data returned by the
file server could not be written immediately into the reserved
segment, but had to have protocol information removed first.

To achieve higher transfer rates, a more convenient file
abstraction was defined. A file is a sequence of 16-bit words. Read
and write operations define a transfer by a file identifier, a
starting word offset, and a transfer length.

A file has two attributes, its size and an uninitialised data
value. It is useful if the size is virtual, and defines the maximum
permitted address rather than the actual or allocated size. This
simplifies many transactions such as compilation where the required
size of a file is unknown. In this case, a compiler can initially
create an enormous file on the understanding that those parts of a
file which are never written will not occupy storage, and it can
shrink the file to its required size when this is known. The second
file attribute, the uninitialised data value, is a conventional word
value which is returned when a client reads words of a file which have
never been written.

As well as being a convenient equivalent of the segment abstraction
in virtual memory machines such as the CAP, the file abstraction
defined by these read and write requests lends itself to high transfer
rates. By arranging that the control information flows in a separate
logical stream from the data, file contents received from the server
can be stored immediately where they are needed, and data received




from the client can be prepared for immediate transfer to secondary
storage. The details of this mechanism will be presented in section
5.10, but for the present, we may define the file operations by the
following procedures:

read (ID file, INT offset, INT length) DATA

write (ID file, INT offset, INT length, DATA to write)

read file size (ID file) INT

change file size (ID file, INT new size)
where DATA is understood to represent "length" words of arbitrary
information and INT is a 32-bit integer. Note that repeatability

requires that a changed file size be specified absolutely, rather than
relative to the current size.

2.3 Access Control

If a file server is to maintain files for a number of untrustworthy
clients, then some means must be devised for preventing undesirable
interference between them., - One client should not be able to read or
modify files owned by a second client without consent. In common with
the design of virtual memory systems, however, enforcing complete
separation between clients is relatively easy, while providing for
controlled sharing is quite difficult.

There are ’two main choices for building a protection system
[Lampson69, Wilkes75]. One is based on the identity of the client;
the server allows access to a file only for a particular set of
clients, and remembers for each file a list of client names and their
privileges. The other mechanism is based on the ability of a client
to present a valid capability, or ticket, for the object [Dennis66].
Access to a file under these two schemes may be compared to access of
people to a building. Having a security guard check each person
against a list of those allowed to enter the building is analogous to
an identity-based mechardism. Giving each authorised person a key to
the building is analogous to the capability approach.

A characteristic of the identity-based mechanism is that the server
must know the name of each client making a request. In the
centralised case, this is relatively easy. Presumably, the client
process is running on behalf of some user who has identified himself
to the operating system by quoting a password. The information which
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allows the server to connect requests with authenticated names is thus
easily available. This may not be true in the distributed case,
because of the autonomy of the individual nodes. One of the
attractions of a local network is that the processors which run client
programs can be relatively independent; users may be able to obtain
machines and load arbitrary programs into them without prior
consultation. 1In the absence of a central authority which notes the
arrival and departure of clients, identity-based access control
becomes difficult.

One approach would be to oblige client machines to '"log in" to the
file server for the duration of a session, and identify themselves to
it by the initial presentation of a user's password. This approach is
feasible, but it seems to involve more mechanism than might be wished
for the purpose at hand. The file server would have to provide
functions for creating and changing passwords, and would need to note
the arrival and departure of clients, timing out their sessions after
some suitable idle time. At this point, the capability approach seems
more attractive, because it does not depend on any validation of

identities.
A capability in a distributed system can be represented by a number
chosen from a very large space. By including enough random

information in the number, it is possible to arrange that the set of
capabilities for existing files is scattered thinly over all possible
bit patterns and that capabilities for deleted files are unlikely to
be reused. If this is done, it will be difficult for a client to
manufacture a capability, or to predict the next in a sequence of
recently generated capabilities. 1In a centralised system, restricting
the direct manipulation of capabilities to trusted parts of the
operating system provides a guarantee against forgery; only keys from
a certified locksmith can gain entry to the building. In the
distributed case, since it cannot be assumed that any of the client's
code is trustworthy, the guarantee must be replaced by a probability
based on the difficulty of forgery.

This approach is taken in the file server interface. All files are
identified by unique identifiers (UIDs), which are large integers and
behave like capabilities. On creation of a file, the file server
creates a UILD for it, and records the binding between the UID and the
file for the file's lifetime. By arranging that each request must
contain a UID for the file to be read or written, the file server is
able to validate each request in a simple way; it need only check
that the UID presented is for an existing file. An additional
advantage to this approach 1is that capabilities can be freely
exchanged and copied by clients, much as the owner of a house might
give keys to good friends. In an identity-based system, the creator
of a file would be obliged to inform the file server each time he
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wished to grant access to a file to another client.

A drawback of the «capability approach is the difficulty of
associating access rights with capabilities, In centralised
capability machines [England72, Wilkes79b, Wulf74], this is done
trivially by reserving a few bits in the capability to encode the
access rights which it allows on the object. Where capabilities are
subject to arbitrary alteration, however, this is not sufficient; it
must not be possible for the possessor of a capability to amplify his
rights by modifying it. It is thus necessary to generate a completely
new capability which bears no perceptible relationship to the
original, and for fhe file server to retain bindings for different
capabilities and access rights to the same file. This is not a
fundamental objection to this type of capability, but an
inconvenience. In the actual implementation, no provision is made for
capabilities with different access rights.

2.4 Control of Storage

Janson [Janson76] views the principal function of a storage system
as the mapping of a potentially infinite set of objects which are
created and destroyed onto a finite set of storage containers which
are allocated and freed. At any time, the storage system mnmust
maintain the bindings between the set of objects currently in
existence and the storage containers in which they reside. Since the
supply ‘of these storage containers is 1limited, one of the most
important functions of the storage system is deleting the bindings for
unwanted objects so that the storage containers which hold them can be
freed for reuse. This is in itself simple, but deciding when an
object is unwanted is difficult.

There are two widely used methods for controlling object deletion.
In implicit deletion, storage is reclaimed when it is discovered that
no program will ever refer to an object. Since the future behaviour

of programs cannot be predicted, the more conservative approach is
taken of reclaiming storage only when no program can possibly obtain a
reference for the object. It must be noted that this method can be
used only in capability schemes; if a program can fabricate
references at any time, then it has the potential to refer to every
object. The normal mechanisms used in implicit deletion are reference
counts, garbage collection [Deutsch76, Dijkstra78], or a combination
of the two [Birrell78, Garnett80].

" Explicit deletion is used in non-capability schemes, where there is
no basis on which implicit deletion can be performed. This simply
follows from the observation that since the storage system cannot
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decide whether a program will ever access an object, this information
must be explicitly supplied by the program using a delete operation.

The distinction between these two methods of reclamation is well
illustrated in programming languages which provide permanent "heap"
storage as well as local storage on the procedure invocation stack.
In Algol68 [Lindsay77], where a reference is a protected type in the
language, enumeration of all references accessible to a program is
possible, and implicit deletion can thus be performed by a garbage
collector. 1In BCPL [Richards69], which does not distinguish between
references and other kinds of variables, an explicit delete operation
is used.

In the context of a local network with autonomous nodes, explicit
deletion would seem to be the obvious choice for storage control in a
file server. Since the file server allows the names of files to
escape into highly unreliable environments where they may be copied,
lost or passed to any number of other clients, there is clearly no way
in which the file server or any other program can discover which UIDs

are known to at least one client. Implicit deletion is thus
impossible.
Explicit deletion, however, suffers two serious defects. In any

but the simplest cases, it may be as unclear to the client as to the
server when a file can safely be deleted. If its UID has been passed
to another c¢lient, then each must be prepared to deal with the
premature deletion of the file due to the action of the other. Even
within the set of files owned by a single client, this decision may be
difficult. In the CAP filing system, for instance [Needham77,
Dellar80al, a file may not be deleted while any directory contains an
entry for it; explicit deletion could thus only be performed by the
CAP directory management program as a result of a search of all those
file server files in which its directories were stored.

A more serious disadvantage than premature deletion, which can
after all be solved by sufficient cooperation between possessors of a
UID, is the inevitable creation of lost objects. Creation must
obviously be done by an expllicit request from client to server which
returns the UID of a newly created file. Nothing, however, prevents
any of:

1) the file server crashing after creating the object but before

sending the reply,

2) the reply which holds the only copy of the UID being lost in the

network,

3) the client crashing before being able to record the UID in non-

volatile storage. ‘
A1l three eventualities can lead to the only copy of a UID being lost.
The file server will of course have recorded the binding between the
UID and its storage container, but no client will ever be able to
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request its deletion.

Two solutions to this problem are reported in the literature, both
of which are unsatisfactory. 1In the WFS file server [Swinehart79],
the interface allows the enumeration of all files currently known to
the file server so that their UIDs may be discovered. Presumably,
those not matching in a list of "known" files are explicitly deleted
by a program which periodically performs this enumeration. This
program, however, will require the cooperation of all clients in
compiling the 1list of known files. Alternatively, requiring each
client to be able to enumerate only those files which it created
raises again the question of identifying clients to the server in a
satisfactory way, both at the time of each creation and during
enumeration.

A second solution is proposed in the Pilot operating system
[Redell79], in which an interface to a storage system roughly similar
to that proposed thus far in this chapter is defined, though within a
single machine operating system. On first creation, files are marked
as temporary. After recording the file identifier in some safe place,
the client calls the file manager to mark the file as permanent. The
lost files arising from crashes in the circumstances above are thus
precisely the temporary files. During restart, therefore, the storage
system enumerates all files, and destroys those marked as temporary.
Obviously, it is assumed that clients are sufficiently well behaved to
mark files as permanent only when a reference has been safely
recorded; marking a file permanent is essentially an undertaking by
the client not to lose all references to it. Where the protection
barrier between a file server and its clients can be moved further
away from the file server into the interface to a directory manager
subsystem, this approach is acceptable. It is not if no such trusted
subsystem can be assumed to be running in each client machine.

In the context of the Cambridge ring, explicit deletion would seem
to pose unacceptable problems. The initial proposal for a "universal"
file server [Birrell80], however, provided for implicit deletion in a
particularly elegant way using an index abstraction.

The index is the second abstraction provided at the file server
interface, and serves both as a simple structuring method for defining
relationships among an arbitrary collection of files, and as a means
of controlling storage allocation. An index consists of a list of
UIDs of files and indices which are held at numbered offsets, and it
has a single attribute, its size. There are five index operations:

retrieve (UID index, INT offset) UID
returns the UID stored at a particular offset in an index.

delete (UID index, INT offset)

2.4 - 15 =




overwrites an index entry with zeroes.

retain (UID index, INT offset, UID object)
if tobject' is a valid UID for an existing file or index, it is
written into the selected index entry.

read index size (UID index)
returns the maximum number of UIDs which can be stored in the

index.

change index size (UID index, INT new size)
adjusts the size of an index. Decreasing the size causes
deletion of any UIDs in entries beyond the new size.

Using these operation, a client possessing the UID of an index can
discover the UIDs of the objects retained in it, and can repeat the
process on any indices found to discover all object reachable from
that index. It can also alter this structure in any way it chooses
using delete and retain operations, because as for files, read and
modify accesses are not distinguished. Any UID can be retained in an
index, including that of the index itself, so that completely general
graph structures can be created in which cycles may occur.

INDEX -
uip -1~ FILE

]

Fig 2.1 File Server Graph Structure
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The use of indices for storage control is due to side effects of
the vretain and delete operations. Among all indices, one is
distinguished as the root index of all the objects controlled by the
file server. Storage control is performed by defining that the file
server will keep in existence only those files and indices which are
reachable from the root index by a series of retrieve operations. An
object is deleted as a side effect of deleting the last index entry
which connected it to the root index. A single delete operation can
thus potentially cause the destruction of a large number of objects.
Because cyclic structures can be created, it 1is necessary to use
garbage collection periodically to detect those objects which have
become detached from the root index. The file server wuses an
asynchronous garbage collector running in a separate machine in the
network. The details of this mechanism are described in Section 5.20.

In practice, it is quite simple for clients to direct the file
server's storage reclamation. When a new client wishes to use the
file server, an index is created and retained at a free entry in the
root index. The unique identifier of this index is then embedded in
the client programs. Neither it nor any other client can delete this
entry in the root index, since the UID of the root is never publicly
distributed. The client can thus create files and indices and retain
their UIDs in this index, or in some index reachable from it, with the
assurance that they will not be deleted. More generally, the index
given to the client when it first gains access to the file server can
be considered as the root index of its subgraph of the file server
storage.

When a client receives a unique UID from some source, its first
action should be to retain it in some index which 1s known to be
reachable from its own root index. If this retention succeeds, the
UID is known to be valid, and will not be invalidated until the new
index entry is destroyed. When the c¢lient has finished using the
object, it need only delete the index entry for it. If this makes the
object unreachable from the file server's root index, the object will
be destroyed by the file server. If, however, some other client still
wishes to use it, a copy of its unique UID will still be retained
somewhere. Thus, as opposed to a method relying on an explicit delete
operation, no interaction is needed to delete a file shared by several

clients.
The restriction that all objects to be kept must be reachable
requires special attention when objects are created. To avoid an

object being retained in no index for a brief time between its
creation and the first request to retain it, the create file and
create 1index operations require an index and an offset to be
specified. After the object 1is created, but before its UID is
returned to the client, the UID is retained at the given offset in the

2.4 - A7 =




index. Only when it is known to be retained successfully is the new
UID returned to the caller. Note that if the reply never reaches the
client, and the request is repeated, the UID of the second file will
overwrite that of the first file in the index entry, causing deletion
of the first file.

Thus the requests for creating indices and files are as follows:

create file (UID index, INT offset, INT size, INT uninit) UID
returns a UID for a file of the requested maximum size and with
uninitialised store value 'uninit'. Before the UID is returned,

it is retained in the supplied index entry.

create index (UID index, INT offset, INT size) UID
returns the UID of a new index which is first retained in the

specified index entry.

As a matter of implementation, it is not necessary that the
creation of an object and the retention of its UID in an index be
indivisible. It is only necessary that each of these two operations
be indivisible, so that in the event of a crash, half-created files or
half-written indices are never exposed. The actual file server
implementation can crash between these two operations, however,
leaving a new object retained in no index. This is perfectly
acceptable, since the object will be seen to be unreachable at the
next garbage collection.

In summary, the Cambridge file server performs storage control by
defining two classes of unique identifiers. A copy of a UiD
possessed directly by a client allows operations to be performed on an
object, but cannot prevent the object from disappearing. A copy of
the UID stored in an index reachable from the root cannot be used to
specify operations directly, but serves to guarantee the object's
continued existence. The retrieve and retain operations are the means

for converting between these two types of UID.

2.5 Accounting

The storage controlled by the file server represents a shared
resource for its clients, and so provides the opportunity for
accidental or malicious interference. The interface presented in this
chapter contains no means of controlling the amount of storage owned
by a client. As with access to individual files and indices, access
to the shared storage is on an all-or-nothing basis. Any client
possessing the UID of an index can create files without restriction,
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ultimately at the expense of all other clients.

To partition a shared resource equitably, accounting of usage is
needed. Once limits have been set by an administrator, the accounting
mechanism must monitor the demands made by all clients to ensure that
their limits are not exceeded. This problem is common in general-
purpose operating systems, and the approach used in the Multics filing
system [Janson76, Organick72] may be taken as an example. Each file
directory in the tree-structured hierarchy can have an assigned quota
of disc blocks. This quota represents the total amount of space which
can be used in descendents of that directory. A directory with a
quota can assign part of its quota to a subdirectory, thus
guaranteeing it the use of a certain amount of space. Accounting is
done at file and directory creation time; the directory hierarchy is
searched upwards until a directory with a quota is met, and the
creation is allowed only if it does not cause the current running
total to exceed the quota.

This method of accounting encounters problems if a general directed
graph is considered rather than a tree. In the file server, for
instance, there may be several paths leading from the root index to a
particular index or file, and it would be at best arbitrary to assign
the cost of the object to a single client if several had references
for it. 1In the absence of cycles in the graph, a fair alternative
would be to divide the cost of an object by its index reference count,
and to assign one part of this cost to each index holding a reference
to it. In this way, the cost of storage reachable from an index could
be computed, and by proceeding backwards towards the root index, the
cost to be assigned to each c¢lient could be calculated. This
information would be time-consuming to update incrementally as files
were created and deleted, and the method breaks down in the presence
of cycles in the graph.

A workable, but less fair solution would be for each index to carry
the identity of the client which created it. This can be done without
raising the problem of identification of clients at the time of a
request, by including in each index the UID of a special accounting
file. When a client first gains access to the file server, its root
index would have the UID of a new accounting file stored in it at a
hidden offset. Ordinary indices would be given the accounting file of
the parent index specified at the time of creation. This would give a
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systematic, if not completely fair, method for accounting. The cost
of a file could, as before, be divided among those indices referring
to it; the cost of an index would include the cost of its directly
contgined files, and would be assigned directly to the accounting
file

Though workable, this accounting scheme may not be equitable. Once
an index is created, all new storage attached to it will be charged to
the creator; if the creator passes the index UID to another client and
deletes all its index entries for it, he will still pay all storage
costs. Thus, in practice, clients would probably never exchange index
UIDs.

Ideally, an accounting scheme should compute the set of objects
reachable by every client, and then assign costs based on the number
of sets in which each object was contained. At a gross level, this
information could be quite easily computed during the graph
enumeration necessary for garbage collection, but it is hard to see
how the information could be kept up to date incrementally as the .
graph changes.,

The actual file server implementation contains none of this
machinery, and space accounting is done in a rather crude way. In a
research environment of reasonable size, social pressure can be as
effective as an accounting mechanism in limiting the demands on a
shared resource, and does not require administration. To make garbage
collection possible with removable disc packs, each disc pack is in
fact a self-contained graph with its own root index, and no inter-pack
references are allowed in indices. A new client given an index on
some disc pack is therefore automatically constrained to create all
new objects on that pack, since at the time of creation each object
must be preserved in some index. Thus, the only accounting control
possible is exercised in allocating a client an index on a particular
disc pack. Thereafter, cooperation is required between clients if a
disc pack becomes full.

#
If the client were not to be charged for parts of a file which were

never written, files would also have to hold an accounting file for
use during file writes, and the partitioning of file cost could not be
made between different indices.
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Chapter 3

Maintaining Consistency

A file server used for all secondary storage by 1its client
computers will probably be called upon to store important data, where
importance may informally be taken to be a measure of the disruption
which would follow destruction of the data. It is thus worth asking
what facilities provided by a file server would help or hinder the
task of keeping such structures in a correct state.

There are limitations on what can be done, however. A file is a
particularly unconstrained object type; a client may change the
contents of a file arbitrarily, whether or not this change corresponds
to a correct new state. It is thus impossible for a file server to
discover that a client is attempting to make a syntactically correct,
but semantically nonsensical change; interpretation of file contents
is explicitly not part of the file server's function. We must
therefore adopt the more conservative position of assuming that any
change to a stored data structure requested by a client is correct.
What remains is the isolation of such changes from events beyond the
client's control.

To motivate the definitions to follow, consider a data structure
consisting of an index and a file which is retained in entry zero of
the index. We might wish to write a procedure which will retain a
given UID in the first free entry of the index, and increment a count
of uses of the entry in the associated file. Fig 3.1 shows a BCPL
procedure to do this.

LET store (uid) BE
$( LET file = retrieve (index, 0)
FOR entry = 1 TO readindexsize (index)
DO IF retrieve (index, entry) = 0
THEN $( LET count = readfile (file, entry, 1)
writefile (file, entry, 1, count+1)
retain (index, entry, uid) .
RETURN
$)
$)

Fig 3.1 A Transaction
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When executed, this procedure performs a retrieve operation, a read
index size operation, more retrieves, a file read and write, and a
retain operation.

This simple example illustrates a number of general points. The
operations requested of a file server by a client are grouped into
transactions [Gray78], each equivalent to the execution of some
procedure like 'store'. A transaction makes a change to a number of
objects, its write set, based on the read set of objects examined, and
some external information. In the above example, the write set and
read set are both {index, file} and the external information is the
UID to be stored.

When no transactions are in progress the data are by assumption
consistent in that they constitute a valid representation of the

client's abstraction. In our example, in a consistent state each
entry of the file will contain the exact number of times the
corresponding index entry has been used. A transaction, therefore,
serves to change one consistent state into another. It does so by
performing a series of writes which change the members of the write
set incrementally, but in the process it produces temporary

inconsistent states. In the store procedure, the counter in the file
is updated before the index is modified, so that for a brief period,
the file does not accurately represent the index entry usage.

Thus, the notion of a transaction defines that of consistency; the
data are consistent while no transaction is in progress, and
inconsistent while a transaction has partially, but not completely
modified its write set [Gray78].

Transactions are not always as predictable as this example. As
Reed points out [Reed78], highly interactive transactions may demand
external information on the basis of values found in the read set, and
may choose to read and write other objects on the basis of the new
values supplied. It is thus not possible in general to predict the
members of the read and write sets when a transaction starts.
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A simple model captures the idea of a transaction:

Definition: Let O, ... , On be a set of objects. A transaction T
with external data e is a sequence of operations (A, 0,, V,),
where IH.Q {read, writel, Oi is an object, and Vi is €he v%luelof
the object which is read or written:
T(e) :'((A1, 01, V1), ceey (An’ On’ Vn))
At the ith step of the transaction, the read set R (T) is
Ri(T) = {Oj | Aj = read and j <= i}
and the write set W (T) is
W.(T% = {0, ] A, = write and j <= i}
For each write oéeration ewrité, 0, V.), the value written V, is a
function of the external data, anﬁ of the members of the otrrent
read set:
V., = £ (e, R (T)).
i i i

3.1 Effects of Concurrency

Concurrency 1in performing transactions is important in a
centralised service which might otherwise become a performance
bottleneck. In fact, in the interface presented in chapter two,
concurrency of transactions is inevitable since no mechanism has been
provided to prevent it by synchronising the requests of different
clients.

By interleaving operations from several transactions, it may be
possible to increase overall speed, but consistency may also be
violated. If the read set of a transaction intersects the write set
of another, for instance, the first transaction might not observe a
consistent state and could propagate the effects of this to its own
write set.

Eswaran et al. [Eswaran76], give the minimum constraints needed to
preserve consistency when concurrency is allowed. A schedule in their
terminology is a permutation of operations from m different
transactions

S = ((t1, A1, 01, V1), cue ,(tn, An, On, Vn))
where the Ai, 0, and Vi are as before, and ti is a transaction
identifier for transaction T,. Thus
Tos (b, A, 0, V) Lt b))
which is ordered as a sedquence uSing”the order of occurrence in S.
The dependency relation < is defined between transactions as follows.
Given a schedule S, T < T if there are two operations in S,

a 3 K3
(t,, A, 0,, V,) and (tj, Ay 0y vj) such that i<y, t; = £, t, = t,
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Oi = Oj’ Ai = write and A, = read. In other words, Ta <T in S if Ta
writes“a variable which %b reads subsequently. Eswaran et al. show
that a schedule S will result in a consistent state if and only if S
gives rise to the same dependencies as some serial schedule S' in
which the operations of each transaction are per formed consecutively.

Intuitively, the relation < defines the order in which the
transactions make changes to the shared objects, and may be read "is
earlier than". An examination of the types of interference possible
under concurrency may clarify this result.

R(T2)
RCTD

Va2
Wan

Fig 3.2 Independent Transactions
Figure 3.2 shows two transactions whose read and write sets do not
overlap. No schedule of the operations of T and T can give rise to
dependencies between them, so any schedule will produce the same final
state.

RO

R(T1

W{T2
Wan

Fig 3.3 Overlapping Read Sets
The same is true where only read sets overlap, as in figure 3.3,
because no future transaction would be able to decide whether T or T
had run earlier. Since there are no dependencies between thgm, any
schedule of T, and T2 will produce the same consistent state.
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RCT2

R

Va2

WD

Fig 3.4 Overlapping Read and Write Sets

In figure 3.4, an ordering is necessary because R(T_ ) and w(T2)
overlap. This will have been detected as the two sets grew during the
steps of the schedule until a read operation by T, or a write
operation by T2 caused the sets to intersect. At this point, it would
have been necessary to choose whether to allow T  to read T2's new
value (T_ < T ), or the previous value (T, < T ). Either choice is
equally good, but it must be adhered to for all elements in the
intersection. If this were not done, then we would have T < T2 on
some elements of the intersection and T_ < T, on others, dependencies
which could not be produced by any serial schedule of T1 and T2. What
is being done, of course, is to guarantee that T 6 sees a consistent
state containing either all of T_'s changes or none of them, but not
an intermediate inconsistent state. The covering of W(TZ) by R(T1) in
figure 3.4 is meant to indicate a choice of T2 < T1.

R
RO2)

Wan

W2

Fig 3.5 Overlapping Write Sets
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Figure 3.5 shows the essentially similar case of overlapping write

sets. The problem here 1is not in any ordering between T1 and T2,
since neither writes a variable read by the other. Rather, a
transaction T_, whose read set was contained in the intersection

between W(T ) and W(T_ ) would not see a consistent state. If some
variables had been written "1ast" by T and some by T2, then we would
have‘T1 < T_ and T2 < T_, whereas in a serial schedule, one or other
but not bof% of these &%pendencies would hold. 1In this case, it is
necessary to make all the writes of one transaction pefore those of
the other to ensure consistency, and figure 3.5 shows T2 to have run
carlier than T from the point of view of all later transactions.

Of course, for any pair of transactions which run concurrently, any
of these types of interference may occur. Figure 3.6 gives an example
in which all three have arisen.

R RO
R(D RCTD
W{T o W2
Wan ' , W(TD _—-]
- |

Fig 3.6 a. Inconsistent Orderings bD. Consistent Orderings

In figure 3.6a, the ordering decisions have not been compatible.
The overlap between R(T ) and w(T2) has resulted in T < T2, while
that between W(T ) and w(T2) has resulted in T2 < T1, so that figure
3.6a could not have been the result of T applied after T _ nor of T2
applied after T1. In figure 3.6b, the consistent ordering T1 < T2 has
been chosen.

The problem of maintaining consistency in the presence of
concurrency involves detecting when orderings between transactions are
necessary, and at each conflict imposing an ordering which is
compatible with those chosen previously. Maintaining compatible
orderings means preventing the creation of cycles of dependencies
T, < Tj < ... X< Tk < Ti which are impossible in a serial schedule.

