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Totally Verified Systems:
Linking Verified Software to Verified Hardware

Jeffrey J. Joyce
University of Cambridge

Abstract. We describe exploratory efforts to design and verify a compiler
for a formally verified microprocessor as one aspect of the eventual goal of
building totally verified systems. Together with a formal proof of correctness
for the microprocessor, this yields a precise and rigorously established link
between the semantics of the source language and the execution of compiled
code by the fabricated microchip. We describe, in particular: (1) how the
limitations of real hardware influenced this proof; and (2) how the general
framework provided by higher-order logic was used to formalize the compiler
correctness problem for a hierarchically structured language.

Keywords. compiler correctness, hardware verification, machine-
assisted theorem proving, higher-order logic, safety-critical systems.

1. Introduction

Many safety-critical systems are implemented by a combination of hardware and
software. The reliability of these systems depends not only on correct hardware
and correct software, but also on the correctness of the compiler which provides
the link between hardware and software levels. This paper describes exploratory
efforts to design and verify a compiler for a formally verified microprocessor called
‘Tamarack’. The source language is a very simple, hierarchically structured lan-
guage with only a few basic constructs, e.g., expressions, assignment statements,
while-loops, but this is enough to demonstrate how our approach could be applied
to more realistic languages. We have used higher-order logic to formally specify
this compiler and prove that it generates Tamarack machine code which executes
correctly with respect to a denotational semantics for the source language.

The verification of this compiler builds upon an earlier proof of correctness showing
that a transistor level model of the target machine satisfies a behavioural spec-

! Author’s current address: Computer Laboratory, University of Cambridge, Pembroke Street,
‘Cambridge CB2 3QG, England. After January 1, 1990: Department of Computer Science, University
of British Columbia, 6356 Agricultural Road, Vancouver B.C., Canada V6T 1WS5.
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ification based on the semantics of the target machine instruction set [16]. The
verification of both the compiler and the target machine in higher-order logic have
been mechanically checked by the HOL system [13]. The HOL system has also been
used to automatically generate substantial portions of these proofs.

The compiler correctness problem has a very long history beginning in the mid-
1960’s, but almost all of the previous work on this problem has been restricted to
abstract, idealized target machines. These idealizations can include infinite word
size and memory size, read-only code and symbolically addressed memory. By
contrast, our target machine is not idealized hardware; indeed, an 8-bit version of
the Tamarack microprocessor has been implemented as a CMOS microchip. Hence,
our use of non-idealized hardware contributes to the more novel aspects of the work
reported here.

Previous work has also generally relied upon specialized frameworks such as domain
theory and algebraic concepts which are well-suited to the compiler correctness
problem. But in the context of verifying both a compiler and the hardware of
the target machine, a very general framework is needed to handle this many-sided
problem. Such a framework is provided by the HOL system, a mechanization of
higher-order logic, which has been used to reason about all kinds of computational
systems.

Like most other examples of compiler verification, we ignore the problems of parsing
and syntax analysis and use the abstract syntax of the source language as our
starting point. The compiler is defined as a function which is applied to the parse
tree of a program to generate code for the target machine. Semantic functions are
applied in a similar way to the parse tree to generate the denotation of a program.

The work described here explores one aspect of the eventual goal of building totally
verified systems. Assuming that our transistor level specification is an accurate
model of the hardware, the compiler correctness proof combined with our earlier
proof of correctness for the target machine results in a precise and rigorously es-
tablished connection between the source language semantics and the execution of
compiled code on the fabricated microchip. Hence, the semantics of the source lan-
guage can be used to directly reason about the effect of running compiled programs
on real hardware.

A detailed description of the Tamarack compiler and its formal verification is given
in a separate report [17]. In this paper, we briefly outline the structure of this
proof describing, in particular: (1) how the limitations of real hardware influenced
this proof; and (2) how the general framework provided by higher-order logic was
used to formalize the compiler correctness problem for a hierarchically structured
language.



2. The Compiler Correctness Problem

The compiler correctness problem is easier to formulate than the general problem
of program correctness. Unlike the general case, the compiler correctness problem
has a built-in starting point for stating correctness, namely, the semantics of the
source language. Intuitively, this problem is a question of whether the execution of
compiled code agrees with the semantics of the source language. Compiler correct-
ness is often expressed by the commutativity of a diagram similar to the one shown
in Figure 1 where the two paths in the diagram from the source language programs
to target language meanings (around opposite corners) are functionally identical.

Source Language Target Language
Programs ' Programs
® > @
Compiler
Source Language Target Language
Semantics Semantics

1 Abstraction Functions Y

[ ] > @
Source Language Target Language
Meanings Meanings

Figure 1: Compiler Correctness expressed by Commutativity.

The earliest example of compiler correctness (that we are aware of) was described
more than twenty years ago by J. McCarthy and J. Painter [20]. They verified an
algorithm for compiling arithmetic expressions into code for an abstract machine.
This early work established a paradigm for subsequent work on compiler correctness
(as summarized by A. Cohn [7]): (1) abstract syntax; (2) idealized hardware; (3)
abstract specification of the compiler; (4) denotational source language semantics;
(5) operational target machine semantics; (6) correctness stated as a relationship
between the denotation of a program and the execution of its compiled form; and
finally, (7) proofs by induction on the structure of source language expressions.

