Technical Report TR

Number 181

Computer Laboratory

Proof transformations
for equational theories

Tobias Nipkow

September 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1989 Tobias Nipkow

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Proof Transformations For Equational Theories*

Tobias Nipkow
University of Cambridge
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
England

tnn@cl.cam.ac.uk

Abstract

This paper contrasts two kinds of proof systems for equational theories: the
standard ones obtained by combining the axioms with the laws of equational logic,
and alternative systems designed to yield decision procedures for equational prob-
lems.

Although new matching algorithms for (among other theories) associativity,
associativity + commutativity, and associativity + commutativity + identity are
presented, the emphasis is not so much on individual theories but on the general
method of proof transformation as a tool for showing the equivalence of different
proof systems. :

After studying proof translations defined by rewriting systems, equivalence tests -
based on the notion of resolvant theories are used to derive new matching and in
some cases unification procedures for a number of equational theories. Finally the
combination of resolvant systems is investigated.

*This work was supported by the Alvey Diamond project, SERC. grants GR/E/02369 and
GR/F/10811. At MIT the author was supported in part by NYNEX, NSF grant ©CR-8706652, and by
the Advanced Research Projects Agency of the DoD, monitored by the ONR under contract N00014-83-
K-0125,

1 Introduction

We contrast two kinds of proof systems for a number of equational systems E. On the
one hand there is the standard one obtained by combining E with the laws of equational
logic. We know that the resulting system defines what we want it to define. However, it
gives no indication how the word problem, matching, or unification can be solved in that
theory. On the other hand we present proof systems that are not obviously complete
for E but which immediately give rise to matching or even unification procedures.

Although new matching algorithms for associativity (4), associativity + commuta-
tivity (AC), and associativity + commutativity + identity (AC1) are presented, the
emphasis is not so much on individual theories but on the general method of proof
transformations as a tool for showing the equivalence of different proof systems. In
particular a mechanizable equivalence test and its implementation are discussed. Al-
though the test is not complete, it is powerful enough to deal with many equational
systems.

The paper comes in two parts. Section 3 compares standard proof systems for the
empty theory, commutativity, left/right-commutativity, A, and AC, with alternative
ones. Equivalence is shown by presenting a terminating set of rewrite rules which
translate proofs from one system into the other. However, these rewriting systems
become more and more complex to construct and to prove terminating. Therefore Sec-
tion 4 uses the notion of “resolvance” to present a uniform treatment of the theories
in Section 3. It is shown that resolvant systems of equations directly yield alternative
inference systems which, in certain cases, are terminating matching algorithms. Two
powerful criteria for resolvance are developed and their implementation is discussed.
This implementation is used to check a number of further equational systems for re-
solvance, which yields new matching algorithms for some of them. It is also shown that
resolvance is a modular property, i.e. putting resolvant sets of equations together which
do not have function symbols in common does again yield resolvant systems. Finally
we discuss the relationship of our work with some recent results by Claude Kirchner.

The reader should be familiar with the basic notions of equational logic, as defined
for example in [6].

2 Equational Theories, Unification, Matching, and
Equality
Equational theories are defined by inference rules of the form

S1=% ... S,=1,
s=1

(1)

A system of such rules inductively defines a predicate =. Furthermore, since all rules
are Horn clauses, they constitute a logic program which can be used to solve unification,
matching or word problems w.r.t. =. The only problem is termination. Since a set of
Horn clauses merely yields a semidecision procedure, it depends on the particular set
of rules whether they actually constitute a decision procedure for equality, matching

or unification. Thus we can separate the question of correctness (does the given set of
rules axiomatize the desired theory?) from that of termination.

Given a set of equations F, the equational theory induced by E is defined by E
plus reflexivity, symmetry, transitivity and congruence. This system is denoted by E*
and the predicate it defines by =g. Although E™* is by definition correct, i.e. defines
the equational theory generated by F, it has a major termination problem: due to
transitivity, any query (in the logic programming sense) will run forever even after all
answer substitutions have been found.

The rest of the paper discusses alternative axiomatizations of various simple equa-
tional theories which yield decision procedures for matching and, in some trivial cases,
even unification. Initially attention is focussed on correctness. In Section 4 the termi-
nation question is addressed and a fairly general answer is given.

Before we become technical, we have to fix some terminology. An arbitrary set of
equations E is often called a presentation, in contrast to the equational theory =g,
which is closed under equational reasoning. We call an equational theory permutative if
all its equivalence classes are finite. A set of equations is permutative if its equational
theory is. An equation s =t is called regular if V(s) = V(t), where V returns the set of
variables in a term. An equation s =t is called collapse-free if both s and t are proper
terms. A presentation is called collapse-free if all its members are.

