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Abstract

This dissertation studies the logical aspects of domains as used in the denotational
semantics of programming languages. Frameworks of domain logics are introduced which
serve as basic tools for the systematic derivation of proof systems from the denotational
semantics of programming languages. The proof systems so derived are guaranteed to

agree with the denotational semantics in the sense that the denotation of any program

coincides with the set of assertions true of it.

The study focuses on two frameworks for denotational semantics: the SFP domains, -

and the less standard, but important, category of dI-domains with stable functions.

An extended form of Scott’s information systems are introduced to represent SFP ob-
jects. They provide better understanding of the structure of finite elements and open sets
of domains. These systems generalise to a logic of SFP which uses inequational formulae
to axiomatise entailment and non-entailment of open-set assertions. Soundness, com-
pleteness, and expressiveness results of the logic are obtained, and possible applications

are investigated. A mu-calculus of Scott domains is introduced to extend the expressive

power of the assertion language.

Special kinds of open sets called stable neighbourhoods are introduced and shown to
determine stable functions in a similar sense to that in which Scott-open sets determine
continuous functions. Properties and constructions of stable neighbourhoods on various
categories of dI-domains are investigated. Logical frameworks for Girard’s coherent épa.ces
and Berry’s dI-domains are given in which assertions are interpreted as stable neighbour-

hoods. Various soundness, completeness, and expressiveness results are provided.
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Chapter 1

Introduction

1.1 Domain Theory, Denotational Semantics !

Programming languages are the languages with which to perform computation. They
range from the more theoretical languages like A—calculi with various evaluation strate-
gies, Milner’s CCS [Mi80] and Hoare’s CSP [Ho78], to commonly used languages like
Pascal, Lisp, and assembler. In the development of high level programming languages
people learned the necessity to give precise meanings to the variety of syntaxes. The
most successful and well known approach to this problem is due to Scott and Strachey
[St64], [ScSt71]. Their approach is based on the idea that the semantics of a program-
ming language should be formally described in terms of a rather small number of basic
mathematical constructions on partial orders of information. The mathematical part is
called domain theory and the method which uses domain theory to specify the meaning

of a programming language is called denotational semantics.

The denotational semantics of a programming language is given by assigning to each
piece of program an element in a domain. Due to the possible self applicative nature of
some programs, the domains must sometimes have some special properties. Typically, it
can be required that a domain be isomorphic to its own function space. This is impossible
within the classical set theoretical framework because exponentiation always produces a
higher cardinality on non-trivial sets. Scott’s idea was to work with, not directly the values
and objects of computation, but rather information about computation. In the framework
of complete partial orders and continuous functions Scott has shown that it is possible
to get non-trivial solutions to equations such as D = [D — D]. Now properties and
constructions on cpos are well studied to the extent that it is possible to solve recursive
equations of domains and use these constructions to give denotational semantics to most

programming languages.

A complete partial order (cpo) is a partial order which has a bottom element and

1This section provides some historical background on domain theory and denotational semantics. A
formal introduction to domain theory is given in Chapter 2.



least upper bounds of directed sets of elements. For two elements # and y, z C y means
the information content of z is contained in the information content of y. The bottom
element L has, therefore, empty information content. Elements which have finite infor-
mation content play an important role in the theory. Intuitively those elements have
information which can be realised by a computation in finite time. We call them finite el-
ements. As far as computation is concerned it is usually enough to work with w—algebraic
cpos, which have a countable number of finite elements as its base. A function between
complete partial orders D and E can be seen as a computation which makes use of
some input information in D and produces some output information in E. According to
Scott’s thesis such a function should be continuous. Continuity requires that the function
be monotonic — more information as input yields more'information as output - and, if
o E 21--- £ ; -+ - is a chain in D then the output information for f(|]; #;) should
be possible to be approximated by f(z;)’s as closely as one requires. An important
feature of cpos is that the collection of continuous functions between cpos again form a
cpo, with the pointwise order; this means that functions themselves are associated with
elements of information and so enables the treatment of higher order computations. Un-
fortunately continuous functions between w—algebraic cpos need not form an w—algebraic
cpo again. There are subcategories of w—algebraic cpos with this property however. The
most well-known framework is Scott domains, those w—algebraic cpos which are consis-
tently complete. Scott domains have many nice properties. In particular they are closed

under sum, product, lifting, and function space constructions.

When it comes to specifying the semantics of programming languages with parallel con-
structs, powerdomain constructions are often used. Powerdomains resemble the powerset
construction with elements which represent the ‘sets’ of different courses a nondetermin-
istic computation can follow. However there are several ways to order the elements of a
powerdomain: different orderings yield different powerdomain. There are the Hoare pow-
erdomain, the Smyth powerdomain and the Plotkin powerdomain, based on, respectively,
three views about what kind of information should be taken into account for nondeter-
.ministic processes. There is no problem with the Hoare and the Smyth powerdomain
constructions — within the framework of Scott domains they produce a Scott domain
from a Scott domain. The Plotkin powerdomain construction, however, does not produce
a Scott domain from a Scott domain. This led Plotkin to the discovery [P176] of a more
general framework called SFP objects, which are special kinds of w—algebraic cpos closed

under sum, product, lifting, function space, and the three powerdomain constructions just
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mentioned.

There are many other frameworks for denotational semantics [Me88], among which
there is the less standard but important category of dI-domains. DI-Domains were dis-
covered by Berry [Be78] from the study of the full-abstraction problem for typed A-calculi.
They are special kinds of Scott domains which have a more operational nature. The func-
tions between dI-domains are stable functions under an order which takes into account
the manner in which they compute. DI-domains can be represented as stable event struc-
tures of Winskel [Wi86], which casts light on their computational intuition. They can
also be represented as information systems [Zh89], which casts light on the logical aspects
of dI-domains. DI-domains are becoming more and more popular, mostly due to the fact
that they are more elaborate in structure, and to the fact that there is another category
of dI-domains discovered by Winskel [Wi86] where constructions like the partially syn-
chronous product can be used to model languages like CCS and CSP quite smoothly. The
close connection of this category with some other more concrete models for concurrent
processes like Petri nets makes it even more attractive. An important subcategory of
dI-domains is the coherent spaces brought into popularity by Girard. They have been

recently used to model system F [Gi87a], and for a semantics of linear logic [Gi87b].

1.2 Program Logics, Proof Systems

Program logics? are logics which are used to reason about properties of programs. The
process of conducting the reasoning is usually expressed as a set of rules, forming a proof
system. One of the well-known program logics is the Floyd-Hoare logic (or Hoare logic)
[Ho69], with assertions of the form {P} C {Q}, meaning that if program C starts at a
state with property P and terminates, it terminates at a state with property Q. There

are many other kinds of program logics, such as temporal logic [Pn77] and dynamic logic
[Pr79].

Two of the most important theoretical issues related to a proof system are its soundness
and completeness. Informally soundness means each assertion derived from the proof
system is correct while completeness requires that every correct assertion be derived in
this way. While soundness of Hoare logic is easy to establish completeness is impossible

because of G&del’s incompleteness theorem for Peano arithmetic. However Cook in [Co78]

2The words ‘proof system’ and ‘program logic’ are often used as synonym in the literature.



showed the logic was complete relative to the truths of arithmetic, in the sense that if one

were allowed to consult an oracle about truths of arithmetic one can derive all the correct

program assertions.

During the past few years, a lot of work has been done to extend the axiomatic method
of Hoare to parallel programming languages. One of the well known approaches is due to
Owicki and Gries [OwGr76]. The language they considered was the usual sequential one
expanded with the statements for parallel composition via shared variables and critical
regions. Their proof system used assertions similar to Hoare triples. But the situation
became much more complicated. Owicki and Gries needed interference-freedom for the
soundness and auxiliary variables for the completeness of their proof system. Interference-
freedom was a condition used in the proof rule for parallel composition, which says that
processes do not interfere with each other. Recently, Brookes [Br85] presented a novel
proof system for the parallel programming language which avoids the use of'?—auxiliary
variables and interference-freedom for the proof system. This is achieved by introducing
- more structures on assertions. The basic idea is to use assertions with a structure of
labelled trees, where nodes are attached with predicates. In this way, one can not only
describe the input-output property associated with a command, but also keep track of

property of the intermediate steps in the execution of the command.

There are enormously many other kinds of proof systems for programming languages
in the literature. Often there are even several proof systems for the same programming
language. However, many of the proof systems are complicated or ad hoc, or even incor-

rect, not fulfilling what is claimed of them.

Faced with such a situation we may ask whether there is any principle on which our
proof systems can be based. We may ask whether there is any general method that
can guide us in building proof systems. Our idea is to look for help from denotational
semantics. Our goal is to find general logical frameworks based on domain theory which
can be used to derive proof systems like Brookes’ but from the denotational semantics.
We can expect the derived semantics based proof systems to be guaranteed to agree with
the denotational semantics in the sense that the denotation of any program coincides with

the set of assertions true of it.



1.3 Logic and Topology

Much recent work ([P180], [Sc82], [Sm83], [Wi83]) has been concerned with the rela-
tion between logic and domains or topology. The significance of this line of enquiry was
eventually made clear by Abramsky ([Ab85], [Ab87]). He showed that it could be regarded
as part of a general programme for extracting from a suitable semantics a program logic
based on a syntax of types, terms and predicates. Here we briefly review the history of
work on predicaie tranéformers, information systems and the logical approaches to domain

theory.

Predicate Transformers

Predicate transformers were introduced by Dijkstra [Di76] when he was dealing with
the semantics of a simple nondeterministic language of guarded commands. His idea was
to regard each program C as a ‘predicate transformer’ which transforms each assertion
(predicate) @ into its weakest precondition wp(C, Q) among P’s such that the Hoare
triple { P } C { Q } is valid. On the other hand, one can give semantics to the programming

lahguage by considering each program as a state transformation function abstracted from

a transition system.

Plotkin [PI80] showed that for Dijkstra’s language of guarded commands these two
approaches agree. Using Smyth powerdomain he gave an isomorphism between the cpo of
predicate transformers and the cpo of state transformation functions for the language of

guarded commands.

Later Smyth [Sm83] investigated this connection from a broader topological view. He
pointed out that the above connection is nothing more than a special case of the duality

between continuous functions D L) E and morphisms
f_l

Smyth emphasised the computational significance of topological ideas. A topological space
X can be taken as a ‘data type’, with the open sets as ‘properties’ and functions between

topological spaces as ‘computations’.

LY



Information Systems

Information systems were introduced by Scott [Sc82] initially with the intention of
making domain theory accessible to a wider audience. In this representation the idea of
information is made explicit-each element is seen as a collection of information quanta. It
gives a logical approach to domain theory, in which properties of domains can be derived
from assumptions about the entailments between propositions expressing properties of

computations.

Intuitively, an information system is a structure describing the logical relations be-
tween propositions that can be made about computations. It consists of a set of propo-
sitions, a consistency predicate and an entailment relation. An information system de-
termines a family of subsets of propositions called its elements. An element consists of
a set of propositions that can be truly made about a single possible computation. Thus
it is expected that the propositions should be consistent with each other and if a finite
set of propositions is valid for the computation, all their logical consequences should also
be valid for it. These elements form a Scott domain under inclusion. On the other hand,
given any Scott domain, one can build an information system which determines a Scott
domain isomorphic to the original one. Information systems form a category with the
approximable mappings [Sc82] as morphisms. It is a category equivalent (in the sense of
[Mac71]) to the category of Scott domains. Constructions such as product, sum, and func-

tion space have been proposed on information systems [Sc82], [LaWi84], corresponding to

those on domains.

Information systems fit Smyth’s topological view with propositions regarded as a nota-

tion for open sets. In fact, let X be a finite consistent set of propositions of an information

system. Let

O(X)={a| X Ca)
where z’s are elements of the information system. O( X ) is clearly an open set in the
Scott topology of the domain determined by the information system. On the other hand,

to get an information system from a Scott domain D, one can take the propositions as

the basic open sets, and get the entailment by letting

{01,02,---,0n, }FO



it ; O; € O. The consistency predicate is equally simple:
{Ol’ 02, Tty O'n'L} € Con

iff M; O; # 0. Such a smooth transformation is guaranteed by properties of algebraic cpos,
which include, among other things, that Scott topology on an algebraic cpo is both T},
and sober. Ty means that objects with the same properties should not be distinguished.
Sober means that the domain is completely determined by its lattice of properties ( for
more detail see [Sm83]).

Domains and Logics

Complete Heyting algebras are complete lattices satisfying the infinite distributive law

aA\/S=\{aAs|seS}

The category of frames has objects complete Heyting algebras, and morphisms functions
which preserve finite meets and arbitrary joins. As a special kind of frames one has the
set of open sets £2(D) of a topological space D ordered by inclusion; in this case the frame

morphisms are precisely those functions
1 QE) - (D)

for which f : D — E is continuous. The category of locales is the opposite of the category
of frames where the morphism direction is reversed. Stone dualities are contravariant
equivalences between certain categories of topological spaces and corresponding categories
of locales (Johnstone’s book [Jo82] is recommended here). They have been proposed as
providing the right framework for understanding the relationship between denotational
semantics and program logic. Examples of dualities of this kind have already appeared
in the literature. Information systems, for example, can be seen as description of locales
where the relevant topological spaces consist of the Scott open sets of domains. The
duality between the category of information systems and the category of Scott topologies
of domains is just the equivalence between the category of information systems and the

category of domains. There are other results of a similar nature, which we discuss now.

In [Wi82], Winskel observed a simple connection between powerdomains and modal

assertions. The modalities are O, for ‘inevitably’, and <, for ‘possibly’, to make modal

7



assertions about nondeterministic computations. He showed that the Smyth powerdo-
main is built up from assertions about the inevitable behaviour of a process, the Hoare

powerdomain is built up from assertions about the possible behaviour of a process, while

the Plotkin powerdomain is built up from both kinds of assertions taken together.

Powerdomains are closely related to the classical Vietoris construction on topological
spaces. Vietoris showed that for any compact Hausdorff space X, there is a compact
Hausdorff topology on the set K(X) of non-empty, closed subsets of X which coincides
with that induced by the Hausdorff metric, provided the topology on X is determined
by a metric. However, the relevance to computer science was neglected until [Sm82],
where Smyth pointed out the relationship between powerdomains and Vietoris topology.
Given a multifunction I' : X — Y, there are three ways to define continuity: the upper
semicontinuity, the lower semicontinuity, and both taken together®. Correspondingly three
topologies were introduced: the upper topology, the lower topology, and the Vietoris
topology. The three notions of continuity for a multifunction I' : X — Y can then be
characterised topologically as continuous functions from X to PY, where PY is a suitable
topological space constructed out of Y. Smyth showed that by removing the empty set,
the specialization orders determined by the upper power space, lower power space, and
convex power space are isomorphic to the Smyth powerdomain, the Hoare powerdomain,

and the Plotkin powerdomain, respectively.

A more formal approach which takes powerdomains as constructions on locales was
given by Robinson [Ro86]. He showed that Vietoris locale gives a Scott topology on the
Plotkin powerdomain. The presentation of a domain by means of an algebraic description

of its lattice of open sets supplies a way to ‘transform’ domains into sets of proof rules,

such as
CHpANDOP S O(dAD)
and

O(g¢Vey)<OhpV Oy

for the Plotkin powerdomain construction. Such rules have been known to some people,
and were implicit in Winskel’s work [Wi82], but was brought to the fore by Robinson’s

paper [Ro86]. It was also made clear that the finite elements of Plotkin powerdomain

A multifunction I' : X — Y is called upper semicontinuous if I't : 2(Y) — Q(X) is a function,
where I't(P) = {a | T'a C P }; and lower semicontinuous if I'= : (Y) — Q(X) is a function, where
I~(P)={a|TanP#0}.



is captured by formulae of the form (OV ¢; ) A A O¢i. Robinson then related his locale

' descrrptlon of power domains to Winskel’s rnodal assertion language descr1pt10n

A notable advance has been made by Abramsky [Ab87] when he shewed how program |
- logics could be extracted from domain theory. He developed further the ideas explained
“above and set a basm frarneworl for relatmg denotational semantics with program log-'
ics in the light of Stone duality. ‘His work p10v1ded successful treatments of morphlsms '
an important step which showed the promise of frameworks of this kind since they can,
in a sense, generalise and express dynamic logic and I'Ioare logic. . As an app.lication of‘
his fremeworbk, Abramsky [87a] introduced a domain equation for synchronisation trees.
- This domain eqrr.atiqn autornatically gencrates a logic as a special instance of the general

framework, out of which Hennessy-Milner logic can be constructed.

1.4 An Overview of the Thesis Work
My thesis work can be viewed as exten-din'g the line of research on demai‘ns and logics.

Traditionally, there are three approaches to the semanticsef prOgramrrling languages:e
the operational sematntics_, the denotationat semantics, and the axiomatic semantics. It is
important, of course, to uﬁderstarid the 1‘elationships between these approaches and ideally
one would like to ensure that different approaches end up as formally equivalent in some -
sense. The connection between operationa,l semantics and denotational semantics has been
well studied, as in e.g. full abstraction. However not a great deal of attentlon has been pald
to the relatlonshlp between denota.tlonal semantlcs and axiomatic semantlcs We raise the
following basic issue: for a programrmng language w1th a denotatlonal semantics, how can .
we, if possible, assoelate 1t with a proof system so that the axiomatic semantics agrees with
the denotational semantics in the sense that for programs C, C"_, ICl. € [[C’I]a if and only
if [C] € [C], where C is the or‘der"inllel'ited from the domain, [C], is the set of assertions
true of C? | | A |

We have a more ambitious proJect in mind alrmng at finding a general frameworl\ to
derive proof systems from denotational semantics. The resultmg proof systems should
be sound and ’complete and the axiomatic semantics should agree with the denotational
semantics. It should be derived automatically, in a uniform manner from the denotational

semantics in the following sense. The domains used should determine the style of »assertions

9



and their proof rules, while the denotational semantics should provide proof rules for the

programming language constructs. Such proof systems might justifiably be called semantics
“based. |

.\’Vhen looking for semantics bvascd prool systems, we Welc inspired by Brookes’ work
(Br85]. His system looked promising as a starting point for unde1standmg the 1elatlonshlp
l)etween denotational semantics and proof systems. We tried to see whether it was an
example of a semantlcs hased proof system (in a more formal sensé than that expressed
by Brookes). Together with the realisation that the open scts of powerdomains were
~ associated with assertions based on modal operators [Wi82], vtherc was a hope that a
more systematic derivation of prool systems like that of Bl‘eol(es’ but derived from the

denotational semantics should be possible.

Later we learnt of Abramsky’s work ([Ab85], [AbS7]) which contains important insights
on how Stone dualltles can be successfully applied to compute1 science. But after more
understanding of both Alnamsl\y s and Brookes’ work we found that we were not quite
in a position to do our _]Ol) for two reasons. The first was that we had some troubl_e with
Brool{es’ proof system, which motivated the work of Chapter 3. The second was that ,_
‘Abramsky’s fla,mewml\ did not treat SFP objects, while Plotkin powerdomain is needed
to cope with Brookes’ ploof system since it is, from our undelstandmg, based on Plotl\m s
domaln of resumptlons This motlvated the work of Chapter 5. Chapter 5 of rny thes1s4 4
was finished summer 1988 based on an ealllel draft [41187] At the beginning of 1989 we
received a recent techmcal report by Abramsky [ADbSS], which 1ncludes a treatment of the
" Plotkin powerdomam too. Work is done independently of Abxamsl\y S paper [Ab88] and

it prov1des an alternative to his treatment.

. SFP domains are one of the most general hamewml\s for denotatlonal semantics. There -
'_ is another important hamewmk for denotatlonal semantlcs the dI-domains discovered by
- Berry. DI-domains can be 1ep1escnted as event structures Wthh have a close connection
with some other models for concurrency and can be used to give semantics to languages
like CCS and CSP Spec1al kinds of dI- domams — the coherent spaces — have been used by
- Girard to glve semantics to llnea_l logic. These facts make the project of developlng a loglc
of dI-domains very interesting. The logic determined by dI-domains should induce logic

for event structures. Il might allow us to further explore its connection with linear logic.
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However, due to the operational nature of stable functions, we cannot simply borrow
the proof rules of domain logic as introduced in Chapter 5 for the logic of dI-domains.
We tried to understand the form assertions should take and proof rules for them from the
nature of stable neighbourhood. While the inverse image functions are not characterised
as preserving arbitrary Scott open sets, stable functions are precisely those functions f
whose inverse image function f~! preserves a notion of stable neighbourhood. They are
considered as proper open sets to interpret assertions of logic of dI-domains. Chapter 8
gives a quite through study of stable neighbourhoods. The results obtained there directly
suggest the right kind of proof rules for the logic of dI-domains. Due to the disjoint nature
of stable neighbourhoods we do not get a topology. To cope with this phenomenon the
logic introduced in Chapter 9 is disjunctive — this is novel. A disjoint assertion language
cannot be specified by a simple grammar. We have to employ a mutual recursion between
syntactic rules and proof rules to get the full disjoint assertion language. The work of

Diers [Di76] and Johnstone [Jo77] is undoubtedly relevant.

As mentioned above, this thesis work focused on developing domain logics for two
frameworks of denotational semantics: the SFP objects and the dI-domains. Apart from
the work described above, in my thesis we have given an information system represen-
tation of SFP objects in Chapter 4, a p— calculus of domain theory in Chapter 6, and
some results on different monoidal closed categories of dI-domains in Chapter 7. A brief

summary of the contents of each chapter is given below.

Chapter 2 gives a summary of background knowledge needed to understand the work

in later chapters. Some new results about the finite elements of the SFP objects are given.

Chapter 3 presents Brookes’ proof system. A counterexample is given to show that
his system is not complete as he claimed in [Br85]. An improved version of his proof

system, which avoids the use of labels, is suggested.

Chapter 4 introduces an information system representation for SFP objects. We use
a Gentzen style entailment X I Y, instead of X F a. A category of a special kind of such
systems is shown to be equivalent to SF'P. Constructions like the Plotkin powerdomain

and the function space are given, as well as a cpo of such information systems to give

meanings to recursively defined systems.

Chapter 5 gives a logic of SFP. A meta-language for denotational semantics is in-

troduced with general type constructions like sum, product, function space, the three

11



powerdomains, and recursively defined types. For each type there is a language of open
set assertions. Proof systems are given; they use inequational formulae to axiomatise
entailment and non-entailment of assertions. Soundness and completeness results are ob-
tained. As an application of the logic, the style of assertions of Brookes proof system is

shown to be determined by the logic of Plotkin’s domain of resumptions.

Chapter 6 studies the y—calculus of domain theory to extend the expreséive power
of the domain logic developed in Chapter 5. A least fixed point operator is added to the
assertion language as the — construction, to represent the least fixed point of the function
specified by an assertion. A u—calculus is introduced which includes proof rules for the
fixed point induction. The p—calculus is shown to be sound. Many useful theorems are
derived from the proof system, which are used to get the completeness result for a special
case — the p—calculus of integers. As the proof of completeness is achieved by normal

form theorems, the expressive power of the integer y—calculus is immediately clear.

Chapter 7 presents categories of dI-domains and event structures, to give background
knowledge for the work of Chapter 8 and 9. We give an introduction to the category of
dI-domains of Berry, the category of event structures of Winskel, and the category of
coherent spaces of Girard. An effort is made to present coherent spaces as special kinds of
event structures. A monoidal closed category of stable event structures is introduced, as
well as a category of finitary families. Finally, to relate dI-domains with finitary families,
a coreflection is given between the monoidal closed category of finitary families and the

monoidal closed category of dI-domains with linear, stable function as morphisms.

Chapter 8 introduces stable neighbourhoods. Stable neighbourhoods characterise sta-
ble functions in a similar sense to that in which Scott-open sets characterise continu-
ous functions. Constructions on stable neighbourhoods are given with respect to the
constructions on dI-domains such as sum, product, tensor product, énd stable function
space. In the category of coherent spaces we introduce further constructions of stable

\neighbourhoods such as linear function space and shriek. In all these cases the construc-
tion preserves compactness. Results are given for the interaction of these constructions
with disjoint union and intersection of sets. We also investigate stable neighbourhoods of
event structures. Events as well as some relations among them are shown to determine
stable neighbourhoods. However, the partially synchronous product does not preserve

compactness of stable neighbourhoods.
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Chapter 9 studies the logical aspects of dI-domains. Two logical frameworks are
introduced, one is for COHj, coherent spaces with linear, stable functions; the other is
for DI, dI-domains with stable functions. The logic of COH; can be used as a logic for
COH,;, coherent spaces with stable functions, via the shriek construction. The assertion
languages for the logics use a ‘disjoint or’, corresponding to the disjunctive nature of stable
neighbourhoods. Because of the disjunctive property, assertions have to be formulated
by using syntactic rules and proof rules together. Proof systems are introduced with
novel proof rules to deal with different type constructions. Soundness, completeness, and

expressiveness results are given.

Chapter 10 is the conclusion which contains suggestions for future research.
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Chapter 2

Mathematical Prerequisites

This chapter gives a short introduction to domain theory. It sets up notations and
results which will be used repeatedly in the sequel. Detailed definitions are given and
known facts are stated, without proofs. Readers can find out relevant proofs else where,

e.g. [P182], [Wi89]. Some results on SFP are new, which will be used in later chapters.

2.1 CPOs and Domains

A partial order is a set D with a binary relation on D which is reflexive (z T z),
transitive (z £ y&y C z = z T 2), and antisymmetric (z C y&y C ¢ = o = y).
Without antisymmetry D is called a preorder. When z C y, we say z is below y or y
dominates x or z is less ( smaller ) or equal to y. Let (D, C) be a partial order and
X C D asubset. Say y is an upper bound of X if Vz € X.z C y. Similarly, y is a lower
bound of X if V2 € X.y C 2. The least upper bound ( sup, supremum, lub, join ) of X is
an upper bound of X which is dominated by any other upper bound of X. It is written
as| | X,or | |&;if X ={x;|i€w} where w is the set {0, 1, ---}. It is written as a L b
when X is ie;, b}. The greatest lower bound ( inf, infimum, glb, meet ) of X is a lower
bound of X which dominates every other lower bound of X. It is written as ﬂ X,orallb
when X is {a, b}. When X = {2; |i € w} we write [|;guz;i for [1X. X is compatible,
written X' T, if X has an upper bound. When {a, b} is compatible we write a T &.

A directed set of a partial order (D, C) is a non-null subset S C D such that Vs,t €
Sdu € S.s Cwu &t T u. A complete partial order (cpo) is a partial order (D, =) which
has a least element L and all least upper bounds for directed subsets. An isolated ( or
finite ) element of a cpo (D, C) is an element = € D such that for any directed subset
S € D when z C | | S there is an s € S such that z C s. We write D° for the set of finite
elements of D. A cpo (D, C) is algebraic if for all z € D, {e Tz | e € D°} is directed
and z = | l{e C z | e € D°}. Domains are algebraic cpos. However we should not take
this name too seriously; there have been different definitions of domains in the literature.

When (D, C) is algebraic and D° is countable, D is said to be w-algebraic. A cpo is a
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Scott domain if it is w-algebraic and consistently complete, i.e., every compatible subset
X of D has a least upper bound | | X.

There is another definition of cpo based on w—increasing chains rather than directed

sets. An w-increasing chain in a partial order (D, C) is a countable set

{31,3;2,...3;7”...}

such that

lewZE“'Emn"'-

A complete partial order is a partial order (D, C) which has a least element 1 and
all least upper bounds of w-increasing chains. An isolated (or finite ) element of a cpo
(D, E) is an element ¢ € D such that for any w-increasing chain {z; | 7 € w} C D,
when z C |__| z; there is an z, such that z C z,. A cpo (D, C) is algebraic iff for all
reD therzeeuils an w-increasing chain {z; | ¢ € w. z; C z } of isolated elements such that
¢ = | | ;. When (D, C) is algebraic and the set of finite elements is countable, D is
said ngbe w-algebraic. These two definitions coincide for w-algebraic cpos.

Theorem 2.1.1 (Plotkin) A partial order (D, C) is w-algebraic in terms of directed

subsets iff it is so in terms of w-increasing chains.

For w-algebraic cpos, then, directed subsets and w-increasing chains can be used in-

terchangeably.

Lemma 2.1.1 If X C D°is such that Vz € D. {y € X | y C z} is directed and
e=|{y€X|yCz}, then X D DO,

The following are a few examples of domains. Domains are sometimes drawn as Hasse
diagrams with smaller elements below bigger ones, and immediately comparable pair of

elements having a path between them.

Example 2.1.1 The one-point domain L.

1

Example 2.1.2 The two-point domain O, sometimes called Sierpinski space.
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L

Example 2.1.3 The truth value cpo 7.

t i

4

Example 2.1.4 N, the domain of natural numbers.

2.2 Constructions on Cpos

The standard constructions on domains are the function space, the product, the sum,

and the lifting.

Function space Let D, E be cpos. A function f: D — E is continuous if it is

monotonic, i.e.
zCy=f(z)E f(y)
and for any chain
g0z Czp-e-
in D,
F(Lle) =L ().
Cpos with continuous functions form a category. This means, in particular, that identity

functions are continuous, and the composition of two continuous functions is continuous.
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For cpos D and F, the function space D — E consists of elements

{f|f:D — E is continuous }

ordered pointwise ( coordinatewise ), i.e.,
fCg it VoeD.f(z)Cg(a)

The function space D — E is a cpo with the least element the function Az € D. L E, and

the sup of a chain of continuous functions is defined pointwisely, i.e.,

(L)@ =] fi (=)

A function f : D — E is said to be strictif f (_Lp) = Lg. The cpo of strict continuous

functions of D — E form a cpo which is written as D —, E.

Product of cpos Let {D; | 7 € I} be an indexed family of cpos. Their product

IL;erD; consists of

{:L‘:I—)UD.;'VZ'EI.:C;ED;}
i€l

where we write z; for z (), the i—th component of z. Some times we write (z; )ier for
z. The order is defined by « Ty if Vi € I.a; C ;. When I = {1, 2} we write II;¢;D; as
Dy x Ds. ;1 D; is a cpo with the bottom element A: € I. 1 p, and lubs of directed sets
of elements determined coordinatewise. There are nature functions aésociated with the
product called projections. The j—th projection =, : (IIierD; ) — D; takes each element
z of the product to its j—th component z;. Projections are continuous. There are also
the tupling operation which takes a group of functions to the components a function to
the product. Let f; : D — D; be continuous functions for all ¢ € I. Their tupling is a
function (fi )ier : D — IierD; which sends each element d of D to { fi(d))ier. This is a

continuous function.

Let h : D — ;1 D;. b is continuous iff for all 7 € I the functions 7ok : D — D;
are continuous. Let f: Dy X Dy X +-- x D,,, — E be a function. f is continuous iff it is

continuous in each argument separately.

There are two important functions related to product and function space. One is the

application, app, which is a continuous function from [D — E] x D to E, defined as

app(f, z) = f(z).
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The other is currying. curry is a continuous function from (D x E) — F to D — [E —
F], defined as

curry(g)=dz €D (M €E.g(z,y)).

Sum. Let {D; |7 € I} be an indexed family of cpos. Their sum X;c;D; consists of

set

(U{e} x[D:\{Llp, }])Uu{L}

i€l
orderedby s Cyifz = Lordi € [.3d,d € D;. dCd &z = (i,d) & y = (4, d'). When
I is finite we write Dy + Dy + -+- + D,,. Z;e;D; is obviously a cpo. There are nature
functions associated with the sum construction, called injections. The j—th injection
wn; : Dj — it D; is given by letting inj( Lp, ) = L and inj(d) = (j, d) if d # Llp;. It

is easy to see that injections are continuous and strict.

Given a family of strict continuous function f; : D; — E (7 € 1I), we can extend them

to a function
[filier : Z:Di — E,
by letting
[filier(L) =L
and

[filiet ((k, 2)) = fu (2).

[ fi lier is the unique strict continuous function f such that foin; = f; for all i € 1.

Lifting. Let D be a cpo. Its lifting D, consists of elements
{(0,d) |[de D}u{L}

ordered by z Cy if z = L or Ad, d' € D such that dC d', z = (0, d) and y = (0,d).
There is a one-one correspondence between strict continuous functions D, —, E and

continuous functions D — E. The separated sum of a family D;, i € I of cpos is the cpo
Yier( D).

Scott domains form a Cartesian closed category with the previous defined product and

function space.
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2.3 Fixed Point Theory

Let D be a cpo and f: D — D a monotonic function. a € D is called a pre-fived
point of f if f(a) C a; b€ D is called a post-fived point of f if b C f(b); ¢ € D is called a
fized point of f if f(c) = c. The following theorem is due to Tarski [Ta55].

Theorem 2.3.1 ( Tarski, 1955 ) Let ( A, C) be a complete lattice and
f:A—=A
a monotonic function. Then
[T{a€ Al f(a) Ca}
is the least fixed point of f and
Li{eeAlbC f(5)}

the greatest fixed point of f.

When it comes to cpos the meet of all pre-fixed points is still the least fixed point.
However the greatest fixed point does not necessary always exist. We can write this fact
about the least fixed point in the form of a rule

f(z)C=
fizfEx

where fiz f stands for the least fixed point of f. It is clear that f(fiz f) = fiz f. We

can view fiz again as a function, given by fiz ( f) = fiz f. Sucha fiz: [D - D] — D

is continuous.

There is another way to get the least fixed point of a continuous function.

Theorem 2.3.2 ( Kleene ) Let D be a cpo, and f : D — D a continuous function.
Then

L] Fi(L)

1€w
is the least fixed point of f, where fO = Az. z, f* stand for the function got by composing
f with itself ¢ times.

There is an induction principle called Scott induction which can be used to reason
about properties of the least fixed points of continuous functions. Let P be a property of

elements of a cpo D. P is inductive if P(L) and for all chain
toz Ezy---Ezye -
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Vn. P(z,) implies P(L{z; |1 € w}).

Theorem 2.8.8 ( Scott induction ) Let D be a cpo, P an inductive property of D,

and f: D — D a continuous function. If

Vz € D. P(z) = P(f(z))

then P(fiz f).

2.4 Scott Topology

A topology on a set S is a collection of subsets of S that is closed under finite inter- -
section and arbitrary union. A set S and a topology R on S forms a topological space
(S,R). A base of of the topology R on S is a subset £; C ® such that every open set is
the union of elements of R;. Let (D, C) be a cpo. A subset O of D is said to be Scott

- open if O is upwards closed, i.e., Vz € OVy € D, z C y implies y € O, and whenever
X € D is directed and | | X € O we have X NO # 0. The Scott topology on a cpo (D, C)
consists of all the Scott open sets of (D, ), written Q (D). There is a corresponding
definition of Scott open set in terms of increasing chains. These two definitions agree on

w—algebraic cpos and accordingly can be used interchangeably for w—algebraic cpos.

Example 2.4.1 Consider 7 x O.

The three ‘parabolas’ in the picture represent three open sets:
A={(#1), (& T)}
B={(LT), ®T), (f,T)},
C={(f1L), (f,T)}

A subset K of a space (5, R) is compact provided that any family of open sets whose

union contains K has a finite subfamily whose union also contains K. From now on all
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domains concerned are supposed to be w-algebraic and the topology is Scott topology

unless otherwise indicated.
Lemma 2.4.1 z7 is open iff ¢ € D%, where 2T=4; {y€ D |2 Cy}.

Open sets of this form are called prime open since they are the primes in the lattice

(D) in the sense that if they are dominated by a join they are dominated by an element
of the join.

Note we also used T for compatible set. But it will always be clear from the context

which we mean.

Lemma 2.4.2 {z7|z € D°}U{0} is a base for the Scott topology of an w-algebraic

domain D.

Open setsin {z 7| z € D°}U{0} are said to be prime, due to the fact that whenever
some open set p of the form contained in the union of a collection of open sets then p is

contained in one of them.

Lemma 2.4.3 A non-empty O C D is open and compact iff 3z; € D°, 1 = 1,2,...k
k
such that O = U z; T.

i=1
Scott topology characterises continuous functions. A function f: D — E is continuous

VO € Q(E), f1(0)eQ(D). Let f, g: D — E be continuous functions. f C g iff
YO € Q(E). f-1(0) g7 (0).

2.5 SFP Objects

SEFP objects are directed limits of Sequence of Finite inductive Partial orders in-
troduced by Plotkin. A typical phenomenon for SFP objects is that compatible set of

elements need not have a lub ( consistently completeness does not hold).

Example 2.5.1 An SFP object which is not a Scott domain:
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Rather than presenting the original definition given by Plotkin [P176], we mention an

useful characterization of SFP objects in terms of the minimal upper bounds.

Let D be a cpo. A minimal upper bound of a subset X C D is an upper bound of X
and it is not strictly greater than any other upper bound of X. MU B(X) is defined to be
the set of all minimal upper bounds of X. MUB(X) is said to be complete iff whenever
is an upper bound of X then v C u for some v € MUB (X). For each X C D a sequence
of subsets U*(X), i = 0,1, ... are defined as follows.

U°(X) =X,
UHY(X) = {u|u € MUB(S) for some finite §C Ui(X)},

UX(X) = | U{(X).

>0

Lemma 2.5.1 If X C D is a finite set of finite elements, then every element of
MUB(X) is finite.

Theorem 2.5.1 (Plotkin, 1976 ) A domain D is an SFP object iff
(i) D is w-algebraic, (i) whenever X is a finite set of finite elements of D, then MUB(X)
is a complete set of upper bounds of X, and (iii) U*(X) is finite.

Corollary 2.5.1 For an SFP object D, if K; and K, are compact open sets then so
is I{]_ N Kg.

2.6 Powerdomains

Let D be an w—algebraic cpo, M[ D] the finite, non-empty subsets of isolated elements
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of D. There are three preorders on M[D], Ry Py defined as
AEOBif Vb€ Bla € A.a C b,

AEIBif Va € A3be€ B.a C b,
A 523 if A EOB & A ElB'
Powerdomains can be directly constructed from these preorders by a technique called

ideal completion. Let (P, C ) be a preorder with a least element. An ideal of (P, C)is

a subset X C P which is non-empty, downwards-closed and directed, i.e.
X #0,

a,beE X&alb=acX,

and

a,beX=>dceX. alc&ble

The set of ideals of (P, C ) is written as I(P). (I(P), C) is an algebraic domain with
isolated elements {g € P |¢Cp} for p € P. (I(P), C) is called the ideal completion of
(P, ).

The Smyth powerdomain, the Hoare powerdomain and the Plotkin powerdomain of
an w—algebraic cpo D are the ideal completions of (M[D], Eo) , (M[D], C, ) and
(M[D], 52), respectively.

We will use a concrete form of powerdomains in this thesis. The idea is to pick up

one biggest element (with respect to set inclusion) in each equivalent class with respect

to the three preorders.

Let D be an w—algebraic domain, and D° the set of its finite elements. For a non-null
finite set A C DO, define

Cls(A)={deD|dac A.dTa}

Clg(A)={deD|Jac A.dCa}
Clp(A)={deD|3a,be A.bCdCa}.

These operations are called closures. Clearly closures are idempotent, i.e., CI(CI(A)) =

CI(A).
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Suppose Cls(A) € Clg(B,). Then Va € A, 3b € B, b5 C a. Hence B EOA. Suppose
B goA. Then Va € A, 3b € B, bC a. Therefore Ve Ja € A, z € Cls( B,). Hence
Cls(A) C Clg(B,) iff B oA The Smyth powerdomain of an w—algebraic domain D
consists of, as finite elements, all subset Cls( A) with A a non-null finite set of D°® with

the superset ordering. The limit point of an w—increasing chain

Cls(Ao) 2 Cls( A1) -+ 2 Cls(A;) D -+
is the intersection
m Cls(A;)
which is non-empty. Z
Similarly Clg(A) C Clg(B,) iff A EIB i The Hoare powerdomain of an w—algebraic

domain D consists of, as finite elements, all subsets Clg(A) with A a non-null finite set

of D® with the subset ordering. The limit point of an w—increasing chain
Clg(Ao) C Clg(Ay)--- CClg(A)C---
is the union

UCla( 4:).

The Plotkin powerdomain of an w—algebraic domain D consists of, as finite elements
(see Theorem 2.6.1), all subsets Clp( A ) with A a non-null finite set of D°. The associated

partial order on the finite elements is defined as

Clp(A) Y, Clp(.B) iff

(Vb € Clp(B)3a € Clp(A).a T b) & (Va € Clp(A)Fb € Clp(B).a T b)
It is easy to see that
CIP(A) Cam CZP(B) if A E2B

and

A EzB and B E2A implies Clp( A) = Clp( B).
The limit point of an w—increasing chain

Clp(Ao) Eam Clp( A1) -+~ Car Clp( A ) Sy - - -
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is defined to be the closure Clp(A) where A consists of the least upper bounds of increasing

chains

aOEGIEa&"'Ean;"'

such that Vi € w. a; € Cls(A4;).
Clearly Clp(A) above has the following two properties:
(z,2€ Clp(A) &z C y C 2) = y € Clp(A),
(Va € Cl(A;)3z € Clp(A). a E 2 ) & (Vz € Clp(A)Ta € Clp(Ai). a C z).

‘Write Pp(D) for the set consists of closures Clp(A) with A € M[D] together with all

the limits of w—increasing chains given above.

Theorem 2.6.1 Let D be an w—algebraic cpo. The set Pp(D) with the order given
by
ACu B iff (Vb€Bla€ A alb)& (Vaec ATbe B.aLCb)

forms an w—algebraic cpo which is isomorphic to the ideal completion of the preorder
(M[D], ).

Proof It is enough to show that Pp(D) is a cpo with all the finite elements being of
the form Clp(A), with A € M[D]. Clearly for any B € Pp(D), Clp(B) = B. Suppose
A, B € Pp(D), ACy B, and B Ty A. Let a € A. Because A Ty B, there is some
b € B for which a Cp b. However, B Cp; A. Hence there is some ¥ € B, ¥ Cp a. This
implies a € B since Clp(B) = B. Therefore A C B. Similarly B C A, hence 4 = B. So
Pp(D) is a partial order.

It is obvious that { Lp } is the bottom element of Pp(D).

Suppose
Clp(Ao) CClp(Ay)---EClp(A)E---

is a chain in Pp(D). Since each elements of Pp(D) is a limit of a similar chain but with

A; € M[D] for all ¢, we can, without loss of generality, form another chain
Clp(Boo) Car Clp( By )« - Ear Clp(Bji) Epr - -
where By; € M[D), and for any 4, the limit of the chain
Clp(Bio) Cm Clp(Bi ) Eag Clp( Bii) T -+ -
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is Clp( A; ). We show that the limit of the above diagonal chain, Clp( A), is equal to the
least upper bound S of the set { Clp(A;) | i € w }. Tt then follows that § is already an
element of Pp(D) and the limit exists. Clearly Clp(A) Ep S. Hence it is enough to
show that for all 2,

Clp(Ai ) Em Clp(A).

Assume a € A;. By definition ¢ = Ukew be, where by’s form a chain and for each k,
br € Bix. By using the fact that each Clp(Bi;) is a finite element of Pp(D) shown in the
next paragraph, we can further assume that for each 7, Clp(Bi;) Epm Clp(Bg;) whenever
¢ < j. From the order required for B;; we can easily find an element o’ of A such that

a Cp o'. Similarly for any element o’ of A we can find an element a of A; such that

a gD a.

To show that Clp(A) with A € M[D] are all the finite elements it is enough, by
Lemma 2.1.1, to show that they themselves are finite elements, since other elements are
built up as limits of w—increasing chains of those elements. Suppose A € M[D] and
Clp(A) En Clp(B), where Clp(B) is the limit of the chain

Clp(Bo) Car Clp(By)--- Cpy Clp(B;) Sy ---

with B; € M[D] for each ¢. A is a finite set of finite elements. From the definition of B
for Clp(B) it is easy to see that there is some n, A ngn. It remains to prove that for
some m > n, A EOBm since we have A ngm by the transitivity of El. Assume this is
not the case, i.e., for any k£ > n, there is some b, € By, such that b Ap a for any a € A.

Since B; 5233- when ¢ < g, for each k there is a finite anti-chain
br Ip ¢k—1 Ip ck—z--- dp ¢y

such that ¢; € B; and ¢; Zp a for any a« € A. Each By is finite. Therefore we get a finite
branching, infinite tree, where each node d is an element of some By. By Koénig’s lemma,

this tree has an infinite branch
dnEpduy1 Ep---Cpd;---.

That infinite branch, by definition, determines an element | ;5 d; of B. However, for
any element b of B there is an element a of A such that @ Cp b. Therefore for some a,

a Ep Ll;>» di. But a is a finite element. So a Cp d; for some 3, which is a contradiction.
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For an w—algebraic cpo D, we write Pg(D), Ps(D), and Pp(D) for the Hoare pow-
erdomain, the Smyth powerdomain, and the Plotkin powerdomain introduced above, re-

spectively.

Write SDom for the category of Scott domains and SFP for the category of SFP
objects. SDom is a full sub-category of SFP. SFP is closed under all the constructions

mentioned above. SDom is closed under all but the Plotkin powerdomain. They are

both cartesian closed.

2.7 Finite Elements

Now let us see what are the forms of finite elements related to constructions on do-

mains.

Proposition 2.7.1 Let D and E be w—algebraic cpos and D°, E° the set of finite

elements of D and E, respectively, then

(DxE)={(d,e)|deD%ec E°}.

Proposition 2.7.2 Let D and E be w—algebraic cpos.

(D+E)={(0,d) |deD°&d# 1p}U{({l,e)|ec E°%e# Ly} U{L}.

Proposition 2.7.3 Let D be an w—algebraic cpo.

