Technical Report R

Number 179

Computer Laboratory

Automating Squiggol

Ursula Martin, Tobias Nipkow

September 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 Ursula Martin, Tobias Nipkow

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Automating Squiggol
Ursula Martin* and Tobias Nipkow!

Department of Computer Science, RHBNC, University of London
Egham, Surrey TW20 0EX, UK
uhm@cs.rhbnc.ac.uk
and
University of Cambridge, Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, UK

tnn@cl.cam.ac.uk

Abstract

The Squiggol style of progam development is shown to be readily automated
using LP, an equational reasoning theorem prover. Higher-order functions are
handled by currying and the introduction of an application operator. We present
an automated verification of Bird’s development of the maximum segment sum
algorithm, and a similar treatment of a proof of the binomial theorem.

*Research partially supported by ESPRIT BRA grant 3104, PROCOS.
tResearch supported by ESPRIT BRA grant 3245, Logical Frameworks.

1 Introduction

The Bird-Meertens calculus “Squiggol” has been developed for deriving functional pro-
grams by equational reasoning. LP [6] is an equational reasoning theorem prover de-
veloped at MIT by Steve Garland and John Guttag. It supports proofs by induction,
rewriting and completion, and is used interactively for designing, coding and debug-
ging proofs. The aim of this paper is to show that LP may be used almost as a pocket
calculator for Squiggol verifications. We take as our main example the verification of
Bird’s derivation [1] of the maximum segment sum algorithm. We present a verification
consisting of around 3 pages of input, which closely follows the hand proofs indicated
in [1], and executes in just over a minute on a SUN3/60.

We begin with a brief introduction to LP, although we must refer the reader to [6] for
a full account. The introduction is illustrated by a proof of the binomial theorem which
is itself a simple example of the Squiggol style. Section 3 briefly introduces the logic of
term rewriting. Term rewriting is usually associated with first order theorem proving,
but in Section 4 we describe how higher order functions are treated equationally by
currying. Sections 5 to 7 are deliberately modelled closely on Bird’s paper [1], and
show how the derivations of Horner’s rule and the maximum segment sum algorithm
presented there are all easily carried out in LP. In the last section we discuss some
of the extensions which would have been useful for this work, and some of the other
systems which could have been used.

2 An Introduction to LP and a Sample Proof

In this section we give a brief introduction to equational reasoning and the Larch Prover,
using an annotated transcript of the full input, and some of the output, for a proof of
the binomial theorem in LP. A full introduction to LP can be found in [6].

LP is based upon equational term-rewriting. That is, given a set of operators and
some equations which they satisfy, each equation is oriented into a directed substitution
or rewrite rule. The inference mechanism is that of replacing subterms which match
the left hand side of a rule by the corresponding right hand side. As well as this proof
by rewriting, LP also supports proof by cases and by induction.

Classical term rewriting, and theorem provers such as Reve [13] and RRL [20], have
been much concerned with the completion algorithm. We do not use completion at all
in our work, a point we return to in the next section.

The session begins by declaring generators for natural numbers and lists. In our
formulation, natural numbers are generated by 0 and s and lists by the empty list nil
and the infix cons-operator &&:

add-generators
0 : -> nat
8 ! nat -> nat

nil : -> list
&& : nat, list -> list

The .. indicates end of input. The sole point of this declaration is to establish the
structural induction schemata
P(0) Vx.P(x) = P(s(x))
P(x)

and
P(nil) Ve,z.P(z)= Ple &k z)
P(z)

for natural numbers and lists. Since we define all functions by primitive recursion, these
are sufficient for our purposes.

We next declare the equations we are going to use. Addition, multiplication and
exponentiation are axiomatised as follows

add

x+s8(y) == s(x+y)

x+0 == x

s(x)*y == (x*y) + y
x*(y+u) == (x*y) + (x*u)
Oxx == 0

1 == g8(0)

2 == g(1)

y*((power.x).y)
1

(power.s(x)).y
(power.0) .s(x)

Thus (1+z)" is represented by (power.n).s(x). Notice that we do not need to declare
variable and operator names as we are using the LP default that uvwxyzUVWXYZ are
variable prefixes and other prefixes denote operators. Here power is a constant and
the . denotes explicit application, so that (power.x).y is the curried form of a term
which might also be represented by a function with two arguments. We return to this
in Section 4.)