3 Proof Transformation by Rewriting

In the following we examine different formulations of some well known equational the-
ories. Bach alternative axiomatization D,; of E* consists of a collection of rules of the
form (1), say D for “decomposition”, together with congruence rules and reflexivity.
D, and E* are shown to be equivalent by translating proofs from one into the other.
The translation is expressed by rewrite rules on proof trees.

D and E are always chosen such that each element of D is a derived rule of E* and
each equation in F is a derived rule of D,;. Thus the transformation of proofs in D,;
into Et is trivial and is briefly described in Section 4. The translation in the opposite
direction needs to get rid only of symmetry and transitivity, the two rules that cause
termination problems and do not occur in Dy;.

3.1 The Empty Theory

We start with the basic laws of equational logic, reflexivity (r), symmetry (s), tran-
sitivity (t) and congruence (k) for a single binary function symbol (-). The choice of
function symbols is immaterial.

r =
r=1zx
T=y
s =
y==z

=Y Yy—z
==z

t =

T=u y=v
Ty =uv

k =

In the sequel this system is called B. B axiomatizes equality in the empty theory. Of
course r alone suffices for that. A constructive proof of this fact can be given by a set
of transformation rules which eliminate all other rules from a proof in B.

8 — r
= T==z
r r
T==z I=zx
14 —_
=2z r=4<=
r r
r== y=y
k —_— r—
z.y = z-y :B'y = a;-y

These rules are obviously terminating and cover all cases, i.e. reduce any proof in B to
reflexivity.

In the sequel E will be some set of equations and D a set of inference rules. We
want to show that for given D and E, any proof in E* = E U B can be rewritten to
one in D,y = DU {r,k}. This transformation can be done on a rule by rule basis.

Axioms from E can be eliminated in one step because E and D will always be
chosen such that all axioms in E are equivalent to some combination of rules in D,;.

To simplify elimination of s and ¢, we show that B has some further properties:

Y y
s s
T = = 2 = =
2=V YEE Ly y Y (2)
=2z 2=z
s
2=z
r=u yYy=v r=1u y=
k— s s
Y = UV Uu==x v =
s Y — k z (3)
uUv ==y UV =2y
r r
r=z T=2z2 . T=z z=2z
¢ — =2z — =2z (4)
T=z =2z
U=w v=3g w = =z U=w w= vV=1 =2
k k t Yy
Uuv =we wr = Y2 U = =
¢ Y — k Y (8)
UV =Yz UY = Y2

Rules (2) and (3) show that symmetry can be pushed through transitivity and con-
gruence. Therefore symmetry can be pushed to the leaves of any proof in B U E, and
hence can be eliminated altogether, provided that E is closed under s, i.e. s=t € E
implies t=s € E. In the sequel F will always have that property, and elimination of s
is automatic. This is the formal justification of the fact that equational proofs don’t
need explicit symmetry if all axioms can be used in both directions.

The only remaining task is the elimination of t. Rules (4) and (5) show that it is
sufficient to cover the cases t(p, k), t(k, p), and t(p, p') for all rules p, p' in D.

Before we look at particular systems D and E, we simplify our notation. Although
the above rewrite rules rules are fairly involved already, they are not quite precise in
that they don’t say how the subtrees are relocated. The proper formulation of, for
example, rule (3) is

P Q P Q
T=u y=uv T=1u y=v
k s s
Y = uv u=gs v=y
s — k
Uy =z-Y Uv = 3y

where P and Q are the proof trees that prove z = u and y = v. However, this rule is
more complicated than it needs to be. All that is required is the pattern of proof rules
as in

s(k(P,Q)) — k(s(P),s(Q)).
We now assume that r, s, ¢, and k are functions on proof trees or skeletons. The
actual formulae being proved are determined by these proof skeletons. Under this new
interpretation the above rewrite rules translate to

s(r) r)
t(r,r) r .

k(r,r) r
s(t(z,y))
s(k(z,))

t(r, z)

t(z,7)

t(k(z,y), k(u,v)) (t(z,u),t(y,v)) J

Notice that z,y, z,. .. stand for proof skeletons, not terms or formulae. The termination
of T' can now be shown by a mechanical system like LP [5].

Hs(), 5(z))
(s(=)ys) [T

LLLLLLL

k
z
z
k

3.2 Commutativity (C)

An alternative axiomatization of commutativity is obtained by adding

to r and k. This system is trivial and well known. For example Claude Kirchner
[8] derives ¢ automatically from commutativity. Commutativity is proved from ¢ by

composing both premises with reflexivity, i.e. the conclusion of ¢(r,r) is -y = y-z. The
same device works for all subsequent equational theories.
The following further rewrite rules are needed to translate proofs:

tle(z,y),c(u,v)) — k(t(z,v),t(y,u))
t(e(z,y), k(u,v)) — c(t(z,v),t(y,u))
t(k(z,y),c(u,v)) — e(t(z,u),t(y,v))

Again, LP manages to show that the union of T with the above rules is a terminating
system.

