Technical Report AN

Number 177

Computer Laboratory

Experimenting with
Isabelle in ZF Set Theory

P.A.]. Noel

September 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 P.A.J. Noel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Experimenting with Isabelle in ZF set theory

P.A.J. Noel
Computer Laboratory
University of Cambridge

7 September 1989

Abstract

The theorem prover Isabelle has been used to axiomatise ZF set theory
with natural deduction and to prove a number of theorems concerning func-
tions. In particular, the axioms and inference rules of four theories have been
derived in the form of theorems of set theory. The four theories are:

e Agy, a form of typed lambda calculus with equality,
o Qy, a form of simple type theory,

e an intuitionistic first order theory with propositions interpreted as the
type of their proofs,

¢ PP), the underlying theory of LCF.

Most of the theorems have been derived using backward proofs, with a small
amount of automation,

Contents

Introduction

ZF set theory and the derived theorems

2.1 ZFsettheory @ i i i i i i it i e e e e e e
2.2 Relations and functionso,
2.2.1 Definitions i e e e e
2.2.2 Some theorems concerning functions
2.2.3 Example of the use of recursion: lists.
2.3 Simpletypetheory i i i i
2.4 Intuitionistic logic with proof objects
2.5 Domain theoryin PPA e e e e e e e e s
2.6 Reasoning about types e e e e e e e e e e e e
Comments concerning the proofs
3.1 Choice of system of deduction
3.2 Levelof automationc. 000
33 Tactics . v v v v v v i s et e e e e e e e e e e e
3.4 Examplesofproof ce e
3.5 Forward proofs e e e e e e e e e e e e

Some related work

Conclusion

-3 =7 A

27
28
28
29
30
33

37

37

1 Introduction

Although various forms of set theory have been used in attempting to formalise
the foundation of mathematics, set theory is often considered too clumsy to use
for reasoning about functions. Some higher order formal systems are generally
considered more suitable. However, because of the intuitive aspect of set theory
and the acquired knowledge about its properties, attempts are often made to
express the semantics of the higher-order formal systems in terms of set theory
(see [3] for the case of type theory). For the same reasons, new and more expressive
set theories are also considered: for instance, the theory of non-well-founded-sets
[1] allows a set to belong to itself (taking ‘belong’ to be a transitive relation),
and, consequently, allows self-appllcatlon of set-theoretic functions, as well as the
definition of a type of types.

The aim of my research was twofold: firstly to develop, within ZF set theory,
a collection of useful theorems concerning functions; secondly to prove, within
the theory, the axioms and inference rules of some commonly used theories. The
theories in question are:

o typed lambda calculus with equality,
e simple type theory Qo, as formalised in [2],
e a first order theory, with propositions interpreted as the type of their proofs,

o PP), the underlying theory of LCF.

The set theoretic concept of function is adequate for each of these theories.
It is worth noting here that, when defining a function in set theory, one has the
choice to use either a function of predicate logic, or a set theoretic function. The
application of a function of the first kind, say f1, to the term a is expressed by
fi(a). The application of a function of the second kind, say f2, to a will be
expressed by f2"a. When the type of a is known, it is preferable to use the second
form in order to be able to reason about the function. The function f1is too big
to be an object of set theory, since its domain is not a set. However, it is possible
to define the restriction of f1 to a set A. In the following, such a restriction will
be named lam(4, f1).

Despite its limitations, the concept of set theoretic function is in fact more
expressive than the concept of function in simple type theory. The basic set in a
model of simple type theory is a countable set. In set theory, the set of natural
numbers, w, is modelled by such a set. Thus, the functions of various orders which
may be expressed in simple type theory are also expressible in set theory. Many
more functions may be defined in set theory since there exists sets, such as the
transfinite ordinals, which may not be constructed in simple type theory.

Isabelle is a theorem prover well suited for the task of deriving axioms and
inference rules, since, in their general form, Isabelle’s theorems are inference rules.
Furthermore, higher order unification, which is provided in Isabelle, is necessary

3

when using the schematic axioms and rules of set theory, or any schematic theorem
which may be derived in it. I have extended the intuitionistic first order theory,
already set up in Isabelle, first to classical first order logic, then to ZF set theory.
The other theories have been derived within set theory.

The main part of the paper is divided in three sections: section 2 presents what
has been proved, and the definitions used in the process; section 3 is concerned
with some of the issues relating to the proofs themselves; section 4 contains a brief
description of some related work.

2 ZF set theory and the derived theorems

The axioms and rules of inference which have been chosen for the set theory
are presented first. Then a set of definitions relevant to functions is introduced,
and some of the theorems concerning them are discussed. The axioms of Ag,, in
their explicitly typed form, are included in these theorems. Finally, the axioms
and rules of inference for the other theories mentioned in the introduction are
presented, expressed in their set theoretic form.

2.1 ZF set theory

Set theory has been constructed on top of the first order intuitionistic logic already
defined in Isabelle. The basic axioms of this logic are expressed in a natural
deduction style ([14],(16]). The logic is first extended by two inference rules:

e the substitution of equals by equals, ‘eg-elim’, which is required for a logic
with equality:

a=b P(b)
P(a)

The axioms concerning the reflexivity, symmetry and transitivity of equality
are already in the basic theory. In fact, the symmetry and transitivity axioms
may be derived from the above axiom and the reflexivity axiom (which may
be seen as an ‘equality introduction’ rule)

 an axiom used to extend intuitionistic logic to classical logic, the refutation
axiom:
[Not(A)]
A
A
with the following definition of Not:

Not(A) & (A — False)

The theory is then extended to include the ZF axioms displayed on page 6. Here
are some remarks concerning the notations: the symbol ¢:* stands for the mem-
bership predicate €; the term Collect(A, P) stands for {z € A | P(z)}; the term
Replace(f, B) stands for {f(z) | z € B}. An alternative notation for Collect(4, P)
is [z]|z : A, P(z)]. An alternative notation for Replace(f, B) is [f(z)||z : B]. The
double square brackets convert object-level formulae into meta-level propositions.
‘==’ is the Isabelle symbol for the meta-level implication; it may be understood
as representing an object-level inference. The theorems of Isabelle are generally
in the form of derived inference rules. The constant symbols of set theory have
been defined with appropriate types within Isabelle. The symbols which have not
been defined are taken to be universally quantified meta-level variables. In ZF8,
for instance, z and A are universally quantified over the terms of the theory, and
P over the functions from terms to formulae. From a syntactic point of view, the
variables quantified over terms may be seen as standing for free variables, and the
other quantified variables for schematic variables (i.e. uninstantiated constants)
of various orders. Meta-level variables within the scope of different quantifiers
stand for different object level variables. When a theorem (or an axiom) is used
in a proof, the meta-level variables for which the scope of the quantification is
the whole theorem are interpreted as schematic variables and may thus become
instantiated through unification during the proof.

In [17] and [8], ZF1 is axiomatized as A C B & B C A — A = B. However,
the bi-implication is easily obtained by using the substitution rule of equality
(eq-elim). Note that ZF1 may also be introduced as an extension of classical logic
without equality. In [9] for instance, equality is defined by the extension axiom of
page 6, and the extension axiom becomes the axiom schemas

Vz.Vy.z =y — (P(z) < P(y))

" From these, the properties of equality are derivable.

Usually, the axioms ZF2 to ZF8 are given in the form of existentially quantified
statements: e.g. ‘there is a set with only elements a and b’ (pairing). In each case,
the uniqueness of the set may be proved, thus allowing the definition of a new term
to represent it. For ZF3 to ZF7, these definitions are used as axioms, in place of
the usual existential ones. This is the same form of axiomatisation as the one for
the sequent form of ZF in [14].

There are many ways of formalizing the ‘null’ axiom:

e as an existential statement about the null set

¢ as an expression of the defining property of the null set, if the null set is
taken as a primitive symbol

e as a definition of the null set

The axiom may even be omitted completely, since the existence and uniqueness
of a null set may be derived from the other axioms. The formalisation which has
been chosen here is the second one above: 0 is taken as a primitive symbol.

5

ZF 1 - exfenaion

ZF 2 - null:

ZF 3 - pairing:

ZF 4 - Union:

ZF & - Power:

ZF 6 - Collect:

ZF T - Replace:

ZF 8 - INF_O:

INF_succ:

ZF axiomatisation

[l A=B<>A<=B&B <=4 |]

[l Not(a:0) I]

[x {a,b} <-> x=a | x=b |]

{| A : Union(€) <~> EXISTE B. A:B & B:C |]

[l A : Pow(B) <-> A <= B |]

[l x : Collect(A,P) <-> x : A & P(x) |]

[l x : Replace(f,B) <-> EXISTS a. a : B & x=f(a) |]

[l O:INF |]
[l n:INF |] ==> [| succ(n):INF |]

ZF 9 - foundation: [| Not(A=0) |] ==> [} EXISTS u. u:A & u Int A = 0 |]

subset:
strict_subset:
Un:

Bucc:
Inter:
Int:

Dif:
singleton:
Pair:

Hd:

T1:

Product:

£l
[l
[l
Li
[l
Ll
[
[l
[
[l
[l
[l

Useful Definitions

A <= B <-> ALL x. x:A ~-> x:B |]
A << B <-> A <= B & Not(A=B) |]
A Un B = Union({A,B}) |]
succ(n) = n Un {n} |]
Interkc) = [x || x:Union(C), ALL y. y:C --> x:y] |]
A Int B = Inter({A,B}) |[]
A-B=1[y Il y: A, Not(y:B)] |]
{a} = {a,a} |]
<a,b> = {{a},{a,b}} |]
Hd(A) = Union(Inter(A)) |]
T1(A) = Union([X || X:Union(A),
Not(X:Inter(A)) | Union(A) = Inter(A)1)]]

A*B = [x || x:Pow(Pow(A Un B)),
EXISTS a. EXISTS b. a:A & b:B & x= <a,b>]|]

ZF8 ensures the existence of an infinite set. In the chosen axiomatisation, the
primitive symbol INF represents one such set, and its defining properties are given
by INF_0 and INF succ. Note that INF has been introduced for convenience only.
It is possible to define the set of natural numbers, w, directly from the existential
version of ZF8: it is the intersection of the sets which satisfy the properties specified
by the axiom. It can then be shown that w itself satisfies these properties.