To use these equations for computation we order them into rules by declaring that
they should all be oriented from left to right

set order left-to-right
order automatically

A term may now be normalised by matching subterms against instances of the rules
and rewriting until no more rules apply. The declaration

set ac * +
ensures that associative-commutative matching is used for * and +. Thus for example
normalize (power.2).(x+y)

returns (x * x) + (x * y) + (x % y) + (y * y) . The prove command attempts
a proof by rewriting; thus

prove (power.2).(x+y) == ((power.2).x) + ((power.2).y) + (2%x*y)
qed

returns

Conjecture 11
(power.2).(x + y) == (2%x*y) + ((power.2).x) + ((power.2).y)
[} Proved by rewriting.

The qed command checks that no more proofs are in progress. It fails if any previous
proof attempt has failed, that is if there are any remaining subgoals. It has been placed
there because we know the proof succeeds.

The input for an induction proof takes the following form:

prove (power.x).1l == 1 by induction x nat
qed

The first line performs the proof. It is by induction on the variable x of type nat. The
typing information selects the structural induction schema for natural numbers. The
output from the prove command shown below indicates how the proof is performed.

The basis step in an inductive proof of Conjecture 12
(power . x) . 1 ==
involves proving the following lemma(s):

12.1: (power . 0) . i ==
[] Proved by normalization

The induction step in an inductive proof of Conjecture
(power . x) . 1 ==
uses the following equation(s) for the induction hypothesis:

Induct.1: (power . cl) . 1 ==1
The system now contains 1 equation and 9 rewrite rules.

Ordered equation Induct.l into the rewrite rule:
(power . c1) . s(0) -> s(0)

The system now contains 10 rewrite rules.

After the proof the normalised form of (power.x).1 == 1 is added as a new rule
ordered from left to right.
To state the binomial theorem we need some further functions.

add

(pointsum.nil).z == z

(pointsuit,z) .nil == z

(pointsum. (x1&&z1)) . (x2&&22) == (x1+x2) &&((pointsum.z1).z2)

bin.0 == s(0) && nil

bin.(s(x)) == (pointsum.(0&&(bin.x))).(bin.x)
(seq.x) .nil ==

(seq.x).(yk&z) ==y + x*((seq.x).z)

order automatically

The function pointsun adds up two lists elementwise to obtain a third, We use this
to define the list of binomial coefficients bin.n, that is [(8), . (:‘), , (:)], using
the recursive definition from Pascal’s triangle. Finally the function seq.x turns a list
of natural numbers [ag, ay,...,as] into the polynomial ay + ay * z + -+ -a, * z". Thus

the binomial theorem, for any element = of any commutative ring and for any natural
number n
n n n
(z+D“=Q)+(J*z+~~F&)*f,

(power.xn) .s(x) == (seq.x).(bin.xn) .

becomes

To prove the theorem we need a lemma which states that pointsum distributes over
seq; this has a straightforward double induction proof

prove (seq.x).((pointsum.z1).22) == ((seq.x).z1) + ((seq.x).z2)
resume by induction z1 list

resume by induction z2 list

qed

The theorem follows by a second induction

prove (power.xn).s(x) == (seq.x).(bin.xn) by induction xn nat
qed

The reader may object that defining the binomial coefficients in this way is not
entirely honest! However we may also verify using LP that this definition is equivalent
to the more usual recursive definition

n+1l) (n n n
r+1) \r r+1)°
The function pick.n selects the n+1-st element of a list

(pick.x).nil == 0
(pick.0). (y&&z) =

=Y
(pick.s(x)). (y&&z) ==

(pick.x) .z
and thus the binomial coefficient b(x,y) is defined as
b(x,y) == (pick.y).(bin.x)

We need to prove that pick distributes over pointsum

prove (pick.x).((pointsum.z1).z2) == ((pick.x).z1) + ((pick.x).z2)
resume by induction zl1 list

resume by induction z2 list

resume by induction x nat

and then the result is proved by rewriting
prove b(s(x),s(y)) == b(x,y) + b(x,s(y))

Further LP features will be discussed below.

