Technical Report R

Number 173

Computer Laboratory

Programming in temporal logic

Roger William Stephen Hale

July 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/



© 1989 Roger William Stephen Hale

This technical report is based on a dissertation submitted
October 1988 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Abstract

The idea of writing computer programs in logic is an attractive one, for such pro-
grams may be designed, verified and implemented using a single formal language.
This brings a number of practical benefits:

1. There is no room for ambiguity in the relationship between specification and
implementation, and no need to learn a different language for each.

2. It is easy to test out specifications from the earliest stages of development,
which avoids attempting to implement or verify an inappropriate design.

3. Computerised tools can be applied directly to transform and verify programs,
using the established machinery of mathematical logic.

4. Logic supports hierarchical design, so a large project can be divided into
smaller tasks which may be designed and verified independently.

Similar benefits are bestowed by any formal programming language, but the idea
only works if the language suits the intended application. All too often the appli-
cation is forced to fit the language.

In this dissertation, I describe an approach that suits the development of par-
allel and real-time systems. The approach is based on Tempura, a deterministic
programming language developed by Moszkowski from his work on hardware spec-
ification using Interval Temporal Logic (ITL). I present the formal semantics of
ITL in higher-order logic, and show how programs can be transformed and veri-
fied using the HOL theorem prover. Then, I show how to represent a number of
familiar programming concepts in ITL. First, I show that the language of while-
programs can be embedded in temporal logic; and that includes the destructive
assignment statement with the usual inertial assumption. An interesting corollary
is that a simple sequential program, written in Pascal say, becomes a logic pro-
gram in Tempura. More advanced concepts include parallel processes and message
passing, as well as real-time phenomena such as timeouts, interrupts and traps.
Each idea is experimentally tested on a suitable example, using an interpreter for
Tempura. The examples range from matrix multiplication and parallel sorting, to
a pipelined parser and a real-time lift-controller.

i1




Contents

1 Prologue
1.1 The Problem . . .. . . . . i i i e e
1.1.1 Program Design . . .. .. . ... .. 000
1.1.2 Correctness . . . v v v v v v v v e e e
1.2 Programming in Temporal Logic . . . . ... ... ... ... ...
1.21 Tempura . . . v v v v v v v v e e e e e e e e
1.2.2 Advantages . . . . . . .0 o
1.3 Other Approaches . . . . . . . .. . . i
1.3.1 Imperative Languages . . . . ... . ... ... .. ... ..
1.3.2 Array Processing . . . . . . . .. oo oo
1.3.3 Functional Languages . .. . ... ... ... ... .. ...
1.3.4 Dataflow Programming . . ... ... ... ... .. ...,
1.3.5 Logic Programming . . ... ... . ... .. .. ...
1.3.6  TOKIO . . .« v i e e e e e
1.3.7 Communicating Sequential Processes . . . . . . . e
1.3.8 Synchronous Languages . . . . ... ... e
1.3.9 Restricted Instruction Set Languages . . . . . ... ... ..
1.4 My Contribution . . . . .. .. . o e
2 A Practical Introduction
2.1 The Interpreter . . . . . . . . . . e
2.2 Predicates, Functions and Macros. . . . . . ... .. .o
2.3 Programs . . . . ... e e
2.4 Operators . . . . .o v v e
241 Empty . . .. . e
242 Next . . . .o o e
2.4.3 Computation Length . . . . .. ... ... ... .. ..
244 Always . .. . oo e e
2.4.5 Assignment . . ... ...
2.4.6 Sequential Behaviour. . . . . ... ... ... L.
2.4.7 Unit-Assignment and Initialisation . . . .. ... ... ...
2.4.8 Multiple Assignments . . .. ... ... .. .

© 00 O O UL W W NN P = =

I N S
TR W N = O




2.4.9 THeratiom . . v v v v v e e e e e e e e e
D410 Gebs « v v v o e e e e e e e e e e e e
2.4.11 Extended and Prefix Computations. . . . . . . ... .. ..
2.4.12 Other Operators . . . . .. . oo v v v v v v oo
2.5 A Complete Example. . . . . .« v v v oo

Interval Temporal Logic

S.1 SYREAX « v v v e e e e e e
3.1.1 EXPressions . . . . v« v ve v v i e e
3.1.2 Formulae . . . v v v i e e
3.2 SemantiCs . . « v v v v e e e e e e e e e
321 HOL . . o oo v e e e e e e e
3.2.2 Intervals. .. ... e e e e e e e e
3.2.3 Expressions . . . ... ... L
324 Formulae . . . . . v i v it e e
3.3 Some Derived Operators . . . . . . v v v v v v
3.3.1 Classical Operators. . . . .« v v v v v v v v v
3.3.2 Temporal Operators . . . . .. ...« v v
3.3.3 Assignment Operators . . . . . ... ... .
3.3.4 TIterative Operators . . . . . . . ... oo v oo
335 Markers . . . v o e e
3.3.6 Omitting Parentheses . . .. . ... ... . ...
3.4 DISCUSSION + v v v v v v e v v e e e e e e
Tempura
41 SYRbAx . . . o e e e
4.1.1 Programs . . . .« v v v v v e v e e
4,12 EXPressions . . . . . ¢ v v v v v v v
4.2 SemantiCs . . v v v v e e e e e e e
421 Canonical Form. ... ... ... . o
4.2.2 Reduction of Programs . . . . ... ... ..
4,23 Local Variables . . . . . . . . . v v oo
4.2.4 Final Transformation. . . . . . . . .« ..« v
425 Predicates . . . . . v . o e
4.3 Derived Operators . . . . . . o v v v v i e
4,3.1 Classical Operators. . . . . v v v v v v v v v v v
4.3.2 Temporal Operators . . . . . . .. v v v v
4.3.3 Assignment Operators . . . . ... .. ... ..
4.3.4 Tterative Operators . . . . . . . . . oo v v
4.3.5 Inputand Output . .. .. .. ... ... ... ... ...,
4.4 DISCUSSION + « v v v v vt e e e e e e e e e e e e

38
39
39
40
41
41
42
43
44
46
46
47
50
52
53
53
54




5 Verification and Transformation

5.1 Verification . . . v v v v vt e e e e e e e e e e e e e
5.1.1 Natural Deduction . . . .. . ... . oo e
5.1.2 Properties of Programs . . .. ... ... .. .o
5.1.3 Mathematical Induction . . . . ... . ... ... 0.
514 Proof Rules . . . . . . v i it
5.1.5 Hierarchical Decomposition . . . . . . ... ..o

5.2 Transformation . . . . v v v v v vt e e e e
5.2.1 Transformation Rules . ... ... ... ... .....
522 Canonical Form. .. . . .. . . v
5.2.3 Functional Equivalence . . . ... ... ... ... ... ..
524 Efficiency . . . . . e

5.3 DISCUSSION . v v v v v v e e e e e e e e e e e e e e
5.3.1 Satisfaction Guaranteed? . .. ... ... ... ... ...
5.3.2 Mechanical Verification .. .. ... .. ... .. ... ...
5.3.3 Transformation and Synthesis . . . . . ... ... ... ...

Sequential Programs

6.1 Assignment . . . ... ... e
B.1.1 SemantiCs . . . . v v v v e e e
6.1.2 Notes on Assignment . . . . . ... ... .. .

6.2 Tnertia . . . v v v v i e e e e e e e
6.2.1 Frame Variables . . . ... . ...
6.2.2 Notes on Frame Variables . . . .. ... ... ... ... ..
6.2.3 The Operator local . . . . . . v v v v v v v v v e e
6.2.4 Doing Without Frame Variables . ... ...........

6.3 DISCUSSION « v v v v v v e v e e e e e e
6.3.1 Default Values . . . . . .. . v i oo
6.3.2 The Frame Problem in Artificial Intelligence . .. ... ..

Recursion and Iteration

71 The Towersof Hanoi . . . . . . .. .. . v v
7.1.1 Recursive Algorithm . . ... ... .. ... .........
7.1.2 Transformation . .. . . ... . ... o e
7.1.3 TIterative Algorithm . . . .. . ... ... ... ... ..

7.2 Parallel Summation . . .. ... 0 o e
7.2.1 Recursive Algorithm . . .. .. ... ... ... ...,
7.2.2 Iterative Algorithm . . . ... .. ... ... .. ......
7.2.3 General Algorithm . . . ... ... . ... . ... ...

7.3 Mergesort . . . v v v o e e
7.3.1 Recursive Mergesort . . .. .. ... ... ...,

vi

67
63
68
69
70
71
71
73
73
74
76
78
79
79
80
81

82
83
83
86
88
89
92
95
96
97
97
97




7.3.2 The Merge Algorithm . . . . ... .. ... . ... ... 110

7.3.3 Iterative Mergesort Algorithm . . . . ... .. .. ... .. 112

T4 DISCUSSION + v v v v v v e v e e e e e e e 113
8 Parallel Processing 115
8.1 Processor AITAYS . .« v« v v v v v v v i e e 116
8.1.1 Interconnections . . . . . . . ¢ v v v v v it 116
8.1.2 Summabtion . . . . . . e e e 118
8.1.3 Mergesort . . . . v v oo 119

8.2 Parallel Processes . . . v v v v v v v e b e e e e e 123
8.2.1 The Parallel Composition Operator . . . . ... ... ... 123

8.2.2 Matrix Multiplication . . . . . .. . .. oo 124

8.3 DISCUSSION + « v v v v v e e e e e e e e e e e e e e 126
9 Real-Time Systems 128
0.1 Additional Operators . . . . . . v v v v v 128
9.1.1 Projection . . . . .. . v e 129
0.1.2 Interrupts . . . . . v . v oo i 130
0.1.83 Bar . . it e e e e e e e e e e 131
0.1.4 Traps . . o v v v e e e e e e 132
0.1.5 Mime Limits. . . . . v v v v v v o v e e 132

9.2 A Lift Control System . . . . . .. . v i 133
0.2.1 Thelnterface . . .. . . .. .. v e e 134
9.2.2 The Specification . . . . ... .. ... .. e 138
9.2.3 ThelLift Controller . . . . . . . .. .. .. 145
9.2.4 Some Improvements . . .. ... ... 151

9.3 Discussion . . . . ... .. P 155
10 Communicating Processes 156
10.1 Message Passing . . . . . . . ..o 157
10.1.1 Transferringa List . . . .. .. ... . o oo 157
10.1.2 Termination . . « . v v v v v v v v e e 158
10.1.3 The Operations Put and Get . . . . ... ... ... 159

10.2 The Sieve of Eratosthenes . . . . . .. ... ... ... 160
10.2.1 Specification . . . . .o oo 160
10.2.2 Implementation . . . . . . . oo oo 161
10.2.3 The Filter Processes . . . v « v v v v v v v v v v v v e 161

10.3 A Simple Parser . . . . .. .. e e 163
10.3.1 The Parsing Algorithm . . ... ... ... ... ... ... 165
10.3.2 Error Handling . . . . . ... . v v v i i oo 165

10.4 The Complete Evaluator . . . . ... . ... .. .. o ... 166
10.4.1 The Lexical Analyser. . . . . . ..« .. v v oo 166




10.4.2 The Evaluator . . . . . o v v v v v v v v v oo 168

10.5 Interleaving . .« « v v v e e 169
10.5.1 Simple Timeslicing . . . .« o v v v v v oo 170
10.5.2 Rendezvous . « v v v v v e v v e e e e e e 170

10.6 DISCUSSION + « « + v v o o v b o v e e e 171

11 Epilogue 173

111 Scaling Up . « v v v v oo v e e 173
11.1.1 Compilation . . . . . . v v v v 173
11.1.2 Data TYPeS « v v v v v v v e e e e 174
11.1.3 Debugging. . « v« v v v v e 174

11.2 Applications . . . v v v v v v 174
11.2.1 Real-Time Systems . . . . . .« .o o o v v oo o 174
11.2.2 Parallel Programming . . . . . . v o v o v v v e 175
11.2.3 Rapid Prototyping . . . . .« .« o v v v 175

11.8 Verification and Transformation. . . . . . . . . . . v v v oo v 176
11.8.1 Automation . . « v v v v v e e e e e e e e 176
11.3.2 Transformation . . . . . « v v v v v v v v e e e e 176

11.4 SemantiCs . » ¢ v v v v v e e e e e e e e e e e 176
11.4.0 Frame . o o v v v v v e e e e e e e e e e e 176
11.4.2 Prefix o v v v v v v e e e e e e e e e e e 177
11.4.3 Parallel Processes . . « . v v« v v v v v i i e e e e 177

viil




Chapter 1

Prologue

This dissertation describes a rigorous approach to the design of computer pro-
grams, particularly those for parallel and real-time applications. The approach
is based on Tempura, a programming language developed by Moszkowski from
his work on hardware specification using Interval Temporal Logic [Mos86,Mos85].
Experiments with an interpreter and verification system for Tempura show that
this is a realistic way to produce correct and efficient programs.

1.1 The Problem

Advances in computer technology have consistently led to smaller and faster cir-
cuitry, yet the law of diminishing returns applies as much here as anywhere else;
at any time the cost of enhanced performance greatly exceeds the corresponding
performance gains. This pattern of development has had repercussions at both
ends of the computing spectrum. On the one hand, more and more use is being
made of embedded control systems now that suitable processors can be built at an
acceptable price. On the other hand, it is more cost-effective to increase perfor-
mance by using many ordinary processors in parallel than by making special high
speed sequential machines. Each of these developments brings the need for new
ways to design programs and new concerns over their correctness.

1.1.1 Program Design

Unlike the von Neumann machines we are used to, the emerging generation of
parallel processors do not share a common style of hardware organisation. They
range from massively parallel synchronous machines to small collections of pow-
erful autonomous processors, with many shades in between. There is very little
understanding of how to program, or even to think about, these machines in a
general way. Each new architecture seems to spawn its own set of algorithms and
its own programming discipline.




Meanwhile, at the other end of the computing spectrum, an increasing number
of control systems depend on digital computers. In these systems hardware and
software must work closely together. Indeed, many traditional software functions
are being taken over by hardware as, with the help of VLSI, it is becoming easier
and cheaper to implement quite sophisticated algorithms in hardware. For exam-
ple, an embedded control system might nowadays be implemented as a combination
of application-specific and off-the-shelf hardware running real-time software. But
the initial design should not reflect this choice, as the exact combination might
not be fixed until the later stages of design.

Here, then, is a situation that demands an effective way to design algorithms,
one in which it is possible to represent the desired behaviour in a number of ways
suitable for different implementation environments. Ideally it should be possible to
transform between different representations, or at least describe their relationship.

1.1.2 Correctness

The application of rigorous methods to programming is always helpful, even when
it falls short of formal verification. Complex programs, especially parallel and real-
time programs, are notoriously difficult to get right, and mistakes made during
the early stages of design can be very costly to correct later on. A combination of
formal specification and prototyping can spot those early mistakes.

But there are times when formal verification is necessary. More and more
safety-critical systems depend on the correct operation of computers. Examples
include the real-time controllers to be found in aircraft, cars, medical equipment
and chemical plants. These systems have in common that their malfunction could

have catastiophic consequences, resulting in enormous expense or perhaps even
loss of life, y+1 1hey (or at least the crucial parts of them) are simple enough to be
amenable to Ion nial analysis with the presently available tools.

Such contii -vstems typically have to perform under quite stringent time

constraints; timing behaviour is a part of their correctness. For instance, a flight
control system cannot be said to work correctly if it takes several seconds to
respond to directions from the pilot. Whatever tools are used for system design
must therefore be based on a clearly defined model of time.

1.2 Programming in Temporal Logic

Temporal logic is an extension of classical logic especially designed for represent-
ing time-dependent behaviour [Pri67]. It has proved to be an effective tool for
specifying and reasoning about parallel systems, both hardware [Boc82,HMM83]
and software [Pnu8l,Lam83,Kro87]. My thesis is that temporal logic, through




the programming language Tempura, is also a realistic way to design correct and

efficient programs.

1.2.1 Tempura

Tempura embodies a synthesis of logic with the imperative style of programming
used in ordinary sequential languages like Pascal. It includes many familiar control
structures from imperative programming, such as assignment and iteration, as well
as less familiar ones like parallel composition and delay. These constructs are not,
as is so often the case, a pragmatic collection of useful ideas without proper formal
foundation; they are all derived from a handful of primitive operators in Interval
Temporal Logic (ITL); a Tempura program is just a deterministic formula in ITL.

A computation in this model is a discrete sequence of states; think of it as a
series of “snapshots” taken over an interval of time. Three typical computations
are illustrated in figure 1.1. Figure 1.1(a) shows the values of two variables Y
and N on an interval (0,1,2, 3,4, 5, 6) during which Y is assigned the value 23 by
repeated multiplication. Figure 1.1(b) shows successive values of a list variable
as it is sorted in parallel (using mergesort). Finally, figure 1.1(c) shows an in-
terval (0,1,2,...,21,22) on which the expression “(1 + 2.,)” is evaluated using a
pipelined lexer, parser and evaluator. All of these computations are fully described
in due course.

In previous work Moszkowski and I have shown something of the versatility of
Tempura [Mos86,Hal87,HM8T7], but in this dissertation it is extended in a number
of ways. Most importantly, it is extended to take inertial behaviour into account,
and as a consequence the language of while-programs becomes a part of Tempura.
This means that a simple sequential program, written in Pascal say, may also
be regarded as a formula of ITL. Furthermore, I show how such programs may
be combined in parallel, either at the level of individual statements or at the
process level, or combined with real-time constructs, such as traps, timeouts and
interrupts.

1.2.2 Advantages

The strength of the approach derives from its ability to handle a wide range of
applications in a formal and coherent way, as well as its inclusion of the imperative
style, which is still used by the overwhelming majority of computer programs in
everyday use. Moreover, since Tempura is derived from a hardware specification
language, it is naturally an appropriate language to use right down to the lowest
levels of implementation, including the hardware [Mos83,Hal85]. This makes it
suitable for discussing the details of implementation that are crucial to the design
of efficient programs. The scope of Tempura will be amply demonstrated in future




time |0 1 2 3 4 & 6
Y[1 2 2 4 4 8 8
N{3 3 2 2 110

(a) Calculation of 2% by repeated multiplication (time increases from left to right).

time | A
o|[1,9,1,1,0,1,0,0,1,0,1,0,0,1,0,1,1,0,1,0,1,1,1,1 0
1][o,1,4,1,0,1,0,0,0,1,0,1,0,1,0,1,0 1,0,1,1,1,1,1 0
2[o0,1,1,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1,1 1
31[0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1 1
4 |[o,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0 1
5| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1 1

(b) Sorting a list in situ using a parallel mergesort (time increases down the page).

time Characters Tokens Expression
0 - —_ —
1 n(u — —
2 - - —
3 nqn u(n —
4 — — -
5 ll+|l J— —
6 — — —
7 non 1 —
8 non — —
9 ll2" "+l| 1
10 - - -
11 " — _
12 - - -
13 ||)u 2 —
14 — - -
1B # u)n 2
16 - - —
17 - # Wpn
18 - - -
19 - - 4
20 - - #
21 - - 4
22 - - -

(c) A pipelined system for tokenising, parsing and evaluating simple arithmetic
expressions. The state of the communication streams is shown during evaluation
of the expression: “(1 4 2,)”.

Figure 1.1: Three discrete-time computations.




chapters with examples ranging from matrix multiplication and parallel sorting,
to a pipelined parser and a real-time lift controller, but other benefits derive from
its mathematical origins.

First, because programs and their specifications are written in the same lan-
guage, the relationship between them is unambiguous. Furthermore, only one
language need be used from the initial specification right down to the final imple-
mentation. This makes it easier to produce prototype implementations from the
earliest stages of design, so reducing the likelihood of errors propagating to the
later stages of implementation or verification where they are much more expensive
to put right.

Second, because Tempura programs are formulae of temporal logic they may
be transformed and verified using the established rules of mathematical logic, and
existing computerised theorem provers, such as the HOL system [Gor87], may be
used to assist the processes of transformation and verification. Another advantage
of the logical approach is that specifications and programs are compositional, so
a large project can be hierarchically decomposed into a number of smaller tasks
that may be designed and verified independently.

1.3 Other Approaches

My thesis demonstrates that there is no need to throw out the whole imperative
style in order to get a language with straightforward semantics, a rich syntax
for dealing with parallel and temporal behaviour, and the ability to mix a wide
range of programming techniques, uncommitted to any particular architectural
paradigm.

There are a number of other approaches to program development for which
some of these benefits might be claimed. This section reviews some of them,
and in so doing it gives an informal introduction to some of the strengths and
weaknesses of Tempura. In the course of this review, several new operators are
presented without proper explanation. They will be properly defined later on; the
aim here is just to give you a feel for the language and how it compares with other
approaches.

1.3.1 Imperative Languages

Conventional imperative languages, such as Fortran and Pascal, are designed
around the von Neumann architecture. Their control structures are just abstract
representations of what can easily be done with this architecture, so it is not
surprising that they can be implemented very efficiently, if only on conventional
processors.




Natural formal semantic-. such as Hoare’s logic [Hoa69], can be constructed
for the simpler sequential languages, but they quickly get out of hand as new con-
structs are added. Time-dependent behaviour is usually expressed with language
extensions for which no precise meaning is given, and parallel constructs, when
present, are generally best suited to some particular style of concurrency. For in-
stance, there are a number of parallel dialects of Fortran with control structures to
exploit the fine-grained concurrency of array processors, but not for concurrency
at the process level. Similarly, there are a number of Pascal-like languages, such as
Ada, which include features to assist the construction of co-operating sequential
processes, but not for parallelism at the level of individual statements.

In chapter 6 I show that the basic sequential language constructs, including
the usual destructive assignment statement, may be represented in Tempura. For
example, the following Tempura program uses inertial variables Y and N to calculate
the value of x® by repeated multiplication:

Y,N< 1,n;
while N # 0 do {
Yi=Y Xz
N:i=N-1

}

Figure 1.1(a) shows how this program behaves for particular inputs; it is exactly
as you would expect by association with other imperative languages. The chop
operator (;) denotes sequential composition, and the operators < and := denote
assignment; the former denotes initialisation, the latter unit-assignment.

The only major imperative construct that does not seem to fit easily into
Tempura is the goto statement.” However, all the most common uses of the goto,
for conditional branches, exception handling and so on, can be represented in
Tempura. It is a great advantage of the language that a large body of existing
software can be run with only cosmetic changes. But do not be deceived by this
similarity; the Tempura program is also a formula in ITL, and may be transformed
and verified accordingly.

1.3.2 Array Processing

Scientific programs often perform operations on large arrays, and such calculations
are often suitable for implementation on parallel computers. For this reason, a
number of parallel dialects of Fortran have been designed to enable whole vectors
to be processed in parallel. In Tempura, parallel operations on vectors and arrays
may be expressed with the iterated parallel operator forall. This is like the
sequential for-loop except that the iterations take place in parallel rather than

1The goto statement can, however, be represented in the standard way using continuations.
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Figure 1.2: (a) A systolic array for multiplying a stream of vectors X by a constant
3 x 3 matrix A giving a stream of product vectors Y; and (b) a single cell, showing
inputs and outputs.

one after another. For example, the assignment Y « X X A of the product of an
n-element vector X and an n X n matrix A to Y may be implemented as follows:

foralli<n:Yi=0A
for j<ndo
forall i < n:Yj:=Yi+Xj XAji.

Other formulations of this program are discussed in chapter 8.

An alternative way to speed up repetitive array processing problems is through
the use of systolic or pipelined algorithms. These algorithms have become pop-
ular in recent years because their regularity makes them easy to analyse and to
implement, especially as VLSI arrays.

Figure 1.2 represents a systolic array to multiply a stream X of vectors by a
constant matrix A, producing a stream Y of product vectors. This kind of array
might be used to transform a large number of vector co-ordinates according to
a single transformation matrix. Such operations are commonplace in graphical
display terminals where transformation speed is of the utmost importance.

The systolic algorithm in figure 1.2 is represented in Tempura as an array of
nodes operating in parallel. Every node is connected to its neighbours in each
direction (N, S, E and W), and has an additional connection Aij for loading an
element of the matrix A. The node at position (i, j) holds Ajj. Streams of elements
of X pass from W to E across the array, and streams of elements of the product
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vectors, Y, pass from N to S accumulating terms as they go. At each step the
product of A;; with X; (from the W) is added into Y; (from the N). The sum is
passed on to the S, and X; is passed on to the E.

The nodes are all identical; an individual node may be expressed in Tempura
as follows, using the operator gets, which denotes a repeated assignment from
each state to the next:

node(Aij,N,S,E,W) % Sgets (N+WxAij) A Egets W.
This algorithm, which is typical of many systolic algorithms, is described in greater
detail in chapter 2.

1.3.3 Functional Languages

Functional languages provide an abstract way to escape dependency on conven-
tional architectures [Bac78]. These languages have simple and elegant semantics;
a functional program, written in “pure” Lisp [MAJ62] or ML [Mil84] say, is just
a mathematical function whose execution is an application of this function to
particular arguments.

Functional languages are basically static, for they exclude the notions of state
and change; dynamic variables can only be represented indirectly by means of lists
of values or as higher-order functions. Whilst this is mathematically acceptable,
it obscures the intended meaning. One can write an expression such as A + B in
Tempura to represent the changing sum of two values, but in a functional language
one is forcibly reminded that A and B are actually lists or functions.

Functional languages are certainly not committed to any particular architec-
ture because they do not contain any mechanisms to govern the flow of control.
They may take advantage of parallel execution, but can equally well be imple-
mented sequentially. However, this generality means that functional programs do
not always make the best use of the special features of conventional processors, and
there are particular inefficiencies associated with maintaining large data structures
by purely functional means. The naive strategy for updating large data structures
entails copying the whole structure, with the consequent garbage collection over-
head; more sophisticated strategies introduce a higher access overhead. These
problems have led to the introduction of imperative constructs into functional
languages, examples being prog, setq and replaca in Lisp.

Recursive functions can be defined in Tempura, but they are evaluated on a
single state and are to be viewed as static expressions, not dynamic programs.
For example, the following I'TL specification asserts that the list A ends up with a
sorted version of its initial value,

A — sort(4),




but this is seen as a property which a sorting program ought to have, rather than a
complete program. It uses the function sort, which works by recursively merging
the left and right halves of A (denoted by 1t(A) and rt(4)).

sort(A) % if |A| < 1thenA

else merge(sort(1t(4)),sort(rt(4))).

A mergesort program may be derived from this function by adding operational
details which have no analogue in a functional language. In particular, the flow of
control must be defined using the parallel and sequential composition operators.
A suitable program to sort a list A of length 2" is given below. The two recursive
sorts are combined in parallel with logical “and” (A), then in sequence (;) the two
halves of the list are merged. An efficient way to perform the merge is explained
in chapter 7.

mergesort(n,4) 4l £ n = 0 then empty

else {
mergesort(n — 1,Ay ,n_1) A mergesort(n—1,An_1 on);
A= merge(Aongn-i, Azn—luzn)
}.
The behaviour of this algorithm on a particular list is illustrated in figure 1.1(b).
Observe that the list is sorted in situ, something which cannot be expressed in a

functional programming language.

1.3.4 Dataflow Programming

The dataflow approach, embodied in the programming language Lucid [WA85], is
similar to the functional approach, but represents dynamic behaviour by taking
the arguments and values of functions to be (infinite) streams which represent
sequences of values over time. As a program executes, successive values of these
sequences are generated, and special functions are provided to refer to values at
other points in time, such as next to access the value at the next time instant. Like
functional programs, dataflow prograins have elegant mathematical properties, but
they do not make efficient use of conventional processors, and this has led several
researchers to investigate the potential of special-purpose dataflow computers.

However, there seem to be several obstacles that must be overcome if such
machines are to succeed. One of these is the inefficiency of maintaining large
data structures, which is as much a problem for the dataflow approach as for
the functional approach. Other problems concern the long instruction execution
cycle of dataflow computers and the lack of instruction pipelining. Perhaps these
problems will be overcome, but after more than a decade of research into dataflow,
not one commercial machine has been built.

Some aspects of Tempura are reminiscent of the dataflow approach. For exam-
ple, the Tempura predicate tot(X, ) below maintains a running total of the values
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of X in the variable S. The sum § is initially 0 and thereafter is incremented by X
on each state.

def

tot(X,S8) = S=0ASgetsS+X

However, it is possible to write “non-causal” programs in Lucid,? and these will not
execute in Tempura, though they are still acceptable formulae of ITL. For example,
the predicate dif£(X, D) below specifies that D holds the difference between the next
and the current value of X,

diff(X,0) % D is (next(X) - X).
This form of expression is not acceptable in Tempura because the value of D must
be determined before the next value of X is known. On the other hand, ordinary
imperative constructs, such as assignment and iteration, are present in Tempura
but have no analogue in Lucid.

1.3.5 Logic Programming

Logic programs3 written in languages such as “pure” Prolog are collections of
assertions in first-order logic. The assertions, which are cast in the form of Horn
clauses, represent the specification of the problem to be solved. The solution is
deduced from this specification using techniques designed for automated theorem-
proving,.

The goal of logic programming, as expressed by Kowalski [KowT79], is that a
programmer should only need to supply the specification of a problem, leaving
the computer to determine how to actually solve it. If achieved, this goal would
lead to a particularly straightforward semantics, but in practice logic programs
use control operators, such as cut, and an operational version of negation that is
not the normal logical one.

Logic programs can be very efficient in certain kinds of application, especially
those which involve deduction from a set of rules, such as expert systems, and
this has led to enormous interest in special-purpose logic programming machines,
notably in the Japanese fifth-generation project. Nevertheless, Prolog is not a
good language in which to express algorithmic or real-time programs, which make
no use at all of its theorem-proving features.

Prolog programs, like functional programs, are essentially static, but can rep-
resent dynamic systems implicitly in similar ways. Recent extensions to Prolog,

3By this I mean non-causal in the synchronous interpretation taken in Tempura.

3The term “logic programming” has come to be synonymous with programming in the Horn
clause or Prolog style, usually in first-order logic. The work described below is also, in a sense,
logic programming since it uses temporal logic as a programming language, but the style is more
conventional and ‘the use of problematic features (like negation) is avoided.
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such as Parlog [Gre87] and Concurrent Prolog [Sha86], allow the programmer to
take advantage of concurrent execution, though still within a static framework.
To represent dynamic behaviour directly requires a more powerful logic, such as
temporal logic, and logic programming languages based on temporal logic have
indeed been proposed. Examples include Gabbay’s Temporal Prolog [Gab87], and
Abadi’s Templog [AMS8T].

Although there are significant differences between these two languages, they
are united in their general approach. Both are based on linear-time (not interval)
temporal logic and therefore do not have the sequential composition operator, and
both follow the mainstream of logic programming. It may therefore be appreciated
that the aims of these languages differ greatly from those of Tempura; they are
certainly not intended for writing efficient deterministic programs.

Unlike Tempura, it is the predicates that are temporal in these languages;
variables are static. For instance, Abadi gives an example program to calculate the
Fibonacci sequence, which is expressed by the ITL formula below. The predicate
Fib(x) holds for different values of x at different times; the first Fibonacci number
is 0, the next one is 1, and thereafter the one after next is the sum of the current
and the next.

Fib(0) A next Fib(1) A
always
Vx,y,2z : {{Fib(y) A (next Fib(z)) A (x =y +2z)} D {next next Fib(x)}}.

This program cannot be expressed directly in Tempura, but the following program
uses dynamic variables to do the same job:

F=0Anext(F=1)A
3E'E7 : {1 gets F A next (¥ gots P/ A noxs (F is ¥+ 7).

Successive Fibonacci numbers are assigned to F on each step. The local variable
F’ holds the value of F on the previous state, and F” holds its value on the state
before that.

1.3.6 Tokio

The language Tokio, designed by Fujita and his colleagues at Tokyo Univer-
sity [FKTMS86], is an alternative executable subset of ITL. It is similar in many
respects to Tempura, particularly in the use of temporal constructs to describe
control mechanisms, but incorporates the unification and backtracking features of
Prolog, and can therefore execute a wider class of programs. It seems to be an
appropriate language for prototyping more abstract specifications than Tempura
can handle, but complexity issues make the execution of truly abstract specifi-
cations impractical. Tokio does not seem capable of efficient implementation on
conventional architectures.
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A Tokio program which uses backtracking is the parallel quicksort program
below. The predicate gs(L) sorts the list L by first partitioning L into two sublists,
Lo..pivot and Lpivot..[L|; SO that every element of the first is less than every element
of the second, and then sorting the two sublists in parallel. If L contains fewer
than two elements there is nothing to do, and L is kept stable.

def

gs(L) = if [L| £ 1 then stable(L)

else Jpivot : {
partition(L,pivot);
qS(LO..pivot) A qS(Lpivot..|L])
}.
The parallel recursive calls to gs may take different amounts of time to complete,
but by backtracking the Tokio system is able to choose a computation length which
allows both to finish. This is possible since no computation length is specified for
the base case, when |L| < 1. However, if a particular computation is chosen in this
way one cannot identify the behaviour of the program with its logical interpretation
because an infinity of other computations of different lengths would also satisfy
gs(L), but they would not be discovered by the Tokio interpreter.
In Tempura the quicksort program can be written in much the same way,
either by introducing explicit flags to decide termination, or by using the parallel
composition operator (see chapter 8) as follows:

qs(L) df i |L| < 1 then empty

else local pivot : {
partition(L,pivot);
qS(LO..pivot) ” qs(Lpivot+1..|L|)
}
The Tempura program is deterministic; it maintains the equivalence between pro-
gram and logical interpretation; and it can be executed much more efficiently than
the Tokio version. The two programs produce exactly the same result; indeed,
the Tokio program is a specification of the Tempura one. Nevertheless, there are
examples that can be executed in Tokio but not at all in Tempura.

1.3.7 Communicating Sequential Processes

The language CSP [Hoa85] is a development of the traditional sequential approach
for describing networks of communicating sequential processes, each with its own
thread of control. Related approaches include the programming language Oc-
cam [Inm84], which incorporates most of the ideas of CSP, and object-oriented
languages. All of these languages are founded on a coarse-grained view of parallel
processing together with a particular discipline for interprocess communication.
They can be implemented efficiently on any architecture that supports concurrent
processes and message passing.
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¢s =——>| LEXER > PARSER |———|EVALUATORF—— answer

Figure 1.3: A pipelined evaluator for arithmetic expressions

These languages have well-defined semantics, and have the advantage that they
encode a number of decisions about message passing and information sharing that
must be made explicit in Tempura, where they are not a part of the language.
However, they seem less suitable for the description of fine-grained concurrency.
Furthermore, since they also abstract from timing details, including the mechanism
by which interprocess communication is actually achieved, they do not seem to
offer the same potential as Tempura for general real-time applications.

In chapter 10, I show how to define a stream-based communication mechanism
in Tempura. Operations put(4,X) and get(4,X) may be used to send and receive
data X on the stream A; they are similar to the operations A!X and A?X in CSP. With
these operators it is possible to construct networks of communicating processes,
just as in CSP. Figure 1.3 shows a pipelined system, comprising a lexical analyser,
parser and evaluator, for evaluating simple arithmetic expressions which are input
in the form of character arrays. It is expressed as the parallel composition of the
three processes communicating via the streams CS, TS and PS,

lexer(CS,TS) || parser(TS,PS) || evaluator(PS,answer).

The characters of the initial expression are fed into the lexical analyser on the
stream CS. Tokens output from the lexical analyser on the stream TS are parsed
into reverse polish form, output on the stream PS, and evaluated to give the final
result in answer.

1.3.8 Synchronous Languages

Real-time programs require features for timing, exception handling, and so on
that are ill-defined in most conventional languages, and synchronous languages
have been proposed as a way to handle these concepts in a rigorous way. Two
examples, Esterel [BC84] and Lustre [CPHP87], cover much the same ground,
but Esterel is imperative whereas Lustre is declarative. Both languages may be
compiled into the form of finite automata, which execute efficiently, and both
languages have well-defined semantics. Lustre is closely related to the dataflow
language Lucid, which was described in section 1.3.4, and suffers from similar
problems in the efficient representation of data structures.
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Each of these languages has a formally defined notion of time, just as Tempura
does. For instance, Caspi et al. define a simple process that counts in steps of
incr from the initial value init; but when Reset is signalled, the counter is reset
to the value init. They then show how this process can be clocked according
to a boolean signal Ck, so that the counter is only incremented when Ck is true.
The same thing can be done in Tempura using temporal projection, which will be
described in chapter 9. The clocked counter might then be expressed in Tempura
as follows:

count(T,init,incr,Reset) when Ck.

The variable T holds the value of the counter.

Caspi et al. go on to describe how to build a simple stopwatch program using
their counter, and the stopwatch can be implemented in the same way in Tem-
pura. However, let us take a different line and present a simple stopwatch in the
imperative style, closer to the way it might be done in Esterel.