It is interesting to note that both for the empty theory and for commutativity, the
system Dy could be derived from B U E automatically using the CEC system [2,4]
which is a general purpose system for the completion of sets of conditional equations.
The following equational theories are more complex and automatic tools failed to help.

3.3 Left/Right-Commutativity (Cy,)

The first non-trivial example is left/right-commutativity. For simplicity we consider
only E = {(z-y)-z = (z-2)-y}, right-commutativity. Left-commutativity is symmetric.
It turns out that if D = {e,}, where

i T=wv wy=1u
Cy =)
TYy=uv

then D,; axiomatizes C,. The elimination of ¢ is achieved by the following rules:

t(k(z,y),cr(u,v)) — e(t(z,u),t(k(r,v),v))
t(er(z,v), k(v er(t(z, k(r, v)), (v,)
t(er(zy7)s er (t(k (Y1, 92), 1), v))
t(c er(z,7), er(t(er (v1,92), 1), v))
k(t(z,v),r)
k(t(z,t(k(u1,r),v)),uz)

C"(t(m’ c"(u'lv r))’ t(c" (7‘, U’?)a v))

= o
Nt N

t(er(z, kb(y1,v2)), er(u,v
t(er(z,cr(v1,92)), e (u, v

v)
)
)
t(c.(z,7), cr(r,v)
v)
)

~ N N~
o

ok
(=]
et et Nt et Nt

t(c,(:r; r)’cr((ulauz)
t(e,(,), er(er(ug, u2),v

llllll

12

)
)
)
)
)
)
)

I TN
et
—t

The first two rules cover the cases that either of ¢’s subtree is labelled with k. The next
two rules translate from t(c,(.,.),e.(.,.)) to t(c/(.,7),c-(z,.), and the last three rules
translate the latter pattern, depending on the form of z.

The above set of rules is not easily proved to terminate, and systems like LP fail to
do so. The point is that the termination argument is hidden in the equations that are
being proved, which are not part of the proof skeletons. To exploit this information,
we view ¢ as a function defined on terms over {r,k,¢,}. Looking at the form of the
transformation rules we can see that their termination, or equivalently totality of ¢, can
be shown by proving that some measure function on the arguments of ¢ decreases when
going from left to right. This measure is the size of the equation (or either side of it)
that forms the invisible conclusion of the proof tree rooted in t. One way to see that

the measure decreases is to decorate the rewrite rules with the equations being proved.
For example rule (10) becomes

S — r._—._—_—_—_.—
T =uv ru-y = u-y WY =uy UV=2 T=uUv Uv=2
o (vy)v or (vy)v =2 t T=2z ry
xT: -_— - . juanad ==
. y=(uy y vy y
Ty =2y TY = 2y

On the rhs ¢ proves £ = 2, which is strictly smaller than z.y = 2y, the conclusion of
the tree labelled by ¢ on the lhs.

Alternatively, we notice that the size of the conclusion of k and ¢, is strictly
greater then the size of their hypotheses. Hence in any rule with lbs #(... k(z,y)...)
or t(...¢.(z,y)...), the measure of z and y is smaller than the measure of the full lhs.
Hence = and y are ok as arguments to ¢t on the rhs.

If the termination proof is done in complete detail, one notices that in rules (8) and
(9) the outer occurrence of ¢ on the rhs proves the same formula as the ¢t on the Ihs,
i.e. the measure is not decreased. However, none of the two rules can be applied twice
in a row. Therefore the complexity measure becomes a pair. Its first component is
what we had before, which all other rules decrease. The second component indicates
the applicability of rule (8) or (9). It is decreased by those two rules, which do not
change the first component.

As we have seen, both the transformation rules and their termination proofs become
quite complex even for very simple equational theories. For that reason, both are
omitted in the following examples. I have carried them out by hand and found them
very similar to what we saw in this section, only more tedious. This prompted me to
look for automatic methods which are presented in Section 4.

8.4 Associativity (A4)
Associativity can be axiomatized with k, r,

T=yuw wWY=v
a = and ap; =
TY = UV Ty = v

TW=u Y=wv

A geometric interpretation of this fact can be given where terms are interpreted as
strings or lines and - is concatenation. If the two lines z-y and u-v are equal, there are
three cases:

p—z — Y i
ar: f—u — v +
k: pf—u—r v I
az: | U } v]

It can be shown that Plotkin’s associative unification procedure [13] can be derived
from the procedure embodied in the inference rules k, r, a; and a; by imposing a
particular search strategy.