This completes the input for our LP session. When input as a file of commands
using the ex <filename> command it runs in under 30 seconds on a SUN3/60. However
this was not the first draft of our LP proof; as is explained in [6], LP supports a proof
style based on designing, coding and debugging where in particular proof attempts
which are going to fail will fail quickly. For example our first attempt contained gaps
(we had to work out an appropriate lemma on-line), bugs and infelicities (such as a
less elegant definition of the sequence of binomial coefficients) which were fairly rapidly
eliminated in the course of a hour or so in front of the prover.

We remark that one of the reasons our proof went through so smoothly was that
we used the device, borrowed of course from Squiggol, of representing polynomials by
a list of their coefficients, rather than working with them directly.

3 The Logic of Term Rewriting

Term-rewriting theory has been much concerned with the completion algorithm, which
attempts to find a complete set of rules equivalent to a given set of equations, which
give a solution to the word problem in the variety the equations define. A set of rules
is called complete if it is terminating, that is no expression can be reduced infinitely
often by repeatedly applying the substitutions, and confluent, which means that if two
distinct expressions can be obtained from a given expression by repeated application
of the rules then further applications of the rules can be found to reduce the two
expressions to the same thing. Then each term has a unique normal form which can be
found by repeatedly applying rules to it until it can be simplified no more, and we can
decide whether two expressions are equal as a consequence of the given identities by
seeing whether they have the same normal form or not. LP contains an implementation
of the completion algorithm, and of several well-founded orderings on terms for proving
termination. However obtaining a complete system, even when it is possible, is often
computationally expensive and requires time and ingenuity from the user. As proof by
rewriting is always sound with respect to equational logic, completion is only called for
if a rewrite proof fails. In the few cases this happened to us, it was easier to prove one
more equation to make the proof at hand succeed, than to complete the whole system.

A different question is whether LP’s logic is suitable for program correctness proofs.
The main problem is how to avoid the introduction of inconsistencies. Conceptually,
there are two kinds of inconsistencies we would like to distinguish. On the one hand
there are those that arise from carelessness, like adding true == false or defining
both £(x) == 0 and £(x) == 1. On the other hand there is the partial function

problem: LP is based on a logic for total functions, and the introduction of truly partial
functions can cause inconsistencies. Defining f(x) == f£(x)+1 is a typical example.
Notice that termination orderings [4] alone do not protect against partial functions: the
previous example would simply be ordered into £ (x)+1 -> £(x). Only in conjunction
with syntactic constraints similar to those in the Boyer-Moore system [3] or functional
programming languages do they enforce totality.

Consistency of complete term-rewriting systems can be proved by checking that
certain terms like true and false or 0 and 1 are not equivalent, i.e. have distinct
normal forms. In the inconsistency examples above, the systems are either not confluent
or not terminating, depending on the orientation of the rules. Any attempt to complete
those systems will eventually lead to the generation of an equality like true == false
or 0 ==

Our proofs are not accompanied by a formal demonstration of consistency. The
reasons are those that lead us to reject completion as an approach to theorem proving.
Even for a simple system like the one used for binomial coefficients in Section 2, LP
cannot prove termination automatically because its termination orderings are not pow-
erful enough. Assuming termination, LP can prove confluence and thus consistency.
Unfortunately, LP’s termination and confluence tests do not cover deduction rules since
they lie outside the realm of equational logic.