The foundation axiom is given in its usual form. From it will be derived the
theorems:

-(a € a) and ~(a€b&bea)

Using the definition of Hd and T, the following theorems may be derived:
o Hd(A) is the first element of A if A is an ordered pair

e Tl(A) is the second element of A if A is an ordered pair

2.2 Relations and functions
2.2.1 Definitions

New concepts are introduced in a theory through definitions. If the form of the
definitions satisfies adequate criteria, adding definitions does not alter the basic
theory, but merely provides syntactic variants for some of the expressions of the
theory. For this to be the case, the definition of terms must satisfy the following
requirements (see [17], chapter 2):

e non-creativity criterion: a definition satisfies this criterion if the only sen-
tences not containing the new symbol which are provable in the theory with
the new definition are the ones which were provable in the theory without it.
Adding definitions satisfying this criterion to a given theory results in what
is sometimes called a ‘conservative extension’ of the theory.

e eliminability criterion: a definition satisfies this criterion if every sentence
which contains the new symbol is equivalent to one without the new symbol.

Often, conditional definitions seem appropriate. For instance, the application
of a term to another term is definable only if the first term is a function, and the
second term is from an appropriate set. Conditional definitions, however, satisfy
the criterion of non-creativity, but not the criterion of eliminability. If function
application, for instance, is defined by a conditional definition, then any sentence
involving f"a could not be eliminated in favour of a sentence not involving ~ when
a does not belong to the domain of f or f is not a function. On the other hand,
the use of an unconditional definition forces us to give a meaning to f*a, even
when f is not a function or a is not in the domain of f, creating the possibility of
proving non-sensical theorems.

The choice which has been made here was to stick to unconditional definitions,
most of them of the simple form:

new_symbol(zy, T3, ..., Tn) = exp(T1, T3, ..., Tp)

where {z1,3,...} is a set of variables, possibly empty, and ezp(zy, 23, ...) is a term
not involving the new symbol (recursive definitions are thus disallowed) and having
Z1,Z2,... as the only free variables. Since the actual domain of application of the
definitions may be greater than the intended one, care must be taken that the
theorems involving the defined terms include the appropriate typing information.

When defining new symbols in this way, the existence and uniqueness of the
defining term is obviously ensured. However, to ensure that the meaning of the
new symbol is the desired one, some conditions of existence and uniqueness must-
normally be satisfied. For instance, reasoning about the least fixed point is ap-
propriate, only if the set of least fixed points is a singleton set. Checking that
these conditions are satisfied constitutes a significant part of the work involved
in proving theorems within set theory. Such checks may not be ignored without
losing preciseness in the meaning of the defined terms.

Two of the definitions on pages 9-10 have a form which differs slightly from
the simple form above. However, the terms concerned are only syntactic variant
of well formed terms of set theory. First, the definition of lambda abstraction
involves a function variable: in lam(A, E), E is a function variable. The expression
defining lam(A, E) is a first order term only if E is not quantified. This condition
is enforced automatically in Isabelle by specifying in the definition of lam that
the second argument is a function from terms to terms: since quantification in
first order logic is restricted to be over terms, the second argument cannot be
quantified. The same kind of remark applies to Collect(A, P), in which P stands
for a function from terms to formulae. Second, the definition of Curry involves
a particular representation of abstractions: one using %, which is available in
Isabelle. Its use within lam is acceptable since lam (4, %(z)E(z)) may always be
replaced by its well formed definiens {(z, E(z))||z : A}.

The remainder of this section consists of comments concerning the definitions
of pages 9-10.

The definitions of Domain, Range and Image apply to any set, not just rela-
tions.

Partial_order(D) is the set of partial orders defined on the underlying set D.
Given a partial order, say R, its underlying set is completely determined, and
may be refered to either by Domain(R) or Range(R). If D is the underlying
set of a partial order R, and Y is a subset of D, Lubs(R,Y) is the set of least
upper bounds of ¥ in D. It has been proved that, if this set is not empty, it is
a singleton, thus justifying the definition of the least upper bound Lub(R,Y) as
U(Lubs(R,Y)). Note, however, that if Lubs(R,Y) is empty, Lub(R,Y) is defined
as 0, even though there is no least upper bound.

Definitions concerning relations
#%% General definitions concerning relations #**

Reflexive(D) = [R || R:Pow(D*D), ALL x. x : D --> <x,x> : R]

L R || R:Pow(DxD),
ALL x. ALL y. <x,y> : R & <y,x> : R --> x=y]

Anti_symmetric (D)

Transitive(D) = [R || R:Pow(D*D), ALL x. ALL y. ALL z.
<x,y> : R & <y,z> : R --> <x,z> : R]
Domain(C) = [a || a:Union(Union(C)), EXISTS b. <a,b> : C]
Range(C) = [b || b:Union(Union{C)), EXISTS a./<a,b> : €]
Image(R,X) = [y || y : Range(R), EXISTS x. x:X & <x,y> : R]

¥k Trangitive closure *%x*

T_cloas(R) = Inter([S || S:Pow(Domain(R)*Range(R)), R<=S &
ALL x. ALL y. ALL z. <x,y> : 8 & <y,z> : R --> <x,z> : §8])

Init(R,x) = [y || y:Domain(R), <y,x> :T_clos(R)]
% (Qrders *#*%

Partial_order(D) = [R || R:Pow(D*D), R : Reflexive(D) &
R : Anti_symmetric(D) & R : Transitive(D)]

Total_oxrder(D) = [R || R:Partial_order (D),
ALL x. ALL y. x:D & y:D --> <x,y> : R | <y,x> : R]

*** Upper bounds and least upper bound ##*#

Ubs(R,Y) = [y || y : Domain(R), R : Partial_order(X) &
Y <= X & ALL x. x:Y --> <x,y> : R]

Luba(R,Y) = [y || y : Ubs(R,Y), ALL z. z : Ubs(R,Y) --> <x,z> : R]
Lub(R,Y) = Union(Lubs(R,Y))
*+x% Complete lattice *%x*

Complete_lattice(X) = [R || R:Partial_order(X),
ALL Y. Y <= X --> Not(Luba(R,Y) = 0)]

**¥% Well-founded relation **x

Well founded(X) = [R || R:Pow(X+X), ALL Y. Y <= X & Not(Y=0)
-~> EXISTS x. x:Y & Not (EXISTS y. y:Y & <y,x> : R)]

Definitions concerning functions

% Functions ***

Function(A,B) = [F || F:Pow(A*B),
ALL x. ALL y. ALL z. <x,y> : F & <x,z> : F --> y=z]

¥ Total functions %**
A->B = [F || F:Function(A;B), ALL x. x : A --> EXISTS y. <x,y> : F]
%%% Application and lambda abstraction *%%

F~a = Union(Image(F,{a}))
lam(A,E) = [<x,E(x)> || x:A]

#%x Composition #¥

fog=1[X]|| X: Domain(£f)*Range(g),
X=<x,y> & EXISTS z. <x,z>:g & <z,y>:1]

%%k Currying function ##**
Curry(f) = lam(First(Domain(£)),%(x)lam(Second(Domain(F)),%(y)£"<x,y>))
#%* Monotone functions *#=*

Monotone(RA,RB) = [F || F:Domain(RA)->Domain(RB),
‘ ALL x. ALL y. <x,y> : RA --> <F"x,F*y> : RB]

#x% Fixed points *¥x*
Fix(F) = [x || x : Domain(F), F*x = x]
Lfixs (F,R) = [x || x : Fix(F), ALL y. y:Fix(F) --> <y,x> : R]
Lfix (F,R) = Union(Lfixs(¥,R))

#*+ Definitions concerning the natural numbers %%

successor_set(A) = [X |] X:Pow(A), 0:X & ALL x. x:X --> succ(x):X]
Omega = Inter(successor_set (INF))

*** Function defined by simple recursion: recs(f,a) %%

recs(f,a) = Inter([R || R:Pow(Omega*Domain(£)), <0,a> : R &
ALL n. ALL y. <n,y> : R --> <succ(n), £*y> : R])

*++ Function defined by well-founded recursion: wrec(X,Y,R,f) ##x
Restrict (f,R,x) = [<y,£°y> || y:Domain(f), y : Init(R,x)] II
wrec_s(X,Y,R,f) = [F [| F : Function(X,Y), ALL x. x : Domain(F)

~=> F*x = f*x"Restrict(¥,R,x)
& ALL y. y:Init(R,x) --> y : Domain(F)]

wrec(X,Y,R,f) = Union(wrec_s(X,Y,R,£))

10

A well-founded relation has been defined here as a relation in which every
subset has a minimal element. The well-founded induction may then be shown
to apply to any set on which a well-founded relation is constructed. However,
this result would not be true in intuitionistic logic. An alternative definition of
a well-founded relation is simply that it is a relation satisfying the well-founded
induction.

The definition of function application is justified by a theorem stating that,
when f is a function and the image of ¢ under f exists, then that image is unique.
Care must be taken, however, when using application: the result of the application
has always a value. Normally, most theorems concerning an application f"a should
be subject to the conditions that f is a function, and a is in the domain of f.

Composition is defined for any set f and g, not just functions. Similarly,
recs(f,a) and wrec(X,Y, R, f) are defined for any set f, even though the intended
meaning of the definitions is restricted to the case where f is a function. Also,
Curry(f) is defined for any set f and its intended meaning is restricted to the
case where f is a function, the domain of which is a product.

It has been proved that, if f is a total function from D to D and R is a
partial order over D, then the set of least fixed points of f, Lfizs(f,R), is either
the empty set or a singleton set. Theorems refering to the least fixed point,
Lfiz(f, R), should be subject to the condition that Lfizs(f,R) is not empty.

Suppes [17] defines natural numbers, i.e. the members of w, as the ordinals
which are well-ordered by the inverse of the membership relation (defined on them).
An ordinal is a complete set (or transitive set, i.e. such that every member is also
a subset of the set), connected by the membership relation. Because it expresses
more explicitly the properties of the membership relation over the natural numbers
and the ordinals, such a definition could result in simpler proofs than the ones
resulting from the definition of page 10. For example, the theorem stating that,
for any two ordinals m amd n, either m € nor n € m or n = m is a direct
consequence of the property of connectedness in Suppes’ definition.

The simple recursion theorem states that, if f is a function of type A — A and
a is an element of A, then there exists a unique function g of type w — A with
the following properties:

g0=a

Vn.n € w — g"suce(n) = f*(¢"n)

The definiens in the definition of the term recs(f, a), on page 10, represents one
possible expression of this function. The proof that recs(f, e) is actually a function
follows the informal proof of [8]. An alternative definition is

recs(f,a) = U({rees s(f,a,m) | n € w})
with
recs-s(f,a,n) ={gen - A|g"0=a & Vi.i € n— g suce(s) = f*(¢")}
A proof that recs(f,a), as defined here, is a function is given in [17].

11

Finally, notice that the term lam(A, %(z) f"z) may not be used to describe the
restriction of a partial function, f, to the set A. This is because f"z is defined for
every value of z, and thus lam (A, %(z)f"z) is a total function over A, whereas the
restriction of f to A need not be total on A. Restrict has been defined to remedy
this problem: every element of Restrict(f, R,z) is an element of f.