Subsequent developments include those described by: D. Kaplan [18]; R. Burstall
and P. Landin [4]; R. Milner and R. Weyhrauch [23]; F. Morris [25,26]; L. Chirica
[5]; R. Milne and C. Strachey [22]; J. Goguen et al. [11]; B. Russell [31]; A. Cohn
[7]; W. Polak [29,30]; J. Thatcher et al. [33]; L. Chirica and D. Martin [6]; and
P. Collier [9]. These developments include the use of algebraic methods and domain
theory, more language features, verification by formal proof based on axioms and
Jinference rules, mechanical assistance for proof-checking and proof-generation, and
correctness proofs about parsing and syntax analysis.
3



However, all of the work mentioned above involves the use of a target machine with
idealized features. Typically, the target machine has no finite limitations on word
size or memory size. Another idealization is the use of read-only code, which avoids
the problem of showing that a compiled program is not over-written during its
execution. The target machine is occasionally provided with abstract mechanisms
such as an infinite stack or display mechanism (admittedly, finite approximations
of these mechanisms are available in real hardware). In some compiler verification
examples, the memory of the target machine is addressed symbolically by program
variables, dodging the problem of symbol table generation. Similarly, the target
language may be block structured to avoid the complication of generating unique
labels for instructions.

These idealizations, while simplifying the problem, can also be justified as reason-
able strategies for structuring both the compiler and a proof of its correctness into
several layers. Non-idealized aspects of hardware, in the context of programming
language semantics and implementation, were recognized long ago; for instance, see
papers by C. Hoare [15] and M. Newey [27]. But to our knowledge, these details and
the attendant proof complexity have not been confronted until recently, in the work
described here, and in J Moore’s formal verification of the Piton assembler for the
FM8502 microprocessor [24]. As part of the verified stack described by W. Bevier
et al. [2], Piton provides considerable support as an intermediate language with
stack-based instructions, typed data and recursive procedures !. Moore’s proof
takes account of the finite limitations of hardware; he also deals with issues such
as allocating memory for program variables and loading compiled code and data
into a single memory image. The semantics of Piton are given operationally by a
formally defined interpreter expressed as a recursive function in the Lisp-like syntax
of Boyer-Moore logic [3].

Our exploratory efforts with a simple ‘toy’ language are quite modest when com-
pared to Moore’s work on Piton. However, we have tackled a somewhat different
problem by considering a hierarchically structured source language. We expect that
methods similar to those described in this paper could be used to verify a compiler
for a structured assembly language such as Vista [19] which is being used to write
applications software for the (partially) verified Viper microprocessor [8,10,19]. An-
other important difference is the operational-style semantics of Piton in contrast to
our denotational approach. We believe that the abstract and concise nature of a
denotational semantics will be an advantage when compiler correctness results are
used to relate conventional forms of reasoning about software (e.g., a verification
condition generator based on Hoare logic) to the execution of compiled software on
verified hardware.

1 As another level in the verified stack described by Bevier et al. [2], W. Young has verified a code
generator for a hierarchically structured source language with Piton as the target language [34].



3. The Source Language

Our source language is a very simple imperative language. It is not intended to be
a useful programming language; it only provides a few basic constructs in order to
demonstrate how our approach could be applied to more realistic languages. For in-
stance, the only kind of compound arithmetic expression is a plus-expression. Con-
ditional statements are not included because while-loops cover all the proof difficul-
ties (and more) presented by conditional statements. We also simplify code genera-
tion by imposing an unusual restriction on plus-expressions and equal-expressions:
the left-hand sides of these expressions must be atomic. An informal description of
the abstract syntax for this language is shown below.

Aexp ::= {0,1,2,...} | Vars | Vars + Aexp
Bexp ::= Vars = Aexp | not Bexp
Cexp ::= skip | Vars := Aexp | Cexp ; Cexp | while Bexp do Cexp

There are three syntactic categories: arithmetic expressions, Boolean expressions
and command expressions (or simply, commands). Vars is a set of string tokens
which are used as variable names in programs, e.g., ‘i‘ and ‘sum‘ in the program
shown in Figure 2. This program, called “SUM_0_to_9”, computes the sum of the
numbers 0 to 9 inclusive.

i:=0;
sum := 0;

while not (i = 10) do
Y sum := sum + i;
i:=1i+1

Figure 2: The SUM_0.to_9 Program:.

A denotational semantics for this simple language involves the definition of seman-
tic functions for each syntactic category, namely, SemAexp, SemBexp and SemCexp.
These functions map syntactic objects to their denotations as suggested by the type
declarations,

SemAexp: Aexrp— Asem
SemBexp: Bezp— Bsem
SemCexp: Cezp—Csem

where Aezp, Bezp and Cezp are syntactic domains and Asem, Bsem and Csem
are the corresponding semantic domains.

‘These semantic functions can be described informally by a set of semantic clauses
using the emphatic brackets [ and ] to surround syntactic objects when applying
5



semantic functions to them [12]. Semantic operators on the right-hand sides of these
clauses are used to construct denotations from variables, constants and denotations
of sub-expressions.

SemAexp [v] = SemVar v
SemAexp [c] = SemConst ¢
SemAexp [v + aexp] = SemPlus (v,SemAexp [aexp])

SemBexp [v = aexp] = SemEq (v,SemAexp [aexp])
SemBexp [not bexp] = SemNot (SemBexp [bexp])

SemCexp [skip] = SemSkip

SemCexp [v := aexp] = SemAssign (v,Semdexp [aexp])

SemCexp [cexpl : cexp2] = SemThen (SemCexp [cexpl].SemCexp [cexp2])
SemCexp [while bexp do cexp] = SemWhile (SemBexp [bexp],SemCexp [cexp])

To formally define the functions SemAexp, SemBexp and SemCexp, we need a suit-
able representation for syntactic objects. This representation must allow SemAexp,
SemBexp and SemCexp to be defined as functions which satisfy the above (sometimes
recursive) semantic clauses. The next section of this paper describes how syntactic
objects can be represented in logic as parse trees.