Two" methods for resolving this synchronisation problem are reported
in the literature. Locking 1is the conventional method, and is
examined in detail by Eswaran et al. Transactions are required to
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lock each object before it is read or written. Defining two classes
of lock, read and read/write, allows transactions with only
overlapping read sets to be unordered. In addition, every transaction
must acquire locks on all objects read and written before it releases
any lock. In terms of the simple model used here, the requirement
that each object be locked before it is read or written simply means
that whenever there is a read/write or a write/write conflict between
two transactions, some ordering will be imposed, since one transaction
will be delayed while the other, earlier, transaction proceeds. The
second condition states that these individual decisions must be self-
consistent. A transaction which has successfully acquired locks on
all objects accessed is "earlier" than all its delayed competitors,
and so cannot be part of a dependency cycle. Bernstein et al.
discuss simplifications to a general locking strategy which can be
made if the set of transactions is fixed and their interactions are
predictable [Bernstein801].

A second novel solution has been proposed by Reed [Reed78, Reed79].
This is based on explicitly representing every object as a sequence of
versions as shown in figure 3.7. Writing to an object inserts a new
version in the sequence rather than replacing its contents. These
versions are ordered by "pseudo-time", which is essentially like real
time except that while two clients may attempt an operation at the
same instant of real time, they are constrained to choose different

moments in pseudo-time.

(OBJECT, TIME)

OBJECT \il
L= TIME CREATED TIME CREATED TIME CREATED
TIME READ TIME READ TIME READ
DATA DATA DATA

OLDER VERSIONS

.
"

Fig 3.7 Explicit Object Histories
In Reed's scheme, a transaction begins by choosing the instant of
pseudo-time at which it wishes to execute, perhaps by appending a
client identifier to the value of a real time clock. All read




accesses are made by selecting the object version which is most recent
at the chosen pseudo-time. Write accesses are made by attempting to
insert a new version in the object history at the transaction's chosen
moment of pseudo-time. However, the insertion will be refused if the
preceding version has already been read at a later pseudo-time by some
other transaction. This scheme is original and elegantly simple, but
contains unexplored implementation difficulties. Some of these, such
as discarding old versions of objects after a suitable time interval,
are considered by Reed, but others do not seem straightforward. 1In
particular, maintaining representations of large objects as a sequence
of versions might imply inefficiencies in the use of space or in
access time, or in both.

An advantage of Reed's scheme over locking is that the write sets
of two transactions cannot interfere. Since each executes at a
different moment of pseudo-time, they can be allowed to proceed in
parallel; any object in the write set of both will simply have two
new versions inserted in its history at differing moments in pseudo-
time.

In both the locking and pseudo-time schemes, it is possible for a
set of concurrent transactions to interfere in such a way as to make
it impossible for all of them to produce consistent results. 1In the
locking strategy, this is the familiar problem of deadlock, in which a
number of transactions refuse to release locks they already possess

while waiting to acquire a lock held by another. This situation’
cannot be prevented since in general the read and write sets of a
transaction are unpredictable. Nor can it be resolved to the

satisfaction of all transactions, since each insists on running
earlier than its competitors.

In Reed's scheme, the equivalent situation arises when the
operations performed by two transactions in real time are out of order
in pseudo-time. Much of the attractive simplicity of Reed's scheme is
due to the fact that by choosing a moment of pseudo-time, a
transaction orders itself with respect to all others; it intends to
see the results of all transactions with lesser pseudo-times, and to
make its results visible to those with greater pseudo-times. Real
time orderings of reads and writes may make this impossible, however.
Consider two transactions T and T_ with T < T_ because T  has chosen
a smaller pseudo-time. Suppose tﬁ%re is an object 0 in w(T1) and in
R(T ). If for some reason, T, is slow in executing, T, will read O in
real time before T writes it. The read must be allowed, because it
cannot be known that T, intends to write O. When the write is
attempted, however, it must be prevented, because T2's having read O
first makes T < T_impossible. Thus, the arbitrary ordering imposed
by the choice of pseudo-times may be impossible to achieve due to the
real time ordering of reads and writes. As Reed points out, this




consideration is a good reason for making the ordering of events in
pseudo-time as similar as possible to their order of execution in real
time.

Thus in both schemes, situations can arise in which a transaction
cannot be allowed to complete because it has picked a bad time to run.
In a locking scheme, the detection of a deadlock requires one of the
transactions to be removed and its locks broken. Refinements to the
locking protocols can reduce the probability of a deadlock, as shown
in Sturgis80. In the pseudo-time scheme, the neater detection of the
mis-ordering must be followed by the equally drastic action of
cancelling a transaction.

3.2 Faults..Erroré and FError Recovery

The inability of a transaction to order itself with respect to
others is only one reason for it not being able to complete an
intended ‘'sequence of changes. It may serve, however, as an
introduction to the larger problem of maintaining consistency in spite
of various types of malfunction. The genebgl ideas in this section
are . derived from those of Randell [Randell78a, Randell78b,
Randell79], and are presented in the context;of a model appropriate to
a file server. The aim of this section is to define a general class
of errors which a file server may be expected to deal with

automatically. ,
The previous section introduced the idea of a transaction for
grouping the changes intended on a set of objects. A transaction

makes a set of changes to its write set using the values of the
objects in its read set, and some external data.

By taking a more general view, we can model the behaviour of a file
server expected by a client. If the client owns n files and indices,
then these will represent some abstraction, such as a filing system, a
data base, or perhaps a trivial accounting mechanism such as in the
initial example. The values of these n objects can be represented as
points in an n-dimensional space, each point defining a particular
choice of values. Only a small number of these points will represent
valid SQ%@eS;Qf the abstraction. In a relational data base organised
as onehgféiation in each of n files, for instance, there will be
relatiﬁéfykfew choices for the file contents which give meaningful
states of the data base.

2The transactions requested by the c¢lient can be represented as
state transitions in a finite state machine, if we assume that any
potential concurrency is ordered by one of the methods presented in
the last section. Each transition takes some initial state of the n




objects to a final state which differs only in a subset of the
objects, the write set of the transaction. This simple finite state
machine model is shown in figure 3.8. Each transition of the machine
is triggered by the arrival of a transaction and some qualifying
external date, shown at the tail of the arrow. A transition of the
machine causes a state change to new values of the objects, and - as
an extension to the earlier definition of a transaction - an output.
This output may vary from a simple "done" to the description of an
airline ticket to be issued to a customer, and is shown at the head of

the arrow.
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Fig 3.8 Finite State Machine Model

Real file servers do not behave in this simple and predictable
fashion. Concurrent transactions may fail to order themselves
successfully, power failures can occur and discs may spontaneously
destroy themselves, to name only a few deviations from the ideal.
These events may cause an invalid state to be entered and incorrect
behaviour of the finite state machine. In the following discussion of
errors, we shall maintain our optimistic view of transactions. Any
transaction which reads a consistent state will produce a consistent
state and generate a correct output in the absence of errors.

Describing incorrect behaviour is difficult, because it encompasses
every type of behaviour which is not specifically correct. For a
particularly simple implementation of the finite state machine, it
might be possible to enumerate all the the programs and electronics
required to function correctly, and to list the events which might
prevent this from happening. For even moderately complex machines,
this cannot be done; any better definition of incorrect behaviour than
"that which is not correct" requires an exhaustive list of what might

cause it.
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In very general terms, however, some progress can be made by
allowing the finite state machine to behave non-deterministically.
Specifically, we will allow two types of random behaviour:

1) In a state S, the application of a transaction T can result in
any state. The action of T is governed by a probability density
function, in which the ideal result T(S) is only the most likely
outcome. There is a finite probability of a transition to any
conceivable state.

2) The finite state machine is not constrained to change state only
on the arrival of a transaction. 1In any time interval, there is
a finite probability of a spontaneous transition from the
current state to any other state.

By comparing the action of this non-deterministic machine with the

ideal machine from which it is derived, we can describe its incorrect

behaviour. The following definitions are derived from Melliar-
Smith75:
Definition: A fault is an invalid transition produced either

spontaneously or when a transaction fails to achieve its ideal
outcome. A fault produces an error in the incorrect change to the

machine state.

Any automatic scheme for dealing with faults must begin with error
detection, the signalling of a deviation of the machine's state from
that of the ideal machine. This will be based on checking constraints
of the set of valid states, either inherent ("there are never more
tickets issued than seats available"), or added with explicit
redundancy. Once an error has been detected, there are two
complementary actions which can be taken. [Error recovery removes the
effects of a single fault be restoring the machine state to that of

its 1ideal counterpart. Fault treatment attempts to reduce the
likelihood of the fault recurring. In terms of the model, we can
distinguish two general classes of faults. Transient faults are

caused by choosing other than the most likely outcome when sampling
from the probability distribution, and will happen from time to time
on a statistical basis. Hard faults, on the other hand, are caused by
an alteration of the probability distribution, such as might be
produced by a short circuit. Fault treatment attempts to prevent
faults recurring by changing the probability distribution, and is thus
more appropriate for hard faults than for transient faults.

The most satisfactory way of dealing with incorrect behaviour is by
eliminating its causes. This is termed fault intolerance by Avizienis
[AvizienisT8]. Program proving techniques, for instance, may
ultimately allow a more Jjustified reliance on program correctness.
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Similarly, improvements in technology may make some faults so
improbable that they can be ignored.

In the interim before the arrival of perfect hardware and software,
however, faults must be accepted as a practical hazard. 1In these
circumstances, replication seems to be the best solution. The action
of the ideal machine can be simulated by using a number of identical
non-deterministic machines whose faults are independent. Choosing the
majority outcome at every stage will give a close approximation to
ideal behaviour. What is perhaps better, the dissenters can be
immediately identified as faulty, and can either be switched off or
reset to a correct state. Replication thus gives particularly simple
forms of error detection and error recovery, and simplifies fault
treatment by precisely describing the error.

Unfortunately, replication is not the universal solution to all
faults., There are two reasons for this. The first is that the
replicated copies will be equally susceptible to incomplete input
sequences. Where transactions are defined as a sequence of reads and
writes, an inability to complete a transaction whether due to
communication failure, deadlock, or faults in the client program, will
leave all identical machines in the same intermediate state between
the initial and final states of the transaction. The second
shortcoming of replication is that although it might be possible to
make the failure modes of the copies independent, it may not be
feasible to do so. Power failures, for instance, may affect all
copies of a machine if it is too expensive to give each a private
power supply. Similarly, it may be too expensive to write to five
disc units simultaneously to eliminate the effects of random changes
to the same block on any two of them.

There is thus a pragmatic trade-off in designing error recovery
mechanisms. The set of errors must be partitioned into those which
can be recovered from automatically at acceptable cost, and the
remainder which will cause disaster. This classification is implicit
in most of the published work on data base and filing system recovery
techniques [Verhofstad78].

Randell discusses two methods of error recovery [Randell79].
Forward error recovery operates by examining the current erroneous
state to determine the damage which has been caused by a fault. The
erroneous state is then corrected by altering the damaged parts. For

clients of a file server, forward error recovery would require reading
the files in the write set of a failed transaction to discover the
damage which had occurred, and what changes the transaction was
attempting to make. Recovery could then be performed either by
undoing the transaction's erroneous changes or by completing the
remaining ones. An obvious difficulty with forward error recovery is
the inference which may be required to determine how the recovery
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should be done. This will depend on the particular changes which the
failed transaction was attempting and the external data which it was
using, and makes forward error recovery unsuitable as a general
technique for a file server.

Backward error recovery eliminates most of the problems of

inference by saving the previous history of the finite state machine
as a list of recovery points. As each transaction completes, the
state in which it leaves the machine is added to the list. On
detection of an error, the only inference needed is in deciding when
the fault occurred. Then, a recovery point previous to that time is
chosen and installed as the machine state. If this is not the most
recently recorded recovery point, then any transactions perfofmed
since then must be rerun to arrive at the correct state.

3.2.1 Practical Error Recovery In Large Systems

The problem of providing automatic error recovery in systems where
the machine state is in the order of 10 bits is a special case of
the general problem discussed in the previous section.

Systems of this type, such as file servers and data bases, may be
characterised as having an enormous number of possible states, and an
unpredictable set of transactions to change the state. Forward error
recovery may be eliminated as a general technique in these
circumstances, because the actions which must be taken depend on the
detailed behaviour of the failed transaction. Backwards error
recovery is thus universally used in systems with a large amount of
state information. To be a practical possibility, however, it depends
on rapid error detection to prevent the propagation of errors.

Consider a banking data base. As well as having transactions to
calculate interest, and to transfer money between accounts, it might
also be able to transfer money out of the system, by crediting a bank
account in another country. The consequences of an error in this type
of transaction are particularly serious because the output of the
transaction, once issued, can not be changed. If the transaction
reads erronecous data, perhaps because a previous transaction failed
leaving an incorrectly large amount of money in a bank account, then
an invalid transfer might occur. Detecting the error at some later
stage is insufficient, because even if the transaction is retried with
a different result, the money transferred out of the system may not be
recoverable.

Thus in general any errors present in the state must be detected
before they propagate to the outside world. Before a transaction
issues an output, it must be known that the transaction's read set was
free of errors and that the output has therefore been correctly
calculated. In discussing this problem Davies has said "no process
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may be allowed to commit its results with any greater degree of
certainty than the process's inputs" [Davies79]. This may be
rephrased "in a system which takes irreversible actions, a transaction
must not read erroneous data'.

To make error recovery possible, therefore, it is necessary to
assume that no outputs are generated between the occurrence of a fault
and detection of the error. Allowing an output to be generated is
thus an assertion that all data read were correct, and that the
transaction has constructed a new consistent state. This assertion as
called committing the transaction, and is a declaration that no errors
will propagate to other transactions as a result of this transaction.

Substantial simplifications result from assuming that rapid error
detection prevents error propagation. Since a transaction only
commits if its read set is correct and its write set has been changed
without error, any detected error has occurred by assumption after the
last committed transaction. Thus, the state which should be restored
after an error is that produced by the last committed transaction. It
is therefore only necessary to retain a single recovery point at any
time rather than a list of recovery points. As each transaction
commits, its final state can define the current recovery point. This
algorithm is now generally known as the two-phase commit protocol
[Gray78], though it seems to have first been applied in the filing
system of the CAL-TSS operating system [Sturgis74] under the name of
intentions lists. The name refers to the separation of a transaction
into two phases. 1In the first phase, when faults may occur, the
changes to the state are made tentatively in a reversible manner.
Only after the last change has been made without error can the
transaction enter its second phase by committing the changes. At the
time of committing, two consistent versions of the system state are
available, and it must be ensured that the same version is chosen for
each of the changed objects. Many of the subtleties in published
versions of the two-phase commit protocol are concerned with
guaranteeing that the same version is chosen for each object when
these are stored on different computers with independent faults
connected by an error-prone network [Thomas79, Sturgis80].

In systems with enormous amounts of state information, automatic

error recovery remains a substantial technological problem even after
error propagation is eliminated by assumption. The reason for this is
that recording a copy of the state produced by a transaction is orders
of magnitude more costly than executing the transaction itself. 1In a
data base with 10 bits of storage, for instance, an individual
transaction may change only a few hundred bits. As a result, copying
the entire data base is not an operation to be attempted after every
transaction, Rather, recovery points are recorded at infrequent
intervals, and thereafter a 1list of changes made by committed
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transactions is maintained. When a transaction commits, a record of
changes to the system state which it has made is appended to this
journal or audit trail [Gray78]. To recover from an error, it is
simply necessary to reinstate the last recovery point, and then apply
to it all the changes in the journal.

3.2.2 Interruptions

By assuming that no transaction commits between the occurrence of a
fault and detection of the error, recovery mechanisms can be built
which will recover automatically from most errors of practical
interest. These include losses due to using bad areas of disc
storage, and even wholesale destruction of information, such as occur
in a disc head crash. An excellent description of a mechanism of this
type is to be found in GrayT78.

As mentioned above, the design of an error recovery scheme is a
matter of balancing the probability of occurrence of errors, the
seriousness of their consequences, and the cost of a mechanism for
preventing these consequences. In data base applications, the
consequences of unrecoverable errors may far outweigh the cost of
extra hardware and software to maintain the recovery points and the
journal, even if it is exercised only once in the lifetime of the
system. 1In other cases a mechanism which will handle a smaller class
of errors more cheaply is appropriate. The Cambridge file server, for
instance, was designed for use in a research community in which the
cost of losing a week's work every few years was more acceptable than
providing expensive hardware to recover from these errors. As a
result, a lightweight mechanism which recovers automatically from the
large majority of errors was designed, and was supplemented by a
discipline of recording a weekly recovery point for the rarer more
serious errors.

The process of defining these smaller classes of errors is one of
making assumptions which restrict the amount of state information
damaged in an error. By doing this, the amount of inférmation needed
to recover from the error is limited, and therefore also the storage
and work needed to record it.

To make any simplifications on the general technique, it 1is
necessary to exclude spontaneous state transitions. If any part of
the state may be damaged spontaneously at any time, then a complete
copy of the most recent committed state must always be maintained.
This assumption does not prevent the machine from halting at arbitrary
times, but it must only refuse to accept further transactions and must
not change state.
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Similarly, if the state produced by a transaction can be any state
whatsoever, there is the possibility for arbitrary damage, and so the
need for a complete copy of the most recent committed state. The
majority of errors in a working system have a more predictable
pattern of damage, however. Damage is usually confined to the objects
in the write set of the transaction in progress.

Definition: A fault during the execution of a transaction is an
jinterruption if the state it produces differs from the initial
state of the transaction only in the members of the write set of
the transaction.

Consider a non-deterministic finite state machine in which the only
errors which occur are interruptions, and in which there is no error
propagation. This machine has the important property that if an error
is detected, then the damage is limited to the members of the write
set of the current transaction. Spontaneous transitions, such as
those which might be caused by a disc head crash, are assumed not to
occur. The information which must be maintained for error recovery is
therefore also limited. Specifically,

1) When no transaction is in progress, no errors can be produced.

Therefore, no recovery information need be maintained.

2) When a transaction is in progress, it is sufficient to maintain
copies of the initial values of its write set. In the event of
an interruption, error recovery consists of restoring the write
set to its initial state.

Interruptions are thus particularly tractable by automatic means,
and the limited amount of information required to deal with them means
that maintaining it may not 1impose severe costs in hardware or
execution time.

Interruptions account for a large majority of transient faults
which occur in practical systems. These include the states produced
by most client crashes, deadlocks, power and communication failures
and the software and hardware failures known as "system crashes" and
in general all events which cause a transaction to be only partially
executed. They do not include faults due to incorrect programs which
alter one object when told to change another, spontaneous losses of
information, and any number of more catastrophic events. In the
remainder of this thesis, it will be explicitly assumed that the only
faults with which the file server will deal automatically are
interruptions.
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3.3 The Storage Model

The finite state machine model presented in the last section is not
particular to the behaviour of a file server as seen by its clients.
More generally, it applies to any storage abstraction which is subject
to occasional erratic behaviour. In this section, we will apply it to
a model of disc storage, and use it to compare a number of error
recovery techniques.

A client of the file server specifies a transaction as a sequence
of primitive file operations. Within the file server, each operation
is not primitive, but consists of a transaction on the set of disc
blocks which define the file or index. Again, a disc write operation
is itself not atomic when considered from the point of view of the
disc hardware, but consists of a sequence of bit changes. Thus, there
is a natural hierarchy of finite state machines which reflects the
levels of abstraction in the file server. A primitive write operation
at one level is executed as a complete transaction at the next lower
level.

When an interruption occurs, it will affect the operation of each
machine in the hierarchy. A power failure, for instance, may
interrupt a client transaction, the file write it was engaged in, and
the disc transfer which was in progress. It may, however, occur when
the disc is temporarily idle. 1In general, halting the hierarchy of
machines at an arbitrary time will find the higher levels in mid-
transaction, but may find the lower levels between transactions, and
therefore in a consistent state.

The difficulty of error recovery at each level is determined by the
behaviour of the lower levels. The models of disc storage used
implicitly by Rappaport [Rappaport75] and Giordano [Giordano76] assume
that disc writes are atomic with respect . to interruptions. All
interruptions at higher levels occur either before a disc transfer
starts, or after it completes, but never during it. This strong
assumption makes error recovery at the file level simpler, since no
interruption can cause the loss of a disc block.

Lorie [Lorie77] permits interruptions at the disc level and the
possibility of loss of information. His scheme, therefore, maintains
redundant information on disc to allow reconstruction in the event of
an interruption during a disc transfer.

Sturgis et al. [Sturgis80] are explicit about the assumed
characteristics of disc-level transactions. They assume that disc
storage has the "weak atomic" property, in that a disc write can have
three outcomes: 1) success, 2) no effect, 3) detectable corruption,
and that success is only reported if the transfer occurred correctly.
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Contents of disc blocks are also explicitly assumed not to deteriorate
once written successfully. These conditions are equivalent to
restricting the faults allowed to interruptions as defined in this
chapter. Sturgis et al. also describe a method for building stable
storage from disc storage. This is done by recording disc blocks in
two copies so that each write to stable storage is performed in two
disc writes. Recovery from interruptions is automatic, and relies on
the fact that at least one of the two disc copies of a block of stable
storage will be readable at any time. Transactions at higher levels
can therefore assume that writes to stable storage are atomic with
respect to interruptions.

The model of disc storage assumed by the Cambridge file server also
restricts disc errors to interruptions. The addition of the required
redundancy to allow automatic error recovery will form the subject of

the next chapter.

3.4 TInteractions Between Concurrency and Error Recovery

The necessity for a backward error recovery mechanism has
consequences on the ordering of transactions for control of
concurrency. Consider two transactions T, and T_ such that W(T ) and
R(T ) overlap. Suppose that at the time the overlap was detected
during the concurrent execution of T, and T_, the scheduling decision
T, < T_ was made. Thus, changes to T1's write set are to be made
visible to T_.. Given the possibility of errors during the execution
of T1, however, the decision T < T_ cannot be made unambiguously. T1
may be erased completely and have all its writes undone during error
recovery, so that judgement on the decision must be suspended. Under
a locking protocol, for instance, if T unlocks an object in R(T ), T
must not be permitted to read it while T  is still susceptible to
errors. Otherwise, even though W(T () is backed up, an inconsistency
will be propagated to w(T2) unless T2 is also subjected to backwards
error recovery. Thus in general, whenever a relationship T, < T_ is
decided upon, it must not be allowed to occur until T has committed;
T must wait until T is known to have run without error before
reading its results. With this refinement, backwards error recovery
of T has no effects of T2 because no decision will have been taken on
dependencies between them.

This method is followed in Reed's pseudo-time mechanism. Reading
an object version is delayed if the transaction which created the
version has not yet committed. The version will ultimately be read if
the transaction commits successfully, but otherwise the next older
version in the object history will be returned.
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Eswaran et al. explicitly ignore the effects of errors, and the
locking protocol they define must be elaborated slightly to deal with
them. They require that a transaction be two-phase. In its first
phase, the transaction may acquire locks, but not release them. In
the second phase, it must release locks but acquire no new ones.
Clearly, releasing a lock allows results of the transaction to become
visible to other transactions, so that before releasing its first
lock, the transaction must have passed the point of commitment. In
particular, all writes must have been completed by this point if
errors can still cause the transaction to fail. Otherwise, the
transaction will have exposed parts of its result state to successors,
but will be unable to create the complete and consistent write set.

Thus to cope with interruptions as well as concurrency, a
transaction must neither acquire new locks nor write any objects after
the first object in the write set has been unlocked. The unlocking of
this first object marks the point of commitment of the transaction,
and following it, the transaction may only (uselessly) read from
objects and release further locks.

3.5 Atomic Transactiohs

The abstraction we have now described is often called an atomic
transaction [Gray78, Randell78]. This phrase attempts to capture the
indivisibility of a transaction; an atomic transaction either runs to
completion or has no effect whatsoever and no intermediate states are
visible outside it. The notion of an atomic transaction seems the
closest possible to the mathematical concept of a function, which is
instantaneous and arbitrarily complex, given fallible hardware.

In the light of the foregoing discussion it is more accurate to say
that a transaction is atomic with respect to interruptions. The
mechanisms we have been discussing here provide atomicity with respect
to concurrency, and atomicity with respect to interruptions.

3.6 A Transaction Abstraction For the File Server

This general excursion into the problem of assisting clients of a
file server in maintaining consistency in a complex data structure has
outlined the desirable characteristics of a transaction abstraction.
The minimum requirements seem to be to provide for atomicity with
respect to concurrency and interruptions. In the event, however, the
abstraction actually provided was less general than the ideal, and
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allows only a single object in the write set of a transaction. This
is a result of several factors: pragmatic assessment of the needs of
the client operating systems, implementation uncertainties with a
complete mechanism, and the author's lack of understanding of the
general problem.

Concurrency control is based on conventional interlocks. The
pseudo-time mechanism is very attractive, but as yet untested in an
environment requiring very rapid response. In the absence of a
detailed implementation, it must remain a valuable contribution to the
understanding of the consistency problem rather than a pattern to be

imitated.

In the file server, there are in fact two kinds of unique
identifiers. The kind already introduced are permanent unigue
identifiers (PUIDs). A PUID is created with an object, and remains

bound to it for the object's lifetime; 1t may be thought of as a
capability for the object. A temporary unique identifier (TUID), is a
capability for an interlocked file, and is created by the open

request:

open (PUID object, BOOL for writing) TUID

The open request attempts to establish an interlock on the selected
file or index according to a multiple-reader-or-single-writer
discipline. A TUID identifies both the object and the particular
interlock set on it; when several requests are made to open a file
for reading, different TUIDs will be returned for each request. These
TUIDs denote distinct, but overlapping interlocks on the same object.

Once a TUID has been obtained, it can be used in all the file and
index operations 1listed in chapter two. All write operations,
however, make changes reversibly, so that in the event of an
interruption, an object opened for writing reverts to its state at the
time of opening. A TUID cannot, however, be used in a retain
operation, since it would not be sensible to retain a name for a
temporary object in a permanent one.

TUIDs are destroyed by the close operation, which is used to remove
the interlock and to commit or abort the transaction on the object.

close (TUID object, BOOL commit)

If commit is TRUE, then any changes made while the object was open are
made irreversible in a single atomic operation. If commit is FALSE,
then all these changes are removed. The TUID supplied as argument is
then invalidated by removing the interlock it denotes. It is up to
the client to decide whether or not to commit the transaction, and
under normal circumstances, a value of TRUE is supplied only if all
operations in the transaction were successful, or 1if any errors
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detected were successfully corrected.

Interlocks, of course, must not be allowed to persist indefinitely,
and the file server must have some means of detecting and removing the
interlocks set by a failed transaction. To do this, when a TUID is
first generated, a timer is set on it for some small number of
minutes. Whenever this TUID is received from a client in a request,

the counter is reset to its initial value. If it ever expires, the
file server decrees that the transaction to which it belongs is dead,
and generates a c¢lose operation with commit = FALSE. If the

transaction is still alive, the client will find that its TUID is now
invalid, and it should under normal circumstances close all remaining
open objects with commit = FALSE. Note that nothing prevents a
looping transaction from holding a lock indefinitely. An alternative
strategy, whereby locks become vulnerable to pre-emption after some
initial period, is used in the Juniper file server [Sturgis80].