(DL)"={(0,d)|de D°}U{L}

Let D, E be cpos. A one-step function is a function [a, b] defined as

b ifzda,
[a,b)(2) = { 1 otherwise

where a € D% b € E°. For D, E Scott domains, f : D — E is called a step function if
Ja; € D% b; € E°, i € I, with I a finite set, such that

e VJCI{a;|jeJ}=>{bjlje I}

o f= U[aia bi]

iel
Note that if
VIC L {a;]jeT}1={b;|j e}t
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then

L@, b:]=2z. | [{b;i|a: Ez}.

i€l

Proposition 2.7.4 Let D, E be Scott domains.

(D—E)={f|f is a step functionin D — E}

Proposition 2.7.5 If D is an w—algebraic cpo then
(Ps[D])° = {Cls(4) | Ae M[D]},

(PulD])° = {Cln(4) | A€ M[D]},
(Pe[D))’ = {Clp(A) | A€ M[D]}.

2.8 Compact Open Sets

The following propositions show that all the constructions on open sets preserve com-

pactness.

Proposition 2.8.1 Let D be an SFP object. D and § are compact open sets of

(D). The union and intersection of two compact open sets are compact open.

Proposition 2.8.2 If A and B are compact open sets of Q( D) and ( E ), respec-
tively, where D, E are SFP objects, then

{{u,v) |lue A&ve B}
is a compact open set of Q(D x E).

Proposition 2.8.3 If A and B are compact open sets of (D) and Q(E), respec-
tively, where D, E are SFP objects, then

A—B=45;{feD—-E|AC f(B)}
is a compact open set of (D — E).

Proof We have, for a € D° and b € E°,

aT—=b1 ={feD—E|alC f(b7)}
:[{fe]f—hEIf(a)Qb}
=|a, b
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Therefore, aT— b7 is a prime open set.

Let
A=U{a,~T|ai€D°&1§i§n}
and
B=U{bJT[ bjEEO&ISjSm}.
It is not difficult to see that
A~ B=Uat— b1
= Vait=>Ub1)
= ﬂ(U a;T—b;T)
i
= O(U[aiv bJ]T)
i

Hence A — B is compact open as finite unions and intersections of compact open sets

are compact open. |

Proposition 2.8.4 If A and B are compact open sets of (D) and Q( E), respec-
tively, where Lp € A, Ly ¢ B and D, E are SFP objects, then

(0, u)|lue A}, {(Lv)|veB}

are compact open sets of D + E. If A is a compact open set of (D), with D an SFP
object, then

{{(0,u) |ue A}
is a compact open set of (D).
Proposition 2.8.5 If A is a compact open set of (D ), with D an SFP object, then
{UePs(D)|UCA}
is a compact open set of Pg (D).

Proof Let
A=HallaeD’&1<i<n}

where a;’s are incomparable with each other. Clearly Clg({a; |1 <i<n}) € Ps(D)
and Cls({a; |1 <i<n})C A. It is routine to check that

{UePs(D)|IUCA}=[Cs({a:|]1<i<n})]T. ]
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Proposition 2.8.6 If A is a compact open set of Q( D), with D an SFP object,
then

{UePp(D)|UCA}
is a compact open set of Pp (D).
Proof Let
A= H{atlaeD° &1<i<n}
where a’s are incomparable with each other. We have
UC UaiT
@V:EZEU—:'Ii.mQai
©IC{,2 -, n}VeeUJielesla&Vicldvel. a; Cx
3dIc{1,2,---,n}.{aq; |i€I}52U

Hence

{UePp(D)]| UEA}=LIJ[CZP({ai|iEI})]T,
a compact open set. NI

Proposition 2.8.7 If A is a compact open set of (D), with D an SFP object,
then

{LePu(D)|LNAL0}

is a compact open set of QPy (D).

Proof Let
A=U{a,~T|a,’€D°&1§i§n}

where a;’s are incomparable with each other. Clearly each [Clg({a;})]1 is a prime open

set and

{LePa(D)|LNA#£0}= | [Cu({a])]T.

1<i<n
Hence

{LePyg(D)|LNA£0}

is compact open. |
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Proposition 2.8.8 If A is a compact open set of (D), with D an SFP object,
then

{LePp(D)|LNALD}

is a compact open set of QPp (D).

Proof Let
A=H{allaie D°&1<i<n}

where a;’s are incomparable with each other. Clearly each [Clp({ai, Lp})]T is a prime

open set and
{LePp(D)|LNA#0}= | [Ap({a; Lp})]T.
1<i<n
Hence

{LePp(D)|LNA#D)

is compact open. |

2.9 Solving Recursive Domain Equations
There are three ways to get solutions for recursively defined domains.

One is Scott’s method of universal domain. Instead of solving domain equations one
by one, we solve one big domain equation, and the solution is called a universal domain.
The solution for any other domain equation can then be expressed as a retract on the
universal domain, i.e., a sub-domain D such that f(D) = D, where f is the function

associated with the required domain equation from the universal domain to itself.

The other is the inverse limit method proposed by Smyth and Plotkin [SmP182]. The
idea is to consider the category of domains as a cpo itself and use the fixed point theory

to get solution for recursively defined domains.

Let D and E be cpos and p: D — E and q: E — D be continuous functions. (p, q)
froms a embedding-projection pair from D to E if gop = Az € D.z and poqC Az € F.x.
If (p, ¢) is an embedding-projection pair then p, q are strict. For two projection pairs
(p, ¢) and (p', ¢') from D to E, p C p' iff ¢ C ¢. Therefore, if there is an embedding-
projection pair between D and F, then the embedding p : D — E uniquely determines

the projection ¢ : E — D, hence we write ¢ as p®. Cpos with embedding-projection
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pairs form a category CPO¥, with composition of embedding-projection pairs defined as
(p, q)o(p',q') = (pop', ¢ 0q). Least upper bound on CPO¥F corresponding to directed
limits. Each domain equation induces a continuous ‘function’ on CPO¥, and the least

fixed point of the function is the initial solution of the domain equation.

The third method is due to Larsen and Winskel[LaWi84]. The idea is to work on
information systems, a representation of Scott domains. Information systems are based
concretely on sets and relations. They can be ordered to form a cpo. All the usual domain
constructions have their counterparts as continuous operations on information systems.
Recursive domain equations can then be solved using a simple result for finding the least
fixed point of a continuous function. The construction of the fixed point makes the domain

1somorphism an equality.

2.10 More about SFP

This section gives some results on SFP objects, which are useful in later chapters.

Proposition 2.10.1 Let A, B be finite sets of isolated elements of an w—algebraic
domain D. MUB(A) = B and B is complete iff !

(Yat=JbT andVb, b c B.bC Y = b=1V.
a€A beB

Proof

=: Let MUB(A) = B and B be complete. Clearly Vb, ¥ € B.bC ¥ = b = ¥'.
Since B is complete, for each upper bound u of A there is some b € B such that » J b.
Therefore

(Natc |JbtT.

a€EA beB
The other direction of the inclusion is obvious.

<: Assume Nyeaa T= UpepdT and Vb, 0 € B.bC ¥ = b = b. Suppose m is a
minimal upper bound of A. Then it is an upper bound of A. Therefore m € ,c4al. By
the provided equation, m € [yep b7. Hence m 1 b for some b € B. As each member of
B is clearly an upper bound of A, we must have m = b. So, MUB(A) C B.

11 realise that a very similar statement has already been made in [Gu85] as Lemma 4.18. It seems
some condition like ours on B is needed, though missing from [Gu85].
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Suppose b € B. Clearly it is an upper bound of A. Assume b 3 ¢, where ¢ is an upper
bound of A. We have ¢ € (¢4 aT, which implies the existence of some ¥ € B such that
g 3 ¥, by the given condition. Therefore b J b'. Hence b = ¥', also b = ¢. This means
be MUB(A).

Therefore MUB ( A) = B. 1t is easy to see that B is complete. NI

Definition 2.10.1 ( Gunter ) A set P of prime open sets of domain D is guasi-
conjunctive iff for all non-null finite subset S of P there is a subset R of P such that

Ns=U=&.

Let D and E be SFP objects and D° E° the set of finite elements of D and E,
respectively. What are the finite elements of D — E?7 We know that for Scott domains
the finite elements of the function space have the form | J;c;[a;, b;] where I is a finite set

and a; € D%, b; € E° are such that
VIC I {a;|jeJ}=>{blieJ}T.

For SFP objects, however, we need more information to get a finite element in function
space. Although each one-step function still specifies a finite element, it is not true that
the finite elements of the function space of SFP objects take the same form as those of

the function space of Scott domains.

Consider the function space of the following domain to itself.

[a, a] L [b, b] is a proper form of step function for Scott domains. But it does not

give a well defined function because it does not tell us where ¢ and d should be sent to.
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A reasonable further condition to put on | J;cr[as, b;] would be to require {a; | i € I'} to
be MUB closed. But even that would not be enough:

[a, a]U[b, b]U[c, a] Ui [d, b]

meets all the requirements, and yet it does not provide full information where ¢ should

be mapped to; it can be mapped to c as well as to d.

Because of the above reasons we give the following definition of st'ep functions between
SFP objects.

Definition 2.10.2 Let D, E be SFP objects and {(a;, ) | ¢ € I} C D° x E°.
{(as, b;) |2 €1} is called joinable if
o VX C{a;|:€lI} MUB(X)C{a;|ieI},
e a; Ca; = b;Co.

A function f: D — E is a step function if there is a finite joinable set { (a;, b;) | i € I'}
such that f = ;s a;, 6]

From the definition it can be seen that if | |;c;{ i, b;] is a step function then

VICIL{a;|je}={biljeT}T.

Theorem 2.10.1 Let D, E be SFP objects.

([D - E])*={f]|f is a step function of D — E }.

Proof We prove that (i) step functions are well defined and continuous, (i) they are
finite elements of [D — E] and (iii) every f € [D — E] is a lub of an w-increasing chain
of step functions.

k .

(i) Let s = | |[:, y:] be a step function. Let E,(z) ={y; |z; Tz} forz € D. It
i=1

is easy to see that {z; | #; C « } is directed. Hence, by Definition 2.10.2, E, () is also

directed. So || E; (2 ) exists. We have s is well defined, and s(z) = || B, (z). s is clearly

continuous.

(ii) To see s is a finite element of [D — E] it is enough to check that one-step functions
are finite, as the lub of two ( hence finitely many ) isolated elements is isolated. But that

one-step functions are finite is trivial.
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(iii) Now we prove that Vf € [D — E] there is an w-increasing chain {s; | ¢ € w}
of step functions such that f = | |s;. Write D° = {d; | i € w},E° = {e; | i € w}
(if | D° |=n let d; = d,, for 4 Zifzf and similarly for E° ). Any continuous function is
totally specified by its values at the isolated points. Let {e;; | j € w}, i = 1,2,... be
w-increasing chains of E° such that Vi.f(d;) = |_| e;;. Let
jEw
Ao ={do}
Ay = U(AoU{d:})

A; = U*(A,'_l U{dz'})

where U*(B) denotes the minimai MUB closed set containing B. We have A; C A;y4,1 >

0 and each A; is a finite set of isolated elements. Let

Sg = [do, 600]

S1= I._I [d, Eqi(d)]

dEAl
s1 is a step function with { Ey(d) |d € A1} C{e;; |5 >k}

si= || [d, Ei(d)]

deA;
s; is a step function with { Ei(d) |d€ A;} C{e;|j >k}

where k; = 1 and, in general, k; = 1+ max {k | ej; € {Ei-1(d) | de€ Ai_1}}. The
existence of such step functions is guaranteed by the fact that when d; C d; we have

f(d:) E £(d;), and, therefore, Vr € w 3t € w such that e;, C ejy.

It is easy to see that s;’s form an increasing chain of step functions such that Licw si =

7.1

Another description of finite elements in the function space of SFP objects is given

by Gunter[Gu87].

Definition 2.10.3 (Gunter) Let D, E be SFP objects and {(a;, b;) |1 € I} C
D® x E°. {(ai, b;) | i€ I}is called Gunter joinable if for any a € DO, {(ai, b;) |1 €

I'& a; C a} has a maximum in D°® x E°.
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Theorem 2.10.2 (Gunter) Let D, E be SFP objects and { (a;, b;) | € I} Gunter

joinable. Then | ;[ a;, b;] is a finite element in D — E. Moreover functions of this form

represent all the finite elements in D — E.

The relationship between joinable and Gunter joinable sets is given by the following

proposition.

Proposition 2.10.2 Let D, E be SFP objects. If {(a;, b;) | 7 € I'} is joinable then
{(ai, b;) | i € I} is Gunter joinable.

Proof Suppose {(a;, b;) | ¢+ € I'} is joinable. We have 1. {a; | i € I} is MUB
closed; 2. a; C a; implies b; C b;. Let a € D°. To show {(a;, b;)|:€T&a;Ea} hasa
maximum in D° x E° it is enough to prove that {a; | i € I & ¢; C a } has a maximum.
Suppose S = MUB({a; |t €I & a; T a}). SC{a;|i€l}andforsomebe S.bC a

since S is complete. This b is clearly the maximum. Wl

We remark that the converse of the proposition is not true. In later chapters only

joinable sets are used because they are easier to use.
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Chapter 3

Brookes’ Proof System

There has been a lot of work on extending Hoare logic to parallel programming lan-
guages. One of the well-known approaches is due to Owicki and Gries [OwGr76]. The
language they considered was the while-programs augmented by adding the statements
for parallel composition (via shared variable) and critical regions. Their proof system used
assertions similar to the Hoare triples. But the situation became much more complicated.
Owicki and Gries needed interference-freedom for the soundness and auxiliary variables
for the completeness of their proof system. Recently, Brookes [Br85] presented a novel
proof system which avoided the use of auxiliary variables and interference-freedom. This
is achieved by introducing more structures on assertions. The basic idea is to use asser-
tions with a structure of labelled trees, where nodes are attached with predicates. In this
way, one can not only describe the input-output property associated with a command,

but also keep track of property of the intermediate steps in the execution of the command.

The purpose of this chapter is to introduce Brookes’ proof system and present ‘a,n
improved, semantics derived, version for it. Brookes’ proof system serves as an example
of an ad hoc proof system close to the one which is semantics derived. In chapter 5
we will show that the style of Brookes’ assertions is determined by Plotkin’s domain of

resumptions for the denotational semantics of the parallel programming language.

In the first section we give an introduction to Brookes’ proof system. A counterexample
is given in section 2 to show that Brookes’ proof system is not complete as it appeared.
Section 3 proposes a simpler proof system, avoiding the use of labels. Our work in
chapter 5 shows that it is important not to use labels if one wants the proof system to be
‘semantics-based’. The new proof system is shown to be sound. The completeness issue

of the proposed proof system is discussed in section 4.

3.1 Brookes’ Proof System

The programming language Brookes deals with is the same as the one considered
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by Owicki and Gries. The syntactic categories of the programming language are Iexp,
integer expressions, which is ranged over by E; Bexp, boolean expressions, which is
ranged over by B; Loc, locations, which is ranged over by I (we also use z for a location)
and C,om, commands, by I'. The syntax for Iexp, Bexp are taken for granted (for more

detail of the basic settings for operational semantics and proof system. See e.g. Winskel’s
book[Wi89]). The syntax for Com is:

I'i= a:skip| a: I:'=F |TI';;Ty |1 ||y | await #: Bthena: I

|if 3: BthenT; elseT; | while3: BdoT

Nested await statements are not allowed. The symbol null is used to represent ter-
mination. Brookes gave an operational semantics to the programming language in the
standard way using labelled transition systems (To have a idea for the operational seman-
tics see Section 3.3 for a closely related, unlabelled, transition system). He then proposed
a novel proof system for the programming language using tree-like assertions which take

the form

go:::PZaiPigoi | 1@ @2 | Po| Pe

=1
where P’s are logical formulae of some conditional language and o;’s are atomic action
labels. The symbol @ is understood as the logical ‘and’. A different symbol was used to

distinguish it from the logical ‘and’ used in the condition language.

States ¥ consists of functions from locations to truth values and integers. olE/I]
represents a state which agrees with o except possibly at location I where it stores the

value of E evaluated at state o.
A typical conditional language is given as follows:
P u=true |false |ap =a; |ag < a; | BLAP, | VP |-P|Py= P, |Vi.P | 3.P
where a’s are arithmetic expressions specified by
ax=n|l|i|lag+a|ap—ay|ap xay

with n ranges over numbers Num, I, z ranges over locations Loc and 7 ranges over integer
variables Intvar. Clearly if one wants to define o |= P, the relation which expressing when
a state o satisfies a condition P, one has to specify what values the integer variables are

assigned. Therefore it is natural to define o = P with respect to an interpretation It of the
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integer variables, written as o }=* P [Wi89]. In [Br85] the relation o = B is mentioned,
but it is not explained how to define o = P without referring to an interpretation. As
one of the possible way, let us assume all the conditions P we are going to use are closed,
ie. all the integer variables are bound. This is a little restrictive but there should be no

problem extending our treatment to the general case.

There are some facts about o |= P which will be used later, from time to time.
We collect them here; the proofs can be found in ordinary text book on foundations of

verification, e.g. (Wi89]. We have
P & Qiff o = P implies 0 = Q,
0'|= VP,IHHZU}:P,,

=1

olE/Il = Piff 0 |= P[E/I].
A command T satisfies an assertion ¢, which Brookes writes = I sat ¢, when
P=07,0: & Vi (1<i<n). ETsaty;
or

=Py a; Py

=1

which satisfies the following two properties:
1 VoVe[ (o P) & (T,0) S (To') = Fi.a=a; & o' = P& =1I"sat o; ]

2 ViVo.[(o = P)= 3(I",0"). (T,0) = (I",0') & =T’ sat ¢; & o’ = P, ]

Brookes calls T' sat ¢ a command assertion. A proof system is proposed by Brookes
to derive properties of commands expressed in such assertions. It consists of the following

proof rules:
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Brookes’ Proof System

—root (¢)
I’ sat ¢

(BO)
(Bl) a:skip sat {P}a{P}{true}e
(B2) I:=Esat {P[E/I]}a{P }{true}e

(B3) I'sat ¢ safe(y)
await §: B then o : T sat {root(¢)& B }a{leaf(y) }{ true }o

(B4) await B then I'sat {—B }o

I'y sat ¢ T, sat ¢
[I'1 || I'2] sat [ || 4]

I'y sat ¢ Ty sat ¢
(F1;T2) sat (p;9)

F1 sat { P } E?:l a,-Pi 21
if #: Bthen I'; else T, sat { P& B} Y%, o, P;

(B3)

(B6)

(B7)

Fysat {P}Y72, P

B8
(B8) if B : B then T'; else I'; sat { P&-B} S o P

while : BdoI'sat p I'sat { P}Y7, P,
while f: Bdo I'sat { P& B} Y, o P; (wi; p)

(B9)

(B10) while §: B do I sat { P& ~-B}#{ P }{true}e

I'sat ¢ T satv

D Taateon)
I'sat (p®¢)

(©2) I'sat ¢ I'saty

(3) IF'satp =1

I' sat ¢
In the proof system || and ; are constructions on assertions introduced in [Br85].
It is claimed in [Br85] that

“ Although we do not provide a proof in this paper, the proof system formed
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by (B0)-(B10), (C1)-(C3), is sound: all provable assertions are valid. The
system is also relatively complete in the sense of Cook: every true assertion
of the form I' sat ¢ is provable, given that we can prove all of the conditions
necessary in applications of the critical region rule and of modus ponens. Both
of these rules require assumptions which take the form of implication between

conditions. Write Th |- I" sat ¢ if this can be proved using assumptions from

Th.
Theorem 3. If Th |- T sat ¢ then Th T sat ¢.
Theorem 3. If Th |=T sat ¢ then Th T sat ¢. ”

3.2 A Counterexample

Brookes’ proof system as presented in [Br85] is, however, not complete. Consider the

command
I'p = await a: 2 > 0then 3: W,
where
W =while v: 2>0do é§: z: =2 —1.
We have

Proposition 3.2.1 ETosat {z>0}8{z=0}{z=0}e.

Proof By the transition rule for the operational semantics we have, for await state-

ments,
(T',o) =»* (null,¢’) o kB
(await f: Bthena: T',o) = (null,o’)

Therefore, an atomic transition for the await statement await 8 : B then o : I' is possible

at a state o iff I' can make a number of atomic transitions from ¢ and then terminates.

It is then easy to see from definition that we have

Tosat {z>0}B8{z=0}{z=0}oe.

This valid command assertion is, however, not provable from Brookes’ proof system.
To show that it is not provable we need to use some notions like the depth, root and leaf

of assertions, as well as safe assertions, as introduced in [Br85].
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Definition 3.2.1 The depth of assertions are integers defined by

depth ( Po) =0
depth ( Pe) =0
depth (P> a;Pip;) =1 + max{depth(y;)|1<i<n}
=1
depth (P ;) = max{depth(¢;)|1<i<n}
=1

Clearly every assertion has a finite depth.

Definition 8.2.2 The root of an assertion is defined as

root (Pe) : =P
root (Po) =P
root (PZaiPigoz-) =P
=1
root (P ;) = \/ root (¢;)
=1 =1

Definition 3.2.3 The leaf of an assertion is defined as

leaf (Pe) —P
leaf (Po) = false
leaf (P> o;Pip;) = \/ leaf (¢;)
=1 =1
leaf (€D ;) =\ leaf (¢;)
i=1 1=1

n
The operation leaf was not introduced for assertions of the form P ¢; in Brookes’s
=1
paper. But apparently it is needed.
Note that for an assertion P 37, a;Pi¢p;, no restriction is imposed on the adjacent pair
of conditions P;, root (¢;). It reflects the fact that interruption between atomic actions is

allowed in the presence of parallelism. Sometimes however, it is useful to have assertions

whose adjacent conditions are logically related. They are called safe assertions.

Definition 3.2.4 Define the predicate safe on assertions such that

safe (Pe)

safe (PzaiPi‘Pi) <=>[VZ Pz-=>root(<p,-)] & Vi. s_afe ((p,')

=1

safe (P ¢i) & Vi.safe (¢;)
=1
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Proposition 3.2.2 Vn >0,

(FE W sat ¢ & Jo. o[n/z] = root (¢ ) & safe(p) ) = depth () >n.

where

W =while y: 2>0do é: z:=2 —1.

Proof By mathematical induction on n. The base case is trivial.

Induction step: Suppose the conclusion is true for all n = N. We show that it is true
forn=N+1.

k
Assume = W sat ¢ & Jo. 0[N + 1/z2] |= root () & safe(y). Let ¢ = P ¢,
i=1

k
where k& > 1, and ¢js are of the form Q 7, §;Q; ¥;. Since root (¢ ) = \/ root (¢; ),
1=1
3i. o[N +1/z] k= root ( ;). Write Q@ 7, B8;Q; ; for this ;. We have 0[N +1/z] |= Q
and =W sat Q > ity BjQj ;. By operational semantics we have a transition

(6: z:=2—1, o[N +1/2]) 5 (null, ¢[N/z]),
which enables the transition
(W, o[N +1/a]) 5 (W, o[N/z]).

Therefore 3. o[N/z] = Q; & | W sat ¢;. As QX7 B;Q;; is safe, we have
Q; = root (%;) and safe(;). Hence o[N/z] |= root (¢;). By induction hypothesis
depth (¢;) > N. Therefore depth (o) >N +1. I

Proposition 3.2.3 Tgsat {z >0} 8 {z = 0}{z = 0}e is not provable from

Brookes’s proof system.

Proof By inspecting the proof rules it is easy to see that to derive the desired
command assertion we must prove W sat ¢, with {z > 0} = root ( ¢ ) and safe (¢)
and then use (B3). But it is impossible to prove W sat ¢, with {z > 0} = root(y)
and safe (¢ ). Suppose ¢ = @I ,p; where ¢;’s are of the form P;3 oxQxtbr. Since
root(yp) = Vio; P and {z > 0} = root(y), there must be some ¢ for which there
is a infinite subset € of natural numbers such that Vk € €. olk/z] = P;,. We must
have, therefore, |= W sat ;, safe(y;) and Vk € e. o[k/z] = P,. By proposition 3.2.2
depth (;) > k for any k € ¢, i.e. depth (¢) = oo, a contradiction. |
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Note that whether we allow free integer variables in condition or not does not affect
the proof of proposition 3.2.3 because from the condition {z > 0} = root(y) we can

assume root(yp) to be closed, i.e. it does not have free integer variables.

The counterexample is not surprising if one notices the fact that with await statements
and Brookes’s assertion language it is possible to express the termination property of
sequential while-programs. In other words, the proof system is concerned with not only

partial correctness but also total correctness in an indirect way. We have

Proposition 8.2.4 Suppose I is a sequential while-program. It terminates from any

state with property P iff

E (await 3 : true then o : T') sat Poftrue }{true} .

Proof ( only if ): Obvious.

(if ): Suppose |= (await 8 : true then « : T') sat Paftrue }{true }s. By definition
for any o |= P there exists (I, o) such that (await 3 : true then «: T , o) % (I, 0")
and |=I" sat truee , ¢’ |= true. It can be easily seen from the transition rules that we

must have

I = null &(T',0) —* (null, o),

that is, T’ terminates from state o, as I" is deterministic. il

3.3 Removing the Labels

As is shown in the previous section, Brookes’ proof system is not complete, and the
trouble comes from await statements. What we are going to do in the rest of this chapter
is quite modest: We present a neater proof system than Brookes’, without using labels.
The point of not using labels is, more importantly, that the proof system naturally derived
from semantics does not involve labels (see chapter 5). We show that in the absence of

labels one still has a sound proof system. However, unfortunately, though I believe this

proof system is complete, I cannot yet prove it.
'The programming language we are considering is specified by

Pu=skip| I:=FE|Ty;Iy |1 || T2 | if B then T, else I'; | while B do T.
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We use an unlabelled transition system
((ComxZ)UZ, —)

to give an operational semantics for the programming language. An element of Com x X,
say, (I';o) represents a stage (configuration) in a computation at which the remaining
command to be executed is I', and the current state is 0. Configurations of the form
(null, ¢) used by Brookes are denoted by a termination state ¢. The relation — is the

atomic transitions specified by the following rules:

Atomic Transitions
(S1) (skip, o) = o
(S2) (I:=E, o) — o[E/I]

(Fla 0') — (Fll, OJ)

S3
(53) (T1; T2, o) = (T35 T, o)
(54) (Fla 0') - ( {U 0J> g I= B
(if B then T, else I';,0) — (T, o)
55 — Lno) = (o) ok-B
(if B then T else 'y, o) — (T'%, o)
(56 (o) (') oFB
(while Bdo T, o) — (I; while Bdo T, o)
ok -B
(57) (while Bdo T, ¢) — o
(T, 9) — (T}, o)
S8
B TG, o) = (5 115 2)
(59) (I‘Za 0') - <IVZa 0">
) =

When (T, o) — (I", ') appear above the line in a transition rule it is understood that
(I, o') may take the form ¢’, and in that case the command I” also disappears below the
line, together with the possibly related ; or || construction. For example, our transition

system has a rule instance
Ty, o) = o'

(T'1; T, o) = (T, o)

45



The syntax of the assertion language is given by:

pu=P =Y Pixpi|piAps]|e

1=1

where P’s are closed logical formulae of the conditional language, Zn: P; X ¢; stands for
Py xp1+ P, X g+ P, X p,. Weuse — and X in the assertizo? language to make
the structure of assertion more transparent. Later we will see that the structure of the
assertion is derivable form the domain of resumptions, which gives the use of — and x
a justification from denotational semantics. Since A can appear at different levels of an
assertion we don’t need an extra @ for conjunction. Note we don’t have Po and Pe in

our assertion language, but only P x e, for Pe. This is because in the absence of await

statements there is no possibility of ‘improper’ termination.

Definition 3.8.1 A command I satisfies an assertion ¢, written I’ |= ¢, when

e=Npi&V1<i<n.T E ¢
1=1

or

¢EP—>ZPiXSOi>

i=1

which satisfies the following two properties:
1 Vo[(eP)& (o) = (I",0") =T P& ;&
(cEP)&T,0) o' =T P &yp;=0]
2 ViYo.(o = P) = [3(I",0"). (T,0) = (I",0") &' |= ¢; & o’ = P; or

do'. (T',o) 2o’ & ;=0 & o' = P; ]

Note e is used more as a symbol than an assertion. Its only function is to help us to
write down the syntax for assertion uniformly in one line. Notice after avoiding the null,

there is no command which satisfies e!

Suppose I'1 = ¢1 and I'; = 2. What kind of assertions will Ty || T’z and I'y; Iy
satisfy? It seems reasonable to expect that I'y || I'; satisfies an assertion formed by
some kind of ‘interleaving’ of I'y and I'; and T';; I'; satisfies an assertion formed by
some kind of ‘concatenation’ of I'y and I';. There are, then, the formal constructions of
parallel composition and 'sequentia,l composition of assertions for proof rules for parallel

composition and sequential composition.
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Definition 3.83.2 For parallel composition we have o || o = || e =¢. If p = P —
Yo Pxp;and Y =Q — i1 Q; x 95 then

ol e =(PAQ) = [ Px (¢l %) + ilczjan ¥l

=1

If ¢ and 1 are conjunctions, ¢ || ¢ is defined to be a conjunction consists of conjuncts of

the form

(PAQ) _’Z;Pi x (@i ll %) + ZIQJ' x (o]l ¥;)
i= =
where P — Y7y P; X ¢; is a conjunct of ¢ and Q — Y oje1 @ X 1; is a conjunct of .
Definition 3.3.3 For sequential composition, define
Sp=¢

[Q@ = i1 Qi x ¥l =Q = Ty Qs X (%53 9)

(k/i\lwk);¢=k/i\l(sok;¢)

The depth, root and leaf of an assertion are defined similar to definitions 3.2.1, 3.2.2

and 3.2.3, respectively.

The omission of labels from Brookes’ proof system changes the proof system more

than one would expect. We have, for example,
(ifz>0thenz:=1lelser:=1) | {true} - {z=1}xe

but not '
F (fa:z>0thenf:z:=1lelsey:z:=1)

sat {true} [f{z =1} {true} e +y{z=1}{true}e]
in Brookes’ proof system.

In general, a command satisfies more assertions after the removing of labels.

Proposition 3.3.1 Let I' be a command without involving any await statement and
¢ be an assertion without the use of 0. Then |= T sat ¢ in Brookes’ proof system implies
I'™ = ¢*, where I'* is the command got by removing all the labels in T' and @* is the
assertion got by taking Pe to e, P ;Q;%; to P — ¥ Q; x ¥; and & to A.

Proof By a simple mathematical induction on the depth of assertions.
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Note that the reverse of the proposition is not true because of the example given above.

The proof system has two parts. The first part is concerned with the logical relation
between assertions. We axiomatise ¢ = 1, standing for ¢ implies ¢. <> stands for both
& and =,

Sequent Calculus
(o) oNe >0

P=>p1 P= P2
® = @1 A pa

(=1) @eihp2=>
(=2) @1Ap2=>
(A) (P2l Pxei) AN(Q =Ty Pix )= (PVQ)— Xk, P x o

FEQ=P Vidj.EP=>Q,&p;=v¢; Vidi.EP = Q; & p; = ;

(=) (P> i Pixy)=(Q =X, Q5 X ¢;)

Write - ¢ = 9 when ¢ = ¢ is derivable from the sequent calculus.

Proposition 3.3.2 Fo |l oo, Fell (d1Ath)= 0| ¢

Proof Trivial.

Proposition 3.3.3 If - ¢ = 1 then T |= ¢ implies T' k= .

Proof Obvious.

The second part of the proof system consists of the following rules.
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Correctness Rules
(P0) TF {false} — ", P; x ¢;
(P1) skip FP—Pxe

(P2) (I:=E)-PE/I] -Pxe

I‘]_}_QD F2|"’lﬁ
P3
P ETrels
F1l“80 Fz"‘/’
P4
( ) (I‘1§P2)}—‘P;"/’
(P5) FI}—P'_)Z?=1P1IX<PZ'

if B then I'else I';, F (PAB) — %, P, X ¢;

(P6) Pk P> T, Q; X 9
if B then I'ielse I'; F (PA-B) — ¥, Q; % v;

while BdoT'kp THP = Y2 P xy;

(P7) while Bdo TF (PAB) — 30, P; x (913 p)

(P8) while BdoI'-(PA=B)— (PA-B)xe

Tke Tk

S R CIY))
' Foe=1

(82) '+ 9

The proof system (sequent calculus and correctness rules) is sound, i.e. I' F ¢ implies
I' = ¢. The soundness can be validated by showing that all the rules are sound, i.e. the
rules preserve valid formulae. For rules (P0), (P1), (P2), (P8), (S1) and (S52) this is
trivial while for (P5), (P6) and (P7) it is an easily verified fact. We give a proof for the
more complicated case (P3). The proof for (P4) is similar to that of (P3) but simpler,

and hence omitted.

Proposition 3.3.4 IfI'y = ¢ and I'y |= ¢ then (T [| T2) E (¢ || ¥).

Proof Define A to be a property on pairs of natural numbers, with
A(s, t) <=
(depth (p) < s & depth (¥) <t&Ti e & Ty =9) = (T1 I T2) E (¢ | %)
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We prove by induction \7’3 > 1Vt > 1. A(s, t) First we prove A(1, ¢) for ¢ > 1. Let
t=1and I} l:P—)ZP xe, I's EQ— EQJXO Suppose o = P A @ and (T ||

=1 7=1
Iy, o) — (I, ¢'). By the transition rules for the operational semantics we have either

I"=T3 & (['1,0) = ¢’ or I" =T, & (', o) — ¢'. For the first case we have, for some
LokEPadl"EQ—) Q;jxesincel; | P — Y P xe. Similarly for the second

j=1 =1

case we have o' = Q; and I" | P — ) P; X o for some j.

=1
On the other hand, for any i, any o, if o = P AQ then 30’. (I || T2, o) — (T3, o)
with ¢/ = P, since; = P — ZP x o. For a similar reason given any j, any o, if
o =P AQ then 3o'. (I'; || Ty, ) (T'1, ¢') with ¢’ = Q;.

In summary, we have shown that T'; | Ty |= ¢ || %, where ¢ = P — > P x e, and

i=1
Y =0Q — Z Q; x o. It is easy to see from the proof that the conclusion also holds for
j=1
those ¢ and ¢ which are conjunctions.

Now assume A(1, k). Following the same pattern above we can prove A(1, k + 1).
Hence A(1, t) for all ¢ > 1. By symmetry we have A(s, 1) for all s > 1.

Let
B(k) <= [Vs < kVE > 1. A(s, t)] & [Vt < kVs > 1. A(s, t)].

We use induction in & to show B(k) for all k > 1.
Base case: B(1) has just been proved above.

Induction step: Assume B(k), we want to prove B(k + 1). The task is divided into
two sub-inductions to show that Vs < k + 1V¢ > 1. A(s, t) and Vt < k+1Vs > 1. A(s, t).

We need only check the first one because of symmetry.

The base case Vs < k + 1. A(s, 1) for the sub-induction is implied by B(1). Let

Vs < k+ 1Vt < N. A(s, 1). We prove Vs < k+1‘v’t< N +1. A(s, t). i§i1ppose I e
and I'; = ¢ where ¢ = P—»ZP Xy =Q — ZQszﬁJ and depth(¢) =%k +1,

i=1

depth (%) = N+ 1. Suppose ¢ = P A Q and (['; || I‘2, o) — (I, ¢'). By the transition

rules for the operational semantics we have either

I"=T1 || Ty & (T, o) — (I, o)
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or

FI = F1 ” F,2 & (I‘z, 0') — (1-\/2, 0").
Since T'y |= ¢, for the first case we have, for some i, o/ = P, and I} E ¢;. But
depth (;) < k. Using the induction hypothesis B(k) we have IV |= ¢; || 4. Simi-
larly for the second case we have o' = Q; and I'y |= ¢;. As depth(%;) < N and

depth (¢ ) = k+1, we have I'' = ¢ || ¥; by the sub-induction hypothesis Vs < k+ 1Vt <
N. A(s, t).

On the other hand, for any i, any o, if 0 |5 P A Q then 30’. (T'; || Tz, o) — (I, o)
with ¢’ = P; and I |= ¢; || ¥ because T'y = P — Z P; X ¢;, and for similar reason given
=1
any j, any o, if o | P A @ then 30’. (T'y || T3, o) — (IV, ') with o' = Q;, TV = 0 || %;.

In summary, we have shown I'; | T's = ¢ || ¥. It is easy to see the proof still works if

¢ and 1 are conjunctions.

We have proved Vs < k + 1Vt < N 4 1. A(s, t). Hence Vs < k+ 1Vt > 1. A(s, t).
This finishes the inner induction and we have B (k+1).

Therefore Yk > 1. B(k). |

Proposition 3.3.5 IfI'y =@ and T'; = ¢ then (T'1; T2) = (¢ ; ¥).

Proof Similar to but simpler than that of proposition 3.3.4; use mathematical induc-

tion on the depth of assertions. I

3.4 Completeness

As with Brookes’ original proof system we do not attain completeness because of await
statements. It is reasonable to expect that our system is relatively complete without
using the await statements. But it is not clear to me at the moment how to prove the
completeness, though I believe the system is complete. The difficulty comes from the
parallel composition where one wants to somehow decompose an assertion satisfied by a

parallel composition into assertions satisfied by its components.

The idea of the proof is to use structured induction on commands. For each program
construction cons(I'g, I';) where ¢ = 0 or 1 (e.g. if Bthen T else I'; ) we show that if

I'o = o implies T'g - g and T'; |= ¢; implies T; - ; then we have cons(To, T;) F ¢ when
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cons(To, I';) = . We hope to establish completeness in this way. We have

Proposition 3.4.1 skip }= ¢ implies skip F ¢.

Proof Let skip = P — ) P; X ¢;. The case where P & false is trivial because of

1=1
rule (P0). Otherwise there must be some state o for which ¢ |= P. From definition 3.3.1,
skip = P — ) P, x ¢; implies

=1

ViVo.(o = P) => 3¢’. (skip,0) = o' & p; = e & o' |= P.

Hence Vi. p; = o. By the transition rule for skip we have ¢’ = o, which implies = P = P,
for all 2. We have skipF P — P x ¢ and

I‘P-—)PX.#P—)EPZ'XQOZ'

=1
by rule (=) for the sequent calculus. Therefore skip F P — Z P; x ;. |
=1
Note for each case we need only check for assertions of the form P — Y P, x ¢;. Once
it is done for assertions of this particular form it is an easy step to get things work in

general, for supposing I' = ¢ and ¢ is a conjunction, we must have I' |= % for each

conjunct 1 of . Hence I' - ¢, and using (S1) we get I' - ¢.
Proposition 3.4.2 (I :=E) | ¢ implies (I := E) F ¢.

Proof Let (I := E) = P — ) P; X ¢;. Suppose P ¢ false. (I := E) = P —

=1

n
Z P; x ¢; implies

=1
ViVo.(o = P) == 30'. (I :=E,0) > o' & p; =0 & o' = P
Hence Vi.p; = o, for P ¢ false. By the transition rule for I := E we have ¢’ = o[E/I],

which implies o = F[E/I], hence = P = P[E/I] for all i. By (P2), (I := E) F
[((A\ BIE/I) = (A P) x ]. Also, by (=) for the sequent calculus
=1 i=1

n n

(A PIE/T) = (A P) x o] = P =3 P x .

=1 =1 =1

Therefore (I := E)F P — Y _P; x ¢;. |

=1
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The next step is to try to prove a similar result for parallel composition, i.e. to prove
that given [I'1 |= ¢ implies I'; - ] and [I' k= ¢ implies T's F 9] we have [T || T F p if
Iy || Tz |= 9], This is reduced to the proof of a slightly stronger statement

Fl ”Pg |=P—)ZP,XQ01

=1

— Iy, e Ti e & To et & i || = P 30 P x .

=1
It is a kind of decomposition of assertion with respect to parallel composition. One would

guess that such %, and 1, take the form P — Z Q; x &; but the following example shows

that it is not always the case.

Let
I =if 2 > 0then z :=1 else z := 0,

l';=if z>0thenz:=0elsez:=1

and

¢o = {false} — {true} x o.
It is easy to check that
Iy || T2 = {true} — [ {z =0} x ¢o + {& =1} x ¢o |.
However, we have neither
Iy E{true} > [{z =0} x o 4 ... ]

nor
I E{true} - [{z=1} xo+---].
Hence we cannot decompose the assertion
{true} — [{z =0} x ¢o + {z =1} x 0 ]
in a way we expected.

Nevertheless, we can derive

I'y || Te k= {true} = [{z =0} x go+ {z =1} X ¢ ]
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in the following way.
z =0 {true} — {z =0} x o | (P2)
Ty ({z <0} = {z =0} x o) A ¢o (P6), (PO)
Tk ({z<0} = {z =1} x 0) A ¢y

Py [TeF{z <0} = [{z=0} x o+ {z =1} x ¢ ] (P3), (=)

Similarly
Ty | T2k {o >0} = [{o =0} x do+{z =1} x o],
hence
Ty || Ty b {true} — [ {z = 0} x do+ {z = 1} x do |
by (A).

It seems in general the decomposition is complicated and I haven’t yet found one. But
still, this chapter obtained a neater proof system whose assertion language is derived from

.the denotational semantics, as will be shown in Chapter 5.
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Chapter 4

An Information System
Representation of SFP

Information systems were introduced by Scott [Sc82] initially with the intention of
making domain theory accessible to a wider audience. In this representation the idea of
information is made explicit—each element is seen as a collection of information quanta. It
gives a logical approach to domain theory, in which properties of domains can be derived
from assumptions about the entailments between propositions expressing properties of

computations.

Scott domains form a foundational framework for denotational semantics. As shown
by Plotkin [PI76], however, they cannot treat parallelism and concurrency adequately in
some aspects. A more general framework is the SFP objects introduced by Plotkin [P176].
It has been an open question how best one can represent the SFP objects as information
systems since the work of Dana Scott [Sc82]. Scott himself has made some observations
[Sc84] about how to characterise the 2/3-SFP objects. Gunter’s work [Gu85] provides
useful results about SFP objects. The manuscript of Winskel [Wi83a)] introduced the

idea of adding disjunction to the information systems to represent SFP.

Although itself an interesting topic, our motivation to work on information systems
is to gain understanding about the logical theories which characterise SFP objects. It
provides the foundation and clue which suggests the right kind of axioms to put for the
logic of SFP objects. In this chapter we give a representation of SFP objects called
strongly finite information systems ( SFIFs ), which are particular kinds of generalised
information systems ( GIS ). Instead of using entailment of the form X F a we work with
the classical Gentzen style X + Y, which provides the power to express disjunction of
propositions. Generalised information systems represent complete partial orders. They
are shown to be reasonable neat structures which can represent different kinds of domains.
As a by-product, we get a compositional way to build up MUB-closed sets of an SFP
object from those of the component SFP objects.

The contents of this chapter is organised as follows. Section 1 is a brief review of infor-
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mation systems. Section 2 introduces generalised information systems and studies some
of their basic properties. Section 3 presents a category of strongly finite information sys-
tems and introduces constructions on them, in particular the function space and Plotkin
powerdomain constructions. Section 4 is about the powerdomain constructions. Section 5
proposes a cpo of strongly finite information systems and shows that all the constructions

induce continuous functions on this cpo so that it is possible to solve recursive equations

with these systems.

4.1 Information Systems

Intuitively, an information system is a structure describing the logical relations among
propositions that can be made about computations. It consists of a set of propositions, a

consistency predicate and an entailment relation specified as follows?.

Definition 4.1.1 An information system is a structure A = (A, Con, F ) where

e A is a set of propositions
¢ Con C Fin (A), the consistent sets
o FC Con x A, the entailment relation

which satisfy
1.LXCY&Y €Con= X € Con

2.a€ A= {a} € Con

3. XFa=XU{a} € Con
taeX&XeCn=Xra
5.(WeY.XFb&YFe)= XFo

Notation. We write Fin(A) for the set of finite subsets of A. Write X F* Y to mean
VbeY X F b X Cf™ y to mean X is a finite subset of y. m, and m; are projections
which give the first and the second argument, respectively, when applied to a pair; When

they are applied to a set S of pairs, we write 7S and .S for the set of first arguments

and second arguments of elements in .S, respectively.

Propositions are basic facts that can be affirmed about computations. They are

For convenience of getting a cpo of information systems we use a definition slightly different from the
original one given in [Sc82], without using a distinguished A standing for the proposition that is always
true. The definition we use is the same as the one given in [LaWi84].
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the units of information. Con contains all finite subsets of propositions that are non-
contradictory, in a sense related to the computation under consideration. A relation
X I a can be interpreted as: If the propositions in X are true of a computation, then a

is also true of the computation. Thus the relation F stands for entailment.

An information system determines a family of subsets of propositions called its ele-
ments. Intuitively, an element consists of a set of propos.itions that can be truly made
about a fixed possible computation. Thus it is expected that the propositions should be in
consistency with each other and, if a finite set of propositions is valid for a computation,

all the logical consequences should also be valid for it.

Definition 4.1.2 The elements Pt(A), of an information system A = (A4, Con, )

consists of subsets  of propositions which are

1. ﬁnit'ely consistent: X C/*" z = X € Con,

2. closed under entailment: X Cz2 & X F a = a € 2.

For an information system A, (P A, C)isa Scott domain[Sc82]. More generally, in-
formation systems form a category with the approximable mappings as morphisms, which
is equivalent [Mac71] to the category of Scott domains. Constructions such as product,
sum and function space have been proposed on information systems [Sc82] [LaWi84],
corresponding to those on domains. By using information systems it is possible to solve

recursive equations concretely [LaWi84] with the resulting isomorphism being an equality.