4. Representing Hierarchical Structure

Many of the specialized frameworks used in earlier work on compiler verification
directly support the representation of syntactic objects. While a general framework
does not necessarily provide this support, it is still possible to represent syntactic
objects using only rudimentary data types. We have demonstrated how this can be
done in higher-order logic using a relatively concrete model for the representation
of syntactic objects as parse trees such as the one shown in Figure 3.

In a conventional programming language, a parse tree can be implemented by an
indexed list of records. The structure of the tree would be represented by pointers
(record indices) in each record to zero, one or two sub-expression(s). Such data
structures can be modelled in higher-order logic ? using: (1) n-tuples to represent
records; and (2) functions from indices to n-tuples to represent indexed lists of
records. Since the representing type does not restrict how records are structurally
composed into parse trees, it is necessary to have validity predicates, ValidAexp,
ValidBexp and ValidCexp, to check whether a parse tree conforms to the abstract
syntax of the source language.

2The HOL formulation of higher-order logic associates a type with every term. Every type is a
primitive type (e.g., Booleans, natural numbers, string tokens) or built up from existing types using
type constructors. Cartesian product is expressed by tylxty2 while tyl—ty2 denotes the type of all
total functions with arguments of type tyl and results of ty2.
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Based on this representation for parse trees, we can define higher-order mapping
functions, MapAexp, MapBexp and MapCexp, which allow a set of operations to be
applied to the nodes of a parse tree in the same way that the Lisp function ‘mapcar’
allows an operation to be applied to the elements of a list. We use these mapping
functions to define operations on parse trees by specifying operations for each kind
of expression. These operations are applied recursively to the entire parse tree.

l

Then
J L_ﬁ
( ,
Assign ‘i Then
Const 0 Assign ‘sunm®
Const 0
J
;
. While
J %
{
Not Then
Eq ‘i : Assign ‘sum* Assign ‘i®
Const 10 Plus ‘sum® Plus “i°
Var ‘i Const 1

Figure 3: The Parse Tree for the SUM_0_to_9 Program.
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For example, the definition of SemCexp (given in the next section) uses the mapping
function MapCexp to recursively apply semantic operators to the parse tree of a
command. This use of MapCexp is illustrated by the following term which denotes
the result of applying SemCexp to the parse tree in Figure 3.

SemThen (
SemAssign (‘i‘,SemConst 0),
SemThen (
SemAssign (‘sum‘,SemConst 0),
SemWhile (
SemNot (SemEq (‘i‘,SemConst 10)),
SemThen (

SemAssign (‘sum‘,SemPlus (‘sum‘,SemVar ‘i‘)),
SemAssign (‘i‘,SemPlus (‘i‘,SemConst 1))))))

In addition to defining operations on expressions, we will also want to prove the-
orems about the result of applying such operations to expressions. To prove that
a property holds for all expressions in a particular category, it is sufficient to show
that the property holds for each kind of expression in the category assuming that
it holds for all sub-expressions. This form of logical argument is called structural
induction. Based on our representation for parse trees, we can prove structural
induction theorems for each of the syntactic categories of the source language.

For instance, structural induction for arithmetic expressions is expressed by the
following theorem. The predicates IsVar, IsConst and IsPlus are selectors for the
three different kinds of arithmetic expressions and the function Right0f is used to
obtain the sub-expression of a plus-expression.

Feam VP.

(Vexp. IsVar exp = P exp) A

(Vexp. IsConst exp => P exp) A

(Vexp.

IsPlus exp A ValidAexp (Right0f exp) =

(P (RightOf exp) = P exp))
— :
Vexp. ValidAexp exp = P exp

Structural induction only holds for valid parse trees; however, we may assume, as
part of the inductive hypothesis, that the parse tree for the sub-expression is valid
(in the case of a plus-expression). Structural induction theorems for Boolean and
command expression have similar constraints.

The use of validity predicates to check whether a parse tree conforms to the abstract

syntax of the source language is slightly cumbersome. Validity predicates provide

a simple way to represent structure in a generalized framework using only rudi-
8



mentary data types. A more elegant approach avoids the use of validity predicates
by formally introducing new types (as sub-types of the representing type) which
contain (by definition) only valid syntactic objects.

We have used a relatively concrete representation for syntactic objects as collec-
tions of records organized into parse trees. The details of this representation are
unimportant and are hidden at early point in our proof by the derivation of ab-
stract specifications for the mapping functions MapAexp, MapBexp and MapCexp and
the derivation of the above-mentioned structural induction theorems. In a more
abstract approach, the unimportant details of a concrete representation can be
entirely avoided by directly introducing a recursive type whose elements are (by
definition) valid syntactic objects. This approach was taken by Cohn [7] working
in LCF which is also a typed logic. This more abstract approach could also be
followed in our higher-order logic framework - a task made easier by T. Melham’s
recent implementation of a recursive data types package for the HOL system [21].

To summarize this section, syntactic objects can be represented as parse trees which,
in turn, can be represented by rudimentary data types in a generalized framework
such as higher-order logic. Operations on parse trees can be defined in terms of
a set of mapping functions; reasoning about parse trees is supported by a corre-
sponding set of structural induction theorems. Full details on this representation,
the mapping functions and the structural induction theorems are given in [17].