4 Higher-Order Functional Programming in LP

Term rewriting is usually associated with first-order terms. In this section we want to
show how functional programming can be emulated by first-order rewriting systems.
The key idea is rather trivial: application, which is usually part of the meta-language,
is made explicit on the object level by the introduction of an application operator. In
LP an infix “.” 1is used for that purpose. Thus there are now two ways of defining
functions. In addition to the customary £(x) == ... we can also write £.x ==
Of course a term f (a) matches only the left-hand side of the first rule, and f.a only
the left-hand side of the second rule. The advantage of the second version is that £ is
now a constant which can be passed as an argument to a function, such as in f.f, or
be returned as a result, as in g(x) == £. It is the latter version that is used almost
exclusively throughout this paper. In some cases we use both forms to make things more
legible: in addition to the constant £ representing a binary function, we introduce the
infix operator + and define (f.x).y == x+y. We can now write (x+y)+z == x+(y+z)
instead of (£f.((f.x).y)).z == (£f.x).((f.y).z). If f is also commutative, we can
declare + to be an AC operator in LP, which we could not do with £.

It should be noted that although the introduction of an apply operator may look like
a hack, it merely brings to the surface the internal representation of functional terms in
systems like LCF [16] or HOL (8], or in the implementation of functional programming
languages [18].

However, one fundamental concept of functional programming is not covered by
our extension: A-abstraction. Fortunately, Squiggol does not use it. Otherwise all
occurrences of A have to be eliminated by a technique called “A-lifting” [12].

LP offers a simple type system which is not expressive enough for our application.

Therefore we have not used this feature and work in an untyped calculus permitting
us to write things like £.£. In a polymorphic type system, the type of the application
operator would be Fun(a,) * & — 3, where Fun is an uninterpreted type constructor.
Elements of Fun are introduced either explicitly by declaration or by type inference:
writing £.x == x+1 would force £ to be of type Fun(int,int).

The rest of the section presents the definition of some common laws and combina-
tors dealing with functions in LP. We start the LP session by defining that all names
beginning with “F”, “G”, “H”, or “u” through “z” are variables:

set var-prefix FGHuvwxyz

Although LP cannot make the distinction, we use “F”, “G”, and “H” as function variables
and “u” through “z” as variables of base type. In addition to function application, we
define an infix composition operator Q:

(F @ G).x == F.(G.x)

One of the fundamental laws of higher-order calculi is extensionality,

(Vu. f(u) =g(v)) = f=g

which goes beyond even conditional equational logic. Fortunately, LP’s deduction rules
can express such axioms:

set name ext
add-deduction when (forall u) F.u == G.u yield F == G

The set name command enables us to refer to the rule following it by ext. The logical
meaning of the deduction rule is obvious. Operationally it acts like a trigger: if an
equation f.x == g.x is added to the system, the corresponding rule £ == g is added
automatically. We often prove some theorem of the form f.x == g.x, because the
argument to £ and g is necessary to unfold their definitions, But after the proof has
succeeded, ext is triggered, and the more useful rule £ == g is added, thus reducing
the original theorem to a triviality.

This scheme fails if the theorem is of the form £1.(£2.x) == gi.(g2.x) because
it does not match the premise of ext. An explicit instantiation is necessary:

instantiate F by F1 @ F2, G by G1 @ G2 in ext
adds the deduction rule
when (forall u) Fi.(F2.u) == G1.(G2.u) yield F1 @ F2 == Gi @ G2

A different example of explicit instantiation is the derivation of associativity of @
from ext:

instantiate F by (FQ@ G) @ H, Gby F @ (G @ H) in ext
triggers the addition of the rule
(FQG) @H==F @ (G Q@ H) (

because the premise of ext reduces to an identity.