4.2 Generalised Information Systems

This section introduces generalised information systems. Basic properties of GISs
are given, as well as an axiom which is shown to characterise SFP objects. Generalised
information systems are based on the same idea as information systems. They too express
the logical relations between propositions about computations. However, as the name
suggests, the structures are more general. In the framework of GIS, we can represent
both Scott domains and SFP objects by putting different axioms on it. Instead of using
entailment of the form X F a we work with the classical Gentzen style sequent X + Y
with the understanding that the logical relation among the propositions on the left hand
side of - as A (the logial ‘and’) and on the right hand side as V (the logical ‘or’).

57



Definition 4.2.1 A Generalised information system (GIS) is a structure
A=(A,F)

where

e A is a set of propositions
o - C (Fin(A)\ {0}) x Fin(A) is the entailment relation

which satisfy:

1.Vae A. {a} /D

2.acX=>XF{a}

J((VbeY. XHF{bH&YFHZ)=>X}+2Z

4 {a}FX=3beX.{a}tF{b}

5. (XFY&Y CY&VbeY . {}FZ)=>XH(Y\Y)UZ
6.XY0&XFY=>MWeY. XU{b}ID

We write X I/ Y for ~(X FY'), i.e., X does not entail Y. As a common practice \/
is understood as ‘false’. Therefore axiom 1 says that each single proposition is consistent.
Axiom 2 is a kind of reflexivity and axiom 3 and 5 transitivity. Obviously it is not
appropriate to insist X F Y & Y - Z = X I Z. Axiom 4 expresses that each proposition
behaves like an ‘atom’. The intuition behind axiom 6 does not appear to be so obvious at
a first sight, but if we think of each proposition as a set, axiom 6 makes perfect sense. It
says that if N.S; € @ and N.S; C UTj, then for some j, T; NN .S; € 0. In addition, axiom

6 is a special case of axiom 3 in definition 4.1.1.

We have not used a consistency predicate Con in the definition of GIS. We can, how-
ever, recover one from a GIS in the following way. Let A = (A, I) be a GIS. Define Con
to be the set such that X € Con iff X I/ ). This is a reasonable definition of consistency

since it satisfies the corresponding axioms required for an information system. Axiom 1

“implies that « € A = {a} € Con. Let X CY and Y I/ 0. Then we must have X I/ (§

because if X -  we can derive Y I § from axiom 3, which is a contradiction.

To be more precise sometimes we write a GIS with subscripts, such as A = (A, F4).

For convenience we abbreviate

YeFin(A)&VaeY.XH{b} a XHY
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and

XFEY&WeY. {b}FH X as XY

Proposition 4.2.1 For a GIS A, we have
1. a € X' implies {a } F X,
22X'DXFY CY' implies X' Y?,
3.X10&X F Yimplies XUY /0.

Proof 1. Let X =Y ={a}, Y =0,and Z = X\ {a} in axiom 5 of definition
4.2.1. By axiom 2 it is vacuously true that Vb€ §. {b} F Z. Hence {a } F X".

2. Notice that by axiom 2 of definition 4.2.1 we have X' I {a} for all « € X".
Therefore X’ - {5} for all b € X. Then by using axiom 3 of definition 4.2.1 we get
X' FY. SinceY C Y’ we have Vb € Y. {b} I Y’ by the first conclusion of the
proposition. Thus X' - Y’, by axiom 5 of definition 4.2.1.

3. Assume X I {4} forallb € Y and X I/ §. We show X UY I/ § by induction on the
size of Y. Clearly it holds when Y has only one element because of axiom 6 of definition
4.2.1. Suppose it holds for all Y with a size not greater than n. Let Y = Y’ U {¢c}
where Y’ is of size n. Then X - {c} and X C X UY". By the second conclusion of this
proposition X UY’ I {c}. Hence X UY'U {c} = X UY ¥/ § by axiom 6 of definition
42.1. 1

A GIS determines a family of subsets of propositions called its elements.

Definition 4.2.2 The elements | A| , of a GIS A = (A, I) consists of subsets z

of propositions which are closed under entailment:
(XCz& XFY)=znNY #£0.
Note the finite consistency (z'.e.v X Cfi"n g = X I/ 0 ) of an element is implied by
its closedness under entailment which prevents X F § for X C z. We have the obvious

fact that § €| A |. Clearly GISs do not necessarily represent Scott domains. A GIS

represents, however, an algebraic cpo. This is illustrated by a sequence of propositions.
Proposition 4.2.2 Let A be a generalised information system. Let
a={b|lbe A& {a}{b}}
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wherea € A. Thena €| A|.

Proof Suppose X C/™ 7 and X Y. Then {a} F* X. Hence {a} I Y by axiom 3
for GIS. By axiom 4 of definition 4.2.1, there is some ¢ € Y such that {a } F {c}, which
implies ¢ € @. I

Proposition 4.2.3 For a GIS A, | A| ordered by inclusion is a cpo.
Proof Obviously the bottom element is § and | A | is a partial order.

Let S be a directed subset of | A |. It is easy to check that |JS €| A |; this is because
for any finite subset X of S there is an s € S such that X C s, by the directedness of

S and finiteness of X. It is then trivial to show the closedness of |J S under entailment.

Proposition 4.2.4 For each a € A, @ is a finite element of | A |.

Proof For any directed S C| A |, ifa C||S, i.e., @ CJS, then we have a € | S.

Hence a € s for some s € S, and @ C s. 1l
Proposition 4.2.5 | A| is algebraic.
Proof This is because forany z €| A |,z ={a|acznA}.

From now on we consider GISs with the underlying proposition set to be countable. I
am not sure at the moment whether | A | is w—algebraic even when A is countable. But

whether it is true or not does not affect any of the forth coming result.

As remarked before, for a GIS 4, | A | is usually not a Scott domain. It is possible,

however, to get Scott domains by an extra axiom.

Definition 4.2.3 A GIS A is called definite if it satisfies the following axiom

(Definite ) X+Y&XHFO=IeY.XF{b}

This axiom has the effect that every entailment X + Y with X 1/ 0 is a consequence of
some entailment of the form X I {b} with b € Y, which makes it possible to recover an
information system (in the original sense of Scott) from a GIS in an obvious way (though

they are special information systems since § F* Y implies Y = §).
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Proposition 4.2.6 Let A be definite. Let
X={blbecA&XF{b}}
where X /0. {X IIX 7 @} is the set of finite elements of | A |.

Proof Suppose Y C/" X and Y F Z. We have X F* Y. Hence X F Z, by axiom
3 of definition 4.2.1. Since X I/ @, by the axiom Definite, there is some ¢ € Z such that
X t { ¢}, which implies ¢ € X. Hence each X is an element of | A |.

If S is a directed subset of | A| and X CUS it is easy to see that we have X C s for =
some s € S; this is because if X C z then X C z and for any finite subset X of |J S there
is an s € S such that X C s, by the directedness of S and finiteness of X. Therefore X is

a finite element.

Suppose z is a finite element. Clearly {X | X C z} is a directed set since X C Y
implies. Y C X. Also 2 C U{X | X C z}. Therefore z C X for some X C 2 by the

finiteness of z. And we must have z = X. |
Probdsitién 4.2.7 ifA is definite then | A | is a Scott domain.
Proof By ‘propositi'on 4.2.5 and the ¢ountability pf A we know | A'| ié w—algébfaic.
Suppose S is a consistent subset of |A|,ie,3z.Vse€ S.sCz. Let

Us = {beA]EiXCf'"US XF{b}}.

It is easy to see that US is an element of | A |. It is also obv1ous that S is the (unlque)

least upper bound of S. Hence | A | is consistently complete. |
We now proceed to give an axiom which specifies the SFP objects.

Definition 4.2.4 A GISAi is ca.lled strongly finite if it satisfies the ax1orr1 of ﬁnzte
closure: for all X C/* A there is a finite super set Y 2 X such that

YOV #)=3Y"CY.Y' 4-Y".

Recall Y’ 4F Y” is an abbreviation for Y Y"&Vb € Y7, {b} b* Y'. If we put in
the logical operations explicitly and write Y’ = {a; | ¢ € I} and Y" = {bJ |j €J},
Y’ - Y” means Aa; &\ b;. The axiom of strongly finiteness says that for any finite set

of propositions there is a super set which has the property that any conjunction of
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propositions of a subset of the super set is equivalent to a disjunction of propositions

of some subset of the super set. This is more or less a restatement of quasi-conjunctive
closedness of Gunter [Gu85).

Proposition 4.2.8 Let A be a strongly finite information system and let X -+ Y.
Then there is a Y’ CY with X -+ Y?, such that

Vb, ¥ €Y. {b}F {¥'} = b=1V.

Proof We can get such a Y’ by repeatly using axiom 5 of definition 4.2.1: X + Y’
and {0} - {¥'} with b, ¥ € Y’ implies X - Y’\ {8} U {¥'} = Y”\ {b}. Thus each such step
reduces the number of elements of Y’ by one if b #£ b’ and we must stop somewhere because

Y’ is finite ( the argument for the case where Y is already an empty set is trivial). |

Suppose X 4 Z and X + 0. We have X - Z and {b} -* X for all b € Z. Therefore
{6} F 0 for all b € Z because of axiom 3 of definition 4.2.1. But {b} I/ 0; this implies
Z=79.

We remark that if a GIS A is definite, it is not necessary strongly finite. However, if A
is definite and closed under conjunction ( see an extended version of [Sc82]), in the sense

that X / 0 implies X 4 {a } for some a € A, then it is clearly also strongly finite.

In what follows we give a sequence of propositions to establish the result that SFISs

give SFP objects. We need to use some results stated in Chapter 2 when doing so.

Proposition 4.2.9 Let A be a strongly finite information system. | A | is an

w—algebraic cpo with all its non-bottom finite elements being of the form @, where a € A.

Proof By Proposition 4.2.4 @’s are finite elements. Suppose z is a finite element of

| A|. Clearly
z=|(Halaez}.

Now we show that {@ | @ € =} is directed. Let a, b € 2. By the axiom of finite closure
there is some finite ¥ such that {a, b} F Y, Ve € Y. {c} F {a} and {c}F {b}.
However, z is closed under entailment, so {a, b} F Y implies there is some ¢y € Y such
that ¢p € z. For this particular ¢o we also have {¢o} F {a} and {co} F {d}. Hence
@ C G and b C ¢, which means {@ | a € 2} is directed. As z is a finie element there is
some dg € {@ | a € z } with = C @, which is only possible when z = @;. We have shown

that evey finite element of | A | is of the form @.

62



That | A| is w—algebraic is then obvious. B

Recall in Chapter 2 we mentioned the notion of minimal upper bounds. For a cpo
(D, C) and a subset X C D, d is a minimal upper bound of X if d is an upper bound
of X and it is not strictly greater than any other upper bound of X. Write MUB(X )
for the set of minimal upper bounds of X. In general this set can be empty or infinite.
MUB(X) is said to be complete if whenever u is an upper bound of X then u 3 v for
some v € MUB(X).

Proposition 4.2.10 Let A be a strongly finite information system. If S is a finite,
consistent subset of finite elements of | A |, then MUB(S) is non-empty, finite and

complete.

Proof Let S be a finite, consistent subset of finite elements of | A |. We know, from

Proposition 4.2.9 that S can be written as

with a;’s in A. By the axiom of finite closure there is some finite ¥ such that {a; | 1 <

i <n}-FY. Since S is consistent, i.e.,
3b e AVi. T CO,
the above Y must be non-empty because @ C bimplies { b} - { a; } for each¢,and {5} t/ 0.

Let Y’ be a subset of Y such that Vb, & € Y. {b} F {¥'} = b=V It is not difficult to
check that
MUB(S)={blbeY'},

which implies that MUB (S) is finite and non-empty.

MUB (S) is complete because assuming & 2 s for all s € S we have
z2{a;|1<i<n}.
By closedness of z under entailment there is some b € Y with b € z. Therefore z 2 5.1

For a subset X of finite elements of a cpo we can recursively apply the MU B (operator)
to the consistent subsets of X and join the minimal upper bounds to the set just produced.

The collection of all such elements is written as U*( X ) (for more detail see Chapter 2).

63



Proposition 4.2.11 Let A be a strongly finite information system. If S is a finite
subset of finite elements of | A |, then U*(.S) is finite.

Proof Let S be a finite, consistent subset of finite elements of | A |. We know, from

Proposition 4.2.9 again, S can be written as

with a;’s in A. By the axiom of finite closure there is some finite R D {a; |1 < ¢ < n}
such that

ROX#0=3JYCR. XY

By Proposition 4.2.10, {@ | a € R} is a MU B—closed set. Therefore
U*s(S)yc{a|a€eR}
and U*(S) is finite. Nl

Theorem 4.2.1 If A is a strongly finite information system then | A | is an SFP
object.

Proof By Proposition 4.2.10, Proposition 4.2.11 and Theorem 2.5.1 |}

On the other hand, an SFP object determines a strongly finite information system in

the way described below.
Definition 4.2.5 Let D be an SFP object. Define
IS(D)=(PQ(D), F)
where PQ( D) is the set {dT|de D°\ { Lp}} and
XFYiff X Y
Note that the notation T was introduced in Chapter 2 for finite elements and sets of
finite elements, with different interpretations. Notice how the idea of open sets as proper-

ties about computation is reflected in our definition: the propositions of the information

system I.S (D) consists of the prime open sets of the Scott topology on D.

Proposition 4.2.12 Let D be an SFP objects. Then IS (D) is an SFIS.
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Proof It is routine to show that IS (D) is a GIS. When X = UY we have both
NXCUY andbCUY Caforanyae X, beY,ie, X 4+ Y. Hence the axiom of

finite closure follows from the quasi-conjunctive closedness of SFP objects. K

Definition 4.2.6 Two SFISs A = (A4, F4) and B = (Bg, ) are said to be
isomorphic if there is a bijection 8 : (A/=4) — (B/=g) such that

XFaYiff X g BY,

where 87 = U.ec{a | a =4 B(c)}, A/ =4 is the quotient set and a =4 b is an abbrevia-
tion for {a} F, {b} and {b} 4 {b}.

It is obvious that if A and B are isomorphic then | A| and | B| are isomorphic.

Proposition 4.2.13 For any SFIS A, IS (] A|) is isomorphic to A, and for any
SFP object D, | IS (D) | is isomorphic to D.

Proof We give the isomorphism pairs. It is routine to check that they are indeed
isomorphisms. The first pair is (6y, ¢1 ), where
01:D—[IS(D)| isgivenby er— {df|dCe& de D°\{L1p}},
¢1:]IS(D)|—> Disgiven by z+— | |[{e]efe z},
and the second pair is (62, ¢ ), where
62:A—1S(|A|)is given by a+—aft,
$2:IS(|A|)— Ais given by al— a.

For information systems in [Sc82] and [LaWi84], if one starts from A and gets back
an information system from | A |, A and IS(| A | ) need not be isomorphic in our
sense. Consider, for example, the information system ({0, 1}, Con, F ), where Con is th
consistency predicate such that {0, 1} € Con and I is the trivial entailment {0,1}F0O
and {0, 1} F 1. The strongly finite information systems here are canonical, in the sense
that the propositions exactly correspond to the non-bottom finite elements of the SFP
object so that A and IS( | A|) are isomorphic.

4.3 A Category of Information Systems

We introduce morphisms on SFISs called approximable mappings. This makes them

a category. Approximable mappings show how information systems are related to one
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another and they correspond to continuous functions between the associated SEP objects.
The way approximable mappings defined is slightly different from the traditional one. The
canonical character of the strongly finite information system makes it possible to specify

approximable mappings as relations on propositions rather than on consistent sets.

Definition 4.3.1 Let A = (A,F4), B = (B, Fp) be SFISs. An approximable
mapping from A to B is a relation R C A X B which satisfies
L{a}ra{d}&ad RV& {V'}Fg{b} = aRb
2.(Viel.a;Rb;&{a;|1€l} s X & {b|icI}dpY)
= Vd' € X" €Y. a" RV

Proposition 4.3.1 Strongly finite informations systems with approximable mappings

form a category, written SFIS.

Proof Identities are given by aldsb iff {a} F4 {b}. We check that approximable

mappings compose. Other axioms for a category can be checked similarly.

Let A, B and C be SFISsand R : A — B and S : B — C be approximable
mappings. Let R o S be the relational composition. We show that R o S satisfies the

axioms for approximable mappings.

Axiom 1 in definition 4.3.1 obviously holds for RoS. To see that Ro S satisfies axiom 2
suppose, for a finite set I, Vi € I. a; RoSc¢;and {a; |1 €I} 44 X, {¢i|i€ I} ¢ Z.
There exist u; € B such that a; Ru;, u; Rc; for any i € I. Let {u; | i € I} 15 Y.
By axiom 2 Vp € X3q € Y. pRq. For this g we have gSc; for all ¢ € I by axiom 1,
which implies the existence of some r € Z such that ¢ Sr, since {q} - { ¢}. Therefore
pRoSr. 1

Proposition 4.3.2 Let R be an approximable mapping between SFISs A and B.
Define fn: | A|—|B| by

fr(z)={b€eB|Jacz.aRb}.
fr is a continuous functionin |A|—| B |.

Proof Let ¢ €| A| and R: A — B be an approximable mapping. To show
fr(z)€|B|letY C fr(z) and Y kg Z. For each b € Y there is some a € & such that

a Rb. Write X for such a collection of a’s. Because A and B are strongly finite there are
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X', Y' such that X 44 X' and Y 4Fp Y. X C z and X 4 X', implies X' N z 5 0.
Let uo € X' N 2. By axiom 2 of definition 4.3.1 there is vo € Y? such that uo Rve. Also
we have {vo } Fp Z, which implies {vo} Fp { ¢} for some ¢ € Z. Therefore ¢ € fr(z).

The monotonicity of fg is obvious. It also preserves sups of directed sets of | A]; for

assuming b € fr (U P ), where P is a directed subset of | A |, there is some a € |J P with
a Rb. Therefore there is some y € P such that a € y, which means b € fr (y). Hence

fR(UP)SU{fr(y) lye P},

enough for the equality to hold. ll
Theorem 4.3.1 SFIS is equivalent to the category SFP.

Proof Let F': SFIS — SFP be a functor such that
F(A)=]4]
F(R)= fr.
We use one of MacLane’s results in [Ma71] (pp 91). It is enough to show that F is full
and faithful, and each SFP object D is isomorphic to F|(A) for some SFIS A.

That each SFP object D is isomorphic to F (A) for some SFIS A is routine. It remains
to show that F is full and faithful. First we show that F is full.

Suppose A and B are SFISs and
f: F(4) — F(B)

a continuous function. Define a relation R C A x B by letting a Rb if b € f(a). We
check that this relation is an approximable mapping form A to B. The first condition in
Definition 4.3.1 holds trivially. Let {a; | 2 € I'} {b; | i € I} be finite sets such that for
any ¢ € I, a; Rb;. Suppose
{ai|iel}HdFa X
and
{b|ieI}HgY.

Forany a € X, {a} F* {a; | i € I'}. Thus we have b; € f(@;) C f(@) for any i € I. Now
{b: |2 € 1}tpY. Therefore f(@) NY s §. This means for some b € Y, b € f(a@), or a Rb.

We now show that the continuous function fgr determined by R is actually equal to

f. Let z €| A.|. Suppose b € fr(z). By definition there is some a € z, a Rb. That is,
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b € f(@). Therefore b € f(z), by the monotonicity of f. Thus fr(z) C f(z). On the
other hand, let b € f(z). By the continuity of f there is some a € z such that b € f (@).
Hence a Rb and b € fr(z). This means f(z) C fr(z). Hence f = fr.

Secondly, we show that F' is faithful. Suppose R, S: A — B are approximable
mappings such that fr = fs. Let a Rb. Then b € fr(@) = fs(@). This means for some
d € @, a’ Sb. By the first condition in Definition 4.3.1 a Sb as S is an approximable
mapping. Therefore, R C S. By symmetry, S C R and hence R=S. i

Now we consider construction on SFIS. In this section we introduce constructions of
lifting ()1, sum +, product X and function space —, with an emphasis on —.- The
powerdomain constructions are given in the next section. Lifting, sum and product are

more or less the same as those on information systems[LaWi84).

Definition 4.3.2 ( Lifting ) Let A = (4, ) be an SFIS. Define the [ift of A to be
Ay = (A, V') where

e A=({0}xA)u{0}

e XHY &[0€Y or {c|(0,c)eX}ta{b](0,0)eY}]

Lifting is an operation which given an SFIS produces a new one by joining a new

proposition weaker than all the old ones.

Definition 4.3.3 ( Sum ) Let A = (A, F4) and B = (B, ) be SFISs. Define

their sum, A+ B, to be € = (C, ) where
e C={0}xAU{1}xB
e XFY S X={(0,a)|aeXo}&Xoty{r| (0,r)eY}or
X={(,b)|beXi}&Xitg{s]|(1,s)eY }or

XN({0}xA)#£P& XN ({1} xB)#0

The effect of sum is to juxtaposing disjoint copies of two SFISs. We can obtain the

separated sum @ by letting A @ B =df A+ By.

_ Definition 4.3.4 ( Product ) Let A= (A, t4) and B = (B, -5) be SFISs. Define
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their product, A x B, to be C = (C, ) where
eC={(a,*)|acA}U{(%,b)|beB}U{(a,b)|lac A&kbec B}
e XFY®deeY (mX ={*}=>mc=%)&
(mX ={*}=>mc=%)&
moX # {*} = (moc =+ or [mX \ {*}] Famc) &
mX # {*} = (mc=* or [mX \ {*}] Fg mc)

The symbol * here acts like a proposition which is always true. Note that to have
enough propositions for the product the disjoint union of A and B or the set of pairs Ax B
are not sufficient; The use of disjoint union makes {(0, @), (1,5)} a non -+ —closed
set while the use of A x B misses out those points corresponding to (#, y) and (z, 0),
which arein | A| x | B |. The fact that we get enough propositions by introducing * is

shown in Theorem 4.3.2.
Definition 4.8.5 For a SFIS A = (4, ), X Cf" A is said to be 4 —closed if
(X'CX&X #0)=3X"CX.X 44 X"

Thus the axiom of finite closure says every finite set of a SFIS has a finite super set
which is 44 —closed.

Theorem 4.8.2 If A, B are SFISs then so are A, A+ B, and A x B. Furthermore,
z€|A|1<=>(z=0or Iye|A|.z2={0}U({0} xy)),

t€|A+Bl<= (o €|A] .20={a|(0,a) €z} )or
(Jzi€|B|.z1={b|(1,b)exz}),

.’L‘€|A><_B_|4=>(a,b)€$=>(a,*),(*,b)ew&
{acA|FbeB.(a,b)ex}e|A] &
{beB|JacA(a,b)ex}e|B].

Proof It is routine to show that Ay, A+ B, and A x B are GISs. To verify the
finite closure axiom we need to produce -+ —closed sets of propositions. The rules given

below indicate how to get them.
P A+y4 —closed & {a|(0,a)e W} CP

=>W§Eo,
where Yo = {(0,¢) |a € P} & {(0,a)|a € P} and it is -4, —closed;
P,Q - —closed & {a|(0,a)e W} CP&{a|(l,a)eW}CQ

=>WQEI,
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where ¥; = {(0,a)|a € P}U{(1,a) | a € Q}, which is 4445 —closed;
P, Q - —closed |
{a€Al(a,*)or(a,b)eW}CP } —=WCY,,
{beB|(*b)or(a,d)eW}CQ -

where ¥ = {(a,*) [a € P}U{(*,b) |b€eQ}U{(a,b)]|ac P&be Q}, whichis
I 4xp —closed.

The first two rules are obviously valid. To check the third rule let W’ C ¥, We show
that there is some W"” C X, such that W’ -+ axp W'". This is trivial when there is no
elements of the form (@, *) or (@, b) in W', and similarly for the case when there is no

elements of the form (*, b) or (a, b) in W’. So suppose

{acA|(a,*)eW orIbe B.(a,b) e W'} #0
and

{beB|(*,b)eW ordac A.(a,b)c W'} #£0.
Since P and @) are - —closed, there are P’ C P, Q' C Q such that

{aeAl(a,*)GW'OIE]bGB.(a,b)eW’}_”_AP/
and

{beB|(*,b)eWordacA(a,b)eW }45Q.
Let W' ={(a,b)|ac P&be @ }. Clearly W’ A gp W

It is routine to show the second part of the theorem. N

From this theorem it is easy to see that there is an isomorphism between | A+ B |,
|A|+ |Bl;and |AxB|, |A| x | B|. Thus it justifies our definition of product
and sum, since SFIS is equivalent to SFP.

Definition 4.8.7 Let A= (A, F4) and B = (B, t-g) be SFISs. An element m of
Fin (A x B) is said to be a molecule if

o mom is -4 —closed,

° (o, fEM& Mot 4 mf ) = ma kg mp.

A molecule corresponds to a finite element in function space by Theorem 2.10.1.
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Definition 4.8.8 (Function space ) Let A= (A, t4) and B = (B, g ) be SFISs.
Their function space, A — B, is the information system C = (C, I, ) where
o C ={m|mis amolecule in Fin (A x B) }
e XFY&o(VWwWeX {m}-{m'})=3Im"eY.{m}+ {m"}

where{m}  {m'} & Vo' e m'Ja e m. {moa' } b4 {moa} & {ma} Fp {ma'}

There is a general guideline according to which we can test whether a definition of

entailment is correct or not. The notation X F Y should mean

Matlee X} U{BTbeY],

a relation between compact open sets. In other words, for any point z above all @ with
a € X, z should be above some point b, b € Y. Since the domains concerned are algebraic,
this z can be chosen from the set of finite elements, which, by proposition 4.2.4, are of

the form @ with a a proposition.

Let us accept that it is reasonable to have, for m, m’ € C,
{mit{m'} &

Vo! e m'Ja € m. {mod' } b4 {moa} & {ma} kg {ma'}
Therefore,

(Vm'GX.{m}I—{m'})=>3m”€Y.{m}l—{m”}

is just a direct translation of the corresponding topological situation which we want to
describe. It has, however, the unwelcome feature that it contains a universal quantifier
over propositions in C'. Although a more local way to give the entailment is possible (after

we see the proof of proposition 4.3.3), it will not be very simple, and I don’t know any

other better way to do it at the moment.

The construction of function space is a bit complicated. Unlike Scott’s information
system where one can use (X, Y') as propositions for the function space, we have to use
a more complicated form of propositions. The reason for not being able to use a simpler
form of propositions for the function space construction can be illustrated by the following

example.
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Example 4.3.1 Consider a SFIS A = (A4, +), where
A={a,bc d},
F is given by
{a,b}F {c, d},
{e}F{a}, {c}F {0},
{d}F{a}, {d} {0},
{a,b,¢c,d} 0.

This SFIS represents the SFP object pictured as

a, b, c} {a,b,d}

{0}

Now consider the function space construction of A to itself. If one were to use propo-
sitions of the form (u, v) with u, v € A and {(u, v)} F {(@', v')} iff {v/} F {u} and

{v} F {v'} (which seems reasonable ), we would only have an entailment
{(a, ), (8,8)}F{(c c), (¢ d), (d, ¢), (d,d)}
but without any Y such that
{(a,a), (5,0)} 7Y,
i.€., the resulting information system would not be strongly finite.

We have the following propositions to show that the function space construction in
definition 4.3.4 works.

Proposition 4.3.3 If A and B are strongly finite then A — B is strongly finite.
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Proof First A — Bis a GIS. This can be shown by checking axioms 1 to 6 in definition
4.2.1. As an example we check axiom 5. Suppose X Y, Y’ CY,andVbe Y'.{b} F Z.
Since X Y, for any m such that Vm' € X. {m} F {m'} there is some m” in Y for
which {m } F {m" }. If this m” is in Y'\ Y’ then we are done, otherwise m” must be in Y”.
However {m" }  Z, which means {m"}  {n} for some n € Z. Clearly {m}  {n}.
Thus X - (Y \Y")U Z.

To show that A — B satisfies the finite closure axiom in definition 4.2.4 let X Cfin (.
Since A and B are strongly finite we know that there are P, @, - 4 and -rp closed,
respectively, with P 2 U{wom |m € X } and Q D U{mym | m € X }. We claim that the

set

E:{mEC’I WomgP&ﬂ'lm_C.Q}

is -l —closed and contains X. ¥ is finite because P and @ are. X is obviously a subset
of ¥.. Given Y’ C X. If there is no m € C such that {m} F {m’} for all m’ € Y”, then it
is clear that we have Y’ -- 0. So suppose for some m € C, {m}F {m'} for all m’ € Y".
We perform the following steps.

Step 1. Form a list £ with JY” as its head.

Step 2. Repeat the following until for each member L of the list £, mo L is 4+ —closed.
For each L in the list, for L' C L, let s C P be such that 7oL’ A4 s. If s € woL then
add, for each f,

LU{(a, f(a)) la€(s\mL)}

to £, where f is a function from (s\ 7oL ) to t, with ¢ C Q satisfying 7 L’ -I-5 t. Remove
L from the list.

Step 3. Repeat this step until every member L in list £ has the property that
V(a,b), (o, ) € L. {a}ta{a'} = {b}Fp {¥'}.

For any element L of the list, for any (a, b), (o, ¥’) € L with {a} F {da'},let ¢t € Q be
such that {b, &'} HFg ¢t. Add, for each b; € ¢,

(Z\{(a5)})U{(a b))}

to £. Remove L from the list.
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This algorithm is guaranteed to stop in finitely many steps because P and @ are finite.

We now check that at each step of the algorithm the following two properties hold:
(Vm'eY' . {m}F{m'})

=>3dL €L (Vaec LABem. {ma}t {mB} & {mpB}F {ma})
and

Let&mcY = VYaem3Be L. ({ma}tF {mB}& {mB}F {ma)).

As an illustraction we show that Step 2 preserves the first property. Following the notation

used in Step 2 it is enough to show that if

Vaec Lapem. {ma} F{moB} & {m B} {ma}

then for some f,

Va € (s\mL)3Bem. {a}t {mB} & {mB}F {f(a)}.

This f is specified as follows. Given a € (s \ moL ), we have {a} F* moL’. Clearly, then,

{a} F* mL.,, where L, is a collection of the associated #’s in m such that
Va e LB € Ly, {moa} F {mf} & {mpB} F {ma}l.

Let M C Um and moL;, "+ moM. There must be some # € M such that {a} F
{moB} (F* moL, ). Since m is a molecule, {m B} H* m L!,. Obviously =L’ + {e} for
all e € m L'. Hence {714} F ¢, which implies {m3} I {b} for some b € ¢. Assign b to
f(a). This shows the existence of f. Similarly one can prove that the first property is
preserved by Step 3 and the second property is preserved by Step 2 and 3.

Therefore Y' 4 Z, where Z is the collection of molecules got after the algorithm
stops, which is clearly a subset of ¥. The role which the two properties stated above play

is just to guarantee the - relation. |

We can extract from the proof a rule which tells us how to get 4+ —closed sets in the

function space if we know how to get them for the domain and the codomain:

P, Q A —closed & U{mom |m e F} C P& U{mim|me F} CQ
= {melC|nm CP&rmCQ}is 4+ —closed

As SFISs represent SFP objects, the proposition below shows that the function space
of SFP objects is still SFP.
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Proposition 4.3.4 If A and B are information systems then | A — B | is isomorphic
to |A[—=|B].

Proof Use Theorem 2.10.1. N

4.4 Powerdomain Constructions

This section proposes the Hoare, the Smyth, and the Plotkin powerdomain construc-
tions on SFISs.

Definition 4.4.1 Let A be a strongly finite information system. The Hoare power-

domain of A is the information system PyA = (C, ) where
e C=Fin(A)\ {0}
e XFYiff 3eY.(VbeBIac| X . {a}Fa{b})
According to the definition, {a} Fp 4 {8} Vb € fTa € a. {a} k4 {b}. Therefore

Fpgya on C is a reverse of the preorder C, introduced in Chapter 2 on the finite sets of

finite elements of | A |.
We want X —F Y to characterise, the situation

Hatlee X} CU{BTIBeY}

This is equivalent to saying that whenever {ao} F {a} foralla € X, {ao} F {fo} for
some g € Y. Write ' for the associated entailment. Clearly X H Y is equivalent to
X Fpya Y since we have X 4Fp, 4 {UX }.

We can think of @ € C as a logical formula A{<a | @ € o}, where intuitively a set S

of processes satisfies Oa if there exists p € S, p satisfies a. Then we have, for example,

(/\{{>a|aea})A(/\{<>b|beﬂ})@/\{<>C|ceauﬂ},

in the sense that a set of processes satisfies the proposition on the left hand side iff it

satisfies the proposition on the right hand side.
Proposition 4.4.1 If A is a strongly finite information system then so is PyA.

Proof It is clearly a GIS. Suppose X C/™" C. Let f=JX. Then B € C, X + {5},
and Vo € X { B} F { o} according to the definition of entailment. Therefore X - {8},

from which it is easy to see that the finite closure axiom holds. Ml
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It is easy to see that if X is a finite set of propositions of PyA, then { H | H CUX }

is always a " —closed set which contains X.

The definition of entailment for PgA implies that, as explained earlier, if X Y then
there is some B € Y such that X + {8}. Thus PyA is actually definite. This indicates
that | PgA | is always a Scott domain.

Proposition 4.4.2 | PgA | is isomorphic to Py | A |.

Proof It is enough to establish an order preserving one-one correspondence between
the finite elements of | Py A | and Py | A|. Define

0:| PHA|— Py | A a@r+— Clg({ala€a})

with « € C and
n:Pu |A|—| PuAl] Cur({alae X})— X,

where X Cf" A. Suppose @ C B. Then a € B, or { 8} F {a}. But by definition we have
Va€adbe B.{b}s{a}. HenceVa € {d’'|d' € a}Tbe {¥ | ¥ € B} such that T C B.
Therefore {d’ | a € o'} [;1{7 | ¥ € B}, which implies that 6 is order preserving. It is

easy to see that 6 is one-one. That no6 =id|p, 4 and §on = idp, |4 are also obvious. |

Definition 4.4.2 Let A be a strongly finite information system. The Smyth power-
domain of 4 is the information system PsA = (C, ) where?
e XFYiff 3BeY VypeC(VaeX. aoNa#D)=>arkafB

When X = {a}, Y = {8} where a, 8 € C, the entailment {a} + {8} means
YW Cfm A (Wna#0=VYwecWIbeB.{w}t,{b}). In other words, {a}F {8}
iff Va € adb € B. {a} F {b}. Therefore Fp.4 on C is a reverse of the preorder Co

introduced in chapter 2 on the non-empty, finite sets of finite elements of | A |.

Having agreed on how the entailment should be on singletons, we show that X Y is

equivalent to

Voo € C. (YVa € X{Aa}F{a}) =3B ¥.{ao} F {8},

*In an extended version of [Sc82] Scott call a finite set co with the property (Ve € X.agNa#0) a
choice set.
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which we write as X 'Y, a description of the situation N{@f| e € X} CU{BAT| B €Y }.

XFY = XHFY: Suppose ap € C and Vo € X.{ap} F {a}. Let B, € Y be such
that

(VoeX.d/Na#0)=a' k4 fo.
Let ap € ag. For any a € X, there is b, € a for which {ao} F 4 {b.}. Clearly
{be | @ € X}Nx # § for all @ € X. Therefore, {b, | @ € X} k4 fo. However,
{ao} F4 {bs | @ € X }. Thus {ag} k4 Bo which -implies { ao } F4 { o} for some by € o

and this is true for any ao in ap, which means {ap } F {5 }.

XHY = XFY: Suppose X ' Y. Rewrite X as {o; | i € I}, where I is finite.
Forany fe€{g: I - UX |Vie Lg(i)€o; },let {f(3) i€ I} -4 Z; Clearly
for any ¢ in Uy Zy, for any i € I, { ¢} k4 a;. Therefore for any ¢, {U; Z; } + {o; }, and
hence {U; Zs } F {Bo} for some B, € Y, since X H' Y. Now let o € C be such that
for any o in X, ap Na # @. For each i, select an a; € ap N a;. The collection of such

a;’s corresponds to a function % such that k() = a;. If ap 4 0 then there is nothing to
prove; otherwise we have {h(z) | ¢ € I} 44 Z), and Ej, # 0. {U; Z;} + { 5o } implies
{c} FaBofor all ¢ € Z;,. Hence og 4 Bo.

From the above explanation it is easy to see that we could have used the following

definition of entailment for the Smyth powerdomain,
Xi_Ylﬁ‘ E,BEYVaOQUX(VaGX ]aoﬁa[=1)¢aol—_A_ﬂ

which is better, since it avoids the use of universal quantifier over C'. Here | S | stands

for the number of elements of S.

It is suitable to think of & € C' as OV e, with the interpretation that a set of processes
S satisfies OV « iff each process in S satisfies \V «. We have, under this interpretation,
OVX=0VYiffVX=VY,if Vaec X3beY. ¢ = band

(OVX)A(BVX2)A---(DV Xa)
SO [(VX)A(VX)A (VX))
Proposition 4.4.3 If A is a strongly finite information system then so is PsA.

Proof The only non-trivial part is finite closure. Let V be a finite set of propositions

of PsA. UV is a finite set of propositions of A. Therefore there is a finite set P of A,
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A4 —closed and contains UV. Then {a | @ € P } is a 4 —closed set of PsA. In
fact, let X C {a | @ € P }. Rewrite X as {c; | i € T}, where I is finite. For any
fe{g: I-UX|Vielg(i)ea;},let {f(i)|i€ I} -4 Z;. Clearly for any c in
Uy Z;, for any ¢ € I, { ¢} k4 ai. Therefore for any ¢, { U; Z; } F { s }. According to our
definition of entailment for PsA, X 4+ {U; Z;}. |

From the proof we can see that, PsA, too, is definite. Similar to proposition 4.4.2 we

have the following proposition, whose proof follows the same pattern, hence omitted.
Proposition 4.4.4 | PsA | is isomorphic to Ps | A |.

Definition 4.4.3 Let A be an SFIS. The Plotkin powerdomain of A is the information
system PpA = (C, I), with

e C=Fin(A)\ {0}
o XFY iffVB.(Vae X. {f}F{a})= 38 cY.{B}F{B"}
Where{oz}l—{ﬂ}iff{a}FPHA{ﬂ}&{a}FPsA{ﬂ}

Like the construction of function space, we have used a universal quantifier in defining
the entailment for the Plotkin powerdomain. This universal quantifier can be, however,
avoided by a slightly complicated definition use the algorithm introduced in proposition

4.4.5, though we do not have time and space to go into details of it.
Proposition 4.4.5 If A is an SFIS then so is PpA.

Proof PpA is clearly a GIS. Let PpA = (C, ).
Voling = yvcha

= 3P Cf" A, YV CP&Pis =4 —closed

= {a|aCP}is drp.4 —closed.

We check the last step in the above implication. Let X C {a | @ € P }. We have the
following algorithm which finds a subset X' C {a | a C P } such that X dFp, 4 X'.

Step 1 Form a list £ with its head being

(LfJZf’ UX)’
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where U; Z; is the set constructed by the procedure described in the proof of Proposition
4.4.3.

Step 2 Add to £ the element

(5, su(Ux))
for each S C Uy Zy, and remove the head (U; Zy, UX ) from £.

Step 3 Do this step for £ until each member of it is of the form (S, T') where S D T
Pick up an element (S, T') in £ for which S 2 T'( After step 2 we must have § C T,
obviously ). Let a be in T but not in S. For each s € S, add to £ the element

(SUs, {'Iu(T\{a}))

for each s’ € S if S’ is not empty, where {s, a} -4 S’ and S’ C P. If §' is empty then
skip. Remove the current element (.5, T') from £.

Step 4 Replace each element (S, T') of £ with S # T by the elements (T, T'), and
(Us, Up) foreach a € (S\T) and U, C(S\{a}).

The algorithm must terminate. To show this it is enough to check that Step 3 termi-
nates. But

| (U@ \{a}))\(SUS) = (T\{a})\(SUS) <] T\ S|
since s’ € §' and @ € T'\ S. The conclusion is then clear.

We claim that after the algorithm stops, we have
X AFpoa {U | (U, U) is a member of the list £},

where each U is clearly a subset of P. What the algorithm is doing at each step is clear;
but it needs explanation why it fulfils our goal. Here we have the corresponding results
to some of the lemmas given in Chapter 5 ( The rest of the proof is best read together
with the revalent materials in Chapter 5 ). Each member (S, T') of the list £ corresponds
to a logical formula (OVS)AA{<Cb| b € T },ie. the first element S takes care of
the order of the Smyth powerdomain while the second element T takes care of the order
of the Hoare powerdomain. At each stage, the whole list corresponds to a disjunction of

all its members, and we need only make sure that at each step the algorithm maintains
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the equivalence of the big formula the list represents. More precisely, note those lemmas
are still valid if we replace the ‘prime assertions’ by the propositions in A of A. The

equivalence should be rephased as £ <= ¢ iff for any o € C,
(S, T)el{atrpa{St&{a}tp,a{T}
IS, T) €l {a} ru{S} & {a} rgu{T)

where we borrowed the notation (S, T') € £ to mean (S, T) is an element in the list.

The following sequence of observations, which are routine to check, finish the proof of

Proposition 4.4.5.

Observation 1 Va € X.{f} Fpg {a} iff {8} Fpa {U;Z;} and {B} Fpya
{UX}, where U; Z;, using the same notation, is the set introduced in the proof of
Proposition 4.4.3.

Observation 2 {8} btpsa {S} & {B} Fpya {T}IF IS C S, {8} Fpra
{S'}&{B} rpga {S'UT}.

Observation 3 Suppose SC T and a € T\ S. Then {8} Fpa {S} & {B} Fpya
{T}iff3' €5, {BYtpa{SUS}&{B} Fpua {{s'IU(T\{a})}. Here we reused
all the notations used in Step 3 of the algorithm.

Observation 4 Suppose S 2 Tbut S #T. Then {B} Fpa {S} & {8} Fpya {T}

iff for some U {f} bpsa {U} & {8} Fpya {U}, where U =T or U C (S \ {a}) for
somea € S\ 7. 1l

Similar to Proposition 4.4.2 we have
Proposition 4.4.6 | PpA | is isomorphic to Pp | A|.

What we have given in this section are the various constructions on SFISs. The most
tricky one is the Plotkin powerdomain, by which the phenomenon of non-consistent com-
pleteness is introduced. However, the function space construction seems equally tricky.
The sum, product and lifting are simple, and so are the H;)are and the Smyth powerdo-
main. These two powerdomain constructions have the pleasing property that they ‘knock

down’ any w—algebraic cpo into a Scott domain.
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4.5 CPO of SFISs

Following the idea of [LaWi84] we introduce a complete partial order of SFISs. We
show that all the constructions induce continuous functions on the big cpo. Within this
cpo it is possible to solve equations on SFISs using fixed point theory. The order on SFISs

captures an intuitive notion that one information system can be viewed as a subsystem

“of another.

Definition 4.5.1 Let A= (A,+4), B=(B,Fp)beSFISs. A< B if
e ACBHB

¢ XFaY < XUYCA&XtpY

When A 9 B we call A a subsystem of B.

Proposition 4.5.1 Let A and B be SFISs. If A < B then there is an embedding-

projection pair between | A| and | B |.
Proof Define

0:|A|—|B] g+—{b|dacz. {a}tp{b}}
and
. ¢:|Bl—|Al y—ynA
We show that 6, ¢ form an embedding-projection pair, i.e., o0 8 = id la], 0 0 ¢ E idp

and 0, ¢ are continuous.

Let z €| A|. We check 0(z) €| B |. Suppose Z C 0(z) and Z g H. By definition
Ve€ Zda € z. {a} Fp {c}. Let X be the collection of such a’s. Clearly X C z. X * Z,
which implies X g5 H. By the finite closure axiom there is some X’ C A such that
X AF4 X' As X Cz and X k4 X', there is some o' € z N X'. But A is a subsystem of
B. We have X -g X', and hence {a’'} I {a} for each a € X. Thus {a’'} kg H and
therefore {a’'} Fp {b} for some b € H. That is, b € §( z).

Let y €| B|. Wecheck yNnAe|A|. SupposeY CynNAandY k4 Z. Then
dec€eZ.cey. But ZC A,soce€ynA.

The proof that 8§, ¢ form an embedding-projection pair is then straightforward. |

As the collection of SFISs do not form a set but rather a class they cannot form a

complete partial order(cpo) in the ordinary sense. We could say that they form a large
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cpo CPOgrrs. However the standard theory of fixed points of continuous functions still
works for CPOgr;s, and that is all we need.

Theorem 4.5.1 The relation < is a partial order with the least element L=(0,0).
If Ao Q9 A; Q.- D A; 4. is an increasing chain of SFISs where A; = (A; k), then

their least upper bound is
Udi= (UA,-, U h) .
Proof It is routine to check that
U= (U Ur)
is a SFIS . For each 4, 4; < Uy A; because of the following:
1. A; C Uy Ag.

22.XUY CAand X I—UAk Y then X F; Y for some j > 7 because I—UAk= Ur Fx -
Therefore X ;Y.

It is also the least upper bound of the chain. Suppose B is an upper bound of the
chain. Then for each 7, A; C B. Thus U 4; C B.

X'_UﬂY = XUYCUA & XHY

S XUYCUA & XY
Therefore, U A; I B. |

The subsystem relation < can be easily extended to n—tuples of information systems

coordinatewisely. More precisely we require
(ﬂ’ ﬂ’ﬂ) d (@l’ .B_27&)
iff for each 1 < ¢z < n, A; 9 B;. For convenience write A for (A1, Az,---Ay).

The least upper bound of an w—chain of n—tuples of information systems is then
just the n—tuple of information systems consisting of the least upper bounds on each

component, i.e. if
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An operation F' form n—tuples of information systems to m—tuples of information
systems is said to be continuous iff it is monotonic, i.e. A < B implies F' (A) 4 F (_B_ )
and preserves w—increasing chains of information systems, i.e.