For efficiency reasons, a client may wish to have an object move
through a sequence of consistent states in a transaction without
having to compete each time for the object interlock. This is similar
to the idea of checkpointing in databases, and limits backward error
recovery to the most recent consistent state rather than the initial
state found by the transaction. An error thus causes less of the work
done by a long transaction to be discarded. To define an intermediate
consistent state, the ensure command is used.

ensure (TUID object, BOOL commit)

This operation either commits or removes all changes to the object
made since the last ensure or close command. It is.identical to a
close operation except that it does not invalidate the TUID supplied
as its argument.

The three transaction operations introduced here allow a client to
construct transactions in the described in section 3.3. A transaction
begins by open operations on the members of the read set and the
single object in the write set. The appropriate file or index write
operations then change the object open for writing to its new value.
Finally, the interlocks are released by a sequence of close
operations, in any order. The transaction commits when the object
open for writing is closed with commit = TRUE.

Note that nothing prevents a client from opening several objects
for writing in a transaction, thus having a number of elements in the
write set. However, because of the semantics of the close operation,
it is impossible to make an atomic change to all of them. The close
requests must be made in some order, and if the client were to crash
after closing some of the objects with commit = TRUE, the file server
would eventually close the remainder with commit = FALSE.
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This restriction has not in practice led to any serious
difficulties. Most of the <c¢lient operating system transactions
involve a single object in the write set, and those which do not, such
as directory updates in the CAP [Dellar80b] have been adequately
implemented as a sequence of transactions.

Careful ordering would not be sufficient for data base clients,
however. In a transfer of money between accounts using a debit
transaction and a credit transaction, there would be an instant at
which there was either an excess or an insufficiency of money in the
data base. For such cases, it would be possible to build a client-
based multiple-~file transaction method following Paxton's example
[Paxton79]. A file could be used to hold the changes intended by the
transaction, by recording the adjusted balances of the two accounts.
At each restart of the data base client, this "intentions" file would
be examined, and any updates found in it applied before resuming
normal service. Thus a multiple-object transaction mechanism could be
bootstrapped from the simpler mechanism by using a special file to
hold higher level intentions. The same result can also be achieved
more efficiently by extending the actual file server transaction
mechanism to many objects in the write set, as will be described in
chapter six.

3.7 Repeatability

As opposed to the file and index operations defined in chapter two,
the operations just defined for the control of transactions are not
obviously repeatable. There would seem to be a problem if the reply
to an open, ensure or close request is lost in the network.

The case of the open request is merely inconvenient. If the TUID
contained in the reply to the open request is lost, then a retry of
the operation will fail if the interlock is for writing. This does
not imply a loss of synchronisation between client and server, as
would be the case in the loss of a reply to "withdraw 50 pounds from
account 3751", because it is clearly safe to retry the open request.
If later attempts fail, then the client must wait. Eventually, the
file server will time out the lost TUID, and the next attempt will
succeed. It is only tiresome that the loss of a reply can cause a
delay of some minutes.

A solution to this problem would be to admit defeat in the attempt
for complete repeatabilit§ by introducing a simple virtual circuit for
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the special case of open requests. If the file server records the
machine number and port number of each client requesting an open
operation, then a retry by the same machine specifying the same reply
port number could be recognised as such and the same TUID could then
be returned.

Whether this addition is worthwhile is to be judged on the basis of
frequency of occurrence of the error. If loss of messages in the
network is about as likely as a crash by a client machine - in which
all TUIDs will be lost in any case - then it is probably not
worthwhile. In the actual implementation, a timeout of TUIDs after a
few minutes has proved sufficiently short not to be troublesome.

The case of ensure and close is more fundamental, however. If the
reply to a close operation is lost, then the client will not be able
to determine whether the transaction committed or aborted. If a
repetition of the request is successful, then all is well; the
initial request was lost. If a repetition eventually produces the
reply "invalid UID", however, then this may either be because the
first attempt has succeeded, or because the file server decided to
break the interlock after a timeout. (In the actual implementation, a
file server crash also causes interlocks to be broken. This could be
avoided - at a cost - by recording interlocks in non-volatile storage.
It does not make the current problem fundamentally more difficult,
however.) Worse, the client cannot determine whether the transaction
committed by reading the object. It is possible that some other
client has since modified the object while the first client was
waiting for the lost reply to its request.

It is important to note that this essential uncertainty is not due
to the separation of client and server by a local network. Even in a
single machine implementation, if the procedure call to commit a
transaction never finishes due to a crash, the same uncertainty
arises. The user at a terminal in the centralised case, and the
client program in the distributed case both need to know whether the
crash occurred before or after the atomic commit action. Unless the
transaction mechanism guarantees

1) never to time out interlocks, and

2) always to re-establish interlocks in effect at the time of an

interruption
then examining the object in question will not necessarily solve the
problem due to the possible effects of intervening transactions. ir
the transaction mechanism does guarantee these two conditions,
however, then lost and unbreakable interlocks are possible.

#
essentially a process identifier in the client machine, whose use 1is

defined in chapter 5.
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This situation seems inevitable in storage systems which do not

maintain histories of changes. In Reed's scheme, a client in this
predicament would always be able to enquire "was a version of object X
created at pseudo-time T?", If the transaction at pseudo-time T

aborted, then all of its object versions would have been deleted, and
the answer would be no. Because no other transaction can affect the
version at time T but can only insert versions at othér pseudo-times,
so the uncertainty can always be resolved.

Adding a certain amount of historical knowledge to a system which
does not explicitly maintain object versions can help, however. If
the file server maintains a 1list of recent TUIDs together with a
record of the decision to commit or abort which it has taken, then
clients can be allowed to enquire about the fate of a transaction. A
mechanism much 1like this is used in the Juniper file server
[Sturgis80]. Even so, to be effective, the method requires recording
the TUID of a transaction in a place which will survive all errors
which are meant to be recoverable, so that the correct question can
still be asked when service is resumed.

3,8 Optimisations

The fact that the file server was designed for use by operating
systems caused two simplifications to be made to the transaction
mechanism,

In a virtual memory system such as that of the CAP, the full
transaction mechanism seems rather elaborate for the task at hand.
The virtual memory system may be expected to organise its own
interlocks, so that when it swaps a file to or from the server, no
interference is possible with other clients, or within its set of
processes. Engaging in a full transaction exchange such as

tuid := open (file, TRUE)

write file (tuid, offset, length, data)

close (tuid, TRUE)
therefore involves two essentially useless commands. The network
transmission time of these commands is liable to be negligible, but
scheduling delays in both <c¢lient and server to prepare for
transmission and reception are probably more costly. If the virtual
memory manager process must run three times in quick succession for
every segment transfer, this may contribute significantly to the load
it imposes on its processor.

For this reason the file server interface provides a simple
shorthand for the common case. Whenever a file or index request
arrives specifying a PUID instead of a TUID, it is assumed that the
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client means to perform a transaction consisting of a single
operation. The file server then brackets the operation by the
appropriate open and close operations, which are generated internally.
Thus the full transaction mechanism is in fact performed, and the
transaction will be refused if a conflicting interlock is outstanding.
With this optimisation, PUIDs and TUIDs are almost always
interchangeable in any file server operation. It does not of course
make sense to retain or open a TUID, nor to ensure or close a PUID.

The second beneficial effect of designing a file server for
operating systems is more fundamental. It is often the case that
precautions for correct behaviour in the event of an error are
completely unnecessary. Compilation, for example, is often performed
in two transactions. The first is the actual run of the compiler;
its read set contains the source code and perhaps some environment
description files, and its write set consists of a file created
expressly to hold the translated binary progran. The second
transaction is a directory update which replaces the old binary
version by the one just made by the compiler. The important point
about this example is that no error recovery is required by the
compiler transaction. If an interruption occurs, the inconsistent
output file will simply be discarded when the compilation is repeated.
Any extra expense involved in making sure that the binary file can
always revert to its initial empty state is wasted.

The second directory transaction shows the opposite case. Since
the correct functioning of the operating system depends on the
consistency of its directories, all changes to directories must be
made atomically. When inserting the new binary file, for instance, no
error should expose a half-written directory.

This example leads to the general observation that a transaction
may know that any inconsistencies which might be produced in its write
set are not dangerous. This may be because objects in the write set
will be discarded if the transaction fails, or because they contain
information local to the transaction which will never be read by any
other, or simply because the higher levels of software are prepared to
deal with inconsistencies, perhaps by typing "bad binary file". This
information would not be important if atomic updates could be made so
cheaply as to make considerations of cost unimportant, but this is not
the case in any reported atomic transaction mechanism. A file server
which imposes a blanket guarantee of error recovery for every
transaction will thus be doing its clients a disservice if there is a
perceptible performance cost. The pitfall to be avoided here is
common in operating system design; the client of a sophisticated
service should not be obliged to pay for facilities he does not use.
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To the author's knowledge, the Cambridge file server is unique in
allowing clients to specify whether precautions against interruptions
are to be taken or not. This is done at the time of creation of a
file, on the assumption that the need for error recovery is governed
by the information to be contained in the file. The create file
operation takes an extra Boolean argument which specifies whether the
file is to be normal or special. Special files are those which have

been described to this point. They have the guarantee that a
transaction error will always cause the file to revert to its last
consistent state. Normal files do not have this guarantee and a

transaction error can leave a file in a partially written state. The
performance advantage in updating normal over special files is due to
the file server's knowledge that for a normal file, modifications can
be made irreversibly as they are requested without the need to make
them conditional on the transaction committing.

Once normal and special files have been created, there 1is no
distinction in the way they are used. Clients are expected to know
whether a file is normal or special by context, if this is of interest
to them. The only way to observe the difference ‘at the file server
interface would be to open a file for writing, write to it, and then
close it with commit = FALSE. A special file would be in its original
state, but the normal file might be modified.

In the light of experience, the distinction between normal and
special files has proved to be very useful. The large majority of
~files kept by the file server are normal, with consequent gains in
performance. The special files mostly contain the files used to hold

directories for the client operating systems. Indices are always
special, the choice being made by the file server rather than by the
client. The reason for this is that indices are used in storage

control, as described in the previous chapter, and an error during an
index update must not cause any objects to Dbecome detached from the
root index.

Tn summary the complete file server interface can now be presented.
The type UID specifies a value which is either a PUID or a TUID.

3.8.1 File Operations

create file (UID index, INT entry, INT size,
INT uninit, BOOL special) PUID

read file (UID file, INT start, INT length) DATA
write file (UID file, INT start, INT length, DATA to write)

read file size (UID file) INT
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change file size (UID file, INT new size)

3.8.2 Index Operations

create index (UID index, INT entry, INT size) PUID
retrieve (UID index, INT entry) UID

Aelete (UID index, INT entry)

retain (UID index, INT entry, PUID object)

read index size (UID index) INT

change index size (UID index, INT new size)

3,8.3 Transaction Operations

open (PUID object, BOOL for writing) TUID
ensure (TUID object, BOOL commit)

close (TUID object, BOOL commit)
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Chapter 4

Implementation Issues

The similarity of files and indices suggests that both can be
implemented out of a common wunderlying storage abstraction, We
require this abstraction to represent both small and large files
efficiently, to provide random access to words in files and UIDs in
indices, and to allow large tracts of material to be read and written
sequentially at high speed. It must also be designed so that updates
can be done atomically or not, since all indices but only some files
require atomic updates.

This storage abstraction obviously incorporates the essential
implementation decisions of the file server, and in this chapter, the
reasons for the structure chosen, and their consequences, will be
discussed. The central topic will be the atomic transaction
mechanism, and the representation of information in such a way as to
guarantee its preservation over interruptions.

In the file server the abstraction provided at this internal
interface is called an object. An object 1s simply a storage
container consisting of a sequence of blocks of fixed size whose
contents are uninterpreted. Each object has a number of attributes.
These include a use count of index references to the object, the
maximum accessible block number, and the maximum word offset
accessible within the final block. Also stored with each object is
the uninitialised data value which is returned when words which have
never been written are read. For objects used as files, this value is
set by the client at the time of creation of the file. For indices,
it is always set by the index manager.

4,1 Representation of Objects

Each object is represented on disc as a tree of disc blocks. The
tree can have one, two or three levels depending on the size of the
object. When first created, every object consists of a single disc
block as shown in fig 4.1, This block contains the object's
attributes in a few reserved words at the beginning, and the remainder
is cleared to the uninitialised store value. This is done even for

objects created with a large maximum size.
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Fig 4.1 One-level Objects

As the object is used, transactions may attempt to write beyond the
1imit of allocation, but within the maximum size. As soon as this
happens, the data part of the root block is copied to a new disc
block, and the root block is used to hold an array of disc addresses
pointing to the leaves of what is now a two-level tree. The attribute
information remains in the first words of the root block. From this
point onwards, update operations may cause additional blocks to be
allocated as they are written, and their disc addresses will be
inserted in the corresponding entries of the root block. This change
to the tree structure is shown in figure 4,2,

uIb uid &=
DATA

DATA 2

Fig 4.2 One-~ to Two-level Object Change

Again, at any time it is possible for a transaction to attempt to
write to a block whose number is greater than the number of slots in
the root block but less than the object's maximum block number. To
handle this, an automatic switch is made from a two- to a three-level
tree. The disc addresses in the root block are again copied to a new
disc block and the root block is changed to have its first entry point
to this new block, and all other entries empty. Accesses to data
blocks of the tree must now be made through two levels of map blocks,
as shown in figure 4.3,




uID uID

/ /

Fig 4.3 Two- to Three-level Object Change

This representation of objects is based on a number of
considerations, A file server underlying a general purpose operatingl
system such as that of the CAP will be required to maintain a
substantial number of objects in existence, many of which are very
small. An examination of the CAP filing system's original
implementation on a local disc showed that of the 2000 or so objects
maintained, 33% occupied less than 1024 bytes and 27% occupied less
than 512 bytes. Thus, the unit of allocation was required to be
small, on the order of the disc block rather than the track or the
cylinder. The actual implementation uses two sizes of disc blocks,
Leaf blocks of the tree are 2048 bytes in size, and the upper-level
map blocks of the tree are 484 bytes long. At the time of creation,
an object is always allocated a small block as the root of the object
tree. Small and large blocks are scattered uniformly over the disc
surface, in the ratio of about one small block to two large blocks.
The intention of this strategy is to use large blocks only for the
data of two- or three-level objects, and to be able to use a large
block if a request for a small block cannot be satisfied. The maximum
possible file size with this organisation is about 28Mbytes.

When creating a file, it is often not known how much space will be
needed. A compiler, for instance, will have no idea at the start of a
compilation of the size needed to hold the translated program. Any
estimates of size given at the time of creation of a file should
probably not cause allocation of the requested amount of space since
in many cases this estimate may be wrong by orders of magnhitude.
Instead, it is much more economical in space to allocate blocks to a
file only as they are needed. Until a block of an object is actually

4.1 | - 50 -




written by a client, it can be marked not present in the object tree.
Any attempt to read the block will simply return a block's worth of
the uninitialised store value. A tree structure is appropriate here
because blocks can be allocated one by one to allow sparse files to'be
represented éfficiently. Allocating block n does not require
allocating all blocks less than n, but only the map blocks on the path
from the root of the tree. Furthermore, a tree structure allows the
.apid random and sequential access required by file transfers.

The decision to allow virtual sizes which do not reflect actual
allocations is undoubtedly convenient for clients, but does have
per formance implications. During a file write it will be necessary to
allocate blocks as data arrive from the client. The details of
accepting a transfer of indefinite length at high speed as described
in section 5.11 already require enough bandwidth that the additional
search for free blocks may reduce the transfer rate. This effect 1is
largely governed by the distribution of free blocks over the disc

surface.

4.2 Resolution of UIDs

The set of objects maintained by the file server consists of a
rather large number of object trees, and the sheer size of this number
makes resolution of unique identifiers a potential problem. The file
server must maintain the binding between each UID and its tree
representation, and it must be able to find the tree quickly given its
unique identifier.

Perhaps the obvious way to resolve a UID is to look it up in a
large table, much as was done with Hydra capabilities (Wulf7 1. The
table could keep the disc address of the rcot of the object tree and
perhaps any other pertinent information such as its size and index use
count .

There are two problems with this method. With thousands of entries
the table will be very large and certainly too large to keep entirely
in fast store. A cache can be used to arrange that some parts of the
table can be kept in fast store while most of it remains on disc, but
with largely random UIDs, there seems little chance of obtaining the
locality of reference which would make this arrangement acceptably
efficient. It would be likely to become a performance bottleneck.

The second problem with this central table is its vital importance
to the functioning of the file server. Any damage to the table would
in all likelihood cause the loss of a number of objects. To avoid
this clearly unacceptable possibility, the table must be stored as a
special file whose existence is known only to the file server. Object
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creation is therefore likely to become expensive, with atomic updates
required to both the UID table and an index.

The advantages of a central table are twofold. Firstly, it
collects all UIDs together in a single structure so that a garbage
collector, for example, could discover its universe of objects very
easily. Secondly, it allows objects to be moved. Because each access
to an object passes through the UID table, an object can be moved by
creating a new copy elsewhere and then changing the UID table binding
for it.

In a file server, the usefulness of moving objects 1is not
convincing. Janson [Janson76] describes a mechanism in Multics for
moving a file to a new disc pack when its current pack becomes full,
An equally consistent approach is to treat this as an error, and to
abort a transaction which detects a full pack. Or, if objects are
moved only rarely, it would be acceptable to leave a "forwarding
address" at the original location.

If the inability to move objects is accepted, then a very simple
approach can be taken to the resolution of UIDs. A UID can consist of
a disc address concatenated with a random number, To resolve a UID,
it is only necessary to read the block at the disc address and to
check that it is the root of an object tree. If the object's UID is
also stored in the root block of every object, then ghe UID supplied
by the client can be validated by a simple comparison . In the large
majority of cases where the UIDs match, the object is directly
accessible through its root block. UIDs containing embedded disc
addresses are similar to names with "hints" [Lampson7i]; every name
has an asscociated address where the object is likely to be found. The
difference is that a file server object is to be found at the address
given in its UID or not at all, and thus there need be no other method
for resolving the UID if the "hint" fails. Figure 4.4 shows the
format of file server unique identifiers.

#
The UID is actually stored, and validated on each access, in a

cylinder map introduced in the next section.
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Fig 4.4 Unique Identifiers

4,3 Consistency of Disc Information

The set of object trees is the structure used by the file server to
find information quickly. Another structure must be maintained to
describe the pool of free blocks not part of any object. This
allocation table, often implemented as a bit map indexed by block
address, indicates whether each block is in wuse or free for
allocation. Allocating a block involves searching the allocation
table for the nearest free block to some optimal position, marking the
block in use, and inserting its address in an object tree.
Deallocating a block is done by erasing an entry in an object tree and
marking the block free in the allocation table.

A consistency problem arises immediately when considering
allocating and deallocating disc blocks in the manner just described.
The difficulty is caused by the fact that the allocation table is
redundant, and is needed only for efficiency of allocation. If there
were no allocation table it would be possible - though so inefficient
as to be impractical - to choose a block by picking a candidate and
then scanning all the object trees to find out if it already belonged
to some object. The allocation table exists only to describe disc
blocks which aré not part of any object tree, and must at all times
indicate that only blocks in no object tree are free for allocation.

In the normal course of events, the object trees and the allocation
table will be kept in step as blocks are used and freed. However,
interruptions can occur during the allocation or dealleocation
sequénces, in which case the object trees and the allocation table
will disagree about the allocation state of a block. Two types of
disagreement are possible. A block can appear in no object map but be
marked in use, or a block can appear in an object map but still be
marked free. If allocation and deallocation are performed as
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described above, only errors of the first kind - clearly less serious
than those of the second - can occur. Blocks will occasionally fall
out of use because they are erroneously marked as belonging to some
object, but no block will be alleocated twice.

There are two fundamental approaches to ensuring that these
structures stay synchronised. Either a mechanism must be provided to
update both atomically or one must be designated the authority and the
second redundant to be corrected by periodic recomputation,

If one of the structures is assumed te be authoritative, and one
redundant, then an economical solution is possible, From time to
time, the allocation table would be recomputed by enumerating all
known object maps and marking blocks in them as used. This could be
done either when convenient, if the accumulated errors merely caused
free blocks to be considered in use, or whenever an unsafe state might
have been produced as a result of a interruption.

Many operating systems use this technique to ensure consistency by
recomputing the allocation tables on each restart. The complete scan
of all known objects which is necessary also gives added assurances
about the correctness of the structures maintained.

An assumption in the above discussion has been that changes to an
object tree or to an allocation table are atomic, and that
interruptions in the allocation and deallocation sequences will occur
only between these changes. 1In reality, all object trees and the
allocation tables will be kept on disc because there will be so much
structural information that it cannot all be held in main store.
Changing one of these structures is done by reading the appropriate
disc block into volatile memory, modifying it there and writing it
back to disc. Since an interruption causes the loss of the contents
of volatile memory, the essential problem of consistency is to
maintain the disc copies of the structures in step. There is a
particularly dangerous class of interruptions, therefore, which occur
while a disc block is in the process of being written to disc. These
interruptions can cause the block to become unreadable so that it
contains neither its old contents nor its intended new contents. 1In
the present situation, if an interruption were to occur while writing
out one of the map blocks in the object tree, the most likely result
would be the loss of all the blocks pointed at by the block, and the
partial or complete destruction of the object to which it belonged.

If the contents of a disc block must not be lost even given a power
failure during a transfer to it, then there are severe restrictions
which must be obeyed when the block is to be written. A transfer can
only be permitted if either the block's old contents or its intended
contents can be reconstructed in the event of an error. In other
words, the block must be redundant. Since we assume the loss of all
volatile store in an interruption, the block must be recomputable as a
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function only of the contents of other disc blocks,

This restriction is of necessity expensive to observe. Having
written a disc block whose old contents were reconstructible, it is
necessary to make the new contents reconstructible before allowing a
further update to the block. This will require at least one more disc
transfer since all disc blocks must be redundant in terms only of
other blocks. Thus maintaining the redundancy of disc blocks will
require at least a doubling of the number of disc transfers per formed ,
If this is done for every disec block of information, the potential
bandwidth of the file server will be halved. This is a heavy price to
pay for the ability to recover from a relatively rare form of
interruption. In the Cambridge file server this expense is reduced by
defining three conditions under which disc blocks may be written.

1) Data blocks of normal objects have no precautions taken to avoid
their corruption. They can be written without regard to the
possibility of reconstruction in the event of an interruption.

2) Any block which will be returned to the free pool after an
interruption can be written without special precautions.

3) All other blocks may be written only if their old contents or
their intended contents can be recalculated from the current
contents of other disc blocks.

These three rules decide how updates are made to data blocks of
objects, to the pointer blocks of object trees, and to the blocks of
the allocation table,

Data block updates are governed by whether the object was created
as special or normal. For normal objects, data blocks can be written
in place since the client has explicitly defined that no precautions
need be taken against loss of the contents of the object. For special
objects, the risk of losing a data block cannot be accepted. Data
blocks are therefore changed by writing the new contents to a free
block, and then replacing the old block's address in the object tree
with the address of the new block. Writing the contents of a
previously unoccupied tree position in both normal and special objects
is also done in this way; a free block is chosen, the new contents
are written to it, and only then is its address inserted into the
object tree. In both the above cases, a failure when writing the new
block will cause it to be returned to the free pool on recovery.

There remains the method for changing map blocks in an object tree
and the blocks of the allocation table. As presented to this point,
there is only partial redundancy between these structures. The bit
map can be recomputed since it describes all blocks not contained in
any object tree. According to the third condition given above, it is
thus safe to allow blocks of the bit map to be written in place.
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The object map blocks, however, are not redundant, because there is
no structure which could be used to recompute them. Serious errors
are possible whenever a map block must be be changed to hold a new
disc address.

One possible sclution to this problem is used in the Juniper file
server [Sturgis80] and was described in section 3.3. Blocks which
must always be redundant can be allocated two permanent copies which
are always written in the same order. The second copy is only written
if the first one is known to have been written successfully. Since an
interruption can corrupt at most one disc bleock, there is always at
least one readable copy in each block pair,

An alternative mechanism is used in the Cambridge file server. The
allocation table contains not just a single bit per entry indicating
whether the block is in use or not, but a description of the current
use of the block. For each block in use, the entry contains the UID
of the object to which it belongs. It also identifies the position in
the tree occupied by the block by a pair of numbers, the level number
within the tree and the sequence number within the level. As a result
of this increase in the amount of information contained in the
allocation table, the table is subdivided inte one table per
cylinder for each disc. These Cylinder maps are indexed by sector
number and define the use of each block on the cylinder. Figure 4.5
shows the format of a cylindgf map. Each cylinder map fits into a
single disc block of 256 words .,

%
Figure 4.5 shows each cylinder map entry containing the UID of the

owner object. In practice, space is saved by storing only half the
UID in each entry. Root block entries contain the random half of the
UID, and entries for other blocks contain only the disc address of the
root block. This is legically equivalent te storing the complete UID,
because given a disc address it is possible to find the UID of its
owner, perhaps by consulting two cylinder map entries. This
optimisation reduces entries to four words each, but is ignored here
in the interest of simplicity.
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Fig 4.5 Cylinder Map Format

Because of the added information in the cylinder maps, all object
map blocks in the object trees are redundant. If an object map block
is corrupted during a disc transfer, then by scanning the cylinder
maps, it is possible to find all blocks which were its children in the
tree and thus to reconstruct the disc addresses which it held. As
previously, a c¢ylinder map entry can also be reconstructed by
beginning at the root index, scanning all indices to find all valid
objects, and scanning all object trees to enumerate the blocks in use.
Any blocks not visited during the above sequence can be marked free in
the cylinder map. The necessity to be able to find all object trees
in the event of losing a cylinder map is one of the reasons why
indices must be held in special objects.,

A brief comparison with the pair-redundant strategy shows that the
cylinder map form of redundancy 1s more efficient given the tree
structure chosen for objects. In a pair-redundant scheme, it would be
necessary to duplicate only the root block of each object tree.
Changes to all but the root block of an object could be made by
writing to a new block and changing the disc address in the parent.
The root block would be written in place, because its address 1is
embedded in the object's UID, but in two copies to avoid loss by an
interruption during a disc transfer, Thus, each object on a cylinder
would require an extra block for the second copy of the root block,
which is substantially more than the one cylinder map needed in the

scheme proposed here,

4,4 Transaction Sequencing

By introducing an effective duplication of the structure of all
information maintained -~ once in the hierarchy of object trees, and
once in the list of cylinder maps - it is possible to guarantee that
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no interruption, even during a disc transfer, can destroy essential
information. This 1s, however, only a part of what is needed. These
assurances must be used to build a mechanism for making atomic
transactions. A write operation to a special file, for instance, may
modify the contents of tens or hundreds of blocks of the file, and the
changes to these blocks must be synchronised so that all are made or
none are,

The method used by the file server is based on the ideas that a
transaction must create a complete list of intentions to change an
object before it is allowed to make the changes [Sturgis74]. Instead
of having just two states, blocks in the file server can be in one of
four allocation states. In addition to the two conventional states
allocated and deallocated, there are two additional halfway states
known as intending-to-allcocate and intending-to-deallocate. These
intermediate states express an intention to change the alleccation
state of a block if the transaction requesting the change commits. A
block which 1is marked intending-to-allocate has been tentatively
assigned to an object. The cylinder map entry for this block defines
the object, and the position within the tree which the block should
occupy. A block marked intending-to-deallocate is currently part of
an object, but is to be removed from the object and freed if the

transaction succeeds.