2.2.2 Some theorems concerning functions

Some theorems concerning functions, proved within set theory, are listed on pages
13-14. First, an explanation concerning the notations may be useful. The symbol
‘1, which occurs in several theorems, is the Isabelle notation for the meta-level
universal quantifier. The typing rule for abstractions, for instance, should be
understood as

(Az.[z: A] => [E(z) : B]) => [lam(4,E) : A — B]

where A is the meta-level universal quantifier. From a syntactic point of view,
the variable z within the scope of the quantifier may be taken to represent a free
variable, chosen in such a way that there is no occurence of it outside the scope of
the quantifier.

Among the theorems listed, there is a set of axioms for a typed X calculus
with equality. The main difference between this form of X calculus and the more
standard forms (As, with equality in 10| pages 162-165, for instance) lies in the
representation of typing. In set theory, typing must be explicit; it is not part
of the syntax. Accordingly, there are two rules related to typing inferences, one
concerning application, the other abstraction. The 8, n and ¢ rules correspond to
the rules of the same name in Ag,. The other rules of g, are simply instances of
the substitution rule. Note that the rules which have been proved within set theory
are more general than the rules of Agy, since E(z) and F(z) are not restricted to
be in functional form.

Next, some general properties of functions are listed. The theorems concerning
the least upper bound are used here in the proof of Tarski’s fixed point theorem,
and later, in the proof of theorems concerning domain f.heory. For the sake of
clarity, only the most significant of the theorems which have been proved are
displayed on page 13. Among the more complicated theorems which are not listed,
there is the following one, required to prove that the function space induced by
two cpo’s is itself a cpo:

Vm.meY — =(Lubs(R, {P(m,n) | n € X}) = 0)
Lubs(R, {Lub(R,{P(m,n) | n € X}) [m e Y}) = Lubs(R, U({{P(m, n)|neX}|meY}))

i.e. given a partition of a set, if every subset in this partition has a lub, then the
lub of the set of lub’s of the subsets is the lub of the given set,

12

General theorems concerning relations and functions

#+* Uniqueness of the image of a singleton under a function %
(this theorem justifies the definition of application)

[l £ : Function(A,B) |1 ==> [| a : Image(f,{x}) I] ==> [| b : Image(f,{x}) |]
==> [| a=b |]

#* Typed lamda calculus *
1. typing rules

application type [| £ : A->B |] ==> [| x: A |] ==> [| £°x : B |]
abstraction type (!(x)[| x:A |I==>[] E(x):B {]) ==> [| 1am(A,E) : A->B |]

2. main rules

beta conversion [} a : A |] ==> [| lam(A,E} * a = E(a) |]
eta conversion [l £: A->B |] ==> [| lam(A,%(x)£"x) = £ |]
xi rule QL x:A [I==>[} E(x) = F(x) |]) ==> [| 1am(A,E) = lam(A,F)|]

%%% General properties of functions *#x%

extensionality [| £ : A->B] ==> [| g : A->B |]
==> [| f=g <-> ALL x. x:A ~=> £°x = g°x |]
total functions with empty domain {| 0->B = {0} |]
total functions with empty range [| Not(A=0)] ==> [| A->0 =0 |]
Composition (1) [| £ : B->C |] ==> [| g : A->B [] ==> [| £ @ g : A->C |]
(2) [1 £ : B=>C |] ==>[| g : A->B |] ==> [| a : A |]
==> [| (£ 0g) ~a=£f " (g~a) |]
currying (1) [] £ : (A+B)->C |] ==> [| Not(B=0) |] ==> [| Curxy(f) : A->B->C|]
(2 [1 £ : (A*B)->C |1 ==> [| x : A |] ==> [| y : B |]
==> [| Curry(f)*x*y = £~ <x,y> |]

**%* Properties of Lub’s #%*

Uniqueness [l a: Lubs(R,Y) 1] ==> [| b : Lubs(R,Y) |] ==> [| a=b |]
Lub is an ub [| Not(Lubs(R,Y) = 0) |] ==> [| x:Y |] ==> [| <x,Lub(R,Y)> : R|]
Lub is least [| Not(Lubs(R,Y)=0) |] ==> [| x : Ubs(R,Y) 1]
==> [| <Lub(R,Y),x> : R |]

Lubs of pairs (1) [| Not(Lubs(RA,{x,y})=0) |] ==> [| Lub(RA, {x,y})=y |]

==> [| <x,y> : RA |]

(2) [l RA : Partial_order(A) |] ==> [| <x,y> : RA []
==> [| y : Lubs(RA,{x,y}) |]

13

Fixed point and recursion theorems

+ Fixed point #***

basic properties

[l R : Partial_order(A) |] ==> [| x : Lfixs(F,R) |] ==> [| y : Lfixs(F,R) |]
==> [| x =y |]

[l R : Partial_order(A) |] ==> [| Not(Lfixs(f,R) = 0) |]
==> [| £"Lfix(f,R) = Lfix(f,R) |]

[l R : Partial_order(A) |] ==> [| Not(Lfixs(f,R) = 0) |] ==> [| x : PFix(f) |]
==> [| <Lfix(f,R),x> : R |]

Properties of inverse relations (used in the fixed point theorem)
[l R : Complete_lattice(A) |] ==> [| Inv(R) : Complete_lattice(A) |]
[| R : Partial_order(A) |] ==> [| £ : Monotone(R,R) |]

==> [| £ : Monotone(Inv(R),Inv(R)) |]

Tarski's fixed point theorem
[l £ : Monotone(Lat, Lat) |] ==> [| Lat : Complete_lattice(A) |]

==> [| Glb(Lat, [u || u : A, <f~u,u> : Lat]) : Lfixs(f,Lat) |]
[l £ : Monotone(Lat, Lat) {] ==> [| Lat : Complete_lattice(A) |]

==> [| Lfix(f,Lat) = Glb(Lat, [u || u : A, <f*u,u> : Lat 1) |]

*%% Simple recursion ***

Omega [l 0: Omega |]
[l n: Omega |] ==> [| succ(n) : Omega |]
[l n:Omega |] ==>[lm:n |]==>{[|m<=n|]
[| m: Omega |] ==>[| n : Omega |] ==> [| m:n | n:m | m=n |]
[l n : Omega <-> n=0 | EXISTS m. m=succ(m) & m:Omega |]

Mathematical (1) [| X <= Omega |] ==> [| X : successor_set(4) |]
induction ==> [| X = Omega |]
(2) [l a : Omega {1 ==> [| P(0) |]
==> [| ALL n. n: Omega --> P(n) --> P(succ(n)) []
==> [P(a) |]

gsimple (1) [£ : A->A |1 ==> [| a : A |] ==> [| reca(f,a) : Omega->A |]
recursion (2) [| £ : A->A [] ==> [| a : A |] ==> [| recs(f,a)"0=a |]
B) [l £:A>A |1 ==>[] a:A[] ==>[|n: Omega |]
==> [| recs(f,a)"succ(n) = £ recs(f,a)"n |]

**x¥ well-founded recursion *%%

well-founded [| a : X |] ==> [| R : Well_founded(X) |]
induction ==> [| ALL x. x:X --> (ALL y. <y,x> : R ==> P(y) --> P(x) |]
==> [| P(a)]]

well-founded (1) [| R : Well_founded(X) |1 ==> [| £ : X->Pow(X*Y)->Y |]
recursion ==> [| wrec(X,Y,R,£) : X->Y |]
(2) [l R : Well_founded(X) |] ==> [| £ : X->Pow(X*Y)->Y |]
==> [} x : X []
==> [| wrec(X,Y,R,£)"x = f"x"Restrict(wrec(X,Y,R,f),R,x)|]

14

The greatest lower bound of a partial order, which is used in Tarski’s theorem,
is simply the lub of the inverse partial order. The properties of inverse relations
relevant to Tarski’s theorem have been proved. In particular, the theorem con-
cerning the inverse of a complete lattice justifies the definition of a complete lattice
as simply a complete upper semi lattice: the theorem states that a complete up-
per semi-lattice is also a complete lower semi-lattice, and is therefore a complete
lattice. Two theorems are required to express Tarski’s fixed point theorem. The
two are necessary: if the glb in the second theorem is the empty set, the theorem
asserts that Lfiz(f, Lat) is also the empty set. However, this could mean either
that the least fixed point is the empty set, or that the least fixed point does not
exist. It is the first theorem which asserts the existence of the least fixed point.
Note that the second theorem would be sufficient to express Tarski’s theorem if
the definition of the least fixed point was a conditional definition, restricted to the
case where the set of least fixed points is not empty.

The basic properties of w lead to the two forms of mathematical induction,
which are themselves used in the proof of the simple recursion theorem. A proof
of the recursion theorem for primitive recursion may be derived from the proof for
simple recursion. First, notice that the definition of recs(f,a) includes the case
where a and f"b (for b : A) are functions of the same type. In the case of curried
functions, the conditions satisfied by recs may then be rewritten:

recs(f,a) 0"z T = @° 21" T

Vn.n € w — recs(f,a) suce(n) z,"...zm = f*(recs(f,a) ' n 21" e Zm) 21" Ty

(for any instance of =, ...z,, satisfying the type restriction on a and f).

Thus, to obtain primitive recursion, it remains only to allow the given function,
f, to depend on the iteration step, n (i.e. f = h"n). This could be achieved by
redefining recs as a function of A rather than f, and proving the corresponding
properties. Alternatively, a primitive recursive function based on the function h,
of type w — A — A, and the set @, of type A, could be derived from simple
recursion in the following way:

1. definea function f of type w4 — A by f(z) = (succ(Hd(z)), h"Hd(z)"Ti(z))
2. define a function g by simple recursion: g = recs(f, (0, a))

3. define the required primitive recursive function as

precs(h,a) = An € w. Ti(g"n)

The function precs(h,a) is such that:
precs(h,a)"0=a
precs(h, a)"succ(n) = h"Hd(g"n)"Ti(g"n)

15

in which T'(g"n) may be seen, from the definition of precs, to be equal to precs(h,a)’n,
and Hd(g"n) may be shown by induction to be equal to n.

The function constructed by well-founded recursion could be expressed by a
simpler term: as in the case of simple recursion, the function wrec need not depend
on the sets X and Y, since X is simply the domain of f and the range of the union
of the range of f may be substituted for Y. Such a simplification is desirable, if
only to make the expressions containing recursive functions less cumbersome.

