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Abstract ‘

General Theory Relating to the Implementation Of
Concurrent Symbohc ‘Computation

The central result of this work is the discovery of a new class of ar-
chitectures, whick I call D-RISC, sharing some characteristics of both
‘dataflow and von Neumann RISC computers, for concurrent compu-
tation. This rests on an original and simple theory which relates the
- demands of concurrent computation on hardware resources to the fun-
damental performance constraints of technology. I show that dataflow
and von Neumann architectures have different fundamental hardware
‘constraints to performance, and that therefore a D-RISC architecture,
which balances these two constraints, is likely to be optimum for con-
current computation.

The work forms four related sections:

¢ A study of the nature of concurrent symbolic computation and
the demands which it makes from any implementation. Two new
results emerge from this. A model of computation which will be
used extensively in subsequent sections, and a way of incorporat-
ing imperative updates in a functional language, similar but supe-
rior to non-deterministic merge, which captures locally sequential
updates In a computation with minimum constraint on global con-
currency.

o The computational model is used to contrast different policieé for
localising data near a CPU. A new type of cache is proposed which
- renames all of its cached addresses in order to reduce CPU word-
- length. :

e CPU des:gn is examined and a new class of archxtectures for con-
current computatlon, called D-RISCs, are proposed.

e The mult:ple-thread 1mplementatlon problems encountered in the
new architectures are examined. A new analysis of the relation-
ship between scheduling and intermediate store use in a symbolic

~ concurrent computation is presented.
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Chapter 1
Introduction

This thesis approaches the problem of multiprocessor architecture design for sym-
bolic computation from a standpoint which bridges two different fields of research:
concurrent language implementation and hardware design. . . '

My choice of this approach owes much to the SKIM project: my part in which
was the specification and design of the two processors, so I will first describe this
project and my interest in it. ' ' :

- SKIM was a simple specialised uniprocessor designed specifically to perform
(fixed) combinator reduction. SKIM II was designed after development of the
system software for SKIM, and benefited from this. ‘' The subsequent software
development on SKIM II resulted in a highly sophisticated combinator reducer
incorporating a number of innovative implementation techniques.

The relevance of SKIM to this thesis lies in its illustration of the intimate
relationship between hardware and system software design. The architectural -
enhancements to SKIM II were of two distinct types: '

e Balancing. The bandwidths of the various concurrent operé.tions permitted -
within a microcycle were adjusted to optimise use of hardware resources.

¢ Generalising. Wherever possible without undue extra complexity hardware
capabilities used on SKIM were generalised and made more flexible. This
lead to a word tagged architecture with 4 bit tags and a rich set of tests and
branches on tags. :

The balancing enhancements arose from what we did understand about com-
binator reduction algorithms. The generalising enhancements from an awareness
that there was much that we did not understand. o ' '

The most interesting results to emerge from SKIM II came from the use of gen-
eralising architectural enhancements in ways that were completely unanticipated
at hardware design time. For example the richness of the tag structure allowed

. the efficient use of unique pointer one bit local garbage collection. The discovery
of this technique would not have happened without both detailed development of
the microcode and the fortuitous extra hardware capability that made it feasible.

This exemplifies a fundamental problem in research into innovative hardware
for applications where the software is itself not well developed. The ideal simul-

1




taneous optimisation of hardware and software is impossible: instead a laborious
process of experimentation is necessary.

What about the use of simulation to obviate this problem? SKIM was an un-
usual example of hardware where the total hardware design, construction and test
time was small, and the working machine provided facilities that enabled otherwise
impracticable software development. The preliminary study of high performance
architectures can usually more easily proceed by simulation. However the in-
strumentation of a simulation fast enough for substantial software development is
difficult and liable to preclude the architectural flexibility that would allow inves-
tigation of many different architectures. Furthermore the higher level, and hence
faster, a simulation the less easy it is to relate its parameters to real hardware
constraints. v '

Multiprocessor architecture investigation offers a particularly intractable ex-

ample of this dilemma. Neither system software nor hardware are separately un- -

derstood, whilst the enormous range of possible implementation techniques makes
iterative solution extremely difficult.

~ Analysis of the way that SKIM hardware was used by its software led to general
insight into the fundamental performance constraints in combinator reducing hard-
ware and showed how much faster hardware could be designed. My aim has been
to achieve the same sort of general insight into the much more difficult problem
of multiprocessor architecture performance. To do this requires an investigation
which is broadly-based and can identify the relationship between constraints on
hardware and performance of the software that uses it. I will call this sort of
analysis smplementation theory because an implementation is composed of both
 hardware and system software.

It is generally the case that implementation theory is worked out retrospec-
tively, as experience with existing designs shows the relationship between different
implementation problems. The work from which this thesis started was such an
analysis of SKIM’s performance and its relationship to the SKIM hardware [Cla84].
The problem which I address in this thesis is more ambitious: how can the imple-
mentation theory appropriate to new hardware be investigated sufficiently to have
some idea about the advisability of the new hardware design?

In uniprocessor design the underlying theory is relatively simple, so new de-
signs can be investigated with some confidence. The corresponding central theory
appropriate to designs for concurrent computation is the object of my investigation
in this thesis. :

The central result of my work is the discovery of a new class of architectures,
sharing some characteristics of both dataflow and von Neumann computers, for
concurrent computation. This rests on an original and simple theory which relates
the demands which concurrent computation makes on hardware resources to the
fundamental performance constraints of technology.

The results of my work thus form four related sections:

e Chapter 2 studies the nature of concurrent computation and the demands
which it makes of an implementation. Two new results emerge from this. A
model of computation which will be used extensively in subsequent sections,
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and a way of incorporating imperative updates in a functional language, simi-
lar but superior to non-deterministic merge, which captures locally sequential
updates in a computation with minimum constraint on global concurrency.

Chapter 3 studies the low-level performance limitations of processor hard-
ware, and uses the computational model to contrast different policies for
localising data near a CPU. One new result of this is the discovery of a type
of cache which renames all of its cached addresses in order to reduce CPU
word-length.

In Chapter 4 the preceding work is applied to CPU design and a new class of
architectures for concurrent computation is predicted to have performance
which is superior to conventional von Neumann or dataflow architecture.
Without concrete design this theoretic prediction can be no more than a
motivation for further work, however recent design work by Ianucci [Ian88]
offers support for the proposition that these archltectures are truly superior
to existing ones.

Finally the multiple-thread implementation problems encountered in the new
architectures (and also in any multiprocessors for symbolic computation) |
are examined. A new result here is an analysis of the relationship between
scheduling and intermediate store use in a symbolic concurrent computation.
This provides an underlying theory which is confirmed by recent experimen-
tal results [RS87] on dataflow machine store use.
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This chapter describes the styles of computation to be considered in this the-
sis, and gives an overview of the assumptions to be made about programming
languages and computational models.

It will assumed that computation is specified by an annotated implementa-
tion language (IL). The implementation problem which I address is determined
by the type of computation expressible in this IL, and so issues of language design
and compilation above the level of the IL need not be of concern in subsequent
chapters.

The first section considers the extent to which the IL should be functional (free

of side effects) and concludes that some imperative-style updates are necessary. A
class of updates is introduced which are related to non-deterministic list merge,
and which have particularly clear semantics.

The next section argues that the IL should use a parallel evaluation order
which behaves semantically like applicative order evaluation but allows greater
concurrency. Section 2.2.1 describes a set of annotations of the IL which cooperate
with a run-time system to control export of computation.

The next section introduces a formal model of threads which describes the
concurrency available in an IL program. The final section bridges the gap between
IL and hardware by showing how any IL expression defines a set of ALU operations
necessary for its evaluation. The temporal constraints on these operations may be
derived from the IL directly and define the potential concurrency of the expression.

2.1 S1de-Eﬁ'ects and Concurrency

Even when a fully parallel language is used to specify computation, at the level of
“hardware all execution occurs by updating the value of physical memory locations.

Since there are a finite number of these and an arbitrary number of intermediate
data in a computation some notion of sequence must be adhered to in order to
permit location reuse.

The implementation of any IL must cope with this need for sharing and there-
fore compile to one or more sequential threads, each of which may then make
sequential use of the resources allocated to it. The multiplicity of threads ex-
presses the (asynchronous) concurrency which can be achieved: between different
threads the sharing of resources is asynchronous and may be determined by the
whims of a run-time system.

On uniprocessors the sophisticated compilation of purely functional languages
leads to equivalent and more efficient sequential programs in which tail-recursive
function calls turn into loops with assignment to local variables. In functional -
languages any recursion imposes a sequence on necessary ALU operations. If the
same computation is expressed using structured loops and variable assignment
then exactly the same constraints on execution order will be present; in this sense
structured use of iteration and local variable assignment are exactly equivalent to

~the use of functional languages and recursion.

In order to maximise potential concurrency in the IL it is thus necessary to




limit side-effects only between operations that could lie on concurrent threads. If
the IL is a purely functional language then, subject to the dataflow constraints
examined in Section 2.4 below, any two different function applications could be
concurrent. The uncontrolled use of global assignment by any part of an expression
is thus dangerous and could lead to unnecessary specification of evaluation order
in order to preserve well-defined semantics.

. There are however important cases in which the addition of side-effects to an
otherwise functional language allow algorithms to be expressed in a more concur-
rent way. A common instance of this is in the incremental construction of some
global object (for example a symbol table). A number of function calls, perhaps
from different and concurrent threads, must sequentially access and update the
value of ‘a variable. Initially some value is assigned to the variable and eventu-
ally, after all updates have occurred, the variable may be read. Between these:
two events the sequence of updates is arbitrary; however each update must be
an atomic imperative operation. Without this restriction such a task could only
be accomplished by specifying a predefined order in which the updates are to be
handled, with it updates may be interleaved freely.

This lack of expressiveness in pure functional languages has long been recog-
nised, and remedies have been suggested. The most popular of these, see for
‘example as in [Hen82], is to allow a primitive non-deterministic merge operation
which merges two lists in some order determined by the run-time system. In the
rest of this section I will introduce and then consider the properties of a new oper-
ation, which I call a sequencer. This is similar to a non-deterministic merge, but
more general. Furthermore the resulting language semantics are clearer because
the effect of the non-determinism introduced is clearly demarcated.

Sequencers. I will call a globally updated variable a sequencer. Associated
with each sequencer s of type S is an update function f, of type S x X — (R, S),
say. Each call of f, has as a side-effect the modification of s and returns a value
which may depend on the current value of s. The important property of f, is that
it be semantically commutative: that is that any permutation in the order of a set
of calls of f, does not alter the final result of the computation.

This can be proved when the S and R are such as to limit the operations
that may be performed on values within them to ones which are invariant under
these permutations. The proof may be local, without any reference to the global
structure of the program, and it is this which makes sequencers an appropriate
way of packaging limited side-effects, needed for either semantic or implementation
convenience, within a concurrent program. Sequencers introduce into a program
non-determinism which is provably (by local analysis) encapsulated within cer-
tain data types. .If these are not printable the result of the program must be
deterministic.

The semantic commutativity of sequencer calls means that sequencer updates
can often be written using a semantically associative operation. In fact the se-
mantic commutativity of sequencer calls means that this can in principle always
be done, though the required operation may be expensive.
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‘Call a set of objects each tagged with a positive integer a mset—msets are sets
with possibly multiple members. For any mset of sequencer calls X, let Sx be
one corresponding possible state of the sequencer. The associativity of mset union
transforms to semantic associativity of sequencer state combination by defining
Sx ¢ Sy = Sxuy. This operation can at worst be implemented by holding X
together with each Sx and generating Sny from Sy and Y. Often (as in the
example below) a s1mpler algonthm can be found for Sxuy- :

Now let

f'("’) = (fresult(s “) fupdate(s z))

If fupdate(s z) =s <> z, where o is an associative commutative operatlon, fs
can be implemented as a tree of sequencers which establishes a sequence over an
arbitrary number of concurrent threads while never exceeding the spot bandwidth
needed for two threads. v

Consider a simple example: the distribution of a unique non-negative 1nteger
to every node of a tree in such a way that the maximum integer so used is O(the
size of the tree). Three 1mp1ementatlons of this are:

a) Sequencer with:

S = INT
R = INT
X = VYOID

Si(ssz) = (s+1,8+1)

In this implementation the sequencer calls form a sequential thread within the
otherwise concurrent tree-crawling threads which use the sequencer. Where the
sequencer update bandwidth is less than the total sequencer call bandwidth this
does not constrain program execution. :

b) Pure functional program in which tagged subtrees are merged to give the
right answer:

%(REDUCE-1like fragment)

Procedure tag_tree( tree) =
If atom tree '
Then tag_atom tree’ : : ,
- Else merge_tagged_trees( tag_tree( car tree), tag_tree( cdr tree))

Procedure bmerge_tagged trees( x, y)
Let n = largest_tag_in x
In ( x . add_to_tags( y, n+1))

" Procedure largest_tag_in x = .... % return largest tag in tree x

Procedure add_to_tags( x, n) = .... % return copy of x with n added



% to each tag

The concurrency of the tree crawl is preserved but at the cost of an overhead
O(average depth of tree).
~c) Set of sequencers with:

S = INT
R = INT
X = INT

filn,z) = (n+z,n+z+1)

In the following description in order to simplify notation I will write fi(z)
meaning an application of the function X — R defined by sequencer f¢ to z.

Suppose that the f7 are used by a tree-crawling program in such a way that
a call to any f2 has the effect of a single global sequencer call, irrespective of a.
This can be achieved by combmmg the f? together To combine f! and f? to get
a single sequencer f2:

e If a call to just one of f! and f? is outstanding pass it on to f* unchanged
and return the corresponding result.

o If two calls f1(z) and f?(y) are outstanding, let r = f3{z + y), and return r
and r + z as result of f1(z) and f?(y) respectively.

In this way sequencers can be combined in an arbitrary tree which preserves the
sequencer semantics. If the tree is binary no sequencer has an update bandwidth
greater than the maximum call bandwidth at a leaf of the tree.

It is interesting to contrast the operation of such a tree of sequencers with the
pure functional algorithm, which also combines results in a tree using an associative
combination operation. There are two differences:

1. The functional program does not allow sequencer state to propagate down
the tree to the lea.ves and so must recompute a subtree’s tags at each node.

2. The sequencer algonthm uses a combining tree whose shape is arbitrary
instead of being exactly specified by the program !

The first of these demonstra.tes the way in which sequencers can use (local)
side-effects, a different sequencer with no side effects could be used which would
more closely mimic the functional program. The second of these demonstrates the
great freedom which explicit acknowledgement of the assocxatlvxty of a sequencer
' _operation gives the implementor. :
The number and tree structure of sequencers can be chosen so as not to
- limit overall concurrency while minimising sequencer combination overheads. This

1In fact following the program’s Thread Creation Tree, see Section 2.3




choice may be made with due consideration to hardware connectivity or execu-
tion dynamics (new sequencers can be added dynamically as necessary to prevent
saturation of any one sequencer).

In a binary switching network this type of sequencer can be distributed across
switching nodes so enabling global sequencing without any sequencer call band-
width hot-spots. This example has been used in a number of architectures for this
purpose, where atomic primitive “fetch-and-op” instructions provide concurrent
communication for different (associative) arithmetic and logical operators, and

are combined in special “combining” communications networks. For example the

IBM RP3 multiprocessor [AH88], where processors communicate via either a fast
read /write network or a slower combmmg network.

Sequencer Implementation; Each sequencer s must be given an initial value,
updated, and then read. The reading of a sequencer can be synchronised so as to
be after all possible updates by the use of update permit thread reference counts.
A thread which contains a sequencer initialises it and then has update permission
until it tries to read the sequencer. Any thread created by a thread with update
permission may be given its own update permission: a global reference count
associated with the sequencer must return to 0 before the sequencer is read.

The run-time overhead of these reference counts can be reduced by careful
static code analysis: for example a thread which updates a sequencer and then
creates just one update-permitted thread may pass on its own count to this thread.
The use of reference counts is only necessary when a sequencer is read. This need
not be so, consider for example a simple sequencer used to distribute globally

. unique tags.

For the purposes of xmplementatlon two subclasses of sequencers can thus be
identified:

1. Sequencers whose final state is never read: thus communication is always
downwards to subthreads. Reference counts are not needed.

2. Sequencers which do not return a useful result on individual calls: thus
 communication is always upwards from subthreads to some parent. In this

case, if the sequencers are also associative, local sequencers can be used as

required to reduce latency or increase bandwidth. This case corresponds

to algorithms which can be expressed directly (but Iess efﬁmently) in pure
functional languages. :

In general a sequencer will use both types of communication, as in the imple-

‘mentation of a symbol table returning access keys for names in iindividual calls,

and whose final value is the symbol table itself.
The implementation of sequencers in multiprocessor hardware requires atomic
read-modify-write access to shared store which must be carefully considered during

architecture design, and perhaps incorporated into combining switching networks
for higher global bandwidths. '




Sequencers express a type of inter-thread communication which occurs nat-
urally in many algorithms in a way which minimises the requisite sequentiality.
Where a sequencer can be represented by an associative update this information
can be used by the hardware or run-time system to optimise communication. They
are thus an indispensible element of a concurrent implementation language.

2.'2 Evaluation Order

Thread creation and reference results in parallel evaluation order. In a func-
tional language this has the same semantics as applicative evaluation order but al-
lows more concurrency. Normal evaluation order, in which function bodies are
evaluated first and arguments are then evaluated by need, is often confused with

"lazy evaluation, in which every expression is evaluated only if it is subsequently
needed and at most once. The difference lies in whether repeated references to an
expression result in repeated evaluations of it.

One reason for this confusion is that normal order combinator reduction is
efficient and results fortuitously in lazy evaluation. Combinator reduction has
recently been shown (for example in [FW87]) to be an efficient implementation
technique for uniprocessor lazy evaluation, and this has encouraged parallel graph
reduction machine architects. The words lazy, combinator, parallel architecture,
graph reduction machine are not synonymous. :

Normal order semantics result in the best possible termination properties for
programs, in the sense that if any evaluation order for an expression will terminate
then the normal order one will. This results in greater freedom for the programmer,
who can represent infinite objects explicitly in a program without worrying about
their unnecessary and fatal evaluation.

Normal order semantics has some problems, and these are to do with imple-
mentation. The evaluation of expressions only on need often leads to large inter-
mediate expressions, consisting of nested suspensions, in evaluation of recursion.
In a large program it is easy to produce ‘space leaks’ where very large suspensions
accumulate during execution. This is undesirable and results in a use of store that
is much higher than expected by the programmer.

It is in general very difficult to infer from the structure of a Normal order
program where a space leak will occur. This is the other side of the programming
freedom introduced by Normal order. It appears that reasoning about size of
intermediate results is very difficult with the highly data—dependent spec1ﬁcat10n
of evaluation order necessitated by lazy semantics.

~ Strictness analysis is a technique used to ameliorate this problem. From static
analysis of code it is often possible to infer that an expression will always be
needed. Then it may be evaluated in applicative or parallel order without disturb-
ing Normal order semantics. A Normal order semantics evaluation can only make
use of concurrency by the use of strictness analysis to identify expressmns which
can be evaluated eagerly. - :

The implementation issue here is important. If code can be evaluated ap-
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plicatively then architectural investigation should concentrate on strict functional
languages and use conventional implementation techniques. Otherwise architec-
tures which optimise combinator reduction must be considered. The differences in
run-time execution behaviour between thé two are significant.
I choose to base this analysis on applicative (which in a concurrent architecture
may be implemented as parallel) order languages. There are two reasons for this.
First, parallel order semantics result in more concurrent implementation than
normal order semantics. Therefore they will be used if either strictness analysis
allows this or, in the interests of high performance, the freedom of normal order
semantics is foregone. A pessimist would require the latter, an optimist hope that
" developments in strictness analysis result in the former.

- Second, in a parallel system applicative order must be used sometimes, so
the additional consideration of Normal order evaluation merely complicates the
analysis. The problems of concurrent implementation are large enough themselves

- without solving other implementation problems as well.

The sequencers described above allow explicit implementation of combinator-
like lazy evaluation: this extension to the IL thus allows lazy evaluatlon should
this ever be required.

- Logic programming languages present a different set of implementation prob-
lems from functional languages and are not directly considered by this thesis.
The efficient implementation of non-deterministic concurrent computation, as in
breadth first searches, where termination of one computation may make necessary
the killing of a large number of sibling computations, is an extra computational
requirement which does not exist in a thread world. However the results of this
work do extend to the larger problem, though extra work may be needed fully to
- understand the requirements of these programs.

2.2.1 Annotations

An annotation of the IL constitutes added information that does not affect its
semantics but is used to optimise code generation. A well—known example of
annotation is the register declaration in C.

Two sorts of annotation may be identified: critical and advisory. A critical
annotation, if present, must be correct; an example of this is type information
used to optimise code generation. An advisory annotation can never result in
incorrect program execution. In a functional language export of computation is
semantically invisible so all annotations controlling this are advisory. This has an -
important implication: export annotations may be adjusted empirically by unso-
phisticated programmers without catastrophic results.. Alternatively, annotations
may be generated automatically be empirical rules that give good results most of
the time. The formulation of such a rule is much easier than that of a rule which
will always give good results. :

The export annotations chosen for the IL are a.rchxtecturally mdependent "'
They specify the export of computation, but give no indication of where such -
computation is to go. One possibility is for computation annotated for export -
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" to be scheduled on its creating processor. The export annbtations, in addition to

specifying thread boundaries (and hence possible units of exportable computation)
may give additional information which the run-time system will take into account

: 'wh_en deciding whether or not to export a thread.

23 A Computational Model of ‘Threads

The preceding sections motivate and describe an IL in which concurrent symbolic
computation can be expressed. The rest of this chapter is concerned with a more
formal description of one aspect of the IL of interest to an implementor: its po-
tential concurrency. The notion of a thread of computation has been used above
informally: I now introduce a formal definition of the word.

I will call the unit of computation associated with asynchronous concurrency a

thread. Threads vary in size from single ALU operations in a dataflow machine

to whole programs in a von Neumann processor. Threads are characterised by

their internal execution, which is synchronous. Thus the execution of a thread
defines a set of clock-ticks which are constrained to occur in a particular sequence.
Each clock-tick may have associated with it a number of operations which happen
concurrently. This is called synchronous concurrency?: an array processor may
have a large amount of synchronous concurrency, von Neumann compiled code
has an amount limited to that available within one function body.

Perhaps surprisingly this amount can be considerable if careful compilation is
used to unroll loops and treat as exceptional conditional exits from loops. Fisher
[JAF88] has demonstrated that most von Neumann programs exhibit high (> 5)
fine-grain synchronous parallelism when appropriately compiled. The cost of this
is a big increase in static code size.

The execution of compiled code on a von Neumann machine wxll be called a

VN-thread, and corresponds to sequential execution of function bodies.

In general the execution of a thread will require local temporary data which
will be called the thread’s context. The size of a thread’s context may vary with
time: the dynamic part of a VN-thread’s context is usually held in a stack.

- This notion of a thread is similar to the familiar one of a task. I use the word
thread because it evokes a sequential strand of computation and in order to be
precise about the communication allowed between different threads. Threads may
be created, exported and referenced. Creation of a thread immediately returns
a unique handle which is a data object and may be used globally to refer to the
thread. Reading this handle at any time results in either a synchronisation wait,
if the thread has not finished execution, or its value. Requests for the value of
an unfinished thread are in general queued thh its context and satisfied when it

‘finishes.

It may be expedxent to ensure that synchronisation waits occur only at the start

of a thread’s execution, so that data availability becomes an enabling condition for

execution of the thread. This can be accomplished simply by requiring a thread

2An exact definition of synchronous concurrency will be given in Chapter 3.
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to create a new thread on waiting. The thread’s value will be returned by the
new thread, which is just the waiting continuation. Semantically this distinction is
trivial, but it results in differences in implementation strategy which are important
and will be considered later on in Chapter 5.1.

This method of inter-thread communication may be optimised in various spe-
cial cases. The most important of these is when the identity of the sole referencer
of a thread is known at thread creation time. In this case the thread value can be
forwarded directly to the referencing thread when it is ready. Other optimisations
may result from less complete information about how a thread may be referenced.