This stopwatch is controlled by a single boolean signal Run. When Run becomes
true the stopwatch starts running and the time T is initialised to zero. The time T is
then incremented by one on every hsec time steps (corresponding to one hundredth
of a second) until Run becomes false. The operator trap is used terminate the
timing as soon as Run becomes false.

while true do {
halt (Run) A T « 0;
trap —Run : {
while Run do {
len(hsec) AT« T+1

}
}
}.

The operators halt and len are used to indicate when to terminate; the former
takes a boolean condition, the latter an integer length.

An important difference between Esterel and Tempura has to do with the
duration of actions. In Esterel it is assumed that actions take no time to perform,
so for example, an assignment is supposed to happen instantaneously, and Lustre
is based on a similar assumption. But in Tempura every action has an associated
duration, which may be zero but usually is not.

1.3.9 Restricted Instruction Set Languages

Instead of attempting to formulate ever more complex proof rules to handle the
intricate and sometimes badly thought out constructs which appear in many
programming languages, it has been suggested by Tang [Tan83], Chandy and
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Misra [CM88] and Pnueli [Pnu83] that we adopt a simpler low-level programming

notation with a few elegant proof rules.
Tang proposes a language (called XYZ/E) based on linear-time temporal logic
in which programs are essentially of the form

always {if co then ao || ... || if ¢y then ayn},

where each ¢4 is a boolean expression, and the a5 are multiple assignments of the
form

’Uo,...,’vn = 60,...,en,

and the operator || denotes parallel composition. Initialisation and termination
are handled by special constructs.

Tang does not propose that his language be used directly for high-level pro-
gramming, but suggests that it may be used as a common base language into which
other languages are compiled. To assist the compilation a special program counter
is used. This may appear in conditions and in assignments. For example, assign-
ing the value n to the program counter is rather like the directive goto n in an
ordinary sequential language. Tang describes a mapping from Algol-like notation
into his language.

The languages proposed by Chandy and Pnueli are similarly based on parallel
multiple assignment statements, but provide a more delicate treatment of variables,
and handle termination differently. Also, their parallel composition operator has
an interleaving semantics, since several assignments may be enabled at once and
have contradictory effects. Pnueli describes the semantics in linear-time temporal
logic.

Each of these languages offers a possible way to unify various styles of program-
ming in a single framework by providing a mapping from a higher-level language
into the parallel assignment form. I believe that Tempura could be used in the
same way; at least it is certainly possible to represent repeated multiple assign-
ment programs in Tempura. However, the approach taken in Tempura has been
to define the higher-level constructs directly in temporal logic.

The restricted instruction set languages have the advantage of the less complex
semantics of linear-time temporal logic (without the chop operator), but they
sacrifice the power and clarity of expression that can be achieved with sequential
composition. Moreover, Moszkowski has given a translation from ITL into linear-
time temporal logic [Mos83], which means that one can, in principle, eliminate
sequential composition from Tempura programs if desired.

1.4 My Contribution

Much of this research was done jointly with Ben Moszkowski, and as with nearly
all joint research, it is difficult to pinpoint who was responsible for each and every
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idea. Clearly all the early ideas were due to Moszkowski. The use of ITL for
specifying hardware, and the idea of using it as a programming language were
entirely his. In this area I have only formalised ITL in a different way and clarified
some of the ideas (chapters 3 and 4). Moszkowski also wrote the first interpreter
for Tempura in Lisp, but I have since written a much faster interpreter in C, and
have made a number of improvements to the original design.

The main contribution of this thesis is the introduction of inertial variables
into the language, using the technique described in chapter 6. Not only does this
malke the description of sequential systems very much easier, it also makes possible
the use of a new operator for coarse-grained parallel composition, as described in
chapter 8.

Apart from one example, which was originally done by Moszkowski and later
improved by me, all of the experimental work described in this dissertation is
entirely my own. In particular, much of the treatment of real-time time systems
in chapter 9 is completely new.

My preliminary attempts at using the HOL theorem prover to verify Tempura
programs were at the suggestion of Mike Gordon, who also helped me to get going.
Other than that, all the work on verification and transformation is my own. This
topic is introduced in chapter 5. In later chapters I state several theorems about
programs, but in order to avoid misleading the reader I should point out here that
most of them have not been rigorously proved.
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Chapter 2

A Practical Introduction

This chapter provides an informal introduction to the temporal logic programming language, Tem-
pura. The introduction is based on an interpreter for Tempura. All the main language constructs
are described, and each is illustrated with a small example. The chapter ends with a complete
description of two parallel matrix multiplication programs. The purpose of this chapter is to give
you an intuitive understanding of Tempura in preparation for the theoretical work that follows.

Tempura is a computer programming language that is especially good at express-
ing temporal behaviour. Suitable applications for Tempura include the design of
parallel algorithms and real-time systems. But Tempura is doubly useful when
program correctness is important, because it is a language with strong mathemat-
ical foundations.

Later on I will give more substance to this claim, but first I want to give a
feeling of how Tempura looks in practice. I will show how Tempura handles a
number of different styles of programming. I shall also try to convey how its
mathematical origins manifest themselves. This will be seen, for example, in the
way that all Tempura operators are defined in terms of just a handful of primitive
ones; that there is a precise notion of program equivalence; and that strict checks
can be made to ensure a variable is uniquely defined before it is used.

This introduction is based on an existing Tempura interpreter which runs on a
uniprocessor; and the examples described below form a single continuous session
with the interpreter. Used in this way Tempura is best regarded as a simulation
or prototyping language, but its potential as an honest-to-goodness parallel pro-
gramming language ought not to be in doubt. This will anyway be enlarged upon
in subsequent chapters.
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2.1 The Interpreter

The interpreter prompts the user for a command with a message indicating the
current global state number, which is initially 0.

Tempura 0>

Possible responses include commands for defining and executing programs, as well
as various assertions about the current state. An example of the latter kind would
be to assert that the variable A has value 99.

Tempura 0> A=99.

(user input is always followed by a full stop, “.”). This assertion can be checked
by asking for the value of A:

Tempura 0> output(A).

A=99
Consistency is enforced. An attempt to assert that A is also a five-element list
elicits the following error message

Tempura 0> list(A,5).

xx*Tempura error: found expression of type integer when expecting list

Evaluating: list(A,5)

since a variable cannot have two values at once. But it is possible to imagine a

different variable, also called A, which is a list. In other words there does exist an
A which designates a five-element list.

Tempura 0> exists A: list(A,5).

Of course, this version of A only exists for the duration of the command. It is, in
other words, a local variable. '

The following command introduces a list A, sets each of its elements, and
prints it out. The logical conjunction operator and (also written “A”) combines
the operations in parallel.

Tempura 0> exists A:{

> 1list(4,5) and
> forall i<5:(A[i] = i mod 2) and
> output (A)
>}
A=[0,1,0,1,0]

But the top-level version of A retains its original value.

Tempura 0> output(A).

A=99
The operator exists denotes existential quantification (also written “3”), which
is the logical way to declare local variables. The other quantification operator,
forall asserts its argument for all values of the index variable in the given range,
in this case 0 < i < 5. It is a bounded form of the usual universal quantifier, “y7.,

18




2.2 Predicates, Functions and Macros

Predicates in Tempura take the role of procedures in ordinary imperative lan-
guages. Logically, they are just boolean-valued functions, but they are distin-
guished from ordinary functions by their manner of use; the interesting thing
about a function is the value it returns, whereas the interesting thing about a
predicate is the pattern of behaviour it defines. Functions and predicates are
defined in exactly the same way.

New definitions may be introduced by the command define, whose syntax is:
define object = definition. For instance, the command below defines a function
to test whether a list is sorted in ascending order (the notation [1| denotes the
length of the list 1).

Tempura 0> define ordered(l) = forall i<|1il-1 ¢ 1[i] <= 1[i+1].

That is, a list 1 is ordered if each element is less than or equal to the next.

An alternative form of definition uses the command defmacro. For instance,
the following predicate asserts its second argument (itself a predicate) for all ele-
ments of a list 1:

Tempura 0> defmacro forallin(l,p) = forall i<l1| : pCL[il).

This predicate is just an alternative form of universal quantification, and is equiv-
alent to a conjunction of terms. For instance,

forallin([1,3,5],p) = p(1)Ap(3) A p(5)-

It is predefined in the more general form forall x € 1 : p.

A function or predicate defined in the first way, using define, is like a normal
procedure and calls its arguments by reference in much the same way as a Fortran
subroutine would; when called, it is supplied with a list of pointers to the actual
arguments. On the other hand, a definition made with defmacro is expanded tex-
tually where it is used, in a similar way to macros in other languages. Definitions
made with define are generally more economical of resources than those made
with defmacro, but do not always work as required.

For instance, suppose that you want to define a predicate tri(b,p,p’,p") which
is to execute p if bis 1, p’ if b is 0 or p” if b has some other value. This predicate
may be defined using defmacro as follows:

Tempura 0> defmacro tri(b,p,p’,p") =
> if b=1 then p else if b=0 then p’ else p”.

where the conditional if b then p else p’ has its usual meaning; that is, if b is
true do p, otherwise do p’. When tri is called it expands in-place. Thus, in the
following test,

Tempura 0> tri(1,output("hi"),output("lo"),output("error")).
Qutput="hi"
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it expands to the formula

if 1 = 1 then output(“hi”)
else if 1 = 0 then output(“lo”)
else output(“error”).

If it had been defined with define the system would have attempted to evaluate
all arguments before executing the body of tri, and this would not have worked,
of course. However, this example does not really justify the need for macros; for
that we must wait until section 2.4.4.

Definitions of either form may be recursive. A mergesort, for example, 1s
defined below. It sorts a list by recursively merging the left and right halves of
the list.

Tempura 0> define sort(1l) = {
> if |11<=1 then 1
> else merge(sort(lt(l)) ,sort(rt(1)))
> 1.
Tempura 0> define merge(1,1") = {
> if |1]=0 or |1'|=0 then 11
> else if hd(1l) <= hd(1")
> then cons(hd(1l),merge(t1(1),1))
> else cons(hd(1l’),merge(1,t1(1)))
> ¥

The functions 1t(1) and rt(1) denote the left and right halves of 1; that is,
1t(1) = lo.j1y/2 and rt(1) = 12 The function hd(1) = 1o, the first element
of the list 1, and t1(1) = 11,1}, the list comprising every element.of 1 except the
first. The other function, cons(x,1), denotes the list [x]"1, whose head is x and
whose tail is 1. The mergesort is exercised below.

Tempura 0> exists 1,1": {
> input(l) and 1’=sort(l) and output (1/,ordered(1’))
>}

1=[6,3,2,0,7,1,4,5].

1’=[0,1,2,3,4,5,6,7] ordered(l’)=true

Tt can be tested on a few lists in this way, but to really be sure that sort will sort

any list of integers one must formally prove it. Chapter 5 explains how.
Functions and predicates are stored internally as anonymous functions, known

as lambda expressions (as in LISP, for example). Here is the definition of sort:

Tempura 0> output(sort).
gort=lambda(l): if |1] <= 1 then 1 else merge(sort(1t(1)),sort(rt(1)))

Lambda expressions are sometimes useful in their own right. Consider the pred-
icate fsum(n,£) below, which sums the first n values of the function f (starting
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from 0).

Tempura 0> define fsum(n,f) = if n=0 then O else £(n-1)+fsum(n-1,£).
Tempura 0> output (fsum(4,lambda(i): 1)).
fsum(4,lambda (i):{i})=6

Use of a lambda expression in such situations avoids having to define a new named
function.

Both define and defmacro are system (meta-level) commands. A new defini-
tion simply replaces an old definition of the same name without checking whether
the name was previously defined. They should not be used to simulate dynamic
behaviour, and as we shall see they need not be.

2.3 Programs

So far, all assertions have referred to a single point in time, whereas interest-
ing computations generally involve quantities that change with time. One of the
strengths of Tempura is its ability to talk about evolving computations in a precise
way. Mostly, it does this with just three new primitive operators: empty, next
and chop (written ). These will be described shortly, but first some general
comments about variables and programs.

Tempura variables come in two flavours: state variables which change with
time, and static variables which do not; once assigned, the value of a static variable
is fixed. By convention, names beginning with an upper case letter are state
variables, all others are static. It is very important to remember this convention.

A program describes how the state of a particular system changes over an
interval of time. Time is measured on a virtual timescale whose units correspond
to computational steps; they could relate directly to real time units, but need not.
The length of a computation is simply the number of steps it takes (one less than
the number of states).

Take the computation shown in figure 2.1, for example. This shows how the
values of two variables, Y and N, change during a calculation of x". Initially ¥ =1
and N = n, and on each unit of time Y is multiplied by x and N is decremented
until finally N = 0 and Y = x®. The whole computation takes n steps.

There are two ways of viewing this computation which give rise to two corre-
sponding ways to program the calculation in Tempura.

1. The computation is composed of n unit steps, one after the other. On each
step Y is multiplied by x and N is decremented.

9. The value of Y on the next state is always x times its value on the current
state, and the value of N is one less than its current value. The computation
terminates when N = 0.
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time | Y N
0|1 n
ilx n-—1
21%x%2 n—2
n|x* 0

Figure 2.1: Calculation of x™.

Naturally, these two views are logically equivalent, and in Tempura this can be
formally proved. But before getting too far ahead, I need to introduce some
operators which will be needed later on.

2.4 Operators

Tempura provides several built-in operators for constructing programs. Some of
them have been encountered already, others are described below. Only the oper-
ators =, and, if ...then...else.., exists, empty, next, chop and prefix are
primitive, the rest can be defined in terms of these.

2.4.1 Empty

The predicate empty is used to mark termination, in other words it is true on (and
only on) the last state of a computation. It can be tested to see if a computation
has entered its final state, or it can be asserted in which case it forces termination.
The program

empty and output("hello world")

outputs the string “hello world” and terminates straight away. It can be exe-
cuted with the command

Tempura 0> run {empty and output("hello world")}.
State 0: Output="hello world"

Done! Computation length: O.

The command run is another system command. The effect of running a program
is to generate the output that it defines. Notice I said the output because Tem-
pura programs must be deterministic. Any two runs of the same program will
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produce the same output. The following examples will not execute even though
they contain no errors of syntax.

Tempura 0> run {empty and if X then output("hello world")}.

x**Tempura error: state #0 is not completely defined.
Evaluating: if X then {output("hello world")} else {true}
Undefined: { X }

Tempura 0> run {output("hello world")}.
s**Tempura error: the interval length is undefined.
Evaluating: run output('hello world")

The first example makes an attempt to use an undefined variable; the second
contains no indication of when to terminate. A termination statement, or an
indication of computation length, is an essential part of every Tempura program.

2.4.2 Next

The operator next is used to describe what happens next, where “next” means
“after one unit of virtual time”. For example, the program

A=0 and next{A=1 and next{A=2 and emptyl}}
gives A the values 0, 1 and 2 on successive states of a computation of length two.

Thankfully, there are more concise ways to write programs such as this.

2.4.3 Computation Length

Part of the effect of next is to ensure that something does happen next, and
consequently that empty is false. This condition means that the length of any
computation can be defined in terms of next and empty. For example the unit-
length computation is given by next empty,

Tempura 0> run{next empty}.
Done! Computation length: 1.

but there is a built-in operator, skip, with this definition. A more general predi-
cate len (n), to specify a computation length of n, can be defined as next applied
to empty n times,

Tempura 1> define len(n) = if n=0 then empty else next{len(n-1)}.

though again it is predefined.
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2.4.4 Always

Something is considered to happen always if it happens immediately and then
again after each successive step. As a first attempt at defining this, one might

try:
Tempura 1> defmacro always(p) = {p and next always(p)l}.

but this is wrong because at the end of an interval, when empty is true, there is no
next step. This version of always will therefore overrun the end of the interval.

Tempura 1> run {skip and always(A=0 and output(A))}.
State 0: A=0
State 1: A=0

skkTempura error: attempt to re-assign interval length.
Evaluating: next always((A = 0) and output A)

An error is signalled when the next operator tries to make empty false.
A correct definition checks for termination before asserting always (p) on the
next state.

Tempura 2> defmacro always(p) = {p and if “empty then next always(p)l}.
Tempura 2> run {skip and always(A=0 and output(4))}.

State 0: A=0

State 1: A=0

Done! Computation length: 1.

The operator always is one of the most important temporal operators, and is
therefore built into the interpreter.

A number of new operators can be defined in terms of always. For instance
temporal equality, which asserts that A and B are equal throughout the computa-
tion,

Tempura 3> defmacro is(A,B) = always (A=B).
and the predicate halt (4), which defines a termination condition, A.
Tempura 3> defmacro halt(A) = always(if A then empty else “empty) .

This definition says that empty is true exactly when the condition A holds, which
is another way of saying that the computation terminates as soon as A becomes
true. For instance, the following program inputs successive values of the variable
X, and terminates when X < 0. The values of X are input by the user (terminated
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by a full stop “.”).

Tempura 3> run exists X:{always(input (X)) and halt(X < 0)}.
State 0: X=1.

State 1: X=2,
State 2: X=3.
State 3: X=-1.

Done! Computation length: 3.

Both halt and is are predefined, the latter being one of many binary infix oper-
ators; that is, it may be written: A is B.

2.4.5 Assignment

Another useful binary infix operator is temporal assignment. The temporal as-
signment A « B is another way of writing assign(A,B), where the predicate
assign(A, B) is defined below. It asserts that the final value of A is equal to the
initial value of B.

Tempura 6> define assign(A,B) =
> exists x:{x = B and always(if empty then A = x)}.

This definition works by storing the initial value of B in a local variable x and then
at the end of the interval, when empty is true, assigning the stored value to A.
Note that x is a static variable, and therefore retains its value.

Consider, again, the computation in figure 2.1. This forms the nth power of x
in the variable Y by repeated multiplication, using an auxiliary variable N to count
the steps. The overall effect is that Y is assigned x* in n steps and N finishes up
with the value 0. This is specified by the predicate exp_spec(x,n, Y, N), where

Tempura 6> define exp_spec(x,n,Y,N) = {

> Y=1and N = n and
> len(n) and

> Y <~ xx%n and N <- O
> 1.

The assignments take place in parallel. For example,

Tempura 6> run exists Y,N: {exp_spec(2,3,Y,N) and always output(Y,N)}.
State 0: Y=1 N=3
State 1: Y=7 N=7
State 2: Y=7 N=7
State 3: Y=8 N=0

A question mark, “?”, indicates that the corresponding variable is undefined.
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2.4.6 Sequential Behaviour

It is possible to build quite sophisticated programs using only next and empty,
and some examples are presented later on, but the sequencing operator, chop, gives
even greater capabilities. Chop, which is written “” breaks a single computation
into two subcomputations and describes what happens on each.

The two subcomputations intersect at a single state, so the length of the com-
bined computation is equal to the sum of their individual lengths.

Tempura 9> run {len(2);skipl}.

Done! Computation length: 3.

Each of the subprograms references its own local version of empty so that it knows
when to finish, as may be seen in the following program:

Tempura 12> run exists E,E': {show_empty(E,E) and always output (E,E)}
> where

> define show_empty(E,E") = {
> len(2) and E is empty;
> skip and E' is empty
> }.

State 0: E=false E'=?

State 1: E=false E'=7

State 2: E=true E'=false

State 3: E=7 E'=true

Done! Computation length: 3.

On the second state the first subprogram ends and the second begins. The operator
where in this program means the same as and, but limits the scope of the second
definition to the body of the first.

Superficially, chop behaves like a statement terminator in a conventional im-
perative language (the semicolon in Pascal, for example). A simple example is the
following program which increments I twice.

Tempura 15> run exists I: {I=0 and inc2(I) and always output(I)}

> where
> define inc2(I) = {
> skip and I <- I+1;
> skip and I <~ I+1
> }.

State 0: I=0

State 1: I=1

State 2: I=2

Done! Computation length: 2.
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Assignment on the unit interval, such as skip AT « I+1in the definition of inc2,
turns out to be a very common operation. So much so that it is worth defining a
special version of assignment, called unit-assignment, to handle this case.

2.4.7 Unit-Assignment and Initialisation

Unit-assignment is an assignment from one state to the next. It is another binary
infix operator, with the syntax A := B, and defined simply as:

Tempura 17> defmacro uassign(A,B) = {skip and A <- B}.

Of course, an implementation of unit-assignment can be much more efficient than
the above definition might suggest (which is the main reason for giving it special
syntax).

Another kind of assignment that occurs frequently is initialisation; that is, the
assignment of an initial value to a variable. This is easily achieved in zero-time
using equality,

Tempura 17> defmacro iassign(A,B) = {empty and A = B}.

but, as with unit-assignment, it is convenient to have a special operator, A <= B,
with the execution time built in. This may also be written A == B in programs.

2.4.8 Multiple Assignments

Multiple parallel assignments can be written in an abbreviated syntax. For in-
stance, the assignments

A :=0and B := 1 and C := 2
may be written
A,B,C :=0,1,2

and similarly in the general case for an arbitrary number of assignments. In fact,
all the assignment operators, =, :=, < and « may be abbreviated in this way (as
may the operators gets and stable, which will be encountered shortly).

2.4.9 Tteration

Iteration can easily be expressed as a recursive application of chop. For example,
the familiar while-loop behaves as follows:

Tempura 17> defmacro whiledo(b,p) =
> if b then {p;whiledo(b,p)} else empty.
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That is, if b is false the loop reduces to empty, otherwise p is executed and then
b is tested again. However, this definition must be used with care, for if p is a
zero-length computation b is repeatedly tested on the same state, which means
that it cannot possibly change between successive tests. Thus, if b is initially true
the program will loop forever. A correct logical definition of the while-loop is given
in chapter 3.

The loop whiledo(b, p) is, of course, predefined with the time-honoured syntax,
while b do p, and a number of other iterative operators are also predefined:

1. repeat puntil b, where b is a boolean expression.

9. for i < n do p, where i is a variable and 7 an integer expression.
3. for i € | do p, where 4 is a variable and [ a list expression.

4. for ntimes do p, where n is an integer expression.

Hopefully, the intended meanings of these loops are clear, but they will anyway
be discussed again later. They can all be expressed in much the same way as
whiledo.

The following little iterative program computes x® in n unit steps using the
predicate whiledo.

Tempura 17> define exp_pgm(x,n,Y,N) = {
> Y,N == 1,n; whiledo(N"=0, Y,N := Yxx,N-1)
> }.

A test run shows that this program meets its specification, exp_spec(x,n, Y, N), for
x =2 and n = 3,

Tempura 17> run exists Y,N: {exp.pgm(2,3,Y,N) and always output(Y,N)}.
State 0: Y=1 N=3

State 1: Y=2 N=2
State 2: Y=4 N=1
State 3: ¥Y=8 N=0

Done! Computation length: 3.

and it can be proved that the specification is met in the general case, in other
words, if the program exp_pgn(x,n,Y,N) executes on a given interval, then the
specification exp_spec(x,n,Y,N) is also true on the interval. This is discussed in
more detail in chapter 5.

2.4.10 Gets

An alternative approach to the computation of x* is to treat each variable sepa-
rately, observing how its value changes from each state to the next, so that N is
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decremented from state to state and Y is always multiplied by x. The predicate
gets expresses this kind of repeated assignment.

Tempura 20> define gets(A4,B) =

> always
> if “empty then
> exists x: {x=B and next(A=x)}.

It is another binary infix operator, A gets B, and may take lists of arguments in
the same way as the other assignment operators.

If an expression is repeatedly assigned to itself, A gets A for example, its value
does not change, and it is said to be stable.

Tempura 20> defmacro stable(A) = A gets A.

Similarly, stable(4,B,C) denotes that variables A, B and C are all stable, and
likewise in the general case.

You might not think that this operator is much use, but as things stand one
must actively ensure that a variable remains stable when one doesn’t want its
value to change. For instance, in section 2.4.5 we saw that temporal assignment
has no built-in assumption about stability. However, in many situations storage
is assumed to remain stable unless explicitly changed, and stability can then be
implemented at no cost.

In chapter 6 I discuss a way to eliminate the need for stable altogether by
introducing a new operator which automatically maintains stability. The construct

localv:p

introduces a new variable which behaves just like an ordinary program variable.
However, the additional checking enforced by stable is sometimes useful.
Using gets it is possible to come up with another program, exp_pgn/(x,n,Y,N),
to calculate x™.
Tempura 20> define exp_pgm'(x,n,Y,N) = {
> Y,N = 1,n and halt(N=0) and Y,N gets Y*x,N-1
> }.

This program has exactly the same behaviour as the previous version, which is
hardly surprising because the two programs are logically equivalent. That is,

exp.pgn(x,n,Y,N) = exp pgm'(x,n,Y,N).
You can see that thisis true for x = 2 and n = 3 by simply executing the programs.

Tempura 20> run exists Y,N: {exp_pgm'(2,3,Y,N) and always output(Y,N)}.
State  0: Y=1 N=3

State 1: Y=2 N=2
State 2: Y=4 N=1
State 3: Y=8 N=0

Done! Computation length: 3.
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More generally, the equivalence can be formally proved. In fact, any occurrence
of gets can be replaced by an equivalent while-loop.

2.4.11 Extended and Prefix Computations

When two processes are combined in parallel with the logical “and” operator,
there must be a single interval on which they both execute without error. In
particular, this means that they must run for exactly the same number of steps.
For instance, the conjunction len(3) A len(5) cannot be executed satisfactorily.
Often, however, one wants to run a number of processes in parallel and simply
wait until they all have finished. This is achieved in Tempura by “extending”
the shorter processes using a new operator extend. A process is extended by
composing it in sequence with true (which executes on any interval).

Tempura 23> defmacro extend(p) = {p; true}.

For example, a process that takes three steps may be extended to wait for one
that takes five, so the program

extend(len(3)) and len(5)

would run for five units of time. A more relaxed form of parallel composition
can be defined in a similar way to extend. The construction p || p’ combines
two processes p and p’ in parallel so that the shorter is extended until both have
finished. It may be defined in Tempura by introducing flags E and E' to mark when
each process finishes. The parallel composition finishes when both flags are true.

Tempura 23> defmacro par(p,p’) = exists E,E": {

> {p and E is empty; stable(E)} and
> {p’ and E' is empty; stable(E)} and
> halt(E and E')

> .

There is a corresponding iterative construct forpar i < m : p for combining a
number of processes in parallel.

In some circumstances, however, one wants the parallel composition to ter-
minate as soon as the first of the individual processes finishes. This might be
the case when one of the processes has the task of monitoring for exceptions and
terminating the others when something is amiss. For instance, a timeout can be
effected by running a timer in parallel with another process in this way.

Thus, there is an alternative kind of parallel composition that meets this re-
quirement. Instead of extending the shorter process, it takes the prefix of the
longer one, using the operator prefix. The prefix of a program, prefix p, runs
successfully on any prefix of any interval that satisfies p. For instance, a five-unit
computation may be prefixed to stop after three steps, so the program

len(3) and prefix(len(s))
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finishes after three steps. However, prefix cannot be defined in terms of the
operators we have so far. It is another primitive operator of ITL.

With prefix, any two processes, p and p’, may be combined so that both are
terminated as soon as the first of them finishes. This is defined in much the same
way as par above, but takes the prefix of the longer process rather than extending
the shorter.

Tempura 23> defmacro bar(p,p’) = exists E,E': {

> prefix {p and E is empty} and
> prefix {p’ and E' is emptyl} and
> halt(E or E')

> 1.

The symbolic form of bax(p,p’) is p | »'.
Suppose, for example, that one wants to search two strings s and s’ in parallel
for occurrences of the word w. The search may be implemented as a for-loop.
Tempura 23> define search(w,s,P) =
> for i<|sl|-|wl do
> if s[i..i+|w]] = w then P := cons(i,P) else P := P.

It returns in P a list of the positions of occurrences of w. Suppose also that the
most important thing is to locate one occurrence of w as quickly as possible, so
the search may terminate when w is first encountered. The parallel search of two
strings s and s’ may then be done as follows, using both forms of composition:
Tempura 23> define par_search(w,s,s’,P,P’) =
> bar(halt(|P| > 0 or |P/| > 0),
> par(search(w,s,P), search(w,s’,P))).

Shown below is a test run to search the strings
s = "but thought’s the slave of life, and life’s time’s fool"
s’ = "and time, that makes survey of all the world, must have a stop"

for the first occurrence of the word “time”.
Tempura 23> run local P,P’: {

> P,P' = [1,[] and par_search("time",s,s’,P,P’) and
> always output(P,P’)
>}

State 0: P=[] P'=[]

State 1: P=[] P'=[]

State 2: P=[] P'=[]

State 3: P=[] P'=[]

State 4: P=[] P'=[]

State 5: P=[] P'=[4]

Done! Computation length: 5.
On the final state P’ holds the position of the first occurrence of the string “time”

in s,
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2.4.12 Other Operators

There is, of course, no limit to the number of useful operations that can be defined
in terms of the primitive ones, and a few more will be introduced in due course.
But some concepts cannot be expressed in this way. One example is the idea of
separate processes having different rates of progress. This gives rise to the concept
of temporal projection, which will be discussed in chapter 9.

2.5 A Complete Example

Finally, let us consider a complete example. The example to be tackled is matrix
multiplication, a problem that crops up in numerous applications, and one that
gives considerable scope for parallelism. The problem is specified as follows: Given
an n X n matrix A and an n element vector X, calculate the vector Y such that
Y « X X A, that is

n-1

foralli <n:Yi « Y XjAji.

j=0
Here is a Tempura representation of the specification, using the usual programming
notation, A[i, j] to denote the list element Aj:

define mult_spec(n,4,X,Y) =
forall i<n:
Y[i] <- fsum(n,lambda(j): X[jI1*A[j,il).

where the summation function fsum(n, f) is defined as above
defmacro fsum(n,f) = if n=0 then 0 else f(n-1)+fsum(n-1,f).

The specification can be implemented in a straightforward way by forming all
the inner products in parallel, and computing each one by sequential addition, as
below.

define mult(n,A,X,Y) =
forall i<n: {
Y[i] == 0;
for j<n do {
Y[il := YOiI+X[jI*Alj,i]
}
}.

The following program tests the multiplication predicate, mult, and combines the
specification in parallel to check the result. The variables are all local, and so
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automatically remain stable between assignments.

define mult_test(n) =

local A,X%,Y,Y: {
input(4,X) and
mult(n,A,X,Y) and
mult_spec(n,A,X,Y) and
always output(Y,Y’)

}

where array(A,n,n)

and 1ist(X,n)

and list(Y,n)

and list(Y',n).

Here array(A,m,n) defines A to be a fixed m x n array, which is actually represented
as a list of lists. For instance, the matrix a below is a 3 X 3 array.

define a = [[ 1, 2, 3],
[4’ 5’ 6]’
L 7,8, 91].

If all of the above definitions are stored in the file “matrix-mult.t”, then the
following sequence of commands cause the test program to be run.

Tempura 28> load "matrix-mult".
[Reading file matrix-mult.tl]
Tempura 28> run mult_test(3).
State 0: A=a,

State 0: X=[1,2,3].

State 0: Y=[0,0,0] Y'=[?,7,7
State 1: Y=[1,2,3] Y'=[?,7,7
State 2: Y=[9,12,18] Y'=[?,7,?
State 3: Y=[30,36,42] Y'=[30,36,42]

Done! Computation length: 3.

It can be seen that the program correctly calculates the product of X with 4, since
Y = Y’ in the final state.

This algorithm takes n steps. However, the inner product calculation is also
open to parallel attack. It can be performed in log(n) steps by doing the additions
pairwise in parallel using the “divide and conquer” approach. This method will
be further discussed in chapter 7.

Let us look instead at a completely different approach to computing the prod-
uct. In our first stab at the problem the data remained static throughout the
calculation, witness the assertion stable(A,X). But for a real application this
may not be the best way to proceed. For instance, if each inner product cal-
culation were to be performed on its own processor, then each processor in the
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Figure 2.2: A systolic array for calculating a stream of product vectors Y from a
stream of vectors X and a fixed matrix A.

preceding algorithm would need the same element of X at each step; and if a stream
of vectors were to be multiplied in turn by the same matrix, then the output would
be produced at a rate n times less than the rate of input. The algorithm above
does not perform well under either of these conditions. An application in which
both conditions apply is image transformation, where a large number of vector
co-ordinates must be transformed in the same way.

If execution speed is important a number of parallel processors may be used
to boost performance, and a better way to perform the multiplication is to keep
the transformation matrix fixed in an array of cells and have the streams of input
and output vectors flow through this array accumulating product terms as they
go. Eventually a new output vector will appear on every step. The method is
illustrated in figure 2.2.

Really, of course, the problem specification has been changed slightly. What is
asked for now is an algorithm that always produces a new output vector, Y, some
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fixed time after being supplied with a new input, X. The new specification uses
the predicate delay(n, A, B) which specifies that the value of A appears at B after
fixed delay, n. A list is used locally to hold the delayed values.

defmacro delay(n,A,B) =

exists C: {
C[0] is A and
forall i<n: {

¢[i+1] = B and C[i+1] gets C[il]

} and
B is C[n]

}

where list(C,n+1).

Notice that B retains its initial value over the first n states whilst values of A are
percolating through.

The stream multiplication algorithm is then specified in much the same way
as the one-shot multiplication algorithm above, with the assignment replaced by
a delay.

define stream_mult_spec(n,A,X,Y) =
forall i<n: delay(d(n),fsum(n,lambda(j): X[j1*A[j,i]),Y[il).

The required values of Y begin to emerge after some fixed delay, d(n).

The final program takes the form of an n X n array of nodes interconnected in
both the north-to-south and west-to-east directions to form a square grid, as shown
in figure 2.2. Elements of the matrix A are stored one per node, and elements of
the input vector X are supplied, appropriately delayed, at the western edge. On
each step node (i, j) adds the term X; X A;; into Yj and passes Y; on to the south
and X; on to the west. However, a node does not need to know its position in the
array, so all nodes are identical.

define node(Aij,N,S,E,W) = 5 gets N+WkAij and E gets W

After a delay of 2 X n + 1 steps the corresponding output vector Y appears at the
southern edge. Thus, for this algorithm d(n) =2 xn 4+ 1.

The whole array is the parallel composition of the n x n nodes, together with
delays at the eastern and southern edges to synchronise the elements of X and Y,
and a source of zeroes at the northern edge to initialise the elements of Y. Nothing
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is connected to the western edge; the elements of X are simply discarded.

define stream_mult(n,A,X,Y) = {
exists NS,WE: {
forall i<n: {

NS[0,i] is O and

delay(i+1,X[i]l,WE[i,0]) and

delay(n-i,NS[n,i],¥[i]) and

forall j<n:

node(Ali,j],NS[i,3],Ns[i+1,3],WELL,j+1],WELL,j1)

3

where zero_array(NS,n+1,n) and zero_array(WE,n,n+1)

.

The arrays NS and WE denote north-to-south and west-to-east connections. There
are n sets of n+1 node-to-node connections in each direction, the end connections in
each set being used for input and output. All of these connections are initialised to
zero by the predicate zero_array (there is a corresponding initialisation predicate
zero_list for lists).

The test harness takes successive values of X from an input list x1ist, and
again executes the specification in parallel with the program to check results.

define stream_mult_test(n) =
local A4,X,Y,Y: {
generate_inputs(n,A,X) and
stream_mult(n,A,X,Y) and
stream_mult_spec(n,A,X,Y) and
always output(Y,Y’)
}
where
define generate_inputs(n,4,X) = {
exists xlist: {
input(A,x1list) and
for x in xlist do {skip and X = x};
len(d(n)-1) and X is xlist[0]

}

and array(A,n,n)
and 1list(X,n)

and zero_list(Y,n)
and zero_list(Y/,n).

It is necessary to wait for 2 X n steps after the final input before the final output
appears.
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A test run using the input list
define x1 =
[fo,0,01,[0,0,1]1,[0,1,01,[0,1,1],[1,0,0],[t,0,1],[1,1,0],[1,1,1]1].
goes as follows:

Tempura 31> run stream_mult_test(3).

State 0: A=a.

State 0: xlist=xl.

State 0: Y=[0,0,0] Y'={0,0,0]
State 1: Y=[0,0,0] Y'=[0,0,0]
State 2: Y=[0,0,0] Y'=[0,0,0]
State 3: Y=[0,0,0] Y'=[0,0,0]
State 4: Y=[0,0,0] Y'=[0,0,0]
State 5: Y=[0,0,0] Y'=[0,0,0]
State 6: Y=[0,0,0] Y'={0,0,0]
State 7: Y=[0,0,0] Y'={0,0,0]
State 8: Y=[7,8,9] Y'=[7,8,9]
State 9: Y=[4,5,6] Y'=[4,5,6]
State 10: Y=[11,13,15] Y'=[11,13,15]
State 11: Y=[1,2,3] Y'=[1,2,3]
State 12: Y=[8,10,12] Y'=[8,10,12]
State 13: Y=[5,7,9] Y'=[5,7,9]
State 14: Y=[12,15,18] Y'=[12,15,18]
Done! Computation length: 14.