It is worth noting that ordinal recursion may be seen as a special case of well-
founded recursion: all that is required, is to prove that the membership relation
mem(c) defined on any ordinal « is a well-founded relation. f is a function which
must accept as an argument the restriction of the recursive function at the current
ordinal, but need not be a function of the ordinal itself in order to obtain the
full generality of ordinal recursion. The form of ordinal recursion which may be
obtained from the well-founded recursion theorem is as follows:

ordinal(e) fePow(a*xY)—Y z€a
orec(a, f)"z = f"Restrict(orec(c,), mem(e), z)

where the recursive function is (using a simplified form of wrec):
orec(e, f) = wrec(mem(a),lam (e, %(z) f)

lam(a, %(z)f) is the function which returns f for every element of a.

In each of the recursion theorems, the hypothesis specifying the type of f
could be omitted, since application, domain and range are defined for any set,
not just functions (one of the formulations of ordinal recursion in [17] is given in
this form). With such a formulation, however, the typing of the corresponding
recursive functions could not be specified by the existing simple typing theorems.

Notice, finally, that in both, simple recursion and well-founded recursion, the
set of theorems includes first a specification of the type of the recursive function,
then the basic properties of the function. It should be straightforward to prove by
induction that the function satisfying these basic properties is unique.

2.2.3 Example of the use of recursion: lists

This section provides only an outline of some of the work that will be required to
define and use lists. No proof has actually been performed.

Lists may be represented by sequences, the type of which may be defined in
the following way:

Seq(type) = J({n — type | n € w}))

The abstract data type for lists is then obtained by defining the constructors
hd, tl, and cons.

Alternatively, a list of a given type, type, may be represented by ordered pairs,
the first element of the pairs being of type type, the second element being either a

16

list of type type or a null element. We may define the null element by Nil = type,
and thus ensure, by the foundation axiom, that it is not an element of type. The
type of such a list may be defined recursively: {Nil} is the type of lists of length
0; if z is the type of lists of length n, then type * z is the type of lists of length
n + 1. Unfortunately, simple recursion is not adequate for the task: it is not
possible to define a set-theoretic function to represent Az .type * z, since such
a function must have a defined set as a domain, and no such set has yet been
proved to exist — one such set is the set we are attempting to define. What is
required is the generalised theorem for simple recursion (see [8] page 143), which
states that if a formula F(z,y) is such that y has a unique value for every z, then
there exists a function f such that f°0 is any set a and F(f n, f “suce(n)) holds
for each n in w. The formula y = type * r satisfies the appropriate uniqueness
condition. Thus there is a recursive function f(type) such that f(type)*0 = {Nil}
and f(type)“suce(n) = typex f(type)"n. Using the more meaningful type™ in place
of f(type)"n, the type of list becomes:

List(type) = |J({type" | n € w})

A similar definition may be obtained for binary trees:

Tree(type) = | J({Ft(type)"n | n € w})

in which ft is specified by
ft(type)"0 = type

ft(type)~succ(n) = type % ft(type) n U type (ft(type)"n « ft(type)™n)

In order to process lists by well-founded recursion, a well-founded relation must
be found. The relation of immediate sublist may be used for this purpose:

sublist(type) = U({{(-’B, (y,2)) |y € type} |z € List(type)})

Insertion sort may be used to illustrate the use of well-founded recursion. The
insertion sort must satisfy the following properties:

isort(type,r)"Nil = Nil
tsort(type,r)*(y,z2) = ins(type, r)*y” (isort(type,r)”z)

ins(type,r)"z"Nil = (z,Nil)
ins(type,r) "z (y,2) = When((z,y),r,(z, {y,2)), (v, ins(type,r)"z"z))

In these equations, r is the ordering relation. The logical function W hen,
defined in section 2.4, is such that: ’

a€S —(a € S)
When(a,S,A,B) = A When(a,S,A,B) = B

17

The functions tns and tsort which satisfy these properties may be defined by
well-founded recursion. The basic function for ins is:

fins(type,r,z) = lam(List(type), %(u)lam(Function(List(type), List(type)),
% (v)W hen(u, {Nil}, (¢, Nil),
W hen({(z, Hd(u)),r, (z, u), (Hd(u),v"TI(u)}))))

Using the simplified form of wree, the function ins is simply the function:
tns(type,r) = lam(type, %(z)wrec(sublist(type), fins(type,r,z)))
Finally, tsort is defined by:

fsort(type,r) = lam(List(type), % (u)lam(Function(List(type), List(type)),
% (v)W hen(u,{Nil}, Nil,ins(type,r)" Hd(uv)" (v"Tl(u))))

isort(type,r) = wrec(sublist(type), f_isort(type,r))

2.3 Simple type theory

The name of simple type theory seems to have been given to many different formal
systems. Some of them are simplified forms of Russell’s type theory (see [18] or
[9]). In these theories there is a unique basic type ¢ of individuals. All the other
types are types of relations or functions of various orders built on this basic type.
In some other type theories (such as the ones refered to in [2]), there are two basic
types: the type ¢ of individuals and the type o of propositions. In this form of the
theory, functions and predicates may be defined over propositions. In particular,
the connectives may be defined as predicates.

It has been shown that ZF set theory is more expressive that simple type
theory. An argument concerning the first kind of type theory ([9]) runs as follows.
Simple type theory may be formalised in monadic form without functions. The
basic set of any model of simple type theory is an infinite countable set; if T} is
such a set, every term of the monadic form of the theory is represented by an
element of Pow"(Tp) for some natural number n. However, many more terms,
with different interpretations, are available in set theory: for instance, taking w
as a representation of Ty, U(Pow™(w) | n € w) is a term of set theory, and so are
the powers of its power set, and the union of all the previously defined terms ...
By using another set to represent the type of propositions, the argument may be
extended to include both kinds of type theory. Thus simple type theory may be
represented within ZF set theory.

In the first kind of type theory, it is possible to translate directly the terms
and formulae of the type theory into ZF set theory. To every term of type theory
corresponds a relation or a function of some order constructed on w (or any other
infinite countable set) in set theory. The translation of formulae (see [9] for more

18

details) consists of
e rewriting the atomic formulae P(z;, z,...z,) into monadic form Q({z1, 22, ...Zn))
e replacing the atomic formulae in monadic form Q(z) by z: Q

e making explicit the typing requirements:
Vz: A. E(z) becomes Vz .z : A — E(x)
and
Jz: A.E(z) becomes 3z.z: A & E(z).

In the second kind of type theory, another type is used: the type of proposi-
tions. The main problem in converting such a theory to set theory is that some
expressions of type theory are both terms and formulae. The syntactic rules of set
theory forbid this. However, it is possible to model type theory within set theory
by representing both terms and formulae of type theory by terms of set theory.
The set w may be used to model the individuals. As may be verified on page
20, where Andrews’ formulation (theory Qo in [2], pages 163-164) of type theory
has been translated into set theory, the translation requires only a two-value set
to represent the type of propositions. This set, T, may be understood as a set
of truth-values. In the axioms of Qy, listed below, the types are specified by the
subscripts: ‘

i

. .go—-mt & Goof = v-'170 *Go—0To

2. x4 = Ya — ho:-ooza = ha—-mya

w

« (famsp = gasp) = (Y25 . farspTp = gurpTp)
. (AZa-f5(2a))¥a = fo(ya)

. L(;‘—»o)—-’s‘(’\zi-yi =gz) =y

[<L BN

Andrews’ approach is interesting because of its minimalist aspect: the connectives
and the truth values are defined simply using the) symbol and a set of symbols
for typed equality. The approach makes clear how type theory may be seen as an
extension of a typed A calculus with equality. The fourth axiom is the g rule of
A calculus. Although Andrews uses a set of five primitive axioms in place of this
axiom, he points out that the two formulations are equivalent. Apart from the
typed equality, the only other logical symbol of the theory is the typed description
symbol ¢, the properties of which may be derived from the fifth axiom. The single
rule of inference is simply the rule of substitution of equals by equals {through
typed equality).

The same definitions as the ones given in [2] are used in the translation into
set theory, except for the truth values: in Andrews’ formulation, they are defined

19

Simple type theory

***% Definitiong #*#**

tr = {0}
fla = 0
T = {tr,fls}
Eq(A) = [X || X:(A%A)*T, EXISTS x. EXISTS y.

X = < <x,x>,tx> | (Not(x=y) & X = < <x,y>,fls>)]

And = lam(T,%(x)lam(T,%(y)Eq((T->T->T)~->T)
® <lam(T->T->T,%(g)g" tr"tr) ,lam(T->T->T,%(g) g x"y)>))
Imply = lam(T,%(x)lam(T,%(y)Eq(T)~ <x, (And"x"y)>))
Neg = Eq(T)"fls
Or = lam(T,%(x)1am(T,%(y)Neg" (And*~ (Neg~x) ~(Neg“y))))
AL1(A) = lam(A->T,%(P)Eq(A->T)~ <lam(A,%(x)tr),P>)
Exist(A) = lam(A->T,%(P)Neg"(AL1(A)"~1lam(A,%(x)Neg" (P x))))
Desc(A) = lam(A->T,%(£)Union([x!|x:A, £ "x=tx]))

*x% Typing rules (already derived) ***

[l F :A>B |] ==>[] x:A|]==>[] Fx:B]|]
QG x 2 A 1Y ==> [| P(x) : B [1)) ==> [| lan(A, P) : A->B |]

*** Theorems concerning the typed equality *¥%

LI Eq(8) : (8#8)->T |]
[l a:5 |} ==> [| b:§ |] ==> [| a=b <-> Eq(8)~ <a,b> = tr]|]
[! a:8 |1 ==> [| b:8 |] ==> [| Not(a=b) <-> Eq(S)~ <a,b> = fl1s]|]

% Theorems recovering Andrews’ definition of tr and fls %¥*

[l tr = Eq((T*T)->T)" <Eq(T),Eq(T)> |]
[l £1s = Eq(T->T)* <lam(T,%(x)tz),lam(T,%(x)x)> |]

% Theorems expressing the axioms of simple type theory #%x

* Axiom 1 *
[l g : T->T |1 ==> [| Eq(T)~ <And~(g~tr)~(g"fls),A11(T)*g)> = tr |]
[l g : T->T |1 ==> [| And~(g tz)~(g £ls) = ALL(T)"g |]
* Axiom 2 *
[l B A>T |1 ==> [| x:A |] ==> [| y:4& []
==> [| Imply~(Eq(A)" <x,y>)"(Eq(T)~ <h*x,h"y>) = tr |]
* Axiom 3 *
[} £:A>B|]==>10]g: A>B|]
==> [| Eq(T)~ <Eq(A->B)~ <f,g>,A11(A)*lan(A,%(x) Eq(B)~ <f~x,g"x>)> = tr |]
[£:A>B] ==>[| g : A->B |]
==> [| Eq(A->B)" <f,g> = A11(A)~1lam(A,%(x) Eq(B)~ <f"x,g"x>) |]
* Axiom 4 (beta conversion) =
[l a:A]|]==>1[| Eq(T)~ <L(A, P) ~ a,P(a)> = tr |]
[l a:A[]l==>0[LA, P)~a=P(a) |]
* Axiom B *
[l x: A Il ==>[] Eq(T)"~ <Desc(A)~1lam(A,%(y)Eq(A)~ <x,y>),x> = tr |]
[l x: A Il ==>[| Desc(A)~1lam(A,%(y)Eq(A)" <x,y>) = x |]

20

in terms of the basic symbols; in the translation, t and f are the predefined sets
tr and fls (ideally different from the other used sets, but for simplicity taken here
as {0} and 0), and the set of truth values, T, is defined as {tr,fls}. Andrews’
definitions for t and f are however recovered as theorems of set theory.