A Q4 -Qhg..
implies

UF(4)=F(J4).

It is well known that for functions on tuples of cpos they are continuous iff by changing

( any ) one argument while fixing others the induced function is continuous.

Larsen and Winskel [LaWi84] have a useful lemma which concludes that an operation
F is continuous iff it is monotonic with respect to < and continuous on proposition sets,
i.e., , for any w—chain
Ai94,9ha.,

each proposition of F ({J; AZ) is a proposition of U; F ( A; ).
Theorem 4.5.2 ( ), +, X, —, Py, Pg, and Pp are all continuous.

Proof We illustrate the proof for —. The proof for the other cases follow the same

pattern, hence ommitted.

We have to show that — is a continuous operation from pairs of information systems

~to information systems. As Proposition 4.4.5 indicates, — is a well defined operation on

SFISs.

— is monotonic in its first argument. Suppose A< A’ and B are information systems.

Write
C=(C,t)=A—B
and
¢'=(C,FH)=A—B.

We check 1 and 2 in Definition 4.5.1 to show that C < (.
1. Suppose X € C. It is easy to see that X € C’ by Definition 4.4.3.

2. Clearly X kg Y implies X ¢/ Y. Assume X CC, Y C C and X For Y. Because
in this case each entailment subscribed by A’ about the first components of elements of

X is an entailment subscribed by A, using the assumption that A I A’. we have X k¢ Y.
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Now we show that — is continuous on proposition sets. Let

A9 A4 Q- QAL

—

be a chain of SFISs. Let X be a proposition of (U;4;) — B. Then mX Cfin (J, A;.
Hence 71X C A; for some j, which means X is a proposition of ﬁ — B. Thus X is a
proposition of |J;(A; — B). By the previous mentioned lemma of Larsen and Winskel,
we deduce that — is continuous in its first argument. Similarly we can prove that — is

continuous in its second argument, and hence it is continuous. Ml
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Chapter 5

A Logic of SFP

This chapter introduces a logic of SFP. A meta-language for denotational semantics
is introduced with general type constructions like sum, product, function space, the three
powerdomains, and recursively defined types. For each type there is a language of open
set assertions. Proof systems are given; they use inequational formulae to axiomatise
entailment and non-entailment of assertions. Soundness and completeness results are
obtained. As an application of the logic, the style of assertions of Brookes proof system

is shown to be determined by the logic of Plotkin’s domain of resumptions.

This chapter has the following sections. Section 5.1 introduces a meta-language for
denotational semantics with general type constructions like sum, product, function space,
the three powerdomains, and recursively defined types. For each type there is an assertion
language, constructed from the language of the type constituents. Section 5.2 proposes
proof systems for the typed assertion languages. The proof rules axiomatise the entailment
relation < between assertions as well as the non-entailment % relation. They are built up
form those of the components of the type. Section 5.3 interprets assertions as open sets
of domains and proves the soundness of the proof systems. Section 5.4 gives completeness
and expressiveness theorems. The last section presents an application of the framework,

showing that the style of assertions of Brookes[Br85] is determined by the logic of Plotkin’s

domain of resumptions[P176].

5.1 Typed Assertion Languages

Our framework consists of four parts: a meta-language for denotational semantics,
typed assertion languages, structural and logical rules and meta-predicates. This sec-

tion is concerned with the meta-language for denotational semantics and typed assertion

languages.

The meta-language for denotational semantics is usually introduced as a language of
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type expressions as follows:

cu=1lloxr|o—=7lo+7]|0oL|Pslo]| Pulo]| Pelo] [t]|rect.c
where ¢ is a type variable and o, T ranges over type expressions.

Note we could have avoided using 1 as a ground type because it can be expressed by
the recursively defined type rec t.t. Every closed type expression is interpreted as an
SFP object, with 1 as the one-point domain, and X as the Cartesian product, + as the
coalesced sum, ( )L as lifting, — as the function space, Ps, Py and Pp as the Smyth,
Hoare and Plotkin powerdomains, and rec t.o the initial solution of the associated domain

equation. Write D( ¢ ) for the domain corresponding to o.

Using this meta-language we can give denotational semantics to a large class of pro-
gramming languages. For a programming language L, we specify a type expression o and
denote a program as an element in D(o). Here we are not concerned with the problem

how the type expression is selected for a particular programming language.

For each type o we introduce an assertion language A,. The assertions of A, are
constructed according to the way o is built up from its subtypes. We use the notations for
type constructions again in the assertion language to make a clear correspondence between

types and typed assertions, just as we did for type constructions and constructions on

domains.
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Assertion Formation Rules

(t,f) t,f:o

(h=v)
(x) pe $o-

(=) P f—:;

(+) z'nzgo:f—; bﬁ:@;:o“
(1) T

(H) S o]

(5) o Pl

(P) 5

Do : Pplo], Oy : Pplo]

@ :o[rect.oft]
p: rect.o

(rec)

Rule (t,f) says that t and f are assertions of every type, standing for the logical ‘true’
and ‘false’. Rule (A — V) means that for assertions of the same type, we can form their
logical conjunction and disjunction. The rest of the rules tell us how assertions are built
up according to the structure of the type. For example, according to (x), if A is an
assertion of type o and B is an assertion of type T, then‘A X B is an assertion of type
o X 7. We do not need extra structures for recursively defined types. This is because,

as shown in Chapter 4, that it is possible to get equality in solving recursive domain

equations.

In this way, given any type expression o, there is a corresponding assertion language

Ay
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5.2 Proof Systems

We now propose a proof system for each A,. For the axiomatization of the logic we
introduce <, between assertions of A,. The relation <, stands for logical entailment.
It is intended that if ¢ <, 9 then every object ( program ) satisfying ¢ also.satisfies
1. This intuition will be made precise later when we give interpretations to assertions.
The logical equivalence, =,, stands for both <, and >,. Subscripts are usually omitted.

When ¢, ¥ € As, ¢ <o 9 and ¢ =, % are called positive formulae.

We also introduce £, between assertions of A,. ¢ & 9 reads ‘p does not entail 9.’
Apart from some technical reasons (the definition of prime assertions for function space),
our motivation to axiomatise £ is based on three observations. First, descriptions of
domains usually involve a consistency predicate Con. In the context of domain logic,
what Con(y) means is just ¢ £ f. So particular forms of £ have already been used.
Secondly, when implementing domain logic by machines, one might try to input ¢ < ¢
and wait for an answer. Of course we would like the machine not only have the ability to
say ‘yes’ when ¢ < % is valid, but also ‘no’ when ¢ < ¢ is not. The reasoning involved
in producing ‘no’ can be formulated by an axiomatisation of ¥, for the same sake as that
‘yes’ is formulated by an axiomatisation of <. Thirdly, theoretical results on effectively

given domains show that ¢ < ¢ is decidable, which implies the feasibility of producing

such a kind of negative information.

We call ¢ £, 9 a negative formula. Both positive and negative formulae are formulae.

The axioms of the proof system are of the form ¢ <, ¥ or ¢ £, 9 and rules

A, Ay - A,
B

with A;’s and B formulae. Such a rule means, intuitively, that if A’s are valid formulae

then so is B.

By convention let V) =f and A0 = t.
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For each A, we have the following logical axioms and rules ( with subscripts onﬁtted):

(t)
(Ref)

( Trans)

Logical Axioms and Rules

p<t ) <o
<
‘PS(PI SDIS(P”
(PSSOII
e<¢Y P=<op
p=1

/ /

p=¢ p=9p
p¢ Y <p

PAY' <9 AP < ¢

p<¢ o<
SOSSO’/\(P”

eS¢ <y
Vi<

e<¢Ve ¢ <o Ve

eA(PLVe2) S (P A1)V (pAgps)

t£f
0 &P
o LY AY
o L
eV L
ANy LY NP LY
o LY Y L
oLV, e L1V,
o £ b o & e
p=¢ LY =9

pLP

There are type-specific rules which provide relationships between axioms of different types.

There are also axioms that tell us how logical constructions interact with type construc-

tions.

89



For product we have

(x—t)
(x—f)
(x-<)
(x=V)
(x—A)
(- —x)

Product
t, X t, =oxr boxr

fa X = fa’XT p X f'r =oxT fUXT

Y, p<,¢
"bX‘PSGXT"/’IX‘P!

(%1 V¥h2) X (01.V 92) =oxr
(V1 X 1) V (1 X 02) V (B2 X 1) V (32 X 3)

(p1 X p2) A (1 X h2) =oxr (1 Ath1) X (2 A 1h3)

‘234 pEY
X Lo XY XYL xg

These axioms and rules are self-evident. Similarly, there are axioms and rules for other

type constructions. For simplicity subscripts are omitted.

(+-t)

(+-1)

Sum
mt=t mwt=t
Wf=f wf=f

o<
wl o < il e

p<¢
o @ < awyp
wl (¢ A ) = (ml @) A (il )
ar (¢ A ) = (4w ) A (i o)
al (p V) = (il @) V (il 3p)
ar (o V) = (i ) V (ir )
tLe  t£9y

o A ird < £

oL o £
il o & mitp wr o L iwp
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We can combine axioms and rules for sum and lifting to get those for the separated sum.
Lifting
(-L —f) (fv)l=f6.1.

_ p<¢
(L=< w1 <ty

(L —A) (PrAp2)=(p1)LA(p2)s
(L —-V) (1 Vea)L = (1)L V(p2)s
(L—-t) tLoL
e LY
(==1) oL Lty
Function Space
(— —t) p—ot=t fop=t

(—’_<) v <9 (P/SLP’/
Ppop <P e

(—=A) = (1 Ah)=(p—=P1)A(p— 1)

(V=) (pr1Ver) 2t =(p1=9P)A (02— 9)
There is a rule for negative formulae of the function space which will be introduced later.

The Modality O

(D—t) Of = f
(D—f) Ot =t
o<
(B-<) Dp < O%
(O—=A) O(w1 Awa) =(Bp1) A(Dps)

£
(-2)  5gny

Note the axiom (O — f) corresponding to the choice that the empty set is excluded
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from the Smyth powerdomain.

The Modality ©
(O—1t) Of =1

(O—f)  Ot=t

e
(0=2) ooy

(S=V) 1V pa) = (1) V (Op2)
p LY
Al O LY
( ) Op £ 0P
We remark that the axioms and rules just presented for O and < are for the Smyth

powerdomain and the Hoare powerdomain, respectively. They are axioms for the Plotkin

powerdomain, too. However, the following two axioms are for the Plotkin powerdomain

only.
o—0:

(<) CoADYp < O(pAY)

(0) O(eVy) <OpvOyp
(—:OD ) /\iEI Ow; é /\jeJ <>¢'.7'
( O Vier 805) A Nier Opi £ ( OVjes ¥; ) A Njes O;
OVierpi £ OVes %;

(B Vier®i) A Nier Owi £ (BVea¥; ) A Njes Ov;

I believe all the axioms and rules are independent of each other. In other words, I
suspect no axiom or rule is derivable form the rest. However, we can derive (x— <),
(- <), (dr— <), (— — <), (L= <), (O0- <) and (O— <) from the other axioms
and rules (including logical rules ) if we introduce

Y=
(Contz) Cle]= 9]

where C'[ ] is any context with assertions, logical and type constructions such as [ ],

ex[ JVuxv,and ([ ]—= @)A([ ]— ¥). (Contz) means substitutions of

equivalent assertions in any context preserve equivalence.
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(— — <) can be derived in the following way.

(PSP & P <)== (p=pAg &Y= V).

Hence
Pop =P oAy (Contz)

= —=e)A(Yv—2¢') (—=-A)

<o " logical

=V — ¢ (Contz)
=W oA (=) (V=)

<Y — logical
where AKX B=C < D-..is an abbreviation for A< B & B=C &C <D-...

Remark. In an assertion, type constructions x, —, @, ar, ()i, <, and O are

given priority over logical operations. For exdmple, when write wl ¢ V #ry we mean

(o) V (ary).

5.3 Soundness

In this section we give an interpretation for assertions and prove that the proof systems

are sound with respect to this interpretation.
For each closed type expression o we define an interpretation function
[ Io: A, = KQ(D(q))
in the following structured way.
Fof each closed type expression o, we define
[t]l. =D(o)
[fl. =0
[eVe]e =[el.Ul¥],
[eAdl =Tel-NI¥].
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With respect to type constructions we define
[o X% loxr ={(u,v) |ue el &vely].}
[@¢]otr ={(0,u) [ueclels\ {Lo)} U
{zeD(o+7)| Lo €evls}
[77 lotr = {(1, u) |u € [0]-\ { Lo(r) } JU
{zeD(o+7)| Lor) € el }
[¢—=%¢lonr ={f €[D(o) > D(")] | [¢]s < FH([¢])}
[(#)1le)e =1{(0, u) [ueel,}
[O¢lrs(o) ={U € Ps(Da) | U C [¢], }
[Belper)y ={U € Pp(Do) |U C[¢]. }
[Celpue)y={L €Pu(Do) | LN[e], # 0}
[Celpec)y ={L€Pp(Do) | LN[p]l, # 0}
[@lrect.c = {€o(u) | v € [@lofreot.oner }

where ¢, : [ D( o[ (rect.o)\t]) — D(rect.o )] is the isomorphism arising form the initial

solution to the domain equation associated with type rect. o.

Definition 5.3.1 Vo, ¢ € A,, write =, ¢ <, v if [els € [¥]0, for negative formulae,
Fo @ Lo ¥ if [¢]s € [¢]s. Call a logical formula ¢ <, % valid if =, ¢ <, ¥; Lo ¥
valid if =, ¢ €0 .

Definition 5.8.2 Vo, ¢ € A,, write b, ¢ <, ¢ if ¢ <, % is an axiom or it can
be derived from axioms and rules given in Section 5.2 ( together with those presented in

Section 5.4 later ) and similarly F, ¢ £, % if formula ¢ £ ¥ can be derived from the

proof system.

Definition 5.3.3 The proof sysfem is called sound if - ¢ <, % implies = ¢ <, ¥
and F ¢ £, ¢ implies = ¢ &, 9. It is complete if = ¢ <, t implies F ¢ <, % and
E ¢ £, ¥ implies F ¢ £, 9 . An axiom is valid if it is a valid formula. A rule is sound if

it produces valid formulae from valid formulae.
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It is clear that a proof system is sound iff all its axioms are valid and rules sound.

Proposition 5.3.1 establishes the soundness of the proof system.

Proposition 5.3.1
o The logical axioms are valid and logical rules sound.
¢ The axioms for product, sum, function space, lifting are valid.
e The rules for product, sum, function space, lifting are sound.
o The axioms associated with O, < are valid and rules sound.

Proof The proof is routine. We show the validness of the positive part of O — < axioms.

Let A, B be compact open sets of D, an SFP object. Clearly
Te{UePp(D)|UNA£D}N{VePp(D)|VCB}
=T ec{UecPp(D)|UNANB#0}.
Hence
{UePp(D)IUNA#B}N{V ePp(D)|VCB}
C{UePp(D)IUNANB#0}
So (<) is valid. (O) is valid because
Te{UePp(D)|UCAUB}
=T e{UePp(D)|UCBYU{UEPD)|UNA#D}.

The rest of the proof can be similarly carried out by inspecting each axiom and rule. ll

Remark. In many proofs of this section and next section we will not check the case for
recursively defined types, because all the time we are dealing with finite sets of assertions,

and these assertions can always be considered as of some finite type.

5.4 Completeness

The proof system given in Section 5.2 is not complete since there are valid formulae
which cannot be derived, as shown by the following example. Motivated from this exam-

ple, we are going to equip the proof system with a meta-predicate and a meta-function

so as to make it complete.
Example 5.4.1 Consider the type 1 — [(1,)+ (1, )] and the formula
t— (or(tL)Val(tL))=[t - ar(tL)]V[t > al(tL)]
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of this type. This valid formula cannot be derived from the proof system either, because

it is not an axiom and there is no rule about assertions of the form ¢ — (a V 8).

Although ¢ — Viera; = Vierp — o is not a valid axiom, it becomes valid when
we restrict ¢ to some particular form, those assertions which are prime, corresponding
to (non-empty) prime open sets. By introducing a predicate P on assertions and some

axiom with P as side condition, we will be able to derive the valid formula in Example
54.1.

\

Definition 5.4.1 {¢; | ¢ € I}, a finite set of assertions of type o, is said to be
quasi—A closed if for all non-null J C I there is K C I such that

"/\%’=\/S0k.

JjeJ - keK

From Theorem 2.5.1 we understand that quasi—A closed sets of assertions will be im-
portant in specifying the prime assertions of function space. For this reason we introduce
a (recursive) function II* on finite sets of assertions. It is intended that if II*( A) = B

then B is quasi—A closed and A C B. Of course II* just produces one such set for each

A and it need not be a minimal quasi—A closed one.
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Prime Assertions
(t) P(t)

P(¢) P(4)
C) ~w)

(=) I*({¢i | i € I}) = {i | i € I} & Vi, j € L(P(:) & P(3:) & [ £ o0 o1 i < 5])
P(/\ieI‘Pi-)'@bi )

P() P(9)
) Fe) Pl

P(¢)
(L) P(p1)
P(p;) 1<i<n
(H) P (/\15i5n i )
P(p;) 1<i<n

(5)

P (O(Vicicn i)

P(go,-) 1S'LSTL

P
(P) P ([OVicicn @i ] A Micicn Owi)

When P(p) we say ¢ is a prime assertion. According to the definition, for example,
wml o A ir 1) is not a prime assertion even ¢ and 1 are. D¢ A O% is not a prime assertion
either. It is worth noticing that whether an assertion is prime or not is purely a syntactical
question. Note that even when [¢] is a prime open set, it is not necessary true that P(p).

On the other hand, however, to pick up enough prime open sets we must have
Vo.[¢] prime open = Fep. = ¢ & P(¥).

This is a consequence of the completeness theorem. P and II* are given mutual recursively.
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All the assertions appearing in the following IT* rules are assumed to be prime.

(t)

(9)

(¢-0)

II* Rules

IE({t})={t}

I ({el(p)LeA})="P
I;, A={(¢)L|p€P}

M ({p|I.pxpeA})=P Mm:({¥|3p.oxdeca}))=0Q
MGx- (A)={exd|peP &pecQ}

LHyp|nlpeA})=U M({plimpecAd})=V
G, (A)={mle|peU} U {irp|pecV}

(Y mes)=4 I( | ma)=5B

1<i<n 1<i<n

T {e|1<i<n]={BIP(B)&nBCA&mBC I']

Dpy(o)(A)={A\2|2C A}

M(U{{w:|1<i<n} | O\ p;€A})=T
1<ikn
. (A)= {0V |0 CT]

{e |Fac A (a=0VIA \NOCYp &ped)}=S
YED

HZ;,P(U)(A)={DVtI>/\ /\<>z/)|<I)§S}
YeD

Now we are able to complete the proof system by introducing several rules which make

use of the meta-predicate and meta-function.

(= —V) P(¢)

® = Vierai = Vierp — o

(—n— —)) P ( /\iGI $i — ¢’) P(a) P(,B) /\tp.'<oz "/’z ﬁ )6

Nerwi = $i £ a— B

(~—P) P(p) VieloZ;

© & Vier ¥
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Notation. If for an assertion ¢, [¢] is a prime open set then there is a finite element

a such that [¢] = aT. Write ¢ for such an a.

Notation. If for an assertion ¢, [¢] is a prime open set then there is a finite element

a such that [¢] = aT. Write ¢ for such an a.

Theorem 5.4.1 For any type expression o and assertion ¢ : o, P () implies that

[¢]- is a (non-empty) prime open set.

Let A be a finite set of prime assertions. If II*(A) = B is derivable from the IT* rules,
then A C B and B is quasi-A closed.

Proof The first part can be shown by structured induction. For illustration let us
check the rule for function space. Other cases are straightforward. Suppose the assump-
tions for rule (—) of Prime Assertions hold. Clearly, then, | ;e[ i, %:] is a step function
(Definition 2.5.2). It is easy to see that this step function is the least function in the set
Nierl #i, 1 = [, |- Hence [Aies s — 9;] is prime open.

The proof of the second part is also done by structured induction. We know that
SFP is equivalent to SFIS. So all the cases in the induction follow from Theorem 4.3.1,
Proposition 4.3.3, Proposition 4.4.1, Proposition 4.4.3, and Proposition 4.4.5. |

It is obvious that the proof rules (— —V), (-— —), and = — P) using P or II* are

sound. Therefore the whole proof system we have now is still sound.

Definition 5.4.2 Write P, for the proof system associated with type o. P, is called

prime complete if it has property po, prime normal if it has property p;, and complete if

it has property ps, where

(po) Vo, ¥ :0. (P(e) & P(¥) & [l S [¥]le = F o <9) &
(P(p) & P(¥) & [¢]o £ [9]e = F 0 £ 9)
(p1) pro=>Hei|i€el}Vie LP(p:) & F o= Vi
(p2) Vo, o (el Sle] =t e <¢) & ([e] Z[¢] =t ¢ £ ¥)

In (p1), Vier ¢i is called a prime normal form of .

Clearly P1 has property po, p1, and ps. Our goal in this section is to prove the
completeness of the proof system. This is achieved by showing that each type construction

preserves property (po), (p1), and (p2), by several propositions. Note that for each case
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the proof of (pz) is routine: It follows from (po) and (p;) directly. For the negative

formulae; for example, we can use (p;) to reduce assertions to their prime normal forms,
t o = Vierpi and F 9 = V;c;9;. We then have '

Fedd = [Vierril € [Vjes ;] (Definition)

= 2e.Vy. [pi] €[%;]

. = EZVJ l" (Pi $ ’l/JJ (po)
= Ji. Fo; £ Vjes%; (=~P)
= Vierpi £ Vjes¥; (V—-)

Similarly for positive formulae.

The following formula, obviously derivable from logical axioms and rules, will be fre-

quently used for exchanging position of \/ and A.

(Ez) /n\ (/ pii =\ /n\soz',f(i)

=1 j=1 fEK i=1
with

K={f:m— max{n;[1<i<n}| Vi. f(i) em}

wheres={1,2,---,s}.
We abbreviateF A=B=C...for+FA=B& +FB=C& +FC=--...

Proposition 5.4.1 Product preserves property po, p1, and p,.

Proof (po).
[ x Yloxr S l' X Ploxr => [els C [¥']s & [#], € [+]-
= tFe<¢ & Py <y
= Fepxyp<¢ xy
[o X Yloxr € [¢" X ' ]oxr = fels € II‘P,]]a or [¢], Z [¢']-
= FpgLypor oL
= Fexyp Lo xy
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(p1). Suppose @ : o X T is an assertion.

Fa= \/ A wijxvi;  (Ez)

1<inl1<j<m

=V ok x (x—=AN)

1<k<p

=V (Veir) x (Veir) asumption, @;x, @;x are prime
1<k<q ¢ J

=va¢ikx¢jka (x—=V)

a finite disjunction of prime assertions. Nl

Proposition 5.4.2 Sum preserves property po, p1, and p..
Proof (po)

[ o]osr € [l lorr = [¥]o € [¢']6
=Fp<¢
=t mlp < nl¢
Similarly for assertions of the form #r ¢ and the negative formulae. Note that the cases

for [l ]o4r C [tw ¢"]o1r and [2w @],4r C [l ¢']pqr are trivial.

(p1) Suppose a : o + 7 is an assertion.

Fa= \ (A doin N\ wwrgi)  (Bz),(id = V), (i — V)

1<i<n 1<5<m 1<k<w
=V (@ A eijhir N\ tir) (il —A),(t7 —A)
1<i<n 1<j<m 1<k<w
=V (& \/ ¢}, Aaw \[9},) assumption, ;,, ¥, are prime
1<i<n p q
= \/ \/\/(inlsogp/\im‘"/):'q) (1'17]—V),(inr—V)
1<i<n » ¢

The conclusion then follows from the rule (- + f ) for sum. I
Proposition 5.4.3 Lifting preserves property po, p1, and pa.
Proof Trivial.

Proposition 5.4.4 Function space preserves property po, pi, and ps.
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Proof (po). For positive formulae, we have

[[ /\ Q@i - "vb‘i]]o—*'l‘ g lI /\ QO; - 'I)b;’]la'—r‘r

1<i<n 1<j<m
== ﬂ I[(Pz — 'Qbilla—vr - ﬂ |I‘P; - ¢;']]o'—vr
1<ikn 1<j<m

= VJ ﬂ |[§0'L — d)'i]]a—vr - [90_17 - ¢_;'II°_*"'
1<i<n

= Vj. () [@i1— 4] C 91— ;1]

1<i<n

Vi. L [ %] 31, 9]

1<i<n
=>Vj Ji. % P, & ¢ C @
= Vjdi. Fohi <& Foi>) ( by assumption )
= Vj 3. b= oh <) (= —-%)

=Vi. F A\ wi— ¢ <>y
1<ikn

=t AN pi=< A ¢—1

1<ikn 1<j<m
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For negative formulae, we have

II /\ pi — ¢’i]]0'—>7' g II /\ 90‘17 — 'lp;']]a—vr

1<ikn 1<i<m
= ﬂ [[Soi - ¢i]]a—>7' & ﬂ I[(P; - ¢;]]0—>7
1<i<n 1<7<m

= 3j. () [pi = bilowr € [0 = ¥]or

1<ikn

= () [¢i1=> hit] € [@)1— §}1]

1<i<n

= || (¢, ]2 [¢) 9]

=t /\ P Lol

Foi<y;

=t A wi =¥ L9 —

1<ikn

=t AN pi=hid N ¢ —

1<i<n 1<5<m

(=)

( logical rule )

(p1). By using rule (— —V), (— —A), (V— —) as well as (Ez), we can put each

§: 0 — 7 in the following form:

Fo=V /\'(%,j — i ;)

i=1j=1

where ¢;; , ¥;; are prime assertions of ¢ and 7, respectively. It is then enough to show

that each assertion of the form A\ (¢; — ;) is equivalent to a finite disjunction of

1<i<n
prime assertions. First an observation.
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Observation: Suppose F ¢; < ;. We have
F (i = i) A(p; — ;)
= (i = i) A (i =i ) A (i A p; — i)
= (i = i) A (@i = %) A i Np; = i) A (@i A pj — ;)
=(pi = %) A(@j = i ) A (@i Apj = i Aiby)
= (05 = ;) AN (i = i A ;)
=(%—>¢j)/\(%—>\k/¢i) where *‘¢i/\¢j=\k/¢fc, 1y, prime
=\k/[(80i—”/)§c)/\(<.0j—”/’j)]

be such that F ¢; < p; = F ¢; < ;.

Let
I{p;[1<i<n}={q,|pe P}
and
| T{w;1<j<m)=1{8 g€ Q)
We have
FOA (i = i)
1<ikn
=/\(a’p—’ /\ ¥; )
pEP Foap<ep;
= /\(ap_’\/ﬂpi)
peP
(F A ¥i=VBi & Bic{B10€Q})
I‘apS‘Ps‘
= /\V(O"P—’ﬂpi)
PEP ¢
=*V(/\ap_’ﬂpk)
k peP

*: where each A,cpa, — B, is a prime assertion of o — 7, by virtue of the observation

above and the formula ( Ez). |

For Smyth and Hoare powerdomains (p, ) is routine to prove. (py) for negative formulae
is also simple. Hence for the following two propositions we only show (po) for positive

formulae.

Proposition 5.4.5 Smyth powerdomain preserves property po, p1, and p;.
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[BV ¢lree €10V ¥ilpse

1<i<n 1<i<m

= {UePs(Do)|UC] V @ilo }S{UePs(Do)|UC] V #¥;].}

1<i<n 1g5<m
= {@:|1<i<n}g{d|1<j<m}

=> Vi 3j. ¢; 3

= Vi 35. [¢i]o C [%;]o

=>Vi3j. b <o assumption

1<j<m
=t Vo< V ¢
1<i<n 1<5<m

1<i<n 1<i<m

Proposition 5.4.6 Hoare powerdomain preserves property po, p1, and ps.
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[[ /\ O‘Pi]]'PHa g[[ /\ <>'¢'j]]7’36

1<i<n 1<j<m

= () [C@lrge € ) [CO¥ilpyo

1<i<n 1<j<m

= Vi. [ [Opilrre C [O%;]pmo

1<i<n
= Vi {g: |1 <i<n} 3 {¥;}

(as Clp{@i|1<i<n}e () [Opdrar)

1<ikn
= Vj Fi. ¢; D45
= V) 3. b <Py by assumption

=F A Cei< A Oy

1<ign 1<i<m

That the Plotkin powerdomain preserves (p,) is not so direct to prove. By exchanging
the position of \/ and A we can reduce an assertion into a disjunction of conjunction
of assertions OV;p; A A;j Othj, where ¢;’s and ;’s are prime. We need to show that
OV;iei A \; O is equivalent to a disjunction of prime assertions. Our idea is to show
that, first, any OV, ¢; is equivalent to a disjunction of prime assertions. We then show
that if 0 is prime, then § A Ot is equivalent to a disjunction of prime assertions. Applying
this result as many time as necessary, we can ‘absorb’ any Ot in A O if it is not already
a prime. The following lemmas show some results which are a bit stronger than we need.
Note we assume that P, has property (po), (p1), and (p;) in the lemmas given below.

Lemma 5.4.1 Let ¢;: 0, 1 < ¢ < n be prime assertions. O \/ ; is provable to be

1<i<n
equivalent to a finite disjunction of prime assertions.

Proof By induction on n.
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FDOpy =0(p VE)

=0(p1 VE) A (Opy v OF) (0)
=[O VE)AOp ] V[O( gy VE) ADF)
= Opy /\<>§01

Induction step.

Fm(f\/lwi)=n(2soz->A<<>solva( V ) (o)

2<i<n

= (CprADO \n/so,-)VD( V ¢i)

i=1 2<i<n

=(<>501/\<>902 A O \n/SOi)VD(V(Pi)VD(VSOi)

i=1 i#1 i#2

:(D\n/go,-/\ A Cei)Vv V (BV ;)

=1 1<i<n 1<ikn i#e

By induction hypothesis each O Vj#i ¢; has a prime normal form, hence so does 0 /7, ;.

We can draw from the proof the following formula.

(P-0) OV o=\ (TV oA\ Op;)

el JCI  jeJ jeJ

By the same method used in the proof of Lemma 5.4.1 we can similarly prove

Lemma 5.4.2 Let ¢;: 0, 1 <4 < n be prime assertions.

OV @A A Cgp;
1<i<n jeJ

is provable to be equivalent to a finite disjunction of prime assertions, where

Jg {1, 27 7n}
Lemma 5.4.3 Every assertion of the form
O(V ) AN Ops
=1 =1

is equivalent to a finite disjunction of prime assertions, where ¢!s are not necessary prime.
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Proof By assumption, for each i, there are v;;, prime assertions such that

Foi= Vi

1<5<n;

We haye

n ng

m(\/%)A/\o@,—D(\/IV«/%,,)/\/\O(V«A,J

n ng

=00V Vi) A AV 0wy

=1 _7—1 =1 j=1

\/ (D( \/ \/ Yij) A /\ <>"pz,f(z))

feK =1 j=1 =1

where K = {f: " > max {n; |[1<:<n} |Vi. f() em; }.

From Lemma 5.4.2 we know that each term in \/ is equivalent to a finite disjunction

feK
of prime assertions. i
Lemma 5.4.4 For any prime assertion
D(\/QD,)/\ /\<>(Pi7
=1 =1
n n
(BV @) AN Opi) AOY

t=1 t=1
is equivalent to a finite disjunction of prime assertions.

Proof By (<) we see that

\/%)/\/\0%)/\01/’-—('3 (V@) AN Op) A A( \/%))

i=1 i=1 i=1

=\n/ \/goz (@i Ab) /\/\<>soi/\<>(¢/\soj)-
j=1

=1 =1

By Lemma 5.4.3 the above assertion can be equivalently transformed into a finite disjunc-

tion of prime assertions. |

Lemma 5.4.5 For any prime assertion

E1(\/%)/\ /\Osoz,

=1

(D(V‘Pz /\/\0991 )A O

=1 =1
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is equivalent to a finite disjunction of prime assertions.
Proof

l‘(‘:’(\/<Pz A/\<>90z)/\‘:'¢—‘3(( \/<Pz)/\¢)/\/\(<>%/\5¢)

i=1 =1 =1
— El'\_/l(cp,-/\'gb)/\._/\lo(%/\l/’)

By Lemma 5.4.4, the above assertion can be equivalently transformed into a finite dis-

junction of prime assertions. Ml
Now we have
Proposition 5.4.7 Plotkin powerdomain preserves property po, p1, and ps.

Proof Property (p;) follows from Lemma 5.4.1 to 5.4.5. The proof of (p,) for negative

formulae is similar to that for positive formulae, which is given below.

[(OV o)A A Ceilpee SOV ¥5)A A\ O%;1pp0

1<i<n 1<i<n 1<j<m 1<j<m
=[OV @)A A Ovlpee SIO0 V %ilpee N ) [O%;]ppe
1<i<n 1<i<n 1<j<m 1<j<m

= {¢:|1<i<n} 3 {d[1<j<m}&
{pil1<i<n}g{¢;|1<j<m}

(s1nceClp({(,oz|1<z<n} Yel(B V ei)A A Cwilpes)

1<i<n 1<ikn

=+0\ <0V &bk A\ Op< N\ O

1<ikn 1<5<m 1<i<n 1<5<m

=F0\ oA A Cpi<O \ oA A\ O

1<i<n 1<i<n 1<j<m 1<j<m

The completeness of the proof system now follows from propositions 5.4.1 to 5.4.7
by a structured induction on type structures, with each proposition taking care of one
case. Note that the case for recursively defined types reduces to finite types since we are
only dealing with a finite set of assertions at each time, and these assertions can well be

regarded as of some proper finite type. So we have
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Theorem 5.4.2 Our proof system is complete.

For expressiveness of our assertion language we have

Theorem 5.4.8 For each o,
[ Io:(A4/=, <.) = (K2D(0), C)
is an isomorphism, where K(D) is the set of compact open sets of D.
Proof By the Completeness Theorem it is enough to show that
VPePQ(D(c)) JpcA,. P(e) &[], =P,
which can be routinely done by a structured induction. il

Corollary 5.4.1 For each type expression o and for any pair ¢, ¥ of type o, either
}—aﬁpga"/’or‘—o’ﬁoﬁad)-

Example 5.4.4 In Abramsky’s framework for Scott domains, the conjunction of
prime assertions is again prime. In this example we show that, in our framework, the

conjunction of two prime assertions need not be equivalent to a single prime assertion.

Consider
Pr((1o+1)x(104+1,)),
or Pp(21, )%, as an abbreviation. Write
p=mlity 11, +1,,
qEth_:lJ_+lJ_.
Obviously F p A ¢ < f and
O(pxtVgxt)AOpXxtAOgxt

and

O(txpVtXxg)A Ot xpAOt x g

are prime assertions of Pp(21, )2

We have
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F D(pxtVgxt)AOpxtAOgxt A D(txpVEtxqg)AOt xpAOt X g
= O(pxpVpXqgVgXpVgxg)AOpxtAOgxtAOt X pAOt X g
= (Viai)ACpxtAOgxtAOE xpAOt X g
by formula (P — 0), o;'s are prime
= O(pxqVgxp)ATpxgATgxp
v D(pxpvqxq)/\<>p§<p/\<>q><q
VOpxgVgxpVpxp)AOpxgAOgxpAOp X p
V OpxgVegxpVgxg)AOpxgAOgxpAOgxq
\% D(pxqququ><p)/\<>p><q/\<>q><q/\'<>p><p
V O(gxpVgxgVpxp)AOgxpAOgxgAOp xp

V O(gxpVpxqgVagxgVpxp)AOgxpAOpxgAOgx gAOp xp

Remarks.

1. By formula (P —0), all possible primes formed from subset of { ¢; | i € I} should
be in the disjunction. We ommited some of them in the last formula. But the equivalence

still holds, because we have, for example,
FO(pxpVpxg)AOgxt<O(pxpVpxg)Agxt<HT,

that is, all the omitted assertions are provable to be equivalent to f when put in conjunc-

tion with

OpXtAOIXtASt X p AL X g.

2. For those a;’s which remain in the last derivation,
FaA(OpxtAOgxtAOtxpAOt xq)=a
because of obvious reasons such as
FOpxgAOpxt=3pxy.
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3. The prime assertions in the last formula are pairwise inconsistent. We have, for
example,
FO(pXxqVgxqgVpxp)AOpxgAOgxqgApxp
AN O(gxpVgxqgVpXp)AOgxpAOgx gAOp X p
SO(pXxqVgxqgVpxp)AOgxp
SOgxp A(pxqVgxqgVpxp)
<f

4. We really need a machine to carry out this example!

5.5 An Application

As an application, we show how our framework can be used to derive the assertions
used in Brookes’ proof system [Br85]. In [Br85] Brookes proposed a proof system for a

parallel programming language with the syntax of commands specified by
I'u=Skip|I:=E|I';;Ty| Ty || Ty | await B then T
| if B then Ty elsel's | while BdoT

He gave an operational semantics for this programming language by a set of labeled
transition rules of the form (I',0) — (I, 0’) with the standard interpretation, where Is
are commands and o’s are states. A proof system was proposed using assertions of the

form

@ = PY7_ o; Pp;.

We show that the assertions Brookes used can be derived from the domain for the
denotational semantics of the parallel programming language, i.e. , the domain of re-
sumptions

R= S8 — Pp[(Sx R)+ 5]

proposed by Plotkin [P176]. S is the domain of states. R corresponds to the type r =
rec t.(oo — Pp[(0o X t) + 0g]), where ay is the type for the domain of states. Note that

the domain of integers is the solution to the domain equation

X1, +X
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corresponding to the type rec z.1; + z. Therefore, we may write o = (recz.1, + )V,
the product of V copies of the integer domain. According to the framework presented in

the previous sections, assertions of type oy are given by
Pi:=a|PAP| PVP| t | f

where a is some atomic assertions indicating what value is in each store for the current

state. Assertions of type (0o X r) + o are given by
uu=dwr(P)| wl(Px¢)| uAu| uvu| t | f
assertions of type Pp[(co X r) + ao]' by
w::=Du|<>u|w>/\w|wV'w| t | f
Finally, assertions of type r are given by

‘P===P—’“{l¢1/\902| e1Ver| t | £

Note that this is a recursive definition. Now we can see that the following form of

assertion

P a(\V i (B x o) A \ O (B x )

t=1 =1
constructed from the above rules plays the same role as assertions

PEZ":IOL,'P;QO;

do in Brookes’ proof system. In fact, our framework gives a definition of a satisfaction

relation between a command and an assertion. I’ satisfies

P— D(\n/ wl(P; X i) A 7\ ©wil(Fi x i)

=1 =1
write n
| TP — 0O\ @B x @) A )\ Ol(P; x @),
i=1 i=1
if

[T]e [P — 0\ il (B x 9)) A A Sl (P x 3)].

t=1 =1

But this is the same as saying, in terms of operational semantics, that

V(o k= P) implies {{T', /) | (T,0) = (T',0')} = OV il (B x 92),

i=1
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Vo.(o k= PY&(T, o) — (I, o’} implies (I, o) = (f\/lmz )

and, at the same time,

Vo.(o k= P) implies {(T',o") | (T,0) = (I',0")} = A\ Ol (P x )

=1
ie. ,

Vi Vo. (0 = P) implies {(I",0") | (T',0) = (I',0')} = Owd (P, x ;).
In summary,

Dl P — 0V il (P x o)) A A i (B x )
=1 i=1
if
1) Yo. (o = P)& (T, o) — (I", o'y implies F, 1 < i < n st. of k= PukeT" |= ; and
2) ViVo.(o |= P) implies 3(I", o'y such that (T, o) — (I',o')& I' k= @ileo’ = .
This is exactly a restatement of the definition for

|= I sat PE?_:laiPigoi

in [Br85] without using labels. A final remark: the assertions in our framework are
propositional, corresponding to the compact-open sets. Therefore, they are not exactly
the same as those used by Brookes. Nevertheless, it is an important first step to be able

to derive the assertions of the right propositional form from the domain for denotational

semantics.
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Chapter 6

Mu-Calculus of Domain Theory

In Chapter 5 we have shown that domains are related to a kind of domain logic with
assertions interpreted as compact open sets. The expressive power of the logic is, therefore,
quite weak. It cannot, for example, express ‘the set of even numbers’ of N, the domain
of natural numbers. To make the logic more expressive some extra structure on assertion
is needed. One of the possible ways to get a richer assertion language is to introduce a

fixed point operator.

For each type o, we introduce a countable set of propositional variables. Under certain

condition each assertion ¢ (z ) induces a continuous function
F:QD(o))—QD(c)).

By Tarski’s theorem, such a function has a least fixed point. We introduce the y-assertion

pz. (), to express the least fixed point.

~In section 6.1 an enriched assertion language is introduced, allowing p-assertions,
standing for the least fixed points. An interpretation is given for p-assertions, making
it precise what 'we mean by ‘the least fixed point’. Section 6.2 provides proof rules
for the new assertion language. Various derived rules and properties are given for the
p—calculus. In section 6.3 some other proof rules are introduced. Soundness, completeness
and expressiveness are discussed in section 6.4, where we show that the proof system is

sound in general, and complete for the domain of natural nmbers.

6.1 Recursively Defined Assertions

To focus our attention on the least fixed point of assertions we work on a language of

type expressions without powerdomain constructions:
ou=1|loxt|o—7|o+7]|0oL]|t|rect.c

where ¢ is a type variable and o, T ranges over type expressions. Clearly each type o can

be interpreted as a Scott domain D (o), as specified in the previous chapter.
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The assertions for each type are built up in the following way. For each type o we

have
(t,1)

(Var)

(A=V)

(1)

t,f:o
a a .
g, i, -1 0

0, b0
pAY:oc Voo

p(e7): o
pr.o(z°): 0

When writing ¢(z), we mean that ‘c is a possible variable in ¢’. FEach type is

associated with a countable number of free variables and these variables are assertions.

If ¢(27) is an assertion of type o and 27 is a free variable, we can form pz?. ¢ (z°), for

the least fixed point, intuitively. The assertion pz°. ¢ (z”) is called a p—assertion. For

a p—assertion of the form uz.p V R(z) with p closed, we informally call R(z) a recursive

unit and p a contributor.

When no confusion arises, a variable z7 is written as x.

With respect to type constructions we have

(x)

(=)

(+)

(L)

(rec)

Write M, = {¢ | ¢ : o}

pro T

pXth:oxT

p € A, viT

p—oYio—T

p:0 YT

wep:o+7 wY:o+T

@w:0
YL :01

¢ :ofrect.o/t]

@: rect.c

Note that in (— ), ¢ is required to be in A,, the assertion language introduced in

Chapter 5 to express compact open sets, to make ¢ — 3 an assertion for function space.

There are two reasons for this restriction. First, if free variables are allowed in place

of ¢ above, e.g. z — f, it results in the interpretation function not being monotonic,
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as is necessary for the existence of fixed points. Secondly, note the interpretation for i
assertions need not be compact open sets again. Hence if the assertion ¢ on the left of
¢ — 9 is allowed to be a py—assertion, it can lead to ¢ — 1 not being open ( Example

6.1.3 ), which we want to avoid at this stage.

Example 6.1.1 Consider the recursively defined type rect.t; x t,.

T,y rect.ity Xty =>x Xyy: (rect.ty xt, ) X (rect.ty xt3),.
By (rec),
Ty XyyL: rect.ty xXit,.
Hence

pe. (py .z XyL) : rect.ty Xt,.
Example 6.1.2
pa. [id(t.) V i (i (2))]
is a p assertion of type rect. (1, +¢) which will denote the set of even numbers.

Example 6.1.3 The following assertion shows if we did not require ¢ € A, in (—)

when formulating the assertion we would have allowed assertions such as
(pe. [@l(tL) Vir (z)]) -ty

of type (rect. (1, +1t)) — 1., which would, according the the interpretation given later,

represent the set

{ftNL->OJwC f(T)}

This set is not open since the limit (of a chain of functions) in this set does not imply that
a finite approximation of the limit is also in the set. Here N is the cpo got by attaching

a bottom element to the set of integers w =def {0,1,---,n,---}.

To give a semantic interpretation of the assertions we introduce environments, which

are maps from type variables to compact open sets.

Definition 6.1.1 An environment p is a function

p: {7 |27:0} = | {K | K e KQD(o)}

o

such that Vz7. p(27 ) € KQD (o). Write Env for the set of environments.
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The semantics of assertions are given by an inductive definition. For each closed type

expression o we define an interpretation function

[ Io: Mo — [Brv— Q(D(0))]

in the following structured way.
For each type o, define
[tlop=D(o)
[f].p=10
[eveler=1[elopUl¥]op
[leAd]ler=TwlopN[¥]op
[z7]p=p(z7)

[pa®. o(2 ) ]op = Jle(2")1ip

where
| [o(2)]op =0
and, in general,
[e(2")Tor = [o(2” ) Jople” = [o(z” )] p]-

Here
olo - k1) = { ) §E Y
where K € KQ (D (0)).
With respect to type expressions we define
Lo xPloxrp ={(u,v) [uelelop &vep].r}
[Rel,p ={(0,u) |uelelop\{Lo©)}}U{2€D(c+7)| Lp,) €lelon}
[ewplo,p ={(1,v) |uelelp\{Llpr)}}U{z€D(o+7)| L)€ [plr}
[¢ = ¢lomrp ={Ff€D(e) = D(r) | [¢]- S f([¥]rr)}
[(e)]oyr ={(0,u)luelelp}

[elector ={e(u) v €[elopret.oner}
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where, as before, ¢, : D( o[ (rect.o)\t]) — D(rect. o ) is the isomorphism arising form

the initial solution to the domain equation associated with type rect.o.

Often the associated type is implicit from the context, so type-subscripts are omitted.