This confirms that the algorithm works on the given inputs with a throughput

delay of 2 X n+ 1.
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Chapter 3

Interval Temporal Logic

This chapter describes the syntax and semantics of ITL as an embedded theory in higher-order
logic. Section 3.1 describes the syntax, section 3.2 describes the semantics of expressions and
primitive formulae, and section 3.3 introduces a number of useful derived operators. This chapter
is an essential reference for the remainder of the dissertation, but it is short on motivation so you
might not want to read it right through at one go.

Let us now turn our attention to the mathematical theory underlying Tempura.
The theory in question is Interval Temporal Logic (ITL), a system of temporal
logic used by Moszkowski in his work on hardware specification [Mos83]. Unlike
ordinary first-order logic where the truth of a statement is decided once and for all,
a statement of I'TL depends on time. But ITL also differs from classical linear-time
temporal logic [Pri67] because the truth of every ITL formula is decided relative
to an interval of time, rather than just to a point in time; that is, the starting
and ending points are both considered. In order to speak about whole computa-
tions, rather than about points within computations, it seems that the interval is a
more natural starting point than the individual state. In particular, ITL includes
the so-called chop operator* from process logic [HKP82] for composing formulae
in sequence. ITL extends first-order logic with a small number of temporal op-
erators, and for most purposes just two of these suffice. One is next, a unary
operator which intuitively means “after one unit of time ...”, the other is the chop
operator, written “;”, which corresponds to the notion “... and then ...”. The
other primitive operators, prefix and projection will be described in subsequent
chapters.

The model of behaviour used in ITL is quite natural. The idea is to describe
the computation of interest by taking a number of “snapshots” at various points
in time, t; for ¢ < n say, and linking these snapshots together to form a “motion
picture” which shows the whole behaviour on an interval (to,...,tn). Except, of
course, it doesn’t quite show the whole behaviour. No matter how close together

1Tt chops an interval into two pieces.
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are the sample points tg,...,t, a continuous picture will never emerge. It is a
basic assumption of ITL that an adequate picture can be formed by sampling
often enough (but see the discussion of temporal projection in chapter 9).

Shown below are some simple formulae of ITL together with their intended

meanings.
Formula Meaning
N=5 N has the value 5
N:=N—-1 N is decremented in one unit of time
next (empty) Terminate in one unit of time
always (M < N) M is always less than N

halt (N = 0); stable(N) Terminate when N = 0, then keep N constant

(B:=A;C:=B)D(C+A) Assigning A to B then B to C results in A being
assigned to C

As you will see, all of these formulae are defined in terms of the two primitive
temporal operators, next and chop, together with the usual classical ones.

The remainder of this chapter presents the syntax and semantics of ITL. This
can be done in a number of ways. A conventional treatment is given in previous
work by Moszkowski [Mos86], but I have chosen here to present ITL as an embed-
ded theory within higher-order logic (HOL). The principal reason for this choice is
a practical one, for it provides a direct route to machine-assisted verification using
Gordon’s HOL proof system [Gor87]. But there are a number of other advantages.
Higher-order logic is a mathematical system of equivalent power to set theory,
and like set theory can be used to formalise mathematical reasoning. HOL thus
provides a framework for unifying ITL with other mathematical theories, such as
numbers and lists, which are so necessary for proving properties of real programs.
It is also an advantage because it avoids the wasted effort of proving a number of
theorems specific to ITL which are in fact just particular instances of more gen-
eral theorems (temporal induction, for example). The general theorems can just
be subsumed into the theory of ITL.

3.1 Syntax

3.1.1 Expressions

Expressions (sometimes called terms) are built inductively from variables, con-
stants and functions.

Variables These are sequences of letters, digits, underscores and primes, begin-
ning with a letter. Some examples are: X, a’, Inl and A_longname. Sub-
scripts may be used to denote elements of list-valued variables.
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A naming convention separates variables into two classes. Those beginning
with a lower case letter, such as x and inl, are static, whereas those be-
ginning with a capital letter, such as X and Ini, are state variables. These
classes will be defined below, but the idea is that state variables change over
time and static variables do not. Notwithstanding this convention, the letter
v is used in definitions as a meta-variable to range over all variables.

Constants These are fixed values, for example the truth values true and false,
the numbers 0, 1, 2, ..., lists such as [5,4,3,2,1], and functions such as
4. Many constants have special syntax; others conform to the syntax of

variables.
Function applications These have the form e(es,. .. ,en), Where 0 < n and e,
€1, ..., €, are expressions (e should be a function of arity n). Numerous spe-

cial syntactic forms are permitted, and in particular many binary functions
may be used as infix operators. For example, the addition of two numeric
expressions may be written e + es.

Lambda-expressions These have the form Mv1,...,0n) ¢ €, where 0 < n,

v1,...,0, are variables and e, the function body, is an expression. Lambda-
. . " def .
expressions denote functions. The definition flvi,..., ) = ¢ is another

way of writing f & Mv1y...,00) €

3.1.2 Formulae

Formulae are built inductively from predicates and logical connectives. Two tem-
poral connectives, next and chop, are defined in addition to the familiar classical
ones.

Predicates “the property p is true of expressions ey, ..., es”: p(et, ..., en), where
0 < n and ey, ...,e, are expressions. Many familiar predicate symbols, such
as the relation <, have special syntactic forms.

Equality “e and e’ are equal”: e = ¢/, where e and e’ are expressions.
Negation “not p”: —p, where p is a formula.
Conjunction “p and p™: p A p/, where p and p' are formulae.

Existential quantification “there exists a v such that p”: Jv : p, where v is a
variable (either state or static) and p is a formula.

Next “after one unit of time p holds”: next p, where p is a formula.

Chop “p followed by p™: p;p/, where p and p' are formulae.
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Note that although many interval operators have the same intuitive meanings as
their classical counterparts, they are not the same objects. To distinguish the two,
I shall use emboldened forms of operators and roman typeface constants, such as
<, +, A and 0, to denote the classical versions, whereas the forms, <, +, A and
0, will be used to denote the interval representations. This distinction should not
interfere with a natural reading of the following material. In fact, you may just
ignore the distinction and suppose that operators are overloaded.

3.2 Semantics

The semantics of ITL will be described by providing a mapping from expressions
and formulae of ITL to terms of HOL. The HOL translation, denoted by [p], of
an ITL formula p gives its meaning explicitly as a function from intervals of time
to truth values. Similarly, the meaning, [e], of an ITL expression e is given as a
function from temporal intervals to values of the appropriate type. First, therefore,
a brief description of the HOL logic seems in order; a fuller account may be found
in [Gor87].

3.2.1 HOL

HOL is based on the typed lambda-calculus. Every term in HOL has an associated
type which denotes a set of values that the term itself may denote. I shall usually
write ¢ € ty to mean that the term ¢ is of type ty, but may omit type information
when it can be deduced from the situation.> For example, t € N means that the
term ¢ denotes a member of the set of natural numbers, {0,1,2,...}.

HOL terms are built inductively from variables (ranged over by v, possibly
subscripted), constants (such as 0, T and the addition function +), lambda-terms
and function applications.

A lambda-term of the form A(vy,...,s) : t, where v; € ty, for each ¢ < n are
variables and t € ty is a term, denotes a function of type ty, x - -+ X ty,, — ty. For
example, the term \(z,y) : © + y denotes the addition function.

A function application of the form %(t1,...,ts), where ¢, ty,...,%, are terms,
denotes the meaning of ¢ applied to the meanings of its arguments. Therefore, if
ty € ty(ye -+ tn € ty, then t must denote a function of the form ty, x - - - X ty,, — ty,
and the whole term is of type ty. Only well-typed terms are considered meaningful.
For example: (A(z,y) : z 4+ y)(1,2) denotes the constant 3.

All the usual connectives of first-order logic are predefined in HOL. In other
words, if t,# € B are formulae (boolean terms) of HOL and v is a variable, then the

2] am being imprecise here in order (hopefully) to make terms easier to read. In the HOL logic
types are part of the syntaz of terms, so ¢ : ty is used to denote a term ¢ of type ty.
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following are also formulae (recall that the emboldened forms of the connectives
are used to distinguish the HOL connectives from those of ITL):

Equality : t =1t

Negation : = t.

Conjunction : t At

Disjunction : t V ¢t'.

Implication : ¢t D t'.

Existential quantification : 3 v : ¢

Universal quantification : Vv : ¢.

Many standard predicates, such as <, will also be assumed.

3.2.2 Intervals

The meaning of an expression or formula of ITL is only defined relative to an
interval of time. Consequently, the semantics of expressions and formulae may be
represented in HOL as functions of intervals. For instance, a formula is represented
by a function from intervals to booleans.

Let us introduce a new type | to denote the set of all intervals. An interval
T is a non-empty sequence of time points, such as (Toy. .+ Tn), wWhere 7; € N for
each i < n, and | therefore denotes the set of all such sequences. The length of an
interval is the number of time steps, not the number of time points,

(10, ..., Tn)| =1y
so a zero length interval contains one time point. Note that an interval may be of
infinite length, denoted by an infinite sequence beginning at time 7.

The temporal operators next and chop are concerned with the structure of in-
tervals, and they may be defined in terms of two functions: prefiz and suffiz. The
function prefiz(s,7) denotes the i-th prefix of the interval 7, which is the subse-
quence from element 0 up to and including element ¢; and the function suffiz (i, 7)
denotes the i-th suffix of 7 which is the subsequence from element ¢ onwards. If
7 € L and ¢ < |7|, then

prefie(i,7) = (To,...,Ti)s

suffis(i,7) = (Tiy.o s Tpr))-
For example:

preﬁ$(3,(0,1,2,3,4,5)) = (0,1,2,3)
suffin(3,(0,1,2,3,4,5)) = (3,4,5).
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For most purposes you may assume that the time points in an interval form a
contiguous increasing sequence of values, so that 7,41 = 7 + 1. However, this
need not be so when prefix and projection are used (see chapters 6 and 9).

We are now in a position to describe the semantic function sem which gives
the semantic representation in HOL of each expression and formula in ITL.

3.2.3 Expressions

Expressions involve variables, constants and functions. The HOL translation, [e],
of an ITL expression e is a function of the form | — ty for some type ty. For
example, the translation of a numeric expression has type I — N, that of a string
expression has type | — § (where S denotes the set of strings) and that of a list
expression has type | — ty list (where ty list denotes the set of lists of elements
taken from the set denoted by ty).

Variables : There are two kinds of temporal variables: state and static. State
variables are conventionally represented by names starting with an upper
case letter, whereas names starting with lower case letters represent static
variables.

State variables depend on time (but not on intervals). The meaning of a
state variable v on an interval is given by taking its value on the first state
of the interval; that is,

[v] = mk_state(d),
where v is a state variable and

mk_state(D) & Ar:9(r) where T€landdeN— ty3
For example, [X] = A7 : X(70). -

Static variables stand for constant values. The meaning of a static variable
v is simply a function from intervals to its value, 9; that is,

[v] = mk-static(d),
where v is a static variable and

mhk_static(0) e X\r:6 where 7 €landd € ty.
For example, [x] = A7 : %.

Constants : Constants are treated in the same way as static variables. For each
constant ¢ there is a corresponding constant ¢ in HOL such that

[c] = mk_static(é).

For instance, [0] = mk_static(0), the function that evaluates to 0 on any
interval.
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Figure 3.1: The primitive operators.

Function application : The meaning of a function application is the meaning
of the function applied to the meanings of its arguments; that is, if e,..., e,
are expressions

[fles . vend]l = A [fNr)([ead(7)y- - [en](T)) where 7€l

Only static functions appear in the following, so [f](7) = f for some function
f of type ty; X -++ x ty, — ty. For example, [X + Y] = A7 : X(r0) + Y(70).

3.2.4 Formulae

The meaning, [p], of an ITL formula p is given by a HOL term of type | — B, where
B denotes the set of (classical) truth values {T, F}. There are six primitive formulae
out of which more complex formulae and predicates may be built inductively.
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The semantics of the elementary ITL formulae are defined below. You may
find that the pictures in figure 3.1 help to explain the meanings of the operators.

Predicates The meaning of a predicate is given by the meaning of the predicate
symbol applied to the meanings of its arguments. If eq,...,e, are expres-
sions, then

s, ren] = A BIO[ed()- ., [ead(r) where 7€l

Predicate symbols, like function symbols, are generally static, so [p](1) = p
for some function p of type ty; X +++ X ty,, — B. For example, [X<Y]=Ar:
X(To) S Y(To).

Equality Two expressions e and ¢’ are equal if their values are equal.
[e=¢] = Ar:[el(r) =[el(r) where 7€l

For example, two state variables are equal on an interval 7 if they have the
same value on the initial state,

[X=Y] = Ar: X(70) = ¥(70).
Negation The negation of a formula p is true on an interval if p evaluates to false.
[-p] = Ar:=[p](r) where 7€l
For example:

[Fx=1)] = Ar: X(mo) # 1.

Conjunction The conjunction of two formulae p and p' is true on an interval if
both of them evaluate to true.

IpAP] = Ar:([pl(r) A[PI(7)) where 7€l

For example:
[(x=D)AF=1] = Ar:(Em)=1)AHr)=1).

Existential quantification The formula Jv : p is true on an interval if there is
a v that makes p evaluate to true. For a variable v and formula p

[Bv:p] = A :30:[p](r) where 7€l
For example:

[3x:x=1] = Ar:3X:%(n) =1
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Next The formula next p is true on an interval if p evaluates to true on the tail
of the interval (which must have length greater than zero).

[next p] = Ar: (7] >0 A [pl(suffiz(l,7))) where 7€l

For example, the formula next (X = 1) asserts that X has the value 1 after
one step,

[next (X =1)] = Ar:(|7|>0A X(m) =1).

Chop The sequential composition of two formulae p and p' is true on an interval
if there is & way to divide the interval into two pieces such that p is true on
the first and p’ is true on the second.

[p;p] = Ar:3i: (@ <|7| A lpl(prefiz(s, 7)) A [P1(suffiz(i, 7))
where T €I

For example, the formula (X = 0); (X = 1) asserts that X = 0 and sometime
later X =1,

[x=0);x=1)] = M3 G L |t AX(r) =0AX(n)=1).

Note that the next operator requires the interval to be of non-zero length (so that
it has a tail), and that the two parts of a chopped interval have a state in common.

3.3 Some Derived Operators

Many useful operations can be defined in terms of the basic ones. They can be
defined as predicates, but the most useful ones are predefined, often with special
syntax.

3.3.1 Classical Operators

All the usual logical connectives (disjunction, implication, etc. ), quantifiers and
truth values can be defined in interval form. Their meanings are the same as if
they had been lifted from the standard theory of booleans. Some examples are:

Truth values The constants true and false are the interval forms of the classical
truth values T and F.

false & p A -p for any formula p,

def
true = -false.

Disjunction The disjunction of two formulae is true if they are not both false.

def
pVp = ~(-pA-p).
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Implication The implication p D p' is true if p’ is a consequence of p. An alter-
native notation is the familiar programming construct if b then p, which is
used to test the value of a boolean expression b. Two formulae are logically
equivalent, p = p', if each implies the other.

pop & -pvyp

p=yp (o)A (P Dp)
if bthen p E pop
if b then p else p’ ' bop)A(=bDP)

Universal quantification The universal quantification Vv : p is true if there is
no v that makes p false.

Vo:p ey p

Bounded forms of both existential and universal quantifiers are also used as
abbreviations:

Ji<n:p = F:(i<nAp)
Vi<m:p = Vi:(t<nDp).

Bounded universal quantification will usually be written forall ¢ < n : p.
For example, the formula forall i < n: A; = 0 denotes that every element
of the list A is initially zero.

Cascades of quantifiers are abbreviated in the usual way: vy, v9,...,0p, ¢ pis
shorthand for Jvy : Jvg ¢ ... vy, : p, and similarly for universal quantifiers.

3.3.2 Temporal Operators

A number of useful operators can be defined in terms of the operators next and
chop. Their definitions are illustrated in figures 3.2-3.4.

Modal operators The operators always and sometime are characteristic of
temporal logics, and are often written O and <, respectively. The formula
sometime p holds if the interval can be divided into two parts so that p holds
on the second; that is, if p holds on some suffix subinterval. The dual con-
struct, always p, holds if the formula p holds on all suffix subintervals; in
other words there is no such subinterval on which p does not hold. These
operators are illustrated in figure 3.2.

. def
sometime p = true;p,

def .
always p = ~sometime —p.
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Figure 3.3: The length operators len, skip and empty.

For example, the formula always (X +Y = 1) tests whether the sum of X and
Y is 1 on every state of the interval. It is also useful to divide the interval in
other ways. For instance, the construct extend p holds if p is true on some
prefix subinterval, It is defined as p; true in the same way as sometime.

Computation length The formula len(n) is true on an interval of length n. It

can be used to define any interval length, but intervals of length zero and
one occur so frequently that special operators empty and skip are used to
denote these values. An interval is empty if there is no next subinterval, and
is of length one if the next subinterval is empty. Figure 3.3 illustrates these

definitions.
empty = -next true,
skip ' pext enpty.
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Figure 3.4: The operators halt, fin and keep for a boolean ezpression b. The
expression b is true on the states marked b, false on those marked —b, and may be
either true or false elsewhere.

The operator len itself is defined using primitive recursion.

len(0) = empty,
len(n+1) = next len(n),

where n € | — N. This definition is not in classical primitive recursive
form because the argument of len is actually an interval function, not a
natural number. However, the fault is easily rectified by defining a primitive
recursive predicate len € N — (1 — B) (in just the same way as above), and
then taking len(n) = A7 : len(n(r)). Since this can be done automatically,
let us just accept ITL definitions in the form above as primitive recursive in
this sense.

Termination and the final state The formula halt p is true if p is true on,
and only on, the final state. In other words the computation terminates as
soon as the formula p becomes true. Related operators are £in and keep.
The formula fin p is true if p is true on the final state, and keep p is true if

p is true on every state except the last. Thus halt p = (keep —p) A (fin p).

def

halt p always (empty = p),
finp ¥ alvays (empty D p),
keep p ' alvays (-empty D p).

For example, halt (A < 1) asserts that the computation terminates as soon
as A < 1. Figure 3.4 shows how these definitions work out for a boolean
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Figure 3.5: The assignment operations v « v/, v o= v/, v is v’ and v gets v’ for
state variables v and v’.

expression b, though the definitions apply more generally to arbitrary for-
mulae.

It is also possible to define an operator to look at the initial state

init p &of (empty A p); true,

but because of the conventional interpretation of state variables, it is hardly ever
needed unless one really needs to ensure that p only refers to the initial state.

3.3.3 Assignment Operators

A number of assignment operators can be defined in ITL. In these definitions e
and ¢ stand for expressions of arbitrary types: e € | — ty, ¢’ € | = #y'. Figure 3.5
shows what these operators mean for state variables v and v’
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Temporal Assignment Three forms of assignment in time have been found use-
ful. The simplest, equality, is true if two values are equal at the same point in
time. It has already been defined. The next-assignment A’ o= A is true if the
next value of A’ equals the current value of 4; and the temporal assignment
A" — A holds if the final value of A’ equals the initial value of A.

ec ¥ Fu:(v=¢Afin(e=1)),
co=e Jv : (v = €' A next (e = v)),

where v is a static variable which is not free in either e or e/. Temporal as-
signment is most useful for specifying the functional behaviour of a program.
For instance, A « sort(A) might be the specification of a program to sort
the list A.

In practice, assignment is most commonly used on a unit- or zero-length
interval, and two special operators have been defined to incorporate the
length into the assignment. The assignment A’ <= A ensures that A and
A" are equal on a zero-length interval, whereas the unit-assignment A’ := A
asserts that the next value of A’ is the same as the initial value of A on a unit-
interval.4 Unit-assignment is similar to ordinary assignment in an imperative
programming language.

e<¢e &of empty A e = e,

def . .
e:=e¢ = skipAeo=¢.

For example, if a variable is initially zero and is incremented by one then its
final value is one, (A <= 0;A:= A+ 1) D (A « 1). Note that the formula
skip A A’ « A is equivalent to A’ := A, and that empty A A’ « A is the same
as A’ < A,

Repeated assignment The formula A’ is A denotes that the variables A and A
are equal throughout time; and the formula A’ gets A is true if A is always
assigned to A’ from one state to the next. If something is always assigned to
itself from one state to the next it remains stable, denoted by stable A.

eise ¥ always(e=¢),
e gets e ' Keep (e o=¢),
stable ¢ e . gets e.

For example, the formula A = n A A gets A — 1 asserts that A is initially
n and is decremented from state to state. Note that one cannot use next-
assignment on an empty subinterval, hence the use of keep rather than
always in the definition of gets.

4Note that Moszkowski defines the unit-assignment operator := to be what I have called next-
assignment o=, i.e. without the associated skip [Mos86].
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Multiple parallel assignments, including equality, may be abbreviated in the form:

! !
€0y +3€n OD €0yevesy €y

where e; and ¢! are arbitrary expressions and op is an assignment operator. This
form is equivalent to

!
eo 0p €g A\ ... A en 0D €.

The operator stable with multiple arguments keeps each of its arguments stable.

3.3.4 Iterative Operators

A number of ITL operators resemble those of ordinary imperative programming
languages. Some, such as assignment and chop, have already been encountered,
but another important class is that containing the iterative operators, such as the
for- and while-loops.

For-loops A particularly simple form of loop is for ntimes do p which just

denotes n iterations of p; that is, p;...;p (n times). It is, of course, defined
recursively,
for Otimesdop = empty,
for n+ 1times dop = for ntimes do p;p,

where n € | — N. Loops with control variables can also be defined.
fori <O0dop = empty,
fori<n+1dop = for ntimesdo p;p[n/i].

wheren € | — N and ¢ is static, and the formula p[n/i] denotes p with all free
occurrences of 7 replaced by n. If n is bound at any point in p where there is
a free ¢ then the variables of p are “systematically renamed” to remove the
conflict.

While-loops The loop while b do p denotes a number of iterations of p on each
of which the boolean expression b is initially true. At the end of the last
iteration b is false.

vhile bdop % 3n:(fin(-b) A for ntimes do (b A p)),

where n € I = N and b € | = B. For example, while A A0 do A:=A—1
asserts that A is decremented until it reaches zero.

Finally, a repeat-loop is defined in terms of the while-loop ini the usual way,
and the straightforward loop p denotes an arbitrary number of repetitions
of p.

repeat puntil b o p;while b do p,

loop p ' yhile —iempty do p.
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Other loops can be defined in a similar way. For example, in theloop for v € [ do p
the control variable v takes successive values from the list [.

3.3.5 Markers

A number of ITL operators are defined using marker variables to mark the oc-
currence of some event. For instance, the definition of the until operator below
uses a marker p to watch for p’ becoming true. The formula puntil p' is true if
p holds until p’ is true.

puntil p) ¥ Ju: {u Aalways {u D (¥’ V (p A next (1)))}}.

Marker variables are really just ordinary state variables, of course, but they must
not occur freely in the program they are “marking”. For instance, u must not be
free in either p or p' in the definition of until. Conventionally, I shall use greek

letters for markers.

3.3.6 Omitting Parentheses

With just the above definitions, parentheses are needed to delimit the arguments
of each operator. Even a relatively modest formula can need a large number of
parentheses, and this detracts from its readability. Therefore, it seems a good idea
to adopt some conventions to eliminate parentheses. The following precedence
hierarchy is used; the operators at level ¢ apply to as little as possible without
violating the constraints placed on those at levels less than 1.

1. The negation operator, —.
2. The assignment operators =, is, «, o=, :=, < and gets.

3. The unary operators next, always, sometime, keep, halt and stable,
the quantifiers 3 and V, the final branch of the conditional (then or else),
and the body of a loop.

4. The conjunction and disjunction operators, A and V .
5. The implication operator, D.
6. The chop operator, ;.
For example, the formula
Jv tnext p A —p';p”
should be read
(v : (next p)) A (=p') 5 (P").
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The fact that conjunction, disjunction and chop are all associative operators may
also be used to avoid writing parentheses, since the form p op p' op p” is unam-
biguous for these operators.

The usual precedence relations apply to expressions, for instance A + B X C
denotes A + (B x C). Parentheses may also be omitted when a formula only makes
sense with a particular grouping, for example A gets B4-C is only well typed when
read as A gets (B + C).

3.4 Discussion

Given that ITL is easily expressed as an embedded theory within HOL, the ques-
tion naturally arises: Why is ITL needed at all? Why not, for instance, simply
represent every variable as a function of time? Aside from the obvious but impor-
tant point that ITL avoids the consequent proliferation of time variables, I think
that the answer to this question is much the same as the answer to the question:
Why bother with high-level programming languages when all problems can be
tackled in machine code? Both questions have the same answer. The higher-level
language is useful precisely because it addresses a restricted, but useful, class of
problems. It is sufficient to express any problem in its domain, whilst keeping the
complexity of expression to a minimum. Hopefully, this leads to a richer set of
laws for manipulating specifications.

One is also entitled to question the assumed model of time. Is it reasonable
to suppose that real computing systems can be described within a discrete-time
framework using shared variables? Although it may be a fairly good approximation
to the way synchronous parallel hardware works, many concurrent systems do not
operate in step with some global clock. Nevertheless, so long as the behaviour of
interest can accurately be reflected by a discrete sequence of states (possibly with
repetitions), time points may simply be identified with these states. Techniques
for describing explicit synchronisation will be introduced in chapters 10.

If the model is adequate, is it abstract enough? Use of the operator next has
been criticised for forcing too much irrelevant detail into specifications [Lam83].
The main reason for this criticism, it seems, is that this operator permits (not
compels) one to distinguish between repetitions of the same state or between
computations of different lengths. For example, one might say that the behaviours

X:=0;X:=1
and
stable(X);X:=0;stable(X);X:=1

should be indistinguishable in a specification language. But, of course, the second
formula is simply a specification of the first (i.e. the first logically implies the
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second), and the very purpose of this work is to express specifications and programs
in the same framework.

Other researchers use a dense model of time (one in which any two points are
separated by another) to get abstract specifications [BKP86]. Temporal projection,
which is discussed in chapter 9, produces a similar effect in ITL. For example,
projecting the formula stable (X);skip onto the first of the formulae above results

in the second.
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Chapter 4

Tempura

This chapter clarifies the relationship between Tempura and ITL. Section 4.1 defines the syntax of
the primitive language; section 4.2 sketches its computational semantics; and section 4.3 discusses
which derived operators of ITL, are executable. The main point of this chapter is the reduction
mechanism presented in section 4.2.2.

The programming language Tempura was introduced informally in chapter 2. Tem-
pura is not the same as ITL, but is an executable sublanguage of it. The prin-
cipal restriction is that Tempura programs must be deterministic. This means
that no arbitrary choices (either of computation length or variable assignment)
can be made during execution, so it will be appreciated that many specifications
are not executable. For example, neither the formula —skip nor the formula
(I = 0)V (I = 1) is executable, as both are non-deterministic. The former de-
scribes any interval of length other than one, the latter gives a choice of values for
the variable I.

In order to exclude formulae such as the two above, the syntax of Tempura is
restricted. The negation of a program is not syntactically permitted, and in its
place the conditional and the termination statement, empty, are taken as primitive.
This means that some of the derived operators of ITL cannot be defined at all in
Tempura, and that some others can only be defined in a restricted form.

This chapter does not describe in detail how to execute Tempura programs;
Moszkowski does that admirably in his book on the subject [Mos86]. Its purpose
is rather to clarify the relationship between Tempura and ITL, and to outline
the computational semantics in a way that is not constrained by the details of a
particular implementation. ‘

Only the basic language is described. This language contains seven elementary
operators — equality, conjunction, conditional, existential quantification, termina-
tion, next and chop — and the operators that can be defined in terms of these, The
prefix and temporal projection operators are not considered here (see [Mos86]).
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4,1 Syntax

This section describes the syntax of the basic language: first the primitive opera-
tors, then the expressions.

4.1.1 Programs

Programs are formed from seven elementary operators, five of those used to define
formulae (all except negation) and two which are derived operators of ITL. As
usual, the symbol e stands for an arbitrary expression, b stands for a boolean
expression and p and p’ stand for programs. The symbol [ stands for an “L-
expression”, which may be a simple variable (v), a suscripted variable (v; or v;..;)
or the size of a list-valued variable (|v]). These values correspond to regions of
computer memory when a program is executed.

Equality: [ =e.

Parallel composition: p A p’.
Conditional: if b then p else p'.
Local variables: Jv : p.
Termination: empty.

Next: next p.

Sequential composition: p; p’.

The absence of the negation operator is explained by the fact that a negated pro-
gram would, in general, be non-deterministic. This has a number of repercussions.
It means that the conditional and empty must be taken as primitive, since they are
defined (logically) in terms of negation. It also means that certain other operators
cannot be derived in the way they were before. For example, universal quantifi-
cation (V) and arbitrary choice (V) cannot be defined in full generality, though a
restricted form of universal quantification can be defined, as will be shown.,

4.1.2 Expressions

Variables in Tempura have the same syntax as in ITL (characters, underscores
and primes) with the capitalised names for state variables and lower case for static
variables.

As before, the choice of permissible expressions is largely arbitrary, but only
boolean, integer, string and list expressions are used in the following,.
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Booleans are just the truth values true and false. They may be combined with
all the usual logical connectives.

Integers are the numbers...,—2,-1,0,1,2,.... They may be combined with all
the usual arithmetic operators.

Lists are sequences of elements separated by commas and enclosed in square
brackets, such as [1,3,5,7]. The notation [i..j] denotes the list of numbers
from i to j — 1 inclusive, so [0..4] = [0,1,2,3]. The number of elements in
a list A is denoted by |A], the ith element by Aj, the sublist from element
i to element j — 1 by A j, and the concatenation of two lists A and A’ by
A"A'. No distinction is made between lists and arrays in Tempura; arrays, or
rather vectors, are just special kinds of lists, and their elements are directly
accessible.

Strings are surrounded by double quotation marks, like “a string”. They may
be indexed and manipulated in the same way as lists.

Tempura could be extended to include real numbers, bit vectors, and so on.

4.2 Semantics

The aim of executing a Tempura program is to discover an interval on which the
program viewed as an ITL formula is true. In other words, for a program p with
free variables vq,...,v,, the goal is to show that the formula

A7:(Fvy,...,vn i p)(T)

is true by finding a particular interval 7 on which the program holds. This section
outlines a technique for generating such an interval from a program. The idea
is to reduce the program to an equivalent canonical form from which the desired
interval is immediately apparent.

4.2.1 Canonical Form

The canonical form of a program p may be represented as a conjunction of “state
formulae”, p;, as follows

n
p = /\ next’ p;,
1=0

where p; specifies the ith state and next ' p; denotes ¢ applications of the operator
next to the formula p;. The whole formula therefore specifies a sequence of n
states.
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The state formula p;, which specifies the ith state, is a conjunction of terms of
the form I; = ¢; in which [; is an L-expression and e; is an arbitrary expression;
that is,

Thus, p; specifies the values of the expressions [; (for all j < m;) on the ith state.

A boolean variable ¢, corresponding to the predicate empty, is used to mark
where the sequence terminates; it is true on the last state and false elsewhere.
The value of € is set by the operators next and empty. For instance, the program
skip A A = 0 generates an interval of two states. On the first, A is 0 and the
termination flag € is false; on the second, ¢ is true. Thus, if p is the program
skip A A = 0, then

po = (e=false)A(A=0)
p; = (e =true).

The interval length is 1 since val(¢) = true on the second state.

4.2.2 Reduction of Programs

Let us now introduce a technique for reducing simple programs to canonical form.
The technique involves unfolding the program step-by-step until the canonical form
is discovered. This technique suggests a way to execute Tempura programs on a
computer. Each equation of the form ! = e might cause the value of the expression
e to be stored in a particular memory location designated by I, and each state
formula would then define a state of the computer’s memory. Successive states
would be generated as the program unfolds.

This section describes the main part of the transformation to canonical form.
Section 4.2.3 describes how to eliminate existential quantifiers, and predicates are
briefly discussed in section 4.2.5.

The main part of the transformation of program p with respect to termination
flag € is given by reduce(p,e). The idea is that the program is equivalent to its
transformation with termination flag replaced by empty,

p = reduce(p,enpty).

This transformation does not yield the canonical form directly, but something from
which it is easily derived. The transformation is defined inductively in terms of
its effect on the elementary operators.

Equality The statement | = e is left alone by the transformation; that is,
reduce(l =e,e) = l=ce.
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However, the statement may be further simplified (see below) by replacing
the expression e and any subscript expression in [ with its (constant) value.

Parallel composition The statement p A p’ is reduced by reducing p and p’
together.

reduce(p A p'ye) = reduce(p,e) A reduce(p’,¢).

For example, |
reduce(A=0AB=A¢e) = A=0AB=A

This may be further simplified to the equivalent form A =0 A B = 0.

Conditional The statement if b then p else p’ is executed by transforming p
or p' according to the value of b (which must be defined).

reduce(p,e) if b = true
duce(if b th lse p'ie) = D ’
reduce(3 enp else p',c) { reduce(p',e) if b= false.
For example,
reduce(A=0Aif A=1thenB=0elseB=1¢) = A=0AB=1.

Note that the value of the boolean expression b must be known before the
transformation can take place.

Existential quantification The statement v : p is reduced by reducing p within
the scope of the local variable v.

reduce(Jv : p,e) = Tv : reduce(p, ).
For example,
reduce(JA: A =0,e) = JA:A=0.

Existential quantification is further discussed in section 4.2.3, where it is
shown that the scope of the local variable can be increased to the outermost
level.

Termination The statement empty simply sets the termination flag e.
reduce(enpty,e) = € = true.

Note that empty may also be used as a boolean expression, in which case it
may be replaced by e.
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Next The statement next p does two things. It asserts that the execution has
not yet terminated and also that p happens next.

reduce(next p,e) = ¢ = false A next reduce(p,¢).
For example,

reduce(next (A = 0),e) = ¢ =false Anext(A=0).

Sequential composition The statement p;p’ is executed by first executing p and
then executing p’. A new flag ¢’ must be introduced to mark the termination
of p (see also section 4.2.3).

reduce(p;p,e) = 3Je':{
reduce(p,e’) A
(e = false)until &' A
reduce(p’,¢) atnext &’

b

where the operators until and atnext satisfy the following expansion prop-

erties:
puntil b = { true if b = true,
p A next (puntil b) if b= false,
patnextd = { iext (p atnext b) i: : ;:111:;.
For example,
reduce(empty ;next empty,e) = Fe': {

¢ = true A
€ = false A

next (¢ = true)

}.

Notice that when the above technique is used to execute a program the order
in which reductions are carried out may be important. For example, if the pro-
gram A = B A B = 0 is reduced in left-to-right order the value of B will not be
defined when it is required for the assignment A = B. There are various ways
to deal with this situation. The simplest is to regard the program as erroneous.
More sophisticated approaches involve either transforming the program into the
equivalent form B = 0 A A = B prior to execution, or postponing reduction of
the troublesome statement until the value of B is defined. The latter approach is
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used in the Tempura interpreter. This may, of course, result in deadlock if the
program really is erroneous and the required value is not defined at all, but there
are straightforward ways to detect the deadlock and take appropriate action.

As already observed, the transformation reduce(p,€e) does not generally reduce
the program p to canonical form, but a number of further transformations may
be used to remedy this. First, all existential quantifiers must be moved to the
outermost level, and then the conjuncts of the transformed program must be re-
arranged into the desired final form. The next two sections describe how to do
this.

4.2.3 Local Variables

The transformation above leaves existential quantifiers alone. This section de-
scribes how programs containing local variables may be transformed so that all
variables are declared at the outermost level. Hence, all internal declarations may
be removed from a program.

Local variables are introduced either by means of existential quantification or
as formal parameters of a function or predicate. They are statically bound; that
is, the scope of a particular instance of a variable is determined by where it occurs
in the program text rather than by where it is used, and in the usual way, each
occurrence of a variable is bound to the smallest enclosing declaration of the same
name. For instance, the following program fragment contains two quite separate
instances of the variable X. The scope of one is confined to the inner existential
quantification, the other’s scope covers everywhere that is within the outer but
outside the inner quantification.

Y {X=1Af=A):X)AIX: {X=2AY=1£()}}.
T 1
The reference to X within the function f is bound to the outer instance of X.* Thus,
Y is set to 1. ‘

The scope of a local variable may be increased provided that it is renamed as
necessary to avoid name clashes. If v’ does not occur freely in either p or p’ then

pAFv:p) = ' {pAp/v]}
(Fv:p) Ap = ' {pp'/v] AP}

and similarly for the other primitive operators. For instance, the program fragment
above is equivalent to the following fragment in which the inner instance of X has
been renamed and moved outwards.

ALY {X=1Af=Q):XN)AX =2AY=1£()}.

*This, incidentally, shows how lambda expressions may be used to define pointers in Tempura.
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In this way all existential quantifiers may be moved to the outermost level of
a program. In practice, of course, explicit renaming is not needed to execute
a program, it is sufficient to ensure that each variable corresponds to a unique

storage location.