5. Semantics
-

A denotational semantics for the source language can be defined in higher-order
logic using higher-order functions and relations as the denotations of expressions
and commands respectively. This is a somewhat different framework than usual,
i.e., Scott’s logic for computable functions, but it is denotational in the sense that
program constructs are mapped to abstract mathematical entities [12]. M. Gordon
has also used higher-order logic to represent a denotational semantics in a similar
manner {14].

The execution of a program is modelled by a sequence of states where each state
is a mapping from variable names to their values. In this simple language only
natural numbers can be assigned to variables. Hence, a state is represented by a
function from string tokens to the natural numbers as shown by the following type
abbreviation.

state = tok—num

The execution of a source language program results in a sequence of updates to the
current state. We use a standard model from denotational semantics for the effect

9



of an update. The function Update creates a new state identical to the current
state except for the updated variable which is assigned a new value. The following
definition introduces some of our notation: Update is defined in terms of a function-
denoting A-expression and a conditional expression of the form “b = t1 | t2”.

Fa.s Update (s:state,x,y) = Az. (x =2z) =y | (s z)

The denotations for arithmetic and Boolean expressions are functions which spec-
ify the value of the expression in terms of the current state. The denotation of a
command is a relation on pairs of initial and final states. The following type ab-
breviations summarize the types of denotations used for each of the three syntactic
categories. These denotations are each parameterized by a number, namely, the
word size of the target machine.

Asem = num—state—num
Bsem = num—state—bool
Csem num— (statex state) —bool

We can now begin to define semantic operators for expressions and commands in the
source language. The definition of SemVar states that the denotation of a variable
is its value in the current state. This operator is a curried function which takes its
arguments ‘one at a time’. When SemVar is applied to the first of its arguments,
i.e., SemVar v, the result is a term with the type given by the type abbreviation
Asem (where ws is the word size of the target machine).

taey SemVar (v:itok) = Aws. Aq. q v

The denotation of a constant is the value of the constant modulo the word size
of the target machine. This use of the MOD function is due to our eventual goal of
relating the semantics of the source language to the execution of compiled programs.
Modular arithmetic is a convenient way of taking into account the finite word size of
non-idealized hardware; an early example of this use of modular arithmetic appears
in Hoare’s seminal paper on axiomatic semantics [15].

Faey SemConst (c:num) = Aws. Aq. ¢ MOD 2*

A plus-expression is an example of a compound expression; its denotation is ob-
tained from its immediate constituents, in this case, from the sub-expression on the
right-hand side of the ‘+’. Modular arithmetic is also used here to model the finite
word size of the target machine.

Faey SemPlus (v:tok,s:Asem) = Aws. Aq. ({q v) + (s ws q)) Mop 2¢

The semantic operator for equal-expressions is parameterized by the string token
appearing on the left-hand side of the ‘=> and by the denotation of its arithmetic
10



sub-expression. The semantic operator for not-expressions is parameterized by the
denotation of its Boolean sub-expression.

Faey SemEq (v:tok,s:Asem) = dws. Aq. (q v) = (s ws q)
Faey SemNot (s:Bsem) = Aws. Aq. —(s ws q)

The semantic operators for commands yield relations on pairs of states. The sim-
plest case is the Skip command which has no effect on the state. Therefore, the
initial and final states of a Skip command are related if they are identical 3.

Fdey SemSkip = Aws. A(ql.,q2). q1 = g2

In the case of an assignment statement, the final state is obtained from the initial
state by the Update function.

Fa.y SemAssign (v:tok,s:Asem) =
Aws. A(ql,q2). q2 = Update (q1,v,s ws q1)

In defining the semantics of a then-command (two commands in sequence), the two
sub-commands must share a common intermediate state. Higher-order existential
quantification is used to hide this intermediate state in the definition of SemThen.
In a more standard framework, the denotation for a sequence of commands would
be obtained by the functional composition of two partial functions. Partial func-
tions allow for the possibility of non-terminating commands; however, all functions
in higher-order logic are total. ‘For this reason, we are using relations instead of
partial functions. Our use of existential quantification for the denotation of a then-
command is the analogue of functional composition for relations.

Fdes SemThen (s1:Csem,s2:Csem) =
Aws. A(ql,q2). 3q3. s1 ws (q1,93) A 82 ws (q3.492)

The function Step is defined (by primitive recursion) to describe the condition
where n iterations of a while-loop result in a final state, that is, a state in which
the Boolean condition is false. Zero iterations of the while-loop is equivalent to
the execution of a Skip command; otherwise, n iterations of the while-loop has the
same effect as executing the body of the while-loop once followed by n-1 iterations
of the while-loop. The semantic operators SemSkip and SemThen are used to define
the zero and non-zero cases respectively. Since the actual number of iterations is
not relevant to the semantics of a while-loop, this number is hidden by existential
quantification in the definition of SemWhile.

3Predicates (including relations) in the HOL formulation of higher-order logic are simply funec-
‘tions which return Boolean values. Hence, the lambda expression, A{q1,q2). q1 = g2 denotes the
‘equality relation for pairs of states.
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Faey Step n (sl:Bsem,s2:Csem) ws (q1,q2) =
(n = 0) = (((st ws q1) = F) A SemSkip ws (q1,q2)) |
(((st ws q1) = T) A
SemThen (s2,Step (n-1) (s1,s82)) ws (q1.92))

Fd.y SemWhile (s1:Bsem,s2:Csem) =
Aws. A(ql.q2). 3dn. Step n (s1,82) ws (q1,q92)

Although our use of higher-order logic is an unusual framework for denotational
semantics, some familiar properties can be derived for the semantic operators from
the definitions given in this section. For instance, assuming for a moment that our
source language also includes conditional statements, the while-loop ,

f'while bexp do cexp!
should have the same meaning as,
lif bexp then (cexp ; while bexp do cexp) else skip!