Threads thus allow dataflow style communication but may also be incorporated
into data structures by reference so maximising concurrency. They are units of
both inter-thread reference and concurrent communication. These two operations
are conceptually separate although (asynchronous) concurrent execution requires
some form of inter-thread reference. In Chapter 5.3 I evaluate the usefulness of
different strategies of global heap reference.

‘Thread Creation Trees. A thread decomposition of a particular symbolic com-
putation has one important associated structure: its Thread Creation Tree
(TCT). The TCT is a structure describing the thread structure of a computa-
tion: each node represents a thread and arcs point from parents to their children.
Different static decompositions of a computation into threads will therefore have
different TCTs.

The TCT captures the relationship between threads. Chapter 5 will use TCTs
when describing the dynamics of executing programs. For example the likelihood
that two executing threads are dynamically executed on the same processor may
be related to their distance apart in the TCT.

2.4 Modelling Temporal Constraints with DEGs

A thread decomposition of an IL program specifies asynchronous parallelism. I
will now introduce a new and related model which captures exactly the algorithmic
constraints on parallelism: a Dataflow Execution Graph (DEG). We will see
below that implementation can be viewed as an appropriate map from DEG to
hardware execution model, determined by a compiler.

A Dataflow Execution Graph describes abstractly the constraints on any hard-
ware executing an IL expression. It thus specifies the task of code generatlon for
~ the expression in a way which is architecture independent.

A DEG is a convenient way of representing two partial orders which deﬁne
the sequencing intrinsic to a concurrent computation. Throughout this thesis a
number of structures will emerge which are, mathematically, order relations on
- finite sets. For notational convenience these are described by the corresponding
canonical directed acyclic graphs—any dag establishes a partial order on its nodes
through path connectedness; the minimal dag representing a given partial order
(the one with the minimum number of arcs) represents the order canonically.
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FIB(n) = if n < 2then 1else FIB(n-1) + FIB(n-2)

Figure 2.1: DEG of FIB(2)

A DEG is constructed from a (strict functional) expression by noting the ALU

- operations performed in its execution, these form the nodes of the DEG. Directed

arcs between the nodes represent causal relationships so that a — b means ‘a must -
happen before b’. ,

ALU operations must first be specified and then fired. During evaluation the
specification of an ALU operation determines the compile-time information as-
sociated with it and guarantees that, at some future time, the operation will be
executed. Firing of a specified operation requires the availability of its source data.
Every ALU operation must first be specified and then fired. After firing of an ALU
operation its result becomes available as source data for subsequent operations.

The DEG thus consists of two separate directed acyclic graphs sharing a com-
mon set of nodes. One represents dependence of specification on firing, the other
dependence of firing on firing. Call these two graphs, respectively, the C-graph
and D-graph and their arcs C-arcs, D-arcs. It is useful to thmk of C-arcs as
representing control flow, and D-arcs data flow. :

Arcs that do not signify immediate dependence, and so are implied by other
arcs, are omitted from the DEG.

The DEG for fib(2) is shown in Figure 2.1. Note that the D-arcs to the final
. |+ | node source compile-time constant ones, available only after the firing of the
associated test.

A DEG is closely related to a dataflow graph, but should not be confused with
it. Whereas dataflow graphs may be used as a particular execution model for a
program DEGs are a general abstract description of a computation. The DEG is
not determinable from static inspection of a program because it descrlbes allof a
computat:on s execution dynamxcs
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A single CPU, together with appropriate IL compiler determines a map from
the DEG of any IL computation to a concrete execution trace which has three
components:

e A temporal order on nodes corresponding to their execution sequence on the
ALU.

e A map from each D-arc to a function from the time interval between the two

~ ends of the arc to the set of data locations in the CPU. These functions must
satisfy the constraint of unique location occupancy as well as data transfer
constraints determined by CPU architecture.

o A way of remembering those nodes which have been specified but not yet
fired. :

The study of CPU design for strict functional languages is thus the study of
the hardware constraints imposed on this map. Asynchronous concurrency in a
CPU or multiprocessor system may be related to a partitioning of the DEG into
appropriate subsets which deﬁne threads.

2.5 Related Models_ of Computation

This chapter has now established a number of different models of the style of sym-
bolic computation which this thesis considers. This work lies in between imple-

‘mentation oriented descriptions of computation, such as dataflow graphs ([DenSO]),

and programming languages: for example Multilisp [Hal85].
-The Multilisp language design contrasts with this work by allowing arbltrary

: 1mperat1ve constructions within a mainly functional language—it is thus close

in spirit to LISP and larger than my IL. However with this exception the type
of computation which I consider is more general than other proposed models of
paralle] computation.

The models of parallelism which correspond to successful parallel a.rchxtectures

"and are widely used differ from my definition of symbolic computation by using

concurrency which is (to some extent) well-defined at compile time. This is much
easier to map efficiently onto parallel machines than the general case of highly
dynamic concurrency. Two directions in which work has resulted in some success
are vector parallelism, in which parallel computation is highly regular; and models
which define concurrent processes and communication statically ( for example

- OCCAM [Hoa)).

One interesting new model suggested by Sabot ([Sab88]) mtroduces coarse-
grain dynamic creation of concurrent array operations: this is nearer to symbolic
computation than pure vector models.

One other set of execution models is based on lazy functional languages, for
example Hudak’s “parafunctional programming” [HS85]. These are rejected by
me for the reasons given in Section 2.2 above.

- Figure 2.2 illustrates the relationship between different styles of computatlon

Those occupying a smaller area are in general easier to implement.
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This chaptef provides a low-level description of hardware which complements
the description of computation by Dataflow Execution Graph in Chapter 2. The
next chapter will relate these ideas to CPU design by discussing the different ways

- in which hardware can be used to localise data near an ALU.

~ The performance of a CPU can only be established by considering the charac-
teristics of the hardware from which it is constructed. This can be done in many
ways: in VLSI design it is usual for a circuit to be analysed at different levels of
abstraction: solid state physics, transistors, gates, functional blocks. Low level
descriptions are more detailed: in establishing the characteristics of a particular
circuit a global low-level analysis would be ideal, this is seldom possible because
the computation required to do it is not feasible. Instead a number of levels of
analysis are used; each level calculates the operational parameters which are used
by the next level up. -

The réle of abstraction in hardware design is similar. An ideal design algorithm
would be to analyse all possible designs at a low level and select the one with the
best performance and cost. This is impractical, the number of possible designs
is exponential in design size and proving even one low level design to be correct
without recourse to high level abstraction is usually a combinatorial nightmare.

Hardware design must thus proceed by making some high level decisions about
structure and then working through the necessary low level details. It is difficult

"because until these have been worked out it is difficult to be sure that the high

level decisions made in the design lead to high performance. Formal design tools
for verifying and estimating the performance of a particular design do not help
to formalise high level choices between design strategies. Computer design still
proceeds by trial and error: a computer designer makes informed guesses about

‘the shape of a new architecture based on what is understood about the performance

of existing architectures.

This chapter examines a set of models of concrete hardware which facilitate un-
derstanding of the performance of multiprocessor architectures. The models here
are not formal languages for the description of hardware operation, such as Hoare’s
CSP [Hoa85] or a model proposed by Monteiro and Pereira in [MP86] which de-
scribes clearly the formal properties of general communicating asynchronous sys-
tems. I propose models of hardware which explain the performance of differing
implementations.

The lowest level of these is that described below, where the operatlon of hard-

' ware is related to time, and hence performance.

3.1 A 'Low Level Model

3.1.1 Synchronous and asynchronous hardware

Hardware may be modelled by functional blocks which perform operations sequen-
tially. The operation of a memory requires this description, the value of a read is
defined to be that remembered from the most recent corresponding write. Some-
thing which happens at an instant will be called an event. A memory may be
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described by a sequence of read and write events. :

If the operation of the block can be described by a single sequence, defining a to-
tal temporal order on events, the block will be called synchronous. Synchronous
blocks may be composed synchronously to form larger blocks. Operation is still
described by a totally ordered set, each object in the set is a tuple of operations,
one for each of the composed blocks. '

In contrast blocks may be composed asynchronously, with communication be-
tween blocks imposing only a partial temporal order on all operations. The op-
" eration of an asynchronous system may be described by a partially ordered set of
events.

The performance of a synchronous system is defined by the rate at which events
can happen: its bandwidth. Simple hardware may be described synchronously
with reference to a fixed frequency global clock. Here the bandwidth of the sys-
tem is constant. A more complicated synchronous description, for example a von
Neumann instruction sequence, may have a variable bandwidth with different op-
erations taking a different length of time. '

-Analysis of the performance of an asynchronous system is more complicated.
Performance is limited by the latency between ordered events. Consider the
- minimal directed acyclic graph that is equivalent to the partial order on events
defining the system. Each arc on this graph may be labelled with a latency, the
real time between two events is given by the length of the critical path between
the events. Here the length of a path is the sum of the latencies of its arcs, and
the critical path between two events is the longest path connecting them.

It should be clear from this that synchronous systems are just a subset of
asynchronous systems. The words synchronous, asynchronous may be appropriate
‘at different levels of abstraction in the description of the system. All hardware
is at a low level asynchronous: operation is determined by logic levels and delays
through gates—in the limit their behaviour must be analysed with analog rather
than digital electronics. When gates happen to form flip-flops with a common
global clock the system may most usefully be described synchronously—however
any determination of clock rate (and hence the system’s bandwidth) must refer
to critical paths through gate delays in the lower level asynchronous description.

‘A large functional block which is globally clocked may also be given a 51mple '

approximate asynchronous interface description.

For example a memory system may be clocked synchronously in common with
a CPU and take 10-12 cycles of delay from presentation of address to emergence
of the appropriate data. Its interface with the CPU comprises a handshake, and

so the memory may be described at a high level as an asynchronously cooperating .

unit. Successive levels of abstraction require a description which is asynchronous,
then synchronous, then asynchronous again. » .
When analysing the performance constraints on a high level description of a
design both asynchronous and synchronous styles of analysis may be appropriate.
Synchronous performance limits are determined by the bandwidths of particular
functional ‘blocks, asynchronous performance limits by the latencies on critical
paths in the system

19



The DEG description of concurrent computation relates operations to time by
specifying partial temporal orders that individual operations must satisfy and so
is an asynchronous description. However the local descriptions of the operation of
" individual CPUs may most appropriately be synchronous. Reasoning about the
performance of a multiprocessor system will thus use both synchronous and asyn-
chronous models, corresponding to separate latency and bandwidth constraints.

A central problem in multiprocessor design relates to the use of synchronous
units. Whenever computation can be synchronised the extra information that in-
teracting blocks have about each other can be used to simplify design and reduce
communication costs. The async_hronoﬁs nature of the concurrency in symbolic
computation makes global synchronism extremely inefficient: in contrast the syn-
chronous concurrency which can be exploited in vector and array computation
is relatively efficient. The design of a multiprocessor system must balance the
benefits of local synchronicity against its costs. The choice between synchronous
and asynchronous use of resources must be made at many different levels in sys-
tem design and is a compromise. An unporta.nt example of this is considered in
Chapter 4.

The next section looks in more detail at this tradeoff between synchronous and
asynchronous use of resources.

3.1.2 Balancing synchronous and asynchronous resource
use -

In a CPU design the performance of some unit, for example operand fetch, may
be described by both latencies and bandwidths. The latency of the unit is the
time from the event that defines an operation to the event that completes it.
The bandwidth of an operation is the maximum rate at which operations can be
performed. Both parameters are important, and either may be the one which
limits system performance.

If a unit z is uséd concurrently by n operations its bandwidth, f;, and its
latency, t., separately constrain its use. The frequency with which it can be used
is min(f;, {). Concurrency relaxes latency constraints on throﬁghput.

In synchronous systems concurrency is usually limited, since it requires organ-
ised correlation of different activities. An example of synchronous concurrency is
tightly-coupled pipelining of von Neumann instruction fetch and execution, which
works best when it is known a priori that these operations take the same time.
In asynchronous systems resources may be used concurrently with more freedom,
~ activities are unconstrained except by their competition for the shared resource.

This illustrates a beneficial effect of asynchronous use of resources: increased
concurrency means that the design constraints on latency of the resource may be
relaxed allowing a faster design. :

An intrinsic disadvantage of asynchronous concurrency can easily be identified.
Suppose that N asynchronous activities are each using a hardware resource X
of bandwidth fx. Each activity consists of a sequence of operations, some of
which are requests to use the resource. Suppose that resource requests are made
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- randomly at a constant rate f4, the distribution of time between requests is thus -

exponential. Thls simple model is a reasonable first approxxmatlon to the nature
of resource use in arbitrary computations. :

When an activity requests use of the resource it suspends until the request is
granted, this wait does not alter the expected length of time between resumption
and the next resource request..

Now consider the average use of the resource by these activities. The resource
will be used for as long as the number of queued activities is not 0. Let

Probability queue length is ¢
Probability queue length is O

g =

and

_N/a
T T
a is the amount by which the total rate of request of the resource exceeds its

bandwidth.
Equating the transitional probabilities from and to each queue length we have:

h=a

;. ’ i —1 .
1+ a(l — )& = g1 + (1 = —=—)gi-1(1 < i < N)
N N

From this we find that
| - G = (3)‘——(N)‘!
' N? (N -9

Let S = YN, ¢, then the fraction of time for which the resource is used
is 1 — S~! and the amount by which the activities are slowed down because of

- queuing is therefore a/ (1 S-1).

By inspection if z= & then £(z7Ng) = —gi41, so:
zNS'—Nz —-(N+1)S=-S+1=

s'=T5+a" (1-5).

This equation does not have a closed a.nalytlc solution, so nexther does S. For -

: the purposes of this investigation it is sufficient to observe that Vk < n S is -

bounded from below by {(1 - —)a}", so that for large N the resource is nea.rly
fully used when a is near to and above 1, in other words when the total resource
demand bandwidth is slightly more than fy. However for small N the cost paid -

~ in some combination of high a or low resource use is considerable: in Figure 3.1a

the utilisation of resource X is tabulated for different a and N.
This behaviour is characteristic of any resource shared by mdependent activi-
ties. If the resource is expenswe ertra concurrency must be wasted on it in order

~ to ensure its nearly full use. An example of this can be found in Chapter 4 where
the resource in question is CPU activity. In this case resource idleness impacts
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@ N

1 2 3 4 5
1.0 0.67 0.80 0.86 0.89 0.91
1.2{0.74 0.88 0.93 0.96 0.98
14079 0.92 0.97 0.99 0.99
16 (083 095 0.98 1.00 1.00
1.8 {0.86 0.97 0.99 1.00 1.00

(a): N activities competing for single resource f

a ' N

1l 2 3 4 5
1.0 {060 0.69 0.74 0.76 0.79
1.2 | 0.67 0.77 0.82 0.86 0.88
1410.72 0.83 0.88 091 0.93
1.6 { 0.77 0.87 0.92 0.95 0.97
1.8/ 0.80 0.90 0.95 0.97 0.98

(b): Single activity with up to N queued requests for resource

Figure 3.1: Concurrent resource use

CPU performance directly, and the extra concurrency required to reduce this idle
time results in higher CPU register storage requirements.
This calculation may be repeated in the different case of a single actlvxty using
a resource but which does not wait on requests until its queue of outstanding
requests is full, for example a CPU fed by an asynchronous prefetch unit. With a
maximum queue length of N and ratio of request bandwidth to resource bandwidth
of a elementary queuing theory gives S and ¢;, defined as above:
G=co"

aN+l -1

a-—1

Thls is tabulated in Fxgure 3.1b.
"Another difference between synchronous and asynchronous systems may be
identified. The low-level non-determinism introduced by asynchronism has its cost
"in the consequent extra book-keeping to keep track of which user each operation
- belongs to. I will be considering hardware where the number of users is relatively
small (the reason for this will become apparent in the next chapter), so the storage -

overhead of appropriately tagging requests is low.

However a problem arises with contextual data local to a user which is needed
by a shared resource. This must either be cached near the resource and ran-
domly accessed by the tag on each request, or queued with each request. Either
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strategy requires extra storage at least proportional to the maximum number of
queued activities. This contrasts with a synchronous system in which no activity
is queued and storage is minimal. The costs of asynchronism are illustrated by for
~example the Am29000 RISC CPU design [amd88]. In this processor throughput
in a synchronous 4-stage pipeline is maintained by sophisticated hardware which |
keeps track of inter-instruction data dependencies and maximises instruction over-
lap. The registers to do this represent a large context which must be saved and
- restored on interrupts. ,

The designer is thus presented with a fundamental dilemma. In order to achieve
freedom from latency design constraints where operations take variable lengths of _
time it is desirable that units cooperate asynchronously, however this results in
extra overheads.

3.2 Data St'orage;

How can the data needed by a computation most efficiently be stored? It is possible
to address this question by considering different ways in which the data associated
with a DEG can be mapped onto physical storage locations.

Abstract data and phj'sical locations

In this dissertation I distinguish between abstract data and the use of physical
locations. The use of an abstract datum is defined by two operations, creation
and lookup. The creation of a datum associates with the value of the datum a
name which may be used later to look up the datum. In this model of abstract
data it is impossible to update a datum. This makes the use of abstract data
functional (free from side effects) and so is particularly appropriate to concurrent
computation. The update of physical locations in a computer will correspond to
the reuse of a location by different abstract data. Efficient reuse of locations is
part of the optimised compilation of single threads of computation, not part of the
specification of concurrent computation, because any reuse of a location imposes
‘some sequentiality on the computations that use it. o

Static and dynamic names

A name may have both a static and a dynamlc component. In the creation of heap ’
a unique dynamic tag is used to access a tuple of data. Each datum in this tuple
is thus named by the concatenation of the tuple’s dynamic tag and a static tag
that distinguishes between elements of the tuple. A dynamic name is generated
non-deterministically! at data creation time, a static name has a value that is
known at compile time and will be correlated with other static data that make

1More precisely: dynamic names are allocated in such a way that no name is reused, but other
than this the client of name allocation can make no assumptlons about the sequence of dynamic
names which is released to it.
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up a program. Every random access location in a computer has a fixed absolute
name. This name will allow direct access to, or writing of, the contents of the
location. The advantage of static name definition is that absolute names can be
used directly resulting in efficient physical access to locations.

The distinction between static and dynamic data allocation, made here, is
fundamental to any meaningful use of data in a computation. The specification
of the computation consists of statically named data produced by a compiler, its
execution will require extra dynamically named data. Static names are static with
respect to a particular compilation, and associated other static data. There is in
general no reason why in the course of a computation intermediate data should not
be analysed and perhaps transformed, with newly static specification of subsequent
computation resulting. The cost of global data analysis is such that this is not
often done. Typically a compilation step will take more than a million times longer
than a single subsequent data read, so it is not worth applying compller techniques
to intermediate results likely to have a limited lifetime.

Dynamic cacheing of frequently used data can be seen to be a way of utilising
some of the advantages of static names without the cost of global compilation.
The absolute cache entry tags associated with a global name may index directly
into a small fast data store. However the cost of cacheing a new global name is
relatively small. A general theory of data use must allow the same abstract datum
access by different names within different local contexts, where the datum may be
cached in different physical locations. A way of formalising this is described in the
next section.

3.2.1 Cache theory

A cache is a local memory within which frequently used data can be stored.
This is managed by using local names (corresponding to the absolute names of
the cache locations) and maintaining a dynamic mapping from local to global
names. With respect to a particular cache at a given time any datum may be
local, global, or shared. If the latter then its global and local names must be
associated by the cache. Cache will be used here for both compiler-named local
state (registers) and programmer-invisible fast storage (often called cache memory)
which is automatically allocated. This will allow different strategies for cacheing to -
be compared and contrasted. The distinction between these two methods is very

apparent to a compiler-designer, less so to a CPU designer where they represent

methods of achieving the same end. _

A datum may be created inside a cache by an ALU and return a dynamic local
-name which is also its absolute location name. This datum remains local until
‘either its name is passed out of or its location is flushed from the cache. It must
then be associated with a global name, and becomes a shared datum. When both
the datum has been flushed and no local names to the datum remain in the cache
the datum becomes global and uses no resources inside the cache.

Conversely a global datum may be cached by finding a free cache location and
copying its value to the location. While a datum is shared, within the cache, its
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global and local names are synonymous. However access from a local name is
quicker because it does not require associative name mapping. The disadvantage
~ of holding local name references in the cache is that they must be converted to
. global names when the datum is flushed from the cache.

' Optimisation of local data in a cache becomes of interest when a high propor-
tion of data created in the cache is of limited life and so can be garbage collected

. while still local. This sort of garbage collection within a cache has the function

* of localising data in the cache: the management overhead of the data is invisible
‘outside the cache.

Single thread uniprocessors do not make use of garbage collection within caches.
This would be surprising to an unbiased naive investigator, since a high proportion
of intermediate data in most computation are short-lived. The reason lies in the
very special optimisation that single thread compilation can make of data use. The
study of computation has a heavy historical bias towards von Neumann sequential
processing. The explicit reuse of datum locations is built into the structure of
most high level languages as assignment to variables and so what is in single
thread computation a useful static (compile-time) optimisation of data use has
become a standard execution model. A major part of the technology of optimising
compilers for von Neumann machines is concerned with the management of this
mapping (see Aho, Sethi and Ullman [ASU86] pp 513-722).

In arguing this I am neither advocating the use of functional programming

languages on aesthetic grounds, nor diminishing the importance of explicit static
location reuse to all implementation. It is however a technique which works only
for locations used by a single thread and it may not be so useful in the execution
of concurrent computation. Certainly the model of non-destructive data use, pre-
sented here, is most appropriate for describing concurrent computation. Within it
the reuse of locations can be evaluated as an optimisation free from the preconcep-
tions that single thread implementation has imposed. When thinking in general
about the use of data in a computation it is more natural to use a non-destructive
abstract model of data use to specify computation, and then consider desirable
optimisations.

3.2.2 Cache hierarchies

In uniprocessor designs we can sometimes consider cache hierarchies to be totally
- ordered sets (or equivalently linear unidirectional graphs). Separate instruction
and data caches require a more complicated model, as do multiprocessor designs,
where more than one ALU must be fed with data. Two possible extensions to
this, in order of increasing generality, are for the hierarchies to have the structure
of trees or directed acyclic graphs.

A tree hierarchy of caches contains nodes each of which is equivalent to a
number of separate caches with global name spaces identified. A datum is cached
by a node if it is local to any of its constituent caches. If a datum is cached by
any two nodes it will be cached by every node on the unique path that connects
them in the tree.
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A node may be implemented by a number of local caches communicating with
a shared global memory. In the tree structure communication between processors
has much the same implementation as global data access. Any access which does
not hit in a node will proceed towards the root of the hierarchy until it can be
satisfied.

A complication results from the nature of inter-thread reference. In order to
maximise concurrency it must be possible to export references (names) of threads
which have not yet finished. These may be read and will result in synchronisation
waits for the reading ALUs until they complete. The synchronisation management
will happen at the level of the outermost cache node within which the thread has

_ been exported, in other words the innermost cache node which covers both source

and destination ALUs of the thread result.

This necessitates that the value of a thread be transferred to all nodes that
cache it on the path between its ALU and the hierarchy root as soon as it is
available. In the common case that a thread is read only once this method of
communication is inefficient. Efficient communication within one node can happily
be accomplished by a snoopy bus . Snoopy bus is a vague term used to cover
busses in which each access is monitored by all bus users who source their own
data as necessary. In non-destructive data use there is no need to share modifiable
data and so snoopiness is merely a way of replacing two shared memory accesses
by one user-to-user bus transfer. see

A tree cache hierarchy is only scalable if most data reference can be kept local to
twigs of the hierarchy. This is not in general possible, as will be seen in Chapter 5.
A scalable cache hierarchy must have multiple path, and hence high bandwidth,
global data transfer.

A Direct Acyclic Graph (DAG) cache hierarchy may be used to provide
this. The basic component of a DAG hierarchy is a node as in a tree but with
multiple outgoing (from the ALU) connections. Each shared datum will have a
global name on just one of these connections. A DAG hierarchy thus behaves like
a switching communications network. A datum cached in a node of the hierarchy
will be accessible by the processors that the node covers, nodes in outer levels
of the hierarchy cover increasing numbers of ALUs—every outermost node covers
all ALUs. An example of such a system would arise if cache nodes were to be
integrated into, for example, a delta network [JHP79] as proposed for ALICE
[MDF*87] or Project Flagship [WW87].