4.2.4 Final Transformation

Having moved all existential quantifiéers outwards, the conjuncts of the transformed
program must be regrouped into the state formulae described in section 4.2.1
above. This is easily achieved since conjunction is both commutative and associa-
tive, and since the operator next distributes through conjunction. In other words,
the program may be rewritten according to the following equivalences:

pAp = pAp
(eAD)AP" = pAQ AP
(next p) A (next p’) = next(pAp).

Thus, the canonical form is obtained.

4.2.5 Predicates

Finally, consider the semantics of a predicate invocation. In ITL the application
of a predicate defined by

def
p(v1,...,va) = body

to arguments argy,...,arg, denotes the formula or expression gained by substi-
tuting arg; for all free occurrences of v; in the body of the predicate,

bOd'y[a’Tgl/”la T a'rgn/'vn]

(renaming bound variables as necessary). This expansion takes place each time
the predicate is encountered, so a recursively defined predicate is unfolded one
step at a time.

The argument-passing semantics described above are assumed in all the follow-
ing programs; they are the semantics of call-by-name. However, an implementation
of Tempura would probably need to use a more efficient argument passing mecha-
nism than this. Indeed, I indicated in chapter 2 that the Tempura interpreter uses
a call-by-reference mechanism by default. In most common cases the semantics of
call-by-name and call-by-reference are identical (when the arguments are simple
references or static expressions). When they are not, the call-by-name seman-
tics may be simulated using either the macro facility or by introducing an extra
variable and using call-by-reference, which may be done automatically.
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4.3 Derived Operators

Most of the derived operators that were defined in section 3.3 can also be defined
in Tempura, but some of those which were defined in terms of negation are not so
general as in ITL.

4.3.1 Classical Operators

Of the classical operators, conjunction and the conditional (itself in restricted
form) are taken as primitive in Tempura, and

if bthenp = 4if bthen p else true.

The remaining boolean connectives may only be used in boolean expressions.

Universal quantification (V) cannot be defined as it was in full ITL, but bounded
universal quantification can be expressed as a finite conjunction of terms. It may
be expressed inductively:

foralli: < 0:p = true
foralli<n-+1:p = (foralli < n:p)A pn/i.

Other forms, such as forall v € [ : p for a list [, are defined similarly.

4.3.2 Temporal Operators

The operator empty has been taken as primitive, but the unit-length construct,
skip, can be defined as before, as can the length operator, len. The operator
always, defined in terms of negation, is expanded as follows in Tempura,

always (p) = pA if —empty then next always (p).

The operator sometime is of little use operationally except perhaps for checking
a specification. It can be executed by expanding in a similar way to always.

The operators halt , which defines a termination condition, keep , which is like
always on all but the last state, and £in which asserts its argument on the last
state, are all defined as before.

4.3.3 Assignment Operators

Unit-assignment can be defined in Tempura as it was in ITL, but that definition
is rather inefficient in practice, and such assignments are so common that it is
desirable to build in a more efficient form which by-passes the elementary oper-
ations. Indeed, I show in chapter 6 that it is sometimes more natural to regard
unit-assignment as primitive.
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Stability can also be defined in a much more efficient form than its original
definition. On conventional processors it can just be ignored if no checking is
required. In chapter 6 I show that the need for stable can be eliminated by using
frame variables.

The other assignment operators, is, «, <, and gets, are defined as before.

4.3.4 TIterative Operators

The iterative constructs for ntimes do p and for 1 < n do p may be defined as
before, but the following expansion property of the while loop is used operationally:

while bdop = if bthen (p;while bdo p) else empty,

but this does not behave in quite the way desired because if p is empty when b
is true the computation never terminates. Further iterative constructs, such as
repeat puntil b, are expanded in a similar way.

4.3.5 Input and Output

A real Tempura program must be given the means to communicate with the outside
world through input and output. Useful input and output facilities may need to be
quite sophisticated, but for the purposes of this discussion two naive functions will
suffice. The function input reads input from some device, such as a keyboard, and
the function output produces output on another device, maybe a terminal. Both
of these functions take a variable number of (zero or more) arguments whose values
are read from the input device or written to the output device. Absence of input
or output is denoted by a call of the corresponding function with no arguments:
input() or output().

Informally, input and output devices may be thought of as list-valued state
variables, Input and Output say. Then a call of input(X,Y,Z) sets X, Y and Z to
the appropriate elements of the input list

input(X,Y,Z) = X = Input[0] A Y = Inputi] A Z = Input|2],

and a corresponding call of the output function constructs an output list from its
arguments

output(X,Y,Z) = Output = [X,Y,Z]

(with some syntactic sweetening). By convention, if no output assertion is made at
a particular point in time, then the assertion output() is assumed. This prevents
any output from appearing by outputting the empty list of values, Output = [].
Later, in section 6.3.1, I discuss how the same effect might be achieved semanti-
cally, without the need for this convention.
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Although these input and output operations need to be.extend'ed to handle all
the options required in a usable system, they can be explained within the semantics
of Tempura. They are not “side-effects”.

4.4 Discussion

Although the decision to restrict Tempura to a deterministic subset of ITL was
made for sound engineering reasons (such as efficiency of execution), there is every
reason to expect that other executable subsets of temporal logic might be equally
useful in different problem domains. For executing abstract specifications it may
be that a language with conventional “logic programming” features is more ap-
propriate. For instance, language Tokio [FKTMS86] makes use of the unification
and resolution mechanisms of Prolog (see section 1.3.6). On the other hand, it is
possible to define a “stripped down” language for (say) real-time programming.
Such a language would not perform run-time checks, and statements would be
executed strictly in order of occurrence. The existing interpreter is something of
a compromise between the two.
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Chapter 5

Verification and Transformation

This chapter discusses how to verify that a Tempura program meets its specification, and how to
transform it into another program with the same essential properties. Verification and transfor-
mation can both be done using a computerised theorem prover such as HOL. Programs may be
verified either directly by natural deduction, or by using proof rules. A program may be trans-
formed using either logical equivalence to get a new program with identical behaviour, or using
functional equivalence to get a different program that computes the same function.

Even in the early days of computing it was considered that complex programs
sometimes need to be formally checked. In 1949 Turing introduced the idea by
showing how to demonstrate the correctness of a small program for computing
factorials [Tur49]. However, systematic attempts at program verification really
began with Floyd’s technique for verifying flowchart programs [Flo67], and Hoare’s
well-known axiomatic method for proving the correctness of simple sequential pro-
grams [Hoa69]. Since then Hoare’s logic has been extended to handle a wider class
of programs, including parallel programs [Lam80], and has remained one of the
most widely accepted methods for verifying imperative programs.

Mathematically-inspired programming languages, such as Tempura and func-
tional languages, raise the possibility of more direct methods of verification, since
in these languages the programs are themselves mathematical formulae. This
means, for example, that the notion of equivalence between two programs is just
the usual logical equivalence, and that the idea of a program implementing a
specification may be reduced to logical implication.

However, formal verification remains a very expensive activity and it will not be
used on a large scale unless the cost of proving real programs is reduced by several
orders of magnitude. Despite this, there are already some areas of design where
the potential cost of mistakes exceeds the cost of verification. Examples include
the safety-critical control systems used in areas such as medical monitoring, fly-
by-wire aircraft systems, railway signalling and nuclear reactor control, and the
crucial parts of larger systems such as operating system kernels, communications
protocols and security systems. A great deal depends on systems such as these, so
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it is essential that they do function properly. Furthermore, these systems are often
small and relatively simple compared to most commercial computing systems, so
they present an easier target for the verifier.

There are basically two ways to guarantee that a program meets its specifica-
tion. One is to verify the program after it has been written and tested, to give
a final seal of approval. The other is to design the program by transformation,
either from another program which is known to be correct, or directly from its
specification. Each approach has its place, and Tempura adapts well to either.
Not only does Tempura have a direct mathematical interpretation, but the same
formalism (ITL) is also used for specification.

5.1 Verification

A promising approach to verification, and one which seems to offer the most hope
when faced with real programs, uses the embedding of ITL in higher-order logic
described in chapter 3. It is a promising approach because higher-order logic
provides a foundation for integra’cing ITL with other mathematical theories, and
also because a number of powerful theorem proving systems for higher-order logic
already exist. One of these, Gordon’s HOL system [Gor87], forms the basis of this
discussion.

5.1.1 Natural Deduction

ITL, as presented in chapter 3, is a conservative extension of the primitive HOL
logic together with whatever theories are needed to construct expressions (num-
bers, lists and so on). The only axioms are the definitions of the operators; no
new inference rules are axiomatised. Theorems of ITL can be proved by natural
deduction from the definitions, using the usual inference rules of logic, such as
substitution of equality, modus ponens and induction.

For example, the meaning of empty is stated in the following theorem, which
asserts that empty is true on any interval 7 of length zero. The turnstile symbol
(F) denotes that what follows is a theorem.

F empty = Ar:|r|=0 [empty semantics]

This theorem is easily proved by expanding the definition of empty, substituting
the definitions of negation, next and true, simplifying the result, and then using
the fact that zero is the least natural number.*

1Recall that the emboldened forms denote classical operators.
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TO PROVE empty = A7 :|7| =0

empty = -—inext true [definition of empty]
= Ar (7| >0AT) [expanding definitions]
= M= (7] >0) [since p A T = p]
= Ar:|r|<0 [since = (n > m) =n < m]
= Ar:|r|=0 [since = (n < 0) for n € N]

A semantic theorem of this kind can be obtained for each of the derived operators
of ITL. Here are some examples in which v and v’ are state variables, which, as you
will recall from section 3.2.3, denote the functions mk-state(9) and mk_state(?’).

F pDp = Ar:p(r) D p(7) [D semantics]
F skip = AMr:|r]=1 [skip semantics)
F ovi=o = Ar:|r|=1A0(m)=0'(n) [:= semantics]
Foveo = Ar:d(r,) =9 (70) [« semantics]

The first example states that implication is just a lifted form of classical implica-
tion, the second that skip is true on any unit-length interval, the third that the
unit-assignment v := v’ is true on an interval of unit-length if the next value of v
equals the initial value of ', and the last one states that the temporal assignment
v «— v' holds whenever the final value of v equals the initial value of v’. Theorems
such as these greatly simplify the task of proving properties of programs.

5.1.2 Properties of Programs

A program p is said to satisfy the specification s if any execution of p results in a
behaviour for which the specification is also true; that is, if it can be proved that
p implies s on every interval:

F Vrel:(pDs)r).

Formulae such as this, which are true on all intervals, are said to be valid in ITL;
and the double turnstile symbol (=) is used to denote a valid formula. Thus,

E p D s

is another way of writing the theorem above.

A trivial example of a valid property is the following theorem, which asserts
that if the variable Y is initially one, and it is multiplied by x on a single step,
then the effect is to set the final value of Y to x.

E (Y=1AY:=YXxx) D (Y+x)

The proof of this theorem in HOL comes in a straightforward way from substituting
the definitions of the operators and simplifying the result. Each step in the proof
follows from the previous one by elementary rules of logic.
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TOPROVE V7:(Y=1AY:=Yxx)D(Y«x))(7)

L. (Y=1AY:=YXx)T) _ [program]
2. (Y=1)(r) A (Y:=Y X x)(7) [A semantics]
3. (¥(r)=1)A(r]|=1)A (?(7'1) = ¥(r0) X %) [=, = semafltics]
4, () =1 A(Jr|=1)A (1{(1'1) =1X %) [substituting Y(7o)]
5 (Y(ro) =1 A(r]=1)A (¥(71) = %) [since 1 X & = %]
6. (o) =1 A (7| =1) A (¥(75)) = %) [substituting |r|]
7. () = 9) fsince (p A7) 3 7]
8. (Y « x)(7) [« semantics]

This sort of proof can be extremely tedious; it is neither mathematically interest-
ing (because it is shallow), nor computationally interesting (because you already
“knew” the result to be true). Large examples are also error-prone because of the
huge numbers of logical inferences required to prove even the simplest results. It
is mainly for these reasons that proofs are better done with a computerised tool,
such as HOL, to take care of all the trivial steps.

5.1.3 Mathematical Induction

An important technique in program verification is mathematical induction. For in-
stance, the following valid property states that if Y is initially one, and is multiplied
n times by x, then it ends up with the value x™

= (Y=1AforntimesdoY:=YXx) D (Y — x).

To prove this result for general n requires induction. The proof is in two parts,
the first of which is a proof that the result holds in the base case, when n = 0, and
the second that if it holds for some n then it must hold for n+ 1. From these two
proofs one may conclude that the result holds for any value of n.

BASE CASE V7:((Y=1A for Otimes doY:=Y X x) D (¥ « x%))(r)

1. (Y=1Afor Otimes do Y:=Y X x)() [base case]
2. (Y= 1A empty)(7) [for definition]
3. (¥(ro) =1) A (|r| =0) [empty, = semantics]
4. (Y(r,) =1) [substltutmg 7]
5. (Y « x%)(7) [since x0 = 1]
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INDUCTIVE STEP V7:((Y=1Aforn+itimesdoY:=Y¥xXx)D (Y « x*t1Y))(7)

ASSUMING Vr:((Y=1AforntimesdoY:=Yxx)D (Y« x"))(T)
1. (Y=1Aforn+1times doY:=Y X x)(7) [inductive step]
9. (Y=1Aforntimes do Y:=Y X x;Y:=Yxx)(r) [for definition]
3. (Y = x*; Y=Y x x)(7) [by assumption]
4.3i<a+1:(FR) =) A JF(rp) =¥m) x ) A(r|=i+1) [« chop, = sem.]
5. (¥(mpr)) = 21 x %) [substituting |7| and ¥(r;)]
6. (Y « x*1)(7) [since x® X x = x™+1]

Thus, the iterative program has the desired functional behaviour for every value
of n.

Functional properties of the kind described so far are perhaps the most common
forms of specification, as very often one is only concerned with the final result of
a calculation. However, particularly when dealing with interactive programs, it is
sometimes necessary to verify what happens during the execution of a program.
For instance, a control program might repeatedly increment a certain variable,
X say, whilst checking that some other quantity does not exceed X X n. Rather
than repeatedly multiply X by n, the program maintains another variable Y which it
increments in steps of n. This program depends on the property that incrementing
Y in steps of n results in the value of Y always being n times that of X. In other
words,

= (X=0AY=0AXgetsX+1AYgetsY+n) D (Y is X X n).

The proof of this theorem also requires induction, but the details are not given.

5.1.4 Proof Rules

Verification is a time-consuming business. One way to speed it up is to develop
higher-level proof rules, so that a proof may be done in a smaller number of higher-
level steps. For instance, in chapter 6 I show that the rules of Hoare’s logic can
also be used as proof rules in ITL, though now they become derived theorems
rather than accepted laws. This has the advantage that it is possible to derive
rules for new program operators as needed, and without the risk of introducing
unsoundness into the logic.?

5.1.5 Hierarchical Decomposition

Another way to make the verification task more manageable is to divide a large
proof into smaller parts, prove the parts independently, and then recombine them

32 An unsound system is one that allows you to prove contradictory results.
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Figure 5.1: Hierarchical decomposition of a specification s into a simpler specifi-
cations, each of which may be implemented and verified separately.

to get the desired result. This is possible because programs and specifications are
compositional; in other words, when two programs are composed together their
properties are also.

In general, if p and p’ are two programs with specifications s and ', then the
conjunction of p and p' satisfies the conjunction of their specifications. This is
expressed in the following rule:

EpDs, E=p' D¢
E@AP)D(sAS)

(the conclusion below the line may be deduced from the hypotheses above). Like-

[and-composition]

wise, the sequential composition of p and p' satisfies the sequential composition of
their specifications,

}:pDS, |=p':)s’
= (p;p)D(s;8)

and similar relationships hold for other Tempura operators. Thus, a large problem

[chop-composition]

may be hierarchically decomposed into its component parts.

Figure 5.1 shows how a typical specification might be decomposed into a num-
ber of simpler specifications, each of which may be implemented separately. In a
large software project such a decomposition might be used to assign subproblems
to different teams of programmers.
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5.2 Transformation

Program transformation is just another aspect of verification, but one which is
concerned with proving a relationship (such as equivalence) between two different
programs. The purpose of transforming a program is normally to change its op-
erational behaviour in some way, perhaps to make it execute more efficiently. But
transformation may be used simply to show that two programs are equivalent by
transforming them both, step by step, into the same form.

5.2.1 Transformation Rules

The most straightforward method of transformation is to replace one formula or
term with a logically equivalent one. This results in a new program whose be-
haviour is identical in every respect to the original. For example, because conjunc-
tion is commutative and associative the order and grouping of parallel operations
is immaterial. Thus, the program

Y,Ngets Y x x,N —1 A Y,N=1,n A halt (N =0)
may be transformed into the equivalent program
Y,N=1,nAhalt(N=0)AYNgetsYxx,N—1,

and on a uniprocessor the transformed program may be executed more efficiently -
than the original because each step can be performed in a single left-to-right pass
(see section 4.2.2).

Transformations such as these may be applied mechanically by rewriting the
original program. Any equivalence may be used for transformation, and equiv-
alent programs or sub-programs may be substituted for one another under any
circumstances. In other words,

'i,_: (P A p//) = (p/ A p//)

= (p" Ap) = (0" AP)

k= (if b then p else p”) = (if b then p' else p)
k= (if b then p” else p) = (if b then p” else p')
E@vip)=(Fv:p)

= (next p) = (next p)

E(p;p")=(p';p")

L= (p"5p) = (0" 9)

Some useful equivalences are given here for later use. These examples follow the

if Ep=p then A«

usual naming convention; that is, p, p’ and p” denote arbitrary formulae and e, €’
denote state expressions.
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= pAp = pAp [and-commut)
= (PAP)AP" = pA(P AD") [and-assoc]
= (next p) A (next p') = next(pAp) [next-and)]
= (next p);p’ = next(p;p') [next-chop]
= (p;p);p" = p;(@;p") [chop-assoc]
= (e=€Ap);p = e=¢A(p;p) [equals-chop]
F enpty;p = p [empty-chop]

The first two of these transformations were used above; the others will be used in
later sections.

5.2.2 Canonical Form

Each of the above transformations produces a program that is logically equivalent
to the original. As well as being used to derive a new program from an existing
one, they may therefore be used to verify the equivalence of two existing programs.
In principle, two programs are equivalent if one can be transformed into the other,
but in practice it is often simpler to transform both into the same intermediate
form. If this can be done both programs, p and p’ say, are equivalent to the
intermediate form, p”, and hence to one another because equivalence is transitive;
that is,

Fr=p", EP=/

[equiv-transitive
Fp=p ]

The technique can be made more methodical by fixing on a canonical interme-
diate form, and a natural choice is to use a reduction process similar to the one
for executing programs, as described in section 4.2.2. The general idea can be
understood from the examples below.

As a first example, consider reducing the program below, which sets the variable
Y to 1 and then multiplies it by x in one step.

Y=1AY:=YXx

It is not hard to see that this program just sets Y to x on the next step and then
halts. The transformation follows the sequence of steps below. Each line follows
from its predecessor by rewriting with the equivalences above in addition to the
usual rules for substitution and quantifier elimination, but some elementary steps
are omitted in order to simplify the description.
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TOPROVE Y=1AY:=YXxx = Y=1Anext(empty AY=x)

LY=1AY:=YXx [initial program)|
2.Y=1AskipAIx:{x' =Y xx Anext (Y =x')} [:= definition]
3. Y =1 A next (empty) A 3x': {x' = ¥ X x A next (Y = x')} [skip definition]
4. Y =1 A next (empty) A 3x' : {x’ = x A next (Y = x)} [substitution of Y and x']
5. Y = 1 A next (empty) A next (Y = x)} [quantifier elimination]
6. Y=1 Anext (empty A Y =x)} [next-and]

This is really no more than a restatement of the semantics of unit-assignment.

A more substantial example is to show the equivalence of the two programs,
exp_pgm(x,n,Y,N) and exp_pgm'(x,n,Y,N), which were introduced in chapter 2.
Both calculate the value of x® in Y, but they are defined in very different ways.
The first one uses a while-loop in the usual imperative manner.

exp_pgm(x,n,Y,N) 4 y,N < 1,n; exp_while(Y,N)

expwhile(Y,N) % while N#0doY,N:=Yxx,N—1,

and for general n this program may be reduced to the recursive form:

exp-pgm(x,n,Y,N) = Y,N=1,nA
P-Pg
if n = 0 then empty
else {next exp_pgm(x,n — 1,Y,N)}.

The reduction is in two parts; the first is to transform the chop into a conjunction,
and the second is to transform the while-loop. The first part proceeds as follows,

TO PROVE Y,N < 1,n;expwhile(Y,N) = Y,N=1,nA expwhile(Y,N)

1. Y,N < 1,n;exp_while(Y,N) [initial program)]
2. (empty A Y,N = 1,n); exp_while(Y,N) [« definition]
3. (Y,N = 1,n A empty) ; exp-while(Y,N) [and-commut]
4. Y,N= 1,n A (empty ; exp_while(Y,N)) [equals-chop]
5. Y,N = 1,n A exp_while(Y,N) [empty-chop]

Transformation of the while-loop depends on the recursive “unfolding” property
below, which reflects the way that the loop while b do p is executed; if b is true
do p and then test b again, otherwise halt.

= while bdop = if —bthen empty else (p;while bdo p) [unfold-while]

After unfolding the loop, the transformation is much like the one above; the unit-
assignment is reduced first, and then the result is simplified.
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The second program, exp_pgm’(x,n, Y, N), uses the operators gets and halt in
place of the while-loop in exp_pgm.

exp._pgm'(x,n,Y,N) 4 vy~ 1 AN=nA exp_gets(x,n,Y,N)

exp_gets(x,n,Y,N) ' halt (N=0)AY,NgetsY x x,N — 1.
Since gets and halt are defined in terms of always , the transformation this time
depends on an unfolding theorem for the operator always.

= alwaysp = p A if —empty then (next always p) [unfold-always]

In other respects the transformation proceeds in much the same way as those above
to give the equivalent intermediate form:

exp.pgn’(x,n,Y,N) = Y,N=1,nA
if n = 0 then empty
else {next exp_pgn'(x,n —1,Y,N)}.

The two programs therefore reduce to identical (primitive recursive) form, from
which it may be concluded that they are equivalent.

5.2.3 Functional Equivalence

All the transformations encountered up to now have been logical equivalences; in
other words they transform one program into another that has identical behaviour.
Very often, however, equivalence is too strong a relation. It means, for example,
that the original and transformed programs take exactly the same number of steps
to complete, whereas it may only be important that they produce the same final
result from the same initial data. In fact, one of the principal uses of program
transformation is to come up with better and faster ways of achieving equivalent
results. In this section I introduce a weaker relation, called functional equivalence,
to capture the idea of programs producing equivalent final results.

The method is straightforward. Informally, one first defines the function,
function (p), of a program p to be its behaviour on the first and last states of an
interval. So, for example,

= function(X:=0) = X+« 0
E function(X:=0;X:=X+1) X+ 1.

Il

Then one defines two programs to be functionally equivalent if they have the same
function. In this view a program is a “black box” that accepts initial data, grinds
away for a while, and finally produces a result of some kind; the intermediate
behaviour is not considered. An important consequence is that if two programs
are functionally equivalent, then replacing one by the other in a sequence of steps
results in a new program with the same function.
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Let us define functional behaviour semantically.? The formula function p is
true on an interval T if there is another interval 7/ on which p is true, and which
has the same first and last states as 7; that is,

function p & Ar 37" (p(7") A (1§ = 710) A (Tfoy = Tir))-
For instance, the function of a functional specification is itself,
k= function(v «e) = ve.

and the function of empty is to ensure that the initial and final states of the interval
are identical, which means that every variable must be assigned to itself.

Functional equivalence is simply defined to be equivalence between functional
behaviours. Thus, programs p and p' are functionally equivalent, written p ~ p/,
if function p and function p' are equivalent:

p~p 4 function p = function .
For example,
Y=1AY:=x" ~ Y=1AforntimesdoY:=Y X x.

Note that functional equivalence is an equivalence relation. Furthermore, a pro-
gram must satisfy its own function

= p D function p,

so if two programs p and p’ are functionally equivalent, they satisfy the same
functional specification. :

Functional equivalence has some useful properties. The most important is that
all operators, except conjunction, preserve functional equivalence. Thus,

(|= (if b then p else p") ~ (if b then p’ else p”)
I= (if b then p” else p) ~ (if bthen p” else p')
: F(Jv:p)~(Bv:p)
~ /
if fpr~p then = (next p) ~ (next p')
-

(p;p")~ (@ ;p")
=@ p)~ @ p)

Conjunction does not in general preserve functional equivalence because both com-

putation length and intermediate behaviour are important in this case. However,
under severe restrictions, functionally equivalent programs can be substituted in
conjunctions. Sufficient restrictions are that the computation lengths of the two
sub-programs should be equal, and neither conjunct should access a variable that

3This can also be defined using temporal abstraction, which is the “inverse” of temporal projec-
tion (see chapter 9). I have discussed temporal abstraction previous work [Hal8T).
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is modified by the other; that is, the parallel sub-programs operate independently.*
Under these restrictions,

: oot then 4E@AP)~ (' AP")
i Fpoy th {F(p”/\p)N(P”/\p’)

Note that the computation lengths of two programs can be made equal by extend-
ing the shorter one to the length of the longer, whilst keeping all program variables
stable. The parallel composition operator (||), which is introduced in chapter 8,
does this automatically.

5.2.4 Efficiency

Application of these rules lets us systematically improve the operational charac-
teristics of programs whilst preserving their functional behaviour. Consider, yet
again, the iterative program for calculating x™,

Y=1AforntimesdoY:=Y Xx,

which was shown in section 5.1.3 to have the function Y « x®. This time the aim
is to derive a “faster” version.

The first step is to transform this program into an equivalent one by splitting
the for-loop into a sequence of smaller loops. In general, if n and n’ are non-
negative,

= forn+n'timesdop = for ntimes dop;for n'times do p.

In this case, an obvious way to divide the loop is according to the binary expansion
of n; that is, the expansion n = Ziigo(n) bit(i,n) x 2%, where bit(i,n) denotes the
ith bit in the binary representation of n, and log(n) here denotes the number of
bits needed to represent n (so log(0) = 1). This leads to the logically equivalent

program:

Y=1A
for i < log(n)+ 1 do
for bit(i,n) x 2  times do Y=Y x x.
The inner loops have the function Y « (if bit(i,n) = 1 then Y X xzi' else Y, so,
supposing for the moment that we already have a way to calculate x2", they may
be rewritten to get the functionally equivalent program:

4Naturally, functional equivalence is not a useful concept for reasoning about parallel co-
operating processes. General laws for co-operating processes may arise from the message-passing
mechanisms described in chapter 10.
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Y=1A
for i < log(n)+1do .
Y := (if bit(i,n) = 1 then Y x x*" elseY),

.

and, of course, x2" can be calculated very quickly by repeatedly squaring x. Thus,
this program may be transformed to the logically equivalent form below, using a
local variable to hold the values of x2".

Ix: {
LY =x1A
for i < log(n)+ 1 do
X,Y:=XxX,(if bit(i,n) =1 then Y x X else Y)

}.

This is functionally equivalent to the original. The new program outperforms the
original when log(n) + 1 < n; that is, for values of n in excess of 2.

5.3 Discussion

I do not pretend in this chapter to have presented a fully-fledged proof theory for
Tempura programs; much more work is needed just to come up a system that is
useable on realistic problems. Nevertheless, this is a start. I have shown that a
range of proof and transformation techniques can be applied to Tempura programs,
and there are many more strategies that might be used. For instance, parts of the
verification process might be automated, and certain kinds of programs might be
synthesised from their specifications. However, there are limits to what verification
can achieve.

5.3.1 Satisfaction Guaranteed?

Taking satisfaction to be logical implication as above gives rise to an unfortunate
loophole. If a program is ever inconsistent, and so logically false, it then sat-
isfies any specification whatsoever, because the formula false implies anything.
Consider the following valid implication:

E (len(n) ATI=0AI«I+4+1) D (I« 1).

The program len(n) AI =0 A I « I+ 1 does indeed satisfy the specification,
I « 1, provided that n is not zero. But if n is zero the program asserts that
I =0and I =1 at the same time; it is logically inconsistent, and its behaviour is
unpredictable. In the extreme case, the program false implies every specification,
but achieves nothing at all.

79




Camilleri et al. discuss a number of ways around this problem [CGMS86] but
none of them seems entirely satisfactory. The inconsistency in the example above
could be spotted by attempting to prove that the program can be executed suc-
cessfully for any value of n; in other words for all values of n there is an interval
on which the program is true. Failure to prove the case n = 0 might suggest that
something was amiss, and would certainly prevent one from concluding that the
program was correct. ' ,

There are, however, some drawbacks to this technique. Firstly, it cannot be
directly incorporated into the definition of satisfaction without sacrificing com-
positionality. Secondly, it makes it harder to write programs that have genuine
“don’t care” inputs. For example, one might not care what the program above
does when n is zero if it is never to be used in such a situation. Nevertheless, a
consistency check is always required before concluding that a program satisfies its
specification.

Of course, it is also possible to draw unintented conclusions if one’s specifica-
tion contains errors; in the worst case, the specification true is satisfied by any
program whatsoever. This extreme is most unlikely to occur in practice, but it
is nevertheless true that one needs to be confident that one has specified the in-
tended behaviour. However, specification errors cannot readily be detected by
formal verification; and that is why simulation and prototyping are indispensable.

5.3.2 Mechanical Verification

Numerous computer-aided verification systems have been designed and built, but
mostly they fall into two broad categories reflecting the philosophy of their de-
signers. In the first category are the completely automatic verifiers which make
few demands of the user. He or she just enters a description of what is to be
proved, and some time later the system outputs a verdict: “true” or “false” (or
possibly “don’t know”). In the second category are the user-guided systems which
require the user to know something about proof techniques. As well as providing
a description of what is to be proved, he or she must now give directions on how
to do the proof. Both approaches have their merits.

There are completely automatic verification systems for temporal logic. Ex-
amples include Clarke’s Model Checker [CES86] and Abadi’s resolution system
R [AMS86]. The principal advantage of these verifiers is simply that they are au-
tomatic. The user need have no knowledge of the underlying mathematics, nor of
proof techniques in general. The disadvantage of automatic systems is that they
must be based on tractable decision procedures, and this limits the power of the
specification language. Clarke’s system can only handle finite-state programs, and
Abadi’s is based on a first-order linear-time temporal logic (having no chop opera-
tor and only static variables). Clearly, only certain aspects of program behaviour
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can be investigated with these systems.

The principal advantage of user-guided systems, such as the HOL system, is
that they are based on richer mathematics in which ITL and other useful theories
can be embedded. The disadvantage of user-guided systems is that the user must
know how to do the proof, at least in outline. The system just checks the proof
and fills in the low-level details; though what is meant by low-level depends on
the system and on the skill of the user. The HOL system, for example, can be
“programmed” to perform complex proof strategies automatically, thus combining
the advantages of human insight and mechanised drudgery.

5.3.3 Transformation and Synthesis

There has been low-key interest in program transformation for many years. A sem-
inal paper by Darlington and Burstall [DB73] describes a system for transforming
functional programs. However, they do not give a formal measure of performance,
so their guide to program improvement is empirically based. More recently, Hoare
and Roscoe have devised systems of algebraic laws which may be used to trans-
form CSP and Occam programs [Hoa85,RH88]. Again, no formal measure of
improvement can be given, although parallel and sequential behaviours can be
differentiated. Tempura, however, makes possible a delicate measure of improve-
ment, namely the number of computational steps, though there must, of course,
be restrictions governing what can be done on each step. These will depend upon
the implementation environment.

Another kind of transformation, and one which offers an alternative to verifica-
tion, is the direct synthesis of programs from their specifications. Other researchers
have devised procedures for synthesizing certain types of programs. For example,
Burstall and Darlington [BD77] and Manna and Waldinger [MW80] describe ways
to synthesize recursive programs; and Emerson and Clarke [EC82] and Manna and
Wolper [MW84] describe how to synthesize the synchronisation parts of concurrent
programs from temporal logic specifications. Some of these techniques might well
be adapted to synthesise Tempura programs, and could be mechanised in HOL.
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Chapter 6

Sequential Programs

This chapter shows how to represent the semantics of a simple sequential programming language
in ITL. Most importantly, it shows that the usual destructive assignment statement of imperative
programming, with its associated inertial assumption, can be represented in ITL without the need
for new axioms. This is achieved by defining a new operator, called frame, which asserts that a
variable remains stable unless it is explicitly changed.

This chapter concerns the relationship between Tempura and ordinary sequential
programming in a language such as Pascal. It focusses on two crucial issues:
assignment and inertia. Both concern change, and it might be thought that they
are just two different ways of looking at the same problem. Assignments tell us
what does change, inertia tells us what does not. But they are treated in quite
different ways. Assignment is an active operation which causes a value to change,
whereas inertia is a passive property which allows us to assume that variables do
not change between assignments. I think it is fair to say that in the logical analysis
of sequential processes these two issues have caused more problems than any other.

Two principal ways have been used to deal at a formal level with the problems of
destructive assignment and inertia. One way, exemplified by Hoare Logic [Hoa69],
is to axiomatise the problem away. In this approach, one simply takes assignment
and stability to be primitive by building their behaviour into a special logic. The
trouble is that the elegant semantics of classical logic are lost in the process. The
other way, exemplified by the functional approach to programming [BacT78], is
to program in abstract languages that entirely reject the concept of change. In
this way the simpler mathematical semantics are retained, but something of the
range and clarity of expression of imperative languages is lost. Besides, there is
no getting away from the fact that the vast majority of processors in use today
depend on something like destructive assignment at the primitive instruction level.

In this chapter I hope to convince you that ITL can handle both assignment
and inertia in a purely logical framework. First, I show that the semantics of
Tempura are already quite close to the accepted view of sequential programming,

82




the difference being that Tempura contains no inertial assumption. Then, to over-
come this problem, I show how to define the property of inertia within ITL. This
is done by defining a new operator, frame, which chooses the inertial behaviour
for a particular variable. At the end of the chapter, I discuss some of the pitfalls
of the frame operator and a way to achieve almost the same effect without it.

6.1 Assignment

Simple sequential programs are really much the same whether they are written in
Tempura or Pascal. But there is one major difference. In a Pascal program, when
an assignment is made to one variable it is assumed that all the other variables
stay the same. This is not true in Tempura, at least not until the next section.

6.1.1 Semantics

To see the similarity, let us compare a standard treatment of program seman-
tics with the temporal logic view. Specifically, let us take Hoare’s axiomatic
logic [Hoa69] as the basis for discussion, and then show that the same behaviour
is represented in ITL, without additional axioms.

Hoare’s Logic

In Hoare’s method two assertions, a pre-condition p and a post-condition ¢, are
associated with each statement s of the program. In his original notation

p{s}q

is used to denote that if p holds immediately before s is executed, and if termi-
nates, then ¢ will hold on termination.

Assignment is taken to be a primitive operation. Its effect is captured by an
axiom scheme which says that if some post-condition p is to hold following the
assignment v «— e, then before the assignment the same condition must have held
with v replaced by e.

F ple/v]{v & e}p [assignment axioms|

In addition, there are a number of inference rules for deriving properties of com-
pound statements from the properties of their constituent parts. Three examples
are given below. The first of these allows one to strengthen the pre-condition
or weaken the post-condition, the second expresses the semantics of sequential
composition, and the last one expresses the semantics of the while-loop.
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Fp' Do, Fp{s}qe, Fg¢Ddq

Fo e [consequence]

+ Fog{s’
p{sl-}-qp,{s - 3,}3{3 br [sequence]
FpAblstp [iteration]

F p{while bdos}-bAp

These rules can be applied, statement by statement, to derive pre- and post-
conditions for simple while programs.

Temporal Logic

Now let us look at how this works in temporal logic. The first thing to notice
is that assignment in Tempura is not quite as axiomatised by Hoare. Hoare’s
axiom says two things. It asserts that the variable v is updated in the right way,
but it also asserts that no other variable changes. In other words, it assumes an
inertial system. For example, the variable Y is assumed to remain stable when the
assignment N « N — 1 is made. No such a priors assumption is made in Tempura,
so the assignment N « N — 1 says nothing whatsoever about Y.

In spite of this inertia can be represented in ITL, and how to do it is the subject
of section 6.2. But for now let us see how far we can get without assuming inertia.

Let us continue with the notation p{s}q, but now it stands for the equivalent
expression in temporal logic,

p{s}g = init(p) D s D fin(g),

which should be read: “If p holds initially then if the statement s executes success-
fully then ¢ will hold finally”. The meaning is therefore just the same as before,
but now the the program is itself a logical formula, so the axioms and rules are
derived theorems.

The effect of a single conventional assignment v; < e; in a program which uses
the variables vo, ..., v, can be represented in Tempura by the multiple assignment

VOy vy VigreeyUp € VOyevryCiyeneyVn

A multiple assignment of this form has essentially the same semantics as before.
In general, provided that only the program variables vy,...,v,, are free in the
post-condition p, a multiple assignment satisfies:

= pleo/vo, - - - s n/Vnl{vos -+, Un = €0,. .., €n}P [assignment]

Tt could be taken as a convention that all the program variables not explicitly
mentioned in the assignment are assigned to themselves, but I shall not do this.