We often write [ ], for the semantic interpretation.

We show that our definition has the desired effect, i.e., uz. w(z) is the least fixed

point of a proper function related to ¢(z).

Definition 6.1.2 Let D be a Scott domain and §2( D) be the set of Scott open sets

of D. A function F': (D) — (D) is continuous if it is monotonic and for each chain

in (D) we have
(U 4) = U F(4).

1€w 1€w
Proposition 6.1.1 For each assertion ¢( z ) of type o and an environment p,
AMX.®,(X): QD(c)) — QD(0))
is a con;cinuous function, where ®,(A) = [¢(x ) Jp{zrsa], for any A € Q(D(0)).
For convenience we write AX. [¢( )],zx] for such an AX. ©,(X).
Proof By structured induction on the assertions of a given type o.

Every such AX. ®,(X) is monotonic because free variables are not allowed on the right

of — which is the only constructor we need to check. For each chain
AO gAl §A2---QA,£...

in Q(D(¢)), we have the following equations.

)\X I[ x° ]]p[a:"-—fX]( UA") = UA,, = U)\X |[ z° ]]p[mUHX](Ai)

i€w tEw =)

AX. [[P]]p[x°»—+X]( UAi) =XX.[p], = U)‘X' [P Jotommx1(As)

1Ew ="
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where p is an assertion in which z° does not occur free.

ALV laaonxi(UAi) = AX[ @ Lpernax (U4 UAX[ % Loomxy( U 4:)

=] t€w e
— UAX_ l[(p]]p[x"HX](Az) U U/\X. [¢Hp[$UHX](AZ)
1€w i€w
= UMX. [ ¢V ¥ Lermx]( Ai)
t€w

AXL o A bpornx)(UAi) = 2X [ @ Ljaomx i UA) NAX [ % Lpoemx)( U A

= t€w 1€w

= (UM L@ ]ormx1(4i) ) 0 (UAX. [9 Logernx)(4:) )

1Ew =
= UM [ oA Y Loermx)( A:)

1€w

AX.[ it ot @) Ltormri(UA) = UAK T Bpgoraxy(U4i)

1EW jew 1€w

= U U/\X- [e ]]f;[szX](Ai)

JEwiCw

=J UM e ]]f;[a:ff»—»X](Ai)

1€w jEw

= UXX. [ pt. o(t, 2) Lofarmx)(Ai)

1€w

As a direct consequence of Proposition 6.1.1 we have

Proposition 6.1.2 For any assertion ¢ of type ¢ and any environment 0,

[ut-els

is the least fixed point of
AX. I]:(P]]p[:,;a,_,.x].
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6.2 Results of a Mu-Calculus

The proof system for the fixed point calculus consists of the positive parts of relevant
axioms and rules for lifting, sum, product, and function space introduced in Chapter 5.
Although the formulation of the axioms and rules is still the same, they make broader
sense as assertions can now have free variables in them and they can be p assertions. We

have, as an instance of the axiom

il (v p) = (inlp) V (i)

an derived formula

il (2 Vy) = (ilz) V (ily).
We only formulate <, the positive formulae for the py-calculus.

The following axioms and rules are new, introduced for p assertions.

Notation: In this section we write p or ¢ for a closed assertion and P(z),Q(y) for

assertions with possible variables as indicated in the bracket.

(i — axiom ) Quz. Q(2)) < pe. (=)
Q) <o
( p—rule) iz 0(z) <9

The following rule, which gives us monotonicity, can be easily derived from the rest of

the rules.
Pp<¢p
Q(Y) < Q(p)

Here Q(z) is required to be an assertion when z is an assertion variable with the same

(mono )

type as t. This restriction rules out invalid instances such as

Y<op
Yoy<ep—oy

For convenience when a formula ¢ < ¢ is derivable from the proof system consisting
of rules for lifting, sum, product, function space, and the p-axiom and p-rule, we write
F ¢ < 9. The explicit judgement F is missed out most of the time. This + notation is
somewhat provisional because to get completeness we have to add some other rules, as

we will see in section 4.
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We would like to have a sound and complete proof system for the u-calculus. The
soundness part is easy to check. The proof for completeness usually divides into two

steps: first one shows that each assertion is provably equivalent to some normal form,
then one proves that the proof system is complete for assertions in the normal form. In
the following we give theorems ( derived proof rules ) derived from the proof system to

make the task of deducing the normal forms feasible.
Clearly there is no problem renaming bound variables. For example, we have
F pz. P(z) = py. P(y),

since P(py. P(y)) = py. P(y), and one can apply the u—rule to get

po. P(z) < py. Py).

Proposition 6.2.1 below shows that pz. Q(z) is really a fixed point of Q.

Proposition 6.2.1

Proof
Q(pz. Q(z)) < pz. Q(z), p — axiom
Q(Q(pz. Q(2))) <Q(uz. Q(z)), monotonicity
pr. Q(z) < Q(uz. Qz)), p — rule
pe. Q(z) =Q(pz. Q(z)). p — axiom

Proposition 6.2.2
p. [P A Q(2)] < o Q(2),

where z does not occur free in P.

Proof
Q(uz. Q(z)) < pz. Q(z), p — axiom
pAQ(pz. Q(z)) <L pz. Q(z), logical rule
pr. [pAQ(z)] < pz. Q(z). p—rulell
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There is the following more general derived rule which includes Proposition 6.2.2 as a

special case:
P(z) < Q(z)
py. P(y) < py. Q(y)
Instantiate z by py. Q(y) in the assumption we get

P(py- Q(y)) < Q(py. Q®)).

But
Q(nuy- Q) < ny- Qy)
by the p—axiom; thus
py- P(y) < py. Q(y)

by the p—rule.

Proposition 6.2.3 We have uz. Q(z) < p implies uz. Q(z) < pz. (pAQ(z)). In
fact
pe. Q(z)<p
he Q2) < po. (p A Q(2))

is a derived rule.

Proof
pr. (pAQ(z)) <pz. Q(z), Proposition 6.2.2
Qlpz.pAQ(z)) <pz. Q(z), monotonicity and u — axiom

<p, assumption
Quz.pAQ(z)) <pAQ(pz.pAQ(z)), logical axiom
Qluz.pAQ(z)) <pz.pAQ(z), p — axiom

pe. Q(z) <pz. (pAQ(z)). p — rule

Proposition 6.2.4 We have Q(pz. pAQ(z)) = p implies pz. Q(z) = p. In other

words,
Q(pz.pAQ(z))=p
pz. Q(z)=p

is a derived rule.
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Proof
Qlpz.pAQ(z)) =p, assumption

Q(uz.pAQ(z)) =pAQ(pz.pAQ(z)), logical rule

=pz. (pAQ(z)), Proposition 6.2.1
pe. Q(z) < pz.pAQ(z), p —rule
pr. Qz) =pz.pAQ(z), Proposition 6.2.2

Qlpz. Q(z)) =Q(pz.pAQ(2)), monotonicity

pe. Q(z) =p. by assumption

Note the same proof goes through by changing = to <, i.e., we have the derived rule

Q(pz.pAQ(z)) <p
pe. Q(z)<p

Call Q distributive over V if

FQR(eVy)=Q(=z)VQ(y);
Call Q distributive over A if

FQ(zAy)=Q(z)AQ(y).

Q is distributive if Q is distributive over both V and A and Q(f) = f. Here z and y are

assertion variables.

If Q(z) is distributive over V then so is Q™(z) for any natural number n, where
Q'(z) = @~*(Q(z)). This can be easily checked by mathematical induction. Similarly if
@ is distributive over A then so is Q™ for any natural number n; if Q is distributive then

for any natural number n, Q" is distributive. Note if R distributes over V then so does
PV R and p A R for any closed assertion p; If R distributes over A then so does pV R and
P A R for any closed assertion p. Evidently, then, if R is distributive then so is p V R and

pV R for any closed assertion p.

Assertions like Q(x) are not necessarily always distributive over V; consider p — z, for

example. There is actually a large class of assertions of the form uy. ( P(y) A z ) which

do not distribute over V. However we have
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Lemma For any type o, Q(z) : o always distributes over A provided Q(z) does not

contain any p—assertion. If z is the only free variable in P(z), then there exist p, R(z),
P’y and R'(z) such that

F P(z) =pV R(z),
F P(z) =p' A R'(z),

where p and p’ are closed, R(f) = f, and R'(t) = t. Again, P(x) must not contain any

p—assertion.

Proof By inspecting the proof rules one can see that all the assertion constructors
inl, inr, ()L, —, X distribute over A. Moreover, V, A preserve such distributivity.

Hence any Q(z) distributes over A, by an easy structured induction.

To show F P(z) = pV R(x), we first use logical axioms to put P(z) into a disjunctive
normal form. Let p be the part of disjunction consisting of all the closed assertions.
The rest are disjuncts in which & appear as free variable. Take this part as R(z), we
have R(f) = f. When dealing with the function space construction, we apply the axiom

f — z =t whenever it is possible, so as to avoid z to be considered as free in f — z.

The proof that
F P(z) = p’ A R'(z)

is similar, but in this case we use the conjunctive normal form. ll

It is a bore to always indicate which rules are applied and in the remaining chapter

we shall work more informally.

Proposition 6.2.5 says if the contributor part of a y—assertion breaks into two parts
then the u— assertion is equivalent to two y—assertions with the same recursive unit but

different contributor parts of the original assertion as their contributors.

Proposition 6.2.5 If R distributes over V, then

pz. (prVpV R(z)) = [pz.p1V R(z)]V [py. paV R(y)].

Proof Clearly

(pz.p1V E(2))V (py.p2V R(z)) < pe. (p1 Vp2 V R()).
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On the other hand,

p1VpeVR(pz.piVER(z) V py.paV E(y))

=[PV R(pz.p1V R(z))]V[(p2V R(py. p2V R(y)))]
by assumption. Hence

p1VpeVR(pz.p1VR(z) V py. paV R(y))=pz.pyVR(z) V py.p2V R(y),

which implies, by u— rule,

pz.p1VpeVR(z)< pz.prVR(z) V py. p2V R(y).

Proposition 6.2.6 means under certain assumption we can expand the contributor of
a p—assertion by applying the recursive unit a number of times ( n times, say ) and get
a new assertion which is equivalent to the original one provided we use a new recursive

unit got by applying the old one to itself n + 1 times.

Proposition 6.2.6 Suppose @ is distributive over V. Then Vn > 0,

- e |V Q"'(p))VQ““(w)] — po. oV Q(a).

=0

Proof We prove for the case n = 2 (The general case can be done similarly use

mathematical induction ). We have
pr.pVQ(z) =pVQ(pVQ(uz.pVQ(z))),

=pVQ(p)VQ* (pz.pVQ(z)).
Therefore
py. PV Q(P)VQ*(y) < pz.pVQ(z).

On the other hand,
pVQ(p)VQ [V Quy.-pVQ(p)VQiy))l
=pVQ(p)VR(p)V @y pVQ(p)VQ*(y)
=pVQPpVQ(p)VR* (py.pVQ(r)V Q¥ y))

=pVQpy.-pVQ(p)VQR*(y)].
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Hence

pe.pVQ(p)VR*(2)<pVQ(uy.pVQ(p)VQ*(y)).
Now we have
pVQ(pz.pVQ(p)VQR*(2z)) <pVQR(pPVQ(ry.pVQ(p)VRi¥(y)))
<pVQ(p)VQ* (py.-pVQ(p)VQR¥y))

Spy-pVQR(p)VQ*(y).

Therefore

pe.pVQ(z) <py.pVvQ(p)V Qi (y).

The following proposition tells us that under certain conditions, the effect of apply-

ing the recursive unit to the whole u—assertion is the same as only applying it to the

contributor.

Proposition 6.2.7

FQ(ue.pV Q™ (z))=pz.Q(p)V Q" (z)
for any n > 0, provided that Q is distributive over V.
Proof We have
pV Q@ (pe.pV Q' (z)) =pz.pVvQi(z),
Q(pV Q" (pz.pV @ (z))) =Q(pz.pVQr(z)),
Qp) VA [Q(uz.pv @ (z))] <Q(pz.pvQ(z)),

pr.Q(p) VR (z) <Quz.pVvQr(z)].
On the other hand,

pVQipV @ (pe. Q(p) VR (2))] =pVQ™(p)V Q™ (pz.Q(p)VQ(z)),
=pV@[Q(p) VR (pe. Q(p)VQr(z)),
=pV Q" (pz. Q(p)VQ™(z)),

S0

pr.pV Q@ (z) <pv Q" (pe. Q(p)V Q™ (2)).
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Therefore
Q(pz.pVR™(z)) <Q(p)VQ(uz. Q(p)VQ(z)),

< pz. Q(p) VR M=)

By repeated application of Proposition 6.2.7 we have, Vm > 0 and n > 0,

Q™ (pe. pV Q"(z)) = pz. Q"(p) Vv Q"(z)
provided that @ distributes over V.

For certain forms of recursive unit, if it has two parts then the u—assertion is equivalent

to a disjunction of two y—assertions each of which only has one part of the recursive unit

w of the original assertion.

Proposition 6.2.8 If Q distributes over V, then

pz.pV Q™ (z)V @ (z) = m\71 [bz. Q" (p) vV Q™(z)] V n\_/l'[#y.Qj'm (P)VQ"(y)]

=0 3=0

Proof For any ¢ with 0 <:<m —1,

i pe. @ (p)VQ™(z) = Q" uz.pVQ™(z)]

| < QUpY @(uz. pV Qn(2))]

< QU pv @ (pe.pV Q(z) VR (x))
V™ (pz. pV Q™ (z)V Q" (z))]

= QU uz. pv Q™(z) vV Q"(z)]

< QU uz. pv Q™(2) vV Q ()]

<QUA"[pvQn(pz. pVQ™(z)VQ™(z))
VR (pz.pV @™(z) V Q" (z))]

Spz.pVQ™(z)V Q™ ().

Therefore,
m—1

V [pz. @(p) v @Q™(2)] < pz. pV Q™(2) V Q*(2).

=0
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Similarly,
n—1

V by @™(p)V Q™(y)] < pz. pvV Q™(2) V Q(a).

J=0
On the other hand, we need to show
pVQ™(RHS)VQ"(RHS)< RHS,

where RHS is an abbreviation for the assertion
m—1 n—1
pz. \/ Q""(p)VQm(w)] % [m/. V Q"’”(p)VQ”(y)}
=0 7=0
which is, by Proposition 6.2.5, equivalent to the right hand side of = in the original

formula we want to prove.

We show Q™(RHS) < RHS in the following. The proof for @"(RHS) < RHS is

similar.

=0 7=0

o [’"\fmx. Q" (p)V Qmml] v [”\'/lmy. @ (p) v Q”(y)]]

="V Qluz. @ (p) V@ ()] V \/ Quy. Qn(p) v Q™(y)]

¢=0 7=0

<V [@"(p)v @"luz. @ () v @"(2)]

=0

vV i (@7(0) Y @))] Vi @)V @(0)

<V bz @ (p) vV @™ (2)]

t=0

n—1

VV [k @7 (2)V @ ()] Vi [@°™(p) v Q@ (w)].

However,

Q™™(p)V Q" (uy.pvVQ"(y)) <Q™(p)VpVQ (uy.pVQ"(y))
SQ@™(p)Vuy.pVQ"(y)

<py.pVQ(y).
Therefore,
py-[Q""(P)V Q" (y)] < uy.pV Q" (y).
Hence

Q™(RHS) < RHS.
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Now applying p — rule we have

pr.pVQ™(z)v Q" (z) < RHS.

Generalising Proposttion 6.2.8, we have

pr.pV @ (z) vQ™(z)---VQ™(z)

'n,1—1 k .
= pzx. \/ \/Q“‘J(p vem(z) Vv
z 0 j=0
'n.2 -1 k
pr. |\ \/Q“"(p) v@m(z) Vv
| ¢=0 j=0

[ﬂk\/IVQW(p } v @(a).

=0 j=0

We remark that sometimes it is not necessary to work on assertions of a particular
form like pz.p V P(z); We might have worked on uz. Q(z) directly as well. However no
generality is lost in this way because we can always, as a special case, let p be f. This

special case is worth noticing, for example, from Proposition 6.2.6, 6.2.7, and 6.2.8 we

obtain:

(V @(6))V@Q™(2)| = uz. Q(a),

=0

Q(uz. Q™(z)) = pz. Q(f) vV Q" (=),

and
. Q’"(w)VQ"(w)=m_\__/: . @ (£)V @Q™(2)] v v [y Q7™ (£) v Q*(v)],

where the same assumption is required.

The following derived formula is sometimes very useful. It allows us to reduce certain

forms of nested p—recursion into a single recursion.
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Proposition 6.2.9

Fuz. (py. P(2,y)) = pz. P(2,2).

Note for pz. (py. P(z,y)) to be well-formed the variable z, y must have the same
type.

Proof
P(pz.P(z,2), pz. P(2,2)) = pz. P(z,2),
pz. P(z, pz.P(2,2)) < pz. P(z2),
py. (pe. P(z,y)) < pz. P(z,2).
Also,

pe. (py. P(z,y)) < pz. P(2,2).
On the other hand,

pt. P(pz. [py. P(z,y)], t) = pz. (py. P(z,y)),
P(pz. [py. P(2,y)], pt. P(pz. [py. P(2,y)],t)) = pt.P(pz. [py. P(z,y)], t),

P(uz. [py. P(z,y)), pz. [py. P(z,y)]) = pz. [py. P(z, y)].

Hence

pz. P(z, z) < pz. [py. Pz, y)].

In general we have

pz1. (pze. ( --o p2n. P(21,2,-++,3,))) = pz. P(z, z, ---,z).

As a particular instance of the above formula, we have

pz.py- (Qy) V P(z)) = pz. Q(2) V P(z).

Proposition 6.2.10 For m >0, n > 0,
pa. (P™(z)V py.pV P*(y)) = pa.pV P"(z) V P"(z)

provided that P distributes over V.
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Proof It is easy to see that
Pr(pz.pVv P™(z)V P*(z))V py.pV P"(y)

<pVP"(pz.pV P™(z)V P*"(z))V P*(pz.pV P™(z) V P™(z))V py.pV P*(y)
<pz.pV P™(z)V P*(z).

By p—rule, we have
pz. (P™(2) V py.pV P*(y)) < pz.pV P™(z) V P*(z).
On the other hand, by Proposition 6.2.7,
pV P(pz. [P™(2)V py.pV P (y)]) V P*(pz. [P™(2) V py.pV P (y)])
SpVpz.[P™(z)V P™(py.pV P"(y))] V pe.[P™(z)V P*(uy.pV P"(y))]
SpVpz.[Pm(z)V P™(uy.pV PYy))] V pa.[P™(z)V py.pV P(y)]
< pz.[P™(z) V py.pV P"(y)].
The last inequality used the fact that
pz. [P™(z) V P™(py.pV P"(y))] < pz.[P™(z) V py.pV P™(y)],
which follows from the p—rule, noticing that
Pruz. (P™(z) V py.pV P(y))] V P™(uy.pV P"(y))
< Prlpz. (P™(2) V py.pV P"(y))]1V py.pV P(y) V P™(uy.pV P"(y))

< pe [P}V py.pV PMy)] V P™(pe.[P™(z) V py.pV PYy)]) V py.p V P™(y)

< pz. [P™(z) V py.pV P™(y)].

Now applying the u—rule we get

pe.pV P™(z)V P*(z) < pz. (P™(z) V uy.pV P*(y)).

From Proposition 6.2.10 it follows that

pz. (P™(z)V py.pV P*(y)) = pz.(P*(z) V py.pV P™(y))
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provided that P distributes over V, where m > 0, n > 0.

6.3 A Special Rule

Let us see what we can prove from the y—calculus of a particular type, the type of
natural numbers N specified by rec¢.1, +t. As remarked at the beginning, intuitively

mlt | : N denotes ‘zero’, #r the successor function. By Proposition 6.2.7, we can derive
i (o [id(b1) V i (i ())]) = o [ (l(61) ) V i (i ()],

which means if we apply the successor to the whole set of even numbers we get the set
of odd numbers, which is expected. As special cases of the propositions given in the
previous section we know that many other facts about natural numbers are derivable

from the p—calculus, a few of which are listed as follows:
o Fuz.orz =f
o Fpz. (wl(tL) Virie) =wl(ty) V pe. i (nl(ty) V arle)
o Fpz. (Wt Vir ity Vivis) = (pz. wlty Viwlz) V (pa. v idty Viris)
o buz. (Wt Vir wlt, Varis) =pz.mlt, Virz |

Is it the case that any fact expressable in the p—calculus are provable, i.e., is the

p—calculus complete? Consider the assertion
(pe.mlty Var?s) A (pr.aralt, Viartz).

It stands for the intersection of even numbers and odd numbers and hence should give us

the empty set, that is, one expects to be able to prove from the p—calculus that
(pe.wlt, Vir’z) A (pz.aralt, Varte) =1,

I do not have a proof that one cannot derive the above formula from the y—calculus with
rules given so far. However certainly I see no simple way to derive it and I strongly doubt
that it is derivable. The p—axiom and u—rule allow us to reason about the least fixed
points expressed in the form pz.P(z). But least fixed points can be expressed in many
other forms and one should not expect that the p—axiom and pg—rule alone also provide
us with power to reason about equivalences of fized points. We introduce the following

rule for each type, to deal with the interaction of conjunction and p construction.
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p A (pz.qV R(z)) < R(p) R distributive

(A=n) pA(pz.qV R(z)) < pz.p A(q V R(z))

We check the soundness of this rule by mathematical induction, to show that for all

n, for all environment p,
U [pAR(@)], S [pe.pA(gV R(2))],
0<i<n
provided that
Vo [pApz.qV E(2)], € [R(p) ],
Here, R%(z) is an abbreviation for z. This proof relies on the soundness of the rest of

the p—calculus. The base case n = 1 is trivial. Induction step. First note that, by

assumption,
<L<J [pAR(g)], S [pAna.qV R(z)], C [R(p)],.
. 1<i<n+1
Therefore
U [pAR(9L =[R®)L.N U [pAR()],.
1<i<n+1 1<i<n+1
Now

Uocicnia[P A B ()], =[P Aql, U(Ip], NUicican[RI(@)],))
=[pA gl U([pL N[R(P) L, NUicicnra [ B (9)]5) )
=[pAql, U([p], N[R(Vocicn P A B¥(9) )1,)
Clprglou(lploN[R(pz.pA(gV R(2)))],)
= [pz.p A (qV R(2))],.

Note in the second last step we used the induction hypothesis,

U [pAR(9)], CLpa.pA(¢V R(=))],,

0<ikn

and the monotonicity, distributivity of R. Thus we have proved
Proposition 6.3.1 The rule (A — p) is sound.

The following rule is necessary for us to reason about y—assertions in sum.

t£P(f)  t£Qf)
wl (px. P(z)) Aar (py. Q(y)) < f
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Note that to use the proof system for & in Chapter 5, assertions must be in A, with
o the type concerned. Therefore when we write t £ P(f) and t £ Q(f), we mean, in

particular, that P(z) and Q(z) do not involve y—assertions themselves, and z is the only

possible free variable in P and Q.

Proposition 6.3.2 The rule (= + p) is sound.

Proof It is enough to show that [t] € [uz. P(z)] and [t] € [uz. Q(z)]. We give a
proof for the first case; the proof for the second case is similar. By the lemma given in

the previous section, there exists p and R, such that
FP(z) =pV R(z)

where p is closed and R(f) = f, with R distributing over V. Clearly [t] € [p] and
[t] € [R(q)] implies [t] C [q]. If it were the case that

[t] C [pa- P(2)]
then
[t] C [pz.pV R(2)],

[t € ULE ®)]-

Therefore [t] C [ R™(p)] for some n, which implies [t] C [p], a contradiction.
Now
(pz.mlty Virizs) A (pr.owwlt, Viriz)=f
can be derived in the following way. Clearly
wlty ANirwlt; =f.
By Proposition 6.2.7,
w?(pr.irwnlt, Viris) = ar( pe.aradty Var® o).
We have t £ t; and t £ ar?wlt,. By (- + p),
ity Adr( po. v’ wlt, Virds) =1,

SO

inltl/\wz(y:v.z}zrirdtlvwzw)zf.
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Similarly,
wrmlt, /\1'nr2(/z:1:.inltl Vinrzw) =f.

Therefore
(pz.wlty Virz) A (pz.drolt, Viariz)

= (wlty Var*(pz. oty Varls))A(av oty Viar2(ps.ar ol t, Varis))
=ir?[(pr.wlt, Varlz) A (pe.aridty Vardz))
<wi(pz.wlt, Virlz).
Now, by taking p to be pz. @t Var?z in (A — u) , we get
(pz.ddt, Varlz) A (pz.orwlt, Virls)
Spy[(pe.alt, Virlao) A (mralt, Varty) |
<pyl(pz.dltyVer’z)Amr?y]

<f.
Proposition 6.3.3 Suppose
FpA(pz.qV R(z)) =1,

FgA(pz.pV R(z)) =f,

where R is distributive. Then

E (pz.pV R(z)) A (pz.qV R(z)) = f£.

Proof We have
(nz.pV R(z)) A (pz.qV R(z))
= (pV R(pz.pV R(z))) A (qV R(pz. ¢V R(z)))
= R[(pz.pV R(z)) A (uz.qV R(2))]

< R(pz.pV R(z)).
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By (/\ - u)a
(uz.pV R(z)) A (4z.qV R(z))

< py. (pz.pV R(z)) A (qV R(y))
< py. (uz.pV R(z)) A R(y)
< py. R(y)

=f

We remark that the rule (A — y) is only used to get Proposition 6.3.3. It is the result of
Proposition 6.3.3 that is directly used in proving completeness in the next section. Hence
the result of the next section also holds if instead we introduce the result of Proposition

6.3.3 as a new rule.

The following proposition tells us how to reduce some form of conjunction of y—assertions

to a single p—assertion.

Proposition 6.3.4 Suppose @ is distributive and
PAQ (pz.pV Q) (z) ) =f

for 0 <i < 2-lem(m,n) with m > 0, n > 0, where lem(m, n) is the least common multiple

of m and n. Then

(uz.pV Q™(2)) A (ny.pV Q™(y)) = pz.p V Q™mm)(2).

Proof Suppose m # n. By Proposition 6.2.6, we have
pz.pV QR (2) < pa.pV Q™(w),

pz.pV QTMI(z) < py.p v Q™(y).
Therefore,
pz.pV QM (2) < (uz.pV Q™ () A (py.p V Q"(v)).

On the other hand, write lcm(m,n) as L and assume L = sm = tn, for some s > 0, ¢ > 0.

By Proposition 6.2.6 again,

ppV @) = pz. \ Q7 (p) V QX(e),
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pe.pV Q" (y) = py. t‘:/ Q" (p) v Q" (y).

=0
Hence

[uz.pV Q@™(2) I A [py.pV Q™) 1= [ViZ3(pz. @"™(p) V QL(z)) A

[Vizo( my- Q7 (p) v @%(v) ).
It is enough to show that, for 0 <i < s,0<j < ¢,

[ 1z Q"™(2) V Q(2) | A [y @*"(p) v @*(v) | = 1.
In fact,
[ 12 Q"™ (p) V Q%(2) | A [ 1y @7"(p) V QX(y) |
= [Q"™(2) v @*(12.Q"(p) V @X(2) ) | A [ @7(p) V Q¥ py. @ (9) V Q%(y) ) ]
= Q" [ (ue. Q"™(p) V Q¥(@) ) A (py- Q¥™(p) V Q¥(v)) ]
V[ Q(p) A QE( py. Q7 (p) V Q%(y) ) | V [ Q7 (p) A Q%( pz. Q™ (p) V Q¥(x) ) |.
However
Q"™(p) A Q"( uy- Q"(p) v Q%(y) ) =,
Q") AQ"(pz. @™(p) vV Q¥ (z) ) = f,

by assumption. Hence
| n2. Q"™ (p) v Q(x) | A [ my. @*"(p) v @ (y) ]
= Q( [ ue. @™(p) V QX(2) | A [ my. Q7 (9) vV QX(v) ] )
< QY( [ pa. @™(p) v Q¥(2) | )
Applying (A — u) we get .
[ p2. Q"™ (p) v Q%(=) | A [ wy. @F™(p) V Q¥(y) ]
< uy. [(pe. @™(E)V Q@) ) A(Q™(p) V Q4(y)) ]
< py. [ (p2. Q™) V Q¥(2) ) A Q (y) ]

<f.

Note that
(pz. @™ (@) VQ () )AQ ™" (p) =
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pz. Q" (p)V Q% (z) = Q*"(p) V Q*( pz. Q"™ (p) V Q%(x) ),
Q™ (p) N Q'™ (p) =f,
and

Q" (p) A Q¥ pz. @™ (p) V Q%(z) ) = 1.

As a special case of Proposition 6.3.4, we have

(pz. mt) Viwlz) A (pz. wlty Vil ) = pz. wlt, Vinrlz.

6.4 Soundness, Completeness, and Expressiveness

In this section we give soundness, completeness, and expressiveness results for the
p—calculus. The proof of completeness for type N is given in detail, via a normal form
theorem. The expressiveness of assertions of N is then immediate. It is conjectured
that in general the completeness of the y—calculus can be shown through completeness

of assertions in normal form, following the same pattern as the one given for N .

Since this section is concerned specially with the p—calculus for the integers N, we

shall abbreviate @ t, as 0 and # as s, the successor function.

We have presented all the axioms and rules for the y—calculus. Now when we write
F ¢ < % we mean the formula ¢ < v is provable from those axioms and rules. The
p—calculus is sound: the soundness of the p—axiom and the u—rule follows from Propo-
sition 6.1.2, and the rest of the axioms and rules have already been shown to preserve

validity of formulae. Therefore, we have

Theorem 6.4.1 Suppose @, % are assertions of type o. If F ¢ < 4, then for any
environment p, [¢]p C [¥]p.

To give a proof for the completeness of the p—calculus of N, we first show that
essentially each assertion of N, is provable to be equivalent to a finite disjunction of

p—assertions of the form

pr. "0V s"(z).
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We put two syntactic restrictions on the p—assertions: i. When a g—assertion pz. P(z)
is formed, « is the only possible free variable in P; ii. When a conjunction ¢ A ¢ is
formed, ¢o and ¢y are required to be closed. These restrictions make the task of proving

completeness feasible but it does not affect the expressive power of u—assertions.

Definition 6.4.1 A closed assertion ¢ of N, is called a normal form if

o= \/ pz.pVs*(z)
0<k<n

where py’s are either of the form s% 0 or t, or f.

When an assertion is provably equivalent to a normal form we say that this assertion

has a normal form. The following is a key theorem for completeness.

Theorem 6.4.2 ( The first normal form theorem) Each closed assertion of N has

a normal form.

Proof By structured induction. We show that the constructors A, V, s, and y preserve
the property of having a normal form. For all the cases we assume that in the normal

form no assertion is equivalent to either t or f.
It 1s obvious that if ¢y and ¢, are in normal forms the so is g V 5.
If » has a normal form then so does sy, by Proposition 6.2.7.

Suppose ¢ and ¢, are in normal forms. To show g A ¢, has a normal form, it is

enough to show that
(uz. $0V & (z) ) A (pz.s™0Vs™(z))

has a normal form in general. By using Proposition 6.2.6 first and then Proposition 6.2.5
we can raise the power of the recursive unit so that both p—assertions have the same

power for the recursive units. Therefore we can assume j = n.

Suppose ¢ # m, and, without loss of generality, : < m. We have

F(px.s°0Vs™(z))A(pz. s™0V s™(z))

=5 [(pz.0Vs™(z))A(pz. s™0Vs™(z))].
Thus it is sufficient to show that

(pz. 0V s™*(z) ) A (pz. sFOVs™(z))
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has a normal form. If

F(pz.0Vs™(z))A sf0="f
then by Proposition 6.3.3

F(pe.0Vs™(z))A(pz.s¥0Vs"(z)) =1

since it follows from (— + p) that, when & > 0,

FOA(pz. sFOVst(z))=T1.
Otherwise k£ > n, and we can easily show that

F(pz.0Vs™(z))A s¥0=3s%0

by unwinding pz. 0 V s™(z) a number of times. Let ¢ be the least number such that

t-n = k. Using Proposition 6.2.6 and Proposition 6.2.5 again,

F U, oV sn(m) = \/ uz. S"iO V S(t+1).n(m).
0<i<t

By Proposition 6.3.3,
F (pa. s™0V sEIM(2) YA (pz. sFOV s (z) ) =f
when ¢ < t. Therefore
F(pz. 0V s™(z) ) A( pa. sF0Vs™(z))
= (pz. sFOV sHD(2) ) A (pa. £ 0V s7(z) ).
We can then use Proposition 6.3.4 to get a normal form.

To show pz. P(z) : N1 has a normal form we first transform P(z) into a disjunctive

normal form

FP@=)=pVv \ s5(z),

0<i<n
where p is closed. This is possible because of the two syntactic restrictions we imposed.

Applying the generalised version of Proposition 6.2.8 and Proposition 6.2.5 we get

Fuz. P(z)= \/ pz.p;Vshi(z),

0<i<n
where p;’s can be assumed to be already of the form
pz. sF0V s™(z).
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It remains to check that assertions of the form

pe. (py. 50V & (y) ) V ™ ()
have normal forms. But by Proposition 6.2.10,
Fopz. (py. s*0V si(y) ) V s™(z)
= pz. sF0V &¥(z) V s™(z).
It follows from Proposition 6.2.8 that
pz. sFOV 51 (2) V s™(z)
has a normal form. Hence any such pz. P(z) has a normal form. il

Note that it is easy, by Proposition 6.2.6, to transform any normal form into an

assertion
p \% (:u‘w Do \Y Sn(x))a

where p and po are assertions of Ay, in their prime normal form ( which does not involve
sub-p—assertions, neither free variables ). We can further assume that for each disjuncts

s*0 of po, k < n. This is indeed another normal form.
Theorem 6.4.3 ( The second normal form theorem ) Let ¢ : N . Then
Fo=pV(uz. poV s"(z)),
where p and po are prime normal forms of Ay, and for each disjuncts s¥0 of pg, k < n.

We now prove that for assertions in the second normal forms our proof system is

complete. Following the notation introduced before, we write |= ¢ < v when

Vp-lelo S Lol

Theorem 6.4.4 Suppose ¢ and 1) are assertions of N, in the second normal form.
Then k= ¢ < % implies F ¢ < .

Proof Suppose
p=pV (px.poV s"(z))
and

p=qV (uz.q0V s™())
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and suppose = ¢ < . Since = ¢ < ¥, we can unwind 3 a number of times so that
= p < ¢. Hence I p < 4. Now by virtue of Proposition 6.2.6 we may assume, without

loss of generality, n = m. We have

E pz. poV sv"(a:) <qV (pz. @V s™(2)).

It is sufficient to prove that |= po < go. Suppose £ py < go. Then for some disjuncts s*0
of po, [s¥0] # [s°0] for any disjuncts s°0 of go. This implies

P nz.poV s™(2) < ¢V (pz. g0 V s"(2)),
a contradiction. N

Immediately there is the

Corollary ( Completeness of p—calculus for integers ) The p—calculus for N,

consisting of g— axiom, u— rule, (A — u), (= + ), and those rules for Ay, is complete

provided we impose the two syntactic restrictions on the assertions.

Expressiveness is then clear: the open set expressible by the restricted form of y—assertions

of N, are 0, N, and ‘natural numbers’ of the form

NoU | {mi+k-ni|kcw}
0<i<n

where m;, n; are natural numbers and Nj is a finite set of natural numbers. This result
agrees with the one mentioned in [Sst87] where the semantics of a y—assertion language
is investigated but no proof systems proposed. Our second normal form theorem tells

us, however, a rather interesting result that open sets of the above class can also be

represented in the form

NoU U(k'n0)+Nl,
kew

where np is a natural number, Ny and N are finite sets of natural numbers, and
k+N=""{k4+n|neN}
for a natural number k£ and a set N.

From the expressiveness result we know that the restriction on the syntax does not
affect the expressive power. This fact is expected to be true for other types, too. But we

have to explain why there should be such a restriction. The first reason for the restriction
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is that we have not yet found any way to bring the uy. construction outside assertions of

the form
ne. P(w) ny. Q(wvy))

to get a reasonable simple normal form. The second reason for the syntactic restriction

comes from the fact that we have no obvious way to ‘simplify’ an assertion like

pz.po V (s™(z) Ap1) V (s™(z) A pa)

of N, in general.
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Chapter 7

Categories of DI-Domains
and Event Structures

The remaining part of the thesis is devoted to developing logics of dI-domains. To
be more precise, we aim to build a logic analogous to that given in Chapter 5 on each
category of domains (in a broader sense). There are many different categories of domains
with dI-domains as ob Jects and certain kind of stable functions as morphisms. However,
they are scattered in the literature. To provide a background knowledge for the work in
later chapters, this chapter gives a survey of such categories (some of them are new) and
indicates relationships among them (if possible). We actually present more categories
than that are used later, so as to make this chapter a useful reference for different cate-
gories of dI-domains. These categories have been discovered with different computational
motivations. Due to the lack of space we cannot give a full explanation of the motivations

here. But this chapter is hoped to contain enough information on the mathematics side

of the categories.

The following is a list of the categories we are going to discuss:

DI — dI-domains with stable functions

DL —  dI-domains with linear functions

SEV, — stable event structures with stable functions

SEV; — stable event structures with linear functions

SEV;,, — stable event structures with partially synchronous morphisms
SEV,,, — stable event structures with synchronous morphisms

SF, —  stable families with stable functions

SF,; — stable families with linear functions
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and

COH, _. coherent families with stable functions
COH; __ coherent families with linear functions
FF — finitary families with linear maps
where DI is due to Berry [Be78]; SEV,, SEV{,,., SEVy, and SF, are due to Winskel

[Wi82], [Wis6], [Wi88]; COH, and COH, are due to Girard [Gi87a], [Gi87b], though
presented in a slightly different form here; and SEV,, FF are new. The remaining DL
and SF,; are known to exist, but people have not really used them yet. There is some
recent work on representing DI as stable information systems [Zh89]. The category SIS
of stable information systems is equivalent to DI. But it is not included in this chapter

due to lack of space.

This chapter is organised as follows. Section 1 presents cartesian closed categories
from the above list. Section 2 gives an introduction to SEV,,, and SEV,,,, categories

for concurrency. Section 3 introduces monoidal closed categories. In the last section

relationships among the categories are discussed.

7.1 Cartesian Closed Categories
This section presents cartesian closed categories
DI, SEV,, SF,, COH,

among the list given at the begining.

The Category DI

DI-Domains were discovered by Berry [Be78] from the study of the full-abstraction
problem for typed A-calculi. They are special kinds of Scott domains which have a more
operational interpretation. The functions between dI-domains are stable functions under
an order which takes into account the manner in which they compute. DI-domains with
stable functions form a cartesian closed category, making it an alternative framework in

which to do denotational semantics.
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Definition 7.1.1 A dI-domain is a consistently complete domain D which satisfies

e axiom d: Ve,y,z€D.yTz=2zN(yUz)=(zNy)U(zN2)

o axiomI:Vde D |{z|2Cd}|< o0

Example 7.1.1 Two Scott domains lacking distributivity(axiom d):

Example 7.1.2 A Scott domain which violates axiom I:

Proposition 7.1.1 A domain D satisfies axiom d iff for all z,y,z € D
{z,9,2} 7= aN(yUz)=(zNy)U(zM2).
Proof
(=): Trivial.
(«): For any compatible pair y,z in D, {z M (y U 2), y, z} is a compatible set.
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Therefore,

[eNU2N(yU2) =[N yu2)]ny|uenyuzins,
or

zNyUz)=(zNy)U(zM2).

This proposition means we can replace axiom d by a seemingly weaker one, requiring

distributivity to hold only for compatible triples.

Definition 7.1.2 A function f : D — E between two dI-domains D and E is stable

if it is Scott-continuous and preserves meets of pairs of compatible elements, i.e.,

Vz,y € D. 2Ty = f(zNy) = f(z) N f(y).

It is linear if it is stable and, further,

VX CD. X1= f(UX)=| {f(2) |z€ X}.

Definition 7.1.3 Let f, g be two stable functions from D to E. f stably less than

g, written f =, g,if Vo, y € D. 2 Cy = f(z) = f(y) M g(z). Write [D —, E] for the
set of stable functions from D to E.

DI-domains with stable functions form a category DI.

Theorem 7.1.1 (Berry) DI is a cartesian closed category. The products are the
Cartesian product ordered coordinatewise and the function space of dI-domains D and E

consists of the stable functions between them and ordered under the stable order.

The following lemmas will be frequently used.

Lemma 7.1.1 Let D, E be dl-domains and f,g: D — E stable functions. f T g iff
f2)Ng(y) = fzNy)Ng(zNy)

Ve, yeD.z Ty =>{
f(=) 1 9(y)

Proof |
=) : Lhere exists h € D —; F such that f C; h and ¢ & A as g. Hence
Th. ists h € D E h that f h and h H
feNy) = f(z) Mh(zNy),
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9(zMNy) =g(y) T h(z Ny).
Therefore
flz)Ng(y)Nh(zNy) = f(zNy)Ng(zMNy),

fz)Ng(y) = f(zNy)Mg(zMy).

(«) : Define H = Az. f(z)Ug(z). We show that f C, H and gL, H. f C; H because
fory, z€ D and y C z,

f(2)Ng(y) = fly) Ng(y)
= fly) =) U (f(z) Ng(y))
— f4) = FONIG)UFEN W) (f@) T F)
= fly) = f(z)N [f(y) u g(y)] ( E is distributive )
= f(y) = f(2) N H(y).

Similarly ¢ C, H holds. H is clearly stable. ll

The following two corollaries are obvious.

Corollary 7.1.1 If f and g are compatible and f is pointwisely less than ¢ then it
is stablely less than g.

Corollary 7.1.2 f T g implies Vz,y.z Ty = f(z) Ng(y) = f(y) N g(z).

Lemma 7.1.2 If F C [D —, E] is compatible then

feF

Proof It is enough to show that Az.| | f(z) is continuous, stable and greater than
feF
any function in F' under the stable order.

Continuity: Let

be a chain in D. Obviously

L A=) = U (U £e)

feF  iew fEF icw



‘Hence it is continuous.

Stability: For any compatible pair z, ¥ in D, we have
Ll feny e (L £=) n (U 9@)
fer fer geF
= | U (f=)ne)

fEF geF

= I_I L] (f($ Ny)Ng(zn y)) (by Lemma 7.1.1 )
fEF geF

C l_] flzMy).

Therefore

Ll feny) = (1] £#=) 1 (1 9@)).

feF feF g€eF

Let y C 2 and g € F. We have

9(w) Ce() || f(y)

feF

= | (¢z) 1 £(w))

FeF

= || (g(y nz)nN f(yn z)) (by Lemma 7.1.1)
feF

C 9(y),
which implies

9(y) =g(z)n | f().

fEF
In other words,

g Cs Az, |_| f(z).

feF

Now we are in a position to explain why axiom I is necessary. It has to do with the fact

that stable functions between w—algebraic, distributive Scott domains under the stable

order need not necessary form an w—algebraic domain: There can be too many finite

elements in the function space. Consider the stable function space from the domain given

in Example 7.1.2 to itself, where the order of elements in the domain is the reverse of the

order for natural numbers. Each stable function f corresponds to an infinite sequence

(f(l)’ f(2)’ f(3)),f(n)’)
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where : C j = f(¢) C f(j). We claim that all the stable functions are finite elements of

the stable function space.

Let {¢; | ¢ € I} be a directed set of stable functions such that Llier ¢: 25 f. Especially,
Lier #:(1) 2 f(1), by Lemma 7.1.2. Therefore, there exists io € I such that ¢;, (1) 3 f(1),
as f(1) is a finite element. Since ¢;, and f are compatible, for all k

F(R) M o (1) = i (k) M1 £(1).

Hence for all &
f(k) = f(F) M £(1)

= f(k) M i, (1)
= ¢io(k) N f(l)
E ¢zo(k)
This actually implies f =, ¢;, by virtue of Corollary 7.1.1, which shows that f is a

finite element in the function space. By the diagonal argument we deduce that there are

uncountably many such functions. Thus the function space is not w—algebraic.

Lemma 7.1.83 If F C [D —, E] is compatible then

[1F =xz.[] f(a).

feF

Proof First we verify the non-trivial fact that Az. |_| f(z) is continuous. Let
JEF

mogmlg...[:a; |;...

= “*n

be a chain in D. What is needed is the equation

M (U £} = U[MN £z)].

fEF i€w i€w feF
Clearly
MU f] 2 U1 fe)].
fEF i€w i€w fEF
The argument for the inequality in the other direction runs as follows:

de D& [ [ f(z)] 2 d

fEF dew

= VfeF || f(z:)Dd
1€Ew

= Vf € F 3. f(z:,) 2 d

feF
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Let ip =min{is | f € F'} where h € F. By Lemma 7.1.1 we have

Vf € F. h(.’l:ih) M f(:c,f) = h(:l:ih) (! f(:L‘,'h).

Therefore,

[1 fe) = [ fla),

feF feF
which implies

l_]“_l f(%')] 201 f(=z:) 2 d

i€w feF feF

That Az. I_| f(z) is stable and Az. |_| f(z) C, g for all g € F are routine. Il
fE€F feF

Notice that we require F' to be compatible. Meet (greatest lower bound) always exists

but may not equal to the function specified by pointwise meets.
It is useful to know the connection between distributivity and prime algebraicness.

Definition 7.1.4 Let D be a consistently complete partial order. A complete prime
of D is an element p € D such that

pEI__IX=>3m€X.p§m
for all compatible set X. D is prime algebraic if

z=| [{p|pC 2 &pis a complete prime } |

forall z € D.