In a DAG hierarchy different data follow different paths through the hierarchy.
Names of threads may thus be exported along a different path from that required
in their reading, so every name must contain itself enough information to find
where it is cached. This means that names must be passed outwards through the
hierarchy by hashes on their addresses, at the outermost level each name must
cache in just one node. It is difficult to predict what level in the hierarchy will
be needed in reading of a datum, so all data must be written through to the
outermost level of the cache. Storage in a dag hierarchy has two uses: a hit early
in the hierarchy has lower latency than one at the outermost level, and multiple
reads may be satisfied with traffic at a low level in the hierarchy. This use of
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storage may be compared with broadcast bandwidth optimisation, where node
storage is used to queue requests rather than data.
Mapping between local and global names

In a cache the administration cést of name mapping is critical. In general the mo_ré
flexible the cache name mapping the more its hardware cost. A simple strategy is -

~for each global name to map to a unique local name got by hashing its address.

This hash can be simple, usually it is just the global address modulo some power
of two. This allows efficient lookup directly from the global name, but suffers from
a poor hit rate when the hashes of global names which are used together clash.

A more complicated strategy is to have a local cache content addressable on
the full global name of the cached datum, and a cache replacement policy which
tries to keep frequently used data in the cache. A typical high performance unipro-
cessor cache will use global name hashing into sets of a small number of content
addressable locations.

An interesting p0551bility is for local to global name mapping to occur only
on the interface between the cache and outer caches. Inside the cache all shared
names are local and access the cache directly. Flushing of a name from the cache
requires the renaming of all of its instances within the cache. This renaming can
be accomplished in a single content addressable update operation. Section 3.2.4
investigates the advantages of a small cache of this sort close to an ALU—one of
these is a reduction in word length of the ALU. Note that for this to be possible
all internal CPU address-holding registers must be regarded as part of the cache
and so modifiable as described below.

3.2.3 Data management

In uniprocessor CPUs data use is classified into, for example, code, stack and
heap, for each of which different storage strategies are used. Stack data is taken to
include all purely local or temporary values which are of limited scope, and heap
includes permanently allocated (static) data. The efficient use of data depends on

three things:

o How many times is the data to be referenced?
e How can it be established that the data is no longer needed?

e Can access of abstract data be mapped onto a small static name space cor-
responding to physical registers?

In order to investigate data use in concurrent computation we can look at the
characteristics of the data used in a DEG.
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Data in a DEG

The data needed by an ALU in the execution of a DEG may be classified into
three categories:

Control data. Data needed to identify those nodes in the DEG which have been
created but not yet fired. The control data must also distinguish between
those nodes which are waiting on data and those which have data available
and so may be fired.

In a conventional von Neumann compiled program control data comprises
a code pointer and set of return addresses, managed dynamically, together
with static flow control information embedded in code. Control data is thus
highly static with only a small amount of dynamic data from conditional
branches and indirect jumps. The disadvantage of this is the consequent
‘statically defined synchronous execution order of ALU operations.

Code. Static data used to define the DEG and perhaps determine explicitly data
allocation to locations or ALU operation order.

Intermediate data. Data on D-arcs in the DEG that is dynamically created and
must be stored until it is no longer needed. The data associated with heap
cannot usually be associated in any way with the ALU operations that use it
because it is difficult to establish where, if anywhere, in the future evolution
of a DEG a datum will be used.

In single-threaded compilation of a DEG most intermediate data can be stored
in a FILO stack with data access happening only at the top of the stack. This leads
to optimised storage in registers or a RISC multiple window register bank [TS83].
The tradeoffs here between register, shift register, and random access register bank
cacheing are between cost of register access and cost of regxster update on stack
push or pop.

In multiple thread compilation each thread requires a separate stack, since
by definition different threads are asynchronous. These are much more difficult
efficiently to localise, because localisation in fixed registers or a single stack incurs
a high context switch cost on thread switching. This cost 15 fundamental where
CPU cacheing relies on the FILO nature of sintermediate data use to optimise
data storage. The latency vs. synchronisation dilemma examined by Arvind and
Tanucci [AI86], see Section 4.5.1, is a direct consequence of this and the use of
thread switching to hide latency. : :

The structure of intermediate data use in multiple thread computation is that
of a dynamically constructed acyclic graph. Each thread uses local data on a stack
which may at any time be forced to wait on the completion of one or more other
threads. Access to data on the active ends of stacks requires random access of a
cache, however physical locations can still be reused.

The concurrent equivalent of a single thread stack is thus a random access
cache of stack frames with explicit garbage collection of frames on function exit.
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The efficiency of this sort of cache, contrasted with a von Neumann cache, depends
on the way in which threads are scheduled and is examined in Chapter 5.1.

Garbage collection

~ In this thesis garbage collection will be used to refer to any scheme which recycles

memory names, including stack allocation and reference count methods as well
as mark-and-sweep, stop-and -copy, or scavengmg types of the sort dxscussed in
[Coh81].

In uniprocessor designs garbage collection is usually associated with the freeing
of global memory resources rather than the reuse of local memory—the latter
happens implicitly through the use of a stack. Languages which make heavy use
of heap may use local garbage collection to preserve cache locality of this data.
Reference count garbage collection is expensive to implement but other strategies
may be more appropriate.

One bit reference counts can be held in the (unique) pointer to an object. The
copying of this pointer destroys its uniqueness, the destruction of a unique pointer
reclaims its associated store. Implementation of unique pointer garbage collection
is very cheap with the right hardware support. Effective use of this depends on
static analysis of code to identify those copies of a pointer which are ‘ghosts’ and
will never be passed out of the current thread. Copying a pointer to form a ghost
will not destroy its uniqueness, nor does destroying a ghost release store.

In a small local memory a possible form of garbage collection is the use of
content associative scanning of local names, this is investigated in Chapter 3.2.4.

Explicit garbage collection of stack frames is the concurrent equivalent of reuse
of locations in a stack; it presents no implementation difficulties when integrated:
with a fixed size allocation block cache design.

Global garbage collection is necessary in any language that uses heap and does
not have 100% effective local garbage collection. Copying global collection meth-
ods become less of an overhead as physical memory sizes increase, this dissertation
does not consider global garbage collection performance to be an important im-

- plementation problem. It is worth noting that any local garbage collection further

decreases the overhead of global collection, and this is used in scavenging garbage
collectors for greater efficiency [Ung84], but this is not the main motivation for
considering local garbage collection. Local reuse of names results in decreased
data bandwidth in the outer levels of a cache hierarchy: a particularly effective

‘example of this is the reuse of register windows in a RISC.

Location reuse

The different implementation techniques listed in this chapter are all ways of en-
suring the efficient reuse of local store; in Figure 3.2 they are listed in order of
increasing flexibility and implementation cost. Concurrent computation makes
reuse of store more difficult and so weights design towards the more flexible forms
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Method | “Drawbacks

Static allocation of Limited to non-recursive
registers - : .. threads
Dynamic allocatlop o3 | Limited to a single thxead
stack - :
Explicit collection of stack . Complicated space
frames - allocation
Unique pointer local Requires careful code
collection analysis
Content associative Needs local name
collection -] translation in the cache

Figure 3.2: Location Reuse

of storage reuse. The cost of these techniques must be balanced against the in-
creased efficiency of dynamic data cacheing that they allow.

3.2.4 Name-translating caches .

In symbolic computation the use of a long word length is necessary in order to
distinguish a large number of global pointers. If arithmetic, except counting or
operations on small integers, is rare then pointer indirection and comparison is
the only reason for having a long data word length. If the ALU is fed by a small
local cache then local names in this cache would do just as well, and a reduction
of data path length of 50% or more is possible. This may yield significant benefits
in CPU complexity and speed. The cost of this strategy lies in the necessity of
garbage collecting local names and translating between global and local names on
all data transfer outside the local cache. In VLSI the cost of a content associa-
tive cache is small providing that name length is short; to implement local name
garbage collection a content updatable cache is needed. This is not significantly
more complicated than a content associative cache, and allows all local references
to a local name to be changed when the name is flushed. Figure 3.3 shows this
arrangement. In a technology such as VLSI which allows cheap associative caches
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Figure 3.3: Name-translating Cache organisation

the design tradeoffs of extra complexity against smaller word length and flexi-
ble address management may favour this arrangement over a more conventional
von Neumann CPU using an associative cache for on-chip memory location data
cacheing.

Objects in the local registers and data caches of the ALU, all of which are
content updatable, are one of the following:

e Small integers.

. Characfers.

Specialised markers (e. g. Nil).

Local names pointing to locations in the cache.

Global reference indirections (GRis)pointing to a table of global objects
“which is held in the next outer cache and used to control name mapping.

The important characteristic of global indirections is that they be unique, so
that local equality tests can be used to compare them. This necessitates a hash
table of cached global names so that new access to global names already referenced
in the cache maps to the same GRI. .

The two tables to support name mapping are of roughly the same size as the
local cache and only accessed on transfer out of it, so their overhead does not
necessarily incur a large hardware cost.
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In a dataflow CPU local name mapping is particularly beneficial because it
replaces long dynamic tags on data by short ones. Static information accessing
instructions can be mapped to an offset in code controlling one function body

keeping the total tag size short.
' Note that the benefits of having a small ALU wordlength are only visible when
code and data data-paths are quite separate, this is likely to be true in a high
performance design with substantial specialised cacheing local to the ALU.

Is this sort of radical name mapping viable? This depends partly on the size
of local cache which can sustain a hit rate high enough to make it worthwhile.
Concurrent computation makes necessary the cacheing of data that would in single-
thread computation be stacked and that has typically a short lifetime. Thus
name-mapping may be more appropriate in concurrent systems. The feasibility
of VLSI name-mapping caches depends on details of cache design and will require
further work to determine feasibility. This chapter shows that name-reuse is a
fundamental requisite of data locality, so the low-level hardware support for this
made available by a name-mapping cache should remain as a possible future design
option whatever the implications of current feasibility studies.

Name-translating caches are based on the concept of indirection in algorithms,
with the same advantages of flexible data management and compact data repre-
sentation, and disadvantage of increased data access time. The work in the next
chapter will show that given fine-grain concurrency in a CPU design latency be-
comes a less punishing design constraint. It may be that this will alter the design
balance towards these caches.

One related application for indirection in data management can be found in
RISC CPU design. The large number (for example 256 in the Am29000 [amd88])
of general registers in modern RISC instruction sets allows global dataflow opti-
misations of code. However optimal implementations of this put constraints on
the registers used for inputs and outputs of subroutines with multiple entry points
which cannot in general be satisfied without multiple copies of the subroutine code.
The problem is a lack of register reorganisation bandwidth. One solution to this
problem is to use register exchange instructions to interface one subroutine with a
number of different calls with different entry and exit data registers. However reg-
~ ister exchange does not match the usual bandwidth constraints on RISC register
files (read bandwidth twice write bandwidth). One level of indirection in register -
access would allow high bandwidth register exchanges, and a data reorganisation
.bandwidth much hlgher than that achievable by register moves.

3.3 A Model Of Processors

This section describes the general model of architectures that emerged from the
detailed investigation described later in this dissertation. It is motivated by a
need to answer questions such as ‘What is a multiprocessor?’ and unify the many
apparently diverse design principles embodied in different multiprocessor designs.

The level of abstraction that I choose for this model is one in which the band-
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widths and latencies of data access in different parts of the architecture are re-
garded as fundamental parameters and all other details of data access are not
considered. This conceptual simplification need not lead to any unrealistic loss
of detail in analysis because in a concrete design the calculation of the various
system bandwidths and latencies will involve many low level details. By deferring
consideration of these details it is easier to examine the fundamental principles
- that govern any multiprocessor design. Note that R. Wilson [Wil] observed that
over a range of microprocessors memory bandwidth alone was a good predictor of
complete CPU performance.

The need for an abstract analysis of multiprocessor hardware comes from the
unusual complexity of this problem. My attempts at concrete design of unipro-
cessors for symbolic computation in the SKIM project [CIMN80,SCN84] were

facilitated by a sense that well understood principles of uniprocessor CPU design

could be applied with due consideration given to the details of a particular prob-
lem. When first studying multiprocessor design I had no such sense of what the
fundamental design constraints are. This chapter addresses part of this problem.

My model starts with a simple description of a uniprocessor. This may be

regarded as an ALU surrounded by a storage hierarchy. The function of the
ALU is to perform those operations on data specified by some static program and
initial data. This in general requires repeated access of not only the static pro-
gram definition but also dynamic intermediate data generated and then used in
the execution of the program. The job of the storage hierarchy is to aid the ALU
by presenting it with this data in a way which allows a high ALU bandwidth. This
bandwidth, farv, is the performance of the uniprocessor. The task of architec-
ture design is to maximise, over_the class of computation specified by the design
problem, this bandwidth for a given hardware cost.?

The function of the ALU itself is usually less critical (although in single thread
RISC computation ALU latency can be a significant overhead) than that of the
associated storage hierarchy. Heap access may therefore be regarded as an ALU

operation on par with strict arithmetical operations—the function of an ALU in -

~ this is just that of a single physical point from which addresses are issued, and to
which results return, in the physical access of store. In a dataflow machine this
sequentiality is imposed by matching store access rather than program specification
* [AC86]. Chapter 4 looks in more detail at this difference which is not found to be
fundamental.

The operation of a uniprocessor may be analysed by considering data fetch
bandwidths and latencies at each point in the storage hierarchy. Going away from

2Hardware cost is not easy to specify: it usually contains separate component cost and design
time constraints. Over the last ten years the exponential increase with time in- VLSI density for
a given component and packaging cost means that designs which are either very quick or quickly
and efficiently scalable to different technology have in real terms (quite apart from amortisation
of design cost) been better than designs which make painstakingly optimal use of particular tech-
nology. Whilst this seems likely to continue for the forseeable future the rate at which available
technology improves, and hence the amount of low-level optimisation appropriate in a high per-
- formance design, may change. Consideration of this and of the ways in which design tools and
- methodologies may alter design efficiency is not the subject of this dissertation.
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Figure 3.4: Simplified Model of Uniprocessor Architectures

the ALU fetch bandwidths decrease as successive memories localise more of the
data (physical memory bandwidths may increase, for example in a memory system
with interleaved banks of memory). As observed in Section 3.2 the memory in a
storage hierarchy may be used either as a cache or a set of absolutely referenced
locations, however these methods of localisation are not fundamentally different,
so here any memory that localises data will be called a cache irrespective of its
structure. This model of uniprocessor architectures is illustrated in Figure 3.4.

A number of problems arise from the simplicity of this model. No distinction is
made between read and write bandwidths and latencies. This is a reasonable first
approximation because read operations usually predominate over write operations,
and in any case the respective bandwidths and latencies are usually quite similars.
The model can where necessary be extended by distinguishing between reads and
writes, or stack and heap memory access. The freedom to do this will be used
whenever hardware considerations make it important to do so. For example if
it can be shown that data which is defined at compile time, like code, can be
most efficiently be cached separately from dynamic data, and that this sncrease in
efficiency results in a significant overall increase in efficiency, then the distinction
of code from other access will be useful.

A more fundamental limitation of this model results from its implicit assump-
tion that cache access can reasonably be described by constraints on overall band-
width and latency. Often the cost of an access will be determined in a complicated
way by previous and subsequent accesses. The detailed study of any particular ar-
chitecture will throw up important hardware constraints which limit performance
and cannot be explicitly described by a simplified model. This sort of complexity
is architecture-dependent and cannot easily be used in the comparison of different
architectures. Later work in this thesis will demonstrate that the differentiation
between access latencies and bandwidths, fundamental to my model, is necessary

3Note that the costs of reads and writes especially in multiprocessors, will not necessarily be
equal.
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to encapsulate those features of low-level design which substantially affect hlgh—
level design.

The relevance of thls model to uniprocessor design analysis, and its limitations,
are considered in Chapter 4. It is at first surprising to see that such a simple model
can lead to interesting analysis of design. The importance of separate considera-
tion of system bandwidths and latencies is related to the nature of asynchronous

concurrent computation, described abstractly by DEGs. Understanding of this"

is not important in the design of single processor computers where conventional
design techniques lead to optimal designs. It becomes important when consxdermg
possible multiprocessor architectures.

An ALU in a multiprocessor system can equally be fed by a storage hierar-
chy. Extra complexity is introduced by the necessity for inter-thread export and

reference. These two operations have no counterpart in a uniprocessor computer.

They may simply be incorporated in a tree-structured storage hierarchy by com-
municating between ALUs with accesses to the first cache that feeds both ALUs.

This naive approach to multiprocessor organisation does not scale to large
numbers of processors easily. Near the root of the storage hierarchy very large
bandwidths are needed to accommodate highly global inter-thread communica-
tion. If reference and export could be successfully localised to part of the hierarchy
- this would not be so. Unfortunately it turns out that although most computation
can be efficiently mapped onto multiple ALUs with local export, thread refer-
ence remains (usually) a highly global operation. Chapter 5.3 investigates this
unfortunate fact of life for the multiprocessor designer.

The impossibility of maintaining locality has lead to a disenchantment with
the use of hierarchically organised general multiprocessor systems. This thesis
re-examines the question and concludes that storage hierarchical models of ar-
chitectures need not be completely abandoned. To analyse this I remain with a
- tree-structured model of storage. However the connection to an outer cache may
be high bandwidth and correspond to a global multiple-path message-passing net-
work. Where most messages in this network are global it may be inappropriate to
have any shared global storage. If this does exist it must be arranged in multiple
banks whose access is interleaved. The distinction between high bandwidth inter-
connect and limited bandwidth interconnect can thus be seen as a separate issue
from the amount of storage desirable at any point in the hierarchy.

Figure 3.5 shows this model of multiprocessor architectures. A connection
connects a number of sub-hierarchies to a shared cache, which itself connects at
the next level of the hierarchy. At each connection the outer cache may be of size
0, indicating that all shared memory is physically local to one of the subtrees. The
model does not specify the details of how inter-thread synchronisation (export and
reference) is accomplished. This is because different strategies may be appropriate
for different architectures and at different levels of the hierarchy. These details are
considered later on and will be important.

Without proceeding to any more detailed description of architecture two fun-
-damental principles may be identified which are important when ma.ppmg multiple
. thread computation onto a multxprocessor architecture. :
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Figure 3.5: multiprocessor hierarchy

1. Latency Hiding Optimisation.

In single thread computation access latency reduces performance by putting
latency waits in the critical path of the computation. In conventional
uniprocessor architectures much ingenuity is expended in avoiding these by
prefetching data which is either certain or likely to be required before it is
demanded. In multiple thread computation these techniques may still be
used, but another way of increasing performance is available. Whenever ex-
ecution is waiting on some operand with a long latency a switch to another
thread can be used to hide the latency. If thread switching time is less than
the latency this results in higher ALU throughput.

This optimisation is used in conventional multi-tasking systems where disc
access latency is hidden in this way, it works because the total cost of task
switching is less than the expected disc latency. The real cost of task-
switching is difficult to predict because as well as the direct cost of ad-
ministration and static location flushing (of registers for example), there is
an impact on dynamic data cacheing. The observation that system code ex-
hibits typically lower cache hit rates than user code in a multitasking system
[Smi82] can be attributed to the high level of task switching in system code.

At each connection in a storage hierarchy concurrency may be used to de-
couple access bandwidths from access latencies. The product of access band-
width and access latency for a connection will be called the storage of the
connection.

2. Broadcast Bandwidth Optimisation.

The existence of multiple access requests at any level in a storage hierar-
chy gives rise to another possible optimisation. Where two outstanding read
requests are for the same data they may be satisfied simultaneously, so re-
ducing the total necessary bandwidth. This technique lends itself to systems
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which interconnect with shared busses because the inherent ability of such a
bus to broadcast data can be used to reduce demands on bus bandwidth. In
multiple path interconnection this optimisation can still be used by making

- therouting of data requests dependent on a hash of the name of the requested
data. Thus at all levels in a multiprocessor hierarchy system bandwidths can
be reduced in this way.

This optimisation is interesting because the likelihood of bus sharing is the
product of the access latency at a given connection and the number of pro-
cessors using it. This is one way in which long latencies can increase the
performance of a system whose throughput is limited by a bandwidth. Cer-
tainly it can be used to mitigate the effect of necessarily long latencies, and
of necessarily global accesses.

The principle of broadcast bandwidth optimisation can be seen in very large
multiple user database designs where data access requests have a long la-
tency and are satisfied multiply whenever this is possible.

These principles are potentially ways in which the concurrency available in
computation can be used to reduce the effect of ALU demands for bandwidth on
design in a multiprocessor system. This is welcome because the necessary loss of
locality in these systems is a large and intrinsic extra cost. Two questions arise:
how can these principles best be implemented, and, having done this, do they lead
to significant optimisation? ,

This dissertation examines in detail the first and most clearly applicable of
these principles. The second is considered only briefly in Section 5.3.6.

3.4 Summary and Related Work

This section develops some natural models of hardware, data localisation, and
multiprocessors which are extremely general in application. This work bears some

- resemblance to dataflow graph based analysis of computation, however there is

a crucial difference. I base this work on no assumptions about the nature of
computation except that it should be in a style which is highly concurrent. Within
this framework it is therefore possible to consider all of the different possible ways
of implementing a concurrent program.

Together with Chapter 2 the material in this chapter forms an introduction to
computer design and programming which is consistently free of descriptions which

restrict possible styles of implementation. The usefulness of this will be seen in the A

next chapter, where we will use these ideas to contrast dataflow and von Neumann
CPUs.
~ In Section 4.5 we will consider further the importance of synchronism in CPU
design, and distinguish between (temporal) synchronism and (spatial) coherence.
The investigation of name-translating caches here is tantalising. The concept
of such a cache develops naturally from consideration of what caches are, however
it has not been shown that these caches are ever useful. Symbolic computation
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~ spends more time rearranging data structures on a heap than other styles of com-
putation, the possibility of naming all CPU data objects with short names and
using this level of indirection to implement high bandwidth data reorganisation
and local garbage collection is therefore attractive. '
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This chapter applies the ideas discussed in previous chapters to an analysis of
the problems encountered in CPU design. ‘

In the first half of the chapter von Neumann and dataflow CPUs are contrasted
and a space for hybrid designs is identified. On very general arguments the new
designs are shown to balance fundamental hardware design constraints of latency
and bandwidth. ’

The second half of the chapter looks in more detail at this new design space,
considers how current RISC design evolution has coped with fundamental design
constraints, and shows that faster CPU technology pushes the design balance

~ increasingly from RISCs towards D-RISCs.

4.1 Von Neumann and Dataflow CPUs

Two distinct issues arise when considering the execution of DEGs on a CPU.
Chapter 3.2 defined the issue of storage hierarchy design—how to present operands
to an ALU as fast as possible by efficient use of local store.

The other issue is that of execution sequencing (or scheduling), and it has two
parts. What is the overhead in managing a particular scheduling strategy, and
what constraints on scheduling, beyond those defined intrinsically by the DEG,
should be imposed? Deterministic scheduling of operations allows better static
reuse of registers, so this relates directly to the use of storage.

These two issues encompass all of uniprocessor design, and are an essential
preliminary to the understanding of multiprocessor design..

In VLSI ALUs are generally smaller than banks of registers so total ALU
bandwidth, the measure of CPU performance, is limited by the speed at which
operands can be fetched.

Two techniques are available to speed up operand fetch: physical locality and

| operand prefetch. If ALU operands can be fetched from a small high speed memory

close to the ALU this will have both low latency and high bandwidth. Prefetch,
by allowing a number of fetches to be overlapped, decouples ALU bandwidth from
fetch latency although not fetch bandwidth.

Different types of operand scheduling lead to very different uses of locality
and prefetch. In multiple thread execution two obvious forms of scheduling are

intra-thread and inter-thread. These are used, respectively, in von Neumann and
dataflow CPUs which are described below.

Von Neumann CPUs .