The others of Hoare’s rules are also formally derived from the semantics of
ITL, and not surprisingly they turn out to be just as before.
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=p'Dp, [Ep{s}s, FEeO¢
= p'{s}d

= p{s}q, Eg{s'}r sequence

Ep{s;s'}r peduenc

= p Ab{s}p

|= p{while bdo s}-bAp

[consequence]

[iteration]

Furthermore, it is easy to derive more rules for other program operators. For
instance, there is one for composing programs in parallel:

Ep{s}e, FEds)r
EpAp'{sAstand

Though when using this rule one must be careful to ensure that the parallel pro-
grams are not contradictory (see section 5.3.1).

[parallel]

Special Cases

The two most frequently used forms of assignment in Tempura programs are equal-
ity and next-assignment. These are both special cases of temporal assignment,

= emptyAvee D v=e
E skipAvee D vo=e.

There are alternative forms of both operators, initialisation and unit-assignment,
with the computation length built-in, '

V<<€ o empty Av=e

-

d .
vi=e = skipAvo=e.

Tt follows that these two operators also satisfy the multiple-assignment rule above.

An Example

Using the rules above, one may prove correct the following Tempura program
which is supposed to compute x" in Y:

exp-pgn(x,n,Y,N) = Y,N <= 1,14

while N # 0 do {
Y N:=YxxN—1

}

The aim is to show that if the program terminates then Y ends up with the value
x2. The proof proceeds as follows:
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TO PROVE true{Y,N < 1,n;while N#Odo ¥,N:=¥ x x,N - 1}Y = x"

]
.

1. true{Y,N< 1,n}Y=1AN=n [assignment]
2.Y=1AN=n D> Y=x*1 [arithmetic]
3. true{Y,N «< 1,n}Y = x»N [consequence]
4, Y =x VAN #O{Y,N:=¥ x x,N — 1}V = x>V [assignment]
5 Y=x""{yhileN# O0do ¥, N: =Y X x,N—1}Y = X VAN=0 [iteration]
6.Y=x*NAN=0 DO Y=x" [arithmetic
7. Y= x"N{yhile N#0do Y,N:=Y X x,N - 1}¥ = x" [consequence
8. true{Y,N < {,n;while N# 0do Y,N:=Y X x,N - 1}Y =x" [sequence]

The proof is exactly as it would have been in Hoare’s logic, except that one now
arrives at a theorem of ITL,

exp.pgn(x,n,Y,N) D Y «x".
g

The proof can be done mechanically using the methods suggested in chapter 5.

6.1.2 Notes on Assignment

By and large, the assignment operators in Tempura behave in just the same way
as assignment in a conventional imperative language. But some aspects of their
behaviour may not be obvious and are therefore worth pointing out. These ob-
servations all have to do with timing, something that is not considered in the
conventional treatment.

Equality and Causality

Equality, when used as an assignment, asserts that two values are equal at the same
point in the program. An assignment such as A <= A+ 1 is therefore impossible to
achieve. Logically, it is simply false,

E A<A+1 = false,

since there is no choice of A for which A and A 4+ 1 are equal.

Equality represents an instantaneous communication. It is not a causal opera-
tion, and this is apparent in Tempura. For instance, the following four programs
are logically equivalent, since they all initialise A and B to zero on an empty inter-
val:

1. A< 0;B<A

2. AB<«<0,A

3. B,A< A0

4 B&Aj;h<o.
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But they are not equally easy to execute!

To be executed with maximum efficiency, the assignments must be encountered
in the “correct” order. In the first program this is obviously so. The value of A
is defined before it is needed for the second assignment. In the second program
the assignments are also correctly ordered, for the multiple assignment expands as
follows:

ALB< 0,A = empty AA=0AB=A

This being so, the assignments in third program must be encountered out of order.
However, this can be discovered by dataflow analysis and the program transformed
prior to execution, using the fact that conjunction commutes,

empty AB=AAA=0 = empty AA=0AB=A.
Pty

Although the last program can be transformed in a similar way, it is not in general
so simple because the chop operator is not commutative.

Assignment and Termination

Temporal assignment on an empty interval is just another representation of equal-
ity, and it suffers from all the problems mentioned above. But there is an additional
hazard in this case. In a statement such as

halt (B)A A« A+1

great care must be taken to ensure that B can never be true initially; if it is, the
interval is empty and the program false. As a general rule it is better to reserve
temporal assignment for specifications and use unit-assignment in programs.

Unit-assignment is the minimum length assignment over which a change in
value can be effected, and it bears a close resemblance to conventional assignment.
Unlike equality, unit-assignment is not order-sensitive. A unit-assignment, such as
the exchange

A,B:=B, A,

may be executed by first evaluating all the expressions on the right-hand side and
only then updating the locations on the left-hand side. This directly reflects the
definition of unit-assignment given on page 51, where a local copy of the right-hand
expression is made on the current state and assigned to the left-hand location on
the next state.
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Lists

There are some particular problems associated with assigning values to individual
elements of a list. First, if just a single element is assigned on a given step, it
is necessary to ensure that all the other elements (and the number of elements)
remain stable across the assignment. A predicate such as alter could be used
for this purpose, where alter(L,N,X) changes the Nth element of the list L to X,
keeping all other elements stable,

alter(L,N,X) & |L|:=[L|A
forall i < |L|:

if i = Nthen L; := X else Lj := Lj.

A more general predicate could be defined to alter a number of elements at a time.

Another rather more subtle difficulty in assigning to an element of a list occurs
when the element is referenced by a variable which itself changes on the same step.
For instance, in the program below an element of the list L is referenced by the
state variable N.

N,Ly <= 0,0;

N,Ly:=1,1.

This program initialises both N and Lo to zero, but then it sets Ly to 1, not Lo as
you might expect. This is because the location to be assigned is evaluated when
the assignment is made (after one step), rather than when the right-hand side
of the assignment is evaluated. Again, the predicate alter solves this problem,
because it tests the value of the subscript N at the start of the assignment and
then keeps that value in a static variable (the control variable of the forall ) until
the assignment is complete.

6.2 Inertia

The accepted view of assignment, as described above, is one aspect of a general
physical phenomenon. Our perception of the world is that most things are stable
for most of the time, so we confine ourselves to saying what changes from one
moment to another, and assume that “everything else” remains the same. This
phenomenon has been extensively studied in artificial intelligence circles, where
it is known as the “frame problem”. It is a major obstacle to a purely logical
treatment of human reasoning,.

The problem is less acute in the world of programming. Indeed, I have already
shown that Tempura can be made to work without a frame assumption. Nev-
ertheless, it is more convenient if we don’t have to write extra code just to keep
variables stable, especially as most computers have an inertial assumption built-in,
making the extra code redundant.
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In this section I propose a way to define inertia in I'TL by introducing a new
class of “frame” variables, which automatically remain stable between assignments.
I also discuss some of the limitations of frame variables, and finally I describe a
way to achieve a similar effect without frame variables.

6.2.1 Frame Variables

Consider the sequential program seq-exp_pgn(x,n,Y,N) below, which is intended
to calculate the value of x® in Y using an auxiliary variable N.

seq_exp_pgm(x,n, Y, N) ey N1,

while N 5 0 do {
Y=Y Xx;
N:=N-—1

}

It is syntactically correct, of course, and the intended behaviour, shown here for
x = 2 and n = 3, does indeed satisfy it.

345 6
1 22 4 4 8 8 (6.1)
2 110

The trouble is that unintended behaviours do also. For example, if N’ behaves in
the same way as N, but Y’ is set to zero on the second step, and remains at zero
thereafter,

2 3 45 6
1200000 (6.2)
2 2110

then seq-exp_pgn(x,n,Y,N') holds. So too does seq-exp_pgm(x,n,Y",N"), where
Y behaves like ¥, but ¥” is set to one on the first step and zero on the second,
causing immediate termination.

time |0 1 2
v I[1 2 2 (6.3)
¥ |3 1 0

What must be done is to select just those behaviours which also satisfy the frame
assumption.

The idea of this proposal is to define a new operator frame , so that the formula
frame v : p is true if v satisfies the frame assumption as well as the property p. So
the intention is that if all variables are framed the usual semantics of assignment
obtain; that is, frame variables retain their values unless explicitly changed. For
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instance, framing Y and N in the program seq_exp_pgn above ought to have the
same effect as inserting the appropriate assignments; that is,

frame N : frame Y : seq_exp_pgn(x,n,Y,N) = stb.exp_pgm(x,n,Y,N),

where stb.exp_pgm(x,n,Y,N) is defined as follows:

stb_exp_pgn(x,n,Y,N) © yN<e1,n;

while N # 0 do {
Y, N:=Y Xxx,N,
Y, N:=Y,N—1

}.

The distinguishing feature of the framed behaviour is that in some sense it “min-
imises the change” in variables Y and N. Let us therefore try to formalise this idea
of minimising change.

Minimising Change

First, we need a way to mark the steps on which a variable changes. This is easily
achieved by introducing a predicate §(v) which is false whenever the next value of
v is the same as its current value; otherwise it is true. For instance, this is how
§(Y) and §(N) behave on the inertial interval (6.1) above:

time | O 1 2 3 4 5 6
Y|1 2 2 4 4 8 8
6(Y) | true false true false true false true
N|3 2 2 1 1 0 0
6(N) | false true false true false true true

The predicate §(v) is simply true whenever v is not stable from one state to the
next,

6(v) (v o=v),

but observe that §(v) is necessarily true on the last state of an interval.

When presented with two behaviours that satisfy a given formula, represented
by the variables v and v’ say, then the one which changes less may be chosen by
comparing §(v) and 6(v’). This is not a straightforward comparison, since it must
take causality into account. For example, the behaviour of Y above is preferred
to Y’ even though the total number of changes in Y on the inertial interval (6.1)
is greater than the total number of changes to Y’ on the other (6.2). To allow for
this, the comparison should only proceed up to the first time that 6(v) and 8(v")
differ.
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— prefix(p)——
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¢ extend (prefix p) )

L J

Figure 6.1: Construction of the formula extend prefix p.

If the notation p < p' is used to denote this comparison for two formulae p and
p' (p is causally less than p’ say), then p <1 p' if at some time p is false and p' is
true, and at all times before that p and p' are equal. That is,

ef N
pdp € (p=p)until(-p Ap),

where the property puntil p’ holds if p is true until p' becomes true. It was
defined on page 53.

The Operator frame

Now the operator frame can be defined so that frame v : p accepts only those
intervals which satisfy the frame assumption for v. It is necessary to look, not
just at all possible variables on one particular interval, but also at all the intervals
that initially overlap the one being considered. It is essential to do this because
otherwise behaviours such as the short interval above on which N” was prematurely
set to zero (6.3) would not be eliminated.

Two operators, extend and prefix, may be combined to examine all inter-
vals which are the same up to a certain point, and then diverge. The operator
extend looks at shorter intervals, whereas prefix examines longer ones. Thus,
the formula extend p is true on an interval if the property p holds on some prefix
subinterval, whereas prefix p is true on any prefix subinterval of a longer interval
on which p holds. Their interval semantics are as follows:

extend p = Ar:37: 7| L |r| A7 = prefis(|7],7) A p(7')
prefixp = M:A7 |7 <|r|AT= prefic(|r|,7") A p(r'),

where 7,7’ € I. A definition of extend in terms of chop was given on page 43.
Finally, the inertial property frame v : p holds on an interval, T say, provided
that property p holds and there is no more stable behaviour v’ that makes p true
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on another interval, 7/ say, which shares its first few states with 7.
trame v:p & pA P : extend {v' =uv A prefix(p[v'/v]) A §(v') < 8(v)},

where the variable v’ is not free in p. The meaning of extend prefix p is illustrated
in figure 6.1.

An Example

Consider what happens when Y is framed over the first two steps of the program
seq_exp_pgn(x,n,Y,N), assuming that n # 0.

frameY:{Y<:1;N<=n;Y:=Y><x;N::N-—1}.

Framing Y does not affect the value of N in this example, so the only choice to
be made is the value of Y on the second state, everything else is predetermined.
Denoting this value by ¥(72), the behaviour of Y is as follows:

time | 0 1 2

Y| 1 X ¥(72)
6(Y) | true ¥(mo) #x true

The value of Y on the first and second states is fixed. To minimise change §(Y)
must be false on the second state, if this is possible, for if it is not then there
does exist an Y’ for which the formula holds and §(Y') < 6(Y), namely the one for
which 8(Y) 4s false on the second state! In this example it is possible, and only
9(r2) = 2 makes next (§(Y) = false). Hence the inertial behaviour of Y is derived.

The inertial behaviour of N may be derived in a similar way by framing N, and
observing that the only free choice is the value of N on the second state. Taking
this value to be n — 1 minimises §(N).

By extending these derivations to take in subsequent steps, the correct inertial
behaviour is found for the whole program. It is, as promised, exactly as if explicit
assignments had been inserted,

= frame N: frame Y : seq-exp-pgn(x,n,Y, N) = stb.exppgm(x,n,Y,N).

But things are not quite so simple as they might appear.

6.2.2 Notes on Frame Variables

Does the frame operator always capture the intended behaviour? The answer is
that it seems to do so for Tempura programs that are causal, but it has to be
admitted that the definition is rather tricky, and has not yet been proved to work
in all such programs. On the other hand, it is known not to work well with non-
causal or non-deterministic formulae. This is quite a reasonable restriction because
inertia is fundamentally causal; without the concept of a directional flow of time
it has no meaning. The examples below illustrate this. |
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Equality and Causality

First, note that a frame variable must be initialised, because if it is not then its
initial value must be determined by looking ahead in time. For instance, if the
variable A is assigned the value 0 in one step but has no initial value, then framing
A forces its initial value to also be 0.

= frame A: {A:=0} = {A<0;A:=A}

This defies causality. It cannot be implemented without backtracking over time.

In practice, there are two ways to deal with this problem. One is to insist that
frame variables are explicitly initialised. The other way is to assume a default ini-
tial value if none is specified. This could be either a special value, “undefined”, or
some particular value of an appropriate type. Most other programming languages
assume default values, which are usually supposed to be “undefined”.

As observed already, equality acts as a zero-delay assignment, which means that
it is not causal and so cannot be expected to mix well with the frame operator.
For example, in the following formula framing A has no effect:

= frame A: {A < 0;skip;B <A} = {A < 0;skip;B < A}

Perhaps you might expect that framing A would force A to always be zero, and
hence also force B to be zero on the next step, but this does not happen. Of course,
it is still possible that A is zero on the next step, but framing A gives no further
information about its next value.

Assignment and Termination

As intended, unit-assignment generally fits well into an inertial environment. For
example, when the second initialisation in the previous program is changed into
unit-assignment the situation is completely different. Now framing A does force it
to always be zero,

= frame A: {A < 0;skip;B:=A} = {A<0;A:=A;B:=A}.

This is because the next value of A is chosen by looking at prefix subintervals on
which its possible values are unconstrained (whereas before they were constrained
to equal B).

However, there are still anomalies with assignment. For example, every assign-
ment must be associated with a particular computation length or termination flag.
Unit-assignment therefore works correctly (if it didn’t there would be little point
to the frame operator), but in general assignment only behaves in the desired way
if it is “known in advance” when to complete the assignment.

To see this, consider an interval on which the variable A is initially 0 and is
assigned the value 1 in two steps. One might expect that framing A would cause
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it to retain its initial value until the penultimate state, and then to assume the
value 1 on the final state. Indeed, if the interval length is known, this is just what
happens,

= frame A: {A < 0;len(2) AL — 1} = {A<0;A:=4;A:=1}.

But if the interval length is not within the scope of the frame operator, the formula

is false,
= len(2) Aframe A: {A<=0;A « 1} = false.

This happens because it is always possible to find another variable A/, such that
A’ is assigned the value 1 on an extended interval, of length 3 say, over which A’ is
stable for the first 2 steps. Such an A’ changes less than A.

Non-Determinism

The frame operator is not well-behaved for non-deterministic formulae; but then
you would not expect it to be. Typically, it forces a particular choice that makes
the formula deterministic. For example, in the following case a unique choice is
forced by framing A: ‘ '

= frame A: {A<0;(A:=1VA:=0)} = A&0;4:=0.

But this result is determined by looking ahead in time, rather than by inertia.

It is of no consequence to Tempura that disjunction and the frame operator
do not mix well, since disjunction is not a program operator. However, non-
determinism can be introduced in a limited way by means of the conditional. For
instance, in the program below the frame variable A is forced to change because
that is the only way to satisfy the program.

= frame A: {A < 0;skip;if A # 1 then false} = A<« 0;skip;Aisl.

There are, of course, much more subtle representations of false.

If an implementation is to generate the “correct” behaviour in these circum-
stances it is required to look ahead and then backtrack. Otherwise it will generate
an error, which actually seems the most appropriate course of action since the
programmer did not (or should not) deliberately write a such a program. Pro-
grams like this cause more serious problems for verification than for execution,
since it is possible to deduce that a program is correct when in fact it is not, in
much the same way as it is possible to deduce that the program false satisfies
any specification you like.
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Lists

Although it was not explicitly stated above, the definition of frame does not work
for lists. When just one element of a list is changed one would expect the rest of
the list to remain stable, whereas the frame operator says nothing about individual
clements. If one element has been changed nothing further can be said about the
values of the others.

It is easy to solve this problem for fixed-length lists (1.e. vectors) by defining
a special operator framevect . This operator minimises changes to each element
of the vector.

framevect v :p o pA

#v’ : extend {
prefix (p[v'/v]) A 3i < |v] : 8(vf) < &(vi)

1

where v’ is not free in p. How to handle arbitrary data structures is an open
question. However, I shall only need framed vectors in the following (and shall
assume the above semantics).

6.2.3 The Operator local

A frame variable ought to be framed throughout its scope. The semantics of frame
do not demand this, but it is hard to think of a situation in which it could usefully
be otherwise. Furthermore, implementing frame variables is made unnecessarily
difficult if this rule is not observed. For example, an attempt to assign a new
value to a frame variable from outside the scope of its frame should most probably
result in an error, but this is difficult to check for. Such a situation occurs in the
program below, which is logically false:

= A:=1Aframe A: {A=0} = false.

Having to detect errors such as this would defeat the whole purpose of frame
variables, which is to alleviate unnecessary work.

The scope rule can be enforced by defining a new operator local which exis-
tentially introduces a new frame variable.

localv:p & Jy : frame v : p.

In an implementation of Tempura, frame variables may only be introduced by
means of local. The operator frame on its own is prohibited. However, frame
on its own is useful for discussing properties of programs.

95




6.2.4 Doing Without Frame Variables

Although frame variables are practically useful, their semantic characterisation is
quite complex, so it is fortunate that for a restricted class of programs there is a
way to keep the inertial semantics without having to deal explicitly with the frame
operator. This is achieved by translating inertial programs into a form without
the frame operator. The translation process introduces explicit assignments where
they are needed to maintain inertia.

The translation function ¢ takes three arguments. The first is the variable v
to be framed; the second is a marker variable A; and the third is the program p to
be translated. The variable A is just an ordinary state variable, but it must not
be free in p. It has been given special syntax to denote its special role.

The idea of the translation is to make A mark the steps on which the variable
v changes; that is,

A = 6(v).

Once this is done v should be kept stable wherever it is not explicitly changed. So
the construct frame v : p may be rewritten as

frame v:p — 3IA:{é(v,A,p) Akeep if =A then v o= v}.

The translation ¢ is defined inductively on the primitive operators, taking unit-
assignment, :=, to be primitive since equality cannot in general be handled in an
inertial framework.

#(v, A, empty) = empty

d(v,Avi=e)=ANvi=e

(v, A0 =€) ="A AV =€

$(v,A,pAp)=3A, A" : {keep(A = A"V A" A (v, A'yp) A ¢(v, A", p')}
$(v, A, if e then p else p') = if e then ¢(v, A, p) else ¢(v,A,p')
$(v,A,Fv: p) =keep(—A)ATv:p

$(v, A, 1 p) =T’ : ¢(v,A,p)

¢(v,A,next p) = ~A A next ¢(v,A,p)

QS(’U,A,p ) P’) = ¢(’U,A,p) 3 ¢(07Aap/)a

where the variable v is different from v.

The translation does not handle the exceptional cases mentioned above. In
particular, it does not work if equality is used for assigning values to frame vari-
ables, but I have already given several reasons for regarding such assignments with
suspicion. As a result, one cannot claim, as one would like to, that in all cases
the rewritten program is equivalent to the original. The best one can hope for
is that if the rewritten program “works” then it produces the correct result. In
other words, if an interval satisfies the translated program, then it also satisfies
the original, but not vice versa.
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k= 3A:{4(v,A,p) Akeep if ~A thenvo=v} D framev:p.

This has not yet been formally verified.

6.3 Discussion

The frame operator is still experimental, and its properties need to be formally
established. Nevertheless, it does seem to work in all the cases where it is supposed
to work; that is, for all deterministic Tempura programs. Moreover, a similar
technique might be used for other purposes. For example, it might be possible to
define the concept of a “default value” in this way.

The frame operator also needs to be put in context. A considerable amount
of work has been done on the frame problem in the study of artificial intelligence,
and the relationship of the frame operator to this work must be investigated.

6.3.1 Default Values

The technique I used for preferring frame variables to the other variables that
satisfy the same formula might equally well be used to choose variables with prop-
erties other than stability. For instance, default values can be handled in the same
way. Instead of minimising changes in the value of a variable v, one now tries to
minimise the times when v does not equal its default value, d say. This might be
achieved by using the predicate y(v,d) in place of 6(v), where

y(v,d) E (v o=d).

Observe that inertia is a special case of this.

Default values can be used, for example, to formalise the idea that a program
produces no output unless the output predicate is used explicitly. One would
simply choose the empty list of outputs as the default value for the signal Output.
Perhaps a similar idea can be made to work for values that decay gradually over
time, such as the electrical charge on a capacitor.

6.3.2 The Frame Problem in Artificial Intelligence

For many years the so-called frame problem has been a subject of considerable
interest in Al It was first described by McCarthy and Hayes [MHS81] in the context
of their situation calculus. In the situation calculus one describes the world in
terms of situations, which are “snapshots” of its state at various points in time,*
and actions which cause a change of situation. Roughly speaking the problem is
that most things are left unchanged by most actions, yet to represent this in a

1Situations are like the frames in an animated picture, hence the frame problem.
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naive way one needs to include a number of frame azioms each one asserting that
some action does not affect some aspect of the situation. For example, drinking
a cup of coffee does not (usually) affect the colour of your eyes. Clearly, for any
problem of significant complexity the number of such frame axioms would be huge.
It seems that their ought to be a better way to represent this information.

Over the years a number of partial solutions to the frame problem have been
proposed. McCarthy’s idea of circumscription was one of the earliest attempts to
solve the problem. McCarthy’s idea was to introduce a special circumscription
axiom which effectively plays the same role as my frame operator. In McCarthy’s
original version of the circumscription axiom,? the effect of circumscribing a for-
mula P with free variables z in a theory A was as follows:

A(P) A p: (A(p) Ap< P),
where p is a predicate variable with free variables &, and p <1 P here stands for
Vz : ((pz) D (Pz)) A “Vz : ((Pz) D (pz)).

The circumscription axiom encodes a preference for particular models, namely
those which are minimal in the above sense. For example, if the formula can_£1y(x)
is circumscribed in the theory {Vb : (bird(b) D can_fly(b)), bird(polly)} one
may conclude that the only object that can fly is polly. Shoham [Sho88] reviews
some of the other approaches that have been tried, and also make his own proposal
based on what he calls the logic of chronological ignorance, a kind of non-monotonic
logic.

Clearly, the frame problem is substantially similar to the problem of represent-
ing inertial variables, though the latter is more sharply focussed, and some of the
proposed solutions seem to be similar in spirit to my frame operator. However,
the exact relationship of one to the other remains to be established.

2] am borrowing from Shoham’s account here [Sho88].
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Chapter 7

Recursion and Iteration

In this chapter I discuss three problems which are naturally solved by recursion and show that
each may be transformed into a provably equivalent iterative form. Section 7.1 presents that classic
example of recursion, The Towers of Hanoi; section 7.2 discusses a parallel summation algorithm;
and section 7.3 describes a parallel mergesort algorithm that uses a variant of Batcher’s odd-even
merge [Bat68]. It is shown that the summation and the merge algorithms have essentially the same
structure, and may be transformed to iterative form in the same way.

Many computational problems are most naturally solved recursively by dividing
them up into similar subproblems. Often it is much easier to show that a recursive
program correctly solves the problem in hand than it is to verify the corresponding
iterative solution. Nevertheless, it is a fact of life that on conventional sequential
computers an iterative program can frequently be made to run much more ef-
ficiently than its recursive counterpart. Some programming languages for these
machines do not even permit recursion. It is therefore desirable to have ways of
transforming recursive programs into equivalent iterative ones.”

In this chapter I present three problems which are best solved by recursion.
The first is to solve the Towers of Hanoi puzzle, the second is to sum a list of
numbers in parallel, and the third is to sort a list using a variant of Batcher’s
odd-even merge [Bat68]. All the recursive solutions are easily shown to be correct,
and can be transformed into provably equivalent iterative forms. What is more,
such transformations require only the rules of logic, there is no need to introduce
explicit stacks or similar operational devices.

7.1 The Towers of Hanoi

The Towers of Hanoi is well-known both as a mathematical diversion and as a
children’s toy. The toy comprises an arrangement of three pegs and a set of discs.

1Since iteration is defined recursively, such transformations do not formally eliminate recursion.
What they do is to transform one program into another that is better suited to a conventional
machine architecture.
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(a) (b)

() (d)

Figure 7.1: The Towers of Hanoi. The steps in the solution for a four-disc tower
are shown: (a) the initial configuration; (b) after moving the three-disc tower to
the auxiliary peg; (c) after moving the bottom disc to the destination peg; and
(d) after moving the three-disc tower back to the destination peg,.

The discs, no two of which have the same diameter, are drilled through their
centres so that they may be stacked onto the pegs to form towers, as shown in
figure 7.1. Initially, the discs are all on one peg and arranged so that they form a
“tower” decreasing in size towards the top. From this position the discs are to be
moved one at a time from peg to peg with the aim of forming a tower identical to
the initial one but on another of the pegs. The only rule to be observed is that a
disc may never be placed on top of one smaller than itself; in other words, at any
point in time the stack of discs on each peg must decrease in diameter towards the
top. Let us represent the whole contrivance as a list of pegs, P say, and each peg
as a list of numbers with each number standing for one of the discs on that peg.
The head of each list is the top disc on that peg, and a smaller number denotes a
smaller disc. .

Suppose that a tower of n discs is to be moved from peg Py to peg Py using
P, as an auxiliary peg, then a solution, hanoi(n), must satisfy three properties.
First, it must produce the desired final result from the given initial conditions;

= hanoi(n) D Po,Py,P2= [0..n],[],[} A Po,P1,P2 [1,[0..n},[] (7.1)
Second, it must ensure that all the pegs remain in order of increasing size,
= hanoi(n) D forall i < 3:always ordered(Pi), (7.2)

where the function ordered(L) tests whether or not the elements of L are in as-
cending order (it was defined on page 19). Finally, it must ensure that exactly one
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disc is moved at each step. This means that on each step the top disc from one
of the pegs, P; say, must be transferred to another of the pegs, Pj say, whilst the
remaining peg, P, is kept stable; that is,

= hanoi(n) D loop
i, 5,k {
i<3Aj<3AK<3A
i£jJANIARARALA
Pi,Pj,Px := t1(P1), cons(hd(P1),P;), Pk

b

where the list functions have their usual meanings: hd(L) and t1(L) denote the
head and tail of the list L, and cons(x, L) returns a list whose head is x and whose

(7.3)

tail is L. These functions were defined on page 20.

7.1.1 Recursive Algorithm

This problem has an elegant recursive solution but is rather harder to analyse
as an iterative procedure. In the earliest published discussion of which I am
aware, Rouse-Ball [RB92] gives a mathematical analysis of the problem for a fixed
number of discs. A recent, and very extensive, consideration of the problem from
a computational point of view is given by Rohl [Roh87].

The recursive solution is discovered by hierarchical decomposition of the spec-
ification (7.1). First, the initialisation part may be separated from the transfer:

Po,P1,P2 = [0..n],[],[] A move_tower(n,0,1,2) D hanoi(n),

where the predicate move_tower(n, f,t,a) solves the problem of moving a tower
of n discs from Ps¢ to Py using the auxiliary peg Pa. Its function is to remove the
top n discs from Ps and append them to Py, leaving Pa unchanged. Assuming that
there are at least n discs on P¢ initially, move_tower must satisfy

= move_tower(n,f,t,a) D Ps,Py,Pa « drop(n,Ps),take(n,Ps) Py, Pa, (7.4)

where take(n, L) & 1o.n and drop(n,L) o Ly} Now the property (7.4) may be
decomposed recursively.

If there are no discs there is nothing to do. Otherwise, suppose that the problem
is solved for n discs, then it is easy to solve the n+1 disc case by simply moving the
top n discs from the initial peg Ps to the auxiliary peg Pa using the n disc solution,
then moving the remaining disc to the destination peg Py, and then repeating the
n disc solution to move the discs back from the auxiliary peg to the destination
peg. The steps in the solution for three discs are illustrated in figure 7.1. In this
way the solution for n + 1 discs is decomposed into an n-disc solution followed by
a single step followed by another n-disc solution:
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time | Pg Py Py
01[0,1,2,3] [] (]
1](1,2,3] ] [0]
2([2,3] (1] [0]
31[2,3] [0,1] (]
4| (3] [0,1] [2]
51[0,3] (1] 2]
6 1[0,3] (l [1,2]
7|[3] (] [0,1,2] -
8] (3] [0,1,2]
9] [0,3] (1,2]
10| 1] [0,3] 2]
11 0,1] (3] 2]
12| [0,1] (2,3] (]
13 | 1] [2,3] [0]
14| [] [t,2,3] o]
15 | (] [0,1,2,3] []

Figure 7.2: The solution to the Towers of Hanoi problem for 4 discs.

move_tower(n,f,a,t);
= (move.disc(f,t,a); D move_tower(n+ 1,f,t,a), (7.5)
move_tower(n,a,t,f)

where the function of move_disc(f,t,a) is to transfer the top disc from P; to Ps.
move.disc(f,t,a) def Ps,P4,Pa := t1(P¢),cons(hd(Pg),Pt),Pa.

It satisfies property (7.3) and also preserves the ordering of the pegs, as required
by property (7.2). Thus, solutions can be constructed for all values of n, and
move_tower is defined as follows:

def
move_tower(n,f,t,a) =

if n = 0 then empty

else {
move_tower(n — 1,f,a,t);
move_disc(f,t,a);
move_tower(n — 1,a,t,f)

}

A call of hanoi(4) generates the complete sequence of moves to transfer a tower
of 4 discs from peg 0 to peg 1, as shown in figure 7.2.
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7.1.2 Transformation

The program can be transformed in a number of ways. First, notice that there is
no need to specify the peg from which a disc is to be moved; the identity of the
disc is known, so its position can be deduced by examining the pegs. A little more
thought reveals that there is no need to specify the destination peg either, because
the direction of the move suffices. The direction of each move is either positive
(4+1) or negative (—1) modulo 3, and disc n — 1 moves in the same direction as
the n-disc tower of which it is the base. The resulting program has the form:

hanoi’(n) def

move_tower’(n,d)

Po,P1,P2 = [0..n],[],[] A move_tower'(n,+1)
if n = O then empty
else {

move_tower’'(n — 1, —d);

def

move_disc/(n — 1,d);
move_tower’'(n — 1,—d)
}
movedisc/(i,d) = 3If,t,a:{
forallp € P: {if i € pthenf < p};
t < (f + d) mod 3;
a < (t + d)mod 3;
move_disc(f,t,a)

}.

The predicate hanoi’ can be further transformed by observing that disc number
n—1—i is always moved in direction (—1)* x d(n), where d(n) is the direction of
the whole transfer (the direction in which the largest disc is moved), and that the
direction of each move can therefore be deduced. This results in the program:

hanoi”(n) 4t py,P1,Pz = [0..0],[],[] A move_tower”(n)

move_tower”(n) 4 if n =0 then empty
else {

move_tower”(n — 1);

move.disc”(n —1);

move_tower”(n— 1)
}
move._disc/(i,dir(i))
if (n—1—i)mod2 = O then +1 else —1.

move disc”(i) of

dir(i)

ic]

The three programs hanoi, hanoi’ and hanoi” define identical behaviour, and they
are provably equivalent; that is,

= hanoi(n) = hanoi/(n)
= hanoi/(n) = hanoi’(n).

However, it is easier to derive an iterative solution from the last form, hanoi”(n).
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7.1.3 Tterative Algorithm

To obtain an iterative solution, one should first notice that the solution is nothing
but a sequence of individual moves! In other words, the predicate move_tower”(n)
is equivalent to an iterative program of the form

= move_tower’(n) = for i< t(n)do move_disc’(s(i)) (7.6)

for some functions s and t. The function t(n) determines the number of steps
taken to move n discs, and s(i) determines which disc is to be moved on step
i Substitution of the iterative form (7.6) into the definition of move_tower”(n)
imposes the following conditions on t and s:

£(0)=0 and t(n+1)=2xt(n)+1,
s(t(n))=n and  foralli < t(n):s(i+t(n)+ 1) = s(i),

from which it may be deduced that t(n) = 2°~* and s(i) determines the position
of the least significant zero in the binary expansion of 1. Let us call this function
150, then an iterative solution to the Towers of Hanoi problem has the form

hanoi_i(n) 4t py,Py,Py = [0..0],[],[] A for i < 271 4o move_disc’(1s0(1)),

with move_disc” defined as above, and 1s0 defined as follows:”

150(i) % if imod2 =0 then 0 else 1+ 1s0(i/2).

The predicate hanoi_i(n) has been tested in Tempura and proved equivalent to
hanoi”(n) using the HOL theorem prover.

7.2 Parallel Summation

This section describes an algorithm to sum a list of numbers. In order to simplify
the discussion it is assumed that the list, A say, has 2" elements, though it would
not be hard to generalise the algorithm. The algorithm, 1r_sum(n,4), works in
sity by summing the left and right halves of the list A in parallel, and assigns the
final sum to the first element of the list, Ag. Thus, the program must satisfy

= 1lr.sum(n,A) D Ao « sum(A),
where the function sum(A) forms the sum of the elements of 4,
sun(A) % if || = O then O else hd(4) + sum(t1(A)).

The resulting parallel summation algorithm is quite well known. It is derived using
the so-called “divide-and-conquer” strategy.

2he function 1s0 can also be defined without explicit recursion.
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Ao | A1 | Ao | As | Aa | As | Ae | A7 | As | Ag |Ato|A11|A12|A13]|A14|A15

7 9 11 13 15
Eé Ay 22 A3 Ei As |5 6| A7 1228 | A9 Pt0 A11[y"151A13 3714 A6

7 7 11 11 15 15
Zg Ay Zg Ag |3 4| A5 |6 | A7 s Ag |10/ A11[Po1olA13 5714 AL5

571 ag [553) As [0 ] As |05 | A7 [57) Ao [Cio|Ata (15 Ara 515 Ats

S8 A4 (53] A |30 | As |00 | A7 [T Ao [ Av1 [Ci5|A1s (Y14 At

Figure 7.3: Parallel summation of a list A by recursive division into left and right
sublists.

7.2.1 Recursive Algorithm

The summation may be divided into subtasks recursively. An algorithm of this
type follows from the decomposition theorem below, which holds for all state
expressions e, e, €p, 1, €; and binary functions £.

= ep,01 « eh, e} ;e — £(eg,e1) D e« f(ep,e]). (7.7)

Taking £ to be the addition function and using the commutativity and associativity
of addition,

= sum(A"B) = sum(A)+ sum(B),

permits the summation to be split apart. For instance, instantiating the terms in
(7.7) in the following way:

= Ao,A1 «— Ao,sum(tl(A)); Ao <~ Ao+A1 D Ao — Ao+t sum(t1(4))

leads to a sequential algorithm. On the other hand, the substitutions below lead
to a parallel algorithm which sums the left and right halves of A, 1t(A) and rt(4),
simultaneously.
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time | A time | A
0 [1,1,1,1,1,1,1,1] o|[t,1,1,1,1,1,1,1]
1 [2,1,2,1,2,1,2,1] 1[2,2,2,2,1,1,1,1]
21[4,1,2,1,4,1,2,1] 2|[4,4,2,2,1,1,1,1]
3 [8$ 1’2’1’4’1’2’1] 3 [8’4’272?171,1’1]
(2) (b)

Figure 7.4: Parallel summation using (a) left and right partitions and (b) even
and odd partitions

- {iz,f_zio(—_*_szz(lt“)),SM(rt(A)); } D Ag « sun(1t(4)) + sum(rt(4)),

where 1t(A) def Ag. /2 and rt(4) & Ajaj/2.a- This gives a refined specification for
1r_sum as follows:

= 1lr_sum(n,A) D if n=0thenlg « Ao
else {
Ao,Apn-1 — sum(1t(4)), sum(rt(A));
Ao — Ao+ Apn 1
1.
The case n = 0 must be treated separately since the sum cannot then be split
apart.