In both of these intention states, the decision whether to perform
the intention or not depends on a single bit. The cylinder map entry
for the root block of every object contains a commit bit which is the
authority for deciding whether to perform or to reverse any intentions
which may have accumulatéd on the object.

The steps necessary to perform an atomic update on an object can
now be described. The first step in the sequence is to obtain an
exclusive interlock on the object. This is needed to ensure that any
intentions created on the object are due to a single transaction. In
the general case, a client will have obtained a TUID for the index or
special file, and can now request a sequence of updates to the object.
For a special file, the sequence will consist of file write requests,
but for an index it can be a mixture of delete, retain, create file,
and create index operations. In either case, the file server must
make either all of the updates to the object or none of them,

At the object level, all these updates will have been translated.
into requests to change the contents of one or more blocks of the
object. 1Index operations always change only one block, but a file
write may extend over many consecutive blocks of the object. For each
block changed, however, the same procedure is followed. The block
which currently occupies the block position is read into a buffer if
necessary and its contents are changed., When it is to be written out,
however, a free block is chesen and marked intending~to-allocate. The
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object UID and the tree position intended for the new block are
inserted in its cylinder map entry. The new data are then written to
the new block. The old block, if there was one in this block
position, is mar ked intending-to-~deallocate in its cylinder map entry,
and the object tree is changed to point to the new block.

At the end of this procedure, there are two blocks, each claiming
to occupy the same tree position in the same object. One is marked
intending~to-allocate, and the other intending-to-deallocate.

This is repeated for every block to be updated by the transaction.
It may happen, of course, that twoe or more operations in the
transaction update the same block of the object. In this case, the
first operation will create a pair of block intentions as described
above, but all further operations will write in place to the new copy
of the block. This is clearly acceptable, since any interruption
causing the corruption of this bloeck, such as a power failure, will
cause the entire transaction to fail and the original block to be
reinstated in that block position.

The essential property of this mechanism is that at all times, two
states of the object are maintained. One is the current state as
described by the object tree. Whenever a leaf in the tree 1is
replaced, the corresponding pointer block in the object is updated to
point at it. The other state maintained is the original state of the
object. This is described by'the set of blocks marked intending-to-
deallocate in their cylinder map entries., At any time it is possible
to reinstate the original blocks in their tree positions,

To commit the transaction when all updates have been successfully
performed, the commit bit for the object (held in the cylinder map
entry for the root of the tree) is set. Since the decision whether or
not te perform all intentions on the object depends solely on the
value of this bit, setting the bit changes from a state in which all
updates are tentative to one in which all updates will be done before
a new interlock is allowed on the object.

Once the commit bit is set, the updates will ultimately be
performed, Before the object is ready for a new update, however, all
intentions on it must be removed. This is done by altering the
cylinder maps which were earlier marked with tentative changes. Any
block belonging to the object marked intending-to-allocate is marked
allocated. Any block marked intending-to-deallocate is marked
deallocated, Only when all intentions have been performed can the
commit bit be reset to indicate that all intentions are to be
reversed.

There remains the problem of ensuring that interruptions are
correctly dealt with. For the purpose of the present discussion
interruptions can be divided into two classes. Some, such as
communications errors or crashes in client computers, will result in
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the file server being unable to complete a transaction but still
having the entire description of that transaction in its volatile
memory, This state information consists of the UID of the object
being updated and a list of the blocks on which intentions have been
created, The second type of interruption causes the loss of the file
server's volatile memory, and of all knowledge of transactions in
progress. These interruptions are more difficult to deal with, since
only the contents of the discs are available to determine the state at
the time of the interruption.

Errors of the first kind are straightforward to deal with. If the
list of blocks on which intentions have been created is not lost, then
the states of these blocks can be put back to their values before the
transaction started. Blocks marked intending-to-allocate are changed
to deallecated, and those marked intending-to-deallocate are marked
allocated. These intentions alsc describe precisely the changes which
must be made to the object tree to restore its pointers to their
original state. For each block marked intending-to-allocate, it is
necessary to remove its disc address from the object tree,.
Correspondingly, for each block marked intending-to-deallocate, its
disc address must be written back into the object tree at the position
indicated by its cylinder map entry.

Before discussing how recovery is done for interruptions of the
second type which cause loss of the contents of volatile memory, it is
necessary to describe how the atomic update mechanism makes changes to
the disc representatien of an object. At every step the restart
algorithm must have enough information to perform recovery, even
though a disc block may have been corrupted at the time of the
interruption. '

The actual sequence of operations performed during an atomic
transaction is as follows:

1) After an interlock has been obtained, the root of the object
tree is read into a buffer.

2) For each block to be updated, the cylinder map for the old block
is read into a buffer, and the old block is marked intending-
to-deallocate. A free block is chosen in this cylinder map if
possible, or in another one nearby, and its cylinder map entry
is marked intending-to-allocate. The new data are written to
the new block, and the new block's disc address is written into
the appropriate object map block held in a buffer.

3) When the transaction is to be committed, all the cylinder maps
modified in step 2 are written to disc.

4) A1l modified map blocks in the object tree are written back to
disc.

5) The commit bit is set in the cylinder map entry of the root of
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the object tree, and this cylinder map is written to disec.

6) A reply is sent to the client indicating that the transaction
has completed successfully.

7) The cylinder map entries for all blocks w1th intentions .are
changed. Blocks marked intending-to-allocate are changed to
allocated, and blocks marked intending-to-deallocate are changed
to deallocated. The cylinder maps, which are the same as those
modified in step 2, are again written back to disc.

8) The object's commit bit is reset and the cylinder map which
containg it is written back to disc.

9) The interlock on the object is released.

In this sequence, there are a number of important orderings. 1In
step 3, when the cylinder maps are written, the object tree is in its
initial state on disc. If a cylinder map is lost, reconstruction is
possible by examining all object trees for blocks residing on that
cylinder, The same is true in steps 5, 7, and 8 when the object tree
is now in its correct final state. Conversely, in step 4, when the
object map blocks are written to disc, the cylinder maps are known to
reflect the new state of the object. Thus they too are redundant when
written because by reading all cylinder maps the tree structure of the
object can be rebuilt. The result of this ordering of the disc writes
is that an object map block is only written when the set of cylinder
maps is known to be correct. Similarly, a cylinder map is only
written when the set of object maps is known to be correct. This
mutual redundancy is used to guarantee that when writing structural
information, it is always possible to reconstruct either the state
before the transfer, or the the intended state after the transfer in
case of an interruption.

A final observation on the ordering of the disc transfers is that
it is safe at step 6 to reply to the client indicating that a
transaction has completed. The successful writing of the commit bit
to disc at step 5 guarantees that even though any number of
interruptions may occur, the remaining steps of the sequence will have
been performed by the time a new interlock can be obtained on the
object.

We can now return to the method for recovering from errors which
cause the loss of volatile memory. The job of the restart program is
to deal with any unfinished transacticons. A transaction which had not
yet set its commit bit should have all its intentions reversed. One
which had set the commit bit but had not finished clearing up
intentions should have all its intentions performed.

To find out if any objects were being updated at the time of the
interruption, the restart algorithm makes a scan of all cylinder maps,
examining the allocation state of every block. This is a relatively
quick process which involves reading one block from each cylinder of
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each disc. In the current implementation with two 80 Mbyte drives,
this scan takes about 30 seconds.

Whenever a block is found in one of the intention states, an entry
is made on a list of blocks belonging to the owner object. At the end
of the scan, therefore, it is known which objects were being updated
at the time of the interruption, and which blocks in each object have
intentions on them,

A1l that remains to be done is to complete each transaction
according to the value of the commit bit. If the bit is off, then the
transaction was interrupted before step 5 in the update sequence. In
this case the object tree must be forced inte agreement with the
cylinder maps, the intentions on the object should be removed and the
cylinder maps written to disec. If the commit bit was set, however,
then the restart algorithm continues the update sequence from step 7;
the intentions are performed in the cylinder maps which are then
written to dise, and the object commit bit is reset and written to
disc, The client, however, may be in doubt as to the state of the
object, since the interruption could have occurred immediately after
writing the commit bit in step 5. Since the identity of the caller is
part of the volatile information which is lost in an interruption, the
reply cannot be sent again on restart. The object will be in one of
only two possible states, however.

As mentioned previously, there is a chance that a disc block was
corrupted at the time of the interruption, and the restart algorithm
must clearly cope with this possibility. During the scan of the
cylinder maps, therefore, if any of them are found to be unreadable
the normal restart algorithm is temporarily abandoned in favour of
reconstructing the cylinder map. To do this, the UID of the root
index is retrieved from a fixed location on disc inaccessible to
clients. From the root index, and by reading only map and data blocks
for indices, every valid UID can be found, and so every object tree.
These trees are then enumerated to find those which had blocks on the
damaged cylinder, and the map entries in it are reconstructed as they
are encountered. Commit bits for root blocks can be turned off in
reconstructed entries, since by the commit algorithm presented
earlier, the object tree is in a correct state. Any intentions on
such objects should be dealt with by examining the current state of
the object tree, however. Once the cylinder map has been rebuilt, the
standard restart algorithm can be restarted.

Similarly, it 1is peossible to find a corrupt object map when
attempting to force an object tree into agreement with the cylinder
maps. A block corruption in step 6 will cause this to happen. Again,
the standard restart sequence is abandoned in favour of reconstructing
the broken object map. This time the cylinder maps are known to be
correct - they have already been scanned in the initial restart
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sequence - and by reading them again the object tree can be rebuilt,

4,5 The Cost of Atomic Transactions

For the purposes of estimating the expense of the atomic
transaction mechanism, it is possible to compare the steps needed for
two updates differing only in that one is to a normal object and one
to a special object. The extra disc transfers involved for the
special object will give a measure of the cost of the atomic update
mechanism,

In both cases, performing the actual data transfers will require a
certain number of disc transfers, One will be needed to write the new
data of every block to be changed and perhaps one or two might be
needed in the case of a three-level object to access the second-level
map blocks. Over and above this, however, the atomic update will
require additional transfers. If the Dblocks to be updated are
distributed over n cylinders, these cylinder maps must be read so that
the old blocks can be marked intending-to-deallocate. Before the new
data are written, new blocks must be chosen. These will be chosen if
possible on the n cylinders whose maps are already accessible, but if
there are not enough free blocks on them, a further n' cylinder maps
must be fetched.

Assume that these blocks are pointed at by m object maps. (Only
for three-level objects will m be greater than one.) When the
transaction is to be committed, the n+n' cylinder maps which have been
modified must be written to disec. Then the m altered object maps must
be written followed by the cylinder map with the object's commit bit.
At this point, the reply can be sent to the client., To finish off the
transaction, the n+n' cylinder maps must be altered and written again,
and finally the commit bit must be turned off. The total number of
extra disc transfers is thus n+n' reads and 2(n+n'+1)+m writes of
which 2n+2n'+m+1 are synchronous with the client, and n+n'+1 are
asynchronous.

In practice, these overheads are usually less than they might
appear. To a large extent, the extra reads can be eliminated by
maintaining a cache of cylinder maps in volatile store, and the
remaining transfers will tend to be grouped in a small number of
adjacent cylinders.,

.nother mitigating influence is that the cost of an atomic update
is incremental, depending not on the size of the object, but on the
amount of information to be changed. Experience has shown that most
special files and indices are small, and are stored as one- or two-
level trees. Even wholesale replacement of these objects, such as is
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caused by CAP swapping a special file out of its store, thus affects
only blocks on one or two cylinders.

A typical situation, therefore, is one in which the data blocks of
an object which are to be changed have all been allocated on the same
cylinder. Assuming a moderate disc loading, there will be enough free
blocks on the same cylinder to replace them. Normally, these blocks
will be pointed at by a single map block, which is likely to be the
root of a two-level tree. The overhead in disc transfers in this
typical case, therefore, consists of:

write cylinder map with intentions
write object map

1
1
turn on commit bit 1
perform intentions 1

1

turn off commit bit

5 transfers

This situation 1is so common that it 1is possible to make an
advantageous optimisation. It is very frequently the case that all
blocks inveolved in a transaction reside on the same cylinder as the
root of the object tree. The policy for choosing the cylinder on
which to allocate a new block always favours this 'home' cylinder. In
.this case it is possible to exploit the fact that there is only one
cylinder map involved in the transaction. Since there is no need to
coordinate the state changes between blocks on several cylinders an
optimisation can be made. When such a transaction is to be committed
the sequence performed is:

1) Write the cylinder map containing intentions to disc.

2) Write the changed object map to disec. Step 1 is only taken so
that if this transfer fails, the restart algorithm will find the
broken object map while attempting to remove the intentions.

3) Without changing the value of the commit bit, perform intentions
as 1f it had been set. Write the cylinder map to disc.

Step 3 in this sequence is the equivalent of turning on the commit
bit, performing the intentions, and then turning off the commit bit.
Since there is only one cylinder map involved, these operations can be
condensed into a single disc transfer.

Thus in a large number of cases, the atomic transaction overhead is
three disc transfers, all synchronous with the client,. These
transfers all occur on the same cylinder, and require a total of about
30 milliseconds, The optimised algorithm is still safe, however.
Corrupting the cylinder map in steps 1 or 3 can be recovered from in
the normal way. Losing the object map in step 2 will be noticed on
restart due to the presence of intentions on the object, and the block
can be reconstructed from the cylinder maps as previously described.
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4,6 A Special Case

The mechanism presented in this chapter sclves twe problems. The
first is the need to provide structural redundancy so that recovery
can be successfully performed even if a single disc block is lost.
The second is to make any number of block allocations and
deallocations conditional on the value of a single bit. 1In both cases
this is done by adding redundant information to the allocation bit
maps .

The addition of the intermediate allocation states solves the
consistency problem between the cylinder maps and object maps, because
it becomes possible to distinguish blocks which are in use from those
merely marked in use but in no object tree. Any blocks for which this
is true will be in one of the intention states. There is thus no need
to perform the costly scan of all known objects to verify the
allocation states of all blocks, because a simple linear scan of the
cylinder maps will suffice. In practice, this linear scan will be
orders of magnitude faster than the graph scan and haslthe advantage
of not becoming more expensive as the graph structure grows.

Atomic updates on an object are provided by the ability to make all
the tentative changes to it conditional on the value of a single bit.
In effect this bit can be seen as determining which of two possible
sets of disc addresses should occupy the positions of the object tree.
If the bit is set, then all blocks marked intending-to-allocate should
be inserted in the tree. If it is not set, then the blocks marked
intend ing-to-deallocate should occupy the same slots.

A problem arises when considering one-level objects. These objects
consist of exactly one disc block containing the object attributes and
the data as shown in figure 4.,1. To attempt to update a one-level
object by the same mechanism used for two- and three-level objects,
one would choose a new free block, write the new copy of the object
into it, and set the commit bit in the old copy of the first block.
At this point, the method breaks down: unlike blocks at lower levels
in the tree, there is no single place where a disc address can be
written to indicate the new location of the object. The disc address
of the old block has already been distributed to an unknown number of
clients embedded in the unique identifier of the object. The first
block cannot therefore be moved.

For this reason, one-level objects are treated as a special case by
the file server. If the object is normal, writing occurs in place to
the root block, with attendant risk of corruption. In the case of a
special object, a temporary copy of the root block is created for the
duration of the transaction. The actual sequence performed is:
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1) choose a free block and mark it intending-to-allocate with a
cylinder map entry describing it as the first block of the
object.

2) write the new data to the new block.

3) write the cylinder map for the new block to disc,

4) when the transaction commits, write the new data to the original
root block and

5) mark the new block deallocated and write its cylinder map to
disc again.

Five disc transfers are required, the same number as for an update to
a single block of a two- or three-level object.

This sequence requires the cooperation of the restart algorithm. A
crash before step 3 will cause the attempt to update to be ignored,
since the new block will be marked deallocated on disc., A crash after
step 3 but before step 5 is recognised as such because the only time
an intention to allocate can occur on a root block is during this
sequence. (Creation of an object causes the first block to change
from deallocated to allocated without passing through the intending-
to-allocate state.) The restart algorithm continues from step 4 in
this case,

This sequence is alse safe against block loss. The loss of a
cylinder map is handled in the normal way. If the new data are lost
in step 2, this fact will be ignored by the restart algorithm since
the new block will still be marked deallocated on disc., If the root
block is lost in step 4, the restart algorithm will correct it by
writing the new data again.
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Chapter 5

Structure of the File Server

In the previous chapter a design for the structure of the
information maintained by the file server was presented. This is one
" among many possible designs, chosen on the grounds of efficient space
utilisation and the possibility of inexpensive atomic transactions.
However, the disc structure chosen retains sufficient information at
all times to be proof against arbitrary interruptions.

This chapter describes the structure of the file server program.
It is to a large degree a description of how the interface defined in
chapters two and three and the algorithms defined in chapter four can
be made to work on a practical basis. Sections 5.1 and 5.2 describe
the hardware environment, and section 5.3 describes a methodology for
constructing the file server as a set of modules. Section 5.4 gives a
rapid overview of the program's operation as a set of cooperating
module instances. The remainder of the chapter, from section 5.7
onwards, is a more detailed description on a module-by-module basis,
and may be omitted by readers not interested in the finer points of
the structure.

The hardware used by the file server consists of a 16-bit
minicomputer with 64K words of store and three attached peripherals.
The disc controller provides block-at-a-time access to two 80Mbyte
removable discs. Character-at-a-time access 1is provided to a
teletype. The third peripheral connection is to the Cambridge ring
via a direct memory access mechanism,

5.1 The Cambridge Ring

Wilkes [Wilkes79al describes the operation of the Cambridge ring,
a high-speed 1local area network, Each attachment to the ring
comprises two units, the repeater and the station. Repeaters manage
the analogue propagation of signals in the ring, each one receiving
from its upstream neighbour and transmitting the regenerated and
possibly modified sighal to its downstream neighbour. Transmission in
the ring is unidirectional, since each repeater receives from only one
other, as opposed to bidirectional as in Ethernets [Metcalfe75,
Shoch80]., A full discussion of design alternatives for local area




networks is given in Hopper78.

In the ring, a fixed number of fixed-size slots are constantly
circulating., Each slot is either empty, or contains a single ring
packet, as determined by a full/empty bit at the start of the slot. A
ring packet contains a bit used by a distinguished monitor station to
detect lost packets, some addressing information which identifies both
the source and the intended recipient of the packet, and a small
number of data bytes, two in the present system. The packet is
terminated by two hardware response bits, whose use 1s described
below, and a parity bit used for error detection.

111 8 8 8 8 111
DESTINATION | SOURCE DATA DATA
\\ /e
e
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\ \mNITUR PASSED RESPONSE BITS |
/

FULL OR EMPTY PARITY

START OF PACKET=1

Fig 5.1 Ring Packet Format

The station half of a ring connection is concerned with the digital
interface between the ring and the host connected to it, usually a
computer. Every station is full duplex and provides control signals
for the simultaneous reception and transmission of ring packets. Each
half of the station contains a data register which provides a one-
packet buffer. On the transmit side, this is used to hold the
contents of the next ring packet to be transmitted. On the receive
side, it is used to hold a packet accepted from the ring but not yet
read by the host. There is also a select register in the receiver
interface which is used by the host to select stations from which it
wishes to receive ring packets in a manner to be described below.

To send a packet, the host loads the data to be sent inte the
transmit data register. The station then begins examining the slots
passing by it on the ring. When an empty slot is detected, the
station marks the slot full, loads the destination station number, its
own station number, and the data register contents into the slot, and

finally initialises the response and parity bits.

The packet is then passed from repeater to repeater until it
reaches the one connected to the destination. If the destination
station is ready to receive a packet from this source, the data will
be copied inte the receive data register, and the response bits of the




packet will be marked accepted. As the ring packet returns to the
sending station, it is marked empty and the response bits are passed
back to the host.

Other outcomes are possible, however. If the receiving station is
switched off or no such station exists, the packet will return to its
sender with the response bits still set to ignored. Alternatively,
the receiving station may not be willing to accept a packet from the
sender, This is determined by the select register, whose possible
values are 0, meaning receive from noe one, 1<=n<=254, meaning receive
from station n only, and 255, meaning accept from anyone. If the
destination is unwilling to receive from this source, the packet 1is
marked unselected as it passes, and the data are not copied to the
receive data register. The final possibility is that the receive
station register setting allows reception from this source, but a
previously accepted packet has not yet been read by its host and is
still blocking the receive data register. In this case, the packet
returns to the sender marked busy.

The response bits provide a low level acknowledgement to the
transmitter. In practice these responses are used to match
transmission speed to reception speed in higher levels of protocol.
In general, a packet returning marked busy is not regarded as a
serious error, and the normal response is to retransmit it immediately
or after some delay. Unselected and ignored packets, however, are
more serious errors which usually cause abandonment of the current
unit of transmission at the next level of protocol.

The ring protocol just described provides for wunidirectional
communication of 16-bit packets between physical machines.
Information is provided for flow control (the response bits) and error
control (a host is informed whether each transmitted packet returns
unchanged) but no actions are defined to deal with abnormal
transmission. A station will indicate the failure of a packet
transmission to the host but will not take any remedial action.

5.2 The Basic Block Protocol

At the software level, most communication takes place between
processes rather than machines. In the ring packet protocol, there is
no way for a receiver to distinguish packets sent by two different
processes in the same ‘transmitting machine, because only the identity
of the transmitting station is included in the ring packet. Thus, the
ring packet protocol implicitly limits the number of conversations
between two machines to one in each direction. Furthermore, the ring
packet protocol provides for the transmission only of 16 bits between
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machines, whereas most inter-process messages require larger units of
communication,

For these reasons, a basic block protocol is defined %o allow
unidirectional transmission of larger messages between processes. The
format of a basic block is shown below:

1 1 _ SIZE+1 1
H|{ SIZE | PORT ‘ DATA CHECKSUM

|

Fig 5.2 Basic Block Format

The first ring packet in a basic block is the header packet. This
contains in its data field a header code H and a 10-bit size field,
This size field determines how many ring packets of data the
transmitter wishes to send. The second packet contains routing
information in the form of a port number. The port number is used by
the receiving machine to direct the basic block contents to a
particular process within it. Following the port number are size+1
data packets which contain the message to be transmitted. Since the
size field is 10 bits long, there can be from 1 to 1024 ring packets
of data, so that the basic block protocol allows transmission of up to
2048 bytes of data at a time. Longer communications can of course be
built up out of sequences of basic blocks at higher 1levels of
protocol .,

The final ring packet of a basic block contains a checksum and is
used to verify correct reception, Depending on the particular value
of the header code H, this packet contains either zero or the
arithmetic sum with end around carries of all preceding packets in the
basic block. The purpose of +the checksum packet is to detect
transmission errors and also synchronisation errors in which the
receiver takes a random ring packet as the start of a basic block.

The two problems which a protocol must solve are error control and
flow control. Error control consists of verifying that all data were
received as transmitted. All communication errors must be detected,
and possibly corrected, with acceptable probability. Flow control
involves ensuring that at all times the transmitter only sends as much
data as the receiver is prepared to accept.

Error control can be handled in a relatively relaxed manner due to
the inherent reliability of the Cambridge rin%T Since the ring error
rate is on the order of one bit in 5 ¥ 10 ', the most economical




method of performing error control is for the receiver to acknowledge
the correct reception of an entire basic block sequence rather than
acknowledging each block individually. For example, in transfers of
10" bits, it is better to allow for retransmission ‘of the entire
megabit once in 5 ¥ 10° attempts than to double the number of blocks
involved in each transmission by using explicit per-=block
acknowledgements,

Flow control cannot be treated so simply, however. At the time of
ecach basic block transmission the receiver must have sufficient buffer
space waiting; if not, the block will be ignored. As in the case of
errors, the loss of a basic block for this reason could be accepted if
it were a rare event. Handling flow control in this way implies that
the receiver must always be able to accept basic blocks more quickly
than any transmitter can send them. This will not always be the case
in file transfers, During writes to the file server, there are
occasions when the scattering of a particular file over the disc
surface, or the need to allocate blocks to the file on the fly will
not allow the file server to accept large transfers at full ring
speed. Conversely, particularly slow clients may not be able to
receive at the file server transmission rate. Thus, some form of
flow control is necessary.

Fortunately, the ring packet response bits make flow control very
cheap to implement at the basic block level. Normally, a station
willing to receive basic blocks from a number of potential
transmitters will have its select register set to 255, the value
meaning "anyone", On receiving a ring packet which appears to be a
valid basic block header, the host will then alter the select register
S0 that*only ring packets arriving from that particular source are
accepted . The next packet to arrive will be the route packet which
defines the process to which this basic block is directed. At this
point the receiver has all the information needed to decide whether or
not to accept the basic block; some process must previously have
expressed willingness to receive a basic block on this port number,
and must have provided sufficient buffer space to hold the basic block
which 1is now arriving,. During the time necessary to make this
decision, the transmitter will be seeing busy responses to the third
ring packet of the block, and will under normal circumstances be
repeatedly attempting to send it. The receiver can now do one of two
things. If an appropriate buffer for the basic block has been found,
the data packets can be read into it. The transmitter will see
successive packets of +the Dbasic block being accepted Dby the
#

A very fast host could leave its station register set to "anyone"
and select the buffer in which to write the packet using the source
station number. This has not been done in practice.
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destination. Alternatively, the receiver can set its select register
to zero for a short time. If the transmitter attempts to send his
third ring packet during this time, it will return marked unselected;
this is conventionally considered a protocol error which causes the
entire basic block transmission to be abandoned and restarted. Thus,
a slow receiver can indicate that a buffer is not yet ready by
temporarily refusing to receive any ring packets at all. After this
short interval, it would again set the station select register to
"anyone" and begin to look for the start of a new basic block.