In von Neumann execution a single thread uses the entire resources of the CPU.
The operations to be performed are specified by compile time defined code which is
sequenced by a program counter and a number of return addresses. Thread context
is mostly stored in stack frames, these are created dynamically and reclaimed after
use. :
‘This system has two advantages. Firstly the use of local caches or registers
for ALU data is highly effective. Both the temporal locality of data access and

40



the possibility of garbage collecting stack frames from within a cache contribute
to this. Secondly the specification and execution of future operations is controlled
by a set of code pointers which are compact and easily managed.

There are corresponding disadvantages to this locality. As CPUs (for example
SPARC [SUN]) have come to use more local context in registers close to a CPU
the cost of asynchronous context-switching has increased: this is one undesirable
result of locality in a RISC. _

Another undesirable feature results from the sequential evaluation order im-

~ posed by von Neumann instructions. Single thread execution is specifiable in ad-
- vance only up to the next conditional branch. This limits the number of concurrent

prefetches possible without risking the prefetch of large amounts of unwanted data.
High performance CPUs are thus ALU operand fetch latency limited.

Dataflow CPUs

In this section a model of datafiow CPUs is constructed based on threads. It
describes the features of tagged token dataflow machines and is clearer than an
exposition starting with dataflow graphs. The execution model that tagged token

'machines use may be derived directly from a DEG description of computation, just

as that of static dataflow machines relates to dataflow graphs. However dataflow
graphs do not describe concurrent computation in a natural way, whereas DEGs
do, so although historically tagged token machines are a development of static
machines, conceptually they are both simpler and more fundamental. _

Static dataflow CPUs may be seen as a development of tagged token machines
in which the order of tokens on a statically defined dataflow graph arc determines
their associated dynamic DEG arc. This can lead to implementation advantages,
it also reduces potential concurrency, by requiring that all the DEG operations
which are identified by sequence in this way occur in a fixed order.

Because of these problems static dataflow machines do not appear to be a
useful departure from tagged token machines, they are not considered further in
this dissertation and the word dataflow will be used to describe tagged token
machines. :

Dataflow CPUs restrict the size of threads to one ALU operation and use inter-
thread scheduling and prefetch. One advantage of this is that threads have no con-
text except a name and operand data. Thread synchronisation is accomplished
by waiting for all of this data to arrive at which point the thread is executable
by a single ALU operation. All computation is data driven so names are needed
only by data which must be matched and access the right static thread specifica-
tion. Threads thus represent nodes in a program’s DEG. With such small threads
the overhead of thread management is con51dera.b1e and a number of ingenious
techniques minimise this.

In a dataflow machine DEG specification requires thread name and operand
data creation. New threads may be created for a function body in its entirety at
function application time. Within a function each thread consists of a name, ALU
operation and the names of its referencers; all of this may be statically determined.
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Dynamic creation reqmres that this structure should be given a globally umque
name prefix.

Conditionals may be represented by switch threads which send their data input
to the one of their destination sets specified by their control input. The threads
that never execute do not use machine resources since they have no context.

Note that this model results in one unique new thread name per function body.
Any function call which is not recursive may be expanded in lme further to reduce
dynamic overhead. .

The part of a thread name that is unique to a function call may be held as a tag
on its data which is passed to its value. Each thread now has two components: the
first is a static template consisting of ALU operation specification and the static
part of the referencing thread names. The second is a dynamically generated tag
which arrives on its inputs and is passed to its referencers. Prefetch of an entire
thread now involves finding matching tags on input data and fetching the static
instruction template defined by the static part of the tags. The limiting operation
in prefetch is matching incoming data tags from values of executed threads with
existing data in an associative matching store. It appears ( see [AC86]) that
a waiting-matching store of typically 10K - 100K threads is needed. The large
size of this makes a high match bandwidth, and hence high performance dataflow
machines, difficult to engineer.

Heap control

Heap reference may be added to this model of dataflow without any loss of po-
tential concurrency by restoring the function of thread reference. Cons may be
implemented as a thread that returns a storage structure with references to its two
input threads. These references are read by any subsequently created head or tail
nodes with input this structure. The realisation of these semantics in a dataflow
machine leads to a specialised storage module which may be written directly by
destination tokens and read at graph specification time. If the data to be read has
not yet been written the address of the reader is queued in the storage module to
be satisfied as soon as the data is written.

This mechanism is exactly the I-structure proposed by Arvind [AC86], and
seems to be the most satisfactory of those proposed for dataflow machines. The
usefulness of a thread description of computation is demonstrated by its direct
prediction of this implementation method.

The possibility of compromise

The above analysis demonstrates that von Neumann and dataflow CPUs both
suffer from hardware-imposed limits on performance and the problems are com--
plementary. The limited prefetch available in a von Neumann machine makes
performance very dependent on low latency operand access. In a dataflow design
the temporal locality of single thread access is destroyed by thread swﬂ:chmg so
that local ca.chelng is difficult. -
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It is natural to ask whether simple modifications to either von Neumann or
dataflow design exist which use both prefetch and locality. In a dataflow machine
a small matching store cache close to the ALU is easy to realise and would with a
high match hit rate localise most token traffic. High bandwidth instruction fetch
is still necessary but as fetch latency is not critical this too is realisable. The

problem with this design is that dataflow makes no distinction between execution

of different function bodies so temporal locality and hence cache hit rate is lost.
 The effectiveness of a cached datafiow machine has yet to be proved and will
not be discussed further in this paper.
In Section 4.3 below the addition of multiple thread prefetch to RISC von
Neumann execution is considered. This means that thread switch can be used to
minimise the effect of cache miss latency.

4.2 Latency and Bandwidth Constraints on CPU
Performance

The last section showed that in specific designs CPU performance could be limited
by either fetch latency or fetch bandwidth. This section presents a general argu-
ment that quantifies the relationship between these constraints and concurrency
under certain assumptions. The argument motivates the D-RISC design, outlined
in the next section, and also quantifies the assertion that dataflow machines are
more efficient than von Neumann CPUs in multiprocessor systems.

A CPU may be partitioned into an ALU, a local cache including all data
and instruction fetch registers, and an interface to external memory. Suppose
that the cache miss rate is a design constant determined by external memory
communication bandwidth, and that cache miss latency is negligible: this last
assumption will be relaxed later. Suppose also that the CPU and its local cache
are implemented in VLSI on one chip.

CPU performance may be limited by either fetch latency or access (read and
write) bandwidth to cache. In this analysis code is not distinguished from data;
the execution of a von Neumann instruction thus requires a number of sequential
fetches. Where these sequential fetches can be arranged to occur in different mem-
ory banks fetch latency becomes a more severe constraint than fetch bandwidth:
in von Neumann design this extra bandwidth is used in pipelining concurrent
instruction execution within one VN-thread. _

Let Zgeten and fretcn be the respective latency and bandwidth used in operation
fetch. In order for ALU bandwidth to be optimal a concurrency of & = freentietcn
is needed. If o is higher than the concurrency obtainable from pipelining the
CPU is limited by a latency design constraint. Performance may perhaps be
increased by concurrent asynchronous execution of multiple threads. Certainly
extra concurrency is available, and this w1ll reduce the effect of fetch latency on
performance. :

The problem with using asynchronous concurrency in this way is that extra
store is needed local to the ALU to hold the working context of the threads which
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Figure 4.1: Latency and Bandwidth Constraints on CPU performance

are concurrently executed. If asynchronous concurrency is n this extra space is no
more than a factor of n.

T assume that the performance of small caches is inversely related to the square
root of their size, which [MC80] shows to be realistic in VLSI technology. Then
the cost of supporting concurrent execution of n threads is an increase in fetch
latency and decrease in fetch bandwidth by this factor. The ALU performance is
thus separately constrained by latency and bandwidth as a function of n:

1
fary < 17 [tgeren

_1
faro < 773 freen

This shows that there is an optimal concurrency at which ALU performa.hce is
maximum, this is the square root of o, see Figure 4.1.

In conventional uniprocessor CPU design pipelining can usually balance latency
and bandwidth constraints without recourse to the less efficient asynchronous con-
currency. This is not true in multiprocessors, where bus latency alters the design-
parameters by making frech fretcn larger. This product measures the relative size
of the latency constraint on CPU performance, it is of fundamental importance in
CPU design and will be called the access-overlap of the CPU.

To see why access-overlap is different in a multiprocessor note that caches
usually! have access times and bandwidths which are approximately inversely re-
lated (access-overlap of one) whereas multistage switching networks have message
latencies which are necessarily longer than this. Of course this can be partly
obscured by the design of networks which pass messages bit sequentially. Similarly

1See Chapter 4.3.5 for possible exceptions
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busses which interconnect n processors have when fully loaded an expected mes-
sage latency which is n/2 times longer than their cycle time. Thus a fundamental
characteristic of processor interconnection is that data access latencies are long.

High global memory access latency thus moves the ALU design constraints so
that a higher concurrency is necessary for balance. In this simple model local
cache misses may be accommodated by a corresponding increased tgn. The cost
of this can be absorbed by switching to a new thread, subject to the caches update
bandwidth constraint. ’

This identifies a fundamental principle in CPU design. Thread switching is
useful to hide latencies caused by memory access when the storage (see Chap-
ter 3.3) of the memory connection is high. In single thread uniprocessor designs
this is unusual because all design tries to minimise latencies.

One problem with asynchronous concurrency was described in Chapter 3—
extra concurrency is needed to ensure that an ALU stays fully loaded. In any
asynchronous loading of a device the device loading is 1 — e}, where [ is the
amount by which the combined asynchronous load exceeds the device bandwidth.
This was ignored in the analysis above— it does not greatly change the estimate
of optimal concurrency. ’

This section shows how in theory context switching relates to performance. In
real design the granularity of context switching is important: data which need not
persist between thread switches can be allocated storage which is local to the ALU
and not thread-context related, this is clearly important.

Analysis of the compiled LISP test programs detailed in Section 5.5 show that
the typical time between thread-switching in symbolic computation is about 50
RISC CPU cycles. This time is long enough for single thread optimisation to
remain important. ‘ '

One way of using asynchronous concurrency at this granularity is by using a
RISC-like register bank with windows corresponding to different threads. Thread
switching can be very fast and the cache performs well in both single thread and
multiple thread computation. This sort of CPU is considered in the next section.

Dataflow machines and RISCs

In the light of this analysis what can be said about the relative merits of dataflow
and RISC CPUs? The poor ALU performance of simple dataflow machines is
explained, they are hopelessly bandwidth limited. The synchronisation latencies in
multiprocessor systems mean that conventional von Neumann CPUs also perform
- badly, a machine is needed which executes a small number of threads concurrently.

Interestingly this conclusion does not resolve the debate between dataflow and
von Neumann machine designers about the relative merits of their architectures.
~ A RISC can be optimised for multiprocessor applications by suitably designing
its cache. Equally a dataflow machine can be optimised by local cacheing which
optimises the execution of a small number of threads. Whereas in RISCs the
context associated with a function is explicitly localised in dataflow machines it is
not. However tag information could perhaps be used to control cache update.
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One theoretical advantage of dataflow is that abstract data are allocated to
physical locations for the shortest possible time, in compiled von Neumann code
stack frames are often larger than the amount of usable data that they contain.

. The possibility of designing dataflow machines which localise a small number
of threads identifies an exciting area for further research at a level more concrete
than this dissertation. For example name-translating caches (see Section 3.2.4)
could be used to reduce the overhead of local data in a dataflow machine. My own
familiarity with the realities of dataflow design is negligible so the extension of my
theoretical ideas to this area is not something which I can address here.

4.3 D-RISC CPUs

A RISC CPU optimises function calls by using a cache of stack frames which
is arranged as a circular buffer onto a conventional general purpose cache. A
subsidiary issue is whether all ALU operations should be cache to cache, or whether
~ data which have been read in the current stack frame should be separately stored
in a volatile register bank which is transparent to the software model.

The necessary modification to accommodate concurrent threads is clear from
the description in Chapter 3.2. Cache management must be associative with ex-
plicit garbage collection of frames on exit. This is more complicated to administer
than a circular stack cache and probably means that a fixed block size must be used
for each separately reusable chunk of store—either 8 or 16 words is an appropriate
size. :

This type of cache is not just a particular neat design idea, it is the only
way efficiently to localise concurrent threads, with the resulting tree-structured
dependence of intermediate data.

DRISC CPU design in VLSI is similar to RISC design, with the same con-
cern for critical latencies in data paths and appropriate on-chip cacheing to meet
necessarily limited off-chip bandwidth limits (see [Kat85]). The differences are
described below and relate either to efficient management of the block associative
cache—this will be called the frame cache—or to scheduling of multiple threads
of computation.

4.3.1 Frame cache design

In a frame cache blocks are allocated and deallocated explicitly by executing
threads, although on cache misses dynamic block replacement is necessary. How-
ever block allocation happens frequently (roughly every 20 cycles) whereas block
replacement happens only every 1000 cycles. These two times set the parameters
for frame cache design.

The frame cache could use an least recently used (LRU) replacement policy to
maximise hit rate for a given cache size since this is a constraint on cache access
latency and hence ALU cycle time. Where most object lifetimes are short, as in a
frame cache, LRU will considerably more eﬂ'ectlve than random cache replacement,
as I show below.
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Assume that allocation of new data from the cache happens at a constant rate
and let T = the time taken for store allocation equal to the size of the cache.
Consider the probability that an object will be in the cache at a time L after
its creation (with no previous accesses). For an LRU cache thisis 1 if L < T,
otherwise 0. For a random replacement cache, if the cache contains N objects, the
correspondmg probabllxty is:

-y Fack |

This shows that, as would be expected, LRU performs better than random
replacement as the lifetime of cache data decreases. In order to simplify the
subsequent calculation choose units of time such that T = 1. Now suppose that
lifetime frequency varies as e ?*, so that large B implies short average lifetime.
Real data lifetime distributions will not be exactly exponential, however this is a
reasonable first approximation for short-lived intermediate result data.

The probability of a data hit from a random replacement cache is now

12, e~ (+h)dy B
pRR = ") — =
[, ePtdt 1+58

whereas that of a hit in the LRU cache is

1
Puw=/ et =1-c".
t=0

Now consider a random replacement cache of given hit-rate prr. I the cor-
responding LRU cache size for the same hit-rate is k& times that of the random
replacement cache,

—kp _ B — ln(l + ﬂ) (1 PRR) ln(l—Pnn)
¢ 1+8 =k B PRR

5o as § — oo (and hence the cache hit rate prr — 1) so the ratio of LRU to
- random replacement cache size varies as

1-

eln(e”!) where €=1— pgg.

Thus in a cache of this type with a high hit-rate LRU is a much better svtrategy
than random replacement. Figure 4.2 lists some values of k for different prg.

In a D-RISC frame cache each block is associated with a global name pointing
to a globally consed block of external memory. New pointers to free store are
required on block replacement by a new local block, or when local data becomes
externally reference and so must be flushed (this is controlled explicitly by the
executing program).

Block allocation and deallocatlon is managed by a special purpose hardware
stack of free block indexes: free blocks keep their references to free external mem-
ory with no consing overhead on block allocation.
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| Hit Rate LRU/RR size ratio
0.5 0.69
0.75 0.46
0.9 0.26
0.95 0.16

Figure 4.2: Comparison between LRU and Random Replacement (RR) cache sizes
for given hit-rate with exponential data lifetime distribution

References to cached blocks do not exist except in other local cached blocks.
When a block is flushed its references to other blocks must be flushed as global
names, on its re-cacheing these if read must be associated with current cache
contents, and initiate an allocation if the match misses. However this allocation
is unusual in that it replaces the external store previously associated with the
free block with that pointed to by its own external name. Thus block allocation
can lead to external store freeing and therefore consing and reclamation must be
managed by a stack (rather than a FIFO) of free external blocks, this can itself
conveniently reside in the cache as a cdr-removed list.

In general a queue of objects which may be extended at either end and collapsed
at its head is a structure well suited to frame cache cacheing. The queue is held as
a tail-pointer-removed list with pointers to its two ends which point to words in
frame cache blocks. The efficient support of such queues can help with optimisation

of scheduling, synchronisation, and pipeline communication between threads.

4.3.2 Scheduling

In a DRISC multiple concurrent threads are available for execution, and on any
cache miss it is desirable to switch to a new thread. Threads may thus either
be waiting for a cache update, which may if it comes from the reading of another
thread take arbitrarily long, or ready. The simplest way to manage threads is with
a LIFO of ready threads which is popped when a context switch is requu'ed and
pushed when a cache update for a waiting thread is satisfied.

Threads which are ready may not have all of their immediate data cached
since this may be flushed before they are restarted. Thus thread switch proceeds
by popping ready threads sequentially from the LIFO, checking if their immediate
context is cached, and if not requesting a cache update.

There is a difference between a wait on another thread, and a wait on a local
cache miss. If the cache has an extra bus for updates these may happen asyn-
chronously with execution, but the cost of such a bus may be more than its worth.
It is simpler for all cache update to be handled synchronously with execution, and
no less efficient if total cache bandwidth is the main design constraint.

Waiting on a thread must however initiate global communication (if the thread
is not local) and a wakeup signal on availability of data that is truly asynchronous
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from program execution. Thus design optimisation through local cache miss la-
tency hiding is a untprocessor design issue and worthwhile only if the latency
bandwidth product of operand fetch is high. In RISC VLSI design with mem-
ory off chip the bandwidth of off-chip busses is an important design constraint,
the latency bandwidth product of these is currently about 2 (for example, see
[amd88,mc888]). In contrast the hiding of global synchronisation latency will typ-
ically will result in longer delays and so a higher latency bandwidth product. In
RISC CPUs fetch latency is hidden by pipelining instruction fetch and execution,
as technology allows faster CPU speeds this requires a longer pipeline.

The analysis in the last section showed that very general bandwidth and latency
constraints on CPU design make thread switching to hide a latency in a system
attractive when the product of the latency and the corresponding access bandwidth
is sufficiently large. In a DRISC cache this depends on the relative bandwidths
of cache and local memory access. If local memory is significantly slower than
cache then cache bandwidth can be conserved by using a buffer between memory
and cache, and transferring between this and cache synchronously with program
execution. Each block in this buffer used for a memory read has an associated
thread which must be executed to complete the transfer and release the buffer
space. Thus two lists of ready threads now exist, with priority given to the buffer
list.

In a multiprocessor system a third list of ready threads is needed containing

imported computation from other processors: this must be of lower priority than
the local threads to maintain locality of computation (in as far as this is possible)
in highly loaded systems. -
- It will be shown in Chapter 5.1 how scheduling of threads can best be managed
by LIFOs, this requires little extra hardware cost since they can be held in the
frame cache. It is particularly fortuitous that the hardware resources necessary
for efficient thread context switching in a multiprocessor system can also support
the structures needed for scheduling. This is one reason for making cdr-removed
lists a low-level supported object in a DRISC.

4.3.3 Arvind’s argument

Arvind and Janucci’s discussion of latency and synchronisation in von Neumann

and dataflow CPUs may be found in [AI86]. I will examine this argument using the |

models of computation and hardware developed in chapters 2 and 3. Sequential
thread execution on a von Neumann machine uses stacks for dynamic allocation
and reclamation of physical locations for intermediate data. This sort of data use
can efficiently be localised in a small register cache, leading to the high performance
attained by simple RISC CPUs. The data localisation reduces latency of data
access which in a RISC is an important determinant of performance. It will be
shown in the next chapter that in such a machine discontinuities (see page 70) in
thread execution result in stack flushing and consequent loss of efficiency.

First I will investigate this argument in the case of a simple CPU, the Acorn
RISC Machine [arm87]. This single chip CPU has a well balanced design and is
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highly synchronous. For the purpose of this analysis I use a simplified description -
of the ARM architecture. ' ' ‘

The ARM has on-chip a set of 16 registers, the instruction set provides three
types of data manipulation instructions:

e Three operand register to register ALU operations.

o Single word moves between a register and a register indirect indexed memory
location.

e Multiple word moves from a set of registers to consecutive memory locations.

No data is cached on-chip except for the registers: code is fetched in a single
instruction pipeline from external memory. This memory is dynamic RAM which
uses column addressing whenever possible, with memory access taking 1 CPU
cycle, full row and column addressing takes 2 CPU cycles. Within these external
memory access constraints instruction times are optimal:

ALU instructions 1
Single moves 4
Multiple moves 3+ mn (n = number of transferred registers.)

Thus the ARM has a very simple cache hierarchy: data is held either in the 16
CPU registers or in main memory. Register data access is faster than memory
data access by a factor which varies depending on the use made of data. External
memory read or write bandwidth is 0.25 for single transfers, nearly quadrupling
for multiple transfers. Register access equivalent bandwidth is between 1 and
'3, depending on whether good use is made of the 3 operand ALU instruction.

However datapath latencies in the CPU are evenly divided between ALU, barrel -

shifter, and register access, so the true register access latency is 0.3. From these
figures the ARM use of data locality can be inferred. Data in memory needs
between 5 and 13 cycles for random ALU operations, compared with 1 cycle for
registers. However multiple word moves to or from memory are much faster. A
stack frame of 8 words can be transferred between registers and memory in 11
cycles. On the ARM static register change time is thus short: 22 cycles for 8 word
frames. The cost of thread switching on an ARM is thus the loss of a fraction ;7’5
of CPU time, where n is the average time, in cycles, between thread switches.
The value of n is dependent on application, in the compiled LISP programs

which I examine in Section 5.5.2 it never falls below 50 cycles and is typically much
larger than this. This puts an upper limit on the advantage that any D-RISC or
dataflow architecture can get over an ARM in multiprocessor computation due to
faster thread-switching. If the multiprocessor has a high bus latency this makes
necessary a larger number of available threads to switch between just to hide this
latency but does not alter this bound, because the average time between thread
switches is not substantially changed. This simple example shows that the loss
of locality in multiprocessor computation need not necessarily be so large as to
make either dataflow or D-RISC design much more attractive in multiprocessor
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than uniprocessor computation. It does not however give any information about
the relative merits of D-RISC, dataflow and RISC architectures. An extra argu-
ment for using D-RISC or dataflow design in a multiprocessor is that since here
concurrent computation must be supported concurrency can usefully be used to
hide CPU latencies.

This example shows RISC CPUs at their best in concurrent computation, be-
cause the ARM uses so little locality. The relative disadvantage of locality loss
becomes more severe as more data is localised and the block move bandwidth to
main memory scales down compared with local register access bandwidth. Both
of these may be expected in higher performance CPUs with more cacheing.

The relationship between multiprocessing and the use of locality to obtain
high computational efficiency may be addressed more directly by considering the
amount of D-RISC cache used by a computation. Define A as in Chapter 5.4:

average inter-processor thread read latency

A= .
average time between thread-critical inter-processor thread reads

The concurrency introduced by thread-switching to hide bus latency is on average
1+ M. This may be related to cache use by the arguments in Section 5.1.3. Let
S be the cache size needed for a given hit-rate in a particular multxprocessor
computation as a function of A. Then

The value of S, depends on the degree of independence of the 1+ A concurrent
threads in the cache, which in turn relates to cache size: as this increases so
does the likelihood that any particular intermediate datum which will result in a
cache hit corresponds to a part of the computation’s TCT which is shared between
concurrent threads.

The multiprocessor scheduling optimisations for highly bandwidth limited com-
putation all work by removing bus latencies from the critical path of a sequential
thread, for example by prefetching data, so decreasing M.

In a similar way relative cache size on a multiple thread D-RISC using av-
erage concurrency of n to hide thread execution latencies varies between 1 and
n. It is instructive to compare cache sizes on a sequential RISC processor and a
multiprocessor with A = 0.