Lemma 7.1.4 (Winskel) Suppose D is a consistently complete partial order which

satisfies axiom I. Then D is a prime algebraic domain iff it is a dI-domain.

Proof See [Wisg]. ll

The Category SEV,

DI-domains can be represented as stable event structures which are models for processes
of concurrent computation. An event structure is a description of a set of events in terms

of consistency and enabling relations. The consistency relation indicates whether some
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events can occur together or not, and the enabling relation specifies the condition when a
particular event may occur with regards to the occurrence of other events. A configuration
of an event structure is a set of events which is consistent and each of its event is enabled
by a set of events of the configuration occurred previously. Therefore, a configuration is

a set of events which have occurred by certain stage in a process. More formally,

Definition 7.1.5 An event structure is a triple
E=(E, Con, I-)

where
e E is a countable set of events,
e Con is a non-empty subset of Fin (E), the finite subsets of E

called the consistency predicate which satisfies

XCY&Y € Con= X € Con,
e | C Con x E is the enabling relation which satisfies

(XFe&XCY&Y €Con)=Yte.

It is not essential to require E to be countable. When X F e, we say e is enabled by
X. Although an event structure looks similar to an information system, it is based on a
different intuition and they are totally different structures. Typically, for an information
system if X t o and X - @/, a and o’ must be consistent while for an event structure, we

cannot say anything about the consistency of two events e, e’ enabled by the same set of

events.

Definition 7.1.6 Let E = (E, Con, ) be an event structure. A configuration of E

is a subset z C F which is
e consistent: VX C/™ 2. X € Con,
esecured: Ve€zx deg, €1, -+, e, €E2.e,=¢€¢ &
Vi<n. {e|0<k<i-1}Fle,.
Write the set of configurations of an event structure E as F (E).
There is a special class of event structures for which each configuration determines a
partial order of causal dependency on the events. Intuitively, an event e; causally depends

on an event ep if the occurrence of the event ¢ is necessary in order for e; to occur. Event

structures of this kind are called stable.

153



Definition 7.1.7 An event structure E is stable if it satisfies the following axiom

(XFe&Yre&XUYU{e}eCon)=XNYte

Theorem 7.1.2 (Winskel) Let E be a stable event structure. Then (F(E), C) is

a dI-domain.

Stable event structures with stable function on the set of configurations form a category

SEV, which is equivalent to the category of dI-domains. The function space of stable

event structures are defined as follows.

Definition 7.1.8 Let Ey = (E,, Cong, to) and E; = (E;, Cony, ;) be stable
event structures. Their function space, [ Eg — Ei], is defined to be the event structure
(E, Con, ) with events E consisting of pairs (, e ) where « is a finite configuration in
F(Ey) and e € Ey, a consistency predicate Con given by
{(zi, )| 0<i<n—1} € Con iff

e VIC{0,1,---,n—1}. UmiEC’Onoﬁ{eé |2 eI} e Cony
i€l
o Vi,j<n.(z;Tz;&e;=¢;) = z; = 25,

and an enabling relation given by

{(z;,)|0<i<n—1}F(z,e)iff {e]|z; Sz} lye.

Theorem 7.1.3 (Winskel) The stable function space of two stable event structures
is a stable event structure. There is a 1 — 1 order preserving correspondence between
configurations F[ Ey — E4 ] with set inclusion as its order and stable, continuous functions

F(Eo) — F(E;) with the stable order. The associated maps are

¢: FlEo— E] -~ [F(E) — F(E)]

by letting
Fr— X ecF(E). {e€cE |32’ Ca.(2,e)e F},
and
p [FE) = F(E)] - FlE — B ]
by letting

fr—{(z,e)leec f(z)&(Vd'Cz.ecf(a)=2"=2)}.
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We mentioned earlier that a stable event structure is an event structure each config-
uration of which determines a partial order of causal dependency on the events of the

configuration. This partial order is specified as follows.

Definition 7.1.9 Let F( E ) be the family of configurations of a stable event structure
E. Let z € F(E) and ¢, € € z. Define

€ <,eif WWeF(E).(ecy&yClrz=¢€y)

[ele=N{yeF(E)|ecy&ylz}.

<z is a partial order and [e], = {¢' € x | ¢’ <, e}. Some times [e], is very useful to

work with.

The Category SF,

Forgetting about the enabling and consistency relation but keeping the configurations
of a stable event structure, one gets a stable family. Stable families are an axiomatisation

of the configurations determined by stable event structures.

Recall some notations first. A subset X of a partial order (P, C) is compatible ,

written X T, if 3p € PVz € X.z C p. It is said to be finitely compatible, written X 17" if
Y 1 for any finite subset Y of X.

Definition 7.1.12 A stable family is a set of subsets F of a countable set E which
satisfy

¢ finite completeness:
XCF&Xr=UXeF
o finiteness:
VeeFVeeczdzeF.(|zl<o&ecz&zCxz)
o stability:
VXCF. X#D&XT=NXecF

e coincidence freeness: _
VzeFVe, e Ca.ete= (yecF.yCa&klecysedy])

Let F be a finitary family over E. The elements of F are called configurations and
the elements of E called events. F is said to be full if UF = E. If E is a stable event
structure then F(E) is a stable family.
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A stable family with set-inclusion gives a dI-domain. Stable families with stable func-
tion as morphisms form a cartesian closed category SF,. SF, is equivalent to SEV,.

Similar to SEV,, one can define constructions like sum, product, and stable function

space on SF,.

The Category COH,

Coherent spaces are special kinds of dI-domains, or event structures. They were intro-

duced first as a model for the system F [Gi87a], and later as a semantics for linear

. logic[Gi8T7b].

As a dI-domain, a coherent space is a domain D which is coherent, or pairwise complete
in the sense that it has least upper bounds for pairwise compatible sets, and d is a complete
prime iff

d;é_LD&((BEd:JI:J_D).

As a stable event structure, a coherent space is a structure of the form
(E,Con,{0Fe|lec E}),
where Con is determined by a conflict relation.

However for later use we present coherent spaces as special kinds of stable families
called coherent families. It is assumed that coherent families are full as stable families.

Thus it is not necessary to specify the event set.

Definition 7.1.13 Let F be a stable family. It is called a coherent family if

eVee FyCz=ycF

o (XCF&Vz,yeX.2Ty)=UX€EF

In fact the above conditions implies the axiom of finiteness, coincidence-freeness, and
stability for stable families. So the above two axioms are enough to determine a coherent

family.

Proposition 7.1.2 Let F be a coherent family. Then (F, C) is a dI-domain with
{{a}|{a} € F} the set of its complete primes.
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Proof Straightforward. Il

Coherent families with stable functions form a cartesian closed category. The product,

co-product (sum), and function space construction are defined as follows.

Definition 7.1.14 (Sum) Let Fo, F; be coherent families. Their sum, Fo + JF1,is a

family of subsets which satisfies
zeF+Fi<= e C ({0} xUR)U{1}IxUR) &

®dzo € Fo.x={0} XxzoorIz, € Fr.z={1} x4

Definition 7.1.15 (Product) Let Fo, F; be coherent families. Their product, Fo x Fi,

is a family of subsets which satisfies
reEFoxFir<= oz C ({0} xUFR)U{1}IxUR)&

e dzg € Fo, :L'1€,7:1.$L‘={0}><SL'0U{1}><:131

It is easy to see that the sum and the product of coherent families are still coherent

families.

Definition 7.1.16 (Stable Function Space) Let Fo, F; be coherent families. Their

stable function space, Fo — JFi, is a family of subsets which satisfies

zt€EFo->Fi<= ez2C{yeF||lyl<co}xUF &
oVrg € Fo.{ms|msCao&kscz}eF &

® [yoUyo € Fo & (yo, €1), (Yo, €1) € 2] => €0 = €}
By the coherence of Fo and F3, Vo € Fo. {ms | mos Cxo & s € 2} € Fy iff

Y(yo, €1), (Yo, €1) € @ yoUyy € Fo = {1, ¢} } € Fu.
Proposition 7.1.3 The family 7y — F; is a coherent family which is isomorphic to
[Fo —s F1], the dI-domain of stable functions from Fy to Fj.

Proof Suppose y C & € Fo — F1. Then for any zo € Fo, {mis [mos Czo & sea} €
.7:1. But

{ms|msCao&sey} C{ms|msCazo&scz}.
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Thus {ms | mos C z0 & s € y} € Fi. It is easy to see, therefore, that Fy — Fy is a

coherent familie.

Let Fo, F1 be coherent families and = € Fy — F;. Define Pt(z) to be a function from
Fo to Fi such that for zy € Fy,

Pt.’)?(xo)={6€U.7:1 | Elyogxo.(yo,e) EIE}.

Pt z is continuous because y is finite for any (y,e) € z. If 29 T 2 then {e € UF; |
Jyo € 0. (Yo, e) €x } and {e € UF | Jyo S zo. (vo, €) € T } are compatible. From
which it follows that Ptz (zo Nzy) = Ptz (z0) N Ptz (xh), i.e. Pz is stable. Suppose
T,y € Fo — F1, and P z(z0) = Ply(zo) for any zo € Fo. Let (yo, e1) € z. Then
e1 € Pta(yo), and so e; € Pty(yo). This implies that, for some y4 C yo, (¥}, €1) € y. But
now e; € Pry(yp); We must have e; € Ptz(y)), too. Hence yo = yf,. We have proved that
z C y. By symmetry y C z, thus z = y.

Let g € [Fo —, F1]. We show that there is a configuration Cof g € Fo — F; such that
g = Pt(Cof g). Cof g is defined as follows:

(yo,e1) €ECof g <= e1 € g(yo) & [yh S yo & 1 € g(yh) = yo = vj).

It is easy to check that Cofg is a member of Fy — F;, and g = Pt( Cof g ). One can show
further that, for z, y € Fo > F1, 2 Cyiff Plz C, Pty. |

7.2 Categories for Concurrency

Now we introduce the categories SEV7,,, and SEVy, of Winskel. SEVY,, is a cate-
gory with stable event structures as its objects and the partially synchronous morphisms

as morphisms. SEV,,, is a category with stable event structures as its objects and the

synchronous morphisms as morphisms.

Definition 7.2.1 Let Ey = (Eo, Cong, to) and E; = (B, Cong, 1) be stable
event structures. A partially synchronous morphism from Eq to E, is a partial function

0 : Eo — F; on on events which satisfies

e X € Cong = 0X € Con,
o{e, e} eCongd&ble)=00)=e=¢
o X g e & 0(e) is defined = 0X t, 6(e)
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A partially synchronous morphism 8 is synchronous if it is a total function.

Note the truth of #(e) = 6(¢’) asserts also that 0(e) and 6(e’) are defined. SEV?* isthe

syn

category with stable event structures as objects and partially synchronous morphisms as
morphisms. SEV,,, is the category with stable event structures as objects and partially

synchronous morphisms as morphisms.

Definition 7.2.2 Let Ey = ( Ey, Cong, to) and E; = (E;, Cony, 1) be stable event

structures. Their partially synchronous product, Eo x Ey, is a structure ( E, Con, F) where

e E={(e,*)]|ecE}U{(*¢€)|ecE}U{(e,¢)|ecEy&ecE)}

o X € Con <= mX € Cong & mX € Coni &

Ve, €' € X.[mo(e) = mo(€') or mi(e) = my(e)] > e=¢
o X F e <= [mo(e) is defined = moX ko mo(e)] &
[r1(e) is defined = m X by m1(e)].
An event (eg, *) is one which can occur independently of the events of E;. A pair of

events ( eg, €1 ) is understood as the synchronisation of the event ey from Fy and ey from

Ey. The consistent predicate for the partially synchronous product indicates that in any

computation, an event cannot synchronise with two distinct events.

Theorem 7.2.1 The partially synchronous product with projections 7y and m; is a

*
syn*

product in the category SEV

Definition 7.2.3 Let Ey = ( Eo, Cong, Fo) and E; = (E;, Cony, i) be stable event

structures. Their synchronous product, Eq @ E, is a structure ( E, Con, t-) where

e E={(e€)|ecE &eckE}
o X € Con < mpX € Cong & mX € Cony &
Ve, € € X.[mg(e) = mo(€') or my(e) = my(e)] => e =¢

e Xte < (’R'oX *‘0 7'('0(6) & 7('1X I_]_ 7{'1(6)).

Theorem 7.2.2 The synchronous product with projections 7y and 7y is a product

in the category SEV,,.
Stable event structures can be used to give semantics to languages like CCS and
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CSP, with parallel compositions are modeled by the partially synchronous product. The

nondeterministic choice operator is modeled by the sum construction. -

Definition 7.2.4 Let Eq = (Eo, Cong, o) and E; = (Ey, Con,, F,) be stable event

structures. Their sum, Eqy + E,, is a structure ( E, Con, ) where

e E={(0,e)|ecE}U{(l,e)|e€FE}
X € Con <= 3X,€Cong. X ={(0,e)]ec Xy }or
dX1.€ Com. X ={(1,e)|eec X1 }
* Xte<=[3Xo € Cono,e0 € Eg. Xoboeo & X ={(0,¢) | e € Xo}&e=(0,e)]
or

[EIX1 € 007?,1, e1 € Fy. X1 i_l €1 & X = {(1, 6,) l e’ € X; } &e= (1, 61)].

Theorem 7.2.83 The sum is a coproduct in both the categories SEV* ~ and SEV ;.

syn

7.3 Monoidal Closed Categories

This section introduces monoidal closed categories SEV;, COH,, and FF.

The Category SEV,

Tensor product and linear function space constructions are introduced on stable event

structures. These constructions determine a monoidal closed category of stable event

structures.

Definition 7.3.1 Let Ey = ( Ey, Cong,to ) and By = (Ey,Cony, b1 ) be stable event

structures. Their tensor product, Eo® Ey, is defined as the structure ( E, Con, I, ) where

E:Eo XEl
X € Con <= 1o X € Cong & mX € Con,

X"CﬁaXo,Xl.Xoi_oﬂ'oe&Xl 4 7F16&X0XX1QX.

Proposition 7.3.1 If Ey and E; are stable then so is Eo ® Eh.
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Proof We check the stability axiom. Assume X ke, Y F e, and X UY U {e} € Con.
By definition, there exist Xo, X3, Yo, and Yj, such that

Xo ko Tot, Xk T1€,
YO i—0 o€, Yl }_1 7€,
X2Xox X, YOV, x Vi

Also we have XoUY,U{mpe} € Cong and X, UY; U{mrie} € Con,y. Therefore X,NY, o moe
and X;NY; I 7ye, by the stability of Eo and E,. However, XNY D (X, NYp) X (X1NY3).
Hence X UY Fe. i

Let ¢ € F(Eo ® E1). We have moz € F(Eo). In fact, moz is clearly consistent and, if
€0 € mox, then there is some e; such that (ep, ;) € #. The way enabling is defined for
tensor product ensures that when (eo, €;) is secured in z, eo is secured in 7oz. Hence mox
is a configuration of Ey. Similarly 71z € F(£,). From this we know that for any (eo, €1)

in z, [eo]rez X [€1]me C 2.

Suppose, on the other hand, that z is a subset of Ey; x E; with the property that
moz € F(Ey), mz € F(E,), and

Y(eo, €1) € x3wo € F(Ey), 71 € F(Ey). (o, &1) € wo X 71 C 2.

¢ is obviously a consistent set. Also, since ¢y € zo and ¢; € T1, [€]|me X [€1]me C

To X o1 € z. Hence (eo, €;) is secured in z. In summary, we have proved that

Proposition 7.8.2 Let Ey = ( By, Cony, o) and Ey = ( Ey, Cony,t1 ) be stable event
structures. We have ¢ € F(Ey ® Ey) iff

o Moz € F(Ey) & mz € F(Ey)
o V(eo, €1) € x3xo € F(Ey), 71 € F(E1). (€0, €1) € To X 71 C z
Definition 7.3.2 Let Eo = (o, Cono,to) and E; = ( By, Cong,t1) be stable event

structures. Their linear function space, Eq —oEy, is defined as the structure ( E, Con, I, )

where

E={(Teols; €1) | &0 €z € F(Ep), €1 € Ey }
X €Conift VY C X. 1pY € Cong = mY € Cony &
Va, b € X.(moa T 7ob & ma =mb) = a =15

Xt (z,e)iff {e| (v, e)eX&yCa}bie.
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Note that [e]. is always finite.

Proposition 7.3.3 The linear function space of two stable event structures is a stable
event structure. There is a 1 — 1 order preserving correspondence between configurations

F[Ey —oFE, ] with set inclusion as its order and linear, stable functions F (Eq) = F(Ey)

with the stable order. The associated maps are

¢: FlE— B = [F(E) — F(E)]

by letting
Fr— Az € F(E). {e€ By |3’ Cz.(2,e) e F},
and
p [F(E) — F(EL )] — FlE — E]
by letting

fr—=A(leles €) | &' € f([ela) & (V2' C [elo. e € F(2') => 2’ = [e],) }.

Proof Similar to the proof of Theorem 7.1.3. i

Proposition 7.8.4 ( Monoidal Closedness ) Let Eq, Ei, and E, be stable event

structures. Then

(Bo® By) —0B, 2 Ey —o[Ey —oFj).

The isomorphism E = E’ amounts to saying that there is a 1 — 1 correspondence
between E and E’, which preserves the consistency and the entailment relations. Monoidal
closedness suggests, usually, an underlying monoidal category. One can make this more
precise by showing that the tensor product really induces a monoidal category which is

closed [McT71]. But doing so here would lead us too far astray.

Proof We show that the isomorphism is given by

0: ([(e0s €1)]zs €2) = ([eo]moar ([€1]mi0r €2) )-

Clearly 6 is onto as zg X z1 is a configuration in the tensor product if 2o and z, are. It is

then clear that @ is a bijection. Write
(Eo ® B1) —oE; = (P, Conp, tp),

&—O @—-OEZ = (F, COTI,F, }‘F),
&—OEZ = (E, ConE, l_E)
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We have, for a finite set I,

{([(ess fi)lai, 9i) i€ 1} € Conp

= VI C LUjes[(ejy fi)ls; € Conmen, = {g; 17 € J} € Cong, &

Vi, 5 € I ([(eis fi)lzi T (&5 Fidla; & 95 = g5) == [(ei, f)las = [(€55 f)]ay

=V C LUjeslejlns; € Congy Ujes [ films; € Cong, = {g; | j € I} € Cong, &
Vi, g € L([eilnos; T [€5]moa; & [filmoi T [filma; & i = 65) = [(ei, £i)las = [(e4y fi)]a
= W C LUjesejlma; € Congy, = { ([filrieys 9;) |5 € J } € Congyop, &

Vi, j €l (|—ei-|7rox.' T I-ej-lwoxj & (I-fi-lmw.'a gi) = ([fj]w1zj, gj) ) = [ei-l oz — I-ej-lwoz'j
Thus X € Conp iff 0X € Conp.

Also
{(r(ei’ fiﬂwn gi) I el } Fp (|—(6, f)-l-’ln g)

= {giliel&[(e fi)le: Sl(e; HlzItEg
> {gi | el & I_ei_lﬂ'ol‘i - ffﬂm & l_fi-lma:.' - rf1r1z } te g

And { (I_fi-lﬂ'l‘—’:i’ gi) | ? € I& [ei—l'zro:t:.' C_: |-e-|1ro:c } }_E ([f-lr1za g)
Hence X Fp e iff X Fy fe.

There is a corresponding monoidal closed category DL of dI-domains with linear,
stable functions. It is a direct translation of the situation of the monoidal closed category

SEV, of stable event structures.

The Category COH;

Coherent families with linear, stable functions form a monoidal closed category COH,.

Definition 7.8.3 (Tensor Product) Let Fy, F; be coherent families. Their tensor
product, Fo ® F1, is a family of subsets which satisfies

t€EF®F < ezCUF xUFR&
o mox € Fo & mz € F
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Suppose Fy and F; are coherent families and Yy Sz € Fo®F;. Then clearly y C
UFo x UF1 and mey C moc, my & mz. Therefore moy € Fo, my € F;, and hence
Y € Fo ® F1. This means Fy ® F is again a coherent family (the pairwise completeness

is trivial).

Example 7.3.1 If not very careful one might think that product and tensor product
produce isomorphic coherent families. Consider the product and tensor product of the

following two coherent spaces.

{a, b} {o, B}

{b} {8}

{(a, @), (a,B8), (b, @)} and {(a, @), (a, B), (b, B8)} are different elements in
the tensor product; But they have the same projections on the first component and the

second component. Thus tensor product has far more elements in it than product does.

There is the more simple construction of linear function space.

Definition 7.3.4 (Linear Function Space) Let Fy, F; be coherent families. Their

linear function space, Fo —oF1, is a family of subsets which satisfies

z€Fy—oF < ezCUF xUFA &
eVyCa.myeFo=>myceFh &
o [{en, e} € Fo & (eo, 1), (€, e1) € z] == eg = €},

Any element z in Fy —oF; determines a linear stable function Pz, linear in the sense
that

XCFh&X1= Pz(|UX)=U{Ptz(zo) |zoc X },

where
Pz (zo) ={er € JF1 | Teo € mo. (€0, €1) €2 }.

Linear function space is coherent, and is isomorphic to the linear functions from Fy to

F1. The proof is very similar to the case of stable function space. Notice that for any
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z € Fo—oF, t(z) € Fo — Fi, where

i(z)={({eo}, 1) | (€0, &1) €z }.

COH, is a monoidal closed category, with the tensor product and linear function space
introduced above. In particular, we have the monoidal closedness, which says tha,f; for
any Fo Fi1, and F;,

[Fo ® F1 —oF,] = [Fy —o|F1 —oF3]).

This is just a special case of Proposition 7.3.11 later.

The Category FF

The events of linear function space of coherent families consist of pairs of events (o, €1)
~ while the events of linear function space of stable event structures consist of pairs of the
form ( [eo]s, €1). Constructions on coherent families are much simpler in general, but
the expressive power of the coherent families is limited. For example, they cannot express
the causality of events. Is there any category closely related to COH; and SEV,, which
1s more expressive and yet simple, in particular, whose linear function space is built up
of pairs of events (eo, €1)? This section answers the question positively. We hoped that

such a category would induce a smipler logic, but it turned out to be not the case.

Definition 7.3.5 A finitary family is a set of subsets F of E which satisfies

¢ finite completeness:
XCF&XMr—=UXeF
o finiteness:

VzeFVeczdze F.(|z|<co&kecz&zCx)
o stability:
VXCF X#£0&XT=NX€EF

0 is always in F because of finite completeness. The following proposition is obvious.
Proposition 7.3.5 Let F be a finitary family. (F, C) is a dI-domain.

Note that coincidence freeness is not necessary for F to be a domain under set inclu-

sion.
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Definition 7.3.6 Let Fy, F; be finitary families. R : Fo — F; is a linear mayp if
R C FEy x Fq is such that

b (607 61), (66v 61) € R&eO, 36 € To = €= 66

® V(eo, 1) € RAR' C R. (€0, 1) € R' & | R' |[< 00 & (20 € Fo = (AR )zo € F)

where (AR)(zo) = { €1 | Jeo € z0. (eg, 1) € R}.

The reader might wonder why we didn’t choose a simpler definition of linear map as

relation R : Fy — F; which satisfies

.$0€fo——_—>(AR)IE0€f1

® ey, €9 € o & (€g, €1), (€, €1) € R = €y = €.

The reason is that finiteness might no longer hold if we use such a definition, as shown

by the following example.

Example 7.83.2 Let
Fo={{e e} |icw}lu{{ea} | icwu{D},
F1={@,{2},{1,2}}

Obviously { (e, 1) }U{ (e;, 2) | ¢ € w} is a well defined ‘linear map’ in this sense,
but there does not exist a finite such linear map R' C/* R for which (e, 1) € R

A stable family has the property of coincidence-freeness. The other question the reader
might ask is why we do not require it for finitary families. The reason is that it is not

preserved by the construction of linear maps. Consider the following example:

Example 7.3.3 ( Winskel ) Let

FZ{{O}’ {1}a {0, e}) {17 el}, {Oa €y el}’ {1’ ¢, e}}

We can draw a picture of this family, using its events, as
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This is a finitary family which is coincidence-free. However, the linear maps, [F —oF |,

is not. Consider the identity linear map

ldr ={(0,0), (1,1), (e, e), (€, ¢€)}.

(e, e) and (€, ¢') are not separatable with respect to Jdr because for any R C Hdr, if
(e, e) € Rbut not (¢, ¢') € R then R cannot be a linear map and similarly so when we

switching the positions of (e, e) and (¢, ¢'). In particular,
R= { (0, 0)’ (1a 1)’ (e> 6) }
is not a linear map since AR {1,¢,¢'} ={1,e} ¢ F.

Proposition 7.3.6 If R: 7, — F is a linear map, then AR : Fy — F1 is a linear,

stable function.

Proof Easy.

It is also easy to show that R C, B iff R C R'. Note that the linear maps from F;p to

JF1 does not necessary represent all linear stable functions.
Proposition 7.3.7 Finitary families with linear maps form a category.
Proof The identity linear map is { (e, €) | e € UF } for any finitary family F.

Let R: Fo —» F; and S : F; — F, be linear maps. Define So R: Fy — F, to be
the relational composition: So R = { (o, €3) | Je. (eo, e) € R& (e, €3) € S }. Suppose
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zo € Fo.
A(SoR)zy ={e\)cUF,|Iey € zo. (e}, €)) € SoR}
={e; € UF, | 3ey € moTey. (), €}) € R& (e}, e}) € S }
={e; eUF|3e] € (AR) z0o. (€}, €4) € S }
— (AS) ((AR) 2o)
€ Fa.

Let (eo, e2) € S o R. Then for some e; € JF3, (e, €;) € R and (e1, €2) € S. Therefore,
there exist ' C R and $' C S, with R’, S’ finite, such that z, € Fo => (AR zo € F4
and z; € F; = (AS") z; € F. It is then clear that (eg, e;) € "o R’ C So R, S'o R' is
finite, and 2o € Fo => A(S" o R')zy € F;. Thus So R is a linear map. The associativity
1s easy. |

Definition 7.3.7 (The tensor product) Let F, and F; be finitary families. Fp ® Fi,
the tensor product of Fo and F7, is a family such that z € Fo ® Fy iff

.Woméfo&ﬂ'lwej:l

o Y( eo, 61)6:1:3:506.7:033:16.7:1.(60611:0&61Eml&mox:z;lg:c).

Proposition 7.3.8 If F; and F; are finitary families then so is Fo ® Fi.

Proof Suppose Fp and F; are finitary families. We show that Fp ® F; is finitely

complete, finitary, and stable.

Finitely completeness. Suppose X C F; ® F; and X 1. Then {mz | z € X}
and {mz |z € X } are finitely compatible subsets of F, and F;, respectively. Therefore
Usex ™0z € Fo, Ugex Mz € F1. Given (ep, ;) € UX, there must be some z € X for
which (eg, €;) € z. By definition, therefore, ey € o, €; € 2, for some zo € Fo, 2, € Fi
with zg X 2; C 2. Hence zg X z; C [JX. We have shown that UX € Fo ® F5.

Finiteness. Let x € Fo® F7 and (€0, €1) € z. Then there exist o € Fo, ©; € F; such
that eg € zo, €1 € 71, and 7o x z; C z. By the finiteness of Fo, there exists zg € Fp with
z0 S %o, € € 20, and | 2y |< oo. Similarly, there exists z; € F; with 2y C 24, e; € 2,
and | z; [< co. We have, therefore, (eg, 1) € 20 X 21 C 2 and | 20 X 2 |< oo. Also, it is

obvious zy X 21 € Fo @ Fi.
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Stability. Assume X C Fu ® F1, X # 0, and X T where Fy and F; are finitary
families. Clearly moX T and m; X T. By the stability of Fo and F; we have NmeX € Fo,
NmX € Fi, ie. moNX € Fo, mNX € Fi. Furthermore, if (e, 1) € NX then
(eo, €1) € z for all z € X. Thus for any z € X there exist u, € Fo, vy € F1 where
€ € Ug, €1 € Vg, and uy X v, C z. From this we can see that eg must be in Nuex Uz

and e in Nyex Vo It is obvious that MNpex Uz X MNpex Y= C y for any y € X. Therefore
ﬂxex Ugp X nxGX Uz g nX I

It is easy to see that zq x z; € Fy ® Fy for any z¢ € Fp and any z; € F;. From this

one immediately conclude that the tensor product preserves fullness.

Proposition 7.3.9 Let Fy and F; be finitary families. Then

w:Uuixv,-iffwefo®f1,

el

where u; € Fy, v; € Fi for all i € I ( I is not necessary finite ).

Proof Suppose z € Fy ® F1, where Fy and F; are finitary families. By definition for
each (eg, €;) € = there is Ueo,e1) € Foy V(eo,e1) € F1 such that e € U(ey,eq), €1 € V(eo,

e1)s

and U(ey, 1) X V(eo,e;) C . It is clear that we have

I = U u(eo,e;[) X v(e(hel)'
(e0, 1 )ET

The other half of the proof is trivial. H
Definition 7.3.8 Write [Fo —oF] for the collection of the linear maps R : Fy — F.
Proposition 7.3.10 [F; —oF;] is a finitary family.

Proof Finite completeness. Suppose X C [Fy —oF7] is a finitary compatible subset.
We want to show that (JX is a linear map. Let 2o € Fy. Clearly /

A(UX) 20 =J{ARco |Be X}

and {(AR)zo | R € X} is finitary compatible. So U{(AR)zo |R€ X} € F;. Let
(o, €1), (e, €1) € UX and eg, €} € zo for some zo € Fo. Then (e, €1) € Ry, (€, €1) €
R, for some Ry, R, € X. Since X is finitary compatible, there is a R € X which
dominates both R, and Ry, ie. Ry C Rand Ry C R. Hence eg = €j, by the definition of

linear maps.
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The finiteness of [Fo —oF] is obvious. Let us check stability. Suppose X C [Fy —oF]

is a non-empty, compatible subset. It is easy to see that, for any o € Fo,
(AINX])20 S ({(AR)z | Re X }.

On the other hand,
e1 €EN{(AR)zy | Re X}

=> VR € X3efl € zo. (¢F, e;) € R

= VReX.(ef, 1) eUX

= VR, SeX. el =¢ (UX is a linear map )

= VSeX (ef,e1) €S

= (eg e1) ENX

= ¢; € (ANX]) 2o
Therefore

(A[NXD)zo=(H{(AR)zs | Re X },

which implies A(NX)zo € F; since {(AR)zo | R € X } is a non-empty, compatible
family of 71 and N{Rzo | R € X } € Fi. It is trivial that (eo, €1), (€}, €1) € NX
and ep, €y € zo implies eg = €j. As each R € X is a linear map we have, for each

(€0, €1) € NX and each R G’X , some finite, linear map Sge,., C R which contains
(€0, €1). We have also (eq, €1) € N{ SRyeo,e; | R € X } and, similar to the proof above, -

Vzo € Fo. (A[ﬂ{ SR,eo,e1 l ReX }]):1:0 € Fi.

Example 7.3.2 shows that he construction of linear maps does not preserve fullness.
However, this is not a problem since we can remove those events which never appear in

any configuration and get a full finitary family of linear maps.
Proposition 7.3.11 (Monodial closedness) For finitary families Fy, F1, and 7>,
[Fo ® F1 —0F2] = [Fo —o[F1 —oF3]],
where the isomorphism is given by
0: ((eo, 1), €2) — (eo, (€1 €2)).
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Note the effect of 8 is simply regrouping the brackets.

Proof Let z € [Fy ® F; —0F;]. We show that 0z € [F, —o[F; —oF,]]. Given zy € Fo,

we have
(Abz)zo = { (e1, €2) | ((eo, €1), e3) €2 & €g € zg }.

Thus for any z;, € F;,

(A(AaZ)fl}o)iEl:{ez I ((60, 61), 62) Gz&eoewg&el S }-

However,

{ex | ((eo, e1), e2)€z&en€To&er €1} =(A2)(mox 1)

and zo X z1 € Fo ® Fi. Therefore (Az) (2o X z1) € F;, from which it follows that
(A(Abz)zo )21 € F;. Suppose (e, €2), (€f, e2) € (ABz)zo and ey, €, € 2, € F.
This implies the existence of ey, € € zo € Fo such that ((eo, €1), €2) € z and

((eps €1), €2) € 2. Accordingly eg = €)), e; = ¢, since z is a linear map and
(60, 81),(66, 6’1) € xg X1 & o X 1 € fo ®.7:1

Now let (e1, e2) € (A6z)zo. There is some ey € z for which ((eg, €1), €3) € z. For z
is a linear map, there is a linear map 2’ C#* 2 such that ( (e, e1), €3) € 2'. Therefore
(e1, e3) € (AB2)zg CI™ (A02) 2o where (A02') zo, similar to (A0z)zg, has the
property that Vz; € Fy, (A(A62')z0)zy € F,. We have shown that (A0z)zg €
[F1 —oF,).

Assume (eo, (e1, €2)), (€h, (€1, €2)) € 0z and ey, ey € xo for zg € Fy. Then
((eoy €1), e2), ((ep, €1), e2) € 2. As JFy is full, there is @; € F; with ¢, € z1.
So eo = e since (e, e1), (e, €1) € To X 1 € Fo @ Fy. If (eo, (€1, €2)) € 62
then ((eo, €1), e2) € z. This implies there is some linear map 2z’ Cf™ z for which
((eo, €1), €2) € 2. Hence (€0, (e1, €2)) € 02’ C*™ 0z, where (A 02’ )z, € F, for any

z; € F1, by a similar argument given above.

On the other hand, let y € [Fo —o[F; —oF,] |. It is to be shown that 6~1y €
[Fo® Fi —oF ). To this end let z € Fy ® F;. Obviously

(A6 y)e={e; | (e, (e1,€2)) €Y, (eo,e1) €}
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By Proposition 7.3.5 , ¢ = U;c us X v; where u; € Fo, v; € Fy for i € I. Hence
(A0 y)z =(A0 y)( Uierus X v;)
=Uier(A07 y) ui X v;
=Uier{ €2 | (€0, (€1, €2)) €y, (€0, e1) €Eus x v }

= Uier( A(Ay) w;) v;

However, we have, for each i, ( A(Ay) u;)vi C (A(Ay) moz) mz and (A(Ay) u;)v; € Fo.
S0 Uier( A(Ay) u;) v; € Fa, which means A(6~'y )z € F,.

Assume ((eq, €1), €2), ((€5, €)), e2) € 671y and (e, €; ), (eh, €)) € z € Fo ® Fy.
Then (eo, (€1, €2)), (€5, (€], €2)) € y and e, € € Moz € Fo, €1, €, € mz € Fi.
Furthermore, (e1, e2), (€}, e2) € A(y) moz and ey, €} € mz € F,. Therefore e; = e

since A(y) moz is a linear map. As a consequence ey = €.

If ((eo, €1), e2) € 07"y then (eo, (€1, €2)) € y. We have, for some y' Cfin Y,
(eo, (€1, €2)) € y' where ¥ is a linear map. Therefore ( (e, € ), e2) € 0~ 'y, which is a

finite subset of ~'y. For this y’ it is also true that A(9~1y' )z € F, forany z € Fo @ F;.

7.4 Relationships among the Categories

It is known that DI, SEV,, and SF, are equivalent categories. It is also clear that DL,
SEV), and SF are equivalent categories. Apparently SEV,, is a sub category of SEV] .
which is a subcategory of SEV,. Again, SEV; is a subcategory of SEV,. COH; is a
full-subcategory of SF;; COH, is a full-subcategory of SF,. There are more interesting
relationships between some of the categories. In this section we show that there is an

adjunction between COH; and COH,. We also show that there is a coreflection between
DL and FF. ‘

Recall one of the ways of determining an adjunction between two categories A and
B. Two functors F': A — B, G : B — A is an adjunction pair if for any object a of A,
there is a morphism ©, : ¢ — GF(a) in A which is universal in the sense explained as
follows. ©, : @ — GF(a) in A is universal if for any morphism f : a — G(b) in A with
b in B there is a unique morphism 4 : F(a) — b in B such that the following diagram

commutes:
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a — 9 GF) F(a)

P h

G(b) b
In this situation we say F is the left adjoint of G and G is a right adjoint of F. When for

each a € A, O, is an isomorphism, then the adjunction is called a coreflection.

First consider the relationship between COH; and COH,. There is the following

construction on coherent families.

Definition 7.4.1 (Shriek) Let F be a coherent family. Its shriek, |, is a family of

subsets which satisfies

z€lF<= z2C{a|a€F& |al<o}& UzeF

It is obvious that if F is a coherent family then !/F is still a coherent family. The re-

quirement that « consists of the finite configurations of F ensures that there are countably

many events in |F.

Clearly the inclusion ¢ is a functor form COH,; to COH,. It has a left adjoint !, which
sends a morphism Fo —— F; in COH, to a morphism !F, —!g—>!.771 in COH;, where ! is

the shriek operation on coherent families and
g=P({(z,y)|]|z|l<0& |yl<oo&yCyg(z)&Va' Ca.yCyg(z)=z=2'}).

for a stable function g. @ : F —!F is given by Ox(z) = {y | y Sfi" 2 }. By inspecting

the relevant axioms one can convince himself that ! is indeed a functor.

We check that ©7 : F —!F is universal. For any morphism f: F — Fin COH,,
h:!\F — F'is a morphism in COHj, where '

h=P({(z, e) e FxF |(z,e)eCof F}).

Note that 2 has two different types in the definition of h. The first z is considered as
an event of \F, the second is considered as a configuration in F. Clearly h o Of = f,
and such % is unique because it is linear. Thus the following diagram gives the universal

property of ©Ox : F —!F where we omitted the inclusion functor s.
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F Oz f \F
\/\ lh h
F F

We have already known that any stable function f : F — F’ gives a linear function

P({(z,e) e UFxUF |(x, ¢e)€ Cofg} ) form IF to F'. On the other hand, assume
that h : IF — F' is a morphism in COH;. Then Cof h €!F —oF'. Let

H=P({(s,¢)| ({2}, ¢) € Cof h}).
It is easy to check that {(z,e)| ({2}, e) € Cof h } is a configuration in F — F', and
IF—oF' &2 F - F.
In summary, we have proved that

Theorem 7.4.1 COH, —» COH, - COH, determines an adjunction, with ! the
left adjoint of s.

Now let us consider the relationship between FF and DL. Let A be a functor from
FF to DL defined by

fO i— ]:1

A(Fo) AR) A(FR)

where A(Fp) and A(F;) are dI-domains determined by Fo and Fi, A( R) is the linear
stable function determined by the linear map R (Definition 7.3.2).

There is also a functor @ in the other direction DL — FF defined by

D, _ft . D

®(D,) 2(f) (D)
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where ®( Do) ( and similarly ®(D;) ) is a family of subsets of D}, with D} the set of
complete primes of Do, such that ¢ € ®( Dy ) iff z is left closed ( with respect to D} ) and

pairwise compatible. ®( f) is given after the following proposition.
Proposition 7.4.1 ®( D) is a finitary family if D is a dI-domain.

Proof Finite completeness is straightforward.

Finiteness: Let + € (D) and p € z. As p is a complete prime, {p' | P Sp & p' €
D' } is a finite set of complete primes. Clearly {p' | p' T p & p' € D* } € o(D),
{Pl PEp&peD }Cr,andpe{p| yCp&p D'}

Stability: Suppose X is a non-empty, compatible subset of &(.D ). Clearly any two

members of (| X are compatible and (X is left closed because each member of X is. §

Proposition 7.4.2 Given f: D — E, a linear stable function between dI-domains
D, E. Define f C D' x E' to be a subset such that (p, ¢) € ®f iff f(p) 2 ¢q and
VP'Cp. (f(p')2g=>p =p). Then ®f : (D) — &(E) is a linear map.

Proof Let z € ®D. (®f)z ={q| Ip€ 2. (p, ¢) € ®f }. We have

¢, ¢ €(®f)r = 3p,p ez (p,q), (v, d) <€ Of
=pTp

= f(p) T f(p')

=q74q.

Let ¢ £ ¢’ € (2f)z, where ¢ is a complete prime. There must be some p’ € z such
that (p', ¢') € f. This means f(p') D¢’ and VpC p'. f(p) ¢ =>p=p'. Let

po=[{plPpEP & flp) T q}.

We have
fo) =f([H{r|pEP & f(p)Iq})

=T/ I PEP&f(p) T g}
= q.
Clearly Vp C po. (f(p) 2 ¢ = p = po). To check that po is a complete prime suppose
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po = LIi—; p; where p;’s are complete prime.

flpo) g = f(Lip ) D g
== I—'?:lf(pi) ;q
= 3i. f(p:) A g

:7>p,i=p0

. Hence (po, ¢) € @f. Also po C p’ since f(p') 3 ¢’ O ¢, which implies py € 2. Therefore
q € (®f)z, and so (®f)z € BE.

(P, q), (¢',q) €@f and p, p' €z then p T p’ and so f(pMNp') = f(p) N f(¢') D ¢
by the stability of f. We have pMp’ = |, p; where p;’s are complete primes. Hence

f(pi) 2 ¢ for some i, since q is a complete prime. So p; = p = p/.

For any (p, ¢) € ®f, consider ®f2 where 3= At f(tMNp) Ngq. Similar to the proof
given above we have (®f{)z € ®F for any z € ®D. It is easy to see that (p, q) € Dfa.
Let (p',¢') € ®ff, ie. fi(p') 2 ¢ and Vp" T p'. fi(p") 2 ¢ => p" = p'. We have
fP'Np)NgI ¢ and Vp" C p'. f(p" Mp) Mg ¢ = p" = p/, which implies £(p') I ¢
Also, p"” C p’ and f(p") 3 ¢ implies

fe"Mp)Ng

=f(p"N(p'Np))Ng

= f(@") N f(p' M p) N q ( since f is stable and p" 1 (p' 1 p))

¢ nq

= ql,
Therefore p” = p' and so (p', ¢') € ®f. Finally we check that ® f2 is a finite set.
Clearly ¢ 2 ¢ for each (p',¢') € ®f2. Taking p” = p' N p, we have p” C p’ and
fP"Mp)Nqg 3 f(@Np)Ng d¢. Therefore p” = p, ie. p' T p. As there are only

finitely many complete primes below ¢ and all the p'’s are below p ( hence compatible ),
we conclude that @ f7 is finite. |

Proposition 7.4.3 For any dI-domain D, D = A(®D).

Proof Define Op : D — A(®D) by letting Op(d) = {pe D' |pCd}forde D
and 0p : A(®D) — D by p(z) = |]=. It is trivial that Opfp = la@p) and 0pOp = 1p.
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Theorem 7.4.2 ®: DL—FFand A: FF - DLisa coreflection pair.

Proof Given D € DL, F € FF and an arrow f: D — AF of DL, we need to show

that there exists a unique R: ®D — F which makes the following diagram commute:

D —©2 A@D) oD
\ JAR R
AF F

Existence: Define R: ®D — F to be such that (p, e) € R iff
dreF.ecz& f(p) I [el.& (P Cp& f(p') D [ela =p=1p').

We show that R is a linear map. Let u € ®D, A(R)u = {e|3Ip € u. (p,e) € R}. To
show A(R)u € F it is enough to prove that

{elFpeu(pe)eR}={lelo. | Ieu(pe)ecR}

( z.’s are those 2’s appear in the definition of R ) since the right hand side of the above
equation is finitely compatible, using the compatibility of u. Suppose e € A(R)u. Then
dp€u.(pe)€ R, orIz, € F.ecakf(p) 2 [ele.&(p Cp&f(p') I [€]s. => p=1p').
Let €' <, e. Clearly f(p) 3 [e'],.. Let

po=[1{p" | " Cp& f(p") D [eNa() }-

It is easy to show that po C p and (po, €¢') € R. Hence [e],, C ARu for any e € ARu,

which implies the above equation.
We have
(pe), (Phe)eR&p, p'€xo = f(p) D [elo& f(¥) D [elw &p Ty
= f(p) T £(p')
= [els T [e]w

= [e]; = [e]w.
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From this it is easy to deduce p = p’ using the fact that [e], is a complete prime and f

is stable, linear.

Given (p, e) € R, we have, for some z € F, e € z and f(p) I [e]lz. Clearly RN [p ]
x[e]z] is a finite set and (p, e) € RN[p | x[e],], wherep |={p'| Y € D' &p'Cp}.
We need to show that for any u € ®D,

{¢] I ecu(p,d)eRn(pl x[el.]}eF.

It is obvious that

{3 cu(p,e)eRN[pl x[els]} C [elo

and
{e]l P eu(p,ed)eRn[plx[el.] } CAR{p' |p cu&p Cp}

On the other hand, Veo € [e]. N R{p' | p' € u &p' C p }, there exists p’ € u, p C p

such that (p', eo) € R, where eg € [€],. Therefore (p', e0) € RN [p | x[e]z]. We have
shown that

{'| P eu(p,e)eRN[pl x[elz]}=Tel.NR{p' |p cukp’Tp}.
Now (p, e) € R implies f(p) 2 [e],. Also,
e € R{p'|pcu&kpCp} =P ecupCp&(p,e)€ERr
= Jz0. €0 € o & f(p') 2 [e0]x

=> e € f(p) (f(®)C f(p) ).

Hence R{p'|p' € u&p'Cp} C f(p). As [e], T R{p' [P €u&p' Cp},

[el:"R{p |p eu&p Cp}eF.

To summarise, we have shown that R is a linear map.

Commutativity: To show that the diagram commutes let f(d) = z, whered € D, z €
AF. Op(d) = {p| pe D' & pC d}. We claim that A(ROp(d)) = z, required by
commutativity. Let e € z. Clearly f(d) =z 3 [e],. Set po= [ ]{p | p € D' & f(p) I
[e]= }. We have f(po) 3 [e], and Vp T po. f(p) 2 [e]. ==> p = po. Therefore (po, €) € R
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and po £ d, and so e € A(ROp(d)). If e € A(ROp(d)) then Ip C d. (p, e) € R. Hence
e € zo & f(p) 2 [e]s, for some zo. Obviously this implies e € f(d) (= z).