Replacing the partial sums by recursive calls, and assigning lengths to the
various subintervals results in a suitable definition for lr_sum:

1r_sum(n,A) 4f i n=0then empty

else {
1r_sum(n — 1,1t(A)) A 1lr_sum(n — 1,rt(4));
Ao = Ao+ Apn-1

}

The general strategy is shown in figure 7.3 and figure 7.4(a) shows how this pro-
gram works for the list [1,1,1,1,1,1,1,1].

7.2.2 TIterative Algorithm

An iterative form of the summation algorithm can be discovered in much the same
way as the iterative algorithm for the Towers of Hanoi problem. The iterative
summation algorithm is just a sequence of parallel sum steps; that is,
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= 1lr.sum(n,A) = for i < t(n)do
forall j < p(n,i):
Ra(i,3) = Ra(ig) T Au(ig)
for some functions t, p, a and b. As before, these functions are determined by
substituting the iterative form into the recursive definition of 1r_sun to get:

t(n)=n, p(n, i) = 2n—1—i, a(1,j) =3 X 2i+1 and b(i,j) = 2t + JX i+t

The result is an iterative algorithm that is logically equivalent to the recursive
version. However, let us take a slightly different course and derive a general form
of the summation algorithm that will be useful later on.

7.2.3 General Algorithm

Because summation is insensitive to the order and grouping of terms, there is no
compelling reason to sum the elements of A in any particular order. The summation
can be divided by partitioning A into any two equally sized disjoint lists at each
step and summing each in parallel; that is,

= sum(4) = sum(1lptn(A))+ sum(rptn(4))

for any two functions lptn and rptn with the property that 1ptn(A)"rptn(4) is
a permutation of A. In the derivation of 1r_sum above, 1ptn and rptn were taken
to be the functions 1t and rt, which partition a list into left and right halves.

However, different partitions suit different implementation environments. For
instance, A may be partitioned into even and odd elements by taking 1ptn = evns
and rptn = odds, where

evns(A) def
def

odds(A) =

if |A| < 2 then A else cons(Ao,evns(Ay, |a))
if |A| < 2 then[] else cons(A1,o0dds(Az |a)))-

This leads to an algorithm that is suited to certain types of processor array, as
will be shown in chapter 8.

In general, the parallel summation algorithm is defined on a selection s =
[s0,...,50n] of 2" elements from A as follows:

def

par_sum(n,s,4) if n = 0 then empty

else {
par.sum(n — 1,1ptn(s),A) A par_sum(n — 1,rptn(s),A);
sum_step(s,4)

}

where sum_step is the single step operation

sum_step(s,A) & Anda(1ptn(s)) ‘= And(1ptn(s)) T And(zptn(s))-

107




You may check that the algorithm 1r_sum above is a special case of par_sum with
1ptn = 1t and rptn = rt. As you might expect, the iterative form of this general
algorithm is similar to the iterative form of 1r_sum, and is derived in a similar
way. Indeed, it may be proved that any recursive algorithm of the same form as
par_sum is equivalent to an iterative algorithm of the following form:

par._sum-i(n,s,A) <l fori<ndo
forall j < 2n~1-1:
sum_step(i,apply(n— 1 — i,j,1lptn,rptn,s),4),

and the function apply(i, j, lptn,rptn, s) produces a sequence of applications of
the functions 1ptn and rptn to s based on the i-bit binary representation of j.

Shown below are the partitions produced by apply for the first few values of
i and j (the binary representation of j is shown). The general pattern is easily
seen.

j apply(i,j,lptn,rptn,s)
0 s
0
1

1ptn(s)
rptn(s)
00 1lptn(lptn(s))
01 rptn(lptn(s))
10 1ptn(rptn(s))
11 rptn(rptn(s))

N N NN - = Ok

A recursive definition of apply(i, j,1ptn, rptn, s) is given below. It tests each bit
of j in turn and applies the appropriate partition function.
apply(i,j,1lptn,rptn,s) df jfi=0thens
else
if even(j)
then 1ptn(apply(i — 1,j/2,1ptn,rptn,s))
else rptn(apply(i — 1,j/2,1ptn,rptn,s)).
For example, apply(2,0,1t,rt,[0..2]) = [0..2°7%], and for arbitrary i and j the
left-right and even-odd partitions denote the following lists:
apply(i,j,1t,rt,[0.2%)) = [jx22 1. (j4+1)x on—i]
apply(i,j,evns,o0dds,[0..2%]) = [j,j+2%,...,5+ (2" 1) x 2]
The two iterative summation algorithms corresponding to these partitions are
1r_sum_i, which is equivalent to 1r_sum, and eo_sum_i, which sums even and odd

elements separately.

1r_sum-i(n,4) 4 for i< ndo

forall j < 20—1-1.
ij2i+1::=ij2i+1 +‘A2i+jx2i+17
eo_sum_i(n, A) df for i < ndo
forall j < 2n~1-1.
Aji=A5+ Aj+2n—1~i-
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An implementation of the latter algorithm, eo_sum_i, is described in chapter 8,
and how it works is illustrated in figure 7.4(b).

7.3 Mergesort

This section concerns mergesort, another recursive algorithm with the same struc-
ture as the parallel summation algorithm. The basic mergesort algorithm is quite
straightforward. Its specification is to sort a list A in situ, where A is assumed to
be of length 2*, as before; that is,

k= mergesort(n,A) D A « sort(4).

The function sort(A) returns a sorted version of 4; it could be the simple mergesort
function defined in chapter 2.

7.3.1 Recursive Mergesort

The specification may be decomposed as in the previous example, using theorem
(7.7) with appropriate substitutions, to give
1t(A) « sort(1t(A))
E { Art(h) « sort(rt(4)); D A« merge(sort(1t(4)),sort(rt(4))),
A — merge(1t(A),rt(4))

where the function merge is assumed to have the property that

= merge(sort(A),sort(B)) = sort(A"B)
for lists A and B. A recursive definition was given on page 20.

The above decomposition leads directly to a prototype mergesort in just the
same way as the parallel summation example.

mergesort(n,A) 4 if n =0 then empty

else {
mergesort(n — 1,1t(4)) A mergesort(n — 1,rt(4));
A :=merge(1t(4),rt(4)) '
}.

The prototype mergesort is of the same form as the parallel summation algorithm,
par_sum and may be transformed into an equivalent iterative form in just the same
way. Thus,

mergesort_i(n,4) 4l fori<ndo

forall j < 2°~i-i:
A :=merge(seg(A,2 x j,21),seg(4,2 x j + 1,2%))
. def
seg(A,1,d) = Aixd.(i+1)xd-

Figure 7.5 shows graphically how this algorithm works on a list of 128 elements,
initially in decreasing order. But the heart of the algorithm is really in the way
the merge is performed.
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Figure 7.5: Operation of the mergesort on a list A of 128 elements initially in
decreasing order. The points (i,A;) are marked to show the value held in each list
element, so the line of unit slope in the final graph indicates that the list is sorted.

7.3.2 The Merge Algorithm

A number of parallel merging algorithms are based on the divide-and-conquer
approach; the one presented here is a variation of Batcher’s odd-even merge algo-
rithm [Bat68]. This algorithm is chosen because it is suitable for implementation
on a SIMD processor array, as will be shown in chapter 8. Batcher’s original al-
gorithm requires fewer comparisons, but does not transfer so readily to the most
common types of processor array. The two algorithms take the same number of
steps to complete.

The merge algorithm, eo_merge say, is to take as input a list A of 2" elements
whose left and right halves are in order, and to merge the two halves in situ to
produce a sorted list. The central idea of this algorithm is that the merger can
be achieved by first merging the odd elements of the left half of A with the even
elements of the right and in parallel merging the evens of the left with the odds
of the right, and then comparing each even element of the resultant list with the
next odd one, exchanging them if they are out of order.

To see why this works, consider a specific example. Suppose that the list A has
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eight elements and that each half is initially in order; that is, both ordered(1t(4))
and ordered(rt(4)) are initially true. The partition described above separates A
into two sublists,

oe(A) = odds(1t(4))"evns(rt(4)) — Ay Az Mg Ag
eo(A) = evns(1t(4))"odds(rt(4)) — Ao A2 As Ay

The left and right halves of each sublist are already ordered because the left and
right halves of the whole list are; therefore the sublists can themselves be sorted
by recursively merging.

Now consider what happens when the left and right halves of A are merged to
form a single ordered list, A’ say. The first element of A’ must be the lesser of Ao
and Aq, because the left and right halves are already sorted. Suppose that it is A,
then the next element of the sorted list, A}, is either Ay or A4. If it is A4 then the
next one must be Ay or Ag, and if it is A; then the next must be Az or A4, and so
on. Observe that every even-odd pair in A’ contains one element from each of the
two sublists, [A1, A3, As, Ag] and [Ao, Az, As, A7].

If these sublists are themselves sorted into order the elements of A’ are found
by alternately “peeling off” one element from one sublist followed by one element
from the other. In other words, each even element of the sorted list, A%, ;, is simply
the lesser of Agyxi and Agxis1, and the corresponding odd element, Ay, ;. 4, is the
greater of the two. This result generalises to other values of n.

Since the odd and even elements in each half of A are themselves ordered
initially (because each half is ordered), the two sublists of odd and even elements
may be ordered by merging. Once again, therefore, theorem (7.7) applies, and

oe(A) «— merge_oe(A)
= A eo(A) « merge_eo(A); O A « merge2(merge.oe(A),merge_eo(4)),
A «— merge2(oe(A),eo(4))

where the functions merge.oe(A) and merge.eo(A) represent the mergers of the
left and right halves of these two sublists, and merge2(A,B) denotes the pairwise
comparison of elements from A and B.

merge_oe(4) & merge(odds(1t(4)),evns(rt(4)))
merge_eo(A) & merge(evns(1t(4)),odds(rt(4)))
merge2(A,B) = if |A|=0V|B|=0thenA"B
else if hd(A) < hd(B)
then cons(hd(A),cons(hd(B),merge2(t1(4),t1(B))))
then cons(hd(B),cons(hd(4),merge2(t1(4),t1(B)))).

The property above leads straight to a recursive merge algorithm. The derivation
is just as for the parallel summation algorithm in section 7.2.1.
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eomerge(n,s,A) = if n=0 then empty
else {
eo_merge(n — 1,0e(s),A) A eomerge(n — 1, e0(s),A);
merge_step(s,4)

}
merge-step(s,4) € forall j < [s|/2: comparex(Aszxj,A82xj+1)
comparex(A,A’) def i A< A'then A, A := A, A else A, A := A, A

Furthermore, an equivalent iterative form of this algorithm can be constructed by
analogy with the iterative version of par_sum in section 7.2.2.

eomerge_i(n,4) & fori<ndo

forall j < 2n~1-1:
merge_step(i,apply(n— 1 — i, j,0e,e0,[0..27]),4).

The derivation guarantees that this is equivalent to the recursive version.

7.3.3 Iterative Mergesort Algorithm

Finally, the mergesort algorithm mergesort_i may be rewritten with this defini-
tion, and the function apply rewritten with an equivalent but more direct method
of selecting the appropriate part of the list, to give the algorithm:

eomergesort_i(n,A) 4 for i <ndo

forall j < 20~1-1.
fork<i+1do
forall 1 < 21~k
forallm< 2K:
eo_step(i+1,3,k,1,2 x m,217K 4)

eo_step(i, j,k,1,m,d) def comparex(ij2i+a(m), ij21+a(m+1))
in which a(m) is shorthand for
ifm<2¥thenl+mxdelse2l —1—-1— (2811 _m)xd.
Mercifully, this algorithm is guaranteed by derivation to be correct,
= eomergesort.i(n,A) D A « sort(4),

and it is functionally equivalent to the original mergesort algorithm. It is likely
to be much more efficient than the original algorithm in many circumstances,
indeed it leads directly to a hardware realisation, but it is also much more obscure.
Figure 7.6 shows how this algorithm performs the last merge of the mergesort
depicted in figure 7.5 above.
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Figure 7.6: Operation of the merge algorithm on a list A of 128 elements, each half
of which is initially sorted.

7.4 Discussion

The three examples of this chapter have, I hope, made it clear that Tempura is
a suitable vehicle for discussing algorithm development and program equivalence.
It should also be obvious that in examples like these a recursive algorithm is
very much easier to construct and to reason about than its iterative counterpart.
Nevertheless, the iterative version often executes more efficiently than the original
recursive formulation. It is therefore particularly valuable to be able to transform
a recursive program into a logically equivalent iterative one. This can be done by
rewriting with theorems of logic, mechanically in a system like HOL, without the
need of a stack (or any other operational device) to assist the transformation.

Other solutions to the Towers of Hanoi problem are discussed in a previous
paper [Hal87], and Rohl [Roh87] also offers an extensive informal analysis of the
problem using Pascal. He derives several iterative versions, but does so by effec-
tively simulating the execution of the recursive program (by explicitly introducing
a stack). As observed, a more direct transformation is possible in Tempura, and
the two forms are provably equivalent.

Parallel summation is an example of what Hillis and Steele [HS86] call a data
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parallel algorithm. Algorithms of this form are particularly suitable for implemen-
tation on SIMD processor arrays, and on the Connection Machine in particular.
The odd-even mergesort is another algorithm of this form, and both algorithms
will be considered again in chapter 8 where practical implementations will be dis-
cussed. It will be shown that both algorithms can be implemented efficiently on a
shuffle-exchange network.
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Chapter 8

Parallel Processing

This chapter discusses a few of the issues involved in adapting parallel programs to run on real
parallel computers. The first part of the chapter considers fine-grained parallel systems such as
array processors; the second part considers implementation on coarse-grained systems such as
multiprocessors and multicomputers. A new parallel composition operator, ||, is introduced in
section 8.2.1 for describing coarse-grained concurrency.

Up to now I have ignored the limitations of parallel processing, but parallel algo-
ithms have to be run on real computers constructed by connecting together real
processors and real storage devices, and this compromises in many ways the ideal
model assumed so far. The principal restrictions concern the number of processors
and the interconnections between them.

If there are relatively few processors sharing a common memory, as in a typical
multiprocessor, the major problem is how to partition the work to make the best
use of available resources. If, on the other hand, there are a large number of pro-
cessors, as in a processor array, connecting them together is a major problem. In
this case, it is not feasible for all processors to share a common memory because
the processor speed would be limited by contention for that memory, and it is
not feasible to connect each processor directly to every other because the inter-
connection network would be too complex. For these reasons, considerable effort
has gone into the design of useful interconnection networks with small numbers of
interconnections, and our algorithms have to be adapted to their peculiarities.

This chapter presents some of these issues from the Tempura point of view.
Tt is not intended to be an exhaustive discussion, the point is only to show that
it is very easy in Tempura to represent a problem in many different ways, and
at different levels of concern. The examples are all simple algorithms which were
introduced earlier in different ways. In the first part of the chapter, the summa-
tion and mergesort algorithms of chapter 7 are adapted for implementation on
suitable processor arrays. The second half concerns parallel processes. The idea
of the parallel composition of two processes, p || p/, is introduced, and for illus-
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tration the familiar matrix multiplication algorithm is adapted for multiprocessor

implementation.

8.1 Processor Arrays

A processor array contains a number of identical processors which operate syn-
chronously. Each parallel process proceeds at the same rate and performs the
same instruction on each step, though each operates on different data, of course.
Usually there are a large number of processors, so it is infeasible to connect each
one directly to every other because the number and complexity of the connec-
tions would be overwhelming. Nevertheless, there are a number of interconnection
patterns that have been found to be versatile enough for a variety of applications.

8.1.1 Interconnections

The simplest scheme is to connect each processor to its nearest neighbour in the
form of a linear array, or two-dimensional mesh, and the systolic matrix multipli-
cation algorithm on page 35 uses just this sort of interconnection pattern. More
exotic interconnection patterns include the hypercube and the shuffle-ezchange.

Hypercube

A hypercube network consists of p = 2" processors connected in the form of an
n-dimensional hypercube, as shown in figure 8.1. Two processors, i,j < p, are
adjacent if the binary representations of i and j differ in exactly one bit. Thus,
processor i is connected to processors 1 + c(d), where

c(a) & on-1-d

for each dimension d < n.

Shuffle-Exchange

The shuffle-exchange network consists of p = 2" processors connected as shown in
figure 8.1. There are two kinds of connections. An exchange connection links two
processors, i,j < p, if the binary representations of i and j differ in their least
significant bits. A shuffle connection links processor i to processor 2 X imod(p—1),
except that processor p — 1 is connected to itself.* Thus, processor i is connected
to processors e(i) and s(i), where

s(1) df jfi<p/2then2xielse2Xi+1—p
e(i) df jf even(i)then i+ 1elsei— 1.

1The term “shuffle” derives from the fact that after a shuffle operation the elements are re-
ordered as if they were a perfectly shuffled deck of cards.
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Figure 8.1: Interconnection networks: (a) the hypercube with eight processors, (b)
the shuffle-exchange network with eight processors (shuffle connections are solid,
exchange connections dashed).

The function e represents an exchange link, and s represents a shuffle link. Corre-
sponding to these connections there are three principal data movement operations,
shuffle(A), which moves the data on processor i to processor s(i), unshuffle(A)
which is the inverse of shuffle(4), and exchange(A), which exchanges data be-
tween each even-odd pair of ProCessors.

shuffle(s)

unshuffle(A)
exchange(A) & forall i <p:he(i):= Ai.

forall i < p:hg(y) = A
forall i <p:Aj = Ag(y)

Note, however, that the unshuffle operation can be implemented in terms of
shuffle. The elements of A may be unshuffled by n — 1 successive shuffle op-

erations.
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8.1.2 Summation

Recall the iterative parallel summation algorithm eo_sum_i given on page 108. It
was defined as follows:

eo_sum_i(n,A) df for i < ndoforall j< on—1-i, Aj:=A5+ Aj+2n_1_i-

Suppose that one element of the array A is stored on each of p = 2" processors,
then on step i processor j adds its own value to that held on processor j + gn-i-i,
Thus, processor j should ideally be connected to processors j + 2r~1-1 for each i
less than n, which is exactly how the n-dimensional hypercube is arranged.

Hypercube

On the hypercube, a single step of the algorithm can be replaced by a transfer
followed by an addition, since

E oAji=Ay Ay onas ~ FLi{Li=Ajre) A=At L}

if A is a frame variable. Thus, using the local array B to hold intermediate results,
the summation algorithm can be rewritten for the hypercube.

def

eo.sumc(n,A) = 3B:

for i <ndo
forall j < c(i): {
Bj = Ajte(d)i
Ay :=Aj+ Bj
3
where A is assumed to be a frame variable and B is a 2" element list. However, it
is not essential that processor j be physically connected to each of the processors
j + c(i). The same effect can be achieved on a shuffle-exchange network.

Shuffle-Exchange

A shufile operation brings elements j and (j +p/2)mod p onto adjacent processors,
because

= shuffle(A) = forall j <p/2:Aaxj,A2xj+1 = Aj,Aj4p/2.
They can then be moved onto the same processor by an exchange operation.
= exchange(B) = forall i <p/2:Baxj,Baxj+1:= Baxj+1,B2xj

Repeating the shuffle-exchange brings together elements j and (j +p/4)modp, and
so on. The ith iteration brings together elements j and (j + p/2%) mod p.

Thus, at a cost of two communications for each step of the algorithm, the
summation can be performed on a shuffle-exchange network.
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time | A time | A
ol[o0, 1, 2, 3, 4, 5, 6, 7] ol[o, 1, 2, 3, 4, 5, 6, 7]
1[0, 1, 2, 3, 4, 5, 6, 7] 1{[o0 4 1, 5, 2,6, 3, 7
2|[ 4, 6, 8,10, 4, 5, 6, 7] 4] 4, 4, 6, 6, 8, 8,10,10]
3|[4, 6 8,10, 4, 5, 6, 7] 5[ 4, 8, 4, 8, 6,10, 6,10]
4 |[12,16, 8,10, 4, 5, 6, 7] 8 |[12,12,12,12,16,16,16,16]
5|[12,16, 8,10, 4, 5, 6, 7] 9 |[12,16,12,16,12,16,12,16]
6| [28,16, 8,10, 4, 5, 6, 7] 12 | [28,28,28,28,28,28,28,28]
(2) (b)

Figure 8.2: Summation of an array of numbers on (a) the hypercube, and (b) the

shuffle-exchange network.

eo_sums(n,4) o

B :
for 1 <ndo {
shuffle(A);
forall j < p:Bj:=Aj;
exchange(B);
forall j < p:Aj:=Aj+Bj

).

This algorithm results in the sum being assigned to every element of A,
= eosums(n,A) D foralli<n:Aj < Egr__l_o Aj,

as shown in figure 8.2.

8.1.3 Mergesort

The even-odd variant of Batcher’s merge algorithm can, like the parallel summa-
tion algorithm, be implemented on a shuffle-exchange network. On page 111 the
algorithm was defined for a 2"-element array A as follows:

eomerge(n,s,A) 4f j£ n =0 then empty
else {
eo_merge(n — 1,0e(s),A) A eomerge(n — 1,e0(s),A);
forall i < 221 comparex(Asy, 4, 8sp,5,1)

b

where oe(A) = odds(1t(A))"evns(rt(A)) and eo(A) = evns(1t(4))"odds(rt(4)).
By unwinding the recursion so that the base case becomes n = 1 rather thann = 0,
and permuting the array A rather than its access list s, the body of eo_merge is
easily transformed into the functionally equivalent form:

119




if n = 1 then comparex(Ao,A1)

else {
1t(A),rt(A) == odds(1t(A)) evns(rt(A)),evns(1t(4)) odds(rt(4));
eomerge(n — 1,1t(s),A) A eomerge(n — 1,rt(s),4);

odds(1t(4)) evns(rt(A)),evns(1t(4)) odds(rt(4)) := 1t(h),rt(A);
forall i < 21 : comparex(Aayi,A2xit1)

}.

Now suppose that A is stored on a p-element processor array, one element at
each processor (p = 2"), and that the processors are connected up in the shuffle-
exchange pattern.

Shuffle-Exchange

First, observe that an “unshuffle” operation moves all the even-indexed elements
into the left half of the array and all the odd-indexed elements into the right half;
that is,

= unshuffle(A) = 1t(A),rt(A):= evns(A),odds(4),

This is almost the permutation required for the merge. The correct permutation
is obtained by exchanging the even and odd elements of the left half of A before
unshuffling. An exchange operation on the left half of the array does just that. If
p=2"

= lexchng(n,A) D evns(1t(A)),odds(1t(A)):= odds(1t(A)),evns(1t(4)),

where the operation lexchng(n, A) exchanges the left half of A. In fact, it exchanges
the left halves of all subarrays of size 2°, so that the same predicate can be used
in recursive mergers.

lexchng(n,A) % forall i < p/2®:forall j < 271 :Ag(ixonyj) 1= Aixonyj.
When p = 2%, combining these two operations in sequence gives the required
permutation,

= lexchng(n,A);unshuffle(A) ~ 1t(A)« odds(1t(4))"evns(rt(4))
= lexchng(n,A);unshuffle(A) ~ rt(A)«— evns(1t(A)) odds(rt(A)).

The inverse operation is simply a shuffle followed by another exchange of the left
half. However, there is no need to perform the exchange in the merge algorithm
because it is immediately followed by a comparison of each even-indexed element
with the following odd one, and this comparison requires an exchange on the whole
array. The comparison may be implemented as follows, storing the exchanged
element of A in the array B:
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eo_compare(A,B) 4l foralli<p:{

Bj 1= A4j
exchange(B);
A; := if even(i) thenmin(A;,B;) else max(Ai,B1)
}.
This is functionally equivalent to the direct comparison used in the original algo-
rithm; that is,

= 3B:eo_compare(A,B) ~ foralli<p/2: comparex(Aayi,Azxitl),

provided that A is a frame variable.

The Mergesort Algorithm

A shuffle-exchange algorithm, eo_merge_s(n, A, B), may be obtained by using the
functional equivalences above to rewrite the appropriate parts of the original even-
odd merge algorithm, eo_merge(n, A). The list B is used to hold temporary results.

eo.merge_s(n,4,B) &of

if n = 1 then eo_compare(A,B)
else {
lexchng(n,4);
unshuffle(4);
eomerge_s(n — 1,4,B);
shuffle(A);
eo_compare(4,B)

}.

Note that the two recursive calls to eo_merge in the original algorithm have been
replaced by a single recursive call to eo_merge_s. This is possible because a call
of eo_merge_s(m, A, B) merges all sublists of size 2"; that is, if m < n and the arrays
A and B are of size p = 27, then

k= 3B:eomerges(mA,B) ~ Vi< 2"™:eomerge(m,Ajyom (it1)xom)-

This property makes it particularly simple to do the mergesort.
The parallel mergesort of a list A is just a sequence of parallel mergers of
i-element sublists of A for 1 < n. It was defined iteratively on page 112 as follows:

eo_mergesort(n,A) df fori<ndo
forall j < 2n-1-1:
eo—merge(i + 1’Aj><2i+1,_(j+1)>(2i+1)'
The corresponding algorithm for the shuffle-exchange network may be obtained
by rewriting this algorithm with the property above.

def

eo_mergesort._s(n,4,B) = for i < ndo eomerges(i+1,4,B).

An illustration of how the algorithm works can be found in figure 8.3.
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time

A

O W N O, Ol W N = O

NN N NN NNN R B e R e
N O N s WM PE O WD N0 WY - O

[7,6,5,4,3,2,1,0]
[7,6,5,4,3,2,1,0]
[7,6,5,4,3,2,1,0]
[6,7,4,5,2,3,0,1]
[7,6,4,5,3,2,0,1]
[7,4,3,0,6,5,2,1]
[774737076)5727 1]
[7,4,3,0,6,5,2,1]
[4,7,0,3,5,6,1,2]
4,5,7,6,0,1,3,2]
4,5,7,6,0,1,3,2]
[4,5,7,6,0,1,3,2]
[4,5,6,7,0,1,2,3]
[5,4,7,6,0,1,2,3]
[5,7,0,2,4,6,1,3]
[7,5,0,2,6,4,1,3]
[7,0,6,1,5,2,4,3]
[7,0,6,1,5,2,4,3]
[7,0,6,1,5,2,4,3]
[0,7,1,6,2,5,3,4]
[0,2,7,5,1,3,6,4]
[0,2,7,5,1,3,86,4]
[0,2,7,5,1,3,6,4]
[0,2,5,7,1,3,4,6]
[0,1,2,3,5,4,7,6]
[0,1,2,3,5,4,7,6]
[0,1,2,3,5,4,7,6]
[0,1,2,3,4,5,6,7]

[7,6,5,4,3,2,1,0]
[6,7,4,5,2,3,0,1]

[7’4’3307675’2’ 1]
[477,0’375,6’ 1’2]

[4,5)7’6’0? 1’332]
[5’476’7’ 170?273]

[7,0767 175,274,3]
[077’ 1’6’275’3’4]

[07277757 1737674]
[2’07577’3, 1)4’6]

[0,1,2,8,5,4,7,6]
[£,0,3,2,4,5,6,7]

Figure 8.3: The mergesort algorithm on an 8-processor shuffle-exchange network.
The list B is used to hold temporary results during comparisons.
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8.2 Parallel Processes

Many parallel computations are not nearly so regular as those described in the
previous section, and in particular, it may not be the case that each process takes
the same number of steps to complete. This section describes a general way to
combine parallel processes having different or unknown computation lengths. The
familiar example of matrix multiplication is used to illustrate the idea.

8.2.1 The Parallel Composition Operator

The formula p || p’ denotes the parallel composition of two processes p and p', which
may have different computation lengths. It is defined in terms of the operator
extend, which was introduced on page 48. The formula extend p is true on an
interval if p is true on some initial subinterval,

extend p o p;true.

The parallel composition of two processes, p || p/, is true on an interval if p and
p’ do not disagree up to the point where one of them finishes, and the interval
continues until both have finished.

pll % (pA extend(p))V (extend (p) A ).

One of the processes may need to be extended until the other finishes.

In practice, the composition p || p' is executed by introducing markers to
determine when each subprocess finishes. If the marker € is true when process
p is done and ¢’ is true when process p is done, then p || p’ terminates as soon as
both of the markers are true,

pllp = Fee |
halt (e A€’) A
(p A € is empty ; stable(e)) A
(p' A €' is empty ; stable(e’))

}.

For combining a number of processes in parallel, there is an iterated constructor,
forpar ¢ < n : p, analogous to the universal quantifier forall. For example,

forpar i <3:p = plo/i] | plt/i] | pl2/d)

It may be defined recursively in much the same way as the for-loop. Note that
parallel composition is commutative and associative, so neither the order nor the
grouping of the processes is important.
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8.2.2 Matrix Multiplication

Let us look, once again, at the problem of matrix multiplication. But now the aim
is to develop an algorithm for calculating the product, C, of two n X n matrices
A and B on a tightly coupled multiprocessor with a small number of processing |

elements.

Row Decomposition

Suppose, for the moment, that there are just two processors. One way to proceed
is to partition the matrix A into two parts, one comprising rows 0 to n/2 — 1, the
other rows n/2 to n — 1, and to assign to each processor the task of multiplying B
by one half of A. Thus, each processor does one of the following multiplications:

C(0.n/2)(0.m) < A(0.n/2)(0.n) X B(0..n)(0..n)

Cn/2.0)(0.n) < A(n/2.n)(0.n) X B(0.n)(0..n), ,
where the notation A(r.s)(t.u) denotes the submatrix of A made up of rows r to
s — 1 and columns t tou — 1.

Let us denote by rows(ptn) the multiplication of rows r in the partition ptn
of A with B, producing rows r € ptn of C. The multiplication can be defined as
below, using a local variable L to form the inner products.

rows(ptn) 4 for i eptndo
for j € [0..n] do
L {
L < 0;
for k € [0..n] do L := L+ Ajk X Bkj;
Cij:=L
}.
One processor is therefore to execute rows([0..n/2]) and the other rows([n/2..n]).
Notice that if n is odd the two tasks, rows([0..n/2]) and rows([n/2..n]), are not
equal and will take different numbers of steps to complete, but the multiplication
is not complete until both have finished. Therefore, the multiplication is simply
the parallel composition of the two subprocesses,

n—1
= rows([0..n/2]) || rows([n/2..n]) D foralli,j <n:Cij < > Aik X Byj,
k=0
provided that A, B and C are frame variables.
The effect of the parallel composition is just as if explicit boolean flags had
been introduced to mark where each process terminates, as in the following code:

dDone, Done’ : {
halt (Done A Done’) A
{rows([0..n/2]) A Done is empty ; stable (Done)} A
{rows([n/2..n]) A Done’ is empty ; stable(Done’)}

).
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The two representations are logically equivalent.
If more processors are available, the multiplication can be further subdivided

in the same way, because

= rows([r.s]) ~ rows([r..i])|| rows([i..s])

for any i € [r..s], and a general algorithm for p processes is simply the iterated
parallel composition of a number of rows,

rownmul(p,n,4,B,C) 4l forpar i < p: rows(part(i)),

where the function part(i) returns the ith partition,

part(i) ¥ [(ixn)/p.((i+1)xn)/p]-

However, this way of partitioning is not particularly good if access to shared mem-
ory is slow, as it might be on a loosely coupled multiprocessor. This is because
each processor must access every element of B in addition to one quarter of A.

Block Decomposition

A better approach in this case is to partition each matrix into blocks, and use
block multiplication to form the product. For instance, the multiplication may be
partitioned into four processes as follows:

C(0.n/2)(0.0/2) < A(0.n/2)(0.:0/2) X B(0..n/2)(0.0/2) + A(0.n/2)(n/2.n) X B(n/2.n)(0.n/2)
Co.n/2)(n/2.n) < A(0..n/2)(0..0/2) X B(0..n/2)(n/2.n) + A(0..n/2)(n/2.n) X B(n/2.n)(n/2..n)
C(n/2.n)(0.0/2) < A(n/2.m)(0.n/2) X B(0.n/2)(0.n/2) T A(n/2.n)(n/2.n) X B(n/2.n)(0.0/2)
Cn/2.n)@m/2.m) < A@/2.0)(0.n/2) X B(0.n/2)(m/2.n) T Am/2.n)(n/2.m) X B(n/2.n)(n/2.n)

Each process forms one block of C. Observe that now each process needs only to
fetch a total of n? elements of A and B from global memory, a significant saving if
n is large and memory accesses take a significant amount of time.

In general, the matrix C may be divided into p? blocks and one process assigned
to calculate each block.

blkmul(p,n,A,B,C) = forpari<p:
forpar j <p:
fork <pdo
blk(part(i),part(j),part(k)).

Each block is calculated by repeatedly fetching submatrices of A and B from shared
memory, using fetch, and adding their product into C.
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blk(pi,pj,pk) = local Ab,Bb: {
fetch(A, Ab, pi, pk);
fetch(B,Bb,pk,pj);
for i < |pi| do
for j < |pj| do
L {
L < 0,
for k < |pk| do L := L 4 Abjx X Bbkj;:
Cpijpjj = Opijpj; + 1L
}
}

Naturally, this algorithm is functionally equivalent to the row decomposition al-
gorithm above; that is,

= blkmul(p,n,4,B,C) ~ rowmul(p,n, A,B,C).

Figure 8.4 shows how the block multiplication algorithm works, using four pro-
cesses to perform the multiplication of A and B, where

and B=

B W N -
o W N
N o W
W N P
W N = b
N = oW
= o W N
B W N

Each access to global memory is assumed to take one unit of time.

8.3 Discussion

In this chapter I have shown that Tempura forms a sound basis for transforming
algorithms into different forms, suitable for different computer architectures. I
have also drawn a distinction between the two parallel composition operators,
A and ||. Conjunction seems appropriate for dealing with fine-grained parallel
operations that proceed in lock-step, as on a typical processor array, whereas the
process composition operator is better suited to the coarse-grained concurrency of
a typical multiprocessor, where each process proceeds at its own rate. However,
there remain two problems with the process composition operator, one practical
and one philosophical.

The practical problem concerns how to organise co-operation between parallel
processes. As things stand, there are no restrictions governing the use of shared
storage, so processes may interfere arbitrarily with one another. In order to make
it easier to construct reliable programs a disciplined communication mechanism is
needed. This is the subject of chapter 10.
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time | C time C. time | C

(0 0 0 0] (6 11 8 5] (24 22 24 30)
0 11 0 13 0 11 18 13 8

0 0 o0 0 17 34
0O 0 0 O 16 25 18 11 24 30 24 22
Lo 0 0 0) (17 0 11 0 (17 16 11 6
0 o} 6 11 8 5) 24 22 24 30)
11 18 13 8 122 18 30 8

11 0 0 0 20 37
16 0 18 0 16 25 18 11 24 30 24 22
0 0 0 O (17 16 11 6 (30 16 22 6
6 11 8 b5 24 11 24 5) (24 22 24 30)

11 18 13 8 2

" 0 0 0 © a1 1 10 22 24 30 24
16 25 18 11 24 25 24 11 24 30 24 22
L0 0 0 0 17 16 11 6) (30 24 22 24

Figure 8.4: Parallel matrix multiplication by partitioning into four 2 X 2 blocks.
The matrix C is the product of the two 4 X 4 matrices A and B shown in the text.

The philosophical problem also has practical implications. It concerns the
underlying computational model. Although the process composition operator is
intended for combining autonomous processes that execute at their own rates, it
is assumed in the computational model that they do in fact proceed in lock-step
(until the first one terminates). This is because the processes are true on the same
interval; that is, all of their states are shared. A practical consequence is that it
may be possible to draw incorrect conclusions about the behaviour of a parallel
composition. For example, the composition

(N<n;whileN#0doN:=N—1) | (X< 1;while N# 0doX:=X X x)

satisfies the specification X « x®, whereas one would not expect this program to
necessarily give that result. There are two possible responses to this problem. One
is to restrict the ways in which parallel processes can share data, so that programs
like the one above are disallowed. The other approach is to use temporal projec-
tion to introduce local state sequences for each process, so that their execution is
interleaved and it is no longer possible to draw incorrect conclusions. Chapter 10
addresses this problem.
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Chapter 9

Real-Time Systems

This chapter is about real-time systems; it is divided into two parts. The first part introduces some
new operators for expressing real-time concepts. These include projection, interrupts, traps and
timeouts. The second part presents a model controller for a system of passenger lifts. The controller
is specified in ITL, and a prototype based on that specification is constructed in Tempura.