This property is expressed formally by the theorem,

Fivm V 81 82,
SemWhile (s1,82) =
SemCond (s1,SemThen (s2,SemWhile (s1,s2)),SemSkip)

where SemCond is a semantic operator for conditional statements defined as:

t4cy SemCond (s1:Bsem,s2:Csem,s83:Csem) =
Aws. A(ql.q2).
((s1 ws q1) = T) = (s2 ws (q1.q92)) | (s3 ws (q1.q2))

The operators, SemVar, SenConst, SemPlus, SemEq, SemNot, SemSkip, SemAssign,
SemThen and SemWhile, describe how the denotation of an expression is obtained
from its top-level form and the denotations of its sub-expressions. The denotation
of a complete expression (including commands, and hence, complete programs) is
obtained by using the mapping functions mentioned in Section 4 to recursively apply
these operators to every node in a parse tree. From the abstract specifications for
MapAexp, MapBexp and MapCexp given in [17], it is quite easy to show that the
following definitions satisfy the semantic clauses given earlier in Section 3.

Faey SemAexp = MapAexp (SemVar,SemConst,SemPlus)

4.y SemBexp = MapBexp (SemAexp,SemEq,SemNot)

F4.s SemCexp
MapCexp (SemAexp.SemBexp,Seni%kip.SemAssign.SemThen.SemWhile)



Later in this paper we will show how the mapping functions are used in a similar
way to compile a complete program by recursively applying compilation operators
to every node in a parse tree.

6. Compiler Overview

The Tamarack compiler is implemented by two phases. The original motivation
for splitting the compilation process into two phases was to control the complexity
of the formal proof of correctness. However, the use of an intermediate form is
common practice in compiler design for more conventional reasons. For instance,
it may be possible to compile more than one source language into the intermediate
form and/or compile the intermediate form into the machine code of more than one
target machine. This also suggests certain opportunities for re-using correctness
results.

The first phase compiles the hierarchically structured program into a flat interme-
diate form called SM code. In general, this is a process of compiling an expression
by first compiling its sub-expressions (if any) and then using the result to generate
code for the expression itself. The second phase of the compiler assembles SM code
into executable Tamarack machine code called TM code. To generate TM code
from the intermediate form, a symbol table is constructed to map symbols in the
source program to memory addresses. Each SM instruction is mapped to a frag-
ment of TM code where each TM instruction is a 3-bit opcode and an address field
packed together into a single memory word. This second phase of the compilation
process performs (very simple versions of) the tasks associated with the assembler
and linking loader in a conventional programming environment. The two phases
of the compilation process are shown in Figure 4 where the example SUM_0_to_9
program is first compiled into SM code and then assembled into TM code.

As an intermediate form, SM code shares some common features with the source
language. In both cases, storage is addressed symbolically by variable names and
‘program space’ is separate from data and cannot be over-written. However, SM
code also shares some common features with the target language, in particular, they
are both linear sequences of accumulator-based instructions.

The semantics of SM code are described operationally by the specification of an
abstract machine (called an SM machine) which directly executes this intermedi-
ate form. The SM machine consists of a fixed program, an infinite, symbolically
addressed store, a program counter and an accumulator. For simplicity, we have
designed the SM machine to operate exclusively on natural numbers where multiple
data types might otherwise have been used. The Boolean values T and F are repre-
sented by the natural numbers 0 and 1 respectively. Modular arithmetic is used to
model the finite word size of the target machine.

13



i = 0;

sum := O;

while not (i = 10) do
sum := sum + i;
i:=13i+1

U

(“CONST*,ARB,0)
(‘ST‘,*“1i‘,ARB)

(*CONST*,ARB,O)
(*ST‘, ‘sum‘,ARB)
(‘CONST*,ARB,10)
(‘EQ*,*i*,ARB)

(‘NOT‘,ARB,ARB)
(*NOT*,ARB,ARB)

base:

base+4:

(“*JZR* ,ARB,base+16)

(‘LD‘,“i‘,ARB)
(“ADD‘, ‘sum‘,ARB)
(‘ST*, *sum*,ARB)
(“CONST*,ARB,1)
(‘ADD‘, “i‘,ARB)
(“ST*,‘i‘,ARB)
(*JMP*,ARB,base+4)
base+16:

base: (LD n (base+2))
(JMP n (base+3))
(0 MOD 22+3)
base+3: (ST n (symtab ‘i‘))
base+4: (LD n (base+6))
(JMP n (base+7))
(0 MOD 2°+3)
base+7: (ST n (symtab ‘sum‘))
base+8: (LD n (base+10))
(JMP n (base+11))
(10 MOD 22%3)
base+11: (SUB n (symtab ‘i‘))
(JZR n (base+16))
(LD n (base+15))
(JMP n (base+16))
i
base+16: (JZR n (base+20))
(LD n (base+19))
(JMP n (base+23))
0
(LD n (base+22))
(JMP n (base+23))
1
base+23: (JZR n (base+27))
= (LD n (base+26))
(JMP n (base+30))
0]
(LD n (base+29))
(JMP n (base+30))
1
base+30: (JZR n (base+40))
base+31: (LD n (symtab ‘i¢))
base+32: (ADD n (symtab ‘sum‘))
base+33: (ST n (symtab ‘sum‘))
base+34: (LD n (base+36))
(JMP n (base+37))
(1 MoD 2°+3)
base+37: (ADD n (symtab ‘i‘))
base+38: (ST n (symtab ‘i‘))
base+39: (JMP n (base+8))
base+40:
Figure 4.
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7. Compiling Expressions and Commands

We begin to specify the compiler by defining a function for each kind of expression
which compiles that expression into SM code. Each of these functions operates
only on the top-level form of the expression; sub-expressions (if any) are compiled
separately and the results supplied as arguments to the function. There is a close
parallel between the role of these functions in compiling a hierarchically structured
program and the semantic operators mentioned earlier in Section 5. For this reason,
we call these functions compilation operators.