A difficulty with this method of flow control is that it is
impossible to know for how long the station select register should be
set to zero. If this is only done for a short time, then the
transmitter may not attempt to send the third packet during the
interval, and thus will not detect the receiver's unwillingness to
accept the basie block. This "deselection", then, can only be
regarded as a hint from receiver to transmitter, which hopefully will
be taken most of the time.

This objection does not make the method of flow control unworkable,
and it can be overcome by a pragmatic approach to higher levels of
protocol. By using the select register to hold off a transmitter
which is sending too .quickly, a large percentage of the time the
mechanism will work and the transmitter will detect the unselected
response. In rare circumstances - the rarity depending on the length
of time for which the select register is set to zero and the retry
frequency of the transmitter - data will be lost by this means.

In the design of the file transfer protocol, these properties of
the basic block protocol are assumed and exploited. During a file
transfer, no errors detected by the receiver are reported to the
transmitter, and the flow control mechanism described above is used to
keep receiver and transmitter in step. This simple approach to error
and flow control means that during a file read or write operation, a
one-way stream of basic blocks flows from transmitter to receiver
without any explicit acknowledgements flowing in the reverse
direction.

It must be stressed that the simplicity of this protocol is due to
two circumstances., Firstly, the low error rate of the Cambridge ring,
in common with other local networks, means that error acknowledgements
can be made over very large units. This would not be true if a
telephone link were in the transmission path, for example. Secondly,
the design of the ring provides acknowledgements at the hardware level
on which flow control at the basic block level can be built very
cheaply. A more expensive scheme would be needed in networks such as
Ethernets [Metcal fe75] which do not provide low-level
acknowledgements. There 1s, however, a potential problem with this
mechanism if receiver and transmitter are on different rings connected
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by a gateway. If the gateway operates on a store-and-forward basis
for complete basic blocks, there would be no way for it to propagate
an unselected response from the receiver back to the transmitter. If
the receiver in a file transfer through the gateway could not accept
data at the transmitter's rate, then a mecre elaborate - and more
costly - protocol would be needed to perform flow control,

5.3 The Programming Environment

The file server is written in BCPL [Richards69], and runs as a set
of asynchronous tasks under the kernel of the TRIPOS operating system
[Richards79]. Since the program structure of the file server is
determined to a certain extent by the characteristics of both the
language and the operating system, the important features of these
will be described here,

BCPL is a block structured language of the Algol family with two
major simplifications. Firstly, the language contains precisely one
data type, which is identified with a unit of addressing of the
underlying machine. Integers, characters and Boolean values can all
be stored without restriction in a BCPL variable, whose interpretation
is left completely to the programmer. So too can addresses, whose
values are unrestricted. The BCPL programmer is free to assign
labels, procedures or the values of arbitrary expressions as values of
variables, a powerful but dangerous ability.

The second major simplification of BCPL over other Algol-like
languages is in the scope of variables. In any procedure activation,
only certain variables are accessible; the parameters of the
procedure, the local variables of the procedure maintained op the
stack, and the global variables accessible to all procedures . A
procedure in BCPL cannot refer to variables declared in textually
enclosing blocks, contrary to the normal scope rules of block
structured languages. The global variables, however, correspond to
the variables declared at the outermost level of nesting of a BCPL
program, and for these specially defined variables an exception is
made. All blocks and procedures within the program may refer to
global variables directly,

The set of global variables known to a program are collected
together in the global vector. The definition of a global variable is
a simple matter of associating a textual name with an offset in the
global vector. The programmer must choose the specific offset within
the global vector to be associated with a particular variable. The

#
A fourth category, the static variables, is not of interest here.
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global vector provides not only a mechanism for communication within a
BCPL program, since the textual name of a global variable has the same
value in all parts of the program, but also allows communication with
separately compiled programs and the coperating system. Independently
compiled BCPL programs can communicate only by agreeing on the use of
global vector offsets. Some are reserved for the addresses of
generally useful procedures needed by almost all BCPL programs. Other
global vector offsets must be reserved for communication among the
separately compiled programs. This is the means by which a procedure
defined in one program can be called from a procedure in the other:
the same global vector offset is defined in each program as holding
the address of the procedure. Finally the programs must alse agree on
the global vector offsets which are not to be shared. Only careful
attention to the use of global vector entries can prevent conflict
over the use of an entry, and in a large program, the definition of
the shared and unshared parts of the global vector must be done with

particular care.

5.3.1 The TRIPOS Operating System

The mechanisms outlined in the previous section allow
independently compiled BCPL programs to be combined in a single unit.,
The common global vector provides the communication area between these
programs, Since there 1is a single . procedure inveocation stack
associated with the global vector, there is a single thread of control
through programs connected in this way. This sort of unit naturally
represents a process.

The kernel of the TRIPOS operating system described in RichardsT79
extends this mechanism to allow multiple processes.

The TRIPOS kernel is the coordinator [Wilkes75] of a number of
tasks and devices as shown below. Each of these defines an
asynchronous activity. Devices are low-level peripheral drivers of a
restricted form whereas tasks may run arbitrary BCPL programs.
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Fig 5.3 TRIPOS Kernel, tasks and devices
Each task is a BCPL program with a stack and a global vector as
described above, and executes asynchroncusly with other tasks and

devices. Within each task, the kernel is visible as a number of
procedures at well known offsets in the global vector, %
Communication between tasks is performed by means of messages . A

message is a vector of words of store whose format is shown below.
Like all multiple-word BCPL structures, a message is defined by the

address of its first word.

MESSAGE &=
LINK

ID
FUNCTION
RESULT1
RESULTZ
ARG1

ARGR

Fig 5.4 TRIPOS message format
The link word is used by the kernel to queue messages sent to a
task or device but not yet accepted by it. The id word specifies the
task or device to which the message is to be sent. The remaining
*
The actual word used by the designers is 'packet', which is avoided
here to prevent confusion with the ring terminclogy.
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words in the message are used to define the service requested, and are
not interpreted by the kernel. Conventionally, a function code is
supplied together with any number of arguments, and two result fields
allow information about the operation to be returned to the caller.

Messages are sent by the kernel procedure gmsg, which takes as its
one argument the address of the message to be sent. Normally the task
which executed gmsg will wait for a reply at some later time by
executing reply := taskwait (). This procedure suspends the calling
task until there is at least one message waiting on its input queue.
The first message received is then unlinked from the input queue and
its address is returned as the result of the call of taskwait.

Devices differ from tasks in a number of ways, largely a result of
efficiency considerations. A device also represents an asynchronous
activity, but its code is written in assembly language rather than
BCPL. Devices and tasks communicate by messages, however, in the way
Jjust described.,

5.3.2 Constructing Larger Systems Using the TRIPOS Kernel

The kernel and devices may be thought of as providing a minimal
run-time environment for BCPL programs. They provide the
multiprocessing, store management and simple I/0 primitives which any
large program would need for its implementation. Richards et al.
[Richards79] describe the construction of the upper layers of the
TRIPOS operating system wusing these facilities. TRIPOS was
constructed by adding layers of abstraction in the form of BCPL
programs organised as tasks.

Other systems are of course possible. In this respect, the TRIPOS
kernel and the layers of operating system defined using it have the
advantages of the "open" operating system for the Alte computer
[Lampson79], and of the run-time system of languages such as Mesa
[Mitchell79]. 1In these environments the programmer is free to include
only those elements of the operating/run-time system which are needed
by his program, the rest being excluded with consequent savings in
spaée. In TRIPOS, the tool needed for this purpose is the system
generation program, which constructs a complete store image as a file
in the TRIPOS filing system. The programmer selects the binary
versions of the programs to be used, the number of tasks and devices
required, and the tasks which are to be able to call code segments as
procedures defined in their global vectors. The resulting file, which
is an image of the program at time zero, can then be started by a
bootstrap program which loads the file contents into the machine store
and transfers control to the first instruction.
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This procedure was used for construction of the file server using
elements of TRIPOS. The kernel with its basic services for store and
task management was retained, as were a conscle handler task to
provide a stream input/output interface to a terminal, and a debugging
task used for examination of the program state after an error. The
remainder of the abstractions provided by the TRIPOS operating system

were not used.

5.3.3 Modules

Specifying the structure of a program to the system generation
program is a matter of defining a number of tasks and of defining the
parts of the program which are to be accessible as procedures in each
task., Two pieces of code accessible to the same task can invoke each
other by means of BCPL procedure calls, but must use TRIPOS messages
if they are in different tasks. At execution time, of course, the
communication method to be used must be known, but this level of
detail should not be bound into the design of the program. As argued
in Stroustrup79, the number of instances of a particular piece of code
largely depends on the degree of parallelism desired.

Suppose that some part A of the program needs to call part B to
have a service performed. There are a number of ways in which this
invocation can be done. Firstly, it might be arranged that each task
which can execute module A also has access to module B. 1In this case
A can invoke B as a procedure by calling B's entry point directly, and
there is essentially one instance of B for every instance of A, since
every instance of A might simultaneously be invoking B.

Secondly, B could be isolated within a single task. Each task
running A must invoke B by sending a TRIPOS message to it and waiting
for a reply. Multiple instances of A, therefore, must queue up
waiting for service from the single instance of B. This queueing is
explicitly represented in the chain of messages waiting on the request
queue of B's task.

The third possibility is to have some number of tasks each running
B as its only domain. When a call was to be made, an instance of A
would look for a free instance of B to invoke using the message
mechanism. There is clearly no point in having more instances of B
than of A, but any lesser number can be chosen. The case of having
the same number of B's as A's essentially reduces to the first
alternative, and having one B is precisely the second alternative.

The choice between these alternatives is largely a matter of the
desired dynamic behaviour of the program., The more instances of B
available, the higher the potential concurrency in the system will be.
At the program design level, however, the only fact of interest is
that A requires B to have a service performed. The balance between
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concurrency, store usage, and the differing costs of procedure and
process invocation are not at issue here, and are likely to confuse
the design process.

The extreme position of postponing all decisions as to the number
of instances of a module and its method of invocation until the last
possible moment is not practical, however., In common with other
message-oriented systems [Lauer79], the only mechanism provided for
synchronisation in TRIPOS is the queueing of request messages for a
task. Any module, therefeore, which controls a central data structure
must be implemented as a single task, since there is no way for
multiple instances to synchronise on updates to the structure. This
fact dominates over any considerations of potential parallelism.

In addition, the implementation decision can only be postponed for
procedure-like invocations. A call from module A to module B in which
module A is idle during B's execution can be represented either as a
procedure call within a task or as an inter-task message. If A has
useful work to do while B is active, however, there must be two
threads of control and hence two tasks involved.

The idea that a program can be designed and largely implemented
without consideration of the degree of parallelism involved is a
useful one which must not be carried too far. Thinking of a program
as consisting of a set of abstract object managers [ParnasT2,
LiskovT#4, Jones78] is generally accepted as a useful method for the
decomposition of a program into a set of units of manageable
complexity with well-defined interfaces. The units of design and
implementation can then be mapped onto the wunderlying process
mechanism,

In the file server, the design was approached through the
consistent use of a module formalism. The module is simply a
mechanism for the clear definition of the interface provided by a unit
of the file server which does not oblige a procedure-=like or process-
like invocation.

All arguments passed between modules on a call are in the form of a
TRIPOS messages. The function word which selects the service,
however, is slightly elaborated. It consists of a module number and a
service number within the medule, and wuniquely identifies the
requested service. ‘

Every module in the file server is programmed as a BCPL procedure
in the form shown below.
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LET M.module (msg) = VALOF

$(C LET ep1 (msg) BE
$( external procedure 1 code $)

LET epn (msg) BE
$( external procedure n code $)

LET ip1 (argl, arg2, ...) BE
$( internal procedure 1 $)

LET ipm (argl, arg2, ...) BE
$( internal procedure m $)

re¢ := rc.done

SWITCHON msg ! msg.function & 255 INTO
$( CASE 0: epO (msg); ENDCASE

CASE n: epn (msg): ENDCASE
DEFAULT: rc¢ := rc.wrongfunction
$)
RESULTIS re
$)
Fig 5.5 General Module Structure

This figure shows the structure of a general module M. It is a
procedure with one argument which is the address of the request
message to it, and one result, a return code value which informs the
calling module of the success or failure of the invocation. The
mechanism for passing messages between modules will be described
shortly. When a module is called with a message argument, the request
is performed by selecting the entry peoint required based on the least
significant half of the function code. The value of the global "re"
set by the external and internal procedures is returned as the result
of the module call.

This module structure implements the scope rules for procedures
which are found 1in several object-oriented 1languages [LiskovT7Y,
Mitchell79] but at a small execution-time cost. Only the external
procedures epl to epn are accessible to other modules via the SWITCHON
statement. Procedures internal to M, ipl, ... ipm, cannot be called
by code outside M. Thus the structure of a module clearly indicates
which procedures within it are externally accessible and which are
private to the module.
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A module which needs to call another can do so using the global
variable call.module (All the inter-module call procedures described
in this section reside in a library of services available to all
tasks). Call.module accepts as arguments the TRIPOS message contents
of the request and returns the return code value set by the called
meodule., An example might be

re¢ := call.module (0, O, Discman.write, 0, 0, bfw, da)
which is used to write the contents of a store buffer to disc. In the
call, the first pair of zero arguments are the link and task id words
of a TRIPOS message, and the second pair are the result fields. None
of these values are known by the caller and are thus conventionally
supplied as zeroes. The third argument is the function code. All
function codes are defined as constants in a file accessed during
compilation, This file contains the definitions of all interface
procedures such as Discman.write as a number (module number, entry
number). In this case Discman.write has the value 060116 because
Discman is module number 6 and write is its first entry point.

The procedure call.module is thus supplied with the identity of the
service requested, and the request message has been constructed in the
correct order as a vector of arguments on the BCPL stack. The address
of the message is simply the address of call.module's first argument,
the link word.

To perform the call, two arrays are consulted, each of which is
indexed by module number. The array task defines the task in which
the called module must run. The task entry is one of: zero, in which
case the call may be done directly as a procedure call: n, in which
case the call should be directed to task n: or the address of a
vector containing the numbers of tasks, any of which is prepared to
accept the request. These alternatives correspond directly to the
possible instantiations of a module described above. An entry of zero
allows any number of tasks to be executing the module concurrently.
An entry of n allows only task n to execute the module code. An
address entry defines a number of tasks which may execute the module
code concurrently.

If the module is to be called as a task (because the task array
entry for the module is not zero) then call.module simply writes the
‘appropriate task number into the id word of the message and uses the
kernel primitives gmsg to send the message, and taskwait to await its
return from the called task. The return code will have been written
in result1 by the called module, and is returned as the result of
call.module,

If the module is to be called as a procedure (because the task
array entry for it is zero), then a second array proc is consulted.
This array contains the entry point for each module, and like the task
array is indexed by module number. Using this array, call.module can
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find the procedure to be called - M.module in the preceding figure -
and can enter the module directly. The value returned by the medule
call is also returned as the result of call.module,

From this description it can be seen that call.module implements
synchronous calls between modules. Its purpose is to provide a
uniform interface to both procedure-like invocation and task-like
invocation so that synchronous calls can be expressed in a standard

way.
As suggested previously, however, asynchronous invocation must be
allowed. This is provided by two procedures act.module and

wait.reply. The procedure act.module is used to start an asynchronous
request and faults if it finds that the module is to be called as a
procedure. Wait.reply suspends the caller until the request message
has returned to the calling task. Their use is illustrated Dby the
following equivalent program fragments,

$( LET msg = VEC 6
initialise (msg, 7, 0, 0, M.entryreason, 0, 0, al, a2)
act.module (msg)
rc := wait.reply (msg)

$)
rec := call.module (0, 0, M.entryreason, 0, 0, al, a2)

Fig 5.6 Asynchronous and Synchronous Module Invocation
A file server task is in one of three states when call.module or
act.module sends a message to it:
1) It may be busy and uninterested in the arrival of a new message,
having been interrupted by a higher priority task.
2) It may be blocked in call.module or wait.reply awaiting the
reply to a module invocation of its own.
3) It may be idle, waiting for a new request for service,
In the first case, the TRIPOS kernel notes that the task is busy and
puts the message on a queue of unread messages waiting for the task.
In the second case, call.module or wait.reply will accept the message
but will find that it is not the one awaited. The message will then
the kernel, to avoid looping) and the task will be suspended again.
In the third case the task will be suspended in the lowest procedure
on its stack, the start procedure. The purpose of the start procedure
is to accept request messages, perform a procedure call on the
selected module in the task, and return the message to the calling
task after writing the result into the resultl field. Before blocking
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again, the start procedure examines the request queue to see if any
new requests arrived while the called module was active,

Figure 5.7 shows the module structure of the file server. This is
represented as an invocation graph where the nodes are module names
and an edge from A to B indicates that module A invokes the services
provided by B. Superimposed on this graph is the task structure.
Modules surrounded by ovals are accessible only to the start
procedures of certain tasks. Root, for instance, is accessible to
three tasks for reasons of parallelism, while many other modules such
as Blockman or Storeman control a central data structure and thus are
accessible only to a single task.
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Fig 5.7 File Server Module Invocation Graph

The invocation graph distinguishes the cases of procedure-like and
process~like invocation. Any edge which enters a task oval must use
the message mechanism of the TRIPOS kernel. Any edge which does not
is implemented as a procedure call via call.module. Thus, at the top
of the graph, call.module implements the call of Indexman by Root as a
procedure call, but sends a message when Indexman calls Uecdecr.
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5.3.4 Type Checking

The file server spends much of its time manipulating data
structures such as disc addresses, buffer descriptions and unique
identifiers. These structures will be passed by reference in inter-
module calls and because BCPL is not a strongly typed language, there
is the potential for very obscure errors if these addresses are
incorrect. To counteract this, a dynamic type checking convention is
used at every module interface,

Each object representation which occupies more than one word of
store is represented as a BCPL vector. Conventionally, the first word
in all such vectors is reserved for a tag which uniquely identifies
the type of the object. The type manager for an object writes the
correct tag when the object is created, and as a general rule, every
module entry point procedure explicitly checks the types of 1its
arguments before performing any operations on them. This added amount
of checking at inter-module boundaries has been invaluable in the
debugging of a program of this size, and though it was intended to be
removed eventually, has proved an excellent method for detecting
occasional hardware errors. In the course of experience, most
hardware and software errors have shown up quickly as type violations
in a module call.

The module abstraction and dynamic type checking impose a certain
run-time cost. To estimate these overheads, measurements were made in
which a task woke up at regular intervals and recorded the procedure
in which the next task to run would execute. The figures for the
module invocation procedures are shown in figure 5.8, Each line
represents the number of times that the procedure was found active as
a proportion of all samples in which the processor was not idle.

call . .module 5.9%
act .module 0.7%
wait.reply 0.1%
type 3.1%

Fig 5.8 Time in Procedures as a Fraction of Non-Idle Processor Time

These figures show that the module mechanism accounts for about 7%
and the type checking mechanism for about 3% of the useful processor
cycles.
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5.4 Overview of File Server Operation

The invocation graph in figure 5.7 can be used to give a brief
outline of the activity of the file server. All activity is triggered
by requests arriving on the ring. In the idle state, the three
instances of Command shown in the diagram will be waiting to receive a
basic block on the file server's request port number. When a block
arrives, it is passed by Ringrx to Ringman, which verifies the
checksum and returns Command's message. On being resumed after the
completion of its call.medule, Command decodes the basic block and
issues the corresponding call.module to Root. The instance of Root
which receives this message sequences the operation, and maintains all
the state information about 1its progress. Before acting on the
request, however, Root obtains an interlock on the object by calling
Lockman. It then selects the appropriate Fileman or Indexman function
and issues a call.module. Fileman and Indexman are responsible for
implementing files and indices using object trees provided at the
Objman interface. Fileman's main task is organising rapid file
transfers by overlapping accesses to the object tree with ring
transfers by Ringman. 1Indexman interprets objects as a list of UlDs,
and calls the use count decrementer Ucdecr whenever a UID is erased
from an index.

Both Indexman and Fileman make all disc accesses through Objman,
which provides an interface to objects as a sequence of data blocks.
All operations on object trees are internal to Objman and are not
visible to its callers. While acting on behalf of Fileman and
Indexman, Objman calls the store manager Storeman ¢to obtain and
release buffers containing disc blocks. It also calls the cylinder
map manager Cmapman to alter cylinder map entries, and the intentions
manager Intman to record intentions for this transaction. When
requested to find a free disc block, Cmapman calls the free block
manager Blockman to find a cylinder on which there is free space.

When the Fileman or Indexman call completes, Root decides whether
the request it is dealing with is the last in its transaction. If so,
then Intman is called to commit the transaction. Intman performs all
the steps of the commit sequence described in section 4.4 up to the
setting of the commit Dbit. It then returns, so that Root can
explicitly return Command's request allowing a reply to be sent to the
client. Root then issues a second call of Intman for the asynchronous
cleaning up of intentions which completes the commit sequence, and
returns to the idle state.
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The only module not directly involved in performing a file server
operation is Gei, the garbage collector interface. This is the stub
of an external asynchronous garbage collector. When started up in a
remote machine on the network, the external collector uses Gel to scan
the index structure to find objects not reachable from the root index.
Gei's activity takes place in parallel with normal file server
operations and requires only a minimum of synchronisation with them.

5.5 Command

The Command module drives the activity of the file server. 1In the
idle state, each instance of Command is blocked waiting for the
reception of a basic block on the file server's command port. This
port number is well known, and is the one to which all clients direct
their requests. The command instances indicate their willingness to
accept requests by calling Ringman.receive, supplying a buffer into
which a basic block can be received, a ring address which will select
any block directed to the file server's request port port, and a
timeout value. If the request returns from Ringman with a bad return
code because the timeout expired before an acceptable block arrived,
or because of a checksum error, Command simply resubmits it.

On reception of a basic block on the command port, Ringman will
return the request message to Command, causing its invocation of
call.module to complete. Command performs simple checks to reject
obviously incorrect basic blocks, and then calls Root to perform the
requested service. When this call completes, Command constructs a
reply block to the client which includes the return code from Root,
and calls Ringman.send to transmit the reply to the caller.

In most operations, Command manages all the network communication
with the client, consisting of the single block reception and its
reply. The only exceptions are file reads and writes, during which
Fileman will engage in ring transmissions or receptions of the file
contents, This fact is invisible to Command, which simply receives
and transmits a basic block before and after each file server
operation,

Command provides three important entry points for use by other
modules, Command.stop is called when the operator types "stop" on the
console. This causes Command to refuse new requests, and is used to
stop normal service in an orderly way. Command ,suspend and
Command .resume are entry points used to allow the garbage collector
interface Gei to synchronise with file server activity.
Command ,suspend causes all instances of Command to pause Dbefore
beginning a new operation, and completes when the last instance marks
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itself idle, Command .resume signals that normal activity can

continue.
The invocation graph shows three instances of Command, and also
three of Root. Thus at any time, three independent file server

operations can be in progress, subject to the locking strategies to be
described below. Command and Root are defined as separate tasks
rather than as procedures within the same tasks so that commands can
be generated internally. Under certain circumstances, Lockman, Ucdecr
and Gei generate file server operations, and the machine 1level
interface of Root is needed for these purposes.

5.6 Root

The name of the Root module derives from its function of sequencing
every file server operation through a number of common steps. (In
what follows, it is important to distinguish between a transaction and
its component operations,)

The most important of these common steps are the synchronisation of
different operations on the same object, and verification of the
unique identifier presented by the client. To perform synchronisation
with other transactions, Root calls Lockman.lockuid. Normally, the
request can be satisfied. If the UID supplied was a TUID, then
Lockman has checked that it is valid. If it was a PUID, then Lockman
will return a newly created TUID which represents the interlock. 1In
either case, the address of the transaction's intentions vector is
also returned.

As indicated in the previous chapter, an intention on a disc block
is represented by an intermediate allocation state in its cylinder map
entry, and every transaction which allocates or deallocates disc
blocks accumulates a number of such intentions. The intentions vector
of a transaction is used to record the disc addresses of all blocks on
which intentions have been made and is scanned to perform or remove
all intentions when the transaction finishes.

It would be possible to arrange that the intentions manager Intman
ran as a task, and controlled the central data structure made up of
the intentions vectors. However, a more economical solution was
adopted. Since the intentions accumulated by a transaction are
identified with the interlock set on an object, it is natural for
Lockman to maintain the intentions vectors. Whenever Root calls
Lockman at the start of an operation, Lockman can return the
intentions vector associated with that interlock. The address of the
intentions vector is then put into a global variable in Root's task,
so that it is accessible to Intman. This scheme is efficient without
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violating the module structure, The decision of which intentions
vector to associate with the operation (one for an existing
transaction if a TUID is specified, and a new empty one if a PUID is
specified) can be made at the same time as the checking or creation of
the interlock. Thereafter, Intman can be called directly as a
procedure, since the data structure it manipulates 1s a global
variable in the task in which both it and Root run.

Having obtained an interlock, the Root module must gain access to
the object tree. To do this, Root calls Objman.opencobj supplying the
object's PUID and obtaining in return a buffer window. A buffer
window (bfw), is the universal method of describing ring or disc
buffers, It defines a buffer by a base address and length, and a
window within the buffer by a starting offset and window length. A
bfw is thus a convenient way of describing a piece of a buffered disc
or ring block. It is also an example of a data structure which
carries a type tag to be checked at every module interface.

At this peoint, Root has all the information needed to perform the
operation. The object is directly accessible through the buffered
root block of the object tree, and the correct intentions vector has
been found for the transaction. Root then makes a simple switch on
the function code to execute the specific operation. Fileman or
Indexman is called at this point, depending on the function code
supplied te Root. After these calls have been made, a commcn
termination sequence is executed. If the operation forms part of a
transaction which has not yet completed (because a TUID was supplied,
and the operation is not an ensure or a close), Root simply frees the
buffered root block, returns the request message, and awaits another

request.

If the operation is the last in a transaction, however, then the
transaction must be committed or aborted. For a 1long interlock
(defined by a TUID issued to a client), this decision is made by the
client and passed as an argument of the ensure or close command now
being executed. For a short interlock (defined by the client
supplying a PUID on which an interlock has been set for the duration
of this one operation only), the decision to commit is taken only if
all call.modules performed to this point have succeeded.

In either case Root calls Intman.ensure with an indication of
whether to commit or abort. If the decision is to commit, Intman will
ensure that the disc representation of the object shows all intentions
on the object, and that the object's commit bit is set. Immediately
after this minimum of work is done, Root returns the request message
to the caller. The instance of Root does not yet return to the idle
state however. Intman.cleanup is called to deal with all intentions
created on the object. The work done here is simply that which would
be done on a restart after an interruption, and is asynchronous with
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the client. Finally, Root frees the buffered root block of the
object, whose bfw has identified the object to all preceding calls,
and returns to the idle state.