Uniqueness: Assume R’ is a linear map which also makes the diagram commute.
Let (p',¢') € R and f(p') = 2’ (= A(R'Op(p)) ). Clearly ¢ € z' and Vp" C p/,
f(p") 2 [e']s implies A(R'©p(p”)) O [e]es. Hence ¢ € A(R'Op(p")), which means
(Po, €') € R’ for some py C p". This is only possible when py = P, as po T p’. Thus
p" = p, too, which implies (p', ¢') € R. Therefore R’ C R. On the other hand, suppose
(p, €) € R. We have

A(R'©p(p)) = f(p) = A(ROD(p) ).

e € A(R'©p(p)) since e € A(ROp(p)). Hence (p, e) € R for some p' C p. However
R C R. So (p, e) € R, which implies p' = p. Il

Winskel told me that there is an adjunction between DI and DL. It is likely that
there is a coreflection between FF and COH;. The relationship between FF and SEV,.,
however, is not clear. COH,, SFs, DI, and SEV, are cartesian closed. COH;, SF;,
DL, SEV;, and FF are monoidal closed. I do not know whether or not SEV7},, and

SEV,,, are monoidal closed. We summarise the relationships among the categories by

the following diagram:
coH, 1. sF, .2, DI .2, SEV,

: \

I3 J3 [3 3

r

coH, - 1. sr .2, DL .2, SEV,

Y / .

SEV;

syn

SEV,,,
where the labels have interpretations given below:

1: full-subcategory;
equivalent;
adjunction;
subcategory;
coreflection;
unknown.

N OU R WD
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Chapter 8

Stable Neighbourhoods

Scott topology plays an essential role for the logic of domains developed in Chapter
5. One of the reasons for it is that Scott open sets characterise continuous functions. For
dI-domains, is there a similar notion of ‘open sets’ which characterise stable functions?

The answer is yes and stable neighbourhoods play the role of open sets.

This chapter introduces stable neighbourhoods. Through extensive study, especially
with respect to the various constructions in the categories presented in the previous chap-
ter, stable neighbourhoods are demonstrated to be fundamental, rich and general in the
stable world. In particular, it is shown that, although stable neighbourhoods do not neces-
sarily form a topology, they determine the associated dI-domain. Constructions on stable
neighbourhoods are introduced in the categories DI, COH;, and COH,. These construc-
tions show how stable neighbourhoods of a higher type can be built up from those of the
component types. Stable neighbourhoods are important for the logic of dI-domain since
they will be used to interpret the assertions. The constructions on stable neighbourhoods

suggest proof rules for the logic of dI-domains.

The contents of this chapter is organised as follows. Section 1 introduces stable neigh-
bourhoods and shows that stable neighbourhoods specify not only the stable functions
but also the stable order. Section 2 gives a characterisation of the complete primes DI.
Section 3 studies the stable-neighbourhood constructions in DI. Section 4 studies the
stable-neighbourhood constructions in COH; and COH,. Section 5 studies the stable-

neighbourhood constructions in SEV?,, and SEV,,,.

syn

8.1 Stable Neighbourhoods

Scott open sets play an important role in domain theory. They are also essential to the
logic of SFP domains, the development of which is based on the view regarding open sets
as properties. This is because Scott open sets have many nice properties, which include
e a function is continuous iff the inverse image of an open set is open;

e for continuous functions f and g, f C g iff f~1(0) C ¢7*(O) for all open set O;
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e Scott open sets form a topology.

Of course, when it comes to dI-domains we cannot hope Scott open sets do the same
job. But are there any kind of ‘open sets’ of dI-domains which play the same role as Scott

open sets do for domains?

The first fact we notice is that, if there is any class of sets of dI-domains which has a

property corresponding to the first one stated above, those sets do not necessary form a

topology.

Consider the stable functions from O% to O. Suppose there were such a topology.

Then the topology on O must contain { T } as an open set: otherwise we may get non-

monotonic functions. The inverse image of the stable function
(T, L)r—T, (L, T)— 1

on {T}is {(T, T), (T, L)} and the inverse image of the stable function
(L, T)r—T, (T, L)r— L

on {T}is {(T, T), (L, T)} Hence their union {(T, T), (L, T), (T, L)}
would be again an open set. That means the topology on O? coincides with the Scott

topology, which allows the non-stable ‘parallel-or’

(L, T)—T
(T, L)— T
(L, L)— L

Therefore the required topology does not exist.
It is still meaningful, however, to ask whether there is any class of sets which charac-
terise stable functions in the following sense:

e a function is stable iff the inverse image of a set in this class

is still a set in the class;

e for stable functions f,g, f C, giff f~'(0) C g~*(O) for all set O

in this class, where C is a suitable order.

The answer is yes.
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Let D be a Scott domain. We have [D — O] = Q(D), i.e., the continuous functions
[D — O] with the pointwise order are isomorphic to Scott open sets of D, with set
inclusion as the order. The isomorphism is given by f — f~1(T). Now consider a
dl-domain D and a stable function f : D — O. f~*{T} is a Scott-open set as f is
continuous. If # T y and #,y € f~1{T} then e My € f~'{ T} since stable function

preserves meets of compatible elements. This simple analysis leads us to

Definition 8.1.1 Let D be a dI-domain. U is a stable neighbourhood of D if
e U is Scott-open;
e (zTy&az,yelU)=>zNyel.

Write the set of stable neighbourhoods of a dI-domain D as SN(D). SN(D) does not

necessarily form a topology. It is closed under finite intersections but not unions.

Example 8.1.1 In O?, {(L, T) (T, T)}and {(T, L), (T, T)} are stable

neighbourhoods but not their union.

1)

(L, L)

Proposition 8.1.1 (SN(D),C) is a lattice.

Proof Let U,V € SN(D). UNYV is Scott-open. z Ty & =z, y € UNV implies
eMNyeU&aNyecV. Therefore UNV € SN(D),ie., UNV = UNV. To show that
SN(D) has joins, we first introduce a binary operation ¢ between two open sets A and
B:

AoB =45 {d | 3z, y € AUB. (zTy&ddzNy)}.
It is easy to see that A and B open implies A ¢ B open. Now for U,V € SN(D), let
K(): UOV, K1 :'-K()O](o, vee Kn =Kn_1<>K —1y e
We claim that U K; = UUV. It is enough to check that U K; is a stable neighbourhood,

1€w 1€w
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and it actually is:

d1d & d,de|JK;= Imnecwdck,&dckK,
1E€w

= de€Kpm & d € Kpym
= dNd € Kpymn S |J K

=)

SN(D) is, moreover, a complete lattice. The ¢ operation can be extended to an
arbitrary number of stable neighbourhoods and | K; will be their least upper bound.
Then the meet of an arbitrary number of stable neighbourhoods is the join of all the

stable neighbourhoods contained in their intersection.

However, SN(D) is not distributive, as the following example shows. Note that meet
and join of SN(D) may not be the same as intersection and union of sets, so we write I

and U, with subscript SN(D) omitted.

Example 8.1.2 Consider 7 x O.

¢ f T
N 1
T Tx0 O
Let
A={(,1), T},
B={(LT), (&T), (#T)}
C={(fL1), (fT)}
Then
AN(BUC)=A
but

(ANB)U(ANC)={(¢,T), (ff,T)} # A
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Note A, B € SN(D) does not imply Ao B € SN(D).

If f:D — O is a stable function, then clearly f~!( T) is a stable neighbourhood.
On the other hand, suppose U is a stable neighbourhood of D. Then F(U) is a stable

function, where
T ifzeU
F(U)(z) —def{ 1L if ze(D\VU)

However, set inclusion on stable neighbourhoods does not determine the stable order. In
[0 —; O], for example, two stable functions Az.z and Az.T have the property YU €
SN(O). (Az.z)~(U) C (A\z.T)~(U), but we do not have Az.z T, Az.T.

Suppose U, V' are stable neighbourhoods of D such that F (U ) Cs F'(V), where F :
SN(D) — [D —, O] is defined in the previous paragraph. Then for any =, y in D, z C y
implies F (U)(z) = F(U)(y) N F(V)(z). Obviously z € V when ¢ € U, ie, U C V.
Moreover, whenever 2 Ey € U but = € U, it must also be true that z ¢ V. This means

a minimal point of U must also be a minimal point of V.

Definition 8.1.2 Let D be a dI-domain. The set of minimal points of U € SN(D),
write pU, consists of m € U such that V2 Em.z € U = z = m. For U,V € SN(D), U
minimally less than V, write U C, V, if uU C uV.

Clearly C, is a equivalence relation. U C, V implies U C V but not vice versa.
Notice that if U C, W and U CV C W, then U C,V.UC,Viff IW € SN(D). V =
UUW & UNW =§. Every minimal point of a stable neighbourhood is a finite element.

The following two propositions are immediate.

Proposition 8.1.2 Let D be a dl-domain. We have [D —; O] & SN(D), with the
stable order on [D —, O] and C, on SN(D), where the isomorphism is given by

f— F(T).

Proposition 8.1.3 U € SN(D) implies there is some K C D°, a pairwise incom-
patible set, such that

U=U{k | keK).

Suppose f : D — E is stable. For any g : E — O, there is a unique stable function

h: D — O which makes the following diagram commute.
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p _f.E
N
o)

This implies for any g : E — O, f~}(g7(T)) = ~A~T) € SN(D), or, for any U €
SN(E), f~Y(U) € SN(D), by Proposition 8.1.2. In general, we have

Theorem 8.1.1 Let D, E be dl-domains. f : D — E is stable iff

VU € SN(E). f1(U) € SN(D).

Proof (=) : As shown above.

(«): Such f is monotonic: Let d,d’ € D and d’ C d. For any finite e in E, if e C f(d’)
then &’ € f~'(ef). f~'(el) € SN(D) as ef€ SN(E). Sod € f1(el), i.e., f(d) Je.
Therefore f(d') C f(d).

[ preserves directed sups. Assume X is a directed set of D. e C f(l|X) implies
X € f~'(e), which is open. Hence 3z € X such that z € f-1(e?), i.e., f(z) I e.
Therefore f(| | X) C || f(X). Thus f is continuous.

To see f is stable notice we have, for any €’ € E°,

rTy&z,ye D& C f(z)N f(y)
> ze M by e fEN
= eNye fi(eT)
= f(zNy) €.
Therefore f(zMy) = f(z) N f(y). |
Suppose f, f': D — FE are stable functions. If f C, f’ then clearly forany g : E — O,

go f G, go f'. By Proposition 8.1.2 we have, for any g : E — O, f~1(¢g7(T)) C,
(f)*(g7*(T)), or, for any U € SN(E), f~*(U) E, (f)~*(U). The other way round is

also true. We have
Theorem 8.1.2 Let f,g be members of [D —, E]. fLC, giff
YU € SN(E). f~Y(U) C, g7 (U).
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Proof It is enough to prove sufficiency. For any z € D and d : f(z) in E°, We have
dl € SN(E) and f~(df) C g7*(dl). Therefore d C g(z) and hence f Cg. Let 2 C y in
D, d € E° andyduyo € pft(d"?). By assumption, yo € ug=1(d'7).

dEf(y)Ng(z)=> zeg ' (d) &ye f(dT)
= yolz&yNzeg(dT)

YoMz =yo (asyo€pug™'(d7))
T JYyo
f(=) 2 fyo) 2 .
Therefore f(z) 3 f(y) Mg(z). In other words, f T, g. I

¢ 4

We remark that if f E, g, and z € ug='(A), where A is a stable neighbourhood and
z € f~1(A), then it must be true that z € pf~1(A).

Definition 8.1.3 K is a compact stable neighbourhood of SN(D) if K is a compact
Scott open set and a stable neighbourhood. Write KSN(D) for the set of compact
stable neighbourhoods of SN(D). @ is a prime stable neighbourhood of SN(D) if
3d € D°. P = dl. P is a very prime stable neighbourhood of SN(D) if uP C D1, ie,
the minimal points of P are all complete primes. Write PSN(D) for the set of very prime
stable neighbourhoods of SN(D).

Similar to Theorem 8.1.1 one can show that f : D — E is linear, stable iff

VU € PSN(E). f~Y(U) € PSN(D).

Proposition 8.1.4
AC,B&SC, T = (ANS)C,(BNT)
where A, B, S,T € SN(D).

Proof We have, for some A', §' € SN(D), B = AUA', ANA’ =0, T = SUS'", SNS' =
0. It follows that ’

BNT = (ANS)U[(AnSHU(A' NS U (A'n s,

where (ANS)N [(ANS")U(A'NS)U(A'NS)] = 0 and (ANS)U(A'NS)U(A'NS") € SN(D).
Therefore (AN S) T, (BNT). |
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8.2 Complete Primes in [D —; E|

Let z be a finite element of a dI-domain D. Clearly { y € D |y 2 z } is a stable
neighbourhood. Proposition 8.1.3 states that all stable neighbourhoods are disjoint unions
of such basic stable neighbourhoods, Thus stable neighbourhoods are determined by
the finite elements of the domain. For dI-domains are prime algebraic (Lemma, 7.14),
complete primes of a dI-domain fully determine the stable neighbourhoods. Therefore

one way of understanding the stable neighbourhoods is via the complete primes.

If we know the complete primes of D and E, it is easy to get the complete primes of
D x E, Dy and D + E. However, the complete primes in [D —, E] are non-trivial and
interesting. This section studies the structures of complete primes ( hence finite elements,

too ) in the stable function space [D —, E].

We know that if D and F are Scott domains, then the function space D — E is built
up from step functions. In other words, the finite elements of D — F can be represented

as step functions. For dI-domains, we can still use

Definition 8.2.1 Let D, E be dl-domains. A one-step function is a function f
defined as

[a,b](g;)={ b fzda,

1 otherwise
where a € D°, b € E°.

Theorem 8.1.2 tells us that the stable order is determined by the minimal points for
a stable function f to assume an value. Thus it is desired to read [a, b] as a function f
for which ‘a is a minimal point for f to assume a value greater than or equal to 4.’ This
immediately makes functions of the form [a, b] ambiguous because Definition 8.2.1 only

specifies one of such functions! To totally specify a stable function in this way we are led

to

Definition 8.2.2 Let D, F be dI-domains. A finite set
{(ai, &) |1 €I} CD°x E*
is called stable joinable if
oVJICIL{a|teJ}=>{b|ic}T,
°a; Ta; & (b;=0;) = (a; =aj),
oVbe E'.b; Jb = 3j.b; =b& a; J a;.
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Let
L[, 6] =aes Az | [ @i, b:1(=),
i€l i€l
the pointwise join of one-step functions. When

{(a;, b)) |i €I} CD°x E*

is stable joinable,

U[ai, bi]
i€l
is called a step function.

The first condition of Definition 8.2.2 implies consistency, so that Uier[ @i, b;] really
defines a function. The second condition expresses the minimal property, which means,
when [a;, b;] appears as a constituent of a step function, a; is minimal for ;. The third
condition insists on completeness, in the sense that when a minimal value with respect to

b; is specified, all the b’s below b; must also have their minimal values specified.

By the conditions given in Definition 8.2.2, a sigleton set { (a, b) } is usually not stable

joinable. Some care is needed here for the notations. According to the definition | |[as,b;]
i€l

is a pointwise join of one-step functions [ a;, b; ]. It is not necessarily the case that | [ as, 6]
1174

is a join of [a;, b;]’s under the stable order.

Proposition 8.2.1 Let D, E be dI-domains and {(a;, b;) | i € I} stable joinable.
Then | |;c;[ @i, b;] is a stable function.

Proof Suppose {(a;, b;) | i € I} is stable joinable. Obviously | |;c;[ a;, b;] is continu-
ous. To check stability let z,y € D and = T y. Suppose

pC [lasb:](2) 1 | [ b:](v)
i€l iel
where p € E is a complete prime. We have, for some 4, j, p C b;, a; C 2 and pLCb;, a; C
y. By Definition 8.2.2, there exists s, ¢ such that b, = p, ¢, C a; and b, = P, a; C a;.

as = a; as a, T a; and b, = b;. Therefore a; = a; C & My and

pC | lai,bi](zMy).
i€l
Since E is prime algebraic (Lemma 7.1.4),
LIles, b1z ny) 3 lai b)) 1 [ [ai,b:](v),

i€l i€l i€l

188



which implies stability. N
Proposition 8.2.2 Suppose D, E are dI-domains and
{(a;, b:) |2 €I} CD°x E*
stable joinable. Then for any j € I we have a; € uf~'(b;1), where

f=la:b:].

el

Proof We have
fla;) = b |a; Ca;}

b;.
Hence a; € f~1(b;1). Let y C a; and f(y) 3 b, i.e. | {b:|a; Ty} 3b;. Since b; is a
complete prime, b; 3 b; for some ¢ with a; C y. By Definition 8.2.2, there is some k such
that by = b; and a; C a;, which implies a) = a; since a; T a;. Hence y = a;. This means

a; € uf(b;1). 1

There is a fact which I think worth remarking. Suppose f is a stable function. If
a € pf~'(b1), @' € pf1(¥'1), where a T o', then a U a’ € uf~1(bU )T . To derive this,
note that ag € pf~1(bL ¥')T, where
ao=[|{z|flz)yTbL¥},
by the stability of f. Clearly ao C a U a’. But f(ao) 3 b and f(ao) 3 ¥/, thus ao 3 a,

ap J a'. Hence ag 1 aUd'.

Proposition 8.2.3 Let D, E be dl-domains and
{(ai,ly) Ii i~ I]'g; 1)0 X 121
{(d}, ¥) i €T} D°x B*

stable joinable. Then

l_l[aub ] Cs I_l[ag, 3

i€l JEJ
{(ai, i) |i€eI}C{(a}, b)) |jEJT}

Proof (=): Suppose | |[a;,b;] E, | |[a;},b;]. For any k € I,
el JjeJ

L[, b:1(ax) E (a5, 8} 1(ar).

i€l JjedJ
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Therefore,
bk;|_|{b; Ia;Eak}.
However, by is a complete prime. Hence by E b} for some j, with a; C ax. By Definition
8.2.2, there is some r such that b = 8. and o/ C a}. By Proposition 8.2.2
Gk € [t(l_l[ai,bi ])_l(ka)
i€l
Hence

ar € p(||[a5, 57 (B1),

JjeJ
using Theorem 8.1.2. However a!. C a; E ax and
a, € p(|][a}, 8 1)7 (B 1),
JjeJ

which is only possible when a; = a!.

«): Assume z, y € D, z C y and
Yy

pC | [ai,b:](y) N |1}, 5 ](=),

i€l JjEJ
where p is a complete prime of E. There must be 4, j such that p C &;, a; C y and
p E b, a C z. By Definition 8.2.2 there is some t, r for which b; = p, a; C a; and
b, = p, a; T aj. However (as, b;) € { (a, ;) |j€J }, a: C y, and a, C g, 50 a; = d’,
which implies a; C z. This means ‘

p C | [aib:](2).
i€l

Since F is prime algebraic (Lemma 7.1.4), we have

| J{@:,8:1(z) 2 | |[a:,8:](y) M L1 [}, 0:](z).

iel el jeJ

The other direction of the inequality is trivial. |

Since the stable order is stronger than the pointwise order, it is easy to see that step
functions are finite elements in the stable function space. One can prove they are all the
finite elements in the function space by brute-force by showing that every stable function
is the limit of a chain of step functions. However, we would like to save some energy by

using another form of finite elements suggested by T. Coquand.
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Definition 8.2.3 Let f € D —, E. Define
[a,b,f]=Az.f(aNz)1 b
where a € D°, b € E°.
Clearly we have
Lemma 8.2.1 [a,b, f] is stable.
Lemma 8.2.2 [a,b,f]C, f.

Proof This is because for z C y-in D,
[a,b, F)(y) M f(z) = flaNy) b0 f(e)
= f(eNyNz)Nb
= fleMz)Mb
= [a, b, f1(z).

Lemma 8.2.3 Any function in [D —; E] which is stably less than [a, b, f] is uniquely

determined by its value at a.

Proof Suppose h C; [a,b,f]. aMzC z and aMz C a implies
h(aMz) =[a,b, fl(aNz) M k(a)

and
h(aMz) = [a,bd, fl(aMz) M A(z).
Therefore

h(z) = h(a) M [a,b, f](z).

Lemma 8.2.3 asserts that there are only finitely many stable functions below [a, b, f].

Proposition 8.2.4 Every finite element of D —, E is of the form | |[ a;, b;, f ], where

i€l
[ ranges over stable functions and a;’s and b;’s range over finite elements of D and E,

respectively.
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Proof First note that each [a,b, f] is finite. This is because assuming T is a directed

set of stable functions in D —, F such that

[a7 b,f] C, I_It)

teT

we have, by Lemma 7.1.2, that [a,d, f](a) C | |¢(a). However, [a,b, f](a) = f(a) 1 b
teT
which is finite as b is. Hence there exists ¢y € T' such that to(a) 3 [a,b, f l(a). For any

z €D,

)

to(a)l'l [a,b,f](al‘l:c) = [a,b,f](al’l:c) I'lto(al'lw),

by Lemma 7.1.1. But to(a)MN[a,b, f](aMz) = [a,b, f](z) and [a, b, fl(aMz)Nig(aNz) C
to(z). Therefore [a,bd, f](z) T to(z). Using Corollary 7.1.1 we see that o, I, [a,b,f].
Therefore [a,b, f] is finite. Remember the sup of finitely many finite elements is finite.

Also it is easy to see that f = | |{[a,b,f] | « € D°&b € E°}. Hence the conclusion
follows. I

Theorem 8.2.1 Let D, E be dl-domains. A function in D —, E is a finite element

iff it is equal to a step function determined by a finite stable joinable set.

Proof Obviously step functions are finite elements since they are as Scott functions
under the pointwise order. We show that every finite element in [D —; E] is equal to a

step function. Proposition 8.2.4 concludes that every finite element in [D —, E] is of the

form

L] [ai,bi, f1:

1<i<n

Therefore it is enough to prove that | | [a:, b, f]is equal to a step function. Write, for
1<ikn

eachlSiSn,{dEEl ]d;f(ai)ﬂb.;}as{dgl, dgg,---,dgk‘.}. Let

ciji=[]{zCa| f(z)Nb D d;;}

for every 1 < j < k;. Let

L U lejdijl=z. | {di; |ei; S}

1<i<n 1<5<k:

Lh<i<n L|1gj5k.-[cij, dij] = UlSiSn[ai) b, f] because for each ¢

| Hdis e S} T { fleij)Nbi | c; T}
E [ai, b, f](z)
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and for any prime d £ f(z Ma;) M b; there exists s such that d = d;; and ¢;; C z Ma;. It

is enough to check that
U {(eis dij) 11 <5 < ki)

1<ikn
satisfies the three requirements for a stable joinable set. Assume I C Uici<ni (3, 7) |1 L
j < ki}, and for all (4, ) € I. ¢;; C a for some a € D. Then for each (i,5) € I we
have d;; C f(c;; Ma;) M b; C f(a). Hence the first condition holds. The second and third

conditions hold because of the way we defined c; . |

It is not difficult to observe further that

Proposition 8.2.5 The complete primes of [D —, E], with D, E dI-domains, are

of the form [a, p, f], where f is a stable function, a is a finite element of D and pisa

complete prime of E such that p C f(a).

Proof That each [a, p, f] is a complete prime can be seen from the proof of Propo-
sition 8.2.4, making use of the fact that p is a complete prime in E. They are all the

complete primes because for any [a, b, f], [a, b, f] = W;esla, pj, f1, where p;’s are

complete primes such that | ;e p; = f(a) 115, B

Proposition 8.2.6 A stable joinable set
{(a;, &) |1€1}

determines a complete prime I_I[a,-, b; | iff there exists k such that Vi € I.q; C a;, & b; C by.
iel

Proof Use Proposition 8.2.5. 11

8.3 Constructions for Stable Neighbourhoods in DI

In the previous section we studied how to get the stable neighbourhoods via the com-
plete primes. In this section we study a more direct way to get the stable neighbourhoods.
We introduce constructions to get stable neighbourhoods of a higher type from those of

the type constituents in the category DI.

A dI-domain can be seen as a collection of computations of certain type. The stable
neighbourhoods of the dI-domain can be taken as properties about the computations.

Constructions on dl-domains can be seen as ways to combine computations together.
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Suppose z is a computation of type D, having property A, written = = A and y is a com-
putation of type E, having property B, written y = B. If we combine the computations
z of D and y of E together to get a computation (z op y) of type [D op E] ( here op
is some domain construction like sum, product, or stable function space), can we deduce
some property of (z op y) from the facts  |= A and y = B? To answer this question one
is lead to constructions (A op B) on properties A and B so that from ¢ = A and y = B
one deduces (z op y) = (4 op B).

There can be many different ways to combine a stable neighbourhood A of D and
a stable neighbourhood B of E together to get a stable neighbourhood (A4 op B) of

[D op E]. But the following are some basic requirements for constructions on stable
neighbourhoods as I see.
o if Ais a stable neighbourhood of D and B is a stable neighbourhood of E,
(A op B) should be a stable neighbourhood of [D op E].
o through finite intersection of stable neighbourhoods of the form (A op B)
it should be possible to get all prime stable neighbourhood of [D op E].
o foranyze€D,y€ E,z€ Aandy € B implies (z op y) € (A op B).
The first condition requires that (A op B) is well-defined. The second condition states
that stable neighbourhoods of the form (A op B) are expressive enough-we can get all the

compact stable neighbourhoods by using finite intersection and finite union. The third

condition ensures that the way we combine the stable neighbourhoods captures the way

we combine the computations.

We make a remark at the beginning that all the constructions introduced in this section
and next section have the above three properties satisfied. However some of them are

obvious and we do not always explicitly check them all.

Suppose D and E are dl-domains. Similar to SFP objects, it is easy to get the
stable neighbourhoods of D + E, D x E and D, from those of D and E with the three
requirements satisfied. But how can we get the stable neighbourhoods of [D —, E] from
those of D and F directly?

Let us first have a look at how we dealt with this problem for the Scott topology. If
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A and B are compact Scott open sets of D and E, respectively, then A — B = {h:
D — E|ACh™(B)}is a compact Scott open set of [D — E]. There is another way
to look at this. Since A and B are Scott open sets, they correspond to some functions

fa:D — O, gp: E — O. Set inclusion on open sets determines the pointwise order,
hence h € A — B iff f4 C gp o h (see the diagram below).

D _h,

e

O o
This suggests that, for dI-domains, we should use the diagram

D Pk, E

Jf A é{ ‘93
@ o

where the pointwise order is replaced by the stable order. This suggests the definition

h € A — Biff f4 C, gpoh. By the analysis given just before Theorem 8.1.2, f4 C, ggoh
iff AC, h~'(B). The following definition is reasonable.

Definition 8.3.1 Let D, E be dI-domains, A € KSN(D) and B € KSN(E). Define

A-B={feD—,E | AC, f'B}.

Following the view mentioned at the beginning of this section, let us think of a stable
function f as a computation of type [D —, E] which consumes some information of type
D and produces some information of type E (here we can identify the computations of
type D and E as data, or information, of type D and E, respectively). What does it
mean intuitively for a computation of [D —, E] to have a property A — B, where A is a
property of type D and B is a property of type E?7 The properties appropriate for stable
functions are those which are determined by a set of incompatible minimal information.
We can say that f has property A — B if f can produce some information with property
B from any input information with property A and, moreover, a minimal information of
property A is also a minimal information for f to produce some information with property

B. We can also say that f has property A — B if whenever f can produce an output
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(information) with property B, there is always some minimal input information z for f
to do so. If this minamal information « happens to be consistent with property A, then

it must also be a minimal information of property A.

Proposition 8.3.1 Let {(a;, b;) | ¢ € I'} be a stable joinable set. Then f € (a;1—

b;T) for any j € I, where f is an abbreviation for the step function | J[@;, b ] determined
i€l
by the stable joinable set.

Proof Directly follows from Proposition 8.2.2. I

Proposition 8.3.2 Let A, B, C, D be stable neighbourhoods and ¢ a finite element.
Then with appropriate types we have

ANB=0=(AUB)-C=(A->C)n(B—0),
ANB=0=>al— (AUB) = (aT— A) U (aT— B),
(A= C)n(B— D)C (AN B) - (CN D).

Proof Ounly the last inequality needs verification. Let f € (A — C)N (B — D). We
have AC, f~'C and B C, f~*D. By Proposition 8.1.5, AN B C, (f7*C)N(f~'D). But
(f71C)N (f~'D) = f~1(C N D). Therefore the desired inequality follows.

The third conclusion of Proposition 8.3.2 is, in fact, a generalisation of the remark

given after the proof of Proposition 8.2.2.
Because f € A — B iff AC, f~!B, the rule
ADA&BCB = (A— B)C(A' - B)
is no longer valid for dI-domains and stable neighbourhoods.
Theorem 8.3.1 Assume A € KSN(D) and B € KSN(E). Then
(A — B) € KSN([D —, E)).

We have to restrict A and B to compact open sets. Otherwise (A — B) can be a

non-open set, for the same reason as explained for Scott domains in Chapter 6.

Proof First we prove that (A — B) is Scott open. It is a direct consequence of

Theorem 8.1.2 that (A — B) is upwards closed. Suppose

fOEsfl l;s"'gsfn[;s"'
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is a chain and | |fi € (A — B). By definition puA C p( | £ ) B. As A is compact, pA
is finite. Let e e

pA = {ay,az,---,an,}.
a; € p( ] fi)™ B implies, by Lemma 8.2.2, | | fi(a;) € B. There exists I; such that

1€w i€w

f1;(a;) € B, as B is open. Let n =max{I; |1<j<m}. We have f,(a;) € B for all
1 <7 < m. It is then easy to see that uA C pf;'B, i.e. f, € (A — B). Namely,
(A — B) is open.

Assume f, g € (A — B) and f T g. By Theorem 8.1.2 we have

p(fNg)~H(B) C pf(B) N pg™(B).
On the other hand,
z epf(B)Npg~'(B)
= f(zr) € B&g(z) e B
= f(z)Ng(z) € B
= (fNg)(z) e B (Lemma 8.2.3)
= z € u(fNg)7(B).
Hence
p(fNg) " (B) = uf~(B)Npg~'(B).
Now
feE(A—B)&kge(A—B) = AL, f\(B)& AT, g"}(B)
= pACpf Y (B)Npg~'(B)
= A Cp(fNg)"'(B).
Therefore f Mg € (A — B), and (A — B) is a stable neighbourhood.

To show that (A — B) is compact we first prove that stable neighbourhoods of the
form (aT— bT) are compact, where ¢ € D° b€ E°. Let Q, = {c€ D |cCa},
Po={peE'|pCb},and

FP={f|fis astep function & fC Q. x P, & a € pf(o1) 3.

We claim that
(@—m = U o

gEFY
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Obviously
(a— )2 U ol

geF}

On the other hand, let f € (aT— bT) Clearly [a, b, f] € F?. Hence f € | g7 since

gEF?
f 3s [a, b, f]. Therefore (aT— b7) is compact.

Write A = Ujer(ai1), B = U;es(b;1), where I and J are finite and a;’s are pairwise

incompatible, b;’s are pairwise incompatible. It is easy to see that
A—= B = (Uirail) = (Ujes b1)
= Nier( ail— Ujes 1)
= Niet[ Ujes(ail— b;1) |.
Hence A — B is compact. |

From this theorem we can also see that it is possible to get all the compact stable
neighbourhoods of [D —; E] by finite union and intersection of stable neighbourhoods of
the form A — B, where A, B are compact stable neighbourhoods of D and E, respectively.
In particular we can get stable neighbourhoods whose minimal point is a single stable
function. We also have, for f, g € [D —, E], f C, g iff f € (A — B) implies g € (A — B)
for all A € SN(D), B € SN(E).

Proposition 8.3.3 Let a € D° and b, ¢ € E°, where D, E are dI-domains.

cC b= (al— b7) C | (a'T— 7).

a'Ca

Note that if a’ # a” and @' T a” then (a'T— c1) N (a”"T— ¢T) = 0. Hence actually
Uerca(a’T— €1) is a stable neighbourhood of [D —, E].

Proof Suppose f € (aT— b7). Then a € pf~'b1. We have f(a) J c. Let
a' = l_l {z|2Ca& f(x) Jdc} Clearly ¢" C a and ¢" € pf~'cT. Hence
f € Ua’;a(a,T—) CT) I

Theorem 8.3.2 Let {(ai, ;) |t € I} be a stable joinable set. Then

N(ail— b1) = “_l[ai:bi]]T :

i€l i€l
This theorem says that in the stable function space, if we take the intersection of the
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stable neighbourhoods ( a;T— 1), ¢ € I, we get a stable neighbourhood consisting of all

the stable functions which dominate the step function | |[a;, ;] under the stable order.
i€l

Proof We know from Proposition 8.2.2 that

|_|[ai, b] € ﬂ(aiT—* b;T).

i€l iel
It is enough to show that | J;e;[ a;, b; ] is less than any other stable function in N;c;( a;7—
b;1). Let g be a stable function in ;¢;( a;1— ;1). For any i € I, g(a;) 3 b;. Therefore
for any z in D

Lt lar T2} ] [{g(ar) |ax 2}
C g(),

ie.,

|[ai, 5:](2) E g(2).
el
Suppose z,y € D and z C y. Let p C [J{d; M g(z) | a; C y }, where p is a complete
prime. p C b; M g(z) for some j. Therefore, there exists s such that p = b, and a; J a,.
g(as Nz) = g(a,) M g(z) I b,. This implies, as g € (a;7— b,7), a, Nz = a,, or a, C .
Hence p C | I{ b; | a; C z }. By prime algebraicity of E,

g@) N Kb laEy} = {bNg(z) |a; Sy}
Now it is easy to see that

Ll[ai)bi] Es g.

el

8.4 Stable-Neighbourhood Constructions in COH;

This section studies the stable-neighbourhood constructions in COH;. Since the sum
and product constructions are easy, by introducing the shriek construction on stable neigh-
bourhood we get the constructions in COH, also. We introduce stable-neighbourhood
constructions corresponding to the tensor product, the stable function space, the linear
function space, and the shriek operation. We show that all these constructions preserve
compactness. We also give equations which indicate how those constructions interact with

unions and intersections.
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Theorem 8.4.1 Let Fy, F; be coherent spaces and A € KSN(Fp), B € KSN(F).
Then A® B € KSN(Fo ® Fi ), where

AQB=gs{z€Fo®@F |Jxo € A, 21 € B. 2o X 74 Qﬁ”m}.

Proof Clearly A® B is upwards closed. Suppose

ug Cuy C++-Cu, C---

is a chain in F, @ F; such that U;e, u; € A ® B. This implies 2z x 2, C Ui ¥; for some
Z9 € A, z1 € B, where zp and z; are finite. From 2z, C 7y Uiew us and 2y C my Use, ui we
derive that for some 4, 20 C mou;, z1 C mu;, hence 2o X 2, C u;. Thus u; € A® B. So

A ® B is open.

Assume z,y € A® B and 2 1 y. Then there exist zq, , € A, yo, y1 € B such that
To X Yo S z, 31 X y; T y. We have 2o T z; and yo T y;. Therefore 2o N z; € A4,
YoNys € B. Also, (zoNzy) X (Yo Ny1) Cf" 2Ny. Hence zNy € AQ® B.

To check compactness we first show that (a ® b7) is compact, where a, b are finite
configurations of Fo and F7, respectively. Clearly a X b € (aT® 67). On the other hand,
suppose u € (aT ® bT). Then by definition, there exist a’, ¥, a C a' € Fo, b C ¥ € F,
such that a’ x b C/™ y, Hence a x b Cf* . We have shown that

(a1® 07) = (a x BT,

therefore (aT ® bT) is compact. By Proposition 8.1.3 and the fact that A ® (BU C) =
(A® B)U(A® C) when BN C = §, we deduce that any A ® B is compact. §

From the proof we can easily see that
GRe={z€FH®F (e, e1) €},

where € = { 2o € Fo | €0 €0 } and €1 = { z; € F1 | e € 21 }. It is also clear that by
using finite union and finite intersection we can get all compact stable neighbourhood of
Fo ® Fi1 out of compact neighbourhoods of the form A @ B.

It is also clear that for z, y € Fo ® Fy, 2 Cy iff ¢ € (A® B) implies y € (A® B) for
all A € SN(Fyp), B € SN(F).
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Proposition 8.4.1 Suppose A;, A; € KSN(%), Bi, B; € KSN(F,), where Fo, F

are coherent spaces. Then

(A1 N A3) ® (B N By)
- (A]_ ® Bl) ﬁ (A2 ® -Bl) ﬂ (Al ® Bg) ﬂ (A2 ® Bg).
The proof goes through without using the compactness assumption.

Proof C: Suppose z € (A; N A;) ® (B N B;). Then there exist y, € A; N A,
y1 € By N B, such that yo x y; T «. It is obvious

xr c (A1 ® B]_) N (Az ® Bl) N (Al ® Bg) N (Az ® Bg)

D: Assume

By definition there are y11, Y21, Y12, y22 € Fo and 211, 291, 212, 222 € Fo such that vij € Aiy
2j € Bj,and y;; X z;; Cfim g for i = 1,2, j = 1, 2. We have, as Ay, B, A, B, are stable
neighbourhoods,

Y11 Ny12 € A1, Y21 Nyz € Ay,

211 Nz91 € By, 212N 293 € B,
Clearly

(y11 Ny12) U (y21 Nyaa) € A1 N Ay,
(211 N 291) U (212 N 292) € B; N By,

and,
[(y11 N y12) U (y21 N y2e)] X [(211 N 221) U (212N 222)]

C (y11 X 211) U (%12 X 212) U (Y21 X 221) U (Y22 X 222)
gfin .
Therefore z € (A; N A2) ® (B1 N By). |

Both Theorem 8.4.1 and Proposition 8.4.1 can be generalise to the tensor product of

stable event structures.

Theorem 8.4.2 Let Fy, 1 be coherent spaces and A € KSN(F), B € KSN(F).
Then A —oB € KSN(F, ® F1 ), where

A —oB =def { z € Fo—0F; | A Ey’ (Pt w)_lB },
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Ptz is as defined in section 7.1 of Chapter 7, and C,, is given in Definition 8.1.2.
Proof Similar to that of Theorem 8.3.1. i

We remark that
(€0 —o&r) ={z € Fo —oF1 | (e0, &1) €z },

where &g = {29 € Fo |eo € xo } and &5 = { 21 € F; | e; € 7 }. In fact, let z € Fy —oF,
and (e, €1) € z. Then {e1} C Ptz {eo}, and {eo} € pu(Ptz)~"&;. So z € (65 —o&y).
Suppose, on the other hand, that z € (€5 —0€;). We have { e} € u(Ptz)~'e;. Therefore,
Ptz {eg} D {e} and (e, €1) € z.

By this observation, each stable neighbourhood of Fy —0F; can be constructed out of
A —oB by using finite union and finite intersection. Also, for z, y € Fo —oFy, ¢ C y iff
z € (A —oB) implies y € (A —oB) for all A € SN(F), B € SN(F).

Proposition 8.4.2 Let A, B, C, D be stable neighbourhoods and a a finite config-
uration. Then with appropriate types we have
ANB=0= (AUB)—oC = (A —oC) N (B —oC)
ANB =0=>al —0 (AU B) = (a] —0 A) U (al —o B)

(A—C)N (B —oD) C (AN B) —o(C N D)

Proof Easy. |

Note the rule
ADA&BCB — (A—oB) C (A’ —oB’)

1s not valid.

Proposition 8.4.3 Let ¢ € F, and y € F; be finite configurations and Fy, F;

coherent spaces.

e €y = (a1 —oy1) C |J(€—0é)).

e€x

Proof Suppose w € (zT —oyT) and ¢ € y. Then z € p(Ptw) 'yT. We have
(Ptw) (z) 2 y. This implies ¢ € (Ptw) (z). Hence Je € z. (e, ¢’) € w, which implies
w € € —oe’, by the remark given after Theorem 8.4.2. |
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Theorem 8.4.3 Let F be a coherent space and A € KSN(F). Then!A € KSN(!F),
where IA =gos { z €IF [zNpA# 0}, and pA, defined in Definition 8.1.2, is the set of

minimal points of A.

Proof Clearly !A is upwards closed. It is open because the elements of uA are finite
configurations. Now suppose z, y €!4 and z T y. We have z Ny €LF, z N pA # 0, and
yNpA #0. But Uy €!F, hence (z Ny) N pA # 0, because the elements of pA are

pairwise inconsistent. So # Ny €!A and !A is a stable neighbourhood.

To see A € KSN(!F) note that

A= | !'({a}1)
a€uA
and each !({a}1) is compact. i
Notice that for z, y €!F, z C y iff  €!A implies y €!A for all A € SN(F).
Proposition 8.4.4 Let A, B € SN(F) and AN B = §. Then

(AuB) = (1A) U (!B).

Proof When AN B = 0 we have y(AUB) = pAU uB. 1
Note we have {0 } = 0, where the first § is in SN(F), the second § is in SN(!F).

Of course Definition 8.3.1 specialises down to coherent spaces. For coherent spaces Fo

and F; with A € KSN(Fo), B € KSN(F;), we define
A-B={zeFo—F|ALC, (Pte)'B}.

As a corollary of Theorem 8.3.1, A — B € KSN(F, — F;). We have an isomorphism
£ [Fo —s Ju] — [\Fo —oF1), as pointed at the end of Section 7.1. Is it also true, under
the isomorphism, that A — B = (14) —oB, as one may expect? Of course. Actually this

is one of the touchstones to test the correctness of the approach. We have
Proposition 8.4.5 Suppose
£: [Fo =, Fu] = [IFo —oF)
is the isomorphism. Then
z € A— Biff £z € (1A) —oB,
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where A € KSN(%p), B € KSN(F).

Proof

z€(A— B) <= pAC u(Ptz)"'B
< {{a}|acpd} C u(Piz)'B
> u(lA) C u(Ptex)"'B
< (fz) € (1A) —oB

where £z = { ({u}, e) | (u, e) € z }. Note we used the fact that u(!A) = { {a} |a €
pAY. 1

8.5 Partially Synchronous Morphisms and
Their Logic (with an eye to CCS)

This section studies the stable-neighbourhood constructions in the categories SEV; , and
SEV,y,. Stable event structures can be used to give semantics to languages like CCS and
CSP. Building a domain logic on SEV;,, and SEV,,, should help us in understaﬁding
logics for CCS and CSP like languages. A first step toward such a logic is to study
the stable-neighbourhood constructions corresponding to constructions in SEV?,,, and
SEV .. Again the sum construction is easy. We focus on the partially synchronous
product and synchronous product. First we give some general results on how events and
the relationships among them determine stable neighbourhoods. These results lead us to
the main result of this section — Theorem 8.5.4. The construction introduced in Theorem
8.5.4, however, does not preserve compactness. This is an unwelcome phenomenon, since

it implies that there does not exist a prime normal form for assertions as given in Chapter
5.

Theorem 8.5.1 Let E = ( E, Con, ) be a stable event structure and X C Con a

finite set of consistent events. Define
X={zeF(E)|XCz}.

X is a stable neighbourhood of (F(E), ©).
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Proof First we show that X is Scott open. Obviously X is upwards closed. Let
wogwl g ...gmi...

be an increasing chain in F( E ) such that U, z; € X. As X is finite, there must be some

¢ such that X C z;, or z; € X. Hence X is open.

Letz Tyandz,y € X. WehavezNy € F(E) as E is stable [Wi86]. Also X CzNy
as X Cz and X C y. Therefore X is a stable neighbourhood. N

When X = {e} we write é for {/e\} In particular é is a stable neighbourhood. But it
is not necessarily compact. From the work of Winskel [Wi86] we know that the complete

primes of (F(E), C) for a stable event structure E are of the form [e]» where e € z

and
[ele=({yeF(E)|ecy&yCla}.

It is then not difficult to see that the minimal points of & are all complete primes.
Now we consider some general constructions on stable neighbourhoods.

Definition 8.5.1 Suppose A, B € SN(D), where D is a dI-domain. Define

ALB={zeD|zeB&VyCz.ycB=ycA]}.

A < B reads ‘B needs A’ or ¢ A proceeds B’. A computation z has property A < B
if it has property B and at any earlier stage of the computation if property B is satisfied
then property A is also satisfied.

Example 8.5.1 Let D be F(E), the dI-domain associated with a stable event struc-
ture E, and let A =€, B = ¢/, where ¢, ¢ € E. In this case z € (<€) iff ¢ € z and
for any y C z, ¢’ € y implies e € . Comparing this with Definition 7.1.9 we find that
re (e g’) iff e <, €'l Note according to Definition 7.1.9 e <, €’ is only defined for €, ¢’

n .

Theorem 8.5.2 Suppose D is a dI-domain and A, B € SN(D). Then A « B €
SN(D) and, moreover,

(A< B)= (AN uB)t.

Proof First we show that (A < B) is upwards closed. Suppose z € (A < B) and
rC 2z z€ (A< B)implies z € B. Hence z € B. Let y C 2z and y € B. We want to
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show that y € A. z and y are compatible because ¢ C z and y T 2. Hence z N y € B.

Since 2 € (A B), zMy C 2, and Ny € B, we have z My € A. Therefore y € A.
Namely, z € (A < B).

Next we show that (A <« B) = (AN pB)T, which implies (A <« B) is a stable
neighbourhood since it is then clear that u(A < B) C uB.

Let z € (A < B). Then z € B. For some ¢ € uB, ¢ C z. Clearly ¢ € A, therefore
c€ (AN pB) and z € (AN pB). Thus

(A< B)C (AN uB) .