The intuitive sense in which the compilation operators for arithmetic and Boolean
expressions are correct is fairly obvious. For instance, the compilation operator for
plus-expressions is correct if and only if execution of the compiled code loads the sum
of the sub-expression and the value of the program variable into the accumulator.
In general, a compilation operator is correct if and only if the effect of executing the
code generated for an expression or command agrees with its denotation generated
by the corresponding semantic operator. In the case of an arithmetic expression,
the value of the accumulator after executing the compiled code must be equal to
the value given by its denotation in the current state. For a Boolean expression,
the accumulator must contain either 0 or 1 depending on whether the denotation
of the expression evaluates to true or false respectively.

Because commands do not necessarily terminate, the sense in which compilation
operators for commands are correct is less obvious. By ‘termination’, we mean that
the denotation of a command relates the initial state q1 to a final state q2, i.e., that
there exists a final state q2.

Fdey Terminates p ws q1 = 3q2. SemCexp p ws (ql,q2)

Termination, in this sense, is a property of the abstract mathematical entities de-
noted by source language programs; the question of whether the SM machine halts
when the compiled form of the program is executed is prima facie a different matter.
For an SM machine ‘to halt’, means that it eventually reaches the end of the SM
code.

Using these distinct notions of termination and halting, the correctness of a compila-
tion operator for a command is expressed by separate conditions for the terminating
and non-terminating cases. In the terminating case, the SM machine must halt and
the final state of its store must agree with the final state given by the corresponding
denotation. In the non-terminating case, the SM machine must not halt.

After formalizing these intuitive notions of correctness, we prove that the compila-
tion operator for each kind of expression is correct with respect to the corresponding
semantic operator. These correctness results are obtained by a sequence of infer-

15



ences patterned on the symbolic ezecution of the compiled code for an expression.
This use of the term ‘symbolic execution’ is purely descriptive; our proof technique
is based entirely on the inference rules of higher-order logic.

This proof technique is straightforward for atomic expressions. Each step in the
symbolic execution of the compiled code corresponds to the symbolic execution of
a single SM instruction. A formal model of the SM machine is specified in terms
of a nezt state function which is used to step through the code generated by the
compilation operator for the atomic expression. After the appropriate number of
steps, we show that the resulting state of the SM machine satisfies the correctness
condition for this expression.

For compound expressions (including compound commands) symbolic execution
involves steps corresponding to the execution of sub-expressions in addition to the
execution of single SM instructions. We assume that the appropriate correctness
conditions hold for the sub-expressions and use these assumptions to reason about
the execution of each sub-expression as single steps in the symbolic execution of
the compound expression. The remaining steps (steps corresponding to single SM
instructions) are symbolically executed by an application of the next state function.

For example, the following theorem states that the top-level form of a plus-expression
is compiled correctly by the compilation operator CmpPlus with respect to the deno-
tation produced by the semantic operator SemPlus. The correctness condition for
arithmetic expressions is expressed by the predicate AexpCorrect. The variables ¢
and s are the compiled code and denotation respectively of the sub-expressmn on
the right-hand side of the ‘+

Fiaom V € 8 V.
AexpCorrect (c,s) —
AexpCorrect (CmpPlus (v,c),SemPlus (v,s))

Similar results are obtained for every other kind of expression in the source language.
For most expressions, symbolic execution corresponds to a fixed sequence of steps.
However, correctness results for while-loops are more difficult and involve proofs
by mathematical induction. The terminating case for while-loops is proved by
mathematical induction on the number of iterations. The non-terminating case is
even more difficult because there is more than one way that a while-loop can fail to
terminate: at any point, the body of the while-loop may fail to terminate, or else
the while-loop itself may continue to loop forever.

There are two essential ideas being used here to reason about compound expres-
sions. One is the idea of using assumptions about the correctness of sub-expressions
to prove correctness results for compound expressions. The other is the idea of
‘mixed-mode’ symbolic execution where single steps correspond to either single SM

mstructlons or to sub-expressions.
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8. Compiling Complete Programs

In section 4 we showed how semantic functions for each syntactic category can be
defined by applying the mapping functions MapAexp, MapBexp and MapCexp to the
semantic operators. In a similar manner, compilation functions for each syntactic
category can be obtained by applying the mapping functions to the compilation
operators.

Fa4.y CmpAexp = MapAexp (CmpVar,CmpConst,CmpPlus)

Fa.y CmpBexp = MapBexp (CmpAexp,CmpEq,CmpNot)

Fa.s CmpCexp
MapCexp (CmpAexp,CmpBexp,CmpSkip,CmpAssign,CmpThen,CmpWhile)

The correctness of these compilation functions is easily established from correct-
ness results for each compilation operator using the structural induction theorems
mentioned in Section 4.

These correctness results lead directly to the following theorem where the variable p
denotes any source language program. The predicate SMHalts is defined directly in
terms of the formally specified model of the SM machine. For a given SM program,
SMHalts describes a relation on pairs of states (q1,q2) where the SM machine
begins execution in state q1 and eventually halts in state q2. Hence, SMHalts is a
semantic function for SM code.