5 The Theory of Lists

In the next three sections we develop a full verification of Bird’s derivation of Horner’s
rule and the maximum segment sum algorithm, Our proof is very close to that of [1].
Our input consists solely of the definitions used there and the rules for higher order
functions from the previous section. We derive lemmas, proved either by structural
induction or rewriting, which are essentially the same as Bird’s. The main results are
obtained in the form of deduction rules, and the derivation of the maximum segment
sum is by instantiating deduction rules. We do not give the full input to LP but merely

state all the lemmas that were proved.
This section presents a fragment of the theory of lists developed in the first 6 sections

of [1]. Without ado, we give the definition of some of the most common combinators
on lists:

nil++y ==
(x&&z1)++22 == x4k (z1++22)
(app.z1) .22 == zi++z2

(map.F).nil == nil
(map.F) . (x&&z) == (F.x)&&((map.F).z)

i

((foldr.F).x).nil == x

((foldr.F).x) .(yk&z) == (F.y).(((foldr.F).x).z)

concat == (foldr.app).nil

tails.nil == nil&énil
tails, (x&&z) == (x&&z)&&(tails.z)

(scanr.F) .x == (map.((foldr.F).x))@tails

heads.z == nil&k(hds.z)
hds.nil == nil

hds. (xk&z) =
(cons.z) .x =

(map. (cons.x)) . (heads.z)
z&dx

The meaning of all these functions should be clear from their names and the defining
equations. Most of them are identical to the ones in [1].

The following simple lemmas are all proved by structural induction over z, as are
all subsequent results:

(z++22)++2z3 == z++(z2++23)

(map.F).(z++22) == ((map.F).z)++((map.F).z2)
((map.F)@(map.G)).z == (map.(FQG)).z
((map.F)Qconcat).z == (concat@(map. (map.F))).z

The last two are called map distributivity and map promotion in [1].

However, not all lemmas are purely equational. Certain transformations depend on
properties of the operators involved. For example the law called fold promotion in [1]
asserts that

((foldr.F).xa) @ concat == ((foldr.F).xa) @ (map.((foldr.F).xa))

provided F is associative and xa is a left and right-identity for F. Although we can
formulate this proposition as a deduction rule, we cannot prove deduction rules in LP.
Therefore the proposition is first proved with constants £ and a in the presence of the
additional rules

(f.x).y == x+y
(x+y)+z == x+(y+z)
x+a == x

atx == x

Now we can show that £ distributes over app,

((foldr.f).x).((app.z) .z2) == (((foldr.f).a).z)+(((foldr.f).x).z2)
which suffices for the proof of fold promotion to go through:

(((foldr.f).a) @ concat).z == (((foldr.f).a) @ (map.((foldr.f).a))).z

Having proved this version of fold promotion, the axioms and lemmas involving £, +
and a are removed from the system and the deduction rule for fold promotion is added:

set name fold_promo

add-deduction-rule

when (forall x,y.z) (F.((F.x).y)).z
(F.x) .xa == x
(F.xa).x == x

yield ((foldr.F).xa) @ concat == ((foldr.F).xa) @ (map.((foldr.F).xa))

== (F.x).((F.y).z)

The method for proving deduction rules just outlined is applied repeatedly in sub-
sequent sections. However, it is an insecure device as there is no formal connection
between the theorem proved and the actual deduction rule added. The ability to prove
deduction rules directly appears to be a simple and desirable extension of LP.

Finally we need a lemma known as fold-scan-fusion:

((foldr.F).x) @ ((scanr.G).y)) ==
fst @ ((foldr.((dot.F).G)).p((F.y).x,y))

where £fst and dot are defined as

fat.p(x,y) == x
(((dot.F).G) .x).p(u,v) == p((F.((G.x).v)).u, (G.x).v)

The function p constructs pairs and st projects onto the first component of a pair. In
[1] dot is the binary ® and the dependence on the two functions it combines remains
implicit. In our formulation those two functions are the additional arguments F and G.