The value of temporal logic for the specification and verification of real-time sys-
tems is well appreciated [Pnu83]. The purpose of this chapter is to show how its
value to the designer of non-trivial systems is enhanced when an executable logic is
used. A particular example, the controller for a system of passenger lifts, is chosen
for illustration. The controller is specified in ITL, and from that specification is
drawn a prototype implementation in Tempura. The prototype system has been
tested in Tempura, and could be formally proved to meet its specification.

Most essential aspects of the system’s behaviour are modelled. There may
be any number of lifts and floors. Each lift has one button for each floor, and
each floor has separate buttons to request ascending and descending lifts. Also, in
each lift there is a button to open or re-open the doors, and another to signal an
emergency. An earlier version of this example was presented in [Hal88].

Before describing the lift controller, a number of new operators are introduced.
These express real-time constructs, such as interrupts, exceptions and time limits,
which are needed in the specification of the lift controller. The remainder of the
chapter concerns the lift controller. The first part of this fixes upon an external
interface to the controller, the second develops a specification of the controller
in ITL, and the third describes the Tempura prototype. Finally, some ways of
improving the prototype are discussed.

9.1 Additional Operators

This section discusses some ideas and operations that are particularly relevant to
the description of real-time systems. The first of these new operators is temporal
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Figure 9.1: The temporal projection p proj P

projection, which may be used for the interruption and later resumption of a
process. Another important idea in real-time programming is exception handling,
and a general mechanism is defined for this. A new operator, called bar, composes
two processes in parallel so that both are terminated as soon as the first of them
is done. This may be used to define traps and timeouts.

9.1.1 Projection

Temporal projection is one way to model a system on a number of different time-
scales. For example, it may be that one needs to monitor the behaviour of some
device, dev(X) say, but not all the time. Suppose, in fact, that the value of X is to
be output on every tenth state. This is most easily achieved using the projection
operator proj.

{1len(10) proj always output(X)} A dev(X).

Projection of len(10) onto always output(X) repeatedly interrupts the output
process by inserting an interval of length 10 between each pair of states on which
X is output.

The projection p proj p' holds on an interval 7 if there is a selection of time
points on which p' is true and such that p is true on the subinterval between each
pair of adjacent points in the selection. This is illustrated in figure 9.1.

pprojp ¥ M:Fs,m:{
s(0)=0As(m)=|r|AVi<m:s(i) <s(i +1) A
p'(select(s,m, 7)) A
Vi < m: p(subint(s(i), s(i + 1),7))
b

where 7 € 1, s € N— N, m € N and
3clect(s, m,T) = (Ts(o), s )Ts(m))
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-b b b =b b b b -b b -b b
next
halt (b) | halt (b) | next halt (b) next halt (b) | keep next (=b)

Figure 9.2: Construction of the formula p when b.

subint(s,§,7) = suffiz(s, prefiz(j, 7))

Observe that if p proj p’ holds on an interval then so does loop p, and p' is true
on the interval made up of the end points of the iterations of p.

A number of related ideas can be defined in terms of projection. For instance,
the formula p when b is true if p holds on the interval made up of just those states
on which the boolean expression b is true. Thus,

len (7) when (X = 0)

means that the variable X is zero exactly seven times.

The definition of p when b goes as follows. Successive subintervals with b
true only at the beginning and end are picked out by projecting the formula
next halt (b) onto p. Additionally, b may be false for some time at the beginning
and end of the interval.

p when b ' halt (b : {next halt (b) proj p};keep next (—b).
%

How it works is illustrated in figure 9.2.

9.1.2 Interrupts

Interrupt handling is a familiar problem in real-time programming. When an
interrupt occurs, perhaps caused by a device requiring attention, the running
program is suspended and execution begins on the appropriate interrupt service
routine. When the service routine finishes, execution of the interrupted program
resumes. This is just the kind of behaviour produced by temporal projection. The
servicing of the interrupt occurs between two consecutive states of the interrupted
program.
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Let us write p upon b do p’ to mean that whenever the boolean expression b is
true, the execution of p is interrupted by p'.

p upon b do p/ 4 {if bthen p' else skip} proj p.

An interruption is effected by projecting the corresponding formula onto p. For

example, the formula
pgm upon Printer do £ill buf(PrintBuf)

might specify that whenever the signal Printer is set, the running program is
interrupted whilst the print buffer is filled.

Interrupts may be nested by simply projecting those of higher-priority onto
those of lower priority. In a specification of the form

(pgm upon LowPri do ...) upon HighPri do ...,

the interrupt HighPri has priority over LowPri, which in turn has priority over
normal processing.

Note that the operator upon is useful in other situations besides the description
of interrupt behaviour. It is used in the lift controller to add timing details to the

specification.

9.1.3 Bar

The bar operator is used to compose two processes in parallel so that both are
terminated as soon as the first one finishes. The composition p | p’ is defined in
a similar way to the parallel composition p || p’ (see page 123), but rather than
extend the shorter process, it takes the prefix of the longer process. Recall that
the prefix of a formula, prefix p, holds on the prefix of an interval on which p
holds. It is defined as follows:

prefix p A 7| S| A 7= prefiz(|7], ') A p(T").

where 7,7/ € I. Thus, the composition p | p is true on an interval if either p and
a prefix of p' holds, or p’ and a prefix of p holds; that is,

|y ' {p A (prefix p')} V {(prefix p) A p'}.
One of the processes runs to completion; the other may be terminated prematurely.
Like ordinary parallel composition, the composition p | p’ is executed by intro-
ducing markers to determine when each subprocess finishes, and terminating as
soon as one of the markers is true.
plp’ = 3ee:{
halt (e Ve') A
prefix (p A € is empty) A
prefix (p’ A €' is empty))

3.
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A number of useful operators may be defined in terms of bar.

9.1.4 Traps

In order to trap exceptional conditions, such as termination signals and errors,
it is of course possible to include explicit tests at every appropriate point in a
program. But exceptions typically occur infrequently and at unpredictable times,
making such a solution somewhat obscure and long-winded. A device that makes
exception handling more modular is the trap, which is defined in terms of the bar
operator.

If the boolean expression b is always false, the construct trap b: pis equivalent
to p; otherwise it terminates as soon as b becomes true. Thus,

trap b:p ' halt (0) | p,
For example, the formula

trap Control. C: pgm

might indicate that the program pgm exits when the user strikes the special key,
Control_C.

9.1.5 Time Limits

Sometimes it is necessary to limit the time spent waiting for a particular condition
to become true. A familiar real-time programming device which does this is the
timeout. For example, when two processes are exchanging messages a failure in
one process might cause the other to hang waiting for input. In this situation
the working process can recover by giving up after a prearranged time limit has
expired.

A timeout is easily defined using bar. For example, to terminate the program
pgm after  units if it hasn’t already terminated, one simply writes

pgm | Len (¢).
In general, the timeout process need not be a simple length; it may be a process
of arbitrary complexity.

The simplest form of timeout is expressed by the predicate timeout (t,b), which
waits at most ¢ units of time for the boolean expression b to become true.

timeout(t,5) £ halt(b)]len(t).

But a simple timeout such as this can be expressed in a number of other ways
without using bar. For instance, it satisfies the inductive property below:

timeout(0,b) = empty,
timeout(t+ 1,b) = if bthen empty else next timeout(t,b),
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which is the operational representation used in Tempura.

Another kind of time limit occurs in the specification of real-time systems
when one needs to ensure that a condition does become true within a particular
interval of time. The construct b within p takes care of this case. The expression
b becomes true within an interval defined by p if there is no initial part of the
interval on which p holds but b is not true at some time.

bwithin p 4 extend (p A —sometine (D).
The formula p defines an interval within which b is sometime true. For instance,
always if request then {service within len (t)}

might indicate that a particular request is always serviced within t seconds of being

registered.
However, it is often the case that a request is only serviced within a fixed time

provided that no other request intervenes. This can be formulated by combining
the operators within and when:

always if request then {service within (len (¢) when —request’)}.

The request is serviced within ¢ steps on which the alternative request’ is not
registered.

Just about the simplest usage of within is the form b within len (t), and
this can readily be expressed using induction, in a form which is most useful in

practice,
bwithin len(0) = b,
bwithin len(f +1) = if —bthen if —empty then next (b within len (t)).

The more complex construction, b within (1len (t) when b'), can be expressed in a
similar way.

9.2 A Lift Control System

Let us now turn our attention to an example: the design of a controller for a
system of passenger lifts. This problem has been considered by a number of other
authors over the years. For example, in an early treatment Knuth describes an
assembler program to simulate the behaviour of a single lift [Knu69], and more
recently Barringer has given an abstract specification of a multiple lift system in
temporal logic [Bar85]. The approach taken here, to develop a prototype controller
in temporal logic, is somewhere between the two, being more operational than
Barringer’s specification but at a much higher level than Knuth’s.
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This development is in four parts. The first part describes the external inter-
face to the lift controller, giving first an informal description and then a formal
representation. The second part gives a formal specification of the controller in
terms of its interface. The third part goes from the specification to an executable
prototype of the system, and the last part discusses some ways of improving the
prototype.

9.2.1 The Interface

The controller is to govern the operation of n identical lifts servicing an m-storey
building. It interacts with the environment through a number of external inter-

faces.

1. In each lift there is a control panel with one button for each floor. The
buttons illuminate when pressed and remain illuminated until the lift visits
the appropriate floor.

2. On each floor (except ground and top) there are two buttons, one to request
a lift going upwards, the other to request a lift on its way down. Each of
these buttons illuminates when pressed and remains on until a lift travelling
in the appropriate direction visits the floor. It then goes off.

3. The position of each lift is controlled by interaction with a “motor unit”.
The motor unit may be instructed to move the lift up or down, or to keep
it stationary. The position and direction of each lift is displayed on every
floor. (This is a one of the less secretive lift systems).

4. Each lift has doors which open and close on signals from the controller. The
doors must open when the lift visits a floor to collect or deposit passengers,
and must be closed when the lift is in motion. If the doors encounter an
obstruction whilst closing, they should re-open. There is also a button within
each lift for signalling the doors to remain open.

5. In each lift there is an emergency button. When this button is pressed an
alarm is raised and the lift goes out of service.

Figure 9.3 shows the users’ view of a particular system which has two lifts to
service three floors. The rest of the section formalises this view.

Position

Three predicates, below(l, £), at(1, f) and above(l, f), are used to fix the position
of lift 1. They have the obvious meanings; that is, below(1,f) holds if lift 1 is
below floor £, at(1,£) holds if it is at floor £, and above(l, £) holds if it is above
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Figure 9.3: The users’ view of a lift system.
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floor £. These three properties are mutually exclusive, of course, because a lift
cannot be in two places at once!

forall f < m: always xor3(below(l,£),at(1,£),above(l,£)), (9.1)

where the predicate xor3(p,p’,p”) denotes the exclusive disjunction of its three
arguments,

def
xor3(p,p,p") = (VP VP AP AP)VE AP)V(E"AP).
This means that exactly one of p, p’ and p” is true. Exclusive disjunction of two
arguments, xor2(p, p'), is the same as xor3(p,p’, false).

Motion

The movement of a lift is controlled by two signals, one to switch its motor on
and off, the other to control the direction of travel. Predicates motor_on(l) and
motor_off(1) determine whether the motor is on or off. They are, of course,
mutually exclusive,

always xor2(motor.on(1l),motor_off(1)). (9.2)

So too are the three directional attributes, ascending(l), descending(l) and
neutral(l), which determine whether the lift is on its way up, down, or nowhere.

always xor3(descending(l),neutral(l),ascending(1)). (9.3)

A lift is said to be going up when it is ascending with its motor on, and going
down when descending with its motor on.

going up(1) df otor.on(1) A ascending(1),
going down(1) 4l pmotor_on(1) A descending(1).

Finer degrees of control, allowing speed variation and so on, are not considered.

Service

Lift 1 is said to provide a service at floor £ when it is stopped at floor £ ready to
take on or discharge passengers.

&of (at(1,£) A motor_off(1)).

service(l,f)
Strictly speaking, lift 1 does not provide a service at floor £ unless its doors are
open, but the system will be constrained so that the doors must open when the
motor is off and there are serviceable calls.

If an internal request for floor £ is registered in lift 1, it is not cancelled until
service(1,£) is true. Similarly an “up-request” demands service from a lift that
is ascending, and a “down-request” from a lift that is descending.

up-service(f) 4l 31 < n:(service(1,f) A ascending(1))

down_service(f) 4l 31 < n:(service(1,f) A descending(l)).

These predicates determine when the corresponding calls, Cus and Cds, are satis-

fied.
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Buttons and Lights

The button to request floor £ in lift 1 is denoted by the Boolean signal Bis, and its
associated call light by the flag C1¢. When the button is pressed, Bys is true. This
sets the corresponding flag Cyz, which then remains true until lift 1 visits floor f£.
At any time the outstanding internal requests in lift 1 are therefore to those floors
£ for which Cy¢ is true.

The call-buttons on each floor are represented by the variables Bug, to request
an “up-lift”, and Bdg, to request a “down-lift”. When true, these variables cause
the call-flags Cus and Cds to be set, each of which is cancelled when a lift visits
the appropriate floor and is travelling in the required direction.

There are two other buttons on the control panel in lift 1, one to signal an
emergency, the other to open or re-open the lift doors. The emergency button
in lift 1 sets the boolean flag Ey. Whilst E; is true lift 1 is deemed to be out
of service, and is released from its obligation to service any outstanding internal
requests. The emergency status of a lift has to be cancelled by some external
agent, probably a service engineer in reality.

The signal 0; is true whenever the “open-door” button is pressed or the doors
cannot close due to some obstruction. If lift 1 is stationary and 0y is true the lift
doors open, but when the lift is moving 03 has no effect.

Calls

At each moment there may be a number of calls waiting to be serviced. If any
of these outstanding calls can be serviced by lift 1 then called(1l) is true; if any
calls require it to move upwards then called up(l) is true; and if any require it
to move downwards then called_down(l) is true.

called(l) 4l 3f < m:request(l, 1),

called-up(1) 4l 3¢ < m:((below(1,£) A request(1,£))V (at(1,£) A Cug)),

called-down(l) 4f 3¢ < m: ((above(1,£) A request(1,£)) V (at(1,£) A Cdt)),
where the predicate request(1, ) tests whether or not there is a request to go to
floor £ that can at some time be serviced by lift 1,

request(1,£) = (CyfV CusV Cds).

These conditions are used to decide when and in which direction lift 1 should start
moving,.

Two other predicates, stop_up(1) and stop_down(l), determine when lift 1
should stop moving; that is, when it is in a position to service a call. Both
predicates are true if lift 1 is at floor £ and has an internal request to go to floor
f. Additionally, stop.up(1) is true if lift 1 is ascending and can service a call
from floor £ (subject to certain constraints on its operation), and stop_down(l) is
similarly true if lift 1 is descending.
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stop-up(1) 3 <m: (at(l,f) A (~called-up(1l) V C1¢ V Cug)),
stop.down(l) % 3f <m:(at(1,£) A (~called.down(l) V Ciz V Cds)),

Note that a lift should stop anyway, whether or not there are outstanding calls, if
there are no further calls in its direction of travel.

Once lift 1 has stopped at some floor £ it may remain there for as long as there
is a serviceable call on that floor or the open-door button is depressed. These
conditions are tested by the predicate stop(1).

stop(1) o (ascending(1) A stopup(1)) V
(descending(l) A stop.down(1))V
(01 A motor_off(1)).

When stop(1) is true the lift doors should open, and they should remain open until
it ceases to hold. This constraint is not really strong enough as far as the open-door
button is concerned, because switching the motor on is sufficient excuse to ignore
it. In fact, the open-door button is not properly considered until section 9.2.4.

Doors

In this discussion only the lift doors are considered. It is true that there must
also be doors on each floor to prevent passengers from falling down the lift shaft,
but the mechanism for opening and closing the doors is assumed to be on the lift.
The doors on each floor merely open and close with the lift doors when the lift is

appropriately positioned.
For the moment let us conveniently forget that the doors take some time to
open and close, and constrain them always to be either open or closed,

always xor2(doors_open(l),doors_closed(l)). (9.4)

A more detailed representation of the door behaviour will be considered in due
course.

9.2.2 The Specification

What properties should the lift system have? Obviously it is supposed to move
people around the building without, taking too long about it. But this section
is concerned with trying to constrain the behaviour of the controller so that it
does a reasonably good job without being too complex. The first few properties
are essential to any reasonable system, the later properties reflect specific design
decisions.

The most important property of a lift is that it takes passengers where they
want to go; that is, all calls are eventually serviced. For example, if a request for
floor £ is registered in lift 1, then lift 1 eventually arrives at floor £ and stops,
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forallf <m:
always if C1 then sometime (service(l,f)).

Likewise, a call from floor £ is eventually rewarded with the appropriate service.

forallf <m:
always {
if Cus then sometime (up_service(f))
A
if Cdg then sometime (down service(f))

}

The trouble is that for most practical purposes these properties are much too weak.
They allow a lift to remain idle for a very long time, so long that no passenger
would have the patience to wait.*

Maximum Service Time

Tt would be much more useful to put an upper bound on the time taken to service
each call. But unfortunately in a real lift system no absolute maximum can be put
on the service time, because it is possible for a passenger to interfere with a lift’s
behaviour by keeping its doors open. A realistic specification should take account
of this possibility, which is most simply done by counting only the time when the
motor is on.

forall £ <m:{
always {

if Ci¢ then
service(l,f) within {len(s) when motor_on(1)}

A

if Cus then
up_service(f) within {len(s) when motor_on(1)}

A

if Cds then
down_service(f) within {len(s) when motor.on(1)}

(9-5)

}
by

where the operator within was defined in section 9.1.5. The time limit s is the
maximum time for which a lift can be moving before a call is serviced, which
effectively limits how far the lift is able to go out of its way to service other calls.
The value of s depends on the speed of the lift and the algorithm used to decide
the order in which calls are answered.

1There is also a technical difficulty with termination because sometime, as we have it, is a
strong operator which asserts that its argument surely does hold at some time.
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Naturally, this constraint only applies when lift 1 is in service. When it is out
of service, that is when E1 is set, nothing at all can be said about how it behaves.
In fact, none of the constraints (9.5)-(9.16) apply to broken lifts, but for the sake
of brevity this is not explicitly re-stated in each constraint.

The problem has now been transformed into one of ensuring that the lift does
not remain stationary forever. This is the purpose of the next constraint.

Maximum Waiting Time

Consider what happens when lift 1 is stopped with its motor off. What makes it
ever start moving? Hopefully, when there are outstanding calls and it is not being
held at a floor (by its doors being kept open, for example), then it will begin to
move after waiting a maximum of w time steps for passengers to get on and off.

always
if motor_off(1) A called(1l) A ~stop(1) then (9.6)
(motor_on(1) V ~called(1) V stop(l)) within len (w).

It is possible for the outstanding calls to be serviced other lifts, or for its doors to
be held open before lift 1 ever gets started.

Maximum Transit Time

In order to calculate an upper bound for the maximum service time s, let us
suppose that lift 1 should take no more than t units of time to travel between
floors; that is,

forall £ <m—1:{
always {
if going.up(1l) A ~below(1l,f) then
~below(l,f + 1) within len(t)
A (9.7)
if going down(1) A —above(l,f + 1) then
~above(l,f) within len(t)
}
}
In other words, if lift 1 is moving upwards and it is at least as high as floor £, then
within t units of time it will be at least one floor higher. Similarly, when going
downwards it will descend by at least one floor in t steps.
Now observe that the specification could be realised by having each lift contin-
ually go up and down stopping at every floor, repeatedly making an entire round
trip. In that case the maximum time spent in transit is

s=2X(m-1)Xxt.
This is an upper bound on the maximum service time for any well designed system;

the average service time ought to be much less than s.
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Position and Direction

The relationships between the position of a lift and its direction of travel are just
the obvious ones: If its motor is off then the lift should remain in the same place; if
it is going up then it should be seen to go up, that is, its height must not decrease;
and similarly, its height should not increase when it is going down.

forall f <m:
keep

if motor_of£(1) then {
if above(l,f) then next above(l,f) A
if at(1,f) then next at(1l,f) A
if below(1l,f) then next below(l,f)

}

A

if going-up(1l) then {
if above(l,f) then next above(l,f) A
if at(1,£) then next —below(1,f) A (9.8)
if below(1,f) then next —above(l,f)

}

A

if going.down(l) then {
if above(l,f) then next -below(1,f) A
if at(1,f) then next —above(l,f) A
if below(1,f) then next below(l,f)

}

}
}.

It has been assumed here that a lift does not “jump” past floors; that is, it cannot
be below a floor one moment and above it the next, and vice versa. This simplifies
the decision of when to stop at a floor. It is not an essential assumption, but
seems reasonable if the grain of time is sufficiently small and the measurement of
position not too precise (see section 9.2.3).

Buttons and Lights

The way that calls are set and reset has already been described; that is to say,
sometime after a button is pushed the appropriate light switches on and remains
on until the call is serviced. But this informal description misses one aspect of the
behaviour: What happens if a button is pressed when the corresponding floor is
already being serviced? If a call is registered anyway the lift may be held at that
floor with its doors open, assuming that the controller is so designed. But if no
call is registered there is no possibility of the button having any effect.
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It seems reasonable to register a call anyway when an up- or down-button is
pressed, but not to register internal requests. This enables a person outside the
lift to hold the doors open by pressing a call button, whereas a passenger already
in the lift has the open-door button for this purpose. These properties have been
observed to hold in a number of real lift systems.

The internal buttons in lift 1 therefore behave in the following way. Within
some response time, r, of a button being pressed (when the floor is not already
being serviced) the call light illuminates, and once illuminated the light stays on
until the floor is serviced. The cycle repeats indefinitely.

forallf <m:

loop{
halt (Bis A ~service(l,£)) A latch(r,Cif); (9.9)

halt (service(l,£)) A latch(r,Cit)

b

where the predicate latch(r,b) denotes that the boolean expreséion b is set within
r time steps,

latch(r,b) 4f (b withinlen(r)} A keep {if b then next (b)}.

The call buttons for each floor behave in a similar way, but if a button is pressed
continuously the light goes on no matter what. Up- and down-calls are set and
reset as follows,

forall £ <m:{
loop {
halt (Bug) A latch(r,-Cus);
halt (up_service(f) A —Bug) A latch(r,Cus)
}
A (9.10)
loop {
halt (Bds) A latch(r,—Cds);
halt (down_service(f) A —Bds) A latch(r,Cds)
}
}

Note, however, that it is not possible to make an up-request on the top floor, nor
a down-request on the bottom. It is assumed that both these signals are always
false

always (-Buy—1 A —Bdp). (9.11)

In reality one would expect the superfluous buttons to be absent.
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Doors

For obvious reasons it is a good idea if, when lift 1 is moving, its doors are closed,
and let us also stipulate that the doors are closed when it is stationary with no
outstanding calls (and the open-door button not depressed),

always if motor_on(1) V (neutral(l) A —01) then doors closed(l). (9.12)

This means that whenever the lift is not providing a service its doors are closed. In
particular, pressing the open-door button when the lift is in motion has no effect.

Improving the Performance

Conditions (9.5)~(9.12) do not constrain the controller to be a particularly good
one. They are met, as observed above, by a system in which each lift repeatedly
makes an entire round trip, stopping at every floor. The next few constraints are
aimed at eliminating some undesirable behaviours.

First, suppose that lift 1 is stationary. Constraint (9.6) determines the maxi-
mum time for which it can remain stationary if there are outstanding calls. How-
ever, it should not begin to move if there are no calls to service, or if it is held at
a floor, and when it does begin to move it must decide whether to go up or down.
The only constraint on this choice is that it should not head off upwards if there
are no requests to go up, neither should it descend if there are no requests to do
so0.

keep
if motor_off(1) then
next {
if stop(1l) V ~called(1l) then motor off(1) A (9.13)
if motor._on(1l) A ~called_down(1l) then ascending(l) A
if motor_on(1l) A ~called-up(1l) then descending(l)

).

Note that when its motor is on a lift must be moving in some direction,
always if motor._on(1l) then —neutral(l). (9.14)

It does not seem very useful to expend energy going nowhere!

Next, consider what happens once lift 1 has started to move. How does its
position change, and when should it stop? Constraints (9.7) and (9.8) ensure that
within t units of time it arrives at the next floor. It must then decide whether or
not to stop. If there is a serviceable request outstanding the lift must stop, but it
should not stop if not required to do so.
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keep {
if going up(1l) then
next
if stop.up(l) then motor_off(1) else going up(1)
A | (9.15)
if going-down(1l) then
next
if stop_down(1l) then motor_ off(1) else going.down(1l)

}.

This simple method of deciding when to stop only works if, as directed by con-
straint (9.8), the lift cannot whizz past a floor without ever being at it. Otherwise
it must be decided in advance when to stop.

Lastly, in the interests of fairness, the lift should keep going in the same di-
rection for as long as possible; that is, if it is ascending then requests to continue
upwards should be given priority over those that require it to go downwards, and
vice versa. If it is idle then it should remain so until there are calls to answer.

keep {
if ascending(l) then

next
if called. up(l) then ascending(l) A
A
if descending(l) then
next (9.16)
if called_down(1l) then descending(l) A
A
if neutral(l) then
next
if =called(1) then neutral(l)

}.

This decision only comes into effect when the lift is stopped at a floor because
constraint (9.15) prevents the lift from ever changing direction unless it is stopped.

The Complete Specification

The normal behaviour of lift 1, when it is in service, is described by a combina-
tion of the above constraints. But when the emergency button is pressed those
constraints no longer apply and the lift goes out of service. This is readily mod-
elled with the trap construct, which was defined in section 9.1.4. The normal
behaviour is then captured in the predicate in_service_spec(l), where
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in_service_spec(l) 4 trap By : {

(9.1) A (9.2) A (9.3) A (9.4) A - [interface]
(9.5) A (9.8) A (9.7) A : [time limits]
(9.8) A [motion)
(9.9) A [internal calls]
(9.12) A [doors]
(9.13) A (9.14) A (9.16) A (9.16) [optimisations]

).

Sometime after the emergency is over, when the flag E; has been cancelled, lift
1 should return to normal service. But apart from that, nothing is said of what
happens when the lift is out of service.

out_of service_spec(l) dof Ej A fin(~Eyp).

Lift 1 alternates between being in service and being out of service. Its whole
behaviour is captured in the predicate 1ift_spec(l), where

lift_spec(l) def loop {in service_spec(l); out_of service_spec(l)}.

The control panels on each floor, containing the up- and down-call buttons, are
subject to the two constraints (9.10) and (9.11),

external.calls.spec(m) (9 10) A (9.11).

Finally, the complete system is just the parallel composition of all n lifts and m
floor control panels.

lift_sys_spec(m,n) 4f  external calls_spec(m) A forall 1 < n:1lift.spec(l).

Let us now construct a prototype implementation.

9.2.3 The Lift Controller

Although the specification determines the most important aspects of behaviour, it
is not deterministic and so cannot be simulated in Tempura. In order to construct
a prototype, every detail of its behaviour must be fixed.

The Control Logic

Consider first the behaviour of lift 1 as it moves up and down answering calls.
There are three possibilities for the direction, and the motor can either be on or
off. The lift can therefore be in any one of six major states, but as condition (9.14)
affirms, when the motor is on the direction must be either up or down. In other
words, one of the states should never occur. This leaves five major states:

1. idle: the lift is stationary with no outstanding calls.
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2. going.up: the lift is moving upwards.

3. going_down: the lift is moving downwards.

4. service_up: the lift has stopped on the way up to service a call.

5. service_down: the lift has stopped on the way down to service a call.

These states, and the transitions between them, are defined below, and a diagram
showing the state transitions can be found in figure 9.4. |

When there are no calls to be serviced the lift remains on the same floor until
a request is registered (9.8 and 9.13). Let us suppose that the lift is in neutral,
then condition (9.16) implies that it remains in neutral until a call is registered.
Suppose also that it gives priority to upward calls; that is, if called_up(1l) returns
true, the lift will next be going up, otherwise it will be going down (9.13 and 9.14).
Finally, suppose that the lift moves immediately a call is registered, comfortably
within any value of the delay w in condition (9.6). This behaviour is captured in
the predicate state0:

state0(1) % halt(called(1)) A keep(idle(1));

if called.up(1) then statei(l) else state2(1)
idle(1) 4 motor_off(1) A neutral(l).

The predicates statel and state2 specify the behaviour of the lift when moving
up and down, respectively.

Suppose that the lift is going up, then (9.8) and (9.15) force it to continue
its ascent until either there is a call to be serviced on the current floor, or there
are no outstanding calls to higher floors. In either case stop_up(l) = true. The
predicate statel specifies this behaviour.

def

state1(l) = halt(stop-up(1l)) A keep(going.up(1));
if called-up(l) then state3(1l) else state4(1)
going up(1) df motor_on(1l) A ascending(l).

If there are calls that require the lift to continue upwards, it then begins state3
(9.16). In this state it allows passengers to get on and off, and then moves upwards
again if required to do so. For the moment it is sufficient to assume that the lift
pauses for one unit of time (skip), but this assumption will be revised shortly.

def

state3(l) = skip A keep (service_up(l));
if called up(l) then statel(l) else stateO(1)
service_up(l) of motor_off(1) A ascending(l).

Predicates state2 and state4 are defined in the same way as statel and state3,
but with the direction of travel reversed. Thus, in state2 the lift is going down
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Figure 9.4: A state transition diagram for the lift system.
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4f halt (stop.down(1)) A keep (going down(1));

if called_down(l) then state4(1l) else state3(1)
motor.on(1) A descending(l),

state2(1)

going down(1) &

and in state4 it is stationary on the way up,

state4(l) 4 skip A keep (service_down(1));

if called_down(1) then state2(1) else stateO(1)
service.down(l) 4f motor.off(1) A descending(1).

The predicates called_down and stop-down were defined in section 9.2.1.

Buttons and Lights

Conditions (9.9) and (9.10) in section 9.2.1 ensure that within some maximum
delay r of a button being pressed, or of a call being serviced, the appropriate light
goes on or off. Suppose that the actual mechanism has a fixed delay, which for
convenience is taken to be one unit of time, then the setting and resetting of calls
in lift 1 is greatly simplified. It is described by the predicate internal_calls(1),
where

internal_calls(1l) 4f forall £ < m: Cis gets ((B1£ V C1£) A —service(l,£)).
The up- and down-calls are set and reset in much the same way, as the described
by the predicate external_calls(m)

external_calls(m) 4f forall £ < m: {up_calls(f) A down_calls(£)}

up-calls(f) Cug gets (Bug V (Cug A —up_service(tf)))
down_calls(f) ' cds gets (Bdg V (Cds A ~down_service(f))).

2

Recall that pressing an up- or down-button inevitably sets the corresponding call
flag, regardless of whether the lift is at the relevant floor already. This means
that a lift may be held at a particular floor for as long as desired by continuously
pressing the appropriate button.

Motor

The movement of lift 1 is controlled by sending signals to its motor unit. The
direction of travel is determined by the setting of Dir,
ascending(1) e piry = +1
descending(1) © pirp = -1
neutral(l) © piry =0

and the motor is switched on or off by setting Motor appropriately,

motor_on(1) def Motor;

motor_off(1) def —Motor;.
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Whenever the motor is switched on the lift moves in the direction specified by Dir.
The position of each lift is determined by the setting of two arrays of switches,
Above and Below.

below(l,f) def Belowit
above(l,f) e pbovers
at(1,£) % -(Abovers V Belowis).

The idea is that these switches are positioned at appropriate points in the lift
shaft, and toggle as the lift passes by. The switch Belowi¢ should be just below
floor £, and Abovers should be just above floor f.

When its motor is switched on, lift 1 travels up or down according to the setting
of Diry (9.8). If lift 1 takes one unit of time to travel between floors, and therefore
has a maximum transit time, t, of one (9.7), its height goes up or down by one
floor on every unit of time that the motor is switched on. A local register H is used
to keep track of the current height.

def

motor(l) = 3IH:forallf <m:{
always (if at(1,f) then (H=f£)) A
Abovejr gets
(if motor_on(1l) then f < H+ Dir; else Aboveis) A
Belowyr gets
(if motor_on(1l) then H 4+ Dir; < f else Belowis)
}.

This is appallingly unrealistic, but it serves to get an initial working model. A
more detailed description of the movement is developed in section 9.2.4 below.

Doors

Let us continue for the moment with the two-state doors. Each pair of doors can
be controlled by a single boolean signal, Doors;, with

doors_open(1) ' poors;

doors_closed(1) & Doors;.

Constraint (9.12) demands that the doors are closed when the lift is moving or is
stationary in its idle state (unless the open-door button is depressed), and in this
initial version the doors are closed at exactly those times. At all other times they
are open.

doors(l) %' doors_closed(1) is (motor_on(1)V (neutral(l) A =01)).

Section 9.2.4 introduces a more refined model of the doors, which takes account
of the opening and closing states.
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The Complete System

A first complete prototype can now be constructed by composing all of the parts
described above. Each lift contains a call unit and a controller, which comprises
some control logic, a motor unit, and a door unit. Under normal normal cir-
cumstances it goes up and down visiting floors according to the state transitions
detailed above, and its behaviour is just the parallel composition of the various
parts, as in the specification in_service_spec above. Assuming that the lift be-
gins life in its idle state,

in_service(1) df  trap E; : {internal.calls(l) A controller(1)},

controller(l) 4 state0(1) A motor(1) A doors(1).

After the emergency button has been pressed, the lift is out of service, and the
specification asserts that when it comes back into service the flag E; has been reset.
Suppose that it is in service again as soon as Ej is reset.

out_of service(l) dof halt (—Ep).

Nothing is said about what happens to the lift when it is out of service.
Following the specification 1ift_spec, each lift is initially in service, but from
then on alternates between being in service and being out of service.

1ift(1) 4f Joop{in_service(1);out_of service(1)}.

The lift always returns to normal service in its idle state.
Suppose that every lift is initially idle on the lowest floor with its doors closed,
and that no calls are set,

init_sys(m,n) 4f foralll<n:init_1ift(1) A forall £ <m: init_floor(f)
init. 1ift(1) df jd1e(1) A doors_closed(1) A
forall f <m:
{Above;s = (f < 0) A Belowys = (0 < £f) A —C1e}
init_floor(f) % —cCug A -Cds.

The entire system is then just the parallel composition of n lifts and the call units
on each floor beginning in the initial configuration above.

lift_sys(m,n) e init_sys(m,n) A external.calls(m) A forall 1 < n:1ift(1).

It can be simulated directly in Tempura using the program 1ift_simulation(m,n),

where

1ift_simulation(m,n) = 3B,Bu,Bd,C,Cu,Cd,E,0,

Motor,Doors,Dir, Above,Below : {
structure(m,n) A
init_sys(m,n) A
generate_inputs(m,n) A
lift_sys(m,n) A
always display. lifts(m,n)
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The simulation relies on three predicates not described above: structure defines
the structure of the control signal paths, generate_inputs is required to simulate
the pressing of the various buttons, and display_lifts outputs each state of the
simulation in an easy-to-read form. Their definitions will not be given.

Although testing the prototype in this way increases one’s confidence that it
does behave correctly, it is still better to verify formally that it satisfies the spec-
ification. This entails proving that any interval generated by the implementation
also meets the specification. ‘

| lift_sys(m,n) D lift._sys_spec(m,n).

The proof can be broken down into a number of separate parts (see chapter 5).
For instance, one might prove

= external_calls(m) D external.calls._spec(m)

and

E 1ift(1) D lift_spec(l)

separately. The latter property can be further subdivided, in much the same way
as it was originally constructed, to make verification more manageable.

9.2.4 Some Improvements

In this prototype system, the relative speeds of different parts of the system are
implausible, to say the least. For instance, a lift can travel between floors in the
time that it takes to register a call. Furthermore, the description of the doors is
much too crude. It assumes that they open and close instantaneously. This section
offers improved descriptions of the motion and the doors.

Motor

The motion of a lift can be viewed as a sequence of steps on which it either moves
up or down one floor or stays put, according to whether the motor is on or off.
This is readily modelled with temporal projection by redefining the controller.

controller/(1) e controller(1l) upon motor_on(1l) do movel(l),

A step on which the lift moves is modelled by the predicate move1(1),

movel(1l) EET ascending(l) then up1(1) else downi(1),

and the predicates upl and downi respectively model the ascent and descent by
one floor, so they must have the following properties:

= upi(l) D VE<m—1:at(l,f+4 1)« at(l,f)
= downi(l) D Vf<m-—1:at(l,f)« at(l,f+1).
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If the lift is at floor £ and starts going up then it first switches Abovess, and then
keeps going up until Belowis41 changes (and vice versa if the lift is descending).
For convenience, it is assumed that this takes exactly t units of time.

upt(l) ¥ forallf <m:{

if at(1,£f) then {
halt (—|B610W1f+1) A
switch(1,Aboveis) A
SWitCh(t,BelOW1f+1)

}

else stable (Aboveis,Below)(s41)modn)

}
down1(1) 4l forall £ <m: {

if at(1,f) then {
halt (-ﬂBelowlf_i) A
switch(1,Belowis) A
gwitch(t,Abovels_1)

}

else stable (Aboves,Below)(_1)nodn)
}.