The sequential processor has a number of advantages:

e Code may be compiled for a deterministic execution order, so reducing pro-
gram control flow non-determinacy and increasing static reuse of frame lo-
cations.

o Data flushing on a stack is optimal: in a D-RISC cache LRU replacement
is almost as good but difficult to implement, LRC (least recently created)
replacement is less good.
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e It is difficult to allocate data in arbitrary sized vectors in a D-RISC cache.
Two allocation strategies which seem feasible are single fixed size blocks, and
a small number of binary scaled sizes of vectors, e.g. 4,8,16,32,64 words, using
the binary buddy system. Neither of these have the storage compactness of
arbitrary sized vectors, although compact list representation reduces this
disadvantage by making desirable all list storage allocation in fixed size (8
or 16 word) chunks. :

The comparison between dataflow machines and RISCs or D-RISCs is compli-
cated by two differences which are orthogonal to arguments about locality:

‘o Dataflow machines use export on creation because the processor on which a
thread is executed is always part of its tag, used to control data flow.

e Dataflow machines have a highly dynamic fine grain method of intermediate
data allocation which makes name storage a large system cost but also sim-
plifies data access. Because token storage is associative and matched tokens
represent executable ALU operations data access for presentation to an ALU
requires only unidirectional information flow.

The first of these differences is not fundamental: a dataflow machine can be
augmented with thread references through which token supply indirects to allow
deferred decision about the processor on which an ALU operation executes. The
second one needs deeper analysis.

Figure 4.3 Shows the sequence of operations which occurs in dataflow and von
Neumann instruction execution. In dataflow machines each ALU operation has
its own dynamically allocated local storage, and is enabled for execution by the
writing of the data that it needs. Instructions may be fetched concurrently at
the grain of a single ALU operation, since a single completing ALU operation
can result in several destination tokens each of which enable (by matching with
existing tokens) a new ALU operation. :

In von Neumann machines and D-RISCs local data is allocated on a coarser
grain (by stack frame) and instructions operating on a given frame are totally

~ordered. '

A compromise between these two strategies can now be identified. Keep stor-
age allocation (by stack frame) as in a von Neumann processor so enabling the
data storage locality optimisations which are now well understood, for example
[ASUB86), but allow multiple control threads operating on the same frame and
contributing to a single final thread value. This is described in the next section.

4.3.4 Separating control And data concurrency

In Section 5.1.1 I will show that at the level of implementation a thread could be
represented by a vector of local store locations and an instruction pointer, together
with links either to other vectors (in a manner similar to conventional stack frames)
or other threads. This structure when executed on a Thread Execution Unit
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Figure 4.4: D-RISC with Separate control and data concurrency

(TEU) specifies a sequence of data changes in physical locations which calculate
the thread’s value. _

The modification to allow control concurrency within one data frame is simple:
separate instruction fetch from data fetch and have a pool of control pointers, each
sequencing instructions and identified with a single TEU determining local data
access. The resulting architecture is illustrated by Figure 4.4.

The number of control pointers on any data thread may be limited at compile-
time in order to ensure that control-pool overflow never occurs. The size of the
control pool is an important parameter of the design which must be minimised,
subject to providing enough concurrency to hide system latencies, so the ability
to queue surplus control concurrency for future execution is useful.

Pooled instruction pointers are available for asynchronous instruction execu-
tion, whereas queued pointers must be returned to the pool in a particular order.
This can lead to deadlock if the pool fills up with join (see below) instructions
which are waiting on queued instructions. One solution is to limit at compile-time
the number of possibly simultaneous join instructions within a data thread to less
than its share of the control pool. Optimal management of a control pool needs
careful analysis of all possible compile-time and run-time measures to control con-
currency. o

Note that asynchronous fetch of instructions and data is intrinsic to efficient
implementation of this type of design. It thus combines the separate advantages of
dataflow and von Neumann designs and so is an appropriate schema within which
to investigate optimal multiprocessor architecture. -

4.3.5 Latency-bandwidth tradeoffs in memory design

Trading latency for bandwidth in memory design. The fundamental re-
sult of this chapter is that the CPU design balance between latency and bandwidth

constraints on operand fetch is determined by latency-bandwidth product, or stor- -

age of the connection over which data is fetched. Multiprocessor interconnection
is inherently of high storage, simple cache memories are not. However efficient
memory access is theoretically a high storage operation because address decoding
and data reading can be pipelined through a hierarchical memory structure to
increase bandwidth—the storage of of such a memory is just the total length of
its pipeline. B

The detailed design of highly pipelined memories is dependent on particular
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technology and beyond the scope of this thesis, however an approximate estimate
of the benefits obtainable from pipelining can easily be made. Consider a 2" word
memory, pipelined with selection of (or data reading from) 2™ banks in each stage.
This has 2 stages each for address decode and reading and so potentxally a speedup
of 22 over r the unpipelined memory. :
Four factors may reduce this performance.

1. If m is too small the multistage decode circuitry will be slower than a circuit
with fewer stages.

2. Clocked dynamic logic, necessary at each stage in the pipeline, will be slower
than dynamic domino logic for the complete decode circuit.

3. The performance of the pipeline is limited by the maximum propagation
delay through any stage, whereas that of the unpipelined memory is lim-

~ jted by the sum of delays through each stage. The former is thus likely to
be less than the latter whenever technology introduces random inter-stage
performance variations.

4. A highly pipelined circuit has more simultaneous signal transitions than the
corresponding sequential circuit, as well as more global clock distribution,
both these factors increase noise problems.

Suppose that these factors result in performance degradation by a factor of 2
for m = 3 (smaller m resulting in too great a pipeline overhead). The performance
which may be expected of a cache memory of 2" words is then:

Bandwidth: %
Latency: 2
relative to that of an equivalent unpipelined memory.

The important caches in a D-RISC are a code cache (size 4K-16K words), and
a frame cache (size 128-1024 words). The increased bandwidth from pipelining
is therefore a factor of between 2 and 5. This must be set against worse single
thread performance due to increased access latency. .

One way of viewing a D-RISC uniprocessor with highly pipelined cache is
to regard the shared use of cache memory by multiple threads as an extremely
cheap sort of high bandwidth inter-processor communication, with the hardware
of the processors themselves folded into a single CPU. This, when compared with
a more conventional implementation, has higher system ALU bandwidth for given
hardware size, but also worse single thread performance by a factor of very roughly
2. The latency limited concurrent performance is not necessarily so bad because
the single-thread per processor implementation has bus latency which the D-RISC
uniprocessor does not. ‘
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Trading bandwidth for latency. In contrast, RISC designs, for example the
ARM [arm87] typically use precharging of register bank data lines to reduce mem-
ory latency at the expense of decreased bandwidth. Von Neumann machines have
long pushed memory technology developments in this direction towards memo-
ries with a low latency-bandwidth product, because these are more effective in
non-concurrent computation. Highly pipelined memories of the sort which would
be useful in D-RISC design are not available as highly tuned off-the-shelf com-
ponents. An investigation of the implementation of such designs in VLSI must
therefore proceed with D-RISC architecture design.

44 Whatisa Uniprocessor?

In this chapter we have discussed uniprocessors which may run multiple concur-
rent threads of computation. Furthermore any operational block in a D-RISC
may be either replicated or pipelined, increasing the corresponding bandwidth.
There is thus no straightforward structural distinction that can be made between
a uniprocessor and a multiprocessor.

For example a uniprocessor could be defined to be the hardware communicat-
ing through access to a single bank of shared cache. Since all D-RISC designs have
some private memory for each executing thread the definition must not exclude
this, so it will necessarily classify as uniprocessors machines with multiple CPUs
with large private caches and memories communicating however through a single
bank of shared memory. These hardware resources may be used differently by elim-
inating the global shared memory, and allowing shared access to some portion of
each processor’s physically local memory: this machine is undeniably a multipro-
cessor because multiple asynchronous memory accesses may be overlapped. Now
consider a machine with a single shared memory which achieves high bandwidth .
through interleaving. This machine must accordingly be called a multiprocessor
even if the interleaved memory is a component in a single D-RISC CPU.

The definition which I adopt is necessarily therefore somewhat arbitrary. A
uniprocessor will be hardware which cannot sensibly be decomposed into smaller
physically separate branches in a cache hierarchy of the sort posited in Section 3.2.
In most of this work I use an idealised model in which a multiprocessor is a set
of uniprocessors connected by some global message-passing bus. The topology of
this bus is discrete: any node may communicate with equal ease with any other
node. Furthermore the bus is characterised by a maximum global bandwidth and
‘minimum message latency. Actual message latency increases with congestlon only
as necessary to limit the global bandwidth.

This thesis deals with CPU architecture design, therefore communication bus
bandwidth is regarded as a specifiable design parameter, with a corresponding
technology-dependent increase in latency for an increase in either number of con-
nected nodes or bandwidth. Bus bandwidth itself is not seen to be a fundamental
limitation to performance, although it may largely determine hardware cost. In
any specific design a particular bus will be chosen which will then limit global
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. bandwidth. In some instances, where a certain bus is part of the design speci-
fication, this global bandwidth limitation will determine performance: this is a
technology-dependent issue and not assumed here.

.. This model of inter-processor communications is extended in Section 5 3.6 be-
low.

Shared and private memory. It should be clear from the preceding that the

usual distinction between loosely and strongly coupled multiprocessors is one which
is too coarse for this work. Inside a single uniprocessor memory may be shared
or private to a TEU, as specified in the D-RISC design. This may therefore have
some of the characteristics of a conventional strongly-coupled multiprocessor.

I assume a model in which inter-processor communication is physically via mes-
sages, since long bus latency, and, in a multiple thread system, arbitrary waits for
threads to terminate, will rule out atomic two-way transactions. This corresponds
to inter-processor coupling which is not directly modelled by global memory trans-
actions: the usual definition of strong coupling). However it is a program’s thread
decomposition which determines when these messages coordinate shared access to
local processor frame memory. Export of a thread reference always implies pos-
sible sharing, at least until the thread has finished: the exact implementation of
this is discussed in Section 5.3.2.

4.5 Multiprocessor Design Taxonomy

How do these observations about processor architecture relate to historical classifi-
cations of multiprocessors? Gurd has recently suggested [Gur88] that the historical
classification of multiprocessors is no longer helpful in view of recent developments,
and proposed a new classification. I will first summarise his work and then relate
these ideas to my work on low-level hardware organisation.

In [Gur88] Gurd argues that the comparison of multiprocessor architectures in
a way that leads to understanding of performance requires a number of different
levels of abstraction, and then proceeds to investigate the lowest (nearest to the
hardware) such level. He observes that historically multiprocessor hardware has
been characterised according to the tree in Figure 4.5(a). He then argues that
a more helpful taxonomy would give primary importance to the nature of data
~ transactions in the computation, and particularly to whether the memory used
by a processor is integrated with the processor, or separated from the processor
by a global communication network. More precisely, since all processing must
have some local memory, he makes the distinction between machines whose work
- consists of mutating global memory, and those whose work consists of mutating
only local memory, in cooperation with other processors.

He presents the new classification of Figure 4.5(b), with mtegrated/separated
memory as a primary key, and MIMD /SIMD as a secondary one, and argues that
this more accurately reflects behavioural differences in machines than the historical
classification.
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In this dissertation we have considered a number of fundamental character-
istics of hardware, and tried to relate these to the different ways of executing
a computation’s Dataflow Execution Graph. Because this analysis started with
no prejudice in favour of single-threaded computation we have been able to dis-
cuss processor design in a way which makes no fundamental distinction between
intra-processor and inter-processor concurrency. As argued in Section 4.4, the de-
composition of a concurrent processor design into single or multiple processors is
not always meaningful. '

The low-level chara,ctenstlcs of hardware which we have considered are:

e Latencies and bandwidths of connections, and in partlcular the storage, or
latency-bandwidth product, of a connection.

e Synchronous and asynchronous operation.

o Cacheing, and naming strategies for data used in a calculation: either static,
determined by compile-time analysis of a program’s possible DEGs, or dy-
namic. Static names can refer directly to registers, dynamically named data
must be localised in a associative cache.

~ These two last items can be related by considering the relatlonshlp between
synchronism (discussed in Section 3.1.1) and coherence, which I will define as
here.

In synchronous systems events at different tsmes are related in an organised
way. For example in a RISC pipeline different phases of one instruction are nor-
mally executed on successive clock ticks. This organisation is a type of a temporal
granularity: blocks of operations occurring at different times are determined to-
gether.

There is a corresponding concept of physical granularity, in which the data
in different registers at a given time has some coherent relationship. I will call
this data coherence. The use of static names to address a register bank involves
just this type of coherence, as does the arrangement of a dynamic cache memory
into lines of contiguous data. Data coherence also imposes some granularity, and
requires some a priors organisation.

The task of a processor design is to make whatever use possible of concurrency,
synchronism, and coherence. We have seen that concurrency is needed in a design
whenever the storage of a connection is greater than 1 to balance latency and
bandwidth constraints on performance. A computation’s DEG will provide con-
currency which is partly susceptible to static analysis (the simultaneous creation
of a new subgraph of predetermined shape in the part of a DEG with C-arcs from
a conditional) and partly dynamic. The granularity imposed by synchronism and
" coherence requires some static execution information, and hence these desirable
" characteristics are limited by the nature of the executing algorithm.

Conventional RISC von Neumann CPUs use both synchronism (pipelining suc-
cessive instructions) and coherence (storing data in a register bank with static reg-
ister ids). Vector processors obtain high concurrency by using extra synchronism,
with highly pipelined ALUs, and are consequently useful in programs with very
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regular control structures. Array (SIMD) processors in contrast use data coher-
ence to obtain high concurrency by performing an identical operation on a large
number of data items. '

D-RISC CPUs preserve some data coherence but use minimal control synchro-
nism. The advantage of this is a chance to use more concurrency, even in irregular
symbolic computation, than is available to von Neumann processors. Dataflow

" CPUs are even more radical and abandon both synchronism and coherence in the

pursuit of fine-grain resource use. -
- These issues of concurrency matched to latency-bandwidth product, synchro-

‘nism and coherence can be observed in multiprocessor architectures. They dis-

tinguish between dataflow, von Neumann, array and vector processors very well,
in a way which subsumes the SIMD, MIMD distinction. How then is Gurd’s
integrated /separated memory dichotomy to be related to this?

The answer lies in the nature of local cacheing on each processor, and the
type of computation which is executed. We have been considering symbolic com-
putation where data-structures and parallelism are highly dynamic. Therefore
concurrent execution requires substantial global access to data. This can always
be implemented within a local cache hierarchy so that repeated access to global
data is a local operation.

The optimum level of local cacheing is a critical design issue, and I think this
is why Gurd’s distinction has some merit. Integrated memory (in a symbolic com-
putation) may be seen as local cache in contrast with separated memory. Some
styles of computation (for example OCCAM, [Hoa]) limit communication between
concurrent processes to predefined serial data channels and map processes stat-
ically onto processors. This computation may proceed using integrated memory
without any model of global data cacheing.

The argument for separated memory in multiprocessors (for example Darling- -
ton and Reeve et al in [MDF*87]) is that the overhead of context-switching makes
local cacheing impossible in a multiple-thread concurrent computation. I have
shown that the cacheing of a small number of local contexts near to an ALU can
optimise the use of a memory connection with latency-bandwidth product greater
than 1. However there are implementation problems in the control of concurrent
execution so that intermediate data does not swamp local caches: these will be
discussed in more detail in Section 5.1.4 of the next chapter.

The complexity of the implementation problems to be overcome in cacheing
multiple-thread symbolic computation perhaps explains why strategies of giving
up altogether, either with no local cacheing as in ALICE, or no attempt to use
synchronism or coherence, as in dataflow machines, have in the past seemed at-
tractive. ' ,

~ In contrast with Gurd’s work, the study of multiprocessor architecture which I
have presented does not lead to any categorical classification, and especially not to
a taxonomy. My concern is to compare and relate different design strategies in the
hope of identifying (possibly superior) intermediate designs. In particular I have
shown that the von Neumann / dataflow design dichotomy is not intrinsic, and
hence that a range of intermediate designs should be considered. The multiproces-
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sor design space is viewed by me as parametrised by the factors discussed above:
synchronism, coherence, cacheing, and then particularised by bandwidths and la-
tencies of connections between concurrent components, with the corresponding
~ latency-bandwidth products indicating the need for overlapped operations.

The design space of dataflow machines, von Neumann processors, and D-RISCs
may be broadly classified according to these ideas by considering overall use of syn-
chronism and coherence. This results in a picture with von Neumann and dataflow
CPUs at opposite corners of a triangle of possible architectures for symbolic com-
putation as in Figure 4.6. This picture suppresses much important detail. For
example The HEP has a long pipeline with successive instructions from different
(arbitrarily chosen) threads. It thus is synchronous at a coarser grain than a RISC
with a shorter pipeline, however the dependence between successive instructions
in the pipeline is less. Should this be classified as more or less synchronous than -
a RISC? A more careful analysis is required to distinguish these designs properly.

' 4.5.1 Scalability

In [AI86] Arvind and Ianucci suggest that von Neumann CPUs do not form a basis
good for scalable multiprocessors because they cannot optimise for fast thread
switching without reducing single thread performance. This is partially true, and
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but argument in this chapter shows that it is possible to compromise between
single and multiple thread performance. A D-RISC cache performs reasonably
well in single thread computation, the difference between it and a RISC stack

cache is the added cost of associative cacheing of each stack frame and the waste

of space that mapping stack frames into blocks entails.

They make a further assertion that for von Neumann based multiprocessor
systems there is an architecturally defined limit beyond which adding processors
can never increase system performance. This section shows clearly that there is no
fundamental difference between dataflow and von Neumann execution. The key
question is whether it is worth trying to achieve some locality in a multiprocessor
CPU. I this is true then a DRISC architecture is an efficient way of obtaining it. .

General arguments about scalability are interesting. For a given program pos-
sible concurrency will be limited, furthermore static decomposition of the program
that provides less concurrency may be more efficient. Thus particular programs
impose a limit on useful concurrency, and this is often low. Now suppose that
program size is scaled with the number of CPUs in the architecture, so that sys-
tem loading remains constant and high. The cost of increasing the number of
processors on system performance is very roughly a logarithmic increase in inter-
processor latency. With faster technology this cost might increase faster, since the
average distance between n objects of a given size must increase as ni. A safe
upper bound on the rate of this increase would therefore be log nn3.

Whatever this increase in latency its effect on system performance is to make
necessary a larger number of concurrent thread to hide it. The number of threads
is proportional to the latency, but the argument above shows that increasing the
number of threads decreases bandwidth performance by roughly the square root of
the increase. Thus CPU performance decreases by a factor of v/log n, furthermore
the necessary program concurrency for optimal execution scales as ny/logn. Sys-
tems thus require a modest increase in loading per processor for optimal operation

as they scale.

4.6 Summary and Related Work

By following an analysis of fundamental constraints which exist in any hardware
design this chapter has shown that dataflow and von Neumann architectures form
two extremes in a design space (the opposite corners of Figure 4.6) and suffer from
complementary design problems. The intermediate space has not been investigated
with many concrete designs. Only one such design exists, the Denelcor HEP
([Smi78]), and its limitations—very bad single thread performance and a hardware-
limited number of threads—have not encouraged other architects to follow this
path. However this chapter shows that the very large design space which remains
to be explored will contain the balance between fundamental design constraints
which is lacking in both von Neumann and dataflow designs.

~ Section 4.5 is central to this thesis, relating the ideas of low-level hardware de-
sign presented in Chapter 3 to multiprocessor design, and establishing connections
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with Gurd’s research work.

The next chapter will consider in more detail the implementation problems
associated with running symbolic computation on any multiple-thread computer,
_ and particularly on the new type of architecture. The complexity of these problems
_ perhaps explains why progress towards more parallel archltectures has been in the

past so slow.

- It will be seen that von Neumann-llke data locality can be maintained in spite
of the difficulties of implementing concurrent symbolic computation. What then
can be concluded about D-RISC architectures? For concurrency from multiple
independent threads of sequential computation D-RISC is becoming a serious
contender as RISCs become faster and the problems in maintaining full RISC

" pipelines therefore greater. This application is independent of the results in the
next chapter, and a D-RISC for such an application need not have the sophisticated
fine-grain thread communication and synchronisation hardware otherwise neces-
sary. However this design trades increased bandwidth with multiple threads for
inferior single-thread bandwidth. Since multiple independent threads can be run
on separate processors the possible D-RISC advantage here is one of performance
for a given cost, not absolute performance.

For general purpose concurrent symbolic computation D-RISC has a clear ad-
vantage in its ability to cope with synchronisation latency, the case for large-scale
concrete design investigation is clear. The design space to be investigated before
the best designs for current technology can be established is very large, because
the availability of fine-grain inter-thread concurrency allows a plethora of different

~ ways of mixing asynchronous and synchronous execution. :

In parallel work for his recent thesis ([Ian88]) Ianucci has proposed a concrete
D-RISC design, starting from dataflow architecture experience. This work is very
interesting and promises to be the first of many such concrete investigations into
D-RISC design space 2.

2] found Janucci’s work at a very late stage in the revision of this thesis, and a thorough
assessment of his design must therefore be a future development. It is extremely encouraging
to find that work starting from a completely different practical design experience should lead to
results which appear to be so similar to my own.
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The theory outlined so far examines some of the fundamental compromises
inherent in any implementation of concurrent computation. This chapter builds
~ on this work, investigating more specific implementation techniques. The next
section considers the implementation of concurrent computation on a uniprocessor:
this is a necessary first step to understanding the more complicated multiprocessor
implementation problem. : .

The Section 5.3 describes a simple model of multiprocessor hardware which cap-
tures the important features of multiprocessor execution while abstracting from
details of inter-processor communication design. The object of this thesis is to
understand the relationship between concurrent computation and processor effi-
ciency. Communication performance, like other details of low-level design, will be

vital in the construction of any real design: however its consideration in detail

here would be orthogonal to the aim of this investigation.

Section 5.4 describes specific issues that arise from attempts to optimise
latency-limited computation (e.g. multiprocessor computation where there are
always spare processors and computation time is determined by a critical path
length).

5.1 Concurrent Implementation On Uniproces-
sors

5.1.1 Thread implementation techniques
Threads and vectors

In sequential computation execution is determined by a stack of frames (vectors
of physical storage locations) and an instruction pointer indexing a sequential

instruction stream. Instructions modify locations in the top frame, push a new

frame, usually saving a return address, or pop a frame writing some result to the
previous frame. Note that I suppose that all data access is local or heap, as for
example will happen in a functional language implementation using supercombi-
nators. The type of global communication provided by sequencers can be managed
by passing a common heap data reference to all threads which call the sequencer.

In concurrent computation a thread may therefore be specified by a vector,
together with an instruction pointer which specifies a set of modifications to lo-
cations in the vector. Each thread also has a reference which may be passed as
‘a data object to other threads and read, returning a value. (The implementa-
tion of thread reference is discussed in the next section). The creation of new
threads is analogous to the creation of new stack frames; certainly any stack based
computation can be equivalently expressed using threads.

However where a thread creates just one child thread and then reads its value
the full overhead of thread referencing is unnecessary, and the execution is identical
to the sequential case. In what follows I will therefore assume that a thread
corresponds to a stack (or linked list) of vectors in a heap, together with an
instruction pointer. Of course when not executing on a TEU the instruction
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pointer of a thread will itself be stored in some vector, probably the top vector in
the stack. A thread may be identified for wakeup by a pointer to this top vector.
In contrast on creation a thread is identified by its base vector which contains
the initial specification for the thread’s computation and will be used by thread
references.

Thus the primitive objects in a concurrent system are thread bases, private
vectors stacked on top of bases, and other non-modifiable vectors constructed
during execution and garbage collected. Private vectors may easily be locally
garbage collected. Finally a thread base must have available certain atomic read-
write operations to interlock computation: a flag indicating that it is executing
and other operations to interlock thread reading with thread finishing. v

This initial description of threads shows the store and process management
which must be supported by any hardware using threads, and which will be used
as a base for subsequent analysis. Allocation of storage in vectors from a garbage
collected heap is a prerequisite, although the sizes of allocated vectors may be
limited by a particular implementation.

The hardware discussed in the previous section uses asynchronous concurrency
to hide certain latencies by having available a small number of threads in TEUs for
concurrent execution. The overheads of switching threads attached to a TEU must
be relatively small, since threads in symbolic computation are typically short.

The latency associated with thread switching in a D-RISC is hidden by the
execution of other threads. Together with other hidable CPU latencies its cost is
seen only as an increase in the number of threads necessary to use all available CPU
bandwidth. For optimal design this entails an increase in the number of TEUs,
and perhaps a corresponding decrease in CPU bandwidth, but this is a much
smaller loss of efficiency than that attributable to the original switch latency in a
conventional design.