The fold-scan-fusion law is already quite complex, but its proof requires a further
generalisation:

10

((foldr.((dot.F).G)).p((F.y) .x,y)) .z
== p((((foldr.F).x) @ ((scanr.G).y)).z, ((foldr.G).y).z)

which can be proved by a simple induction on z. The actual fold-scan-fusion law is an
equational consequence of this generalisation,

6 Horner’s Rule

This section corresponds to the section of the same title in Bird [1]. Horner’s rule
n ']
Yoarz=atax(art+zx(aatz*(...)...),
{=0
an efficient scheme for the evaluation of polynomials, has the following close relative:
n 1
Yo I[zi=1+zms(Q+zax(T+zex(...)...).
i=0 j=1

Bird not only realised that the latter rule can be stated quite succinctly in the theory
of lists but also that it holds in many more structures than the real numbers. In the
general case, it takes the form

((foldr.f).a) @ (map.((foldr.g).xb)) @ heads ==
(foldr. (((hdot.f).g).xb)).xb

where hdot is defined as
((((hdot.F).G).xb) .x).y == (F.xb).((G.x).y)

and £, g and a satisfy
(£.((g.2) %)) . ((g.2) .7)

(f.x).a == x

1}
]

(g.2).((f.%).y)

This means that a is a right-identity for £, and £ distributes over g on the left. In the
sequel we refer to this Squiggol law as Horner’s rule. Its proof proceeds like the one for
fold promotion: it is first carried out with constants £, g and a and the requirements
as axioms. Afterwards those axioms are deleted and the following version of Horner’s
rule as a deduction rule is added:

when (forall x,y,z) (F.((G.z).x)).((G.z).y) == (G.z).((F.x).y)
(F.x).xa ==
yield ((foldr.F).xa) Q@ (map.((foldr.G).xb)) @ heads ==
(foldr. (((hdot.F).G).xb)).xb

This rule is given the name horner.
The following lemma found in (1], and again proved by list induction,

((foldr.f).a).((map.(g.y)).(x&&z)) == (g.y).(((foldr.f).a).(x&kz))

11

is the last stepping stone in the proof of Horner’s rule:

((foldr.(((hdot.f).g) .xb)).xb) .z ==
(((foldr.f).a) @ (map.((foldr.g).xb)) Q@ heads).z

Although Bird [1] proofs both propositions by a simple case split on whether z is empty
or not, in LP it is easier to use induction.
A surprising application of Horner’s rule is presented in the next section.

7 Maximum Segment Sum

In this section we verify Bird’s [1] solution to the maximum segment sum problem using
Horner’s rule. A partial specification of this problem is given by mss:

mes == max Q@ (map.sum) Q@ segs

max == (foldr.max2).neginf

sum == (foldr.plus).0

segs == concat Q@ (map.heads) Q@ tails

(max2. ((nax2.x) .y)) .z =
(max2.x) .neginf == x
(max2.neginf) .x == x
(plus.x).((nax2.y).z) =

(max2.x) . ((max2.y).z)

(max2. ((plus.x).y)).((plus.x).z)

Although we have used the suggestive names plus, max2, neginf, and 0, these functions
are not specified any further. Only the relationships required for the application of
Horner’s rule are stated. Hence the theorem we are about to prove is again valid for
any interpretation of these four functions meeting the requirements. Over the non-
negative reals, product, minimum, 0, and 1 qualify. Further nontrivial applications
remain to be discovered.

If plus and max2 are constant time functions, the above executable specification of
mss has time complexity O(n®) where n is the length of the input list. Horner’s rule
yields a linear algorithm for mss which can actually be computed by LP, provided we
give it a few more hints:

instantiate F by max2, xa by neginf, G by plus, xb by O in horner
instantiate F by max2, xa by neginf in fold_promo

The axioms for max2, neginf and plus discharge the hypotheses of both deduction
rules and their two conclusions are added as rewrite rules:

((foldr . max2) . neginf) @ ((map . ((foldr . plus) . 0)) Q@ heads)

== (foldr . (((hdot . max2) . plus) . 0)) . O

((foldr . max2) . neginf) @ (((foldr . app) . nil) Q@ z)

== ((foldr . max2) . neginf) @ ((map . ((foldr . max2) . neginf)) @ z)

Explicit instantiation is required because both deduction rules have more than one
premise.
Miraculously, normalising mss yields the expected algorithm:

12

normalize mss
The sequence of term reductions leading to the normal form of the term is:

1., nmss
2. fst @ ((foldr.((dot.max2).(((hdot.max2).plus).0))).p(0, 0))

To recover Bird’s formulation, one merely has to notice that the subexpression
(dot . max2) . (((hdot . max2) . plus) . 0)

is equivalent to ® as defined in Section 8 of [1].