The relation between the typed equality and the equality of set theory is given
by the theorems concerning typed equality on page 20. Note that the left impli-
cation in the sentence

a:S &a=0be Eq(S) (a,b) =tr

is provable if Not(bot = tr) may be proved, in which bot is the value resulting from
the application of a function to a term of incorrect type. This is the case here,
since bot = 0 and tr = {0}. However, the weaker theorem of page 20 is adequate
for the subsequent proofs.

The first version of the axioms 1 to 5 on page 20 differ from the corresponding
axioms in [2] only in the fact that the typing of variables is expressed explicitly
as hypotheses and that every axiom of the form A in [2] becomes A = ¢r in set
theory. A simplified version of some of the axioms, which uses the set-theoretic
equality instead of typed equality, is given. It is through the transformation from
typed equality to set-theoretic equality that the inference of Andrews’ systems can
be carried over to set theory.

Axiom 5 and the definition of the description operator require some explana-
tion. In the definition of page 20, the description operator is the function which,
when applied to a truth-valued function f, returns the inverse image of {tr} under
f, and its type may be proved to be (A — T') — Pow(U(4)). An operator of type
(A — T) — A satisfying axiom 5 could be obtained if there was a function which,
when applied to a truth-valued function f, returns an element a of A such that
f"a = tr when such an element exists. But such a function may not be defined
without the axiom of choice. The chosen definition is however adequate since it
allows the derivation of axiom 5. The axiom itself is more general than the cor-
responding axiom in Andrews’ formulation. If w is taken as the basic set of type
theory, Andrews’ axiom is simply the specialisation of axiom § with A replaced by
w.

It should be clear that, to every proof in Andrews’ formal system, corresponds
a proof of set theory derived from the theorems of page 20, and the corresponding
definitions.

2.4 Intuitionistic logic with proof objects

In the previous section, a model of simple type theory, in which formulae are
interpreted as truth values, was constructed within set theory. In this section a
model of a first order intuitionistic logic with quantification over types, in which
formulae are interpreted as sets of proofs, is constructed. The construction follows
the general idea behind the concept of ‘propositions as types’. The connectives are

21

defined on page 23. The meaning of the definitions may be taken to be as follows:

e The set of proofs of A Or B is the disjoint union of the set of proofs of A

and the set of proofs of B. To a proof @ of A corresponds a proof (a,0) of
A Or B; to a proof b of B corresponds a proof (b,{0}) of A Or B.

o The set of proofs of A And B is the cartesian product of the set of proofs of
A and the set of proofs of B.

e The set of proofs of All(A, P) is a dependent function space: the set of total
functions f over A such that, if z € A, then "z is a proof of P(z).

o The set of proofs of Ezist(A, P) is a dependent product: the set of pairs
(z,y) such that z € A and y is a proof of P(z).

The set of proofs of the implication A — B is the set of total functions from A to
B, i.e. the term A — B, as already defined. It is a particular case of the definition
of All: A — B = All(A,%(z)B). Note that, similarly, the definition of And is a
particular instance of the definition of Ezist: A And B = Ezist(A,%(z)B).

The introduction and elimination rules, listed on page 23, are theorems of set
theory. The rules concerning the implication are simply the typing rules of Agy,.

Two examples of theorems, which have been proved using these rules in a
backward style, are given below. The variables with a name starting with the
symbol ‘?’ are schematic variables which become instantiated through unification
during the proofs.

An attempt to prove

?z: ((P And Q) Or R) — ((P Or R) And (Q Or R))
produces

lam((P And Q) Or R,
%(ka)(W hen(Hd(ka), P And Q,lam(P And Q,%(kb)(Hd(kb),0)),
lam(R, % (kb)(kd,0)))" Hd(ka),
When(Hd(ka), P And Q,lam(P And Q,%(kb)(T(kb),0)),
lam(R, %(kb)(kb, {0})))"Hd(ka)})

:((P And Q) Or R) — ((P Or R) And Q Or R)

An attempt to prove

a: A
7z All(A,Q) — Ezist(4,Q)

produces

lam(All(A, Q), %(ka)(a, ka"a)) : All(A,Q) — Ezist(A,Q)

22

Intuitionistic logic with proof objects

%% Definitions #***

(A Or B) = (A+{0}) Un (Bx{{O}})

(A And B) = A+B

Al1(A,P) = [F || F : A->Union([P(y)|ly:A]), ALL x. x:A --> F°x : P(x)]

Exist(A,P) = Union ([{x} * P(x) || x : A])
Fls = 0

When(x,S,A,B) = Union([X || X: {A} Un {B}, (x:S & X=A) | (Not(x:8) & X=B)1)

% Theorems concerning the conditional term #

[l x:8]]==>[| When(x,S,A,B) = A |]
[I Not(x : 8) |1 ==> [| When(x,5,A,B) =B |]

x* Derived rules *

And_intr [l a : A|] ==> [| b : B |] ==> [| <a,b> : A And B {]
And_elimi [{ x : AAnd B [] ==> [| Hd(x) : A |]

And_elim2 [| x : AAnd B] ==> [| T1(x) : B |]

Or_intrl [| x : A |] ==> [| <x,0> : A Or B |]

Or_intr2 [| x : B |] ==> [| <x,{0}> : A Or B |]

Or_elim [l x: AOrB {]

= ('(y)[l y Al ==>[] £(y) : 2 (1)

=> (M y:BI1 == [l gly) : 2|

==> [| When(T1(x),{0},1lam(A,f),1am(B,g)) ~ HA(x) : Z []
Imply_intr (1(x)[1 x : A |] ==> [| £(x) : B |]) ==> [| lam(A,f) : A->B |]
Imply_elim [| £ : A->B |] ==> [| x : A |] ==> [| £*x : B |]
All intr (1(x) L] x:A [] ==> [| £(x):P(x) 1) ==> [| lam(A,£) : A1L(A,P) |]
All_elim [] £ : A11(A,P) |] ==> [| x : A [] ==> []| £°x : P(x) |{]
Exist_intr [| x : A [J==> [| y : P(x) |] ==> [| <x,y> : Exist(A,P) |]
Exist_elim [l p : Exist(A,P) |]

=> (1CN I x s Al ==>[ly:P@ I]1==>T[£):2ID

==> [| £(Tl(p)) : 2]
Fls_elim [| x : Fls |] ==> [| y : A []

+ Sequent style rules *#*

And_el [x : A And B |]
==> (L) O] x:A |1 ==> [] y:B {] ==> [| £(x,y):Z |])
==> [] f(Hd(x) Ti(x)) : 2]]

Imp.el [{ x:A->B|] == [I y : Al
==> (!(x)[l x : Bl ==> [} £(x) : 2 |])
== [l f(x"y) : 2 1]

All_el [] x : AIL(A,P) |1 ==> [| y : A |]
==> (!(u)'(v)[l w:A |1 ==> [| v:P(u) |] ==> [| £(v):Z |])
ma> [| £(x" y) : 2]

23

In the second example, the hypothesis ensures that the type A is not empty.
If A was empty, it would be possible to prove All(A,Q), but not Ezist(4,Q);
thus there would be no proof of Ali(4,Q) — Ezist(A,Q). Of course, this is a
consequence of the use of quantification over types. The untyped quantification of
first order intuitionistic logic can easily be modelled by using a countably infinite
set such as w in place of the set A. The theorem

z: All(w, Q) — Ezist(w,Q)

may be proved without hypothesis.

2.5 Domain theory in PP\

This section is concerned with the proof of further properties of functions within
set theory. More specifically, it is concerned with continuous functions, and in
particular the axioms of PP relating to domain theory, as specified in [13] or [7].

The relevant definitions are given on page 25. The definition of bottom as the
union of the set of bottoms elements is justified by the theorem which states that
the bottom element of a partial order is unique if it exists.

The axioms and rules of inference of PPA relating to domain theory are listed
on page 26 in a form in which functions are explicitly typed as continuous functions,
and relations as cpos (in PPA, the untyped symbol < is used to express the implied
ordering relation, whatever the underlying set) . The theorems concerning the least
fixed points may be compared to Tarski’s fixed point theorem: here, the type of
the relation is more general (a cpo rather than a complete lattice), and the type
of the function is more specific (continuous rather than monotone).

The remainder of PP) consists of the axiomatisation of first order logic with
equality and the # and n conversion rules. Note that PPAX also includes a for-
malism which induces an ordering relation on products and disjoint unions. The
construction of the corresponding cpos has not been developed here, but is ex-
pected to be simpler than in the case of function spaces.

2.6 Reasoning about types

The development of theories such as simple type theory and PP within set theory
shows that set theory is suitable to reason about functions. Despite the restriction
imposed by the foundation axiom, set theory seems also to be well suited to reason
about types. Given some basic types, such as w or T, one may construct the
standard types such as cartesian product, disjoint union, dependent product and
dependent function space (as in section 2.4), etc. In fact every set denoted by the
terms of set theory may be considered as representing a type. Thus, types need
not be disjoint. Subtypes are easily defined: for instance the type of continuous
functions over the cpo RA, defined over the set A, may be seen as a subtype of
A — A, itself a subtype of the set of partial functions over A, Function(4, A).