However, even in a D-RISC, thread-switching entails bandwidth overheads in
the construction and scheduling of ready threads. Other overheads result from
the reading of thread references, and queulng of waiting thread readers until the
required data is available. '

This section considers these overheads, and how they can be minimised.
Throughout the following discussion it will be useful to compare threads in a
concurrent implementation with function calls in a sequential implementation.

Ideally the overhead of thread management should be no greater than that of
executing the corresponding function calls sequentially. It is instructive to see why
this is not so. Created thread references must be returned immediately and may
then, as first class data objects, be moved to different locations, copied, etc. At
any time the reading of any instance of a thread reference must result in either

- the corresponding value, or a synchronisation wait.

Threads thus have very similar properties to consed storage, requiring a glob-
ally unique name which must be garbage collected some time after thread ter-
mination. A thread name can always be reclaimed after termination, but this

~ is in general impossible without global writing to all existing thread references.
Compare this with the corresponding reclamation of a stack frame on function
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exit, where the function’s value must be copied to only one place whose location
is known to the terminating function. »
The previous chapter discusses hardware on which single-thread data and con-
trol localisation can be used in the implementation of concurrent computation.
Computation with threads is most like (applicative order) sequential computation

. when threads are executed in an order so that threads will have finished whenever

they are read. The relationship between thread scheduling order and performance
is central to an understanding. of the implementation of concurrent computation:
it will be analysed in detail in Section 5.1.4 below. I anticipate the results of this
and suppose that it desirable to arrange that synchronisation waits are relatively
rare.

For a thread’s value to be communicated to its references two different strate-
gies may be adopted: demand and supply transfer. In demand transfer each
reference is an indirection node to a location which will contain the thread’s value
when it finishes. Reading a reference either performs this indirection or results in
a synchronisation wait until the thread has finished. Waiting threads are queued
in a list and awakened when the thread finishes. In this system threads do not
know where their references are.

In supply transfer a thread knows where its references are. Each thread keeps a
list of all locations containing references to it, these are updated with the thread’s
value when it finishes. When a thread waits on a reference its instruction pointer
replaces the reference in the thread’s local data: this is found by the referenced
thread when it finishes and used to supply a wake-up signal.

Supply transfer makes copying a reference an expensive operation, but has the
great advantage that a thread’s storage is released immediately when it finishes.
It optimises sequential applicative order execution of code, where it corresponds
exactly to the creation of a new stack frame and subsequent return of a result.
However in a concurrent system it may be desirable to reclaim vectors containing
references (which will never be read) before the corresponding thread finishes.
This can’t be done easily with supply transfer. It thus seems reasonable to use
supply transfer only where it is known at compile-time that the references will be
read. »

Supply and demand transfer can be combined particularly simply: the first
reference to a thread (whose location is known at thread creation time) can be
supplied. Any copying of the reference will result in possible demand transfer of
the thread’s value to the copied references. A flag in the thread (more generally
a reference count) indicates whether demanding copies of the reference exist and
must be set or incremented when the reference is copied.

Supply transfer has one particular advantage over demand transfer: it facili-
tates implementation of tail recursion. Consider the case of a function f, which
constructs a list which is read concurrently by another function f,. In a normal
thread implementation this concurrency cannot be realised without decomposing
[ into a large number of separate threads. This is clearly wasteful of resources if f,
is the sole reader of these threads: the communication required is that of a single
FIFO. Supply transfer provides this structure: the same thread can supply data
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for each element in the constructed list sequentially. This issue will be discussed -
at further length in Section 5.3, where it will be shown to be useful, together
with some form of compact list representation, in the efficient implementation of
pipelines. '

In general optimised reclamation of thread storage is a problem related to local
garbage collection of heap, this is considered in the next section.

It can be seen from this section that efficient management of threads can result
in complicated low-level primitives. Such complication has two distinct disadvan-
tages:

e Unless it is contained by an appropriate and rigidly observed model of stor-
age use it will be practically impossible to write correct low-level storage
allocation and reclamation routines.

e The non-determinacy in thread finishing order necessary to maximise avail-
able concurrency results in conditional control-flow whenever threads are
read. ’

In a general analysis of hardware design these two problems are of different
importance. A complicated storage use strategy may necessitate rigorous verifica-
tion of all system code, and compiler code generators. This is not a trivial task,
but is certainly possible and does not alter performance.

In contrast conditional control-flow always reduces performance. However in
a D-RISC executing bandwidth limited computation the latency associated with
non-deterministic instruction fetch can always be hidden along with other laten-
cies, and is therefore not as costly as in single-thread computation. Furthermore
even without this hiding ezceptional control flow may be implemented with lit-
tle overhead to normal execution. In general it will be possible to arrange that
bandwidth limited computation executes so that departures from applicative order

~ termination of threads are rare: these may then become exceptional control flows.

Nevertheless concurrent execution requires higher control instruction bandwidths
than the corresponding deterministic evaluation order execution.

5.1.2 Local GC to speed up CPUs

This section explores various local garbage collection techniques, and their use in -
increasing CPU efficiency. The ideas behind this were outlined in Chapter 3.2—the
reuse of physical locations on a stack must be replaced in concurrent computation
by methods which can reclaim storage allocated in a tree, or even, more generally,
a heap.

" Types of Data

In this section I use the term thread frame data to refer to data statically allo-
cated to locations within a vector on entry to a thread. This contrasts with heap
data (e.g. consed store) which is dynamically allocated during thread execution
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from a global heap. In a concurrent system frame vectors may themselves be
allocated from a heap, but will not therefore be called heap storage.

How do the requirements of thread frame data collection differ from general
heap garbage collection? The local locations used when executing a thread may be
released immediately it finishes: if supply transfer is used then the local locations
used to manage thread reference may also be released. In a similar manner, if
all heap returned in the thread’s value is copied to new locations then the heap
locations used by the thread may be reclaimed on thread termination.

The difference between heap and thread frame locations is just this: it is usually
the case that copying of heap is considered too great an expense to perform on
function exit so heap locations are allocated from global storage and must be
collected in some other way. Reference counts are such a method. It is interesting
to compare reference count gc with function exit copying gc: one has the cost
of copying live data on every function exit, the other the cost of scanning (and
collecting) all dead data. Copying on certain function exits which are known to
use much more heap than they return is thus cheaper than reference counting.

In a sequential system copying can lead to efficient local gc in which all store
is allocated on a single stack, but it does not seem a good candidate for a parallel
system where there is no deterministic total ordering of thread termination times.

However thread frame store accounts for most of the storage allocated during
execution (in my simulations of compiled LISP I found that typically a frame
is 6 locations and uses less than 1 cell of heap). Even when decomposed into
threads, with intra-thread storage allocation on a stack, allocation thread frame
storage predominates over heap. Whatever the merits of local garbage collection,
collection of thread frame alone must thus be seriously considered since it costs
much less than full local garbage collection and accounts for most of the storage
allocated.

To collect or not to collect. Consider first a cache which is used only to
hold newly constructed data. Figure 5.1 gives a diagram of such a cache wrapped
around an ALU (which generates the new data) and identifies important band-
widths.

In this cache hit rate is critica.lly dependent on data lifetime, which may be
expressed by a function f;(T') defined to be the fraction of accesses which are of
data which is older than T. Suppose that data is replaced on a least recently
created basis. 'Then the cache will miss whenever an access occurs to a datum
older than the cache persistence time, T, which is defined recursively from f;

N N
fﬂuah - fconafl(T).

If some fraction of data u are not collected then f; > u so certainly T, <
N/(feonsrt). This severely limits cache effectiveness in small caches of data thh
typically short lifetimes. v v

Is it reasonable to be concerned about cacheing of just newly consed data? In
concurrent symbolic computation stack frames are consed rather than allocated

T, =
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from a stack, and are mostly short-lived. Furthermore, as observed above, more
than 6 out of 8 locations (75%) of storage allocated is for these frames and will
therefore hit in a cons cache.

5.1.3 Data lifetimes in concurrent computation

The last section showed how data lifetime modulates cache effectiveness in a D-
RISC CPU. This section examines the relationship between thread frame lifetime
and scheduling.

Consider first the properties of conventional, sequential, thread execution. Here
threads are identical to function calls, any thread creation results in an immediate
call to the newly created thread, and thread frames may be allocated on a single
stack and reclaimed immediately on thread return. This type of execution may be
represented by a depth-first traverse of the TCT, see Figure 5.2(a).

_ The use of thread frames in this computation is predictable. At any time frame

data for threads on the path from the TCT root to the currently executing thread
is alive. The depth first traverse corresponds to data use which can be efficiently
'~ localised by a stack. Call this type of thread executlon a VN -thread, by analogy
with the use of this term on page 12.

In concurrent computation this picture is changed in two ways. Fxrstly there
may be more than one thread executing—this could be represented by a number
of simultaneous VN-threads, as in Figure 5.2(b). Secondly, concurrent execution
may result in a thread which is part of a VN-thread waiting on the value of some
other unfinished thread. This may be represented by a discontinuity in the TCT
traverse as in Figure 5.2(c).

Call multiple VN-thread execution VN-concurrency, and waltmg on a thread
which is not local in the TCT discontinuity. VN-concurrency and discontinuity
are particularly harmful when combined. During VN-concurrency without discon-
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tinuity the computation may proceed conventionally using the appropriate number
of separate stacks. Equally, if execution is not VN-concurrent, discontinuity may
be accommodated on a single stack by suspending the current thread and push-
ing the new thread onto the stack. This is exactly what happens in efficient lazy
implementations of functional languages, for example TIM (see [FW87]). How-
ever multiple stacks in conjunction with thread suspension leads to blocking: a
suspended thread may be awakened (by a thread on another stack) but unable to
execute because it is trapped beneath some other unfinished thread.

This shows why concurrent computation needs a model of storage allocation
which is more general than a set of stacks.

5.1.4 Scheduling and frame cache lifetimes

Different types of thread execution result in different frame cache lifetimes. The
relationship between scheduling strategy, thread execution, and frame lifetime is
investigated below.

VN-concurrency. Suppose that n VN-threads are independent of each other
and executing in a D-RISC cache. This requires a storage of n times that needed
for the same hit rate with a single VN-thread. However if the VN-threads are
highly dependent, i.e. they join up and share a common root, the storage required
will be little greater than that used by a single thread. Figure 5.3 illustrates this
situation.

Thus demand for use of frame storage in concurrent computation will relate to
scheduling. The best scheduling strategy is one in which threads close together on
the TCT are executed simultaneously. This could be achieved optimally by total
ordering TCT nodes according to a breadth-first traverse and scheduling the least,
according to this order, of the available ready threads whenever a thread finishes.

Discontinuity. The addition of discontinuity to VN-concurrent execution of
threads in general increases the use of store by creating a supplementary path
of frames in the cache leading to each waiting thread at a discontinuity. The data
in these frames must be held in the cache but is separate from active thread ex-
ecution until the waiting thread restarts. Bad scheduling strategies can lead to a
large number of discontinuities, with corresponding loss of cache efficiency.
 When is discontinuity likely to occur? Consider a single node in the TCT: this
represents a parent thread with arcs from the node to each sub-thread created by
the parent. Discontinuity may occur when a sub-thread is passed a reference to ‘
another sub-thread. The referencing thread may become discontinuous if it reads
its reference before the referenced thread has terminated. Since any reference

- ‘passed to a thread may be handed on to its sub-threads, and a thread’s value

may itself contain references to any part of the subtree of the TCT whose root is
the thread, discontinuity may occur unless entire subtrees of the TCT are strictly

" sequenced.
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Discontinuity must in general therefore be predicted from the program’s DEG.
Any data arc which crosses the TCT corresponds to a possible discontinuity unless
its source thread is scheduled before its destination thread. Such a data depen-
dence will be called a pipe, good scheduling must ensure that pipes do not lead
to excessive discontinuity by scheduling sources before destinations.

The structure of symbolic computation is such that concurrent execution with
pipes can often be expressed as communication between TCT subtrees through
lists, the source subtree generates (from the head) a list which is passed to the
destination subtree and read. The two subtrees may be seen as separate processes
connected by a pipeline. A trivial example of this may be found in the concurrent
pipelining of list processing functions, although here the maximum concurrency
is limited statically to the number of functions pipelined, and will typically be
less than this. More typically pipelines are composed with divide and conquer
" recursion so that a dynamic network of functions communicating through pipes
results. One example of this is described in Section 5.5.3 below..

Scheduling strategies. On a uniprocessor scheduling may only approximate
to an ideal strategy, and still result in good performance. The simplest strategies
treat all newly created threads as separate entities in a stack or FIFO from which
they are withdrawn for execution on demand. Waiting threads, when woken up,
are similarly queued but given priority over any new thread.

LIFO scheduling corresponds exactly to depth-first traversal of the TCT, by a
number of VN-threads, it is thus ideal for VN-concurrent computation. A problem
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arises when discontinuity is introduced by pipes. If a and b are two threads with
a discontinuously reading b then they must have some common ancestor p which
created an ancestor of b before an ancestor of a. But of these two threads the one
leading to b should be scheduled before the one leading to a, if possible, in order to
remove this potential discontinuity. Thus sibling threads should be scheduled in
FIFO order (at least when they contain references to each other). This modified
scheduling ensures that in the absence of any demand for new threads execution
will be both depth-first and continuous.

It is now possible to consider the implementation of scheduling strategies. The
basic idea is create new threads dynamically only as required, holding specifications
for new thread creation as a set of continuations, one for each parent with children
still to be created. '

Consider first a single VN-thread, scheduled as in the previous paragraph, call
the (total) order in which this executes threads >yx.

Thus a >y b if any of

1. a is a descendant of b

2. a, b are siblings and a > b in some sibling ordering as in the previous para-
graph. . :

3. a > b in the transitive closure of >yy.

Optimal scheduling would ensure that the next thread to be executed is that
which is earliest in this order total order and also created. Note that this may
not be the earliest thread in the order, since a thread may not be created until its
parent has been created. This scheduling results in execution which is depth-first
and in which executing threads are as close as possible to each other in the TCT,
so maximising cache sharing between the trails of concurrently executing threads.

Unfortunately it is not possible to implement this strategy efficiently: keeping
track of the >yy order of every continuation is difficult since new continuations
may be created at any point in this order. The best feasible strategy is very
simple and consists of LIFO scheduling all continuations. Note that a continuation
when executed will (if it contains more than one sibling) soon enter the first
sibling, stacking a new continuation which will create subsequent siblings. The
FIFO execution of siblings required to minimise discontinuity is ensured by static
sequencing within continuations.

This discussion of optimal scheduling may be related to empirical work on the
Manchester dataflow machine (see [RS87]) to control overall concurrency in a con-
currently executing program. This motivation for selecting particular scheduling
orders—to minimise total token storage—is different from the motivation consid-
ered here, minimisation of intermediate result persistency in caches. The empiri-
cal results presented in [RS87] lead to conclusions similar to those here which are
however expressed in very different language. It is interesting that two apparently
separate implementation issues should require similar implementation techniques.
The similarity is that both require minimisation of intermediate result size, in one
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case globally to satisfy global storage limitations, in the other locally to increase
CPU cache hit rate.

5.2 Concurrency and Performance

The theory presented so far makes no.conclusions about the performa.nce of mul-

tiprocessor syste_ms. It has not yet been shown that they are ever of higher per-
formance than uniprocessors. The information that can be determined from this
relates to the nature of performance in a multiprocessor system. Total ALU band-
width :

fsys= Y. faw
all ALUs

is a function of n, the number of available threads. A naive model of multiprocessor
performance would predict that for some f;

fsys = fimin(n, N)

where N is the number of ALUs in the multiprocessor. From this model one
sees that performance is characterised by two parameters, f;, the single thread
performance, and N f;, the bandwidth limited performance.

The weight given to these two parameters must be determined for an individual
application, without this information the question ‘what is the best design for a
multiprocessor’ cannot be answered. One reason for stressing this pedantic point
is that the programs that I consider typical of symbolic computation do not have
very high concurrency and on a large multiprocessor are limited by periods of
execution in which concurrency is extremely low.

This model of multiprocessor performance is however not accurate. The two
optimisations discussed in Chapter 3.3 use high concurrency on a single ALU to
increase its f zy. The way in which this changes the performance for a given
program concurrency is complicated. Certainly either optimisation will require
n > N for maximum fsys. Bandwidth optimisation is likely not to increase
correspondingly the program concurrency required for a given low fsys, latency
hiding will. However if the latency to be hidden by concurrency is predominately
inter-ALU bus latency then performance for a single thread of computation will
be relatively higher.

A convenient way of describing system concurrency is with loading, L, where

no. of ready! threads

L=
© no. of processors

Execution may be classified by loading into three domains:

Latency limited. L <« 0.5.

1A thread is ready when it may, but will not necessarily, be executing on a CPU.
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Load balance limited. L > 0.5, but L is not a lot greater than 1.
This domain is transitional; load balance between CPUs is impor-
tant and difficult to maintain, hence the name. Latency remains
a limitation in this domain until loading is high enough to hide
all latencies.

Bandwidth limited computation. L > 1.

- Thus comparing, or stating, the performance of different architectures is some-
thing which should be treated with a good deal of caution. The only easy parame-
ter to compare is lims.n fsys (n, N as above), and this becomes less representative
of likely application performance as the size of the multiprocessor scales up.

5.3 Multiprocessors

5.3.1 Data representaﬁon

I have been uncommittal about the way that heap data is represented in a multi-
processor. I have assumed that data is allocated for thread locals in vectors in a
heap: in Chapter 4 I suggested that a frame cache with fixed size vectors be used,
and heap data be either represented as compacted lists or accessed from outside
- the frame cache. o

Simple data representation in symbolic computation uses tuples, most likely
pairs, allocated from a heap. The issue examined in this section is when this
representation should be replaced by one in which semantically separate tuples
are encoded into blocks of sequential storage, in the process removing unnecessary
internal pointers. The most effective such representation applies to lists, whose
elements may be packed into sequential storage allocated in fixed size vectors. in
[LH86] Kai Li and Hudak give a suitable allocation strategy which allows arbitrary
compact list modification using where necessary indirection nodes when altering
‘the structure of compact lists. _

In a concurrent system data modification is relatively rare, it may reasonably
assumed that lists once constructed will never be changed. However two important
types of list construction may be identified: appending to the head of a list, or
recursively constructing the tail of a list. This latter is particularly important in
concurrent systems since it is the basic operation in a pipeline (see page 73).

I advocate a simple form of compact list representation in which linked lists
of vectors represent lists of data which may be read or extended at the head and
constructed at the tail. The reasons for wanting this in a multiprocessor are varied,
and not primarily to do with more efficient use of store. Here is a list of factors all
of which make compact list representation relatively more attractive in a D-RISC
multiprocessor than a von Neumann uniprocessor. All of these apply equally to a
D-RISC uniprocessor.

e Efficient global communication between ends of a pipeline.
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e Low-level non-deterministic control flow may cost less on a D-RISC. This
is just one example of the pervasive effect that optimising for concurrent
execution in a D-RISC has on system design decisions. Low level latencies
can be hidden so are not so pernicious as in the single thread case.

It is not clear that any particular D-RISC design will hide code fetch latency

in an efficient way, in the end the effectiveness of such a decision can only be

~ evaluated in a complete design. However management of concurrent compu-

~ tation pushes design towards a tagged architecture with a rich conditional

~ branch on tag structure. This in itself means that the hardwa.re to support
efficient list compaction is likely to cost less.

e Fixed size vector allocation may be forced by the hardware of a D-RISC
frame cache, in which case the overhead of not representing heap compactly
is large. This argument depends on the frame cache being of a size which
makes cacheing of heap appropriate, and being of fixed size frames; neither
of these conditions are necessarily true.

e Local garbage collection facilitates list compaction. This is a subtle and
implementation-dependent point. We have seen in Section 5.1.2 that local
garbage collection is desirable in a D-RISC to increase frame cache hit-rates.

- If this is implemented with reference counts, or special unique pointers, lists
which are constructed disjointly but have no external references to their
insides may be compacted by copying, reclaiming the old store. (This can
happen automatically whenever such a structure is read, or perhaps as a
background activity).

e Compact lists reduce sequential spines when mapping down lists. A map
can be implemented by chaining down linked vectors, exporting each vector
to a separate processor for mapping.

e Compact lists implement stacks efficiently. In a concurrent system stacks
tend to be shorter and dynamically created, so static allocation of storage
for stacks is difficult.

o Lists are used at a low level in concurrent systems for synchronisation and
scheduling; these can always be compactly represented.

Global Data Transfer

In a multiprocessor inter-processor data transfer offers extra scope for data com-
paction. Because inter-processor bus latency is typically long compared with pro-
cessor cycle time, and specialised hardware to encode and decode data for trans-
mission across a bus lies physically on one edge of a CPU, and so is particularly
cheap, it is reasonable to consider relatively complicated data compaction strate-
gies in order to reduce bus bandwidth.

Global transfer of data may be also chunked in order either to reduce bus
message overhead or global reading overhead. I have assumed that the values of
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threads are transferred completely on reading, even when they are, excluding the
values of embedded threads, large structures. This assumption is usually harmless:
the nature of concurrency in symbolic computation means that typically structures

which are read concurrently (and so should not be chunked and passed totally to

every reading processor) are usually constructed concurrently, so that the sizes
of thread values are small. Where this is not the case, or where conversely it is
" desirable to chunk for subsequent global reading a structure containing multiple
. threads, it is easy explicitly to change data representation. Thus the identification
- of thread and global data reference, tacitly made in this thesis for simplicity, may
where required be broken.

Throughout this discussion of data I assume that heap data is nearly always
used in a functional way so that copying or sharing may be determined at the
" implementation’s convenience. In a multiprocessor more data will be copied than
would be desirable in a uniprocessor.

Global data references make a suitable unit at which to preserve pointer com-
parison tests for structure equality. Also unique global reference pointers may be
used to extend low-overhead cache local garbage collection across processors.

5.3.2 Thread export |

In a multiprocessor threads must be ezported in order to distribute computation.
Thread references can thus become pointers to global memory, even after a thread
has finished, and the uniprocessor model of thread implementation dxscussed in
Section 5.1 must be augmented in two ways:

o Inter-processor thread export must be supported.

e Thread reading may result in global communication and or a wait on a thread
on a distant processor.

Further consideration of this problem leads to a bewildering variety of possible
export strategies. Threads may be exported on creation: creation-export, or on
demand by an empty processor: demand-export. Thread export from fuller to
less full processors may occur as a background task to distribute computation. In
general these three strategies may be used singly or together, as dynamic conditions
dictate. :

It is clear that latency limited computation requires creation-export, since
every newly created thread must be exported immediately to a waiting empty
~ processor. Equally, in a highly bandwidth limited computation, demand-export is
appropriate for reasons discussed in the next two sections.

Export policy can have important interactions with possible 1mplementatlon
optimisations. If the processor on which a thread will be executed is known at
thread creation time then any references to the thread may contain this infor-
mation, so that a subsequent exported reference to the thread may communicate

directly with the thread, without indirecting through the thread’s parent’s pro-

CESsor.
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Determinisfic Thread Export

So far I have assumed that thread export is determined only by the desire to
distribute computation so that all processors are occupied. A more intelligent
export strategy would optimise to whom computation is exported in order to
- maximise cache hit rates or minimise communication bandwidth. The latitude to
do this only exists when computation is bandwidth limited and so good thread
distribution is easily obtained. Two cases of export to specific processors may be
noted:

e Export destination is determined by function name: this allows static in-

~ struction storage to be localised, resulting in increased hit rates for a given
code cache. In general it is very difficult to allocate code to processors stati-
cally while maintaining good distribution, but processors could preferentlally
pick up exports of functions whose code they have recently cached.

o Export destination is determined by thread data. The best example of this
is when data is sparsely accessed from a large structure. The optimal access
strategy may be, on reading a non-local thread, to export the entire reading
thread to the processor containing the thread’s value. Such an exported
thread can be seen merely as an intelligent global read request, and its
export can dramatically reduce communications bandwidth and latency for
the read, especially when some structural locality is preserved. Even with
every successive indirection strict on data in a different processor a data
following structure access is twice as fast as a conventional one. Note that
supply transfer provides an efficient implementation of such a data following
thread (which would for example in LISP be something like CDADR).