3.5 Associativity + Commutativity (AC)
For AC let D = {¢c, a1, a3,acy,acy,ac}, where

T=vwW wWyY=u TW=v Yy=wu
acy = acy =
Y = UV Ty = uv

T=Iy¢Z2 Y=UY1rY2 TrrYY1 =uU Yz ="V
TeY = UV

ac =

Again there is a geometric interpretation of these rules, this time in terms of areas or
multisets. If z-y is of the form

and u-v is the same area, there are 7 ways in which they can cover each other:

u

u | v v |u ulf v vl u u (v v lu
v
k c a acy Ay acs ac

4 Resolvant Theories

The collection of equational theories presented above and the complexity of some of
the completeness proofs raises the question whether there is some principle behind
them all which might even be automated. For some of the simpler examples (C, Cj/,)
this question was first answered by Claude Kirchner [7,8] using the notion of resolvant
presentation.

A set of equational axioms F is resolvant if s =g t implies that there is an equational
derivation of this fact which uses at most one application of an equation at the root of
a term. Notice that by a dertvation s =g t we refer to a list of terms s = s¢,...,8, =1
such that s;4y can be obtained from s; by replacing a subterm which is an instance of one
side of an equation in E by the corresponding instance of the other side. In particular
we call the step s; =g s¢+1 a peak if s is an instance of one side of an equation in F
and sp41 the corresponding instance of the other side. With this terminology we can
say that E is resolvant if s =g ¢ implies that there is an equational derivation of this
fact with at most one peak. For a formal definition of resolvance we need the following
simple predicates: -

s=pt © 3f,snti.e=f(s1,...,8n) At = f(t1,...;,ta) As1=ptiA...As,=E lpn
s=pt < Ip=q€ E,0.s=0pAt=o0gq

sspt & 38',ti. s=ps =gt =gt

s=pt & s=gtVs=pt

Notice that in general only =g is decidable, provided E is finite. If E is also permu-
tative, all four predicates are in principle decidable, although in practice a complexity
theoretic barrier may quickly be reached.

Definition 1 E s called resolvant iff s =g t implies s = t.

An equational theory is called syntactic by Kirchner [8] if it is generated by a finite
set of resolvant axioms. In the sequel we tacitly restrict ourselves to collapse-free
equational presentations. The theory can be made to work without that restriction but
that requires some further case distinctions.

The point is that each equational theory presented above is syntactic but only C
and Cj, are resolvant. Although [8] gives some sufficient conditions for syntacticness,
they are not met by C, /r» A or AC. The aim of this section is to present a more refined
criterion for resolvance, its implementation, and its application to both the examples
above and some further theories.

For resolvant presentations there is a simple translation from equational axioms to
inference rules: an equation f(s1,...,8m) = g(t1,...,tn) yields

Ty =81 «o. Zm=8m L1 =Y ... th=yYn
f(ml,'--smm)=g(y13'-'ayn)

(13)

where the z; and y; are new variables. In [8] this translation is called Gen. All the
inference rules presented above can be generated this way. However, in many cases this
leads to rules with trivial equations of the form z = y among the hypotheses. These
can be deleted without loss of generality if « is replaced by y everywhere else.

Starting with C, Cj,, or A we obtain the rules shown in Sections 3.2 to 3.4. For
AC we needed three more rules. Those are generated by the equations

P={(zy)z=(22)y, 2:(y2) = v-(z2), (29)-(uv) = (z-):(yv)}

The reason is that AC by itself is not resolvant but AC+ = AC U P is. Note that all
elements of P are equational consequences of AC.

In the sequel let D be the set of inference rules obtained from E as above, let K be
the set of all congruence rules, and let D,x = DU {r} U K. In particular let ks be the
congruence rule for function symbol f.

We can now give a general scheme for translating proofs in D, to those in Et, the
direction that had not been tackled in Section 3. For every rule p € D, p(r,...,r) is
the proof of some equation ¢ € E. If p is rule (13), we have the following translation
from D,; to Et:

P(Pl, ceesPmyqrsee .y Qn) — t(kf(ph vee apm)at(eg kg(Qla s aQn))) (14)
The importance of resolvant présentations stems from the following theorem.

Theorem 1 If E is resolvant, D, is a sound and complete inference system for =g.
Proof Soundness of D,y follows from the fact that each rule in D is a derived rule
in E*, as witnessed by (14). The completeness proceeds by induction on the length of
equational proofs. Let s =g ¢ and distinguish 3 cases.

If s = ¢, this has an immediate proof by reflexivity.

If s =g t, it follows that s = f(s1,...,8n), t = f(t1,...,tn), and s; =g t; for all 1.
Since the derivation of the latter equations are shorter than the derivation of s =g ¢,
there is a proof skeleton p; in D, for each of them. Hence there is a proof of s =g t
with the skeleton ky(py,...,pn).