24

Definitions concerning PP)
¥%* Definition of a cpo *¥*
Bottoms(R) = [b || b : Domain(R), ALL y. y : Range(R) --> <b,y> : R]
bottom(R) = Union(Bottoms(R))
directed(R) = [Z || 2 : Pow(Domain(R)), Not(Z=0) &
ALL x. ALL y. x:Z & y:2
--> EXISTS z. z:Z & <x,z> : R & <y,z> : R]

cpo(X) = [Z || Z : Partial_order(X), Not(Bottoms(Z) = 0) &
ALL Y. Y : directed(Z) --> Not(Lubs(Z,Y)=0)]

*** cpo of natural numbers (taking Omega as the bottom element) **x*
Nat = [<Omega,n> || n:Omega] Un [<o,n> || n:succ(Omega)]
% Function space and induced order *
Continuous(RA,RB) = [K || K : Domain(RA)->Domain(RB),
RA : cpo(A) & RB : cpo(B) &
ALL Y. Y : directed(RA) --> Not(Luba(RA,Y)=0) &
Not (Lubs(RB, [K~x|Ix:Y])=0) &
Lub(RB, [K*x||x:Y]) = K~Lub(RA,Y)]
Func(RA,RB) = [X || X : Continuous(RA,RB) *Continuous (RA,RB),
ALL f. ALL g. ALL x. X = <f,g> & x:Domain(RA)
--> <£*x,g"x> : RB]
+ Definitions concerning the fixed point induction *
succ_rel = [<n,succ(n)> || n:Omega]
Infinite_chain(R) = [[£"n||n:Omegal] || £ : Monotone(succ_rel,R)]
Chain_complete(X,R) = [Z || Z : Pow(X),

ALL Y. Y<=Z &Y : Infinite_chain(R)
--> Lub(R,Y) : Z]

25

Domain theory in PPA

%% Continuous functions #*xx*

[| F: Continuous(RA,RB) |] ==> [| F : Monotone(RA,RB) |]
[l F: Continuous(RA,RB) |] ==> [| X : directed(RA) |]
==> [| Lub(RB,Image(F,X)) = F~Lub(RA,X)]]

#** Uniqueness of bottom element #**=*

[l R : Partial_order(X) |] ==> [| a : Bottoms(R) |] ==> [| b : Bottoms(R) |]
==> [| a=b |]

*%% Constructions of some cpos **

cpo of natural numbers
[l Nat : cpo(succ(Omega)) |]
[| bottom(Nat) = Omega |]

cpo induced on a function space
[IRA:cpo(A) |] ==> [|RB:cpo(B)|] ==> [| Func(RA,RB) : cpo(Continuous(RA,RB))|]
[IRA:epo(A)[] ==> [|RB:cpo(B)|] ==> [| bottom(Func(RA,RB)) = L(A,%(x)bottom(RB))|]

#%* Domain theory ***

Extensionality
[| £ : Continuous(RA,RB) |] ==> [| g : Continuous(RA,RB) |]
==> [} RA : cpo(A)|] ==> [l RB : cpo(B) |]
==> [|] ALL x. x : A --> <f"x,g"x> : RB |]
==> [| <f,g> : Func(RA,RB) |]

Monotonicity
[l <f,g> : Func(RA,RB) |] ==> [| «<x,y> : RA |] ==> [| <£°x,g"y> : RB |]

Minimality of bottom element
[I R : cpo(X) 1] ==> [| x : X |] ==> [| <bottom(R),x> : R |]

Least fixed point in cpo
[l £ : Continuous(RA,RA) |] ==> [| RA : cpo(4) |]
==> [| Lub(RA,[recs(f,bottom(RA))"n || n:Omegal) : Lfixa(f,RA) |]
[l £ : Continuous(RA,RA) |] ==> [| RA : cpa(A) |]
==> [| Lfix(£,RA) = Lub(RA, [recs(f,bottom(RA))*n || n:Omegal)]

Properties of least fixed points in cpos
[l £ : Continuous(RA,RA) {] ==> [| RA : cpo(A) |]
==> [| £~Lfix(f,RA) = Lfix(f,RA)|]
[l £ : Continuous(RA,RA)] ==> [| RA : cpo(A) |1 ==> [| x : Fix(f) |]
==> [} <Lfix(f,RA),x> : RA |]

Fixed point induction
[l RA : cpo(A) |1 ==> [| [x || x:A, P(x)] : Chain_complete(A,RA) |]
==> [| £ : Continuous(RA,RA) |] ==> [| P(bottom(RA)) |]
==> [| ALL x. x:A --> P(x) --> P(£"x) |]
==> [| P(Lfix(f,RA)) |]

26

Recursive types may be constructed in the same way that the type of lists was
constructed in section 2.3. Taking as an example the simple case in which there
is a unique type constructor, the total function symbol, and the chosen form of
recursion is simple recursion, one may define the function f such that:

Fr0=4

frsuce(n) = f*nU {Hd(z) - Ti(z) |z € f*'n* f"n}
where A is a set of basic type, e.g. {Omega,T}. This function defines a hierarchy of
types. At any given level of the hierarchy, every new type has the form A — B, in
which A and B are types of the previous level. The set of all the types constructed
in this way is types = U({f"n | n € w}).

The more complicated case in which the type constructor is the dependent
function space may be treated similarly. The recursive function f should now be
specified by:

ffo=4
frsuce(n) = f*nU{ X € Pow(Function(U(f"n),U(f n)) |
AT .3F. X = Al(T,%(z)Fz) & T € f'n& F€T — f'n}

All(T, %(z)F"z) is the dependent function space defined in section 2.4. It is a
new type at a given level of the hierarchy iff T is a type of the previous level, and
F is a function which associates to every element of T a type of the previous level.
As previously, the set of types, typeo, is the union of all the sets in the hierarchy.

If the types are polymorphic, i.e. if they are allowed to depend on types and
not just on elements of types, the set of types must itself be considered as a type.
To this end, following (3], one could specify a second hierarchy, in which the first
level is typeq and the level n + 1 consists of all the types constructed recursively
from the types in the level n and the level n itself. The set of all the polymorphic
types constructed in this way is Type = U({typen | n € w}).

The method illustrated above may be applied to define recursive types when-
ever the collection of basic types forms a set and the number of type constructors
is finite.

3 Comments concerning the proofs

The main purpose of the research described in this report was to produce a set-
theoretic equivalent of several theories. The emphasis has been to obtain a rea-
sonably simple formulation of the theories, without much regard to the form of
the proofs themselves. The proofs are generally long and cumbersome, and may
certainly be improved greatly. This section gives a brief outline of the approach
taken in the development of the proofs, together with the reasons for taking this
approach and some comments and criticisms concerning it. The last part of the
section describes an attempt at producing natural deduction proofs in forward
style.

27

3.1 Choice of system of deduction

Before developing set theory with natural deduction, I was using the set theory in
sequent calculus style already set up in Isabelle. There were two main reasons for
switching from sequent calculus to natural deduction. First, the sequent calculus
contains an extra formalism to express implication which is not necessary and
may be confusing: the object level and meta-level implications are sufficient. The
hypotheses of the meta level implications may easily be interpreted as assertions
of object-level assumptions, and thus the assumptions of natural deduction fit
naturally in the meta-level logic. Second, more general rules may be used with
natural deduction in Isabelle. For instance, the tactic ‘eresolve_tac [eq-elim] n’,
where ‘eq.elim’ is

a=b P(b)
P(a)
applied to the n** goal, of the form
c=d
QR

restricts the possible unifiers of P(a) and @ to the ones allowing a unification of
¢ = b and ¢ = d. In effect, this ensures that Q is interpreted as a function of ¢,
g(c), during its unification with P(a).

The rules of sequent calculus are well suited to backward proofs because they
consist only of introduction rules. However, derived rules may be obtained in the
natural deduction system which simulate the sequent rules, thus ensuring that
natural deduction is also suitable for backward proofs.

3.2 Level of automation

Most proofs have been carried out backwards because such a style allows some
form of automation through the use of tactics. An attempt was initially made
to produce complete tactics, i.e. tactics which prove any theorem, for first order
logic. These were ‘dumb’ procedures (breadth first and depth first with limited
depth). Although most proofs took only a few seconds cpu on the Sun 3/15,
two out of the fourty four first problems of Pelletier ([15]) had to be abandoned
after an elapsed time of more than one hour. Among the others, the longest
problem took 200 secs cpu. It was felt that much work would be required to
produce a reasonably efficient and complete automatic tactic for set theory. One
problem is to provide an ordering of the introduction and elimination rules (or
right and left rules in sequent calculus) which results in an efficient proof. This is
the general problem of finding an appropriate level to which definitions must be
folded or unfolded to allow the resolution of goals by assumptions. A more tricky
problem is due to the occurernce of non-variable terms in set theory: the proof
of an existentially quantified sentence often requires the construction of a term
for which the sentence is provable; it seems very difficult to generate such a term

28

automatically. The problems are made more complex by the definition of the new
symbols which are required in order to produce a simple formulation of theories
within set theory. For the above reasons, the only form of automation which has
been kept for the proofs in set theory is the one using the rules of classical logic
without equality.

3.3 Tactics

The tactic which attempts to solve a goal automatically using the rules of classical

logic is ‘REPEAT (step_tac n)’. The tactic is applied to n** goal. If the goal is

solved, goal n 4 1 becomes goal n, and an attempt is made to solve this goal. The

tactic usually results in the instantiation of schematic variables. These instanti-

ations depend on the order in which the goals are solved, and the assumptions

selected to solve a particular goal. Thus the tactic is not always applicable.
When appropriate the derived rules are expressed in the form

h]_ h

termy = termy

where the h;’s are hypothesis, which may or may not be present, and the term,’s
are terms. A simple ML function, bimp, has been written to convert this rule into

hy hg
T € termy «» T € termsy

The point of this conversion is that tactics have been developed which use rules
of the form
hi he

formy « form,

to replace the formula form; by the formula form; in the conclusion of the selected
goal, or the hypotheses, or both. The tactics are respectively, ‘unfold_right [rules]
n’, ‘unfold left [rules] »’ and ‘unfoldall [rules] n’. It is also possible to unfold only
the first relevant formula in the hypotheses. The tactic ‘rewrite_right._1 [rule] n’
uses the rule ‘eq_elim’ to perform a one-step rewriting of the conclusion of the goal
n from a conditional equality. Unfortunately, no practical version of the tactic
has been devised to rewrite the hypotheses. Although some form of recursive
rewriting would be an advantage, such a facility has not been found necessary for
the simple-minded way in which the proofs have been developed.