The problem with this is that the intermediate data read is not copied and so
multiple accesses require repeated communications overhead. Furthermore a
particular datum could create a sequential bottleneck to repeated concurrent
access which would be eliminated if it were copied.

System efficiency can be affected by thread export and scheduling strategy in
both obvious and subtle ways. These may be summarised under three headings:
distribution efficiency, thread locality and switching efficiency. The first
two of these are new parameters which have meaning only in a multiprocessor sys-
tem. The last has however already been extensively discussed in the last chapter.
In a D-RISC switching efficiency is related to cache hit rates and depends crucially
on scheduling. :

5.3.3 Distribution efficiency

Clearly it is bad if threads which are executable do not find their way to processors
which are empty. This can be measured by a parameter which I call distribution
efficiency and is determined as follows.

At any time let n = no of CPUs, a = no. of ready threads, e = no. of executing
‘threads. The number of wasted CPUs in the system is then w = min(a —e,n —¢).
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Then the distribution efficiency in an executing system is —*-: this represents

owte’
the reduction in speed due to bad thread distribution. The average distribution
efficiency of a program will be 1 if bus latency is negligible and spare ready threads
are exported to idle processors.

- Distribution efficiency is a measure of performance in both latency and band-

~ width limited computation, its average thus shows the total effect of distribution

on performance.
Good thread distribution is relatively easy to manage in the extremes of la-
tency limited and bandwidth limited computation. In the former case any thread

. can be exported to a random processor immediately on creation, the processor

will probably be idle in which case thread distribution is optimal, although the
corresponding distribution efficiency will not be 1 unless thread export time is
0. In the latter the average number of ready threads per processor is large and
so processors which are running low have time to poll other processors for spare
threads: again random polling is adequate.

These two methods of thread export—by supply and by demand—are efficient
at different ends of system loading. In between, where loading is near 1, more
complicated methods in which threads are exported from over-full processors to
under-full processors are more efficient; however the gains from such a complicated

strategy are minimal because most of the time computation is either Latency
Limited or Bandwidth Limited.

5.3.4 Thread locality

In bandwidth limited computation, as the number of ready threads per CPU
increases, so does the possibility of localising the execution of created threads.
Call (sequential) length of computation still required in the execution of a thread
and its descendants the thread’s weight. During the evolution of a calculation
the total weight of threads on each CPU decreases linearly with time unless it is

 changed by export moving weight from one CPU to another. The problem is that

the run-time system knows only the number of threads on a CPU, not their weight,
and so may have to equalise weights at any time in the computation: its task is to
ensure if possible that no CPU ever has a total weight of 0, and that every CPU has
at least one executable thread. The effectiveness of export in equalising weights
depends on the loading of the system, L, since the average fractional change in
weight after an export is 1/L, however the necessity to export computation also
depends on L. This analysis gives no insight into the actual variation of locality
with loading: the argument in the next paragraph attempts to do this.

The ready number of threads on a CPU without export or import varies unpre- ‘
dictably according to a random walk. If the currently executing thread terminates
or waits without issue then it decreases, if the executing thread creates more than
one thread before terminating it increases. The rate at which these things happen
relates to average thread creation or execution time and is roughly constant for a

- given calculation irrespective of system loading. It seems not unreasonable there-

fore to suppose that average time between CPUs being empty without export,
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~latency limited computation any local caches are underused, since CPUs are idle -

and hence the time between exports, is proportional to /I, as it would be if the
weights of exported computation were fully random. This hypothesis is supported
by my simulation results which export threads on demand and show increasing
locality as loading increases.

This locality applies to thread export only and does not imply that data trans-.

fer is equally local. In fact typical heap reference in symbolic computation is
depressingly non-local. The reason for this can be understood by considering the
distance between threads. This is the defined to be the number of arcs separating
the threads in their computation’s TCT. The probability that a thread is executed
on its parent’s CPU will be called thread locality. If this is a the probability
of local heap reading between threads separated by a distance d is a®. Thus
analysis of a computation’s TCT gives information which, together with a dynam-
ically determined measure of thread locality, shows what global bus bandwidth
the computation will need.

In my simulated test programs TCT distance measurements showed clearly
that most heap based computations have increasing average and median TCT
distances between communicating threads as computation size increases. A certain
proportion of reading is TCT local, the rest has distance which increases with
program size.

Of the tests that I have examined only NFIB is truly local—it is clear that
the distance of all reads is 1. This is true in general of computations which
pass data from parents to children and back without skipping generations: such
computations have very nice implementation properties and are natural candidates
for truly hierarchical multiprocessor implementation.

In this dissertation I do not consider the possible optimisations available in
hierarchical computation where data transfer is only allowed between parents and
children; the TCT measurements on my test programs show that most symbolic
computation is not hierarchical.

TCT distances provide a well defined measure of abstract computation locality
which is independent of dynamic execution. Thus all thread export operations are
of distance 1 and so (considered abstractly) local. The dynamic thread locality
in a system then determines whether an operation of given abstract locality is
actually likely to be local.

5.3.5 Switching efficiency

A simple measure of efficiency would be to assume that the overhead is inversely
proportional to time between thread switches. This is only true in von Neumann
processors where the cost of context switching is direct (from register flushing)
rather than indirect from increased cache misses. Even in von Neumann machines
cache coherency destruction can account for a large amount of the switching cost.

Suppose that the CPU has a D-RISC-like cache for local data. The cost of
thread switching is then related to miss rates in this cache. Note however that in

much of the time, and that in bandwidth limited computation thread switching
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may be used to hide this cache miss latency.

Thus the real cost of sthchmg, except in the rare case of load balanced compu-
tation, is an increased cache update and flush bandwidth rather than any latency.
This bandwidth may be compared with the necessary inter-processor communi-
cations bandwidth for export and data transrmssxon, if it is significantly smaller
than these it may be ignored.

In sequential computation stack cache hit rates are high because average stack
frame lifetime is low. In concurrent computation stack frame lifetime depends
on the average number of threads which are being switched between on a CPU.
Consider a typical divide and conquer concurrent program. Each thread creates
some children, and then waits for them to terminate. The average length of this
wait determines stack frame lifetime and hence cache efficiency. This wait is the
parallel execution time of the computation, multiplied by the average number of
threads which each CPU is executing.

Highly concurrent programs may have a very large system loading: does this
necessarily mean that they will have low cache hit rates? The answer to this is
no: providing that the right threads are selected for execution by each CPU and
that thread export locality is maintained. }

 Suppose that only a fraction a of all threads that are created on a CPU are ever
exported from it. Those that are not may be executed sequentially by the CPU,
if ready threads are queued in a LIFO, so that the one most recently created is
next executed, this results in a von Neumann-like depth first traverse of the TCT.
Consider the progress of a newly imported computation: If it is shorter than 1/a
threads long it is likely to proceed without interrupting export and its execution
time will be no longer than on a sequential machine. This means that stack frames
waiting on short computations w1ll be kept in a cache just as well ason a sequential
machine.

This ignores the possibility of synchromsatlon waits in the executing computa-
- tion. If the computation is D&C then these are only as long as two bus latencies
because the data is assumed to come from threads whlch have ﬁmshed This will
require thread sthchmg between roughly

: 2tuaa
1+—M 1+2)

taym:h
threads. This is typically no more than 10, and possibly much smaller than this.

Modified LIFO scheduling, as discussed on page 74, means that synch waits
will cause switches to threads that are local in the TCT whenever this is possible.
If the number of threads between exports is larger than this number most thread
switching will be harmless to stack lifetimes because it will be to a thread which
is part of the same imported computation. ,

This argument works for D&C concurrency, where the only synch waits on
unfinished threads are parents waiting on their children. Pipelines behave differ-
ently. A pipeline corresponds to two calculations that in a sequential machine
would be executed separately, with the locals for the first calculation garbage col-
lected before the second one begins. In a concurrent machine these locals coexist
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on dlﬁ'erent CPUs

In most of the test programs that I consider the average length of pipelines
increases as the computation size does, so pipelines can be implemented with
. compact lists, transferring data (and so waking up a discontinuity) in chunks.
Exactly this sort of coarsening of the grain of available concurrency is needed to
avoid a high number of concurrent active threads on a processor resulting in bad
cache behaviour. Where a pipeline is recognised as such the scheduling of its two
ends can even be related to system loading so that whenever computation becomes
bandwidth limited the pipeline is executed in sequential chunks, rather than with
maximum concurrency. .

The concern to schedule pipelines correctly in a multiprocessor system results
in a thread which returns multiple values (as, for example; successive elements of
a tail constructed list) which thus localises the construction end of the pipeline
and results in a unique reference for reading the pipeline. One convenient way to
implement this is as supply transfer of thread values to a compactly represented
‘list which is then globally referenced.

- 5.3.6 Communication bus topology

The global behaviour of a multiprocessor is dependent on the way in which com-
putation is exported. Of particular interest is the thread locality, a. Clearly, in
latency limited computation a = 0. In bandwidth computation with system load-
mg L, given a minimal export strategy, I hypothesised in Section 5.3.4 above, that
~1— L3, Certainly in simulations as L increases so a approaches 1. The
relatlonshxp between a and communications bandwidth may be quantified:

BW omms = BWezp(]- - a) + BWuati E Pn(l - a")

n=1

where p, is the density of inter-thread reads of TCT distance n. This equation
is an approximation, and ignores one important factor. I have assumed both .
in my simulations, and throughout this thesis, that thread values are cached on
each processor once read. Consider the common case of a value which is read
once by ¢ separate threads. If { > N (the number of processors) this cacheing will
reduce communication bandwidths correspondingly. The overall effect of this, since
‘typically ¢ oc' L whenever i is large, is a reduction in commumcatnon bandwidth
above a loading threshold of order N2.

This simple analysxs, which gives some insight into the effect of loading on
communication bandwidths for different types of programs, may be extended to
a hierarchically structured multiprocessor. Each node of the structure may be
treated in the same way as a globally communicating multiprocessor, with subn-
odes taking the place of processors. Typical values of a during bandwidth limited
computation are larger for higher level nodes since the amount of computation in
each node is larger. Export bandwidths localise nicely in a hierarchical structure, -
but distant read bandwidths do not. This means that some proportion of the
system bandwidth remains increasing in proportion to the number of processors
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‘communicating, which results in a bottleneck at the root of any hierarchy. It is
easy to choose test programs with either very local or very non-local behaviour,
50 attempts to quantify these bandwidths are not particularly useful.

In a general multiprocessor storage hierarchy three types of bandwidth are
significant:

e Interprocessor communications (BW ,mm, above)
e Static data (e. g. instruction fetch)
o Intermediate data '

The last two of these may be reduced above any node in the hierarchy by increasing
the nodes cache size, the first is irreducible.

When designing a multiprocessor it would be nice to be able to use empirical
data on cache hit rates to balance cache sizes and communication bandwidths
throughout the design. In practice the extreme variability of cache behaviour
makes any reliance on cache hit rates, except most the conservative, potentially .
very damaging to performance.

Broadcasting Data

- In a multiprocessor there are two ways in which busses which allow cheap one-to-
many communication can be used to increase performance. Firstly thread values
may have to be distributed globally. A good example of this is in the transposition
of a D* D matrix, if this is represented as a list of lists. An efficient and destructive
sequential algorithm will transpose this structure without using storage in O(D?).
A parallel algorithm using threads should manage the same job, with admittedly
a higher cost for small matrices, in O(D).

Closer inspection shows that there are problems. Any O(D) computation must
have separate threads for rows, to scan the original matrix, and for columns, to
assemble the transposed matrix. Communication between these two sets must be

through some locally non-deterministic means: this is provided within a thread

‘world by the use of sequencers, discussed inChapter 2.

Each column is defined by a sequencer whose local store is a vector of length D
This is written with the required elements by the row threads, using an ‘update n*?
location’ operation. Each column thread waits for its sequencer reference count to-
be zero and then reads the vector, constructing a list. '

This algorithm requires one-to-D communication of rows in the matrxx a.nd -
also the names of the column sequencers: it is one where the communication cost .
changes from O(D?) to O(D) by using broadcast. :

 In this example the broadcast can be inferred from the static structure of the
program, and receiving threads primed to pick up the necessary data. Whenever
the number of inter-thread reads is known to be larger than (1 — a)N (a,N as
above) it is even easier to broadcast the data globally. In general broadcast may be

~ used in conjunction with a queue of requests on each receiving processor, satisfying

multiple requests with one bus transfer. This may be compared with a data
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cache, in which each processor holds previous data values rather than requests for
values. Broadcast and normal cacheing however have good hit rates in different
circumstances. Normal cacheing hits when identical requests on one processor
are temporally local, broadcast when identical requests on multiple processors are
temporally local. Furthermore broadcast bus bandwidth mxnlmlsatlon, by queuing
requests, results in high bus latencies.

5.4 Latency Limited Computation

This section considers the dynamics of multiprocessor execution at low levels of
system loading, so that total computation time is limited by latency along a critical
path rather than by available CPU bandwidth.

Conventional CPU design has developed a set of understood implementation
techniques which optimise computation in a single thread on one CPU. The avail-
able operation bandwidth is determined by critical latencies in operand fetch and
execution, these are reduced by appropriate local cacheing of data. The last few
chapters have shown that bandwidth limited computation can use locality in a
similar way, albeit less efficiently. :

Latency limited computation is intrinsically non-local and so is least similar
to conventional execution. This profound difference is illustrated by an estimate
of the cost of a computation. In either single thread or bandwidth limited exe-
cution this is proportional to the size (total no of nodes in) the DEG. In latency
limited computation it is proportional to the DEG critical path length (CPL):
in computation theory this corresponds to execution time on a non—determlmstxc
machine.

The most important parameter determining latency limited performance is the
ratio between single message bus latency and average time between synchronisation
events (where a thread waits or finishes). I will call this ratio A: if A >> 1 the length
of computation is roughly proportional to the number of critical path bus latencies.

A is itself determined by the way in which a computation is split into concurrent
threads. More concurrency results in shorter thread length and longer A\. The
test programs that I consider all have a ‘normal’ decomposition in which all the
concurrency from calls to functions which are possibly long is available. It is
impossible to increase thread length from this without losing large amounts of
concurrency, conversely the export of all function calls results in no more than
a small increase (< 10%) in concurrency with a penalty of much smaller thread
lengths.

'Having made this static decomposmon the average thread length between syn-
chronisation events varies little between different test programs. This is because
it relates to the minimum time in which both something sensible can be done and
the computation can spawn a thread, e. g. mapping a function down a list. It is
easy to devise programs whose inner loops are maps of long functlons down hsts,
but these are not typical of symbolic computation.

Numeric floating pomt operations, not represented in my tests would on a
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ifn>1: {create : create :
~ ithread: :thread:

SN EPEEpEPER P kit ettty

Figure 5.4: DEG of one function call of NFIB.

CPU without specialised numerical support result in much longer minimum thread
lengths. However this is unrealistic: hardware for numerical computation would

undoubtedly have such support, and in any case high precision arithmetic has itself

" a natural concurrent decomposition. The efficient concurrent 1mplementatlon of
integer arithmetic is too specialised to be considered here.

“There is thus justification for making the pessimistic assumptlon that typical
programs have thread lengths not much larger than the theoretical minimum;
certainly if a system cannot efficiently support these its application domain will
be very restricted. Having done this A becomes a parameter determined by the
hardware: its value can be established, for a particular technology, by looking at

_concrete designs. -

5.4.1 Optimising NFIB
NFIB, defined by: o
NFIB n = If n < 2 Then 1 Else NFIB(n — 1) + NFIB(n — 2) +1

is a particularly simple test program. It is certainly not typical of symbolic com-
putation, however its simple structure illustrates clearly some general optimisation
techniques. For the purposes of this analysis it is similar to many other simple
divide and conquer programs, e.g. FIB.

Figure 5.4 shows the DEG of one function body of NFIB. This either returns
after some computation, or spawns two children on which it then waits. :

The entire execution dynamics of NFIB are contained in 5 execution times,
representing activity between interesting events, and two critical latencies: one
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from thread creation to its starting on a different CPU, one from thread finishing
to wakeup of a waiting parent. _
The critical path for NFIB(n) contains n — 1 repetitions of:

from - to time
start — create DBl or Bl+ B2
create —  start Lezport
finish — restart Lyend -
restart — finish B3
. And one of: '
start — ﬁmsh B4.

If 4 > n > 1 the two children NFIB(n) are sterile threads of length B4,
otherwise the NFIB(n-1) thread will be roughly 1.6 times longer than the NFIB(n-
2) thread. This has an important implication: for NFIB functions with n > 3 the
critical execution from start to creation will be B1 or B1+ B2 according to whether
NFIB(n-1) is created first or second: optimal compiling must ensure that it is first.

The total CPL for n > 4 is then: n(B1 + B3 + L.port + Lsena) + B4 + B2 This
contrasts with a total CPU time, significant in bandwidth limited computation, of
NFIB(n)(B1 + B2 + B3 + B4)/2, since half of the calls to NFIB are sterile.

Thus optimal compiling for latency limited computation must minimise B1
and B3 at the expense of B2 and B4. -

This decomposition of NFIB into threads results in 2 bus latencies per function
body on the critical path. An important optimisation removes bus latency from
the critical path by noting that NFIB (n-1) is nearly always longer than NFIB(n-2),

~and that creation of two child threads for NFIB is unnecessary. If the NFIB(n-1)

computation is kept and executed by the parent the difference in (critical path)
lengths of the two computations can absorb bus latency, resulting in a critical path
which is purely function execution. ,

In general? whenever a computation forks it is good policy to keep one half
of it with the parent, and if possible choose that which is known or guessed to
be shorter. The bus latency associated with a computation fork is thus either
Lezport + Lysend or 0. The parameter L,.,s is composed of either one bus latency,
if the request for the sent data is not critical, or two latencies. This must be
qualified. In a system with a bus that allows reading of foreign memory in one
operation there may be little difference between these two times. Furthermore if
it can be established statically (as is the case here) that the result of a thread is
needed'by another thread and the CPU on which this thread is or will be ezecuting
1§ known then the thread can send its data directly to the requesting CPU without
any data request.

21f one path from root to bottom of the TCT is never exported the resulting strand of compu-
tation committed to one processor is long. This can create a load balance problem as a divide-and
~conquer computation nears its finish and most threads terminate if the alive ones happen to be on
the same processor. Although long threads mean less thread management cost very long threads

" can hurt latency limited computatlon
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NFIB illustrates an important fact in bandwidth limited concurrent implemen-
tation. Half of the calls to NFIB result in short sterile threads (though with the
 above optimisations this reduces to one quarter). In general CPU use is deter-
mined by the efficiency with which leaves of the TCT can be executed: there are
~ usually a large number of these. This makes bus latency particularly significant.

5.4.2 Cloning

While a multiprocessor system is mostly idle it is natural to try to think of some
use for the spare processing capacity. This section introduces an extraordinary way
in which latency limited computation can be optimised by using spare processors
to execute replicas of threads.

[GLV84] Garcia-Molina et al propose an interesting scheme for managing
very large address spaces on a uniprocessing system. Their idea is that a number
of processors, each with part of the address space local to it, should execute the
same program in lock-step synchronism, with the single processor which has access
to memory at any time broadcasting data read from its memory to all the others.
Whenever the sequence of data reads moves from one memory to another the
- corresponding delay is 1 bus latency, otherwise no global bus latency is incurred.
This performance is superior to that obtained with a smgle processor performing
(necessarily global) accesses to the whole memory.

I will now propose an extension of this technique to multiprocessors, in which
lock-step execution is used to reduce global bus latencies encountered in export
and reference. I call this process cloning and devote some time to discussing its
properties. While it is has not been proven that cloning is a viable implementation
technique it deserves consideration because it is a way of substantially speeding
up latency-limited computation in a multiprocessor system with high A. It is thus
at least of theoretical interest.

The basic operation of cloning is the export of a single thread to a number of
idle processors, which proceed simultaneously and identically with its execution.
The copies of the exported thread will be called clones and will each lead to the
same value. v

The apparently redundant process of cloning leads to two implementation ad-
vantages:

Invisible Export. When copies of a thread need to create a thread -
its export can be accomplished without overhead by splitting the
copies into two sets which execute the old and new threads respec-
tively. Thus a number of individual exports have been replaced
by a one multiple export creating the copies, which will be called

" clones. This reduces bus use if one to many communication is
allowed, although bus bandwidth is hardly likely to be a limita-
tion in very latency bound computation. More significantly the
splitting of the cloned threads on thread creation introduces no
export latency overhead. '
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Cache Prefetch. Every time a new calculation is exported to a previ-
ously idle processor it results in code and static data cache update
overhead. If spare processors are occupied with copies of an exe-
cuting function these cache updates happen simultaneously. This
may reduce bus bandwidth if broadcasts are used, and reduces the
contribution that cache miss latency makes to the critical path.

The second of these two advantages may be obtained without the full compli-
cation of cloning: idle processors could monitor a snoopy bus and update their
caches automatically.

The implementation of cloning presents formidable complexity and proceeds
as follows: :

On exportable thread creation from an uncloned thread when the system is
lightly loaded the child thread is cloned and exported to a number of idle proces-
sors.

On exportable thread creation from a cloned thread each clone uses a personal
id to decide whether to execute the created thread or continue with the parent.
This id could have been present in the cloning export, though this is not possible
in a simultaneous broadcast. One possibility for export generating unique ids is
to export in a binary tree, with each processor exporting to 2 others. This would
work well with global network interconnection.

It is necessary for every clone to know what its copies will do, so that it
knows when it is the only copy of a thread left, then it can itself create a new
cloned export. One way of managing this is to clone a thread to 2" processors,
every subsequent thread creation halving the number of processors attached to the
thread. This is wasteful of the original export unless the TCT is a binary tree,
but it is easy to implement. Every processor can tell whether it is the only clone
left by comparing its TCT distance from the initial clone export with n.

TCT shapes cannot usually be predicted in advance so cloning will be wasteful
of processors, to clone through n exports with this method requires an initial
export to 2" processors.

Cloning can thus, at the cost of profligate processor use, reduce the number of
export latencies in the CP arbitrarily. Multiple copies of threads can also be used
to reduce the number of bus latencies when reading data. Whenever a critical
datum is local to one of the copies it sends it to its clones: computation proceeds
with a single bus latency whenever the sequence of data reads on the critical path
changes to data on a different processor. In divide and conquer computation clones
that have split into different threads can coalesce afterwards, so reducing to an
absolute minimum the cost of inter-thread communication.

At any stage in cloning a global unclone signal must be able to release all copies
except one of each thread: again this requires careful predetermmed cooperation

between clones.

In return for this complication cloning offers a possible reduction in export
latency of n, using 2" spare processors, and a reduction in reference latency which
depends on the nature of inter-thread data reference and is therefore difficult to

quantify.
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Cloning techniques may be valuable in certain specialised applications though
they are formidably complicated and have bandwidth use which is in general expo-
nential on the possible gain. However this is bandwidth which is otherwise unused
~ and so cloning may be viable in systems with long communication latency.

5.5 Analysis of Test Programs

In a book based on his experience with benchmarks of LISP systems, [Gab85],
Gabriel discusses both the advantages and difficulties of detailed analysis of bench-
marks. He suggests that the real constraints on performance of a concrete imple-
mentation are often found only by detailed study of puzzling benchmark times,
from an attempt to understand these obscure figures comes an understandmg of
neglected and important implementation details.

In multiprocessor architectures the task of benchmarking is much more difficult
because of the great variation in dynamic behaviour between different programs.
This section discusses some easily identifiable properties of the programs which I
simulated during my study of multiple thread implementation.

The first section below discusses the concurrent structure of symbolic compu-
tation and analyses the test programs that I use. The second section describes the
simulation and analyses the results.