The predicate switch(i,B) just asserts that B is inverted at time i,
switch(i,B) df jen(i—1) A stable(B);B := -B;stable(B),

before and after time i it is kept stable.

When its motor is off, lift 1 is stationary the corresponding switches do not
change. They must therefore be represented by frame variables (which in this
context correspond to hardware latches). 4

Doors

Finally, let us define a more realistic model of the lift doors. As promised, this
model will take account of the fact that the doors take some time to open and
close, which in turn will make it possible for the open-door button to have an
effect outside the idle state.

The doors of lift 1 must open whenever condition stop(1l) obtains; that is,
whenever the open-door button is pressed and the motor is off, or the lift arrives
at a floor where there is a serviceable call outstanding. At all other times the doors
must be closed. This is represented, just as the detailed motion was represented,
by projecting the fine-grain behaviour onto the controller.

ef

controller’(1) 4l controller/(1) upon stop(l) do open.close.doors(l).

Here the predicate open_close.doors(1) represents the opening and closing of the
lift doors. The closing doors may be interrupted and caused to re-open if the
open-door button or a suitable call button is pressed.
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open_close_doors(1) 4l repeat {
open_doors(1);
hold_doors(1);
trap stop(1l) : close_doors(l)
}until doors_closed(l).

The predicates open_doors(1l), hold_doors(l) and close.doors(l) model the
opening, open and closing states, respectively.

= opendoors(l) D fin (doors._open(1)),
k= hold.doors(l) D stable(Doorsy),
= closedoors(l) D fin (doors_closed(1)).

To represent the opening and closing states, let us redefine the signal Doors; to
be a numeric value between zero, which represents the closed state, and some
maximum value, d, representing the open state. When the doors are opening the
value of Doors; increases up to d. :

open._doors(1) 4! halt(doors.open(1)) A Doors; gets Doors; + 1

doors.-open(1) 4 poors; = d.

When the doors have opened, they are held open for a maximum time h before
being closed again. But if a request button is pressed while the doors are open,
they begin to close immediately.

hold.doors(1) df  hext {timeout(h,3f < m:Bis)} A stable(Doorsy).

When the doors close, Doors; decreases to zero.

close.doors(1) 4 halt(doors_closed(1)) A Doors; gets Doorsy — 1

doors._closed(1) 4 poorsy = 0.

Finally, the doors remain static when stop(1) is not true, so Doors must also be
a frame variable.

Figure 9.5 shows a small section from the output of a long simulation of a
system of three lifts servicing an eight-storey building. The simulation used the
improved model, each lift taking three units of time to travel between floors. The
doors also take three units of time to open or close; that is, d = 3. In figure 9.5
the symbols

[D, [l], Mana W

represent the state of the doors, from fully closed to fully open. The internal
requests in each lift are shown at the top of each state picture, and the symbols
A and v7 denote up- and down-calls.
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Figure 9.5: Part of a simulation of the lift system.




9.3 Discussion

There are several ways in which the prototype can be improved. For instance,
the controller does not give optimum performance insofar as it does not always
minimise the waiting time for calls to be answered. In general, it is not possible
to achieve optimum performance without prior knowledge of the pattern of calls,
but it is possible to do better than has been done. For example, a lift in its idle
state will always answer upward calls in preference to downward. To make the lift
fairer the decision must be made on the basis of some additional factor, such as
to answer first the call that will take the least (maximum) time to service. This
means favouring the downward call if the lift is currently less than half way up,
otherwise the upward. Here is a version of state0 that does this:

state0(1) 4l halt(called(1)) A keep (idle(1));

if below(1l,m/2) then

if called_down(l) then state2(1l) else statel(l)
else

if called up(l) then statel(1l) else state2(1).

More sophisticated strategies come readily to mind, but they are not discussed
here. Anyway, it should not happen very often in practice that two calls are
registered at exactly the same moment, so perhaps the unfairness is not worth
worrying about.

A much more serious problem is that the controller may cause several lifts to
compete to answer the same call while another goes unattended. This happens
because the lift controllers act entirely independently of one another, and such
behaviour could be avoided by the introduction of logic to coordinate the lifts.
The logic would assign a particular lift to answer each up- or down-call. For
instance, one might replace each of the call flags Cus and Cds by n separate call
flags, one for every lift. But when the appropriate button is pressed only one of
the flags should be set. The decision of which flag to set should be based on some
attempt to minimise the service time.

Finally, no account has been taken of the fact that in practice the speed of
a lift is not constant due, amongst other things, to the need to accelerate and
decelerate. One might overcome this by explicitly modelling speed variations,
which is not hard, but further complicates the specification.
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Chapter 10

Communicating Processes

This chapter presents a stream-based communication mechanism for Tempura. The mechanism
is based on two primitive operations, one to put data onto a stream, the other to get data from
a stream. These simple operations may be used to construct communicating processes, Three
examples are presented. The first, transferring a list, is used to introduce the ideas; the second is
the prime sieve; and the last one is a system comprising a lexical analyser, a parser and an evaluator
for simple arithmetic expressions. Finally, section 10.5 proposes a way to express interleaved
execution in ITL.

At first sight it may seem that ITL and Tempura are only suited to the study of
strongly synchronous systems of the kind described so far, but closer investigation
reveals that this is not so. Although the logical model deals in states of the whole
system, which suggests a close coupling between component parts, it is not hard
to embed asynchronous systems within this framework.

There are essentially two ways to do this. One is to use temporal projection
to describe different parts of a system according to different timescales, so that
their local state sequences are interleaved in the global model. This is the subject
of section 10.5. The approach taken in the first part of this chapter is much
simpler. Here, one simply describes all parts of the system according to some
global timescale, whilst recognising that individual processes do not actually have
to run at exactly the same rates.

The global timescale is an abstraction. Depending on the application, it may
be seen merely as a particular way of numbering the states of each process, or
perhaps as an observation of the system according to some conceptual clock (a
“wall clock” perhaps). But it should not be assumed to correspond directly to
clock cycles on any particular machine.

To demonstrate that Tempura can handle asynchronous processes just as well
as synchronous ones, a particular form of synchronised communication is imple-
mented in Tempura. It is used in three examples. The first example illustrates the
basic communication mechanism. The second is a standard example of irregular
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Figure 10.1: Transferring a list of data.

communication, the prime sieve; and the last is a pipeline for parsing elementary
arithmetical expressions.

There is nothing new about the communication mechanism; in fact, it is just
about the most elementary protocol there is. But that is beside the point, because
the main purpose of this chapter is to show that communication, like assignment,
does not have to be wrapped up in a special theory, but fits comfortably into the
logical framework we already have.

10.1 Message Passing

At an abstract level the transfer of a complete message between two processes is
represented by a single temporal assignment, but if the communication bandwidth
is limited a long message has to be divided into smaller units which are then trans-
ferred one at a time. A transfer of this kind typically goes via intermediate storage
that is shared by both processes, a buffer or communication channel perhaps. Let
us begin with a very simple example to illustrate the technique.

10.1.1 Transferring a List

The task in hand is to transfer a quantity of data from A to C, so the transfer must
implement the temporal assignment

C « A.

Suppose that the data is in the form of a list, and to be specific, suppose that A has
the value [0,1,2] initially. Then a satisfactory transfer is shown in figure 10.1(a).

This transfer may be achieved by copying the elements of A one at a time,
which takes three steps in all. On each step the first element of A is removed and
appended to C,
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for 3times do A,C « t1(4),C"[hd(4)].

This is the situation in figure 10.1(b).

Finally, all communication can be via a shared buffer, B. In this case the
transfer is represented as two parallel processes, one which puts successive elements
of A into B, and another which takes them from B into C,

for 3times do put_elt(B,A) || for 3times do get_elt(B,C),

The predicates put_elt and get_elt define the actions of sending and receiving a
single element of data.

Before defining these predicates, a concrete representation must be chosen for
the buffer B. The only important thing is that there should be a unique value to
distinguish the empty buffer, so let us take this value to be the special token nil.

The send and receive operations can be implemented using a simple stop-and-
wait protocol. To send a message, first wait for the buffer to empty, then write
the first element of 4,

put_elt(B,L) % halt(B=nil);B,L :=hd(L),t1(L).

The receive operation is the other way around, first waiting for the buffer to fill
and then removing the datum in preparation for the next,

def

get_elt(B,L) = halt(B#nil);B,L :=nil,L"[B].

Figure 10.1(c) shows how this works on our example.

There are two things to note about this example. The first is that the vari-
ables A, B and C are assumed to be frame variables. If they are not, then extra
assignments must be put in to maintain their values during idle periods. The
second observation is that this example isn’t very general. For a start, it has been
assumed that both sender and receiver know in advance how much data is going to
be transferred. That might be a reasonable assumption for the sender, but surely
not for the receiver.

10.1.2 Termination

Generally, some convention is used to indicate termination. One that is quite
common in practice is to reserve a special token, # say, to denote the end of the
data, and that is the convention adopted here. Moreover, it is convenient when
dealing with lists to assume that # is appended to the data prior to transmission.

The predicates 1ist_to_buf(L,B) and buf_to_list(B, L) respectively describe
a sender and receiver which use our convention.,

list_tobuf(L,B) % while(|L|# 0) do put_elt(B,L)

buf _to.1list(B,L) dof repeat get_elt(B,L)until (Lip|-1 = #).
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time A B C
0 [0,172’#] - []
1) [L2,#] o [l
2 [1a2a#] - [O]
3 [2,#] 1 [0]
4 [Za#] - [0,1]
5 [#] 2 [0,1]
6 [#] - 10,1,2]
7 [1 # [0,1,2]
8 [] - [0a1,27#]

Figure 10.2: An example of communication via a unit buffer.

Parallel composition of the sender and receiver processes yields a list transfer
program, transfer(4, B, C), where

transfer(A,B,C) def list_to_buf(4,B) || buf_to_1ist(B,C).

But it only works provided that A contains # as its last element, and that B is
initially nil and C is initially empty. Thus, it is claimed that

= frame A,B,C: {init(4,B,C) A transfer(4,B,C)} D C« 4,
where init(A,B,C) checks the initial conditions,
init(4,B,C) % (foralli<|A|—1:As# #)AAp-1=#AB=nilAC=[].

For the list transfer example above, this program produces the behaviour shown
in figure 10.2.

10.1.3 The Operations Put and Get

Future examples will need the more general send and receive operations defined
by the predicates put(B,X) and get(B,X). These are similar to put_elt(B,L) and
get_elt(B,L) above, but they send and receive single data rather than whole lists.
put(B,X) 4l pale (B =nil);B:=X
got(B,X) % halt(B #nil);B,X:=nil,B.
On completion of get, the received value is held in X. The parallel composition of
put and get operations implements an assignment; that is,

= local B:{B «< nil| put(X,B) || get(B,X)} D X <X
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...,7,6,5,4,3,2 =>| FILTERg [=>| FILTERy = +++ ==| FILTERy = ...,7,5,3,2

Figure 10.3: The prime sieve.

The two operations need not start simultaneously for this property to hold. For
instance, a buffer process is defined below.

copy(A,B) df 1ocal X : repeat {get(4,X); put(X,B)}until (X = #).

Tt can be used to introduce an additional element of storage between sender and
receiver, and so decouple them slightly,

1ist_to_buf(A,B) || copy(B,B’) || but_to 1ist(B’,C).

The producer can now run one element ahead of the consumer.

10.2 The Sieve of Eratosthenes

This communication mechanism will now be put to use in a parallel version of the
so-called Sieve of Eratosthenes, the prime sieve. The aim is to discover all prime
numbers less than a certain limit max(n) using a pipeline of n communicating
processes, arranged as shown in figure 10.3.

The pipeline comprises a series of filters, each one removing multiples of a
particular prime number from its input. The first filter removes all multiples of
two, the second removes all multiples of three, and so on. The ith filter receives
a stream of numbers from its left-hand neighbour, and passes on to its right-hand
neighbour the same stream with all multiples of the ith prime number removed
(the first prime number is 2).

10.2.1 Specification

The input to the pipeline is taken from a list N of successive natural numbers,
[2..max(n)], and the output is placed in the corresponding list P which has all
composite numbers filtered out. The maximum value in N is one less than max(n),
where max(n) is the first non-prime number that would pass through an n-stage
sieve. It is well known that max(n) is equal to the square of the (n + 1)st prime.
To see that this is the correct value, first notice that, although max(n) is not
prime, it is not divisible by any prime less than the (n + 1)st, and so will not be
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eliminated by the sieve. Moreover, any composite number less than max(n) must
have a prime factor amongst the first n primes, and such numbers are supposed

to have been filtered out by the sieve.

Taking this value for max(n), the output list, P, should finish up with the
initial value of primes(N), where the function primes(N) returns a list of the prime
elements of N. It may be defined recursively as follows:

primes(N) % if |N| =0 then|]
else { '
if is_prime(hd(N))
then cons(hd(N),primes(t1(N)))
else primes(t1l(N))
}

isprime(l) ¥ -3j:{(1<j<i)A(imodj=0)}

Therefore a sieve having n filter processes, sieve(n, N,P), satisfies the following
property:

= N=[2.max(n)] AP =[] Asieve(n,N,P) D P« primes(N),

Now let us see how to implement the sieve in Tempura.

10.2.2 Implementation

The sieve is a parallel composition of the n filter processes, £ilt er(i, A,B), together
with two other processes, one to feed elements of N into the first filter, the other
to gather up elements from the last filter into the list P. These two operations
are defined by the predicates 1ist_to_buf(L,B) and buf _to_list(B, L), which have
already been described. The processes are connected by n+ 1 buffers Bj.

sieve(n,N,P) df 1ocal B: {

list_to buf(N,Bo) ||
forpar i < n:filter(i,Bi,Bit1) ||
buf_to.1ist(By,P)

}

where 1ist(B,n+ 1) A forall i <n+ 1:Bj = nil.

The sieve terminates when all subprocesses have finished.

10.2.3 The Filter Processes

The ith filter, which sifts out all multiples of the ith prime number, is specified by
the predicate filter(i,A,B). It receives a stream of numbers from its left-hand
neighbour in A, and passes on to its right-hand neighbour every element of this
stream that is not divisible by p, as well as p itself.
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filtery filtery filtery filters
time | Bufp Bufy Bufg Bufs Bufy

0 —_ - —_ — —_
14 2 - - - -
2 - — - — -
3 3 2 — — -
4| — - — - —
& 4 3 2 - —
6 — — - — —
7 b - 3 2 —
8 — — — - —
9 6 b - 3 2
10| - - - - -
11| 7 - b — 3
12| - - — - -
13 8 7 - b —
14| - - - - -
15 9 - 7 —_ [
16| — - - - -
17| 10 9 - 7 —_
18| - - - - —
19| 11 - — - 7
20| - - - - -
228 | - - - — -
229 | 116 116 - 113 -
230 | — - - - —

231 | 117 - 115 - 113
232 | - - — - -
233 | 118 117 - - —
234 | - - - — -
235 | 119 - — - -
236 | - - - - -
237 | 120 119 - — -
238 | — - - - -
239 | # - 119 — -
240 | - - - - -
241 — # - 119 —
242 | - - — - —
243 | - - # - —
244 | - - - — -
246 | — - — # —
246 | - - — — —
247 | — - - - #
248 | - - — — —

Figure 10.4: A distributed version of the Sieve of Eratosthenes.
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Its first task is to determine its own prime, whose multiples it must strike from
subsequent output, and this is easy because the ith prime is simply the ith input
to the process. Therefore, the first i — 1 numbers from the input stream, A, are
copied directly onto the output stream, B, since they are all prime numbers. The
predicate skip_to(i,X) takes care of this.

skip_to(i,X) 4 for itimes do {

if X = # then empty
else {put(B,X);get(A,X)}
}.
If # is encountered before the ith input is reached; that is, if there are less than
i inputs, then the predicate simply terminates.
When the predicate skip_to terminates, sift multiples(X) takes over. The
ith input, at this point held in the variable X, is saved in a static variable p. Then

the processing enters a loop during which only those inputs that are not multiples
of p are output, except for p itself which is output first.

siftmultiples(X) 4 Jocalp:{
p+=X
while X # # do {
if Xmodp = 0 A X # p then empty
else put(B,X);
get(A,X)
}
}
When the end of data is detected on the input stream, the filter process closes its
output stream and terminates.
The ith filter process, £ilter(i, A, B) is formed by composing all these actions
in the sequence described above.

filter(i,A,B) % localX:{

get(4,X);
skip-to(i,X);
sift multiples(X);
put(B, #)
.
A typical computation generated by the sieve is shown in figure 10.4, where four
filters are used to generate all primes less than 121.

10.3 A Simple Parser

The final example is a pipelined parser for simple arithmetic expressions. This
parser is designed to be part of a system for evaluating arithmetic expressions,
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10’“_}_” ,32’¢¢+,7,(((77,57,4<+7)’1,(()”

D

“10 + 4,32 + wu(57 + 1u)u”=>| LEXER PARSER EVALUATOR==|100

10,32,(¢+”,57,1,“+”,((+”

Figure 10.5: The pipelined expression evaluator.

receiving its input from a lexical analyser and sending its output to an evaluator.
It accepts as input a stream of tokens comprising numbers, parentheses and oper-
ators, and on its output produces the reverse polish form of the input expression.
The whole system is shown in figure 10.5

The parser operates on a pair of streams. Tokens are read from the input
stream, TS, parsed into reverse polish form, and written to the output stream PS.
The current token is always held in the frame variable Token. The first action,
which gets the ball rolling, is to read a token from the input. When this has been
done, the parsing begins, and continues until the whole expression has been read.
At this point the input stream should be closed, in which case the output stream
is also closed, otherwise a syntax error is flagged.

parser(TS,PS) 4f 1ocal Token: {

get_token();

parse_expr();

if Token = # then empty

else syntax_error(“Premature end of expression”);
put_polish(#)

}.

There are three subsidiary predicates here. Two, get_token() and put_polish(),
are just specific uses of put and get, which were defined above. The former reads
a token from the input stream and the latter writes a token to the output stream.

ef

get.-token() e get(TS,Token)
put_polish(token) df put(PS,token).

The other predicate, parse_expr(), does the real work.
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10.3.1 The Parsing Algorithm

A standard recursive descent algorithm is used for the parsing. The body of the
parser is the predicate parse_expr(), which parses a complete expression. This
may be an integer or an expression in parentheses, or it may be made up of two
such primary expressions combined with an operator. To keep things simple, only
the addition operator, “+”, is permitted.

def s
parse_expr() = parse_primary();

while Token = “+” do {
get_token();
parse_primary();
put_polish(“+”)

).

The predicate parse_primary() parses a primary expression.

There are two legitimate kinds of primary expression. If the initial token is a
number then the whole expression must be a number and there is nothing further
to do.

parse.num() o put_polish(Token); get_token().

If, on the other hand, the initial token is a left parenthesis then the following
expression must be recursively parsed and a check made for the terminating right
parenthesis.

parse_parens() def get_token();

parse_expr();
if Token = “)” then get_token()
else syntax_error(“Missing right parenthesis”).

Anything else is a syntax error. Thus, parse.primary() is defined as follows:

parse_primary() df ¢ Token = #
then syntax_error(“Premature end of input”)
else if is num(Token) then parse num()
else if Token = “(” then parse_parens()
else syntax_error(“Bad primary”).

It only remains to describe how errors are handled.

10.3.2 Error Handling

Errors can be handled in a number of ways, but one of the simplest options is to
abort the parsing, output the appropriate error message, and then discard all the
remaining input. This is readily achieved by introducing a boolean flag, ErrorSet
say, which is trapped in the top-level predicate of the parser, as follows:

165




parser'(TS,PS) &of

local ErrorSet : {

ErrorSet <= false;

trap ErrorSet : parser(TS,PS);

if -~ErrorSet then empty else abort()
}

abort def while Token # # do get_token();
g
put_polish(#).

Recall that the construct trap b : p causes the program p to terminate prema-

turely if b becomes true. It was defined on page 132.
The error flag is set in the predicate syntax_error(text), which may be defined

as follows:

syntax_error(text) def output(text) A ErrorSet := true.

It is possible to make the parser even more robust by limiting the time it will
wait for a message to be sent or received, thus protecting it against catastrophic
errors elsewhere in the pipeline. This is quite simply achieved using the timeout
mechanism, which was described in section 9.1.5. In general, the composition

get(B,X) | len(t)

waits at most t units of time for a message to arrive on the stream B.

10.4 The Complete Evaluator

For the sake of completeness, this section gives a brief account of the stream-based
lexical analyser and the expression evaluator, which were alluded to earlier. These
two can be hooked up to the parser as shown in figure 10.5, using the now familiar
process 1ist_to_buf(L,B) to feed the input expression into the lexical analyser.

Three streams are needed to connect the four processes: CS for the input to the
lexer, TS to carry tokens between the lexer and the parser, and PS for the reverse
polish output from the parser. The parallel composition

1list_to.buf(exp,CS) || Lexer(CS,TS) || parser(Ts,PS) || evaluator(PS,answer)

then performs the complete evaluation of the expression exp, placing the result in
the variable answer. Figure 10.6 shows a typical computation.

There is nothing noteworthy about either the lexical analyser or the expression
evaluator. Both use standard algorithms.

10.4.1 The Lexical Analyser

At the top-level, the lexical analyser is much the same as the parser. First, it reads
a character from the input stream, then begins the actual analysis, after which the
output stream is closed and the process terminates.
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time Ccs TS PS
0 — — —
1 UER — —
2 —_ — —
3 non — —
4 —_— e —
5 ll+ll — —
6 — — —
7 "LJ" 10 —
8 nun — —
9 "Ll” wan 10
10 - - -
11 ngn — -
12 - - -
13 Hou — —
14 - - -
15 nan — —
16 - - -
17 uun 32 —
18 "Ll" — —
19 "Ll“ [ 32
20 - - -
21 uuu — Hagn
22 - - -
30 - — -
31 e 57 -
32 nqn _ —
33 LRl N} BT
34 ~ — -
35 "I_I" _ _
36 - - -
37 n)n 1 —
38 - - -
39 "Ll" n)n 1
40 - - -
41 # — My
42 - - -
43 - # -
44 - — —
45 — — Han
46 - - -
47 _ — #
48 — — #
49 — — #
50 - - —

Figure 10.6: Evaluating the expression: exp = “10 + 1,32 4+ (67 + 14)u” to get

the result: answer = 100.
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def

lexer(CS,TS) = 1local Char :{get_char();lex_expr();put-token(#)}.

The most recently read character is held in the frame variable Char.

The body of the analyser is the predicate lex_expr(). This separates the input
into numbers, which are built from a sequence of digits in the input, spaces, which
are ignored, and operators, which are passed straight on to the parser.

lex_expr() 4 yhile Char # # do {
' if is_digit(Char) then lex number()
else if is_space(Char) then lex_spaces()
else if is_operator(Char) then lex_operator()
else syntax_error(“Unrecognised character”)

b

where the predicates lex_number(), lex_spaces() and lex_operator() handle the
recognition of numbers, spaces and operators.

lex_number() e Jocaln: {
N <« 05
while is_digit(Char)do {
N:= 10 x N + ascii(Char) — ascii(“0”);
get_char()
I
put_token(N)

}

lex.spaces() © yhile is_space(Char) do get_char()
lex.operator() 4" put_token(Char); get_char().

The predicates put_token() and get_char() are just particular uses of put(B,X)
and get(B, X).

10.4.2 The Evaluator

The evaluator produces a single result, answer, from the reverse polish input. Its
top-level is therefore slightly simpler, since there is no output stream to be closed
when the evaluation is done.

evaluator(PS,answer) 4 Jocal Token: {get_polish();eval_expr()}.

The most recently read token is held in the frame variable Token.

The body of the evaluator, eval_expr(), is defined below. It uses a stack to
evaluate the input expression. Numeric tokens are simply pushed onto the stack
until the operator “+” is encountered, whereupon the top two elements of the
stack are added together.
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eval_expr() 4 Jocal Stack: {

Stack <« [];

while Token # # do {
if is_integer(Token) then push(Stack,Token)
else if is_plus(Token) then add(Stack)
else syntax_error(“Unknown operator”);
get.polish()

b

if |Stack| = 1 then answer <« Stacko

else syntax_error(“Incomplete expression”)

}

The subsidiary predicate add(Stack) pops the top two elements of the stack, adds
them together, and pushes the result back onto the stack.

def

add(Stack) = if |Stack|2> 2then

local m,n: {
pop(Stack,m);
pop(Stack,n);
push(Stack,m + n)

}

else syntax_error(“Too few arguments to add”).

When the evaluator finishes there should be just the result left on the stack;
otherwise the input expression was not complete.

10.5 Interleaving

Although our communication mechanism works correctly and shows that asyn-
chronous processes can be represented in Tempura, there are two isuues of con-
cern. One is that the states in the underlying model are global, so all the parallel
processes share the same state sequence. This does not seem to be a good model
of a situation in which the parallel processes are genuinely independent of one
another, perhaps running on different machines. The other problem concerns the
message passing mechanism. When a process is waiting for a message on a par-
ticular stream it is, in effect, busy waiting; that is, it checks the stream on every
state.

One possible answer to both of these problems is to use temporal projection.
For example, the process

true; (true proj p); true

specifies that p is true on an arbitrary subsequence of the whole interval. Thus, if
two such processes are combined in parallel
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{true; (true proj po); true} || {true; (true proj p;); true}

their state sequences may be arbitrarily interleaved. In general, an interleaving
operator, p interleave p’ may be defined such that

p interleave p’ &f (next p) proj (p;p').

Roughly, this means that an instance of p precedes every state in the execution
of p/, including the first. The formula p is used to pick out the states on which p’
must be active. The examples below will make this clearer.

The interleaving operator can be used to describe processes that are genuinely
asynchronous. Let us look at just two simple applications. The first is to use
the above technique to represent a kind of timeslicing; the second is to express a
rendezvous mechanism.

10.5.1 Simple Timeslicing

Perhaps the simplest form of interleaving is timeslicing where only one process
is active at a time. FEach process runs for a certain amount of time, then is
suspended whilst another is given its share of the resources. Such a scheme requires
a scheduler to “swap” the processes in and out. For instance, suppose that there
are n processes, p; for 1 < n, and that p; executes during its “turn”, when T = .
This is readily represented as

forpar ¢ < n:halt (T =1) interleave p;.

Process 4 is active on every state on which T = ¢ (until it terminates). The turn
must be switched by the scheduler.

10.5.2 Rendezvous

A similar strategy may be used to represent processes that synchronise at certain
rendezvous points, but otherwise execute independently. Suppose that two pro-
cesses po and p; rendezvous on a shared buffer B; that is, they synchronise when
the buffer is full. One needs to ensure that the processes have in common the
rendezvous states when the buffer is full; at other times their execution may be
arbitrarily interleaved. This may be achieved by imposing the constraint that each
process is active when the buffer is full, or in other words that the buffer is empty
(B = nil) whenever a process is suspended. An interleaving with the formula
keep (B = nil) does the trick:

forpar ¢ < 2 : keep (B =nil) interleave p;.
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Note that the processes may be active when the buffer is empty, but may not be
suspended when it is full.

The rendezvous mechanism is non-deterministic and so cannot, be executed in
Tempura as things stand. Of course, the buffer could not.be a frame variable in
this formulation because the rendezvous is a zero-time communication as well as
being non-deterministic. However, there does not seem to be any essential problem
in extending Tempura to handle this kind of synchronisation. Moreover, it may be
possible to express a similar idea within the deterministic framework of Tempura,
but this needs to be further investigated.

10.6 Discussion

Moszkowski has previously considered the representation of communicating pro-
cesses in Tempura [Mos86]. The treatment above improves on his attempt in a
number of ways. Most importantly, it is far simpler. The communication mecha-
nism is much more straightforward than the one Moszkowski originally proposed,
and the process composition operator (||) removes the need for his rather cumber-
some use of signals for starting and stopping parallel processes. The error handling
mechanism is also a considerable improvement.

How does our stream mechanism compare to the message-passing facilities
in other languages? The most obvious comparison is with Hoare’s specification
language CSP [Hoa85] and the related programming language Occam [Inm84],
both of which take the communication operations to be a primitive. In CSP,
the statement B!X puts the data X into the stream® B, and B?X is used to
get X from B. A difference between the communication primitives in CSP and
the predicates put and get (as I have defined them) is that the put operation in
CSP is blocking, in Tempura it is non-blocking. In other words, in CSP a put
operation does not complete until the data has been received, but the predicate
put completes as soon as the data has been written to the stream. It is easy to
define in Tempura a version of put that is more like the CSP version:

put'(B,X) % B :=[X];halt(|B|=0).

Likewise, it is possible in CSP to implement a non-blocking send by means of an
intermediate buffer process.

A simple message-passing mechanism such as the one described in this chapter
might be “packaged”, just as in CSP, and the put and get operations made into
language primitives. Syntactic rules could then be imposed to ensure, for example,
that channels are correctly used or even, if desired, that asynchronous processes
never communicate except through channels. However, there are advantages in

*Tn CSP and Occam they are called channels
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having the details of the mechanism visible. For one thing it offers greater flexi-
bility because it permits one to understand and control what is really happening.
Thus, it is possible to reason about the real-time aspects of message passing in
Tempura. For instance, in section 10.3.2 I showed how easy it is to associate a
timeout with a particular operation. CSP throws away any chance of dealing for-
mally with such ideas, because the operations (and indeed the whole language)
abstracts from time.
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Chapter 11
Epilogue

I claimed in chapter 1 that Tempura is a realistic programming language for de-
signing and reasoning about computer programs, especially parallel and real-time
programs, and the evidence presented in this dissertation support‘s that claim. It
is particularly pleasing to have discovered that the inertial assumption of ordi-
nary imperative programming may be represented semantically in ITL, and that
operators for parallel composition, communication and exception handling appear
naturally as a result.

Nevertheless, Tempura is not yet a language for programming realistic sys-
tems. For that, much more work is needed, especially on compiler development, on
application-specific programming environments, on usable verification and trans-
formation tools, and on outstanding semantic problems which have been neglected
here.

11.1 Scaling Up

I have considered a number of small- and medium-sized examples in Tempura, but
there is clearly no need to stop there. The approach really needs to be tried on
examples of significant complexity. But first the programming environment must
be improved.

11.1.1 Compilation

Although simulation is quite efficient using a Tempura interpreter, a compiler is
really needed for serious program development. Compilation of Tempura is an in-
teresting problem in its own right. One possible approach is suggested by recent re-
search on compiling the synchronous languages Esterel and Lustre [BC84,CPHP87]
into finite-state automata. This has been found to result in very eficient code.
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11.1.2 Data Types

Before tackling larger examples, especially when compilation is considered, it is
desirable to have a better worked-out type-system. As it stands, the type system
is very rudimentary. For example, it excludes record and pointer variables which
are are sure to be necessary both for convenience and efficiency. Moreover, type-
checking is performed dynamically.

Unlike a functional language (say), where the type of an object is compelled to
be static, Tempura variables may change in type as well as value over time, just
as they sometimes do in ordinary imperative languages. For instance, a pointer
might reference a number of objects of different types at various times during its
life, Whether dynamic types are really necessary, or whether a simpler static type
system would suffice, remains to be seen.

11.1.3 Debugging

The problems of debugging Tempura programs have not been investigated at all.
Many of the problems are quite standard, of course, and by the nature of the
language it is possible to provide more run-time checking in an interpreter than
for other similar languages. Undefined or overwritten variables may readily be
monitored and trapped, for example. Moreover, Tempura programs are determin-
istic and so any execution is repeatable. Perhaps it is possible to build really good
debugging tools for Tempura.

11.2 Applications

The greatest strengths of Tempura lie in its formal treatment of time and concur-
rency. It might therefore be advantageous to specialise Tempura for applications
in which these strengths are most required. Three principal areas of specialisation
suggest themselves: hard real-time programming, parallel programming, and rapid
prototyping.

11.2.1 Real-Time Systems

Hard real-time systems are those in which timing characteristics are of crucial
importance. For example, an aircraft’s flight-control system must respond to its
inputs within tight real-time bounds. Most real-time languages, such as Ada,
provide only a few ad hoc delay constructs without formal semantics, whereas
in Tempura delay is an integral part of the semantics; programs are executed in
virtual time. It is possible, in principle, to design a “stripped down” version of
Tempura in which the virtual time units of the program correspond in some direct
way to real-time units of the underlying hardware. The mapping of virtual to real
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time units would be performed by a compiler. Thus, the statement len (¢) would
complete within ¢ units of real time.

There are, of course, many problems to overcome if this idea is to work. For
example, in the assignment v := e there is obviously a limit to the complexity of
the expression e that can be evaluated and assigned in unit-time, whatever the
time units; so the compiler might need to reject programs with timing errors. It
is also necessary to be able to predict accurately the time taken by the underlying
hardware to perform each instruction, which suggests that a RISC machine might
be a natural host.

Correctness is most important in hard real-time programming, especially when
the programs are for controllers in safety-critical applications. Here, of course,
Tempura may also claim a large advantage over ordinary real-time languages,
since it has well-defined and relatively simple logical semantics. Since ITL is
also well-suited to hardware specification, it would be interesting to represent and
verify an entire system in ITL, from the hardware right up to the programming
language. By verifying a total system in a single formalism, one might eliminate
the “grey areas” that usually exist at the interface between verified hardware and
verified software. The compiler in such a system would itself be boot-strapped in
Tempura.

11.2.2 Parallel Programming

It is not difficult to see a language like Tempura being implemented on real par-
allel computers. There is a natural correspondence between the “and-parallelism”
described in section 8.1 and massively parallel synchronous computers. Likewise,
the parallel process constructor of section 8.2 matches the multiprocessor style
of architecture, and the communication mechanism of chapter 10 fits well into
message passing multicomputer architectures.

11.2.3 Rapid Prototyping

Tempura also has further potential as a rapid-prototyping language for designing
parallel and real-time programs. It has been used in this way throughout this
dissertation. However, in order to get a more flexible language for experimentation,
it would be worth investigating the introduction of features such as unification and
backtracking from logic programming. This approach has been tried with some
success in the language Tokio [FKTMS86], which is another executable sublanguage
of ITL.

175




11.3 Verification and Transformation

I have presented some initial approaches to verification and transformation, but
no viable tools for systematic use against large programs. What hope is there for

mechanisation?

11.3.1 Automation

A tractable decision procedure for ITL is not a possibility. Moszkowski has shown
that, although the properties of Tempura programs are decidable, any general
decision procedure must be of non-elementary complexity [Mos83]. Nevertheless,
there are subsets of ITL for which tractable decision procedures do exist. One
such subset is propositional linear-time temporal logic (without chop), and simple
parts of the verification process might therefore be automated. It remains to be
seen whether this is of practical value.

11.3.2 Transformation

The transformation of programs to canonical form as described in section 5.2.2
is a form of symbolic execution, following as it does the same strategy as the
interpreter. There is therefore a gobd chance that (at least part of) this process
also might be automated and used as a technique for proving equivalence between
programs.

Similarly, a number of researchers have devised systematic techniques to trans-
form and synthesise certain types of programs [DB73,MW80,MW84], and it seems
there is no reason why similar techniques should not be used on Tempura pro-
grams, and again they might be embedded in HOL.

11.4 Semantics

There are a number of outstanding problems concerning the properties and se-
mantics of Tempura operators. Some of them are listed below.

11.4.1 Frame

As I pointed out in chapter 6, the properties of the frame operator have not been
formally established. In particular, one would like to be sure that the operator
gives the intuitively correct behaviour for all causal Tempura programs. For this it
must be proved that if a program containing frame variables executes successfully
then the execution generates the same behaviour that is defined by the frame
operator; that is,
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= 3A: {#(v,A,p) A keep if A thenvo=v} D localv:p,

as claimed on page 97.

11.4.2 Prefix

There is a technical difficulty in the definition of the prefix operator that has so
far been glossed over. The difficulty is this. The formula prefix p was so defined
that it must be possible to find an interval on which p holds, but it may be the
case that one wants to use the prefix operator, for error-handling say, precisely
as an escape “when something is about to go wrong”. A trivial example of the
problem is the formula below, which is logically false.

empty A prefix next (A # A).

The prefixed formula is unsatisfiable, so there is no possible prefix subinterval on
which the formula can hold. However, it may intuitively seem that the formula
should be true; at least, one might expect the formula to execute correctly in

Tempura.

11.4.3 Parallel Processes

I have already pointed out that a theory of parallel processes in Tempura must
prevent the possibility of arbitrary interference between processes. Otherwise, as
I showed on page 127, it may be possible to draw incorrect conclusions about
a program. Thus, it is necessary to restrict the use of the parallel composition
operator so that only certain well-defined interactions are allowed.

One allowed interaction is message passing using the mechanism of chapter 10.
In order to reason effectively about parallel processes in Tempura a theory of com-
municating processes must be developed. It is expected that much of this theory
would resemble parts of Milner’s Calculus of Communicating Systems [Mil80].
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