.

Finm Vp. ValidCexp p =2 (SemCexp p = SMHalts (CmpCexp p))

This theorem is the main result from the first part of our compiler correctness
proof: it relates the denotational semantics of our source language to an operational
semantics given by SMHalts applied to the compiled code generated by CmpCexp.
We are using the term ‘operational semantics’ in a somewhat old-fashioned sense *
where the semantics is given by an abstract machine and a translation from the
source language into code for the abstract machine [32].

This result can also be expressed by the commutative diagram in Figure 5 which is
similar to diagrams found in other discussions of the compiler correctness problem.
In this case, there is no need for an abstraction function from source language
meanings to target language meanings since they are identical. Consequently, the
diagram has only three sides.

*A more recent form of operational semantics known as Plotkin-style or natural semantics has
both structure and some denotational-style features [28].
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Source Language SM Machine
Programs Programs
L ] > @

CmpCexp

SemCexp SMHalts

Program Meanings

Figure 5: Compiler Correctness expressed by Commutativity.

The second part of our correctness proof considers the assembly of SM programs
into TM code establishing a correspondence between the direct execution of an SM
program and the execution of an assembled SM program by the target machine.
Later, this result is combined with the above theorem to obtain a direct correspon-
dence between the denotation of a source language program and the execution of
its compiled form by the target machine.

9. Assembling Intermediate Code

The external architecture of the Tamarack microprocessor consists of three state
components: the memory, program counter and accumulator. A single instruction
word format is used by all Tamarack instructions: a 3-bit opcode followed by n ad-
dress bits. The actual size of the address field is given by a parameter throughout
the formal proof of correctness. The transistor level model of the Tamarack imple-
mentation is also parameterized by the size of the address field. The correctness of
this implementation has been established for all possible sizes.

The assembly of SM code into TM code requires the generation of a symbol table,
symtab, which maps string tokens appearing in SM instructions to memory ad-
dresses. Symbols (i.e., string tokens) are only added to the table when they appear
on the left-hand side of an assignment statement in the source language program.
Since each assignment statement corresponds to an ST instruction in the resulting
SM code, symbols are only added to the table when they appear in the SM code
as an operand in an ST instruction. The symbol table is generated by a single pass
over the SM program. When a new symbol is added to the table, it is assigned the
address of the next available location in the data area of memory.

The assembly of SM code into TM code also requires an address table, addrof,
which maps locations in the SM code to corresponding locations in the TM code.
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The location of the TM code generated for a particular SM instruction can be
determined by adding up the sizes of the code fragments generated for all preceding
SM instructions. This table can also be generated by a single pass over the SM
program.

The symbol table, symtab, and address table, addrof, are used in a third pass over
the SM program to generate the TM code. Most SM instructions are assembled
into a single TM instruction. However, a CONST instruction, used to load a constant
into the accumulator, is assembled into a three word fragment of TM code: an LD
instruction; a JMP instruction; and the constant itself which is stored in a separate
memory word (i.e., as an immediate constant). The JMP instruction prevents the
constant from being executed as an instruction. The SM instructions EQ and NOT
are also assembled into multiple words of TM code. This is because 0 and 1,
representing true and false respectively, are stored as immediate constants b.

For conceptual clarity, we have separated the assembly of SM code into three succes-
sive passes. However, there are well-known techniques, e.g., ‘back-patching’, which
can be used to reduce the number of passes in a compiler [1].

Each of the three passes used to assemble SM code into TM code can be formally
defined as an operation applied iteratively to a sequence of SM instructions; in
concrete terms these functions can be defined by primitive recursion on the size of
the SM code. As one might expect, correctness results for each of these passes over
the SM code will involve proofs by induction on the size of the SM code.

Correctness results for symbol table generation show that the iteratively generated
symbol table has several properties needed to prove that SM code is correctly as-
sembled into TM code. For instance, we show that different symbols are mapped
to different addresses. Several other less obvious properties are described in [17].

The rest of the proof is concerned with showing that SM code is correctly assembled
into TM code. Intuitively, it is fairly obvious what conditions need to be satisfied:
execution of the TM code must correspond to the execution of the SM program.
There are several provisos, most of which arise from limitations of the finite word
size and finite memory size of the target machine.

Earlier steps in the correctness proof have already been influenced by the finite
limitations of the target machine: the finite word size of the target machine is a
feature of both the denotational semantics of the source language and the oper-
ational semantics of SM code. However, correctness results for the first compiler
phase place no bounds on the size of the SM code or the size of the store. Therefore,
finite limitations of the target machine are more important in the second part of the

5The use of immediate constants was slightly easier (in the initial effort of developing this proof)
than the more economical approach of storing a single instance of these constants in memory.



correctness proof when showing that SM code is correctly assembled into TM code.
The size of addressable memory is limited by the number of bits in the address
field of a target machine instruction. The memory area reserved for code must be
large enough to accommodate the code generated by the assembler. Similarly, the
area reserved for data must provide a separate memory word for each symbol in the
symbol table. These two areas of memory must not overlap and cannot exceed the
boundaries of addressable memory. We assume explicitly that these conditions are
satisfied in proving that SM code is correctly assembled into TM code.

The sense in which the execution of TM code ‘corresponds’ to the execution of an
SM program is, roughly speaking, the condition that updates to the memory state,
program counter and accumulator of the target machine correspond to updates to
the store, program counter and accumulator of the SM machine. There are three
distinct steps in proving that execution of the assembled form of an SM program
corresponds to its direct execution by the SM machine. These three steps are very
briefly summarized in the next few paragraphs.