If s =g i, it follows that there is an equation f(s1,...,sm) = g(t1,...,%s) in E and

8= fri,...,rm) =5 f(s15e. 0 8h) =B g(thy- .., t)) =g g(ur,...,up) =t

such that s} and ¢} are instances of s; and t; respectively and that s; =g s! and
t; =g tj for all { and j. Since the derivation of the latter equations are shorter than the
derivation of s =g ¢, there are proof skeletons p; and g; for each of them. Hence the
skeleton p(p1,...,Pm,q1,...,qn), where p is the rule (13) derived from f(s1,...,8m) =
g(t1,... %), proves s =g t.]

In addition, we have:

Theorem 2 If E is permutative, the interpretation of D, as a Prolog program yields
a lerminating matching algorsthm.

Proof An equation ! = r is called a matching problem if V(I) = {}. Because E is
permutative, it must be regular, and hence any solution o to a matching problem ! = r
must be such that V(or) = {}.

Interpreting Dy as a Prolog program means that the order of the goals is important
and they are kept as a list (of equations). We use the ML notation for lists, i.e.
- le1,..., €] is a list of length n, and @ denotes list concatenation.

First we establish that the current goal is always a matching problem if it was one
initially. Resolution of a rule in D,; with a matching problem ! = r will always lead to
a list of subgoals of the form

H= H]@H,- = [l1 = 81,...,lm = Sm,t]_ = f1,...,tn = Tn] (15)

=1

property follows from the form of the rules, the second one is a consequence of the fact
that E is regular. Both properties together imply that during execution the current
goal will always be a matching problem: either it was one to start with (li =), or a
solution of the goals to the left of it have instantiated all variables on its lhs by ground
terms (t; = r;).

To prove termination, we need some more definitions. S CN, maz(S) = m if
m € S and all elements in S are less or equal m, and maz(S) = 0 if there is no such
m. The function depth computes the depth of a term, where the depth of variables and
constants is 1. The function

such that each /; = s; is a matching problem, and Urea V(t;) € UZ, V(si). The first

mazdg(s) = maz{depth(t) | s =g t}’

computes the maximal depth of any E-equivalent term. Since E is permutative,
mazdg(s) is never 0. The ordering < on N is extended to multisets over N in the

10

canonical way [3]. Multiset union is written L. The function C takes two lists of
equations and produces a multiset of natural numbers:

cll,L) = {}
C(l=r]@R,L) = {maz{mazdg(ol)|otg L}} U C(R,LA[=7r])})

where o g L means that o solves all equations s =t in L, i.e. s =g ot.

Finally we define the complezity of a list of equational goals G by C (G, []). In words:
each goal I = r in G is assigned the maximal depth of ! under instantiations resulting
from a solution of all goals to the left; the overall complexity is the multiset of all these
integers.

Some important facts about C are

1. C(oR,0L) < C(R,L)
2. If o kg H implies o -g H' for all o, then C(R, H) < C(R, H').

Each resolution step transforms the list of goals from [l = r]@G to HQG', where G' =
0G, 6 is the unifying substitution, and H is defined in (15) above. Since C(HQG,[]) =
C(H,[)UC(H,, H)UC(G,H) and C([l =r]@G,[) = C(l =], [N LU C(G, [l = #]), it
suffices to show C(G',H) < C(G,[l = r]), C(H,,[]) < C([l = 7],]]), and C(H,, H}) <
C([l = r],[]) in order to prove C(HQG",[)) < C([! = r]@G,).

C(G",H) < C(G,[l = r]) follows from the two facts about C' above because the
rules in D,; guarantee that o Fg H implies ol =g or.

To show C(H,,[]) < C([l = r],[]) and C(H,,H;) < C(|l = r],[]) we notice that
C([l = r,{]) = mazdg(l) # 0. Looking at the equations in Hj, we find that all I;
are proper subterms of / and hence that mazdg(ol;) = mazdg(l;) < mazdg(l), which
establishes C(H,[]) < C([l = r],[}). I H, is nonempty, resolution must have taken
place with a rule in D derived from an equation s = t in E. Thus o bz H, implies
| =g 0s =g ot. Hence ot; is ground and a proper subterm of ot, and therefore
mazdg(ot;) < mazdp(ot) = mazdp(l). This proves C(H,,H;) < C(|l = r},[]) and
concludes the termination proof. O

Theorem 2 is important because it is the first time that a subclass of resolvant
presentations has been identified which yield terminating matching algorithms. On the
other hand, there is a trivial terminating matching algorithm for permutative theories:
in trying to match the pattern » to the variable free term s, enumerate the finite set
of t’s with s =g t and try to match r and ¢ in the empty theory. The time and space
complexity of these algorithms remains to be investigated.

We will now stop to think in terms of inference rules and confine our attention to
equations.

4.1 A Generalized Criterion

Given a set of equations E we want to test whether E is resolvant. Our criterion
actually shows how to go from an arbitrary derivation s =g t to one with at most one
peak. The transformation is an inductive process which combines adjacent peaks.