5.56.1 Concurrent computation.

As we saw in Chapter 2 the structure of a concurrent computation is represented
by its DEG. In order for a DEG to be executed on hardware it is compiled into
- statically determined threads. The DEG then reduces to a set of threads related
by creation dependence and data dependence. The creation dependence of threads
in a computation may be represented by the computation’s TCT, data dependence
~ may be analysed with respect to this. |

When examining the behaviour of particular programs three types of con-
currency may be described particularly simply: maps, pipelines and divide and
_ conquer programs. ‘

e Maps are threads which spawn a large number of independent subthreads,
for example a thread which maps a function over a set. In functional lan-
guages sets are often implemented by lists, this imposes an inherent se-
quentiality on any corresponding map which is not important if the ratio of
mapped function time to list node traversal time is greater than the length
of the list.

e Pipelines are in contrast formed by two processes which communicate
through a list which one of them constructs and the other concurrently exam-
ines. The concurrency of a pipeline is limited by the balance of its producer
and consumer and is between one and two. The producer of a pipeline must
be implemented by a number of threads in order to release elements of the
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constructed list as soon as they are ready. This is a typical example of a
situation where thread boundaries are needed in a computation which is sin-
gle threaded and not in itself concurrent. The efficient implementation of
pipelines must preserve locality between different threads.

e Divide and conquer, or D&C, programs have data dependency only
from threads to their ancestors or descendents in the TCT. This dissallows
the passing of a thread’s name by its parent to one of its siblings. Pro-
grams which further restrict data dependence to between parents and chil-
dren will be called immediate divide and conquer, and are particularly
easy to implement because they map efficiently onto hierarchical communi-
cation topologies. Divide and conquer computation gets its name from the
supposition that a parent splits its computatxonal task into chunks which it
hands to its children.

I will call data dependence which limits the possible order of execution of
threads critical, since its corresponding DEG arc is critical. These three types of
concurrency represent respectively the three possible types of critical communica-
tion between a thread and its siblings: none, intra-generation and inter-generation.

My use of functional languages as a basis for a computational model of con-
currency, and the corresponding model of threads, requires that communication
between siblings be only one way: two threads cannot be simultaneously created
‘and passed each other’s references.

The non-referentially transparent nature of code that can usefully use such
cyclic pathways makes it unattractive in a concurrent system. Sequencers provide
a form of two-way communication between siblings which does not in any way
constrain execution order, and so need not be separately categorised here.

Annotations The concurrent structure of the code which I describe is exhibited
by annotating those function calls which are to be exported as concurrent threads.
All other code runs sequentially. Function calls are marked by prefixing characters
to the name of the function whose call is to become a thread as follows:

1. Create an exportable thread
!$ Tail recurse in a pipe with the current thread »
'] Create a new thread which is bound to its parent processor

5.6.2 Test programs

Some of the test programs _which I examine here are chosen as exemplars of particu-

lar types of concurrent computation. However the polynomial arithmetic programs

were extracted from a large LISP algebra system (REDUCE), with no alteration.

They are as representative of ‘typical’ symbolic computation as any medium sized
program is.

' The language in which all code is wrntten is a pure subset of LISP. Property list

- modification is not allowed, nor in general are non-local variables. However fluidly
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Name Code size Type sequential parallel
, (words) time time
NFIB 30 D&C _ 0(16") O(n)
LISTMUL . 160 pipe, map O(n?) O(n)
MERGESORT - 110 D&C, pipe O(nlogn) O(n)
TREECRAWL ' 240 D&C,map O(n) O(log n)
MUL 1500 D&C, map O(n?) O(n)
MULV 1500 D&C O(n?)  O(logn)
BOOLEVAL 670 D&C  O(2")  O(n)
BOOLENV 700  D&C o)  0O(n)

Figure 5.5: Test Program Summary

bound variables are used to pass parameters from parents to children, and globals
are used used to parametrise functions as part of their static definition. These two
exceptions allow the use of substantial chunks of REDUCE without modification.
The source listings for these programs, annotated for concurrent execution, are
given in Appendix B.

Figure 5.5 lists the tests and summarises thexr characteristics, a more detailed
analysis of each is given below. The most notable feature of these tests is the way
that even simple code can give rise to concurrent structure which is complex: the
structure of mergesort is described in Section 5.5.3.

‘ The first four tests are 51mple programs testing particular sorts of concurrent
structure. '

NFIB. Immediate (see a.bove) binary divide and conquer program.

LISTMUL. Simple univariate non-sparse polynomial multiply using lists of co-
eﬂ'ic1ents to represent polynomla.ls

MERGESORT. Merge sort usmg binary sphttmg of lists, see Section 5.5.3.

TREECRAWL. A tree is created, reconstructed in mirror image by a traverse,
and then traversed again. The two traverses each reference every node just
once; each traverse is itself D&C, but the three parts of the program are
plpelmed

The next four tests are more general. The first two are taken with no change ex-
cept export annotation from an existing large algebra system; the last two breadth-
first search to find the boolean variable sets that satisfy a proposition.

MUL. Multiply two univariate polynomials using a general multivariate spares
-representation polynomial multiply.

MULV. Multiply two multivariate polynomials.
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Symbolic Procedure mergesort( 1); .
If 1 AND cdr 1 . _
Then merge( !. mergesort !.halfof 1, !.mergesort !.halfof cdr 1)
Elsge 1; '

Symbolic Procedure merge( 11, 12);
If Null 11 Then 12 '
Else If Null 12 Then 11
Else
Begin
scalar x, y, z;
- X := car 11;
y := car 12;
return If orderp( x, y)
Then x . !$merge( cdr 11, 12)
‘Else y . !$merge( cdr 12, 11)
End;

vSymbolié Procedure halfof( 1); 1 AND car 1 . (cdr 1 AND !$halfof cddr 1);

Figure 5.6: Mergesort -

BOOLENY. Breadth-first search a boolean expression using a list of variables

so far assigned which is incrementally and non-destructively changed.

BOOLEVAL. Breadth first search a boolean expressxon re-evaluating it when-

ever a variable is bound.

Concurrency profiles for these test pi'ograms, ruhning on idealised hardware

with no bus latency and a large number of processors, can be found in the figures
at the end of this chapter. -

5.5.3 Conclusions from implementation of mergesort

" The functlonal algorithm for Mergesort reproduced in Figure 5.6 has a concurrent
‘structure which is particularly interesting.

The mergesort function creates a divide and conquer solution in which the
input list is first subdivided into trivial lists by a binary tree of halfof threads,
and then merged by a binary tree of merge threads. These two trees are created
from the top downwards by mergesort: the depth of the two trees is determined
dynamically and is approximately log, of the size of the input list. Figure 5.7
illustrates this decomposition and shows the list dataflow through the two trees.

The thread decomposition of halfof is particularly problematic. A naive decom-

- position into threads without explicit implementation of pipes leads to a very large
~number of threads being generated. A solution is to make halfof a pipe thread with
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Figure 5.7: Concurrent structure of mergesort |

a concurrently generated input and output list. This is signified in the source by a
1$ annotation. In the implementation this results in a cons of the first element of
the output list followed by a modified tail recursion. The trick is to perform this
recursion without creating a new thread name. One way of doing this is by supply
transfer of the thread value each to a succession of heap addresses, marking each
such address as a system object which cannot be copied until it has been given
a value by the appropriate tail recursion. Figure 5.8 illustrates the state of heap
during two successive tail recursions of such a pipe implementation. :
Use of pipes reduces the number of created threads in mergesort by a factor of
~ log, n, where n is the size of the list to be sorted.

- Another optimisation of mergesort is motivated by its tree structure, and the
redundancy of having two separate copies of halfof to split each list into two. This
operation could more efficiently be performed by a thread with one input pipe and
two output pipes. Although this cannot be directly represented in a functional
language it is a potential lower-level optimisation. Unfortunately it cannot directly
be deduced from the source program without complicated analysis of halfof, and -
so this type of optimisation seems out of the reach of compilers at the moment.

- I do not address the question of how threads w1th multlple output pipes should
be represented in a source language

5.6 Summary

This chapter contains two main results. The first, in Section 5.1.4, relates schedul-
ing to resource use in symbolic computation, and proposes a strategy for minimis-
"ing intermediate data lifetimes. This work relates to that of Ruggiera and Sargeant
[RS87] on dataflow machines, where the same problem is explored empirically, and
in the different framework of dataflow graph execution. My work for the first time
establishes the relationship between von Neumann stack-based compiled language
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x0, x1 successive pipe
list elements :
x0 / x0
x1 -/
Thread | / Thread
Header o Header
— recursion 1 — recursion 2

Figure 5.8: Implementation of pipe

execution and concurrent execution of threads either mdependently or with dlS-
continuities.

Second, I analyse the problems of latency limited computation on a lightly
loaded multlprocessor system. This has as far as I know received no attention from
other researchers: I propose a new technique, called cloning, which trades unused
processors in a lightly loaded multiprocessor system for decreased communication
latency by executing multiple copies of threads. This is theoretically interesting,
although its practical application is far from clear. '

The other work on thread implementation parallels that of Halstead [Hal85]
‘who has explored the same types of implementation problem using specifically
imperative programming constructions, instead, as I have, of considering possible
optimisations of functional programs.

This chapter is a compendium of 1mp1ementatlon problems: it therefore raises
more questions than it answers. Is compact list representation worthwhile in a
multiprocessor system? Should system design pay especial attention to optimum
latency limited as well as bandwidth limited computation? The first question that
cannot be answered without much further work, the second requires an accurate
specification of application and multiprocessor size.

The motivation behind this work, as with the rest of this dissertation, was
to establish a framework within which multiprocessor CPU design for concurrent
computation could reliably be explored. This chapter concentrates on problems
which are intrinsic to any multiple thread implementation, and should therefore
be carefully considered in any concrete design. '

There remains much work in this area for future (concrete) implementations
to address.
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Concurrency Pro»ﬁles
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Figure 5.11: Concurrency Profile of MERGESORT '
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Figure 5.13: Cont:urreﬁcy Pl_'pﬁle of LISTMUL
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Figure 5.15: Cohcurrency Profile of MUL
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Chapter 6

Conclusions and _Dir'ections for
Further Research

This dissertation raises many questions about concrete D-RISC design and imple-
mentation which are nowhere answered. My motivation for this work was indeed as
a preliminary feasibility study for a multiprocessor CPU design. When I started
this work I was thinking in terms of a conventional multiprocessor design with
specialised support for memory management, and achieving performance through
very high bandwidth low latency bus technology, as for example GRIP [PCSHS87].

- The work was driven by a dissatisfaction with current understanding of the
constraints which govern multiprocessor CPU performance, and the 1nvest1gatlon
of D-RISCs was a result of this.

- There are thus two parallel strands of argument in this dissertation. One is
the theoretical analysis of computation starting with the definition of sequencers
in Chapter 2, and ending with the discussion of possible processor architectures
in Section 4.5. The other is the study of practical implementation problems in
Chapter 5. Both of these strands were developed by me independently of other
work, both are now being investigated by other researchers.

The study of latency-limited computation in Section 5.4 is a contribution to
~ the understanding of multiprocessor execution dynamics with I believe no related
work. The work on thread implementation has some common ground with Hal-
stead’s work on the Multilisp language [Hal85], although his investigation does
not extend to radically different hardware design, or intermediate data cache hit
rates. Interestingly, I discovered after completing my work that Halstead had sug-
gested in [Hal81] that thread-swntchmg be used in multlprocessors to hlde global
communication latency.

- The work on CPU architecture has as fa.r as I know no related work except,
recently, for the parallel work carried out by Ianucci [Ian88], whose recent doctoral
thesis is a proposal for a particular hybrid von Neumann / dataflow design based
on experience with dataflow machines. It is very exciting to find other research on
this and encouraging that D-RISC architectures should be proposed by somone
starting from dataflow design technology and concepts. Ianucci is concerned with
the advocacy of one particular architecture rather than an investigation of the
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fundamental constraints on any concurrent achitecture: his work is thus comple-
mentary to mine.

The most important result of my work comes from the interconnection of these
two research areas: implementation and architecture design. The work on D-RISC
cache hit rates shows why symbolic concurrent computation has been such a thorny
implementation problem, but also that careful attention to details of scheduling
in a D-RISC design can ameliorate this.

The power of the theory presented in Chapters 2 a.nd 3 denves from its mini-
malist assumptions about implementation techniques. The two single-thread op-
erations which are commonly regarded as primitive—instruction execution in a
fixed order and data location update—are shown to be potential optimisations of
a more fundamental computational model of non-destructive function evaluation
and atomic sequencer operations. This is the simplest starting point for a dis-
cussion of CPU design: if we were not exposed to concepts related to sequential
programming languages we would naturally consider direct DEG execution on a
tagged dataflow machine to be simple, and von Neumann single-thread execution
to be an extremely bizarre and highly complicated model of computation.

The future research which this work most clearly provokes is a concrete D-RISC
design. The remarks in Section 4.3.5 on the importance of new memory design in
a D-RISC architecture imply optimal D-RISC design is an extremely large project.
Nevertheless there are many smaller investigations which would be valuable.

The freedom to use synchronous and coherent orginisation in many different
ways in a D-RISC CPU makes the structure of D-RISC design space extremely
mysterious. I feel that this remains the fundamental problem for computer de-
signers: in a concurrent system what combination of synchronism and coherence
leads to highest performance? The comparison of bandwidths and latencies of
connections between cooperating units may offer some more quantitative insight
here, however the work in this thesis marks the extent of investigation possible
for me without more specific consideration of concrete designs. I hope that future
communication with Ianucci and other researchers at MIT will lead to further
application of the theory developed here.
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Appendix A

Glossary

access-overlap
asynchronous

bandwidth

blocking

cache

cloning

coherence

connection
creation-export

critical path

DAG cache hierarchy
Dataflow Execution Graph
demand-export
discontinuity
distribution efficiency
divide and conquer
frame cache

immediate divide and conquer
implementation language
latency

lazy evaluation

loading

map, of threads

nodes, of cache hierarchy
Normal evaluation order
parallel evaluation order
pipe

pipeline, of threads
sequencer ,

storage hierarchy
storage

switching efficiency
synchronous

Thread Creation Tree

44
19
19
72
24
88
59
36
78
19
26
13
78
70
79
91
46
91

19
10
75
90
25
10

10 -

73
90

33
37
79
19
13

thread locality

thread

transfer, demand

transfer, supply

tree hierarchy

update function, of sequencer

VN-concurrency
VN-thread
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Appendix B
Test Program Listings

MULTF

The test programs MUL and MULV use the same algebraic polynomlal multiply
routine (MULTF below) with different data. Mul multiplies two single-variate
polynomials, multv multiplies two multivariate polynomlals. The corresponding
recursive structure is different.

SYMBOLIC PROCEDURE MULTF(U,V);
%U and V are standard forms.
%Value is standard form for UsV;
BEGIN SCALAR NCMP,X,Y;
A: . IF NULL U OR NULL V THEN RETURN NIL
ELSE IF ONEP U THEN RETURN V
ELSE IF ONEP V THEN RETURN U
ELSE IF DOMAINP U THEN RETURN MULTD(U,V)
ELSE IF DOMAINP V THEN RETURN MULTD(V,U)
‘ELSE IF NOT(!+EXP OR NCMP!* OR WTL!* OR X)
THEN <<U := MKPROD U; V := MKPROD V; X := T; GO TO A>>;
X := MVAR U; o
Y := MVAR V;
IF (NCMP := NONCOMP Y) AND NONCOMP X THEN RETURN MULTFNC(U,V)
ELSE IF X EQ Y
THEN <<X := ! MKSPM(X,LDEG U+LDEG V);
Y := §_ ADDF(!{.MULTF(!*T2F LT U,RED V),!. MULTF(RED U,V)); ‘
RETURN IF NULL X OR NULL(U : = MULTF(LC U,LC V)) THEN Y
ELSE IF X=1 THEN ADDF (U,Y) ' :
ELSE IF NULL !*MCD THEN ADDF(1+T2F(X .* U),Y)
ELSE X .* U .+ Y>> '
ELSE IF ORDOP(X,Y) OR NCMP AND NONCOMF LC U
THEN <<Y := ! MULTF(RED U,V):
: X := MULTF(LC u,v);
: RETURN IF NULL X THEN Y ELSE I.POWU X 4 YO>,
Y := { MULTF(U,RED V);
X := MULTF(U,LC V);
‘ RETURNIFNULLXTHENYELSELPOWV X +Y
END; o
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SYMBOLIC PROCEDURE MULTD(U,V);
%U is a domain element, V a standard form.
%Value is standard form for U*V
IF NULL V THEN NIL
ELSE IF DOMAINP V THEN MULTDM(U,V) - '
Else If domainp lc v Then lpow v .* multdm( u, lec v) .+ !$multd( u, red v)
ELSE LPOW V .* ! MULTD(U,LC V) .+ Y$MULTD(U,RED V);

~ SYMBOLIC PROCEDURE ADDF(U v);
%U and V are standard forms. anue is standard form for U+V
IF NULL U THEN V :
ELSE IF NULL V THEN U
_ ELSE IF DOMAINP U THEN. ADDD(U,V)
ELSE IF DOMAINP V THEN ADDD(V,U)
ELSE IF PEQ(LPOW U,LPOW V)
THEN (LAMBDA (X,Y); IF NULL X THEN Y ELSE LPOW U .* X .+ Y)
. (!.ADDF(LC U,LC V),{.ADDF(RED U,RED V))
ELSE IF ORDPP(LPOW U,LPOW V) .THEN LT U .+ !$ADDF(RED u,v)
ELSE LT V .+ '$ADDF(U RED V);

SYMBOLIC PROCEDURE ADDD(U,V);
%U is a domain element, V a standard form.
%Value is a standard form for U+V;
IF NULL V THEN U
ELSE IF DOMAINP V THEN ADDDM(U,V)
- ELSE LT V .+ 1$ADDD(U,RED V);

POLYMUL

Symbolic Procedure polymul( a, b);
a AND b AND
((car a * car b) . polyplus( O . !.polymul(cdr a, cdr b),
!.polyplus( !.pdmul( car b, cdr a), }.pdmul( car a, cdr b))));

Symbolic Procedure pdmul( d, P);
p AND ((d * car p) . 1$pdmul( d, cdr p));

Symbolic Procedure polyplus( a, b);
If Null a Then b
Else If Null b Then a :
Else (car a + car b) . !$polyplus( cdr a, cdr b);

NFIB

Symbolic Procedure nfib( n); g
If n <2 Then 1 Else 1 + !|nfib( n - 1) + !.nfib( n - 2);
} ' S
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MERGESORT

Symbolic Procedure meigesort( 1);
If 1 AND cdr 1 , ,

- Then merge( !.mergesort !.halfof 1, ! .mergesort !.halfof cdr 1)
Else 1; ‘ o

Symbolic Procedure merge( 11, 12).
If Null 1%t Then 12
Else If Null 12 Then 11
Else
Begin 7
scaelar x, y, z;
X := car 11;
y := car 12;
return If orderp( x, y)
Then x . !$merge( cdr 11, 12)
Else y . !$merge( cdr 12, 11)
- End; : .

Symbolic Procedure halfof( 1); 1 AND car 1 . (cdr 1 AND !$halfof cddr 1);

TREECRAWL

Symbolié Procedure treecrawl( arity, size);
inspect_tree !.reverse_tree ! .make_tree(arity, size, 0);

Symbolic Procedure make_tree( arity, size. level);
Begin
‘Scalar 1,x;
If size <= arity : o
Then << For n = 1 : size Do 1 := level . 1:
return 1
Else << For n = arity step -1 until 2
Do << x := mrandom iquotient( (size * 2), n) >>;
1 := |.pake_tree( arity, x, level + 1)
size := gize - x; : .
- return( !$make_tree( arity. size, level + 1) . 1)
5> : »
End;

Smacro Procedure mapcari( 1, f).

Begin
Scalar wwli, ww12
wwll := ];
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While wwll ,
Do << wwl2 := f car wwll . wwl2;
wwli := cdr wwli
>>;
return wwl2
End;“ . .

Symbolic Procedure mrandom( n);
%returns a pseudo-random number in range 0 to n
Begin
Scnlar r;
:= iquotient( random() 1001);
» return iremainder( r, n+1)
End;

Symbolic Procedure reverse_tree tree;
mapcari( tree, !.reverse_treel);

Symbolic Procedure reverse_treel x;
If atom x Then x Else reverse_tree x;

Symb011c Procedure reversel x5

Begin
Scalar 1; _ o
“While x Do << 1 := car x . 1; x := cdr x >>;
return 1

End;

. Symbolic Procedure inspect_ tree tree.
Begin
Scalar n;
If atom tree Then return( tree OR 0)
Else << tree := mapcari(tree, !.inspect_tree);
n := 0; )
While tree Do <<'m := max(car tree, n); tree := cdr tree >>;
return n
>>

BOOLENV

Symbolic Procedure boolenv( exp, vb, v);
Begin
Scalar x, expi, exp2
If Not b_eval( exp, vb) Then return nil;
If Not v Then return list vb;
. If exp EQ T Then return b_perms( v, vb);
X := car v;
v := cdr v;
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expl := 1.boolenv( exp, (x . T) . vb, v);
exp2 := !.boolenv( exp, (x . Nil) . vb, v);
return b_join( expl, exp2)

End;

Symbolic Procedure b_join( a, b);

If a ANDD

Then rappend( a, b)

Else a OR b;

Symbolic Procedure b_eval( exp, vb);

Begin
Scalar x, ¥y,

z, 1, 11;

If pumberp exp

Then If x :=

atsoc( exp, vb)

Then returm cdr x
Else return exp

Else If atom

exp Then return exp

Else << y := car exp;
11 := exp;
While ( 11 := cdr 11)
Do 1 := !.b_bind( car 11, vb) . 1;
If y EQ "not
Then If Not (z := car 1)

Else
Then

Else
~ Then

Else
>

End;

OR z EQT
Then return not z
Else return list( °'not, z)
If y EQ ’or
<< Vhile 1
Do If (z := car 1) EQ T
Then << 1 := nil; 11 := T >>
Else << If z Then 11 :=z . 11;
l:=cdrl
>>;
If 11 EQ T OR Not 11 Then returm 11
" Else return( exp)
>
If y EQ "and
<< Vhile 1 _
Do If Not (z := car 1)
Then << 1 := nil; 11 := °'F >>
Else << If z NEQ T Then 1% := z . 11;
- 1l i=cdrl
>>; .
If 11 EQ 'F OR Not 11 Then return not 11
Else return( exp)
>>

errp_t("Bad expression")
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BOOLEVAL

Symbolic Procedure booleval( exp, vb, v)
Begin :

Scalar x, exp1 exp2

If Not exp Then return nil;

If Not v Then returm list vb;

If exp EQ T Then return b_perms( v, vb)

X := car v;

i= cdr v;
expi := !.booleval( b_bind( exp, list(x

.M, (x.T)

exp2 := !.booleval( b_bind( exp, list(x . Nil)), (x .

return b_join( expl, exp2)
End;

Symbolic Procedure b_perms( v, vb);
Begin
Scalar x;
If Not v Then return list vb
Else << x := car v;
v := cdr v;

return rappend( !.b_perms( v, (x .
{.b_perms( v, (x .

>>
End;

Symbolic Procedure rappend( 11, 12).
<< Vhile 11 )
Do << 12 := car 11 . 12;
11 := cdr 11
>>; '

12
>>;

Symbolic Procedure b_bind( exp. vb)
Begin

Scalar x, y, z, 1;

If numberp exp

Then If x := atsoc( exp, vb)

' Then return cdr x
Else return exp
Else If atom exp Then return exp
Else << y := car exp;
Vhile ( exp := cdr exp)

Do 1 := 1.b_bind( car exp, vb) . 1

If y EQ ’not
Then If Not (z := car 1)
ORzEQT

Then return not z
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End;

>>

Else return list( ’'not, z)
Else If y EQ 'or
Then << While 1
Do If (z := car 1) EQ T
Then <<'1 := nil; exp := T >>
Else << If z Then exp := z . exp;
1l :=cdr 1
>>;
If exp EQ T OR Not exp Then return exp
Else return( y . exp)
>
Else If y EQ ’'and
Then << Vhile 1

Do If Not (z := car 1)

Then << 1 := nil; exp := 'F >>
Else << If z NEQ T Then exp := z . exp;
1 :=cdrl
>>:

If exp EQ 'F OR Not exp Then return not exp

Else return( y . exp)
>>

Else errp_t("Bad expression")
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