By expressing the derived rules, whenever possible, in the form of conditional
equalities or conditional bi-implications, it is possible to keep the number of rules
to a minimum. The ML functions intr and elim have been written to convert such
rules to a more standard format. Below are some examples of the use of these and
other functions on the theorem 4 = B with ML name th:

bimp th rEAz€eB
z€A
z€B

intr(bimp th) :

29

[z € A]

B
T € 7

elim(bimp th) : 7

symmeq th : B=A
symm(bimpth): z€Beoz€ A

3.4 Examples of proof

An example of backward proof is given on page 31. The required theorem and the
specified tactics appear after the symbol ‘>’, Isabelle response to the specification
of a tactic is a list of new goals. The proof is initiated by specifying the theorem
to be proved: here, the theorem is

FeA- B z€A
FrzeB
The hypotheses in the first goal are interpreted by Isabelle as meta-level assump-
tions (this may be a bit confusing, since meta-level hypotheses are normally used
to represent object level assumptions). The first step consists of a tactic which
discharges these assumptions. The resulting meta-level implication may be inter-
preted as the formula F"z € B with object level assumptions F € A — B and
z € A. The second step unfolds the ‘total function’ and ‘Collect’ symbols, ac-
cording to the definitions of pages 10 and 6. The third step performs a classical
deduction on the current goal. In the next step, ‘Apply’ is the following theorem:

F € Function(A,B) (z,y) € F
Frz=y

Isabelle has to lift the rule over the meta-level quantifier (see [12] for a description
of the lifting process) in order to perform the required unification. In particular, it
replaces the variables 4, B, and y respectively by ?A1(ka), ?B1(ka) and ?b1(ka).
Rewriting F"z with this conditional equality produces 3 subgoals. Two of them
can be solved immediately by assumptions. The process consisting of unfolding
followed by a classical deduction continues until the remaining subgoal is solved.
The theorem ‘prod.iff1’, which has not been mentioned previously, is

(a,b) e AxB—acA&beB

Although this proof is simple, one of the problems my proofs suffer may be
highlighted here. The goal

z€A F € Function(4, B) (z,ka) € F
ka € B
which appears somewhere near the middle of the proof may itself be a useful

theorem. It should have been proved first, and then used in the main proof. The
reason for not doing so was to minimise the number of theorems. However, this

30

Example of proof(1): application type

> val asm = goal ND_function_set_thy
"[l F:A->B|] ==>[] x:A|] ==>1[| Fx:B]|lY

> by (discharge_tac asm 1);
1. HF:A->B|]==>[lx:A|l=>[F~x:B]l]

> by (unfold_left [bimp Totalfunc,Collect] 1);
1. [x : A |] ==>
[l P : Function(A, B) & ALL x. x : A --> EXISTS y. <x, y> : F |] ==>
[l F~x:B1]

> by (REPEAT(step_tac 1));
1. [l x: A |] ==>
[| F : Function(A, B) |] ==> 1(ka)[| <x, ka> : F |[] ==> [| F * x : B |]

> by (rewrite_right_i [Apply] 1);
1. [l = : A 1] ==> [| F : Function(A, B) |] ==>
1(ka)[| <x, ka> : F |] ==> [| F : Function(?A1(ka), 7B1(ka)) |]
2. [l x: A|] ==>[]| F: Function(A, B) |] ==>
1(ka)[| <x, ka> ; F |] ==> [| <x, ?bi(ka)> : F |]
8. [l x: A |l ==> [| F: Function(A, B) |] ==>
t(ka) [} <x, ka> : F |] ==> [} 7bi(ka) : B |]

> by (REPEAT(assume_tac 1));
1. [l x: A] ==
[l F : Function(A, B) |1 ==> 1(ka)[| <x, ka> : F |1 ==> [| ka : B []

> by (unfold_left [bimp Function,Collect] 1):
1. [l x: A |] ==
V(ka) [| <x, ka> : F [] ==>
[l F: Pow(A * B) &
ALL x. ALL y. ALL z, <x, y> : F& <x, z> : F -->y =z |] ==
[l ka : B |]

> by (REPEAT(step_tac 1));
1.0l x: AJ] ==> t(ka)[| <x, ka> : F |] ==>
[| F: Pow(A *B) |] ==> [| ka = ka |] ==> [| ka : B |]

> by (unfold_left [Pow,subset] 1);
1. [x ¢ A [] ==> t(ka)[| <x, ka> : F |] ==> [| ka = ka |] ==>
[| ALL x. x : F --> x : A * B |] ==> [| ka : B {]

> by (REPEAT (step_tac 1));
1. [l x : A1) ==> 1(ka)[] <x, ka> : F |] ==>
[l ka = ka |] ==> [] <x, ka> : A * B |] ==> [| ka : B []

> by (unfold_left [prod_iffi] 1);
1. [x ¢ A 1] ==> t(ka)[]| <x, ka> : F |] ==>
[l ka=%ka |] ==>[] x: A&ka:B |} ==>[ka:B]|]

> by (REPEAT(step_tac 1));
(proof complete)

31

Example of proof(2): decomposition of an ordered pair.

> val asm = goal ND_set_thy
"Il x: A*B [} ==>[| x=<Hd(x),TL(x)> {]";

> by (discharge_tac asm 1);
1. [l x: A *B [] ==>[| x=<Hd(x), T1(x)> |]

> by (unfold.left [bimp Product,Collect] 1);
1. [l x : Pow(Pow(A Un B)) &
EXISTS a. EXISTS b. a : A kb : B &k x = <a, b> |] ==>
[1 x = <Hd(x), TL(x)> []

> by (REPEAT(step_tac 1));
1. [I x : Pow(Pow{(A Un B)) |] ==>.
!(ka,kb) [| ka : A |] ==>
[l kb : B |] ==> [| x = <ka, kb> |] ==> [| x = <Hd(x), T1(x)> |]

> by (eresolve_tac [eq_elim] 1);
1. [l x : Pow(Pow(A Un B)) |] ==>
!(ka,kb)[| ka : A |] ==>
[l kb : B [] ==> [| <ka, kb> = <Hd(<ka, kb>), T1l(<ka, kb>)> |]

> by (rewrite_right_1 [Pair_eq3] 1);
1. [l x : Pow(Pow(A Un B)) 1] ==>
{(ka,kb)[| ka : A |} ==
[l xb : B |] ==> [| <ka, kb> = <ka, Tl(<ka, kb>)> {1
> by (rewrite_right_1 [Pair_eq4] 1);
1. [| x : Pow(Pow(A Un B)) |] ==>
Y(ka,kb) [{ ka : A [] ==> [| kb : B |] ==> [| <ka, kb> = <ka, kb> |]
> by (resolve_tac [refl] 1);

(proof complete)

32

advantage is more than offset by the disadvantages of lacking basic theorems. To
prove the above basic theorem in the middle of a large proof may require many
more steps than is required here: in particular, a selective unfolding on the left
may unfold the wrong formula, and a non selective one may perform unwanted un-
folding; also, the automatic classical deductions used here, may produce unwanted
results when performed within a large proof. It is worth noting that breaking down
a proof in some smaller constituents is much more easy in forward style than in
backward style since the result of every step of a forward proof is a theorem.

The example on page 32 illustrates the use of the standard resolution tactics
‘resolve_tac [rules] n’ and ‘eresolve_tac [rules] n’, and in particular the tactic per-
forming a substitution from an equality in the hypothesis, ‘eresolve_tac [eq.elim]
n’. The theorems appearing in the proof, and not mentioned before are:

Pair_eq3: Hd((z,y)) ==z
Paireqgd: Tl(z,y)) =y
refl: T=z

where z and y are free variables.

The two previous examples of proof are very simple. Many of the theorems
mentioned in part 2 have much more complex proofs. The well founded recursion
theorem was the hardest to prove. It involves forty lemmas, some of them having
proofs of more than a hundred steps. The size of the proofs is in part a consequence
of my style, and there are many ways of reducing it. Obviously, for any given
theorem, some proofs are better than others. Some of the other factors which
affect the length of a proof are listed below:

e Choice of definition: several examples of alternative definitions have been
suggested in the last section of the paper. For instance, the definition of
natural numbers as particular ordinals simplifies some proofs, as well as
making them more general.

* An appropriate partition of the proofs into lemmas and theorems: it seems
worthwhile to produce as many lemmas and theorems as possible.

o The use of appropriate tactics, in which the relevants rules are stored in
some appropriate sequence . One such tactic has been used to evaluate the
type of expressions in the set-theoretic formulation of simple type theory.

3.6 Forward proofs

Although most of the proofs have been written in backward style, some exper-
iments have been carried out in forward style. The main disadvantage of the
forward approach is the lack of automation: the process involved is proof checking
rather than theorem proving. On the other hand, forward proofs present several
advantages:

33

¢ As previously mentioned, every step produces a theorem, any one of which
is easily available as a lemma if required.

¢ The proofs which are not trivial must be planned before being carried out.
Many proofs are derived from an informal description. Such a description is
normally provided in a forward style.

e The proofs are processed more efficiently: in backward style, all the subgoals
have to be carried over through the proof, even though only one subgoal is
processed at a time; this is obviously not the case in forward style.

As an example of forward style, a natural deduction proof of the main part
of Tarski’s theorem is shown on page 36. The object level assumptions could
be adequately represented by meta-level hypotheses. However, this formalism
leads to complex procedures to eliminate duplicate assumptions and select the
appropriate assumptions to be discharged. Thus, for practical reasons, the object
level assumptions have been represented by meta-level assumptions. On page 36,
the assumptions are listed in square brackets after each displayed theorem. The
proof uses the assumptions and previously proved lemmas listed on page 35. It
consists of a sequence of ML statements specifying the required introduction and
elimination rules, in the form of ML functions, together with the appropriate
theorems. Here are the rules which are used in the proof of Tarski’s theorem:

— E: fun thl ¢ th2 = mp MRES thi MRES th2

—I: fun imp_i p th = imp_intr MRES (implies_intr (rprop p) th)

VI: fun all i s t th = all_intr MRES (forall_intr (rterm s)) th))
The ML function MRES, which has been defined using more basic Isabelle func-
tions, performs a meta-level resolution, unifying the first hypothesis from its first
argument with the conclusion of its second argument. The resulting unifier is the
first one generated by Isabelle. The axioms mp, tmp_intr, and all_intr are some
of the elimination rules and inroduction rules described in [14]:

mp : [P — Q] = [P] = [Q]

impintr: ([P] = [Q]) = [P — @]

allintr: (Ay.[P(y)]) = [V. P(2)]

The ML functions ¢mplies_intr and forall_intr are meta-level introduction rules
provided in Isabelle. The expression (rprop p) converts the string p to a valid
proposition; the expression (rterm s) converts the string s to a valid term. If, for
instance, th is the theorem [Q] under the assumptions [A.], [P2], ..., and p is the
string “[F[”, then (¢mplies_intr(rprop p)th) is the theorem [P; —» Q] under the
same assumptions with every instance of P, removed. If th is the theorem [P(z)]
under some asumptions and s is the string “z”, then (forall_intr(rterm s)th) is
the theorem A z. [P(z)] under the same assumptions.

The format th1‘th2 is meant to help relate the resulting proofs to corresponding
ones in other forward systems, such as Automath, in which — F is expressed by
a function application.

34

Example of forward proof: Tarski’s theorem.