5.7 Lockman

As indicated previously, Lockman manages the interlocks which
synchronise transactions on the same object. It controls a central
interlock table describing the interlocks currently set, and it also
controls the pool of intentions vectors.,

In a call of Lockman.lockuid, the actions taken depend on whether a
TUID or a PUID is supplied. If the argument is a TUID, then it
defines an entry of the interlock table. This entry is checked to
make sure that the TUID is still valid. If so, then the TUID, the
object's PUID and the transaction's intentions vector are returned.

If a PUID is specified, however, then a new interlock is being
requested. In this case, two more arguments are examined. One
defines whether the interlock is long or short. A long interlock is
set by a client explicitly requesting an open operation. A short
interlock is requested by Root when a command other than open
specifies its argument as a PUID. Long interlocks may be set for an
indefinite length of time, and a conflicting request to interlock must
therefore be rejected. Short interlocks are held only for the
duration of a single call of Root, so a conflicting interlock request
can be queued with the certainty of being satisfied quickly. The
second qualifying argument to Lockman.lockuid is whether an interlock
to read or to read and write is being requested, since Lockman
implements multiple-reader-or-single-writer interlocks.

There are two other entry points to Lockman. Lockman.extend is
used when Intman tries to record an intention in a full intentions
vector, and causes Lockman to allocate a fresh one from its pool.
Lockman.unlockuid is called to invalidate a TUID. If this is the last
outstanding interlock on the object, then the interlock table entry is
released, and the intentions vectors are returned to the free pool.
As a cross check, each intentions vector is examined to make sure that
it has been emptied by Intman before the interlock is released.

Interlocks can be explicitly set by clients and forgotten, perhaps
as the result of a crash. To prevent these interlocks persisting
indefinitely, Lockman must control timeouts. Thus, when an interlock
is created, a timer is started on the interlock table entry, and each
time Root presents a TUID to Loclkman.lockuid, the timer of the entry
is reset. If a timeout expires, Lockman generates and sends an
explicit Root.close request to abort the transaction., Note that there
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is a dependency loop here, because Root will immediately call
Lockman.lockuid to synchronise on the object. For this reason, and
for convenient implementation of the timing mechanism, Lockman 1is
explicitly written as an event-driven task. This means that it always
uses act.module rather than call.module, and always waits for the
arrival of any message rather than a particular message. Thus ,
although the dependency loop is present, deadlock will not occur,
because Lockman is always ready to receive a new request. This methed
of removing potential deadlocks may be contrasted with that of Janson
[Janson76] one of whose main criteria for a modular decomposition is
the avoidance of dependency loops. Janson's method requires a
fundamental restructuring of the module functions, where the use of an
event-driven task only involves a different, but equally natural
programming style.

5.8 Indexman

Indexman's function is simple. Objman provides access to objects
as a sequence of fixed-size blocks., Objman.read and Objman.write can
be used to examine and update individual blocks, and
Objman.changeobjsize to extend or contract the object. Indexman must
therefore simply translate the UID offset within an index to a block
in object, word within block pair, and then access the appropriate
block. The only complications arise due to the side effects of
writing index entries. Specifically, Indexman.delete and
Indexman.retain can cause a PUID to be removed from an index, and
Indexman.changeindexsize can cause many PUIDs to be overwritten.
These index operations must result in the deletion of these objects if
they have become detached from the root index.

To deal with storage control, a combination of reference counts and
garbage collection is used as was done for the CAP filing system
[Birrell78, Wilkes79b, Dellar80al. Maintaining a count of the number
of index references to every object will detect most, but not all
cases when an object should be deleted. To control use count
deletion, Indexman calls the use count decrementer Ucdecr whenever a
PUID is deleted from an index. When a PUID is inserted in an index,
its use count is incremented synchronously before the index operation
takes place. Indexman also calls Gei to inform the garbage collector
of new index references in a manner to be described in section 5,20.
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5.9 Fileman

Using the object abstraction of a sequence of fixed-size blocks
defined by Objman, Fileman implements files as sequences of 16-~bit
words, Its main purpose is to make the inter-block divisions within a
file invisible to clients of the file server, and to arrange that file
transfers proceed as close as possible to ring speed.

When Fileman.read is called, the initial request block has already
been accepted by Command and passed on to Root. Among the parameters
for the read operation is a port number in the client machine to which
the data should be sent, Fileman immediately calls
Storeman.reservedisc to gain exclusive access to the disc, so that
other operations are prevented from moving the disc heads during the
file transfer. Then, the first block in which the requested data lies
is read from disc by a call of Objman.read, and Fileman begins
transmitting the data to the client by calls of Ringman.send. This is
particularly easy using the buffer window abstraction mentioned
previously. Since blocks of objects are the same size as the largest
basic block, Fileman simply needs to get a bfw for a block using
Objman.read, window it in the case of the first and last blocks of the
transfer and pass it, with the destination station and port numbers to
Ringman.send. To maintain speed, Fileman makes explicitly
asynchronous requests to Ringman.send, and while the current ring
transfer is in progress calls Objman.read synchronously to prefetch
the next block of the object. Thus the transfer is effectively
double=buffered.

The task of Fileman.write is more complicated. Again its first
action 1s to reserve the necessary disec bandwidth by a call of
Storeman.reservedisc. Then Fileman.write obtains a free file server
port number from Ringman.allocateport, and then issues reception
requests for several maximum size basic blocks from the client machine
by using act.module on Ringman.receive. As soon as this is done,
Fileman.write calls Ringman.send to send a reply basic block to the
client. This block contains the newly allocated port number, and its
arrival is the signhal for the client to begin transmitting the data to
the file server on this port number at maximum speed. The file server
will then see a sequence of basic blocks containing the data to be
written arriving on this port. These will not be confused with file
server requests, because they will be directed to the port number
chosen by Fileman.write, not to the command port.

The task of accepting data at high speed is complicated by two
factors. Firstly, write operations can transmit large amounts of
data, and the client is free to transmit these data in basic blocks of
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any size. Secondly, the Ringman interface is explicitly in terms of
basic blocks. Each call of Ringman.receive supplies a bfw for a
buffer to be filled with precisely one basic block of any size less
than or equal to the window size. This means that the bfws returning
to Fileman from Ringman.receive do not necessarily correspond to
blocks of the object which can be written immediately to disc. In
general, the data arriving from the ring must be copied into block-
sized buffers before being written to the object using Objman.write.
Thus there are two cycles of buffers controlled by Fileman.write. One
set circulates between Fileman and Ringman, with the intention that at
any time, one is being filled from the ring, one is having its
checksum verified by Ringman, and a third is being dealt with by
Fileman. The second cycle consists of a single buffer moving between
Fileman and Storeman via Objman;: this contains a block's worth of ring
data copied from the ring buffers which is written to disc when full.

Frequently, however, arriving basic blocks do coincide precisely
with object blocks to be written., Clients wishing high transfer rates
will tend to use maximum-size (and therefore disc block-size) basic
blocks, and often a transfer will start at the first word of a file.
The CAP, for instance, sWaps complete files out of its memory in this
way. In this case, the copying of data can be aveoided and the ring
buffers written immediately to dise. The current implementation of
Fileman.write, due to R.M. Needham and M.A. Johnson, is careful to
make this optimisation whenever possible,

The difficulty of writing to a file at high speed is largely due to
the primitive nature of the interface to the ring. It would be much
more efficient if the ring interface were able to split an incoming
basic block between two buffers. Then, Fileman would be able to
submit a stream of buffers to Ringman without needing to concern
itself with the sizes of the basic blocks, and these buffers could be
written directly to disc. At the time of writing, a microprocessor-
controlled implementation of such an interface is being tested in the
Computer Laboratory [Gibbons811].

In summary, reading from a file involves a standard request and
reply block exchange with an intermediate transfer of pure data basic
blocks from server to client. Writing is slightly more unorthodox,
involving two replies to the original request block. The first is
Fileman's signal to transmit. The second arrives from Command after
the data block stream has been accepted from the client, and is used
to indicate whether the data arrived correctly.

When less than a basic block of data is to be read or written,
Fileman.read and Fileman.write involve an unnecessary number of
network exchanges, The data for a short read could be transmitted in
the return code block instead of being sent in a different block to
another port. Similarly, the data for a short write could be appended
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to the 1initial request block. For this reason, Fileman has two
simpler entry points Fileman.SSPread and Fileman.3SSPwrite which are
semantically identical to Fileman.Read and Fileman.write, but use the
"single shot" protocol wused by all other file server operations. An
SSPread request from a client supplies a request block and receives a
combined data and reply block. An SSPwrite request supplies the data
to be written in the request block and receives a single return code
block in reply. These functions use a simpler protocol, but usually
involve the client copying data to and from a communications buffer.
The CAP, for instance, can read a stream of pure data basic blocks
into the required segment of real store, but would be obliged to
remove the protocel information from an SSPread reply by copying.

3

5.10 Ucdecr

The use count decrementer maintains a queue of UIDs of objects
whose counts of index references are to be decremented at some
convenient time. It 1s called by Indexman when a UID is removed from
an index, and calls only Root.decrementuc to decrease the object's use
count and delete the object if the new value is zero.

The file server must be careful not to delete any objects as the
result of an index transaction which fails. If a transaction
containing a delete operation aborts, for instance, Ucdecr must not
decrement the use count of the object which has been restored to the
index. To prevent this possibility, Ucdecr must have some knowledge
of which transactions have committed and which are still in progress.

Whenever Root obtains an interlock on an index, it <calls
Ucdecr.stop to suspend the decrementing of use counts. Until
Ucdecr.start is called by Root at the end of the transaction, Ucdecr
will record UIDs but will not attempt to call Root.decrementuc. The
only parameter of Ucdecr.restart is an indication of whether the index
transaction committed or aborted. If it aborted, Ucdecr scans its
queue and removes all entries made since Ucdecr.stop was called.
Entries may be removed needlessly by this simple mechanism, but the
garbage collector will detect any garbage objects whose use counts are
high.

As in the case of Lockman, there is a potential for deadlock
between Ucdecr and Root; if an index UID is deleted from an index, for
instance, then Ucdecr's call of Root.decrementuc will immediately
cause Root to call Ucdecr.stop to signal the start of an index
transaction. The problem is handled in the same way in this case, not
by altering an otherwise adequate module structure, but by
implementing Ucdecr as an event-driven task.
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5.11 Objman

Objman implements the object abstraction of a random access
sequence of fixed-size blocks. A block of an object is selected by
supplying a bfw for its root block and the number of the block to be
accessed.

To be able to use an object, Root must first convert the PUID for
it into a buffer for the root block of the object tree, This is done
by a call Objman.openobj, which is passed the UID of the object to be
accessed and a vector in which the output bfw can be constructed.
Objman uses the PUID to make the disc address of the object and also
its required cylinder map entry; the block must be allocated and
marked as a root block with the same PUID. Storeman.useblock is then
called to load the block into the cache and return a bfw. If the
block was already in the cache, Storeman will return its cylinder map
entry as well, since these are stored with buffered blocks. If it was
not in the cache, Objman calls Cmapman.blockstatus to return the
cylinder map entry. This may cause a second disc transfer if the
cylinder map is alsc not in the block cache. Objman can then compare
the returned cylinder map entry to that which it derived from the PUID
to decide on the validity of the PUID; Only if there is an exact
match is the bfw returned to Root.

From this point on, all Objman operations invoked by Root,
Indexman, or Fileman are passed this bfw as a handle for the object.
Objman.read, for instance, accepts a bfw for the root block and a
block number and returns a bfw for the data block of the object.

Objman.write accepts a bfw for the root block, a bfw for the data
block, and a block number, but as opposed to Objman.read, behaves
differently for normal and special objects. By consulting the object
tree, Objman can determine whether or not a data block already
occupies the block position. Only if the object is normal and there
is an existing block is the write done in place; a call of
Storeman.map associates the data buffer with the disc address and
causes the disc write to occur. When the object is special and data
blocks can never be written in place, or the cobject is normal, but the
block position is empty, Objman must choose a new block to which to
write the data. This is done by a call of Cmapman.allocate, which
finds the nearest free block, changes its map entry in a buffered copy
of the cylinder map, and returns the disc address. Objman now calls
Intman.record to register the creation of a new intention due to the
current transaction, and writes the new disc address into a buffered
copy of the appropriate block of the object tree. If there was a
previous occupant of this position, Cmapman.deallocate is called to




mark it intending-to-deallocate, and Intman.record is called again to
register another intention. The data are finally written to the newly
allocated block.

A single Objman.write operation can therefore create zero, one or
two intentions invisibly to the caller, who cannot distinguish normal
and special objects at the Objman interface, A  sequence of
Objman.writes will accumulate a number of intentions for the
transaction. These correspond to buffered cylinder maps with medified
entries and to buffered object maps containing new disc addresses.
Both these sets of blocks have simply been marked dirty in the block
cache but are not up to date on disec. During each call of
Objman.write, only the data have been written immediately to disc.
The task of ensuring that all this buffered structural information is
correctly written to disc at the end of the transaction is performed

by Intman on explicit calls from Root.

5.12 Cmapman

The cylinder map manager is responsible for interpreting the
contents of cylinder maps and for ensuring that block allocations and
deallocations pass through the correct intermediate states.

Cmapman.allocate is the entry point used by Objman to obtain a new
block. The arguments supplied by Objman are a "home" disc address
which is the block's optimal position, and the cylinder map entry
which the block should have.

To find a cylinder map on which to search for a free block, Cmapman
calls Blockman.choosecyl. Blockman maintains a bit map of the
cylinders which are not full, and uses this to construct the disec
address of the nearest cylinder map with a free block. By a call of
Storeman.useblock, Cmapman can then obtain a bfw for the cylinder map.
It is essential that this access be exclusive, since concurrent and
apparently independent operations can require the same cylinder map to
be modified if the objects involved have blocks on the same cylinder.
For this reason, Storeman provides both exclusive and shared access to
disc blocks, and Cmapman always requests exclusive access when . a
cylinder map is to be updated. Because Storeman provides the
interlocking oh cylinder maps, Cmapman is called as a procedure in all
tasks which require it, all synchronisation between 1its instances
being handled by the single Storeman task.

After obtaining a bfw for the cylinder map, Cmapman searches for a
free block within the array of cylinder map entries. If the cylinder
is the same as that on which the home disc block is allocated, a block
is chosen which will minimise rotational latency during access. Since
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Objman defines the home disc address for block N as the block at block
N-1, this choice tends to favour the serial access of long file
transfers, For objects with holes where block N-1 does not exist, the
root block is used as the home address.

Once a block is chosen and its cylinder map entry changed, Cmapman
calls Blockman.cylstatus to inform it of the number of free blocks now
on this cylinder, Storeman.freebuffer is then called to release
exclusive access to the buffered cylinder map. An argument of this
call causes the cylinder map to be marked dirty in the block cache to
ensure that it will eventually be written to disec.

Cmapman.deallocate is used to change a block from allocated to
intending-to-deallocate. Again, Storeman.useblock is called
requesting exclusive access to the block's cylinder map. The cylinder
map entry is then marked intending-to-deallocate and the buffer is
released and marked dirty in the block cache.

Cmapman .blockstatus is the entry point used to find the cylinder
map entry of a block. It is used by Objman.openobj to verify the PUID
of an object, and by Restart as it scans the cylinder maps looking for
intentions. For this entry point Cmapman requests shared access to
the block's cylinder map.

Cmapman .searcheyl is used by Intman to clear up intentions. The
arguments supplied are the disc address of a cylinder map, the PUID of
an object, and a procedure variable, Cmapman loops through the
cylinder map searching for blocks in one of the intention states which
belong to the PUID supplied. For each such block found, the procedure
argument is called with the block's cylinder map entry and disc
address as arguments. This procedure - always in practice supplied by
Intman -~ is then free to mark the cylinder map entry allocated or
deallocated as required by the transaction's commit bit. At the end
of this loop, Cmapman notes whether any blocks have been freed on this
cylinder, and calls Bleockman.setecyl to inform it of the new block
usage,

Cmapman's final entry point is Cmapman.intention which is called by
Intman to turn an object's commit bit on and off. For added security,
Intman supplies the full PUID, which Cmapman checks against the root
block's cylinder map entry before allowing the commit bit to be
modified.

5.13 Intman

Intman is responsible for filling and emptying the intentions
vectors associated with a transaction. The natural representation for
an intentions vector is a list of disc addresses of blocks on which




intentions have been created. Unfortunately, this is too costly to be
used in practice. A transaction may create a large number of
intentions, and a single write operation by the CAP microprogram
dumping the contents of CAP store to a new file can create over 1000
intentions. To reduce the space required for intentions vectors,
therefore, each entry contains only the disc address of the cylinder
on which an intention was created. Since newly allocated blocks will
tend to be close, a single intentions vector entry may represent many
block intentions created by the transaction. To find the individual
cylinder map entries for these intentions, Cmapman.searchecyl is used
as described above.

Intman.record is the entry point used by Objman after creating an
intention on a block. From the disc address supplied, Intman computes
the cylinder number and inserts it in the intentions vector if it is
not already there. It may happen, of course, that the intentions
vector is full. If this happens, Intman calls Lockman.extend to add a
new vector to the queue associated with the transaction.,

Intman has only two other entry points, both of which are called by
Root when a transaction ends. Intman.ensure does the minimum possible
amount of work to allow a reply to be sent to the client. The problem
here is that an interruption may occur immediately after the reply is
sent, and it is essential that the actions taken by Restart correspond
with the reply given to the client. A transaction must not be undone
during recovery if the client had been informed that it committed.

When Intman.ensure 1s called, the actions taken depend on whether
the request is to commit or to abort the transaction. Aborting takes
no work, since the default state of the disc representation is to
reverse all intentions. If the decision is to commit, however, then
all intentions must first be written to disc. This is done by calling
Storeman .write once for each intentions vector entry. Then a call of
Storeman.flushobject requests Storeman to search its cache for any
blocks whose buffered cylinder map entries identify them as belonging
to the object, and to write any such blocks to disec., At this point,
all intentions have been written to disc, but the object tree is
"ahead" of the cylinder maps since the commit bit has not been set.

Intman.ensure now examines the intentions vector to see if the
remainder of the commit operation can be optimised as desecribed in
section 4,5, This can be done when all intentions reside on the same
cylinder as the root of the object tree. If this is the case, then
Intman.ensure completes the commit operation immediately.
Cmapman.searchcyl is called passing it the PUID of the object and also
a procedure which will perform all intentions when it is called. At
the end of the call, therefore, the buffered cylinder map reflects the
correct new allocation state of the object. The cylinder map is then
written to disc, and the intentions vectors are marked empty.
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~ If intentions exist on cylinders other than the home cylinder,
however , then the full commit sequence must Dbe executed.
Intman .ensure sets the object's commit bit by a call of
Cmapman.intention, forces the cylinder map to be written and returns,
leaving the remainder of the commit operation to Intman.cleanup.

Intman.cleanup will only have work to do if a transaction has
aborted and there are intentions to be removed, or if a multi-cylinder
transaction has committed. 1In the optimised case of a single-cylinder
transaction, the intentions vectors will be in the same state as for a
read-only transaction, showing that no intentions have been created.

Undoing an aborted transaction is more complicated than finishing a
committed one because changes made by Objman to the object tree must
be undone. Under most circumstances, these changes will not have been
made on disc because the modified and dirty map blocks will have
remained in the cache for the duration of the transaction. If the
cache is being changed very frequently, however, then Storeman may
need to write some of these dirty blocks to disc. Intman.cleanup must
therefore be careful to reset the object tree to its original state
before removing any intentions, It does so by a «call of
Cmapman.searchecyl for each cylinder map in the intentions vectors.
Instead of passing a procedure to confirm or remove each individual
intention, however, Intman passes a procedure which removes the effect
of the intention from the object tree. If the procedure is called
with a cylinder map entry for an intending—to—allocaté block, it uses
the tree position stored in the entry to remove that block's address
from the object tree. Conversely, if a cylinder map entry for an
intending-to—deallocate block is given to the procedure, it ensures
that the indicated position in the object tree contains the disc
address. Both these modifications to the object tree are made by the
procedure calling Objman.coerceobject, an entry point provided
especially for this purpose.

The calls of the procedure variable will not change any cylinder
map entries, but may leave blocks of the object tree dirty in the
cache. At the end of the pass over the intentions vector, therefore,
Storeman.flushobject is called to write all these map blocks to disc,
thus ensuring that the object tree is in its original state.

Once this has been done, the paths for committing and aborting
rejoin in Intman.cleanup. The intentions vectors are scanned with
another call of Cmapman.searchcyl for each cylinder map found. This
time, however, the procedure argument changes the states of blocks in
the cylinder maps according to the value of the transaction commit
bit, either removing or performing all intentions. The cylinder maps
are then written to disc and the intentions vectors are marked empty.
Finally, if the transaction committed, the commit bit is reset by a
call of Cmapman.intention and its cylinder map is written to disc.




5.14 Blockman

Blockman maintains the structure used to find free blocks near to
some optimal position. This is a bit map showing which cylinder maps
have at least one free block. In fact for each disc there are two bit
maps, since blocks come in two sizes, small (242 words) and large
(1024 words). Large blocks are used for leaf blocks of two- and
three- level objects, and so always hold the data of a file or an
index. Small blocks are used for all structural information; cylinder
maps and non-leaf object map blocks. The size of large blocks was
chosen to be that of the largest possible basic block, to simplify
file transfers. The peculiar size of small blocks was chosen to
minimise the wastage on each track of the discs.

Blockman has three entry points, newpack, choosecyl and setcyl.
Blockman.newpack is called by Restart when Discman informs it of the
disc drives which are accessible as one of the first steps of the
restart sequence. This entry point causes Blockman to allocate two
new bit maps and to associate them with the number of the mounted disc
pack.,

Blockman.setcyl is used to inform Blockman of the allocation state
of a cylinder. It has three parameters consisting of a disc address,
and the number of small and large blocks in use on the cylinder.
These numbers are used to set the bit map entries for the cylinder.
This entry point is called initially by Restart as it scans the
cylinder maps, and thereafter by Cmapman whenever blocks move to or
from the deallocated state.

Blockman.choosecyl is called whenever Cmapman wishes to allocate a
block. Its arguments are an optimal disc address for placing the new
block, and an indication of whether a small or a large block is
wanted., This allows Blockman to select an entry within a bit map,
from which a search is made radially outwards until a cylinder with a
free block is found. The output disc address can then be constructed.
Note that the bit map cannot be immediately updated since Blockman
cannot know whether the\allocation of a block will exhaust the free
blocks on the cylinder. It must therefore await a call of
Blockman.setcyl.

Because Blockman controls a central data structure, it must run in
a single instance in its own task.
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5.15 Storeman

The Store Manager is another module which contreols a central data
structure, Storeman is responsible for providing buffers for its
clients and for maintaining a record of which buffers hold current
copies of disc blocks,

The most basic Storeman functions are concerned with allocating and
freeing buffers. Storeman.usebuffer returns a bfw for a small or a
large buffer; these correspond in size to small and 1large blocks.
Storeman .freebuffer is used to release a buffer specified by its bfw.

To obtain the contents of a dise block, Storeman.useblock 1is
called. The caller must supply a disc address, an indication of
whether exclusive or shared access 1is required to the block agd
optionally a cylinder map entry to be recorded- in the block cache .
Storeman .useblock returns a bfw for the block, which will have been
read from disc unless it was already present in the block cache.
Buffers obtained from Storeman.useblock, like those obtained from
Storeman .usebuffer, are returned to the free pool by a call of
Storeman.freebuffer. 1In this case, however, two additional parameters
are significant. One is an action which Storeman is to perform before
releasing the buffer; the choices are (1) to do nothing, (2) to mark
the buffer dirty, and (3) to write the buffer to disc synchronously.
The second parameter indicates whether Storeman should remember the
mapping between the buffer and the block, or should consider the
buffer to be empty. These parameters allow Objman to direct the
efficient use of the block cache,

The procedure Storeman.map is used to make an association between a
buffer and a disc block. As for Storeman.useblock, a disc address and
a cylinder map entry are supplied. The caller also specifies an
action as for Storeman.freebuffer. This may be one of: (1) read the
block into the buffer, (2) write the buffer to the block, (3) mark the
buffer dirty, or (4) do nothing. Storeman.map is the procedure used
by Fileman (via Objman) to fill and empty its circulating buffers
during long file reads and writes.

#
As mentioned previously, if buffered dise blocks are tagged with

their cylinder map entries, it becomes possible to find all buffered
blocks belonging to a given object. This 1is necessary in two
circunstances., When committing a transaction, all modified map blocks
must be written to disc. When deleting an object, changing its size,
or aborting a transaction, all knowledge about encached blocks of the
object must be destroyed.




As mentioned previously, it is necessary for Intman to ensure that
all modified object map blocks in an object are up to date on disec.
The entry point which performs this service is Storeman.flushobject,
whose function is to scan all buffers in the cache looking for those
whose buffered cylinder map entries identify them as containing blocks
of the object. Any buffered blocks found are either written to disc
or deleted as requested by the caller.

The other major entry points of Storeman have to do with reserving
-and releasing the discs. Fileman, it will be recalled, obtains
exclusive access to a disc drive before starting a file transfer to
ensure that the transfer can proceed at ring speed. This is done by
bracketing the file transfer with calls of Storeman.reservedisc and
Storeman.releasedisc. Disc reservation is not an essential part of
file transfers, but serves to improve performance by preventing other
tasks from disturbing the position of the disc heads while the
transfer is in progress.

It might be thought that functions concerned with the right to
perform disc accesses should be included in the disc manager Di scman,
rather than Storeman. This was the approach taken in the initial
implementation but it resulted in an unforeseen source of deadlock.
During file writes, which occur under the disc interlock, Objman.write
may call Cmapman.allocate to allocate a new block. Cmapman will
request exclusive access to a cylinder map to do this in a call of
Storeman .useblock, It may happen, however, that another task has
requested that the cylinder map be written out, perhaps while cleaning
up intentions, In this case, Storeman will have locked the buffer,
since it must not be modified during a disc transfer, and will queue
the new Cmapman request until the disc write has finished. This write
request, however, will have been suspended by Discman because the task
cleaning up intentions does not own the disc reservation. Thus, the
owner of the disc reservation waits for a disc block, while the owner
of the disc block cannot proceed because of the disc reservation.
This particular sequence of events tended to cause a deadlock about
once a day.

This problem was overcome in the first implementation by adding a
path of communication between Storeman and Discman, so that Storeman
could inform Discman whenever a caller was suspended waiting for
access to a block. Discman could then check whether it had blocked a
disc transfer for this address due to a disc reservation, and would
release the transfer to avoid deadlock.