11

If we write e,e' € E in the sequel, we really mean that there are two equations e
and e, in E, such that ¢’ = oe;, where o is a renaming of the variables in e, away from
those in e. We also assume that E is closed under symmetry, i.e. s=t € E, implies
t=s € E.

Defining

p=q g u=v & Vo.0q9=gou = op=gov

we get

Lemma 1 E is resolvant iff p=q {g u=v holds for all equations p=q,u=v € E where
g=f(...) andu = f(...).
Proof We concentrate on the “if”-part as the “only if”-part is trivial. For E to be
resolvant, s =g t must imply s =g t. We show that under the given assumptions any
derivation s =g t can be reduced to s =5 t. The reduction merges adjacent peaks. This
means we translate a derivation so =g s; =g s3 =g 83 into one of the form s =g S3.
By induction the number of peaks in any derivation can always be reduced to 0 or 1.
A derivation sp =g 8; =g s; =g ss must be of the form op =g 0q =g OU =g OV
for some p=¢,u=v € E with ¢ = f(...) and u = f(...). By assumption this implies
op =g ov, which is the required reduction. a

We will now concentrate on ways of turning the resolvance criterion embodied in this
lemma into a finite test.

In the sequel let & denote the instantiation of every variable in s by a unique free
constants. Thus § is equivalent to rs, where 7 is a fixed injective substitution from
variables to free constants. Therefore any first-order formula P holds iff 6P holds for
all o.

Lemma 2 Let p=q,u=v € E such that ¢ = f(q1,...,q,), and u = flug,...,u,), and
let B' = EU{qi = %i,...,0 = Tn}. Then =5 ¥ implies p=q {5 u=v.

Proof In the following we make use of the fact that if A P = Q then A+ P implies
Al Q.

P=p ¥
& Eu{gi=u5....Go=Tn}Fp=9v
S EF@=TA.. . AG=Ur=>p=10
& Etg=a=p=7
= (=gpU=p=g?¥
& Vo.0q =g ou=>op =g ov
< p=q g u=v

O

Example 1 In the presence of commutativity in F, we need to test zy=y-z g
uv=v-u. By Lemma 2 it suffices to show %§ =g 9-Z where E' = EU {§ =18,z =)
g =p 08,

If E contains z-y = y-z, (zy)-2 = x-(y-2), and (z-y)-z = (z-2)-y we need to show
(zy)-2=2-(y-2) & u-v=v-u and hence (2-9)-Z = v-& where E' = EU{z = &,§5 = v}
(II_} 37) Z =p (y .’17) Z=p (y Z) =g VU

12

However, Lemma 2 is not necessary for resolvance:

Example 2 Right-commutativity is resolvant and (z-y)-2=(z-2)-y {¢, (u-v)-w=(v-w)w
holds although Lemma 2 is not applicable: (Z-7):2 =g (#-)-5, where E' = C,U{z-z =
%-U,§ = ©}, does not hold.

The problem stems from the fact that in E' we only assume that g = 77, without
any further distinctions. We have to take into account what the derivation of ¢; =g r¢
looks like. For right-commutativity it is sufficient to take a closer look at z-2 =g U,
We can assume that this derivation has at most one peak.

If 2.2 =5 u-v, we have B} = E'U {Z = 4,Z = ¥} and therefore (3.7)-2 =g (2-0)D.

Otherwise there are terms r,s,t such that z-2 =g (r-s)¢ =g (rt)-s =g
gives rise to E) = E'U {z = 75,2 = [,Ff = 4,5 = 0}, Therefore (
(F0)3)F 25, ((7-0)8)-5 =5, (a-0)-5.

Thus we have shown that (2-5)-2 =g (4-@)- holds for ¢ = 1,2.

The case distinction of the previous example can be formalized as follows:

Ce(f(s1,...)=f(t1,..)) = {{s1=141,..}}U
{{31 ZUlyeve gy = t1, .o .} l f(ul, . .)=f(1)1, .. .) € E}
C’E(f(sl, . .)=g(t1, . .)) = {{81 = Upyees, V1 = 1g,.. .} | f(ul, .e .)=g(v1, .o) € E}
Ce(z=y) = {{z=u}}
The three clauses that define Cy are ordered in the sense of ML or Prolog. For example
the last one, which is the default case, applies only if the first two do not. The next

two facts show that the definition of Cg(s = t) returns exactly those equalities between
subterms that can arise if s' =5 t' for some instances ' and #' of s and ¢ respectively.

CeCr(s=t) = §=p,51 . (16)
osxgpot = IC € Cx(s =t).Vp=g € C. op =g oq (17)

With these facts we can prove the following lemma which formalizes the procedure
outlined in Example 2.