8 Conclusions

We hope that we have convinced the reader that equational reasoning theorem provers
such as LP are easy to use, and support a proof style which is close to that used in
the hand verification of Squiggol derivations. Although term rewriting is usually as-
sociated with first order theorem proving, we have shown that equational reasoning
can be adapted to higher order reasoning by the simple device of currying. Comple-
tion and proof of termination are the most difficult parts of term rewriting theorem
proving to automate, but they are not necessary in our work. In addition to the two
examples presented, we have also verified Bird’s and Hughes’ [2] development of the
o-f algorithm.

We describe now some of the problems we had, and some of the other theorem
provers we might have used.

Some Problems

The most annoying problems encountered during the proofs were caused by the absence
of A’s and higher-order unification (9], or rather, matching. A typical example is the
impossibility of rewriting the term £ @ (g @ h) with arule f @ g == t because the
former is bracketed the wrong way round. It means that we first have to derive the
corollary f @ (g @ H) == ¢t @ H, which is trivial but tedious. In A-notation function
composition becomes AF, G, z.F(G(z)) and higher-order unification matches Az.f(g(z))
with a subterm of Az.f(g(h(z))) because it is S-equivalent to Az.(Az.f(g(z)))(h(z)).

Although it would cure a symptom, not the cause, the inclusion of associative match-
ing in LP would dispose of this problem. LP does currently not support associativity
because it grew out of the completion-oriented prover Reve [18] which requires uni-
fication rather than just matching. Associative unification poses a difficult decision
problem [14] and may result in an infinite number of unifiers [19].

A related problem occurs when trying to apply extensionality (see Section 4): the

premise F.u == G.u does not match the rule f.x == g. (h.x). However, higher-order
matching of F(u) = G(u) and f(z) = g(h(z)) produces the substitution {F — f,G
Az.g(h(z))}.

The lack of higher-order unification is also partly responsible for our emphasis of
program proofs rather than derivations or synthesis. Program transformation in the
style of [10] without higher-order matching leads to the same tedious mismatches just
discussed.

13

Another issue that came up during the proofs is modularity. Although LP is in-
tended as a prover for the Larch specification language {7], it does currently not support
any of Larch’s module constructs. Apart from naming specifications and arranging
them in a hierarchical fashion, the feature we missed most was theory parametrisation,
which, in Larch, is expressed via the “assumes” construct. Deduction rules can serve
a similar purpose as parametrised theories. But instead of our unsafe method of prov-
ing deduction rules outlined in Section 5, one would work safely in the parameterised
theory.

Some other Theorem Provers

LP is by no means the only possible choice of theorem prover for Squiggol. For a
glimpse of the variety of systems and features one can choose from, we look briefly at
some other systems. In selecting a particular system one has to strike a compromise
between expressiveness and ease of use.

RRL [20] is similar to LP, but supports more general forms of induction. Therefore
it can handle inductive proofs involving functions that are not defined by primitive
recursion, such as Quicksort. On the other hand RRL does not offer deduction rules.

The Boyer-Moore [3] is also based on rewriting. Two of its key features are well-
founded induction, which makes it very powerful, and the restriction to total functions.
Since the system requires a proof of termination for every function that is introduced,
consistency cannot be violated. On the other hand the totality requirement enforces
a restricted syntax for function definitions. In particular it is impossible to work with
uninterpreted functions £ and g which are only related by some algebraic laws, as in
Section 6.