**% Agsumptioms k¥*

as_mono: [| F': Monotone(L, L) |]
[[| P : Monotone(L, L) |1]
as_cl: [| L : Complete_lattice(A) |]
[[I L : Complete_lattice(A) |1]
as_x: [l x:[xl x:A, <x, F*x:L11]]
L0l x:[x1l x: A, <x, F~x>:L111]1

*4%% Jemmas kkk

Trans:

[l <?x, ?7y> : L =-> <?y, 72> : L --> <7x, 7z> : L |]

[[l L : Complete_lattice(A) []]

Anti_sym:

[l <?x, ?7y> : L -=> <?y, ?7x> : L ==> 7% = 7y |]

[[I L : Complete_lattice(A)]]

Mono :

[l <7a, ?b> : L ==> <F * ?a, F " 7> : L {]

[[I P : Monotone(L, L) 11]

Lub_ub:

[l 7x ¢ [x| x:A, P(x) 1 --> <?x, Lub(L, [x |] x:A, ?P(x) 1)> : L |]

[[l L : Complete_lattice(A) |] 1 ‘

Lub_least:

[?x : Ubs(L, [x || x:A, ?P(x) 1) ==> <Lub(L, [x |} x:A, ?P(x) 1), ?x> : L|]
[[I L : Complete_lattice(A) |]]

Ub

[l 7x : A --> 7B <= A --> (ALL y. y : 7B --> <y, ?x> : L) --> ?x : Ubs(L, ?B)|]
[[l L : Complete_lattice(A) |]]

type_fx:

[l 2x : A->F ~ 72x : A |]

[[f F: Monotome(L, L) |J, [| L : Complete_lattice(A) |]]
type._lub:

[l Lub(L, [u |{uw:A, P4, 0 1) : Al]]

[[I L : Complete_lattice(d) |]]

type_flub:

[JF~Lub(L, [ullu: A, ?PCA, W) 1) : A]

[[F : Monotone(L, L)Y |1, [IL : Complete_lattice(A) |]]
subtype:

000 x Il x:74, 7P(x) 1 <= 7A |]

prop.collect:

[?2x ¢ [x 1] x:?4, ?P(x) 1 --> ?P(?x) |]

def_collect:

[l 7x 2 24 -=> ?P(?x) --> ?x : [x || x:74, ?P(x) 1 |]

35

%% Proof of main theorem ***

val fixl = Mono * (Lub_ub * as_x);
[l <F *x, F*Lub(L, [x|l x: A, <x, F~x>:L1)>:L[|]
[0 x:[xIllx:A <x, F*x>:L] 11, [l L: Complete_lattice(A) [],
[l F : Monotone(Lat, L) {]]

val fix2 = Trans * (prop_collect * as_x) * fixl;
[l <x, F~Lub(L, [x || x: A, <x, F~x>:L1)>:L|]
[0l x:[xilx: A <x, F*~x>:L3I|]l, [|L: Complete_lattice(A) |1,
[F: Monotone(L, L) I1, [l x : [x || x: A, <x, F~x>:L1]],
[l L : Complete_lattice(A) |]]

val £ix3 = dimp i "[| x : [x || x : A, <x, F~ x> : L1 []" £fix2;
[t x: [xilx:A <x, F~x>:L]-->
<x, F*“Lub(L, [x|l x: A, <x, F*~x>:LI)>:L|]
[[{ L : Complete_lattice(A) |1, [| F : Monotone(L, L) |1,
[l L : Complete_lattice(a) {1 1]

val fix4 = all_i "x" fix3;
[l ALL x. x : [x| x : A, <, F~ x> : L] -->
<x, FLub(L, [x ||l x : A, <x, F"x>:L1)>: L[]
[[I L : Complete_lattice(A) |1, [| F : Monotone(L, L) |1,
[l L : Complete_lattice(A) {]]

val fix5 = Ub ¢ type_flub * subtype * fix4;
[l P~Lub(L, [ullu:A, <u, F~uw> : L] :
Ubs(L, [ullu:A, <a, F*uw : L1 I]
[...]

val semi_fix = Lub_least * fix5;
[| <Lub(L, [x|}l x: A, <x, F~x>:L1)
F~Lub(L, [u |l u:A, <u, F"~u :
[...]1

LD>: L[]

val fix6 = Lub_ub * (def_collect ' (type_fx * type_lub) * (Mono * semi_fix));
[l <F~“Lub(L, [ullu:A <u, F~uw :L1),
Lub(L, [x || x : A, <x, F~ x> :LJ])>:L1I]
[...1]

val fix = Anti_sym * fix6 * semi_fix;
[l F~Lub(L, [uflu:A <u, F~uw L] =
Lub(L, [x Il x: A, <x, F*~x>:L1)I]
[...1]

*%% Code to eliminate the duplicate assumptions %**

val £ix7 = (imp_i "[| L : Complete_lattice(A) []" fix) ' as_cl;
val 1fix = (imp_i *[| F : Monotone(L,L) |]" £ix7) * as_mono;
[l FP~Lub(L, [uflu:A <u, P uw ;L] =
Lub(L, [x }] x: A, <x, F~x>:L1)|]
[[l F: Monotone(L, L) |1, [| L : Complete_lattice(A) |]]

36

The effect of the above functions may be seen on page 36, where the proof
has been broken down into shorter proofs, and the result of each subproof has
been displayed. The ellipses stand for multiple assumptions of the form F :
Monotone(L,L) or L : Completelattice(A), which are the assumptions on which
the final theorem depends. The style of the proof is similar to the style obtained
in other forward proof systems, such as the calculus of constructions (a proof of
Tarski’s theorem in the calculus of constructions may be found in [11]).

Note that, although the proofs may contain schematic variables during their
development (originating, for instance, from a previous theorem or from a VE
rule), these variables become normally instantiated in some unification before the
end of the proof. The resulting proof is therefore a standard natural deduction
proof.

4 Some related work

The concern of Boyer et al in [4] is to show that automatic proofs may be con-
structed in set theory using first-order resolution. To this aim, they use a finite
axiomatisation of set theory — the vonNewmann-Bernay-Gddel axiomatisation —
and write it in clausal form. Theorems are proved by refuting their negation, also
in clausal form. Although their eventual aim is to to provide an automatic theo-
rem prover, they recognise that automation is presently limited by the problems
mentioned in section 3.2 (finding an appropriate level of expansion for the defini-
tions, and dealing with a large number of lemmas and theorems) and that some
form of heuristics will have to be used. The sample proof they provide (for the
theorem stating that the composition of homomorphisms is a homomorphism) has
been mechanically checked, but not generated automatically.

Corella ([5]) has developed ZF set theory within higher order logic. He shows
that the resulting theory is a conservative extension of ZF set theory within first
order logic. He argues that the higher order axiomatisation provides a means
of defining schematic axioms which is not available in a first order formulation.
However, a counter-argument has been provided in this paper: the availability of
schematic variables in Isabelle has made possible a standard first-order formulation
of set theory. Corella has developed a proof checker, ‘Watson’, which includes the
higher order axiomatisation of ZF. As in LCF, the inference rules are defined by
functions (or algorithms), and the theorems may not be interpreted as derived
inference rules.

5 Conclusion

Several theories concerning functions have been developed within ZF set theory
using the theorem prover Isabelle. One advantage of developing such theories
within set theory, rather than defining them by sets of axioms and inference rules,
is that the approach provides a uniform and consistent system for reasoning about

37

functions. Furthermore, although this has not been done here, it has been pointed
out that functions may be defined from a richer collection of sets than in the case of
simple type theory: for instance the ordinals greater than w cannot be constructed
in simple type theory. More functions may also be defined in set theory through the
use of ordinal recursion. It has also been shown that set theory is a suitable theory
to reason about types, including complex types such as polymorphic dependent
function spaces.

Isabelle is well suited to the development of theories within theories: since its
theorems are in the form of inference rules, it is as easy to use a theory defined by
derived theorems, as it is to use one predefined by axioms and inference rules.

Although the formulation of the theories within set theory has a standard form,
the proofs themselves are currently cumbersome. More work is now required in
order to convert the existing proofs into shorter and more readable ones, and to
increase the level of automation. One of the ways in which this can be done is
through the development of appropriate tactics within Isabelle.

Acknowledgements: I am indebted to Larry Paulson for his numerous
suggestions concerning both, the theoretical aspect of the research and the use of
Isabelle. I would also like to thank Tobias Nipkow, Thomas Foster and Martin
Coen for reading the draft of the paper and providing useful comments. The
funding of the research was provided by the SERC grant GR/E0355.7.

38

References
[1] Peter Aczel. Non-well-founded sets. CSLI lecture notes 14, 1988.

[2] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[3] A. Borzyszkowski, R. Kubiak, J. Leszczylowski, and S. Sokolowski. Towards
a set-theoretic type theory. Technical Report, Institute of Computer Science,
Polish Academy of Sciences, September 1988.

[4] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel,
and Lawrence Wos. Set theory in first-order logic: clauses for godel’s axioms.
Journal of Automated Reasoning, 2:287-327, 1986.

[5] Francisco Corella. Mechanising Set Theory. Technical Report RC 14706
(*65927), IBM Research Division, 1989.

[6] D. Gabbay and F. Guenthner, editors. Handbook of Philosophical Logie. Rei-
del Publishing Company, 1983.

[7] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Ed-
inburgh LCF: A Mechanised Logic of Computation. Springer-Verlag, 1979.
LNCS 78.

[8] A. G. Hamilton. Numbers, sets and azioms. Pergamon Press, 1982.

[9] William S. Hatcher. The Logical Foundations of Mathematics. Pergammon
Press, 1982.

[10] J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinators and
A-Calculus. Cambridge University Press, 1986.

[11] G. P. Huet. Induction principles formalised in the calculus of constructions.
In TAPSOFT 87, pages 276-286, Springer-Verlag, 1987. LNCS 249.

[12] Lawrence C. Paulson. The Foundation of a Generic Theorem Prover. Tech-
nical Report 130, University of Cambridge Computer Laboratory, 1988.

[13] Lawrence C. Paulson. Logic and Computation: Interactive proof with Cam-
bridge LCF. Cambridge University Press, 1987.

[14] Lawrence C. Paulson. A preliminary user’s manual for Isabelle. Technical
Report 133, University of Cambridge Computer Laboratory, 1988.

[15] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191-216, 1986. Errata, JAR 4 (1988),
236-236.

39

[16] Goran Sundholm. Systems of deduction. In [6] Vol 1 133-188, 1983.
[17] Patrick Suppes. Aziomatic Set Theory. Dover, 1972,

[18] G. Takeuti. Proof Theory. North Holland, 2nd edition, 1987.

40