Lemma 8 If p =gyc ¥ holds for all p=q,u=v € E such that ¢ = f(qy,... yqn) and
v = f(u1,...,un), and all C € M = {E1U...UE, | E; € Cg(gi=w)}, then p=q g u=v
holds for all p=g,u=v € E, i.e. E ts resolvant.

Proof The proof is similar to the one of Lemma 1 in that it proceeds by reducing peaks.
However, we are more specific about the order in which adjacent peaks are removed from
a derivation and its subderivations: we reduced a derivation op =g 0q =g OU =g OV,
where p=¢,u=v € E, ¢ = f(q1,...,qn) and v = f(uy,...,u,), only if all subderivations
0¢; =g ou; are normalized, i.e. of the form o¢; = ou;. In that case we know from
(17) that thereisa C; € Cr(g = u;) such that 0s =g ot holds for all s=t € C;. Letting
C=CU...UC, € M we obtain

P=xpuc? & EF(VMi,s=teCis=0)=5%7
= (Vi,s=t€Ci.5=gl)=>p=5v
= (Vi,s=t € C;. 0s =g ot) = op =f ov

< 0'P=:=E ov

13

the required reduction. 0

This concludes the exposition of the theoretical basis for our resolvance checker.

4.2 Automating It

The procedures suggested by Lemmas 2 and 3 lead to a fairly large number of cases
that have to be examined. The principal problem with automating this procedure is
the undecidability of the concepts involved, i.e. the predicates =g etc. As remarked
above, these predicates, and hence Lemmas 2 and 3, become decidable for permutative
E. However, in practice it turns out that the resulting search space is far too large for
a naive enumeration procedure.

A prototype system for automating these tests has been implemented in Prolog.
To overcome the problems just mentioned, a number of heuristics for testing =g were
implemented. If these turn out to be insufficient (as they have for a number of presen-
tations) the predicate =g can be implemented separately for each E.

4.3 More Theories

Using the implementation described in the previous section, the following list of pre-
sentations was shown to be resolvant:

AC1Y = {(zy)-(vv) = (zu)-(yv),1'z = z,2:1 = z}

D = {z:(y+2)=zy+zz}
I = {zz=1z}
Cl = CulI
DC = DU{z+y=y+z}
DC, = DU{(z+y)+z=(z+2) +y}

DA = DU{(z+y)+z=z+(y+2)}
Cs = {(zz)y=y(zz)}
Cp = {(zv)z=2(zy)}

I and C1T yield terminating unification algorithms, the rest only terminating matching
algorithms. For D this has already been exploited by Mzali [11].

We also conjecture that ACIt = AC* U I and ACI1t = AC1t U I are resolvant
presentations. However, the methods of this paper seem inadequate to prove it.

4.4 Combining Resolvant Theories

In this section we investigate the combination of resolvant presentations. We are given

a collection of equational presentations E;, ¢ € I, over pairwise disjoint signatures %;.

Let E = Uier E; and I = U;gr X;. Adapting the terminology of [10] we call a property

P of equational presentations modular if E has property P iff all E; have property P.
As an immediate consequence of Lemma 1 we obtain that

14

Lemmna 4 Resolvance ts modular.

Proof Assume that all E; are resolvant. Given two equations p=q,u=v € E such
that ¢ = f(...) and u = f(...), disjointness of the X; implies that both equations must
come from the same Ej. Hence p=q {5, u=v and thus p=¢ {|g u=v must hold, which
implies resolvance of E.

Now assume that E is resolvant and let s, ¢t be two terms over Xk with s =p, ¢t and
thus in particular s =g ¢. Resolvance of E implies s = g t. Using disjointness of the
signatures and Fact 1 in [12] s =p, ¢ follows. Thus E} is resolvant. o

This lemma does for the combination of resolvant presentations what [15,14,12] do for
the combination of arbitrary unification or matching algorithms. The simplicity of its
proof is partly due to the fact that it says nothing about termination: even if each E;
yields a terminating unification or matching algorithm, E might not. For permutative
theories however we are able to show that termination carries over. The reason is that

Lemma 5 Permutativity s modular.

Proof This proof relies heavily on notions defined in [12] which appear in quotation
marks.

Assume that all E; are permutative. The proof is by induction on the “theory
height” of terms over £, i.e. the maximum number of alternations of signature along
some path in a mixed term considered as a DAG. Any term s over £ can be written as
Cls1,...,8m], where C is a proper “context” over some £ and the s; are the “immediate
alien subterms”. By induction hypothesis each s; has a finite E-equivalence class. Since
E is both regular and collapse-free, Fact 2 in [12] shows that any term ¢ with s =g ¢ is
of the form D[ty,...,t,] such that each ¢; is E-equivalent to some s; (and vice versa),
and C|[s1]=p,...] =g, D([t1)=p,...]. Thus there are only finitely many different ¢; and
D, and therefore only a finite number of ¢ with s =z t, i.e. E is also permutative.