LCF [16] was one of the first theorem provers dedicated to recursive functions, and
still is one of the few dealing with partiality. It features full first-order logic, higher-
order, partjal and even non-strict functions, fixpoint induction, a polymorphic type
system, and a powerful meta-language with user definable proof tactics. In principle
LCF is ideally suited for reasoning about functional programs in general and Squiggol
in particular. However, its rich theory and minimal interface are obstacles in coming
to grips with it. In particular one of its main features, the treatment of partiality,
complicates reasoning about total functions.

All systems mentioned so far are based on first-order unification. One of the dis-
tinguishing features of Isabelle [17] is higher-order unification. In [15] it is shown how
Isabelle can be used for the verification and transformation of sorting algorithms, in-
cluding Quicksort. At the transformation stage higher-order unification plays a major
role.

Acknowledgements

The Larch Prover is being developed at MIT by Steve Garland and John Guttag and
we are grateful to them for letting us have a copy.

References

[1] R. Bird: Algebraic Identities for Program Calculation, The Computer Journal, Vol.

14

32, No. 2, 1089, 122-126.

[2] R.S. Bird, J. Hughes: The Alpha-Beta Algorithm: An Ezercise in Program Trans-
formation, Information Processing Letters 24 (1987), 53-57.

[3] R.S. Boyer, J S. Moore: A Computational Logic Handbook, Academic Press (1988).

[4] N. Dershowitz: Termination of Rewriting, Journal of Symbolic Computation 3
(1987), 69-117.

[5] S.J. Garland, J.V. Guttag: Inductive Methods for Reasoning about Abstract Data
Types, Proc. 15th ACM Symposium on Principles of Programming Languages
(1988), San Diego, 219-228.

[6] S.J. Garland, J.V. Guttag: An Overview of LP, The Larch Prover, Proc. Rewriting
Techniques and Applications, 3rd Intl. Conference, LNCS 355 (1989), 137-151.

[7] J.V. Guttag, J.J. Horning: Report on the Larch Shared Language, Science of Com-
puter Programming 6 (1986), 103-134.

[8] Michael J.C. Gordon: HOL: A Proof Generating System for Higher-Order Logic,
in: Graham Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Ver-
ification and Synthesis, Kluwer Academic Publishers (1988), 73-128.

[9] G.Huet: A Unification Algorithm for the Typed A-Calculus, Theoretxcal Computer
Science 1 (1975), 27-57.

[10] G. Huet, B. Lang: Proving and Applying Program Transformations Ezpressed with
Second-Order Patterns, Acta Informatica 11 (1978), 31-55.

[11] G. Huet, D.C. Oppen: Eguations and Rewrite Rules - A Survey, in: Formal Lan-
guages: Perspectives and Open Problems, R. Book (ed.), Academic Press (1982).

[12] T. Johnsson: Lambda Lifting: Transforming Programs to Recursive Equations,
Proc. Conference on Functional Programming Languages and Computer Architec-
ture, LNCS 201 (1985), 190-203.

[13] P. Lescanne: REVE: A Rewrite Rule Laboratory, Proc. 8th Intl. Conference on
Automated Deduction, LNCS 230 (1986), 695-696.

[14] G.S.Makanin: The Problem of Solvability of Equations in a Free Semigroup, Math.
USSR Sb. 32 (1977).

[15] T. Nipkow: Term Rewriting and Beyond — Theorem Proving in Isabelle, to appear
in FACS.

[16] L.C. Paulson: Logic and Computation, Cambridge University Press (1987).

[17] L.C. Paulson: The Foundation of a Generic Theorem Prover, Journal of Auto-
mated Reasoning (1989), in press.

15

[18] S.L. Peyton Jones: The Implementation of Functional Programming Languages,
Prentice-Hall International (1987).

[19] G.D. Plotkin: Building-in Equational Theories, Machine Intelligence, Vol. 7, Hal-
sted Press (1972), 73-90.

[20] H. Zhang, D. Kapur, M.S. Krishnamoorthy: A Mechanizable Induction Principle
Jor Equational Specifications, Proc. 9th Intl. Conference on Automated Deduction,
LNCS 310 (1988).

16