In a second implementation of Storeman and Discman, the
responsibility for all scheduling was transferred to Storeman with
consequent simplifications in the program structure. Storeman deals
immediately with any request it can satisfy without accessing the
disc, such as a request for a block already in the cache, or a call to
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write a clean block. Before each disc access, however, Storeman
checks that its caller is able to use the disc: either it must own the
disc reservation or there must be no reservation in force. If ‘the
request cannot be allowed, the caller's request message is put on a
disc queue. Only if the caller is permitted access to the disc is the
requested buffer checked. If some other task has acquired exclusive
access to it, or if a disc transfer is in progress on it, the request
message is queued on the buffer. As a side effect of this queueing,
however, Storeman checks whether the task whose request is now being
suspended is the owner of the disc reservation. If it is, then the
disc reservation mechanism is temporarily suspended, and all requests
waiting on the disc queue are immediately restarted. When the request
suspended on the buffer is later released, Storeman will again notice
that this is the owner of the disc reservation, and will resume disc
scheduling. The net effect is that the owner of the reservation has
exclusive access to the disec until it must wait for some other task to
make a disc access. Then the disc interlock is temporarily broken to
allow the waiting task to release the disc block. Thus disc
scheduling is efficiently performed most of the time, with occasional
discontinuities due to unpredictable conflicts over cylinder maps.

The cache managed by Storeman is about 50 blocks in size, of which
perhaps 40 are small (256 words) and 10 are large (1K words). The
proportion of small to large buffers is arranged so that there are
enough large buffers for file transfers, but most of the space is used
for maintaining copies of structural information - the object and
cylinder maps. To allow fast searching and medification of the cache,
Storeman maintains a fairly complex internal structure. Every buffer
is defined by a buffer descriptor (bfd) which contains (1) the base
address and length of the buffer, (2) a disc address and a copy of its
cylinder map entry if known, (3) a queue for Storeman requests which
must wait for this buffer to be released, and (4) some status
information. The status information consists of a use count of bfu's
issued on this bfd, the dirty/clean bit and a flag to indicate that a
disc transfer is in progress.

Each bfd can be threaded on zero, one, or two doubly-linked queues.
The disc address link is use to link all bfd's on a single bucket of a
hash table keyed on disc address, and the presence of a bfd on one of
these queues means that the buffer holds the most recent copy of a
disc block, The bfd will also be threaded on a free queue if its bfw
use count is zero. Thus a bfd on no queue is in use but doesn't hold
a disc block, and is probably being used for ring reception. A disc
block in use will have a bfd on a disc address queue, and when it is
released by Storeman.freebuffer, its bfd will also be threaded on the
free queue.
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This structure allows the most frequent operations to be very fast.
Searching the cache for a particular dise block requires examination
only of the two or three bfds linked on a particular hash bucket.
Choosing a new free buffer is done by taking the first bfd off the
queue of empty free buffers, or if there are none, off the queue of
full free buffers. Freeing a buffer is simply a matter of queueing
its bfd on the end of the queue of full or empty buffers,

5.16 Discman

The disc manager task has two main entry points Discman.read and
Discman.write which read and writé individual blocks. Each takes as
arguments a bfw describing the store buffer and -a disc address.
Discman's principal functions are to translate a pack number in a file
server disc address into a drive number acceptable to the disc device,
and to retry disc transfers after errors. To do this, Discman manages
a central table of identification blocks. Each disc pack has an
identification block in a fixed physical address, and as part of its
initialisation sequence, Discman attempts to read the identification
block from all possible unit numbers, Since each identification block
contains the disc pack number, at the end of this process Diseman will
know which packs are mounted on which drives.

The identification block also collects the '"believe deletions" bit
which is used in garbage collection as described in section 5.22. To
allow the garbage collector interface Gei access to the identification
block, Discman provides two entry points. Discman.readid returns a
bfw on the identification block of a particular pack, and
Discman.writeid causes it to be written to disec.

5.17 Ringman

The ring manager task organises the sending and receiving of basic
blocks on the ring. It provides an interface between the ring
transmitter and receiver devices, Ringtx and Ringrx, which operate in
terms of basic blocks, and Ringman's clients which send and receive
bfws of data.

Ringman.send is wused to transmit a single basic block., Its
arguments are a bfw defining the contents of the basic block, and a
ring identifier consisting of the destination station and port
number. Ringman first enlarges the window by two words at the front
and one at the end of the buffer, (all buffers issued by Storeman are
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windowed so as to leave these words free) and uses these words to
construct the header, route and checksum packets of the basic block
protocol. Computing the checksum is a relatively expensive operation,
since it can require over 1000 additions but is essential for error
control. The request is then entered in Ringman's transfer table, and
a corresponding request message is sent to Ringtx. When Ringtx
returns, Ringman replies to the caller after readjustment of the
window.

Ringman.receive operates in much the same way. The supplied bfw is
widened to allow reception of the three protocol words, the request is
entered in the transfer table and a request to receive is issued to
Ringrx wusing act.module. When Ringrx returns its request message
Ringman verifies the checksum of the block and replies to the caller.

Under certain circumstances, a Ringtx or Ringrx request will never
return to Ringman. Ringtx will try forever to send a basic block to a
station which is switched off, and Ringrx will wait indefinitely to
receive a basic block which is never sent. For this reason, both
Ringman.send and Ringman.receive have a third timeout argument which
defines how long the caller is willing to wait for a reply. Ringman
measures time in the same way as Lockman, by sending a message to the
the interval timer service of the Clock device, At each "tick",
defined by the return of this clock message, Ringman scans its tables
looking for transfers which have exceeded their time limits. If one
is found, the corresponding device message is retrieved by Ringman,
and a "timed out" return code is sent to the caller.

The timeout facility is not sufficient in all circumstances,
however., During a file write, Fileman will be issuing repeated calls
of Ringman.receive to accept the file data. Towards the end of the
transfer Fileman will know how many words it expect to receive, but
not in how many basic blocks they will arrive, since this is at the
transmitter's discretion. Thus, when the last basic block arrives,
Fileman will have a number of Ringman.receive requests outstanding
which will never be satisfied. To allow these to time out would be
inefficient, since the file operation would be effectively suspended
during this period. Therefore, an entry point to Ringman to cancel an
outstanding request is needed. Ringman.cancel takes the address of a
Ringman request as its argument and performs the same actions as for a
timeout: the device message corresponding to the request is retrieved
from the device, and the cancelled request is returned to the caller.

5.18 Ringtx and Ringrx

Because the Cambridge ring provides a full duplex interface
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allowing simultaneous reception and transmission, the simplest
organisation of the driving software is as two independent devices.
In the file server, these devices are the ring transmitter Ringtx and
the ring receiver Ringrx.

Transmission on a local network such as the Cambridge ring is
fundamentally simpler than reception. If a number of basic blocks are
to Dbe transmitted, then under normal circumstances it will% be
sufficient to transmit them one by one in order of submission A
simple queue of requests can be handled in first-in-first-out order.
Reception must be handled differently, however, because the order of
arrival of basic blocks on the ring is independent of the order of
submission of requests to receive. A ring receiver must be programmed
in an event-driven rather than a serial manner so that it can begin
reception of any one of the basic blocks it has been told to accept,
not merely the first one.

Ringtx, therefore, is a simple device programmed in the standard
TRIPOS manner. For each request to transmit a basic block, it cycles
the transmit side of the ring station through a sequence of states:
set destination station number; send header and route packets giving
up only on "ignored"; send remainder of block aborting on "ignored" or
"unselected",

The ring receiver Ringrx must link Ringman's requests to receive
on a chain of outstanding receptions. When a basic block arrives from
some source, Ringrx accepts the header and port packets. These will
define the length of the basic block, and to which port number it is
directed. By interrogating the ring station, Ringrx can also
determine from which station these packets arrived, Using this
information, Ringrx searches the queue of outstanding requests to
decide if the arriving basic block matches one of them. If so, the
remainder of the basic block is accepted into the buffer provided; 1if
not, Ringrx sets the select register to zero briefly to discourage the
transmitter, and restarts the entire reception sequence. It is
important that Ringrx search its internal queue of requests in order
of arrival, since Fileman will attempt to maintain a queue of
reception requests during a file write, and filling the request
buffers in the wrong order would cause the file to be written out of
sequence. Note that the simpler scheme of Ringrx accepting any basic
block which arrives and passing it back to Ringman for the decision to
accept or discard it cannot be used if it is desired to use the simple
"unselected" flow control mechanism - the decision whether to accept
%

In theory, a better job can be done by interleaving the transmission
of ring packets of different basic blocks, especially if the receivers
are of greatly differing speeds. In practice it is difficult to do
this quickly enough to make it worthwhile,
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or reject must be made before all of the basic block arrives.

5.19 Restart

Restart is the module which examines the discs for wunfinished
transactions and ensures that each object is in a consistent state.
Loaded in the initial bootstrap, it is present as a single instance
running in its own task. After performing the restart sequence in the
first 30 seconds or so of a run of the file server, Restart deletes
itself and its task to make more room avallable for Storeman's cache.

Restart has a single entry point, Restart.start, which is called by
Disecman after it finds which packs are mounted on the disc drives.
Restart then immediately calls Blockman.newpack once for each pack
mounted. This causes Blockman to allocate a bit map for the small and
large blocks of each drive. Blockman will of course have no knowledge
as yet of the allocation state of the cylinders, and it is another of
Restart's functions to call Blockman.seteyl to initialise the bit
maps .

Restart is programmed as an event-driven task, not to break
dependency loops as in the case of Lockman and Ucdecr, but simply to
overlap execution of the Restart code with disc accesses. After
calling Blockman.newpack, Restart immediately uses act.module to issue
Storeman.useblock requests for the first few cylinder maps of each
disc, and then waits for the first of these to return.

As each cylinder map is accessed, Restart scans it looking for
blocks in one of the intention states. If it finds none, it simply
passes the number of used and free blocks on the cylinder to
Blockman.setcyl so that the allocation state of the cylinder becomes
known. If it finds one or more intentions, however, then it must
remove them. To do this, it uses the facilities of Lockman and Intman
in the normal way. For each intention found, Restart uses the disc
address of the root block of the object to retrieve its cylinder map
entry holding the commit bit. It reconstructs the object's PUID, and
uses it to search an internal table. This table holds information
about each inconsistent object found by Restart, and contains the
commit bit and intentions vector. If the table search fails, Restart
adds a new entry by calling Lockman.lockuid to obtain an intentions
vector. In either case, Intman.record is called to add another
intention to the vector.

This is deone for each cylinder of each accessible pack. At the end
of the disc scan, therefore, Restart will have accumulated a
description of the transactions in progress at the time of the
Hnterruption. Restart now calls Intman.cleanup for each transaction
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to deal with the intentions in the normal way. Each interlock is then
released by a call of Lockman.unlockuid and the file server is now in
a proper initial state, with no transactions in progress and the
allocation state of each pack known. The Restart module then releases
all store used by its code, data, stack and global vector, and normal
service is resumed.

5.20 Goi

Gei is the garbage collector interface, a set of minimal functions
which allow asynchronous garbage collection from a remote machine,
The remote garbage collector is a program written by N.H. Garnett
[Garnett80] and is not described in detail here.

The task of garbage collecting the file server's graph structure is
similar to that found in the original implementation of the CAP
operating system [Birrell78]. The essential requirements are that:

1) there be some means for the garbage collector to discover the
universe of objects among which references are possible,

2) the collector be able to discover all significant references, and

3) the garbage collector be informed of the creation of new references
during its execution.

The file server graph structure has a degree of freedom not found
on the CAP's directory structure. 1In the CAP, once the collector had
finished its marking phase, and had found an object for which there
were no references and which was not active in the virtual memory, it
knew that the object was inaccessible because there was no way for any
program to obtain a capability for the object. All such objects could
therefore be deleted at the collector's leisure. In the file server,
this cannot be assumed; a client which has stored away the PUID of an
object may choose to retain it in an index at any time, perhaps after
the collector has decided that it is garbage. This will lead to
unpredictable results for detached cyclic structures, since a client
may retain a reference to such a structure after it has been partially
deleted. The retention should clearly only be allowed if the
structure is complete, and should be forbidden otherwise.

The approach taken to this problem in the file server is another
application of the basic two-phase commit protocol, and is designed to
make the deletion of all garbage objects atomic. Each object has a
deleting bit stored in the cylinder map entry of its root block for
the use of the collector. Gei, under direction from the external
collector, will call Cmapman.deleting to set and unset this bit for a
particular PUID. In addition there is a single per-pack believe
deletions bit; one bit per pack is used because each disc pack is a
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sel f-contained graph with its own root index. This bit is contained
in the pack identification block and Gei will set and unset this bit
by calling Discman.writeid on instruction from the collector. Gei
will also delete an object for the collector. It does this by calling
Root .decrementuc for the object, specifying that its use count is to
be decreased by a very large number.

The general outline of a garbage collection is as follows. The
initiative for collection is taken by Gei, perhaps as the result of an
index use count decreasing to a number greater than zero. (This is a
necessary, but not sufficient condition for the creation of a detached
cyclic structure, as Birrell and Needham point out [Birrell781].) Gei
then requests a resource manager on the network to start the external

garbage collector program running in a free processor. There is of
course a security problem here, since the file server must assume that
its external collector is benign and not a malicious imitation. These
security issues are beyond the scope of this thesis, and are examined
in Needham78. 1In this particular case, Gei must trust the name lookup
server [Wilkes80] to give it the network address of a trustworthy
resource manager,

As the external collector starts up, an initial exchange with Gei
on a file server port number reserved for this purpose informs the
collector of the pack number to be collected, the PUID of the pack's
root index and the value of the believe deletions bit. Gei retrieves
all three data from the pack identification block using
Discman.readid. Under normal conditions the believe deletions bit is
off. The collector now discovers the universe to be examined by
asking Gei to send it copies of each cylinder map on the pack. From
these it can determine the PUID of every object, and also the current
state of its deleting bit. If any deleting bits are found on, the
collector will instruct Gei to remove them during this pass. Note
that the exposure of cylinder maps is potentially a very serious
breach of security. This service is only available to the machine
known to Gei, and reliance is placed on the inability of third parties
to read basic blocks destined for the collector.

After the collector has built a list of the PUIDs of all objects,
it can scan all indices that are reachable from the root index. It
does this by retrieving entries from indices in the normal way,
exactly as any unprivileged client would. At the end of this scan it
will have discovered the objects which are unreachable from the root
index, and will call Gei to set the deleting bits for these objects.
When this has been done the collector requests Gei to change the
believe deletions bit by writing the pack identification block to
disc. This makes all deletions effective simultaneously, as will be
described shortly. The collector now requests Gei to destroy each of
these objects in turn; Gei checks to make sure that the object's
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deleting bit is set and that the believe deletions bit is also on
before calling Root to destroy the object. Finally, the collector
directs Gei to turn the believe deletions bit off for the pack.

Because the collector is asynchronous, cooperation is required from
several modules of the file server. Whenever Objman.openobj is called
to validate a PUID, it examines the deleting bit in its cylinder map
entry. If this is off, then the access proceeds as usual. If it is
on, however, then the pack's identification block must be checked by a
call of Discman.readid. If the believe deletions bit is off, then the
access 1s allowed. If it is on, however, then "invalid UID" is
returned to Root. Thus, all the garbage collector's deletions become
effective simultaneously when the believe deletions bit is set.

The third condition for asynchronous garbage collection was that
the collector must be informed of any new retentions while it is in
operation. To do this, each time Indexman is about to preserve a PUID
in an index, it tests a system-wide flag which Gei sets to indicate
that a collection is in progress. If the flag is set, then Indexman
calls Gei.recordintention passing the PUID. Gei then sends this PUID
to the collector. None of these "retention messages" must be lost in
the network, of course, and a particularly lightweight protocol due to
R.M. Needham is used [Garnett80]. The garbage collector treats the
arrival of such a message as it would the detection of an index entry;
the object is marked as connected to the root index. If the object's
deleting bit has been set, the collector must unset this by a call of
Gei. If the object is an index, then it must now also be scanned in
the normal way. The believe deletions bit cannot have been set at
this point, or the index retention would have failed when the PUID to
be retained was validated.

Turning the believe deletions bit is the only operation during
which the file server and its garbage collector must be completely
synchronous. What must be avoided is setting the bit Jjust after
access has been allowed to preserve a garbage object, but before the
corresponding retention message has been dealt with by the collector,
because a PUID for a deleted object would thus be retained. When the
believe deletions bit is to be set, therefore, the collector includes
in the request the number of the last retention message dealt with.
On receipt of this request, Geil calls Command.suspend. This call only
completes when all instances of Command are idle, so that no index
retentions can possibly be in progress. Gei then compares the
sequence number of the last retention message sent to the collector
with that of the last message it processed, Only if the two match is
the believe deletions bit set. In either case, Command.resume is
immediately called to restart service, and the collector is informed
of the result of the comparison. In case of failure, the collector
retries the operation after processing the outstanding retention
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messages,

Finally, it is important to note that garbage collection is proof
against interruptions by either party, since the state of the
collection is recorded entirely in cylinder maps and the
identification block. It is thus always safe for either party to
abandon a collection at any time, because the next run of the
collector will be able to deduce the correct state by reading the
cylinder maps. If the believe deletions bit is on, the collector must
destroy all remaining objects marked for deletion. If it is off, the
collector must remove all deletion intentions before starting the
normal collection sequence.
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Chapter 6

A Revised Transaction Mechanism

As indicated in chapter three, the file server was explicitly
designed to perform atomic transactions on a single object at a time.
This choice has been satisfactory in an environment where the main
clients of the file server are general-purpose operating systems. As
shown in section 3.6, in more general contexts, this would not be
true, since there would be no way to maintain consistency in multiple-
object data structures over interruptions. A data base client, for
example, would be obliged to store all its information in a single
special file, or would have to construct a higher level transaction
mechanism following Paxton's example [Paxton79].

This chapter explores the changes which would be required to make a
more general transaction mechanism. In a first step, the transaction
mechanism is extended to allow many objects to be updated atomically.
The modifications result not only in a more general mechanism, but
also one that is more efficient than the current implementation;
equivalent transactions will generate fewer disc transfers under the
new scheme.

In a second step, the transaction mechanism is further generalised
to allow several file servers to participate in a single atomic
transaction. The method followed is that of the Juniper file server
[Sturgis80], and requires only minor changes to the structure derived
from the first step.

6.1 Changes To The Client Interface

In the current transaction mechanism, there is an identification
between a transaction and an object open for writing; both are
represented by a TUID. These concepts must be distinct at the client
interface if multiple-object transactions are to be specified.

The simplest way to make this distinction would be to create a
transaction abstraction represented by a transaction identifier, or
TID. Operations start and commit transaction would be needed to
perform the functions of open and close, respectively, and open and
close would be restricted to the control of interlocks only. A client
would call start transaction to obtain a TID, open a succession of
objects under this TID, modify some of the objects, call commit
transaction on the TID, and release all interlocks with close
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operations. A more elegant variation of this protocol is used in the
Juniper file server [Sturgis80], which uses the TID supplied in each
read and write request to lock objects implicitly, rather than
requiring explicit open and close operations.

These TIDs must have all the characteristics of unique identifiers.
They must be difficult to forge and not reused. The implementation
described below, however, requires the opposite properties of TIDs.
They must be compact, since they will be stored in each cylinder map
entry, and they must be generated in a predictable sequence.
Therefore, we will adopt an interface which makes the transaction
identity implicit rather than the interlock identities.

The open request is extended to contain a TUID, and a list of
PUIDs. The PUIDs are all to be locked for a single transaction, which
is specified implicitly by the TUID. If this TUID is zero, then a new
transaction is to be started, with a new transaction identifier. If a
valid TUID is supplied, however, then the request is to open these
objects for the same transaction as the TUID supplied. 1In either
case, a list of TUIDs, one for each PUID, is returned.

Using this request, an interactive transaction could be constructed
which did not know the set of objects to be read and written. As each
object was encountered, an open would be requested which contained the
TUID of the last object opened, the first open containing zero in this
position. This indirect specification would allow the file server to
associate the same TID with all objects without exposing it to the
client.

TUIDs would be used in the normal way to alter files and indices.
A transaction would be committed by the close operation, whose form
would be unchanged. The meaning of a close operation would be "commit
the transaction to which this interlock belongs" and would have two
effects., The transaction would be committed atomically, and all The
TUIDs established under it would be destroyed. Thus a transaction
might be performed as follows:

(tuid1, tuid2, tuid3) := open (0, puid1l, puid2, puid3)

puidd := retrieve (tuidil, 0)

tuidld := open (tuid3, puidh)

close (tuid1l, TRUE)

6.2 Implementation of Multiple-Object Transactions

To perform multiple-object transactions, it is essential that one
bit control whether the transaction commits or aborts. Thus, per-
object commit bits can no longer be stored, and a more flexible way
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must be devised for associating one commit bit with a transaction on
some arbitrary collection of objects. A particularly simple way of
doing this is to associate every change made by the transaction with
the transaction identifier. The only requirement is that these
identifiers be unique so that modifications due to different
transactions are never confused.

The current method of recording changes made by a transaction in
cylinder map entries can be retained. The only modification that need
be made is to include a transaction number in each cylinder map. entry
as it is modified. The two state bits which select one of the four
allocation states must be replaced by one state bit and a transaction
number. The state of each block is thus "allocated by transaction N"
or "deallocated by transaction M". Figure 6.1 shows the modifications
necessary to the cylinder map format.

SECTOR I

uIb

N SEQUENCE NUMBER IN LEVEL
LEVEL NUMBER IN TREE
TRANSACTION NUMBER
ALLOCATED OR DEALLGCATED

Fig 6.1 Modified Cylinder Map Format
The cylinder maps need not increase greatly in size under the new
scheme. At 100 transactions per second, 30 bit transaction numbers
would last about 4 months, and a method is outlined in section 6.8
for reusing these numbers once the supply is exhausted. Cylinder map
entries might be laid out as follows:

allocation state 1 bit
deleting bit (root blocks only) 1 bit
transaction number 30 bits
level in object tree 2 bits
sequence number in level 14 bits,
UID 32 bits
80 bits

On 80 Mbyte discs organised as in the current implementation, the
#

As noted in section 4.3, it is only necessary to store half the UID
in any cylinder map entry, rather than all 64 bits.
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cylinder maps would represent a total storage cost of .5MB or 0.6%.
To complete the mechanism, a central transaction table is needed which
records the commit bit for each transaction. This gives the required

indirection, since whether or not a change in block state is definite
or tentative is defined by the central table. The allocation of a
block by transaction N is conditional on its committing, and if the
transaction fails, the block can revert to its deallocated state.

The transaction table can be managed simply by recording in it only
the numbers of transactions which have not completed. A transaction
number is recorded in the table before a transaction allocates or
deallocates its first block. If the transaction commits, its number
is simply removed from the table; thus committing all changes it has
made. If the transaction fails, then all block state changes it has
made must be reversed. Only then can the transaction's number be
removed from the table. This strategy allows the table to be small
since it need only contain the numbers of active transactions.

Each cylinder map entry is thus conditional on the presence or
absence of its transaction number in the central table. The
equivalent of Restart which removes "intentions" works as follows.
For each cylinder map entry the central transaction table is searched
for the map entry's transaction number. If it is not found, then this
cylinder map entry was created by a transaction known to have
committed. No action therefore need be taken. If the number is found
in the transaction table then the state change must be undone. A
block marked "allocated by transaction N" must be changed to
"deallocated by transaction 0"; one marked "deallocated by transaction
N" must be marked "allocated by transaction 0". Note that we are
unable to reconstruct the actual transaction number which was
previously in the 'cylinder map entry. This is of no importance since
the previous transaction which changed this cylinder map entry 1is
known to have committed. A conventional value of zero can be written
in the cylinder map entry, on the understanding that no real
transaction is ever given the number zero.

The performance advantage of the new scheme derives from the fact
that cylinder map entries are changed directly to the values they
should have if the transaction commits. Thus, committing a
transaction simply involves ensuring that all modified cylinder maps
are written to disc, and removing the transaction number from the
transaction table. Aborting a transaction, however, will take the
same' amount of work as in the current implementation, since all
changes made by the transaction to cylinder maps must be undone.

A certain amount of care is needed to ensure that the transaction
table, which is now a critical data structure, is updated safely and
efficiently. Clearly, there must be enough redundancy so that writing
the transaction table to disc is always safe. One way to do this is
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to maintain multiple copies of the table, and always arrange to write
to an old copy rather than the most recent one. This idea has a
particularly attractive implementation on disc units which allow
sectors of different sizes on a given track. In this case, a small
end-of-track sector can be created in a fixed place on each cylinder
of each disc out of what would otherwise be wasted space. There would
then be two distinguished blocks per cylinder: one cylinder map block
and the transaction table block. When a transaction commits, the
updated transaction table can be written wherever the disc heads
happen to be at the time, unless this is the cylinder on which the
last copy was written. For discs without wvariable block size
formatting, a fixed number (at least two) of transaction table blocks
could be allocated at intervals over the disc surface. This strategy
is both efficient and safe, if the transaction table is always written
with a sequence number so that the most recent copy can be detected.
When restarting after an interruption for instance, each disc must be
scanned to find the most recent copy of the table before the cylinder

maps are examined.

6.3 Transactionman

The control of the transaction table must be entrusted to a new
module, Transactionman. Since many instances of Root must synchronise
on the creation of new transaction table entries, Transactionman must
run as a single instance in its own task. It will control three
pieces of information; the current contents of the transaction table,
the disc address on which it was last written, and the next free
transaction number. Figure 6.2 shows the contents of the transaction
table.

" TABLE SEQUENCE #
. TRANSACTION # 1 " SEQUENCE #

TRANSACTION # ‘*l SEQUENCE #

TRANSACTION # SEQUENCE #

Fig 6.2 The Transaction Table
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The transaction table will need to contain a sequence number which
is incremented before each disc write so that Restart can find the
most recent copy. Transactionman.create adds a new entry in an enpty
slot of the table, and writes in the new table entry the current table
sequence number. The new transaction number is then returned to the
caller.

Transactionman.flush is called by Cmapman as soon as the
transaction attempts to allocate or deallocate its first block.
Transactionman compares the current table sequence number with that

recorded in the entry of the transaction. If they are equal, the
table sequence number is incremented and Discman.writehere is called
to write the transaction table to disec. If they are unequal, no

action is taken since the transaction is already recorded on the most
recent disc copy. An enquiry entry point, Transactionman.committed,
is also needed for Cmapman's use. Given a transaction number, it
returns a Boolean value indicating whether or not the number is
present in the transaction table, which can be used by Cmapman to
detect whether a transaction has really freed an apparently
deallocated block.