The first step establishes that the execution of the compiled form of individual
SM instructions corresponds to their direct execution by the SM machine. This
step in the proof is concerned with the fragments of TM code generated for each
SM instruction. For each SM instruction, we prove that the symbolic execution of
the TM code fragment by repeated applications of the next state function for the
target machine corresponds to a single application of the next state function for the
SM machine. This step also proves that execution of the code fragment does not
over-write any part of the TM code.

The second step establishes that the fragments of TM code generated for each SM
instruction are correctly composed into a single fragment of TM code for the entire
SM program. This step is proved by mathematical induction on the size of the SM
program.

The third step establishes that the execution of an assembled SM program corre-
sponds to its direct execution by the SM machine for any number of execution steps
(within the limitations of the target machine). This step is proved by mathematical
induction on the number of execution steps.

The correctness result obtained from these three steps states precise details about
the relationship between the execution of an assembled SM program and its direct
execution by the SM machine. In very simple terms, there exists an SM machine
which provides an abstract model of the target machine while executing the com-

piled SM program. Therefore, true statements about the direct execution of the SM
" program are also true statements about the execution of its compiled form by the
target machine. This theorem is used in combination with earlier results to obtain
a correctness result for the complete compilation process.

20



10. Combining Two Levels of Correctness Results

The final step in the verification of the Tamarack compiler combines correctness
results for the two phases of the compilation process.

Earlier correctness results for the first compiler phase established that direct ex-
ecution of the SM code generated from a terminating source language program
will result in a final state which agrees with its denotation. In the case of a non-
terminating program, the SM machine will not halt. For the second compiler phase,
we have just seen that ‘true statements about the direct execution of the SM pro-
gram are also true statements about the execution of its assembled form by the
target machine’.

The combination of these two results implies that a terminating source language
program will be compiled into target machine code which will execute to completion
and yield a final state which agrees with its denotation. This depends, of course, on
whether the compiled program can be loaded into addressable memory. A precise
statement of this result uses the symbol table generated by the compiler for this
program to relate memory states of the target machine to the denotation of the
source language program. In the case of a non-terminating program, the target ma-
chine will never complete execution of the compiled code. The correctness theorem
for the terminating case is shown below.

Fehm V P n mem.
ValidCexp p A
CompiledAndLoaded n p (mem 0) A
Terminates p (n+3) ((mem 0)c (SymTab p))
=
V pc acc.
™ n (mem,pc,acc) A
(pc 0 = 0)
=
3t.
FirstReaches (pc,t,End0fProg p) A
SemCexp p (n+3) ((mem 0)o (SymTab p),(mem t)o (SymTab p))

To paraphrase this theorem: if the compiled code for a syntactically valid, termi-
nating program is loaded into memory at location 0 and executed by the target
machine (whose behaviour is given by the predicate TM) beginning at time O, then
the target machine will eventually reach the end of the code at some time t. When
execution of this code is completed, an abstract view of the initial memory state will
be related to an abstract view of the final memory state by the denotation of the
program. An ‘abstract view’ of the memory state is obtained by using the symbol
table to access the contents of the target machine memory; in the above theorem,
this is expressed by use of the operator ‘5?1 which denotes functional composition.



11. Summary

Our main correctness theorem provides a direct link between the semantics of the
source language and the behavioural specification of the Tamarack microprocessor.
When coupled with an earlier proof of correctness relating this behavioural specifi-
cation to a transistor level model of the hardware, we obtain a precise and rigorously
established connection between the denotation of a source language program and
the effect of executing its compiled form on actual hardware.

A link between software and hardware levels provides a sound basis for using the
semantics of the source language to reason about programs. In related work, Gordon
[14] shows how Hoare logic can be embedded in higher-order logic by regarding the
syntax of Hoare formulae as abbreviations for higher-order logic formulae. The
axioms and inference rules of Hoare logic are then derived from semantic operators
similar to the semantic operators defined in Section 5 of this paper. This means that
theorems proved in Hoare logic using these axioms and rules are logical consequences
of the underlying denotational semantics.

To relate this work to our correctness results for the Tamarack compiler, we would
need to slightly re-formulate the axioms and rules of Hoare logic to take account
of the finite size of memory words as we have done for the semantic operators
in Section 5. It would then follow that theorems proved in Hoare logic about a
particular program are true statements about the result of executing the compiled
program on the fabricated microchip. This depends, of course, on both explicit con-
ditions, e.g., whether the compiled code fits into addressable memory, and implicit
assumptions, e.g., that the transistor level specification is an accurate model of the
hardware.

In this exploratory effort, we have not ventured beyond a traditional view of formal
semantics that the meaning of a program is either a partial function from initial
states to final states or, as in our approach, a relation between initial and final states.
However, we are interested in embedded systems where a ‘batch processing’ view of
program behaviour is not entirely appropriate. These systems continuously interact
with an environment; they are typically implemented by a fixed program compiled
and loaded into the memory of one or more microprocessors. Unlike a batch job,
execution of the compiled code is meant to execute forever, or at least, until the
microprocessor is reset or switched off. Instead of a final outcome, we are interested
in the on-going behaviour of the microprocessor while executing the compiled code.
We are concerned, for instance, that the system responds correctly to external
stimuli or that certain invariants are maintained. Therefore, an important direction
of future work will be to investigate the relationship between suitable kinds of
semantics for proving the correctness of a compiler and formalisms which can be
used to reason about continuously-operating systems.
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