The reverse implication is trivial.]

Thus we can safely combine permutative resolvant presentations to obtain a matching
algorithm for the joint theory.

5 Related Work

As was mentioned earlier on, this paper is strongly related to the work of Claude
Kirchner, who coined the term “resolvant” [8]. He also suggested some criteria for
checking resolvance and a completion procedure which turns a non-resolvant theory
into a resolvant one. However, for most equational theories discussed above his criteria,
are too weak to determine that they are resolvant. This prompted the development
of the improved tests in this paper. Recently, Claude Kirchner and Francis Klay have
given a nice and simple characterization of resolvant theories:

Theorem 3 (Kirchner, Klay [9]) If E is a collapse-free set of equations over the
stgnature X, the set

{of(z1,...) = 0g(u1,...) | L9 € 8,0 € Up(f(zs,...) = g(y1,...))}

15

15 a resolvant set of azioms which generates the same equational theory as E. (The z;
and y; are all distinct and cUg denotes a complete set of E-unifiers).

Thus any equational theory with a finitary unification problem has a finite resolvant
presentation. This presentation can be computed by means of a unification algorithm
for the theory.

Although this theorem yields very short proofs for the resolvance of the theories in
Sections 3.1 to 3.5, it is not easy to apply to some of the theories in Section 4.3. For
example D has a fairly involved unification algorithm (see [1]), and the author is not
aware of a published unification algorithm for DC or DA. The problem is that a notion
that was conceived to explain and automate the generation of unification algorithms,
namely resolvance, is itself reduced to unification.

If a complete unification algorithm for some theory E is not known, it may still be
possible to compute a resolvant presentation by combining Theorem 3 with the results of
this paper: instead of computing a complete set of unifiers, enumerate all unifiers one by
one and keep on testing whether the resulting presentation is yet resolvant. Of course
this procedure may still not succeed because we can reach a resolvant presentation
without realizing it, due to the incompleteness of the test we described.

Acknowledgements

Part of this research was carried out at the Laboratory for Computer Science at MIT.
Iwould like to express my gratitude to both John Guttag and Larry Paulson for giving
me the freedom to pursue this line of research. Larry Paulson and David Wolfram
helped to improve the presentation.

References

[1] 8. Arnborg, E. Tidén: Unification Problems with One-Sided Distributivity, Proc.
1st Conf. Rewriting Techniques and Applications, LNCS 202 (1985), 398-406.

[2] H. Bertling, H. Ganzinger, R. Schifer: CEC: A System for Conditional Equational
Completion, PROSPECTRA-Report M.1.3-R-7.0, Universitit Dortmund (1988).

[3] N. Dershowitz, Z. Manna: Proving Termination with Multiset Orderings, CACM
22 (1979), 465-476.

[4] H. Ganzinger, Private system demonstration, June 1989.

[5] 8.J. Garland, J.V. Guttag: An Overview of LP, The Larch Prover, in: Proc. 3rd
Intl. Conf. Rewriting Techniques and Applications, LNCS 355 (1989), 137-151,

[6] G. Huet, D.C. Oppen: Equations and Rewrite Rules - A Survey, in: Formal Lan-
guages: Perspectives and Open Probleins, R. Book (ed.), Academic Press (1982).

[7] C. Kirchner: Méthodes et outils de-conception systématique d’algorithmes d’uni-
fication dans les théories équationnelles, Thése d’état de I’Université de Nancy I
(1085).

16

[8] C. Kirchner: Computing Unification Algorithms, Proc. Symp. on Logic in Com-
puter Science (1986), Cambridge, MA, 206-216.

[9] C. Kirchner, F. Klay: A Note on Syntacticness, Presentation at the 3rd Intl.
Workshop on Unification, Lambrecht, FRG, June 1989,

[10] A. Middeldorp: Modular Aspect of Properties of Term Rewriting Systems Related
to Normal Forms, Proc. 3rd Intl. Conf. Rewriting Techniques and Applications,
LNCS 355 (1989), 263-277.

[11] J. Mzali: Matching with Distributivity, Proc. 8th Intl. Conf. on Automated De-
duction, LNCS 230 (1986), 496-505.

[12] T. Nipkow: Combining Matching Algorithms: The Regular Case, Proc. 3rd Intl,
Conf. Rewriting Techniques and Applications, LNCS 355 (1989), 343-358.

[13] G.D. Plotkin: Building-in Equational Theories, in: Machine Intelligence, Vol. 7,
Halsted Press (1972), 73-90.

[14] E. Tidén: Unification in Combinations of Collapse-Free Theories with Disjoint
Sets of Function Symbols, in: Proc. CADE-8, LNCS 230 (1986), 431-449.

[15] K. Yelick: Unification in Combinations of Collapse-Free Regular Theories, JSC 3
(1987), 153-181.

17