Transactionman.delete is called to remove a transaction from the
table. If its entry sequence number is the same as the current table
sequence number, the entry is simply erased, since the nunber was
never written to disc. Otherwise, the table sequence number is
incremented, and the table is written to disc after erasure of the
entry.

The marking of transaction table entries with the current table
sequence number means that a short transaction which changes no block
states will be added to and removed from the transaction table with no
cost in disc transfers. This allows read and read-write transactions

to be handled in a uniform manner at no extra cost.

6.4 Cmapman

Cmapman will be little changed under the new scheme. Cylinder map
entries will change from recording four allocation states to two
states and one number. Cmapman.intention will not be needed to set
and unset the commit bit, however, since the equivalent function is
assumed by Transactionman.

Internally, difficulties arise because it is no longer clear to

Cmapman which blocks are definitively deallocated. In
Cmapman.allocate, therefore, Transactionman.committed must be called
to decide whether it is safe to reuse a deallocated block. In

practice, a substantial saving can be made if Transactionman
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guarantees to create transaction "numbers in increasing numerical
order, and maintains a system-wide variable containing the lowest
uncommitted transaction number. During a first rapid pass over the
cylinder map, Cmapman can use a very quick test for free Dblocks by
comparing each entry's transaction number against the 1lowest
uncommitted transaction number. Only if this scan produces no free
blocks should a second pass be made which calls
Transactionman.committed for each apparently deallocated block. This
will find any blocks which have been deallocated recently.

Cmapman 1is never notified when a block which it has marked
deallocated in fact becomes so. Because of this, all responsibility
for keeping Blockman's allocation tables up to date must be shifted to

Intman.

6.5 Intman

Given the central role of Intman in the current mechanism, it might
be expected that substantial changes might be required for the new
scheme. In fact, Intman's functions remain nearly unchanged.

Because transactions can abort, it is still necessary to maintain a
list of block state changes made by the transaction so that these can
be reversed if need be. As previously, recording individual disc
addresses could allow a very large transaction to exhaust the
available space, so cylinder numbers only are recorded, and the
appropriate cylinder map can be scanned by Cmapman.searchcyl to find
the changes made by a given transaction.

To allow Intman to keep Blockman informed of allocation changes on
cylinders, Intman must maintain an allocation count A and a
deallocation count D with each entry in the intentions vector as shown
in figure 6.3. '
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TRANSACTION #
CMAP ADDRESS A1 D
[  CMAP ADDRESS A | D
i 1
CMAP ADDRESS Al D

Fig 6.3 Modified Intentions Vector

Intman.record is now split into two entry points, Intman.allocate
and Intman.deallocate which are called only by Cmapman.allocate and
Cmapman .deallocate respectively. Intman.allocate searches the
intentions vector for a matching cylinder number to that of the disc
address supplied, and if one is found, increments its A count by one.
If a match is not found, a new entry is made in the intentions vector
with A=1 and D=0. In either case, Blockman.change is called to inform
Blockman that there is one fewer free block on the cylinder.
Intman .deallocate is very similar; the intentions vector is scanned,
and a matched entry has its D count incremented by one. If no match
is found, an entry is created with A=0 and D=1. Intman.deallocate
does not call Blockman.change, however, since the block is not yet
free.

Intman.ensure becomes trivial in the new scheme. If the
transaction is committing, Storeman.writeda is called to ensure that
each cylinder map in the intentions vector is up to date on disc.
Transactionman.delete is then called to remove the transaction number
from the transaction table. If the transaction is aborting, then no
action need be taken.

Intman.cleanup also becomes simpler. If the transaction committed,
then for each touched cylinder, Blockman will have been informed of
the A allocations, but not of the D deallocations. This should now be
done. If the transaction aborted, then as in the current mechanism,
the object tree must be restored, and the cylinder map entries changed
back to their earlier states. Finally, Blockman.change should be
called indicating A deallocations on each cylinder involved, and-
Transactionman.delete should be called to erase the transaction
number ,
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6.6 Blockman

The interface to Blockman must be expanded slightly. In addition
to Blockman.seteyl which is already used by Restart to describe the
initial allocation state of each cylinder, a new entry Blockman.change
must be provided so that Intman can indicate relative changes to a
cylinder. This new entry point precludes the use of a bit map to
describe the allocation states of the cylinders of a disc, since
Blockman must now be able to determine if the allocation of a number
of blocks on a cylinder has left any free. Each bit, therefore, must
be replaced by a count of free blocks.

6.7 Discman

To write the transaction table to disc, a new Discman function
writehere is required. As for Discman.write, a bfw for the buffer to
be written and a disc address are supplied by Transactionman, but the
disc address is that at which the transaction table was last written.
Discman construets a new address by choosing some pack and the
cylinder number which is currently under the read-write heads. It
then writes the buffer to this address if it is not the same as the
one supplied, otherwise to another address found by changing the
cylinder number or using the current position on another pack.
Finally, the input disc address is overwritten by the address actually
used.

6.8 Restart

Restarting becomes more expensive in the new scheme, and consists
of up to three passes over the discs instead of the one pass required
under the current scheme.

Pass one reads all copies of the transaction table to find the most
recent one, and the disc address at which it was written. This is
most conveniently performed by Transactionman as part of its startup
sequence, and at the end of it the last known value of the transaction
table will be available in the normal way.

The second pass is as for the current scheme. Restart must check
all cylinder map entries to detect changes made by failed
transactions. These are recorded by calls of Intman.record in the
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normal way, and at the end of the scan Restart calls Intman.cleanup
with commit=FALSE to abort the failed transactions. At the end of
this pass, Restart will be able to inform Transactionman of the next
free transaction number. This is one greater than the largest
transaction number found in any cylinder map entry.

A third pass may be required to replenish the supply of transaction
numbers and transaction table sequence numbers, since these must be
unique. This pass might be triggered when Transactionman detects that
either sequence has exhausted half its range; in normal operation if
Transactionman runs out of numbers, it can simply halt the file
server. Note that at the start of this third pass, no transactions
are incomplete, since these will have been dealt with in pass two. It
is thus safe to update cylinder maps, since these are consistent with
the object trees. The third pass, therefore, need only rewrite all
cylinder maps setting all transaction numbers to zero. When this has
been done, all copies of the transaction table must be overwritten by
one with a sequence number of zero. The next free transaction number
can now be set to 1. This third pass will only rarely be necessary
depending on how many bits are used for transaction numbers and table
sequence numbers, and the frequency of occurrence of transactions.

6.9 A Comparison of Costs

As well as being more general than the current mechanism, the
modified transaction mechanism presented in this chapter will also be
more economical in disc transfers. Consider an atomic transaction on
a special object which alters a number of blocks. These blocks will
be distributed over n cylinders, and another n' cylinders will be
needed to find replacement blocks for them. These disc addresses will
be held in m object maps of the object tree. As shown in section 4.5,
a total of n+n' extra disc reads and 2(n+n'+1)+m extra disc writes are
needed, of which 2n+2n'+m+1 transfers are synchronous, and n+n'+1 are
asynchronous.

In the new scheme, the n+n' cylinder maps will still have to be
read and written to change the states of the leaf blocks and their
replacements. Thus n+n' reads and n+n' writes will be needed. Before
any of these writes take place, however, the transaction table must be
written to disc to mark the transaction incomplete, adding one to the
number of writes. Then the m object maps must be written, and finally
the transaction table must be written again to mark the transaction
complete. Thus n+n' reads and n+n'+m+2 synchronous writes are needed,
a total of 2n+2n'+m+2 synchronous transfers. Thus, one more
synchronous transfer is needed that in the previous scheme, but the
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n+n'+1 asynchronous transfers to clean up intentions are eliminated.
Real time delay to the client is unlikely to increase since two of the
transfers are of the "writehere" variety, and the elimination of the
asynchronous cleaning up is likely to lead to a significant increase

in overall efficiency.

6.10 Extension To Many Servers

The partitioning of the set of files and indices among a number of
cooperating file servers may be done with only a few additional
changes. The advantages of distributing the file service in this way
are pointed out in Sturgis80; the amount of storage and the number of
processors used can be adjusted to suit the requirements of a
particular local network. There are two additional problems to be
solved, however; how does a client direct requests to the server
which controls a particular object, and how can the atomic transaction
mechanism be extended to allow objects on a number of cooperating
servers?

To allow clients to find the right server for a particular object,
it is probably best if the address part of a UID is not extended to
include a server number. This would restrict each disc pack to be
under the control of a particular server, and would prevent a disc
pack from being mounted on any server which had a free drive.
Instead, it is better to maintain the current scheme in which UlDs
contain disc pack numbers, and arrange that servers keep each other
informed of the location of every mounted pack. A client could direct
its. first operation on a UID to any available server, which would use
its knowledge of the packs currently available on other servers to
forward the request. If the client noted the address of the server
from which it eventually received a reply, it could use this as a hint
for all further requests.

Extending atomic transactions to objects on many servers can be
done easily following the pattern of the Juniper file server
[Sturgis80]. The algorithm used is the two-phase commit protocol
defined in section 3.2.1 with minor elaborations to cope with
communication errors. It is derived from the two-phase commit
protocol used in the Juniper file server, which is to be formally
described in a forthcoming paper by B.W. Lampson and H.E. Sturgis.
The basic change necessary is the partition of the range of
transaction numbers between the different file servers. A transaction
number would then be a pair (transaction number in server, server
number) .
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A client would start a transaction by sending an open request with
a list of PUIDs and a TUID of zero to any of the available file
servers. This server would nominate itself as the coordinator of the
transaction by allocating one of its own transaction numbers and
writing this in the local transaction table. The coordinator would
then scan the list of UIDs. Any objects which were in the coordinator
server would be opened immediately for the transaction. The remainder
would be divided into lists, one for each different server, and an
open request giving the list of UIDs would be sent to each. This
would of necessity be a different open operation from that used by
clients, since the coordinator must include the transaction number
which it has allocated in each list. The glave servers would set
interlocks on the objects using the coordinator's transaction number
rather than an internally generated one, and would arrange as usual
that all interlocks were associated with a single intentions vector

for the transaction. Thus, each server in the transaction would
maintain a list of the local changes made by the transaction in the
local intentions vector. The corresponding TUIDs would then be

returned to the coordinator and thence to the client. Subsequent open
requests would be directed to a server holding one of the objects in
question, and would contain the TUID of an object already locked by
this .transaction. A server receiving such a request would obtain the
correct transaction number from the server which created the TUID,
using a privileged "transaction number of TUIQ' request, and would
enter this number in its local transaction table . Before replying to
the client, it would inform the coordinator of its participation in
the transaction if this were not the server which just supplied the
transaction number.

When a close request arrived at a server, the transaction number of
the TUID concerned would be looked up in the local copy of the
intentions vector. If this showed the server to be a slave for the
transaction, the server would simply generate an internal close
request containing the transaction number and would send it to the
coordinator. If it were the coordinator, however, then it would send
an internal "“get ready" request to all slaves for the purpose of
# .
Since transaction numbers from different servers may now appear in a
transaction table, it becomes more difficult to maintain the "lowest
uncommitted transaction number" wuseful to Cmapman. Lamport's
technique for keeping distributed clocks in step can be used here
[Lamport78]; whenever a transaction number form a different server
arrives, the local next free transaction number would be increased to
at least this wvalue. Each server would also periodically broadcast
its current value to ensure that the servers always stayed
approximately in step.
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synchronisation. On receipt of a get ready request, each slave would
call an Intman entry point to flush all cylinder maps modified by the
transaction, so that all changes made by the transaction were recorded
on disc. Note that each slave would still have the transaction
present in its local transaction table, so the transaction has not yet
been committed by any of them.

When the coordinator received successful replies to all get ready
requests, it would commit the transaction. Any failure of a get ready
request must abort the transaction as a whole, since a slave may have
been interrupted before all changes were recorded on disec. The
coordinator would commit the transaction in the normal way, by
removing its number from the local transaction table, and would send
an internal close request to each slave directing it to do the same.
If the transaction failed, the coordinator would send a close request
to each slave with commit = FALSE, and would wait for a completion
acknowledgement from each before deleting the transaction number from
its local table.

This sequence must have the cooperation of the restart algorithm in
all servers. When restarting, each server must check cylinder map
entry transaction numbers against transaction table entries in the
normal way; if no transaction table entry is found, the transaction is
deemed to have committed. If a match is found, and the transaction
number defines this server to be a slave for the transaction, then the
server can take no unilateral action. It must enquire of the
coordinator whether or not the transaction committed. On receipt of
such a request, the coordinator can find the transaction's state by a
call of Transactionman.committed, and the% coordinator's reply can
allow the slave to take appropriate action . If the slave gets no
reply from the coordinator, however, then it must wait. On no account
must it abort or commit its part of the transaction without direction
from the coordinator. The simplest strategy for the slave to follow
in this case would be to re-establish interlocks on all objects
involved in the transaction under newly generated TUIDs. All clients
would thus be prevented from accessing these objects until a periodic
retry of the coordinator enquiry succeeded in determining the fate of
the transaction.

If on restart the server finds itself to be the coordinator for the
transaction, because one of its own transaction numbers is still
recorded in its local table, then the strategy is somewhat simpler.
Because the transaction number is still in the table, it is safe for
the coordinator to abort the transaction, whether or not any slaves
#

Note that if the coordinator receives one of these enquiries before
receiving a reply to a get ready request from the same server for the
same transaction, it must abort the transaction at this point.

6.10 - 122 -




have received get ready requests. It may therefore unilaterally undo
all local changes made by the transaction. However, it may not remove
the transaction number from its table until it is certain that all
slaves have also undone their parts of the transaction. It must send
close requests with commit = FALSE to all slave servers, or, if this
information was not recorded on disc and has now been lost because of
the interruption, to all file servers. Only when it has received an
acknowledgement from each server contacted can it delete the
transaction number from its transaction table. Note that the delay
while the coordinator is informing all slaves of the abort of the
transaction does not prevent normal service from being resumed. Those
objects involved locally in the aborted transaction can be unlocked
and other transactions can be allowed to proceed normally.

As seen by a slave, therefore, a transaction has three distinct
phases. The first phase lasts from the first open request it receives
until the reply to the get ready request is sent. During this time,
the slave is free to abort the transaction unilaterally in one of
three ways:

1) It can send an explicit' ' close request to the coordinator on
detection of some internal error while processing one of the
transaction's operations

2) It can refuse to get ready.

3) It can make the coordinator aware that it has crashed and
restarted by enquiring about the state of the transaction.

In any of these cases, the coordinator must direct all slaves to abort
their parts of the transaction. The second phase lasts from the
transmission of the get ready acknowledgement until the slave is
informed of the fate of the transaction, either on reception of the
expected close request from the coordinator, or by enquiry. By
entering the second phase, the slave abdicates the right to take
unilateral action, and agrees to wait indefinitely until informed of
the transaction's fate. The third phase begins with the arrival of
the coordinator's decision. If the transaction committed, then the
transaction number is simply removed from the local transaction table.
If it aborted, then all local state changes (which will have been
rediscovered by Restart if there has been an intervening interruption)
must be reversed in the normal way before the transaction number is
deleted and the close request acknowledged.
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Chapter 7

In the preceding chapters the motivations behind the interface,
algorithms, and program structure of a file server for a local network
have been presented, At the time of writing, the file server has been
in service for over a year, and the design choices can now be reviewed
in the light of experience,

The fundamental goal of providing a general, shared, centralised
file service has been achieved, The Cambridge file server is 1in
constant use by two operating systems -~ a modified TRIPOS [Richards79]
and the CAP operating system [Dellar80b] - both of which use it for
all secondary storage. At any given time, four or five instances of
TRIPOS may be accessing the shared filing system held on the server,
and the CAP may be using it to swap segments in and out of its memory.
There are also several microprocessor-based systems attached to the
ring, and a number of servers running in these machines protect
themselves against interruptions by archiving their state periodically
on the file server,

The performance of the file server seems acceptable as reflected in
the response times of the client operating systems. Measurements have
shown that when the file server is otherwise idle, reading 256 words
at random from a large three-level file takes about 50 milliseconds,
and writing takes about 65 milliseconds, including all software and
comnunications delays in client and server. These times are
comparable to those given for the WFS file server [Swinehart79]. 1In a
description of the conversion of the CAP operating system to use the
file server for all secondary storage, Dellar reports that under light
loads the new system is faster because of a reduction in the amount of
store-resident code [Dellar80b]. As the swapping rate increases,
however, performance is somewhat worse than in the previous system,
This may be attributed partially to the additional software delays
. involved in sequencing file transfers, and partially to the fact that
the Cambridge ring has a much lower bandwidth than a direct memory
access channel to a local disc, The very lightweight file transfer
protocol reduces this effect to some degree, since it allows transfers
to proceed at about 80% of the maximum point-to-point bandwidth of the
ring. A more complicated protocol would have reduced the transfer
rate proportionally,

Several strategies could be used to increase the file server's
performance, First among these would be the wuse of a more
sophisticated ring interface. 1In the current implementation, Ringtx
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requires two interrupts to transfer a basic block, and Ringrx requires
four. A more serious overhead than this high interrupt rate is the
software calculation of the checksum of a basic block, which takes
about a quarter of the block transmission or reception time. Thus,
during a file transfer there is contention for the server's memory
from the disc controller, from the ring interface, and from the
processor computing checksums and handling frequent interrupts. Much
of this processor activity could be removed by using a specialised
ring interface to handle the basic block protocol, Such a
microprocessor—controlled interface is now being tested 1in the
Computer Laboratory [Gibbons811, and its use in the file server will
push the file transfer rate to within a few percentage points of the
maximum point-to-point ring transfer rate, The use of this interface
may reduce the processor load to such an extent that it becomes
feasible to attempt several file transfers simultaneously by
interleaving the transmission and reception of blocks of different
transfers., Only transfers which used different disc drives could be
scheduled concurrently, of course, or any potential benefits would be
lost in the extra movements of the disc heads. Transfers overlapped
in this way would individually proceed at a slower rate, but might
allow a higher utilisation of the centralised file server hardware.

A second area where performance improvements are possible is the
allocation of blocks to files. In the current implementation, writing
to a file for the first time is slowed by the need to allocate blocks
on the fly. This is due to the software delays involved in choosing a
cylinder map and then searching the block cache each time a block is
required, and also to occasional disc delays as a cylinder map becomes
full and the next candidate is not in the cache. To a large extent,
the software delays will be masked when the microprocessor-controlled
ring interface reduces the load on the processor, These can be
further reduced by a strategy of allocating several blocks in a single
call of Cmapman, ratherv than Jjust one block. Beyond this, the
possible improvements seem to 1lie in the area of improving the
physical contiguity of files, either by preallocating blocks to files
before any attempt is made to write to them, or by allocating
contiguous groups of blocks rather than single blocks. These policies
would speed up writing by allowing some of the allocation work to be
done ahead of time, and by improving the serial access characteristics
of files. Trade-offs of space for time such as these are the
perennial concern of the filing system designer, but in the current
circumstances where the average object size is about 1500 bytes, both
policiés would seem to be wasteful of space. The file organisation
described in this thesis of variable-depth trees to which blocks are
allocated on demand is biased towards efficiency in space rather than
access time, and will tend to lead to scattering as the disc becomes
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full,

The effects of the reliability mechanisms built into the file
server are rather harder to Jjudge. Certainly, the requirement to be
able to recover from an interruption which destroys a disc block has
resulted in unavoidable extra disc transfers. This cost is involved
whenever structural information 1is changed, and is most noticeable
when writing to to a new file or creating an object. Object creation,
requiring two disc transfers, is in fact cheaper than the subsequent
index retention, which will require either three of five transfers,
depending on whether the optimised commit sequence can be used.
Dellar describes an ingenious way of overcoming this cost in the CAP
operating system by maintaining a pool of new objects ready for use
[Dellar80al. The costs of creating new objects and of writing to a
new file are essentially indications that allocating and deallocating
blocks are relatively expensive operations. This expense is greater
than it need be since the transaction mechanism does not take
advantage of the fact that the vast majority of transactions are
successful. The revised mechanism presented in chapter six is bilased
towards the frequent outcome, and is thus more efficient as well as
being more general.

In practice, the transaction mechanism is not heavily used by the
client operating systems., The CAP, for instance, never opens objects
explicitly, but always uses PUIDs to swap complete copies of files in
and out of its store. If a file write fails because of a
communications failure or a file server crash, the CAP can simply
restart it because all file server operations are repeatable. Under
these circumstances, it is not particularly useful to have a file
revert to its original state on recovery. The only circumstance in
which the CAP uses the atomic transaction facilities of the file
server is in directory updates; the data part of every directory is
stored in a special file, so that a CAP interruption while a directory
is being swapped out never leaves an inconsistent state. In practice,
this has meant that the lengthy scan of the filing system which the
CAP used to perform on each restart has been eliminated in the file
server based system. The other main client, the TRIPOS operating
system, uses the transaction mechanism both to maintain consistency of
its directories over interruptions, and to synchronise the access of
its different instances to the shared filing system. These patterns
of use are largely an indication that operating systems usually write
one object at a time, and that the consistency requirements between
different objects are rather loose. Dellar points out, however, that
a multiple-object transaction mechanism would have been useful in
updating CAP directories since a directory is implemented as an index
and a special file which must be kept in step [Dellar80bl. Other
applications such as data bases, which cannot use the simple "read old
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file create new file" pattern typical of operating systems, would
require a general atomic transaction mechanism like that presented in
chapter six.

The actual representation of the redundant information on disc has
a number of attractive properties. Error recovery is normally very
rapid, and is not affected by the complexity of the index graph
structure or the number of objects in existence. Under normal
circumstances, the file server will deal with interrupted transactions
in about 30 seconds. The program which scans the graph structure in
the event of a cylinder map corruption, however, requires about 30
minutes. The rapidity of this restart sequence was invaluable during
program development, but is perhaps less essential when the program is
in working order.

Another property of the representation is that it tends to maintain
a high degree of locality. When a transaction is to be committed, the
object and cylinder maps which must be written are close together on
disc, and often all on the same cylinder. This organisation is
advantageous given the access characteristics of moving-head discs,
and tends to reduce the cost of performing atomic transactions.

The amount of redundancy added to the disc representation is
actually rather small, In essence, the change has been made by
replacing a block allocation bit map by a list of cylinder maps having
64 bits per entry. 1In terms of the total disc space available, these
cylinder maps represent a negligible cost of 0.5%4. Unfortunately,
this minimal redundancy leads to a number of possibilities for
"second-order” errors which do not occur with the marginally more
expensive pair-redundant scheme of Sturgis et al., described in
section 3.3. The mechanism relies on the fact that a cylinder map is
only written when all object maps are known to be correct, and
conversely object maps are only written when all cylinder maps are
known to be correct, Thus, for example, transactions on different
objects sharing blocks on a common cylinder must not commit at the
same time. Otherwise, an interruption which destroys a cylinder map
when object maps of another transaction have only been partially
written will be unrecoverable. Similarly, if the root block of a
normal object is lost when it is overwritten, the attributes of the
object will be lost; neither the object's uninitialised data value nor
its maximum size will be known after the object tree is rebuilt.
These objections do not make the mechanism unworkable, but require
more careful attention that the simpler pair—fedundant strategy.

Much of this thesis has been concerned with strategies for
overcoming the damage caused by failed disc writes., This is a rare
form of interruption - it has occurred only ¢twice in a year of
operation - but has been the cause of all the redundancy introduced
into the disc representation and of the subtleties in the transaction
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mechanism, The need to maintain the redundancy of every block of
structural information at an acceptable cost has introduced complexity
into the algorithms, and therefore potential sources of error. The
conclusion which might be drawn from this work is that discs which can
lose information during a transfer with appreciable probability are
unsuitable for building reliable storage. An interesting research
problem would be to investigate the types of hardware assistance which
might simplify the design of reliable file servers.

The failure of a disc transfer is not in itself a disastrous event.
As in the case of file server operations, disc writes are repeatable,
and successive attempts may eventually write correct data. Disaster
occurs when not only the contents of the disc block but also the store
copy from which it was being written are lost. Under these
circumstances it 1s necessary to reconstruct the block contents using
only other disc blocks; this leads to the level of disc redundancy
used in the file server, and to a doubling in the number of disc
transfers, Between two disc writes to the same block of structural
information, another dise Dblock must be written to maintain
redundancy.

This situation can be improved by arranging not to lose the store
copy of a disc block over an interruption., This could be done by
making part of the processor's address space non-volatile, perhaps by
using battery-powered semiconductor memory which would not lose its

contents in a power failure, Keeping all disc buffers in it -~ and
assuming that no interruption altered the contents of non-volatile
store -~ would eliminate the need for redundant recording of

information on disc. The stable storage ébstraction of section 3.3
could be implemented much more efficiently by arranging to rewrite all
disc buffers on restarting after an interruption. A little care is
required to avoid writing partially modified disc blocks in this way,
or writing some, but not all of a set of blocks. Perhaps the simplest
way to arrange this is by storing a table of "ready-to-write" bits in
the non-volatile memory, and by having each buffer contain a pointer
to one of the table entries. A set of buffered disc blocks could then
be marked for writing by changing the single ready-to-write bit to
which they all referred. On restarting, each buffer would be scanned,
and written to disc again if it was marked ready to write.

This simple scheme has two major advantages. Because it eliminates
the need for redundant disc information, the number of disc transfers
would be greatly reduced. In a file server implemented in this way,
it would halve the number of disc writes of structural information.
Secondly, a disc block can be considered written by the processor as
soon as its ready-to-write bit is turned on, since it will eventually
be transferred to disc whether or not interruptions occur. The non-
volatile store can thus serve as a buffer in the true sense of the
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word by largely decoupling the activity of the processor and the disc.
There is also the possibility of optimal disc scheduling, which does
not arise if disc writes must be ordered carefully to ensure
redundancy.

As just described, the non-volatile memory attached to a processor
could function as a cache for large volumes of information on disc.
Tt could also be used as the only storage medium for small amounts of
essential information. The transaction table of chapter six is an
obvious candidate. Instead of storing a copy on each disc cylinder,
two copies could be Kkept permanently in non-volatile store. The
processor would update the table by reading one copy and writing the
other, so that in the event of an interruption, there would always be
a consistent version of the table to use in recovery.

As local networks become more widespread, file servers such as the
one described in this thesis will continue to be built. At least in
the short term, it will be most economical to share the use of
expensive mechanical storage devices among inexpensive processors,
The arrival of cheap electronic or magnetic bulk memories is likely to
change this situation, by encouraging distribution of the long-term
storage of objects. However, the use of increasing numbers of
processors in distributed computations will tend to lead to complex
failure modes as individual machines crash or messages are lost. The
problems investigated here of protecting a file server and its clients
from the unpredictable effects of concurrency and interruptions will
continue to be one of the main obstacles to the construction of
distributed systems.
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