On the other hand, if z € (AN pB)7 then z 1 ¢ for some ¢ € (AN pB). We have
c€ (AN B) and for any y C ¢, y € B implies y = ¢ since ¢ is in B, and ¢ is in A. Hence
¢ € (A < B). But (A < B) is upwards closed, so z € (A < B). We have shown that

(A B)2 (AN pB)T.

Corollary 8.5.1 Let E = (E, Con, ) be a stable event structure. Define, for two

events e, €/,

(e<e)={z|zeF(E)&e<,¢}.
(e < ¢') is a stable neighbourhood of F( E ) which is equal to € < €.

Abbreviate (A < B)N (B <« A) as A ~ B. Then a computation & has property
(A ~ B) if z has both properties A and B, and at any earlier stage of the computation,
property A and property B either hold or not hold, at the same time. In other words, a
computation z has property (A ~ B) if property A and B start holding simultaneously

on or before z. We can read (A ~ B) as ‘A synchronous-and B’.
Definition 8.5.2 Suppose A, B € SN(D), where D is a dI-domain. Define
A€ B={zeD|zecB&[dyCz.(ye B&y¢g A)]}.
(A & B) reads ‘B independent of A’. Abbreviate (A € B)N (B &« A) as A — B.

Then a computation z has property (A — B) if z has both properties A and B, and at
some earlier stage in the computation, property B holds but property A does not. Also
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there is some earlier stage at which property A holds but property B does not. In other
words, a computation z has property (A — B) if at  both property A and B hold, and
they started holding independently. We can read (A~ B) as ‘A asynchronous-and B’.

Example 8.5.2 Let D be F(£), the dI-domain associated with a stable event struc-
ture E, and let A =&, B = ¢, wheree, ¢ € E. Wehave z € (—é)iffe’ € z, e € z and,
for some y C @, ¢’ € y but e ¢ y, for some y' C z, e € ¥’ but ¢ ¢ y'. Hence = € (e~ g’)
is a similar notion to e co, ¢’ which people use to describe that events e and e’ can occur

concurrently in z.

Theorem 8.5.3 Suppose D is a dI-domain and 4, B € SN(D). Then A £ B €
SN(D) and, moreover,

(AL B) = (uB\ A)T.
Proof It is enough to show that (A &« B) = (uB\ A)T.

Let z € (A & B). Then z € B and for some y C z, y € B but y ¢ A. For some
c€ uB, cCy. Clearly ¢ ¢ A. Therefore c € (uB \ A) and z € (uB\ A)]. Thus

(AL B) C(uB\A) .

On the other hand, if z € (uB\ A)7 then z I ¢ for some ¢ € (uB\ A). We have z € B
and cC z,c € Bbut c ¢ A. Soz € (A £« B). We have shown that

(A £ B) 2 (uB\ A)T .

Let A € SN(F(Eop)) and B € SN(F(Ey)), where Eq and E; are stable event struc-
tures. How can we construct, out of A and B, a reasonable stable neighbourhood for the

partially synchronous product Eq X E; given in Definition 7.1.117?

Definition 8.5.8 Suppose A € SN(F(Eyp)) and B € SN(F(E;)), where Ey and E;
are stable event structures. Define
(AepB)={ ze€F(EoxFE) | note AdkmzreB&

Vy(y € F(Eox E)&yCa)moyc A mye B}
and
(Ao, B)={ z€F(EDE,) | norc A&kmz€eB&
Vy(ye F(Eo®FE )& yCaz)myceAs mye B}
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Theorem 8.5.4 For stable event structures Ey and Ey, if A € SN(F(E,)) and
B € SN(F(E,)), then (A <, B) € SN(F(Ep x Ey)). Moreover, if ey € Ey and e; € Ey,
then &y ¢y, € = (eo’,\el). The same result holds for the synchronous product, that is, if
A € SN(F(Eo)) and B € SN(F(£4)), then (A <, B) € SN(F(Ey & FE1)). Moreover, if

eo € Ep and e; € Eq, then g5 <, €1 = (e.)/,\(al).

Proof We check the case for the partially synchronous product. The proof for the

synchronous product is similar.

Assume z € (A <, B) and x C 2z, where z € F(Eo X E;). We have 1oz € A and
72z € B, clearly. For any y C z,
my EA =*m(zNy)e A

< m(zNy)€B (zNy Cz € (A ey B))

<< my€eB
(%: we have, in this special case, mo(z Ny) = (moz) N (Toy) when = T y. This is because
moe = moe’ € (wox) N (moy) implies € = €' with e, €’ consistent.) Hence z € (A4 s, B)‘,

which means (A <,; B) is upwards closed.

Let

ol 21 C---Cxp C-v

be a chain in F(Ey x Ey) such that U;e, 2; € (A <, B). Obviously there is some z; for
which moz; € A and mz; € B. It is then easy to see that z; € (A <5 B). So (A <, B)
is open. From z, y € (A <, B) and z T y we can easily deduce that zNy € (A <,, B).

To prove (&5 <5 €1) = (eo’,\el) it is clearly enough to show that (€5 <, €1) C (eo/,\el)
because the inclusion in the other direction is obvious. Let z € (& «,, €). We have
eo € mox and e; € mz. Therefore there exist e, €’ € z, such that mge = ¢y and 7€’ = €.

From the coincidence-freeness we deduce that e = ¢’ = (eq, ;).

At this point it is appropriate to ask whether all the criteria set at the beginning
of section 8.3 are satisfied for the constructions introduced in Definition 8.5.3. From
Theorem 8.5.4 we know that for the synchronous product all the three conditions are
satisfied. It is easy to see that the first and the third conditions hold. The second
condition also holds since Theorem 8.5.4 concludes that it is possible to get the stable
neighbourhoods (e(;\el). Clearly any prime stable neighbourhood in SN(F(Ey & E)) is

a finite intersection of stable neighbourhoods of the form (eo/,\el).
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For the partially synchronous product the first and the third conditions hold. The
second condition does not hold. This is because we cannot get stable neighbourhoods of
the form (e;,\*) and (*,/-;1) in general. Based on Definition 8.5.2 we can introduce a similar
notion as that is given in Definition 8.5.3 to capture the independence of events. Suppose
A € SN(F(Ep)) and B € SN(F(E)), where Ey and E; are stable event structures.
Define

(Akps B)={ z€F(EgxE,) | mzeB&

Jy(yeFEgx E))&yCa)myec B&myg A}
and
(A$pB)={ scFEyxB) | macAk
Wy (yeFExE)&yCa)rnyeAkmydg B}
A stable neighbourhood (e;,\*) consists of all the configurations « for which (e, *) € z.
This means eg has occurred in  but it is independent of any event in E;. By using the
construction just introduced we only have (e;:*) as
(eor %) = () (& P &)
e1€Ey
(a fact that has a similar proof to that of Theorem 8.5.4) Whjch is not necessarily a finite

intersection. This suggests that for the logic we should use not only the finite disjunctions

and finite conjunctions, but also limit forms of quantification like
Ve € E,. (eo independent-of e)

to express the fact that an event (ep, *) occured in a configuration of the partially syn-

chronous product.

Note that, unfortunately, in the partially synchronous product or synchronous product,

a stable neighbourhood (e(;\el) is not necessarily compact as the following example shows.

Example 8.5.3 Let Eg = ({e, €'}, Cong, ko), where {e, &'} € Cong and {e} ¢ ¢,
0 boe; By = (w, Cony, F1), where X € Con; for X Cf™™ w and § I i for every i € w. In
the partially synchronuos product or synchronous product, (e7,\0) is not compact because

{ (e, ?) }, 7 > 1, are minimal points in (67,\0).

As remarked earlier, this means that there does not exist a prime normal form for
assertions of the kind of logic we are looking for. This does not imply, however, that there

does not exist a neat logic on SEV}, , or SEV,,.

syn
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Chapter 9

Logics of DI-Domains

In this chapter we study logics of dI-domains.

A logic of coherent spaces is introduced. The proof system is shown to be sound and
complete. The logic of coherent spaces employs an assertion language with a disjoint ‘or’,
to cope with the disjunctive nature of stable neighbourhoods which are used to interpret
the assertions. Because of the disjunctive nature the assertions cannot be formulated by a
simple grammar directly as has been done tradditionally; instead we have to use a mutual
recursion between syntactic rules and proof rules. Since the type constructions allowed
are sum, product, tensor product, linear function space, Girard’s ‘of course’ operator,
which we call shriek, and recursively defined types, we can combine type constructions to
get a logic of COH,, coherent spaces with linear, stable functions, and a logic of COHj,
coherent spaces with stable functions via the shriek construction (the left adjoint). The
logic of COH, is then generalised to a logic of DI, dI-domains with stable functions.

Proof systems are introduced and soundness, completeness, and expressiveness results

given.

To give meaning to recursively defined domains in DI we use the result of [Zh89]. To
solve equations of coherent spaces we introduce, in Section 9.1, coherent event structures
and a substructure order on them. This gives a large cpo on which various constructions
of coherent event structures are shown to induce continuous functions. The fixed-point

construction of continuous functions provides solutions to equations of coherent spaces.

9.1 Solving Equations of Coherent Spaces

Coherent spaces can be seen as information systems [Zh89] as well as event structures
(chapter 7). It is easy to see that the configurations of event structures of the form
(E,Con,{D F e|eec E}) determine coherent spaces, where Con is specified by a
conflict relation. Therefore a pair (E, # ) determines a coherent space (here we choose
to insist that # be irreflective). Call a structure (E, # ) with # symmetric, irreflective

a coherent event structure. This name, we admit, is rather superficial: coherent event
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structures are exactly coherent spaces. It is used here since by viewing coherent spaces
as a special kind of event structures we can directly apply results on recursively defined

event structures.

There is some technical advantage to work with structures (E, W), derived from
(E, #) by taking W to be # U 1, with 1 the identity relation. However one can easily
recover ( E, #) from ( E, W) by taking # to be W \ 1.

We introduce a partial order of coherent event structures. This order captures the
notation of rigid embedding. It enables us to give meanings to recursively defined coherent
event structures through the construction of least fixed points for continuous functions.

This section uses the idea given in section 1.6 of [Wi86] where relevant proofs can be

found.

Definition 9.1.1 Let E;, = (FEo, Wo) and E; = (E;, W;) be coherent event

structures. Define £, 4 E, if

Eo _C__: E]_ and
B\X/QGI — €, e € Eo & 6\)‘/16'

When E, Q E, we call By a substructure of E,. It is easy to see that E, 4 E, iff

Eo - E]_ and

eFoe' < e, € € Fy & e €.
This is because we have Eq C Ey, so e = ¢ in Ey is certainly equivalent to e = ¢ in
E, and e, ¢’ € Ep. There is a least coherent event structure, the unique one with the
emptyset of events. Each w—chain of coherent event structures, increasing with respect

to d has a least upper bound, with events, and conflicting relations the union of those in

_ the chain.

Definition 9.1.2 Let D, E be coherent families (See Chapter 7). A stable function

f:D — E is a rigid embedding if there is a stable function g : E — D called a projection

such that
eVdeD.gf(d)=4d

e Vec E. fgle)Ce
eVdeD,ecE.eC f(d) = fg(e) =e

Proposition 9.1.1 Let E = (E, W) be a coherent event structure. Then PtE is a
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coherent family, where
PE ={z|c CE&Ve,e'€z.eWe' =>e=c¢}.

Moreover, if £ Q E' then the inclusion map i : PE — PE' is a rigid embedding with
projection j : PLE' — PtE given by j(y) =y N E for y € PLE'.

Proposition 9.1.2 The relation < is a partial order on coherent event structures. It
has a least coherent event structure L =, 7 (0,0). An w—chain of coherent event structures
EyQE,---4E, Q... where E, = (E,, W,) has a least upper bound

Uﬂn—_'(u En, U Wn)-
new new new

Coherent event structures form a class and not a set. For this reason we cannot say
that coherent event structures form a cpo. However it has all the other properties of a
cpo which are enough to serve our purpose. We can call coherent event structures with

d a large cpo and write COEV for it. It is easy to extend the substructure relation to

n—tuples of coherent event structures. They form a large cpo, COEV™, too.

Definition 9.1.3 Write «; for the projection map m;(E,,...,E,_;) = E; on n—tuples

of coherent event structures. For n—tuples,

(Eo,---aE_n—1)§l (ﬂ"")ﬂz—l) ifﬂoﬂﬁg& &En—lﬂﬂn—l'

For convenience write E for (Eo, Ey,---E,).

The least element of COEV™ is the n—tuple of empty coherent event structures
(L, L ---.L). The least upper bound of an w—chain of n—tuples of coherent event

structures is then just the n—tuple of coherent event structures consisting of the least

upper bounds on each component, i.e. if

-

EyQE,---QE Q-
is a chain then for the j-th component

Wj(UEi ) =U7r.'i(Ez' )-

An operation F' from n—tuples of coherent event structures to m—tuples of coherent

event structures is said to be continuous if it is monotonic, i.e. E 4 E' implies F ( E_ ) 4
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F(E') and preserves w—increasing chains of coherent event structures, i.e.

pry

E,9E --aEa..

el

I

implies

UF(E)=F(UL).

It is well known that for functions on (finite) tuples of cpos they are continuous iff
by changing (any) one argument while fixing others the induced function is continuous.
Thus in verifying that an operation is monotonic or continuous we ultimately have to
show certain unary operations are continuous with respect to the substructure relation

d. The next proposition will be a great help in proving operations continuous.

Proposition 9.1.3 An unary operation F is continuous iff it is monotonic with

respect to A and continuous on events, i.e. for any w—chain
EyQE,---QE; Q...
each event of F' (U; E; ) is an event of U; F (E;).
Proof
(=): obvious.

(<): Let
E,QE, - -<QE.<...

be an w—chain of coherent event structures. Since F' is monotonic, we clearly have
UF(E) 2 F(UE).
1 i

Thus the events of F' (U; E; ) are the same as the events of J; F' ( E; ). Therefore they are
the same coherent event structure since for coherent event structures E = (E, W) and

E' =(E',W'), E=E'and EQ E' implies E = E', a fact that can be easily verified.

It is well-known that continuous functions on cpos have least fixed points and the
argument is virtually the same for continuous operations on big cpos. Now given any
continuous function F' on COEV, we can get the least fixed point of F', which is the limit

of the increasing w—chain

LIAFLQFL)Q...aF (L),
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ie. U; F*(L). Note since we are working with the partial order 4, we get an equality

FUF (L) =UF Q).

Thus we have

Proposition 9.1.4 Let F be a continuous function on COEV. The coherent event

~ structure fiz F' of COEV is the least fixed point of F, where

fiz F = UF (L).

There are the following constructions on coherent event structures.

Sum. Let E, = (Eo, Wo ), E; = (Ey, W; ) be coherent event structures. Their sum,
Ly + E,, is a structure £ = (E, W) where

E = {0} x EoU {1} x E;

(i e)#(dye)=i#Fjor (=7 &e#ier).

Product. Let E, = ( Ey, Wo), Ey = (E;, W;) be coherent event structures. Their
product, Ey X E,, is a structure £ = ( E, W) where

EZ{O}XE()U{l}XEl
(’l:, GQ)W(j, 61)<=>'1:=j&60\x/2‘81.

Tensor product. Let Ey = ( Ey, Wo ), By = (E1, W1 ) be coherent event structures.
Their tensor product, Ey ® E,, is a structure E = ( E, W ) where

E= Eo X El
(€0, €1) # (€, €]) <= o #oeh or e1 #i€].

Linear function space. Let By = ( Ey, Wo), E; = (E1, W1) be coherent event

structures. The linear function space, Ey —o E, , is a structure E = ( E, W) where
FE = Eo X El

(€0, €1) W (g, €]) <= —(eo #oep) & €1 W€,
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Shriek. Let Eg = (Ep, Wo) be a coherent event structure. Its shriek, By, is a
structure E = (E, W ) where

E = Fin(E,)

a#d < Jecade €d. e#qe.

Recall that Fin(A) stands for the set of finite subsets of A, a notation introduced at
the beginning of Chapter 4.

Theorem 9.1.1 below asserts that all the constructions introduced above induce con-
tinuous functions. This implies that it is possible to give meanings to recursively defined

coherent event structures involving these constructions.

Theorem 9.1.1 Shriek is a continuous function !( ) : COEV — COEV. Sum,

product, tensor product, and linear function space
+, X, ®, — : COEV? — COEV
are also continuous functions.

Proof That all the constructions give well defined functions is clear. We prove that

shriek and linear function space are continuous. The proof for the rest of the constructions

are similar. By Proposition 9.1.2, to show a construction is continuous it is enough to

show that it is monotonic and continuous on events.

- To show that shriek is monotonic let Ey = (Eo, Wo), By = (E1, Wi1) be coherent
event structures such that Eq I E,. Let !E, = (E, W) and !E;, = (E', W'). Clearly,
then, £ C E'. By definition, a # b iff there are e € a, f € b such that e#o f; o’ #'V
iff there are €’ € @', f' € ¥ such that €’ #; f. Thus a#biff a, b € FE and a#'b since
FEo 4 E,. Therefore |1E, < 1E,.

Now let
By By E Q-

be a chain of coherent event structures. Suppose @ is an event of {(; E;). We have
a Cf" U; E;. Thus a Cf™™ E,, for some n since a is a finite set. Therefore a is an event of

U; !(£;). This means ! is continuous on events.
We have proved that ! is continuous.
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The linear function space, —o, is monotonic: let Ey = (Eo, Wo), E; = (Ey, Wy),
and E, = (B2, W2) be coherent event structures such that E, 9 E;. Write (E, W) for
Ey —oE; and (E', W') for E; —oE,. Clearly E C E'. By definition, (eo, e2) W (&b, €})
iff = (eo#oey) and ey Waeh ;5 (eq, e2) W' (€, €5) iff —(ex#1€}) and e; Wse). Thus
(€0, €2) W (ep, €5) iff (eo, €2), (€f, €5) € E and (eq, e2) W’ (€, €}) since E; <A E;. Therefore

(Eo —0 E5) A (E; —0 E,).
Similarly —o is monotonic in its second argument.

Let
EydE - dE4Q. ..

be a chain of coherent event structures. Suppose (o, €) is an event of (U; E;) —oE,
with £ = (E, W ). We have (eo, €) € (U; E;) X E. Thus (eq, €) € E, x E for some n.
Therefore (e, €) is an event of |J;( E; —o E ). This means —o is continuous on events in

its first argument. Similarly it is continuous on events in the second argument.

Therefore —o is continuous on both its first and second argument, and hence it is

continuous. [

We remark that similar results hold for coherent families, in other words, coherent
families form a big cpo under a substructure order and all the constructions given in
Chapter 7 for coherent families induce continuous functions. Therefore we can also solve
equations of coherent families involving constructions like sum, product, tensor product,

linear function space, and shriek.

Note that since we use concrete structures of sets to solve equations of coherent event

structures the usual domain isomorphism becomes an equality.
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9.2 Disjunctive Assertions and Proof System

There is a language of type expressions for coherent spaces introduced as follows:
ocu=0|ox71|o®7|oc+7|oc—oT|lo|t|rect.c
where ¢ is a type variable and o, T ranges over type expressions.

Each closed type expression can be interpretd as a coherent space described as follows.
The atomic type expression O is interpretd as the two point coherent space ©. To
fully determine the interpretation it is enough to specify the interpretation for the type
constructors. X is interpretd as the cartesian product, ® the tensor product, + the
coproduct or sum, —o the linear function space, ! the shriek construction on coherent
spaces, and rec .o the initial solution of the corresponding equation in the category of

coherent spaces. Write D(o) for the coherent space associated with o specified in this

way.

For each type expression we associate it with an assertion language. To characterise
coherent spaces the assertions are interpreted as compact stable neighbourhoods of the
coherent space determined by the type expression. Thus it is intended that the assertions
be disjunctive, in other words, when ¢ V 1 appear as an assertion it should be provable
from the proof system that ¢ A¢ < f. There is actually a weaker notion than this, which
requires that if ¢ V ¢ is an assertion then [¢ A 4] C 0. However since our proof system

is complete ( Theorem 9.2.2 ), these two definitions coincide. -

Surprisingly, such a simple requirement of disjunctiveness makes it impossible to spec-
ify the assertion language solely by a simple grammar. In what follows we introduce the
assertion language by first introducing atomic assertions ( tokens ) and a conflict relation
on the atomic assertions, then giving syntactic rules and proof rules at the same time,
with a mutual recursion between them. We do not get all assertions immediately. At the
beginning there are only the atomic assertions. But when it is provable from the system
that ¢ A9 < f, ¢ V ¢ becomes a proper assertion and we can prove more facts about

these assertions, and can get even more assertions.

Notation. In this chapter all the index set like I are finite.
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Ao(T)

A, (p)
Aa+7(i’d99)

Aq(p)

AO’X‘I‘(LP X tT)

As(p) A, ()

Aa@’r (‘P ® "/))

Atomic Assertions

A ()
A0+‘r(w¢)

A ()
Aa'x'r(ta X ¢)

Vi, j € 1. A, (p;) & = (i # ;)

A!a(! Nier Soi)

As(p)  A.(¥)

A, o (p—09)

These rules are self explanatory. T is an atomic assertion of O which, by the semantic

interpretation given later, ‘picks up’ the top element of the domain . As a special case

for the atomic rule, we have

which means !t, is an atomic assertion of type !o. When the type is clear from the

context, we just write A(ep).

A ((t0)),

The following table specifies the inconsistency relation

between atomic assertions. All assertions here are assumed to be atomic.
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Atomic Inconsistency

wlep F# wrp
o # P Y #Y’
inlep # lep! arp # wry!
p# ! il
pXxXt#P xt t x#t x
oy P #
PRYVFHY QY ¢®¢#w®w

Ji e 135 € J. p; #;
"Nier i # 1 \jes ¥;

~(p#¢') b # o (e #¢') el D~y
¢ —opF ¢ —ot o —op# e —or

On atomic assertions the similarity relation ~ almost means syntactic equality (=).
The subtlety comes from the atomic assertions of type lo. By the rules for atomic asser-
tions, an atomic assertion of lo is of the form ! A;cs @i, where ;’s are atomic assertions
of type o. We want to have (o A1) ~ !(¢1 A o), though. Therefore, formally ~ is the
syntactic equality with every assertion ! Ajer ;i of type lo understood as I( {¢; | i € I}).
It is easy to see from the proof system that the similarity relation is a relation stronger
than logical equivalence (=). Clearly, if two atomic assertions are not similar, ¢ % 2,

then they do not have the same interpretation as stable neighbourhoods.
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Assertions

i f:o Ao (v)
T p:o
e, Yo pAPp<f @, Yo
CeAYp:o pVi:o
p:0 (VRE p:o T
OXP:oXT YQRY:0QT

p:o VT
mlp:o+T wp:io+T
p:o0 p:o VT
lp :lo p—oth:0—0T

¢ :o[rect.oft]

p: rect.o

The rule that ensures disjunctiveness is

pAp<f v, Pia
pVio ’

which says ¢ V ¢ is an assertion if we can prove ¢ A ¢ < f using the rules given in

the forthcoming tables. The assertion language is then the minimal set of assertions

inductively closed under these rules. Therefore, if V1 is an assertion we have - pAY < f.

Write B, for the set of disjunctive assertions of type o built up this way.

When ¢ : o we say ¢ is well-formed. For example t V f is a well-formed assertion but
t V t is not. We assume that all assertions from now on are well-formed whenever they

appear in the proof system.
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Propositional Rules

(t) p<t ) f<e
e F# P
f < _PHEY
(Ref) p<¢ #) ARG <T
< ! I< "
(Trans) r=¢ P9
(pssoll
(<—=) p<P $=<¢
p=1
— ! — !
(=— <) ek S e
-3 2"
(A=<) A <@ oA <y
< / < "
(< —A) PS¢ ¢Sy
YN
<o <
(V= <) pL o ¢7¢
eV <o
(£-V) e Ve ¢ < Ve
(A=V) PA(p1Vee) S(@A@1) V(e Aps)

Note it is necessary to require that all the assertions appear in a rule be well-formed

when we applying the rule. For example, with respect to the following axiom

e A(p1Vepr) (@ A1) V(o Aps)

the fact that (¢ A 1) V (¢ A p2) is well-formed does not imply ¢, V ¢, is also well formed:

Simply take the assertion to be (f At) V (f A t). This is a well-formed assertion, but not
tVvit.

The proof systems associated with sum and product are the same as those given in

Chapter 5 for SFP objects. So no explanation is needed for them.
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Sum

- ¥ <o ¥
(=2) <. a9

o @ Loy 0wt
(ml—A) 0l (Nier i) =otr Nier 1l i
(ir —A) a7 (Nier ) =o4r Nier 0 s
(nl=V) ol (Vierpi) =o4r Vier ol o;

(ar — V)  ar (Vier i) =o4r Vier iw ;

Note that from the rules for Atomic Inconsistency we have wlp # arip, and by (#) of

the Propositional Rules, we can derive (by the prime normal form theorem later) the rule

()] ()]
wlp A ary

where ( )] is a notation introduced just after the proof systems.

Product

Yo o<, ¢
'ﬂbX(PSaXT’()b,xSOI

(x - V) @ X (VieId’c') =oxTr ViEI(p X Ibz

(x—<)

(VieI ©i) X P =gxr Vierpi X ¥

(X =A) Nerei X ¥ =oxr (Nicr0i) X (Nic1 i)

The proof systems for tensor product, shriek, and linear function space are introduced

below.
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Tensor Product
P P
(&) (¢) 0
R tT =o®r ta®'r ta & "b =oQ®T ta(EQ'r

P <, 0 <, ¢
YR <,or P ®@¢

(®—-<)

(®_A) (p®(¢1/\11b‘2)=0'®790®¢1/\§0®d)2
(P1AP2) ®Y =0r L1 @Y A2 @1
(®=-V) © ® Vier i =oer Vier ¢ ® i

(Vier #i) ® ¥ Zo@r Vierpi @ ¢

P is a predicate which holds on prime assertions — the definition is given shortly. Note
the special property of tensor product: for certain assertions if one of the component is t

then the whole assertion is t. As a special case of axiom (® — V) we have p @ f = f and
fy="f.

There is only one axiom for shriek. In particular we have !f = f. We do not have,

however,
o A 1) = o)A (1),

neither It = t.

Shriek
(! — V) ' !(VieI Soi) =10 Vier '("PZ)

® =0 P
(t=<) pry—

Note that we do not have
<1
lo <l
in general. This is because of the particular way in which the shriek construction works. -
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Linear Function Space

/ vl
(= -f) (@ =t,) <or oo
(=) [Pl £[¢1___Plere) P
(QD —0 "/)) A (QO’ —0 ¢) _<_a—o1' fo’—or
(o — <) a€f¥l _ P(y)

®p —o '5[’ <o—or Vbe[ﬂ (b —0 (l)
(— —A) Nier(pi =0 %) <o—or (Nier i) = (Aier i)

o P(¢)
( v ) @ —o (ViEI "/)z) —g—oT ViEI(So - Ip")

(Vier pi) 0% =¢_or Aies(p; —09)

As special cases of the axioms and rules for linear function space, we have
f—o=t,

t <t-—ot,

and ¢ —of = { for a prime assertion ¢. Note that by (—o — <)

t—oyp="f
for ¢ convergent (i.e. (1)]); by (—o —f),
p—ot="f

provided ¢ |. These two facts are somehow dual of those for tensor product, where we

have

tyY =t,
pR@t=t

under certain conditions.

Note that stable function space ¢ —, 7 can be given by the type lo—or. By Proposition
8.4.5, we can use an assertion !¢ —o 1 of lo —o7 to express an assertion ¢ - % of type

o —, 7. Therefore our proof system can also treat stable function space.

224



In giving the axioms and rules we used some side conditions like P(¢), read ¢ is
prime, |, read @ is convergent, and an operator called the atomizer, which returns a set
of atomic assertions [¢] not similar to one another, for a prime assertion ¢. 'This practice
is not new; we have seen similar side conditions used in predicate calculus and lambda
calculus, like ¢ z does not occur free in M ’. Those conditions are usually purely syntactic

and easily checked before applying a rule. The following are formal definitions of these

syntactic predicates.

P(QD) =pdef ® = Neer i & Vi e IA.((,D,) & Vi, jel. "1((,0,' # QOJ')

el P(P) & o= Nerpi & T#0
Let ¢ be a prime assertion, i.e. P(¢). Then there are assertions @i, ¢ € I, such that
© = Nierp; and Vi € I. A(p;). We define [p] = {p; |i € T }/~.

We now give an interpretation ( semantics ) for assertions. For each closed type

expression ¢ we define an interpretation function
[ Io:B, —=KSN(D(s))
in the following structured way.

For each closed type expression o, let

[tlo =D(0)
|If]]a =@
[Tlo=T

levele=lel-ul¥]s
|[90A¢]]a = ’ISO]]U N I['l/’]]a

225



With respect to type constructions we define
[ ¢]osr ={(0,u) |lueclelo \{0}}U{zeD(c+7)|0ee]}
[ elosr ={(1,u) |uclel-\{0}}U{zeD(oc+r)|0ec[¢] }
[ xPlowr ={(0,u) Jue el }U{(L,v)|vely]}
[¢ ®@¢loer = {z S D(0) @ D(7) | Fz0 € [p]oTe1 € [Yr- 20 x 21 C 2}
['elw ={[»]s)
[¢o%loor ={2 € [D(e) =D(7)]| [¢]s T (Pt2) " ([¥],)}

I[‘P]]rect.a = {eo(u) I u € I[SO]]U[('rect.a)\t]}

where ¢, : [ D( o[ (rect.o)\t]) — D(rect.o ) ] is the isomorphism arising form the initial

solution to the domain equation associated with type rec t. o.

See previous chapters for constructions ®, —o, and ! on stable neighbourhoods.

9.3 Soundness, Completeness, and Expressiveness

In this section we show that the proof system introduced for coherent spaces in the
previous section is sound and complete. As for expressiveness we proof that any compact

stable neighbourhood is expressible in the logic of coherent spaces.
Definition 9.8.1 For ¢, ¥ € B,, write |=, ¢ <, ¢ if [¢], C [¢],.

Definition 9.3.2 For ¢, ¢ € B,, write I, ¢ <, % if ¢ <, ¥ can be derived from the

proof system given in the previous section.

Definition 9.8.8 The proof system is called sound if F ¢ <, 3 implies |= ¢ <, 1.
It is complete if |= ¢ <, v implies F ¢ <, . An axiom is valid if it is a valid formula. A

rule is sound if it produces valid formulae from valid formulae.

Proposition 9.3.1 There is an isomorphism between atomic assertions of ¢ and

tokens of D(o) such that for any ¢, ¥, atomic assertions of type o, ¢ # o iff

[¢].N[¥], €0

Proof By an easy induction on the types. |
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Proposition 9.3.2 1. Suppose ¢ € B, and P(y). Then there exists a finite element
z € D(o) such that [¢], = @1 . 2. Suppose ¢ is an atomic assertion of type o.
Then there exists z € D(o), a complete prime, such that [¢], = zT. 3. Moreover, if

[¢] = {pi | i€ I}, then for the above z we have £ = {[¢;] | i € I'}. 4. Suppose ¢ € B,
and ¢ |. Then D, Z [¢]o-

Proof Routine. H

It is clear that a proof system is sound iff all its axioms are valid and rules sound.

Theorem 9.3.1 establishes the soundness of the proof system.

Theorem 9.3.1
e The logical axioms are valid and logical rules sound.
e The axioms for sum, product, tensor product, shriek, and
linear function space are valid. |
o The rules for sum, product, tensor product, shriek, and

linear function space are sound.

Proof That the logical axioms are valid and logical rules sound is obvious. The

axioms and rules for sum and product are sound, similar to the case for SFP objects.
We check the tensor product, shriek, and linear function space in detail.

The soundness of (® — t) follows from the definition given in Theorem 8.4.1: for two
stable neighbourhoods A and B, if A # () and 0 € B, then clearly § € AQ B as X0 =0.
The soundness of (®— <) and (® — V) is trivial while the soundness of (® — A) follows

from Proposition 8.4.1.
The soundness of (! — V) for shriek follows from Proposition 8.4.4.

The soundness of (—o —V), (—o —A) follows from Proposition 8.4.2 and Proposition
9.3.2. The soundness fo (—o — <) follows from Proposition 8.4.3, Proposition 9.3.1 and
Proposition 9.3.2, while the soundness of (—o —f) follows from the definition given in
Theorem 8.4.2 and Proposition 9.3.2. The rule (—o) is sound since if f is a stable function

and z, y € uf~1(A) with = T v, then we must have z = y. |

Remark. In proofs of this section we will not check the case for recursively defined

types, because all the time we are dealing with finite sets of assertions, and these assertions
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can always be considered as of some finite type.

Definition 9.3.4 Write P, for the proof system associated with type o. P, is called

prime complete if it has property po, prime normal if it has property p,, and complete if

it has property p;, where

(po) Vo, 0. (Ple) & P(¥) &[], € [¥], = F o < ¥)
(p1) o= |[i€I}LVie LP(p) & F o=V
(p2) Vo, ¥ : o ([e] C [l =t ¢ <9)

In (p1), Vier @i is called a prime normal form of .

Clearly Po has property po, p1, and p,. The proof for the completeness of the system
is achieved by showing that each type construction preserves property (po), (p1), and
(p2), by the following propositions. We omit the cases for sum and product, since they

are not new. Note that for each case the proof of (p,) is routine. It follows from (po) and

(p1) directly.
Proposition 9.3.3 Tensor product preserves pg, p;, and p,.

Proof (po). Suppose ¢ ® ¥, ¢’ ® ¥’ : ¢ x T are prime and [p ® %] C [¢' ® ¢'].
That ¢ ® 9, ¢' ® ¢’ : 0 X T are prime implies, by definition, ¢ ® ¥ = Aies ;i ® ¥; and
¢ @Y = Ajes ¥ ® ¥, where g;, ¥;, ¢, and 9} are atomic. By Proposition 9.3.1, for
any j € J, there is some i € I, [p; ® ¢:] = [¢} ® ¥}]. This implies [; ] = [¢}] and
[v:] = [+#;]. By assumption, F ¢; = @ and F ; = ¢}, Hence - ¢; ® 9; = @5 ® ¥, by
(®— <). Using logical rules we get F p @ 9 < ¢’ ® 9.

(p1) is routine. ll
Proposition 9.3.4 Shriek preserves po, p1, and p,.

Proof (po). Suppose
[A'ed S LA WL,

i€l Jjed
where lp;’s and l¢;’s are atomic. For any j € J, there is some i € I, [p;] = [+;1.
By assumption, F ¢; = ;. Hence Flp; =!4;, by (I— <). Using logical rules we get
F Aierlpi < Ajes'd;.

(p1) is easy. |
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Proposition 9.3.5 Linear function space preserves po, p;, and ps.
Proof The proof for property py is similar to previous cases.

P1 is interesting in this case. Clearly using (—o —V), (—o —f ) and the logical rules
one can reduce each assertion of linear function space to a disjunctive form where each
disjunct is a conjunction of assertions of the form ¢ —ot, with ¢ and 1 prime. It is

enough to show that every such ¢ —o 3 is reducible to a prime normal form. By (-0 — X)

and logical rules we have

Fp—oy < /\ \/(b—oa)

a€[y] be[v]

< \/ /\ (#(a) —a)

x: [P]—[e] a€l9]

<V N\ (k(a) —oa)

konto ag[y]

S** LP_O/‘/’

*: This is because for those «’s which are not onto, we can assume, say,

bo € [0 \ ([31).

Therefore

F(p—09) A /[\](fﬂ(a)—oa) S(p—op)A(¢ —op) < f
a€fyY

by (—o —A) and (—o), where ¢’ = Aaery 6(a). Now use the fact that if ¢ A4y < f and
@ < 1o V 1, then

e < @A (%o V1) <@ Ao

Hence ¢ < 1.

++: For those £’s which are onto, we clearly have, by (—o —A),

- /\ (k(a) w0 a) < p —1.
a€f¥]

Hence

Fo—op= VA (K@) —a)

s: [¥]—[¢] onto a€[v]
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In summary we have proved

Theorem 9.3.2 The proof system for the logic of coherent spaces is complete.
The expressive result is what one can expect:

Theorem 9.3.3 Let o be a closed type expression. Then
[ Io:(B:/=, <;) = (KSN(D(0)), C)

is an isomorphism, where KSN(D) is the set of compact stable neighbourhoods of D.

Proof Any compact stable neighbourhood of a coherent space D is a finite, pairwise
disjoint, union of prime open sets of the form {y J = | y € D}, with £ € D a finite
element. By the completeness theorem, if [¢], N [¢'], = @ then F ¢ A ' = f, and
©V¢' € B,. Therefore, it is enough to show that for any prime openset {y Jz |y € D},
there is some ¢ € B, such that

[Pl ={y2=z|yeD}.

However, finite elements of D are built up from the tokens. Hence it remains to show

that for each token a of D there is an atomic assertion ¥, such that

[l ={y2{a}|yeD}.
But this is just the conclusion of Proposition 9.3.1. §

9.4 Logic of DI

In this section we introduce a logic of DI, the category of dI-domains with stable
functions. This framework is a generalisation of the logic of COH}, coherent spaces with
stable functions. For the same reason as mentioned at the beginning of the previous
section, we use a disjunctive language which is formulated by using proof rules for the

syntax of assertions in addition to syntactic rules.

As usual a meta-language of type expressions is given as follows:
cu=1l|o+7|oxT|0o—,7|0L|t|rect.c

where t is a type variable and o, T ranges over type expressions. Note that we could have

used the linear function space —o and the shriek ! instead of —, via the adjunction

lo —o71 -

o=, T
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But we made a choice not to this time.

Every closed type expression is interpreted as a dI-domain, with 1 as the one-point
domain, X as the cartesian product, + as the coalesced sum, ( ). as lifting, and —, as
the stable function space. rec .0 the initial solution of the associated domain equation

in the category of dI-domains. Write again D( ¢ ) for the domain corresponding to o.

For each type o we introduce an assertion language C, according to the following rules.

Assertions
t,f:0o A (p)
p:o

e, Ppio pAPp <t e, Yo
eAY:o pVi:o
p:0o VT _ p:o
XY:ioXT (p)L 0y

p:o YT
mlp:o+T wp:o+T
p:o VT

poYio—, T

@ :o[rect.oft]
@: rect.o

When an assertion is of some type, i.e. ¢ : o, we say @ is well-formed. Note that one

of the rules,
pAPp<f ¢ P:0
eVi:o ’
makes use of the proof system. Here the same idea is used as was for the logic of coherent

spaces, where a mutual recursion between syntactic rules and proof rules is allowed. The
logic starts with some basic assertions, which are immediately justifiable to be well-formed.
From these, one can use the proof rules to derive facts about them. Some of the facts,
like ¢ A ¢ < f, will allow one to form more assertions. In this way one get a disjunctive

language.

Atomic assertions are some of the assertions to start with.
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Atomic Assertions

AIL(t-L)

Aa(‘P) A ()
A, (inlp) Asir(amip)

A, ()
A, ((p)L)

Aa(ﬁo) ’ AT(¢)

Aax,,(ga X tT) Aax'r(ta X ¢)
Aa—baf(/\l_‘Pi — ;) if

sViel. P,(go,-) &Af(@bz)

edkel.({pi|li€l}~)C ol & ({wiliel}/~)C o]
o Vi, j € Li#j=(pi— iF; — b))

oVj € IVx € [¢;]Fi € I. ¢; € ;] & x ~ 1

Call ¢ atomic if A,(p). It is intended that atomic assertions capture complete primes
in the corresponding dI-domains. For this reason the specification for the atomic assertion
of function space is a bit complicated; however this complication does not seem to be
caused by the way the rules are given, but rather by the inherent complexity of the
complete primes (see Section 8.2 of Chapter 8). When no confusion arises we often omit

type subscripts.

In the rules for atomic assertions several notations are used: they are P,, #, and
[ 1. Thereis also [ 7], which will be used later in some other rules. The predicate P
captures those prime assertions which correspond to prime open sets. The relation #
captures inconsistency among the atomic assertions, so that from ¢ # ) we can derive
¢ Ay < f by the propositional rule (#). The atomizer, [ ], gives a set [¢] of atomic
assertions determined by a prime assertion ¢. On the other hand, the primer, [ 7, gives

a set [] of prime assertions determined by a prime assertion .

232



Inconsistency Relation

wlep F mri
X

wlep # wly!
VY

awi # ary!

e# ¢
()L # (¢)1

e# ¢
pxtHP xt

p# o
txy#txyP

(In the rules above all the assertions are assumed to be atomic)

PleAy) A@) A®R) H#y

oo oY
Plony) od¢ Al) AWQ) p~
oYY o

ANerpi = %) ANy = ;) Feldje J oi— i # o — )
Nier0i = i # Njes @ — ¥}

Here the similarity relation ~ is a relation on atomic assertions (then easily extended
to prime assertions) which is very close to syntactic equality. The only difference between
~ and syntactic equality arise from the convention that for atomic assertions of function

space, we ignore the order of the conjuncts. More precisely, let

(pr)* = (¢")1,
(p X ¥)" = (¢") x ()",
(nlep)* = wl(p)*, (twd)* = iw(h)*,

(o = 9)" = ()" = (¥),
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(note here ( )., X, #l, @r, and — should be treated as syntax) and

(Awi) =U{(e)}
i€l i€l
for an atomic assertion A;cr ;. Then ~ can be formally defined by the following rules.

All the assertions in the following table are assumed to be atomic.

Similarity Relation
t, ~t)

e~
il ~ wly!
P~y
i ~ !
@~ ¢
(@)L ~ (¥)1

o~ ¢
pXtr~e xt

o~
tXY~t XY

{pi— ) licI}={(e> )" |jeJ}
Nicr pi = i ~ Njes ¢ — ¥

The similarity relation ~ can then be easily extended to prime assertions by defining
Aei~ N\ i = (A = (A i)
i€l jeJ i€l jeJ
The similarity relation is introduced as a simpler method to decide wheather two atomic
assertions have the same interpretations as stable neighbourhoods. It will be shown later
(Proposition 9.5.2) that two prime (specially atomic) assertions are similar iff they have

the same interpretation as stable neighbourhoods. The following are the definition for the

other notations.

Po(¢p) <= ¢ = Nierpi & Vi € I Ay (i) & Vi # j. =(0i # ¢5)

()= Plp) & o =Nerpi &I # 0
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Let ¢ be a prime assertion, i.e. P(p). Then there are assertions ¢;, ¢ € I, such that
0 = Nierpi and Vi € I. A(yp;). We define

f<P1={_/\Js0j|P(_/\J%)&J§I}/~

and

[el={AwvilA(A¢;)) & TS T}/~.

jedJ JjeJ
Note that when forming the sets [¢] and [¢] we took the quotient over ~. Thus it is
reminded that equalty of sets [¢] = [¢'] is equality on quotient sets. Note also that if

we use ! and —o instead of —; for the type expressions, the simple relation
Mol ={ W |4 € ¢l }
will hold.

It is easy to see, from the definition of P, that

Pa—»s'r(/\'iEI ©w; — ,l)bi) iff
oVic L.P,(p:) & A, (v;)

o Vi, j€Li#j= —(pi— i Fp; — ;)
o Vj € IVx € ;3 € I. @i € [i0;] & x ~

where compared with the definition for A, we do not require that

Fkel.({piliel}/~)Cloel &({ilieT}/~)C ]
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Propositional Rules

(t) p<t (f) f<e¢
eH#HY
f < PHY
(Ref) p<¢ #) A <T
< '; I< 1
(Trans) r=F P=¥
(PS(P”
(<—=) p<% $=<¢
p=1
p=¢ p=¢
(=—S) ’ !
P P <
(A=<) eAP' <@ AP <y
< / < "
(S_/\) SO—LP ,So—”(P
RN
<@ p<
(V= <) ¢_¢.¢7¢
V<o
(£-V) P<PVe <S¢ Ve
(A=V) @A (P1Vepa) S (@ Ap1) V(e Awpr)

Assertions in the above table are assumed to be all well-formed. The proof system
consists of several groups of axioms and rules given below. There are type-specific rules
which provide relationships between axioms of different types. There are also axioms that

tell us how logical constructions interact with type constructions.
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Sum

. SOSU"/’
(ml—g) W(PS,.;.,—Z'TIZ’Q[)
(ir— <) 0 <P

W@ Sgyr 0P

(w = A) &l (Nerpi) =otr Nier @l s
(7w —N) o (Nier ¥:) =otr Nieriw i
(= V) 0l (Vier i) =otr Vierid p;

(7w —V) v (Vier i) =o4r Vier v o

Product

< o o<.o
(x—<) P <ot (PTMP’
Y X <gxr X @

(x=V) ©x(Vier¥i) =oxr Vier(e x ¥;)
(Vier i) X % =oxr Vier(: X 9)
(x=A) Aerlp: x ¥i) =oxr (Mier i) % (Aier i)

Lifting

0 <1
pL <y

(L =A) (e1Ap2)L=(p1)L A(p2)s

(L-V) (Vierwi)L = Vier (#i)1

(L-<)
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Function Space

!

(= -f) ((p—zot)gf

(=) [P1#1¢T  Pleny) Py)
(P =P)A (¢ =) <f

(o — <) x€M¥] Py

B ¢ = ¥ < Ve (€ = X)

(—=A) Nier(pi = i) < (Nier i) = (Nier ¥i)

o P(y)
( V) ¢ = (Vier¥s) = Vier(e — %)

(Vier i) = ¥ = Nier(pi — )

Now we give an interpretation (semantics) for assertions. For each closed type expres-

sion o we define an interpretation function
[ ]o:C, = KSN(D(c))

with KSN(D) the collection of compact stable neighbourhoods of D. [ ], is defined in

the following structured way.

 For each closed type expression o, we define
[t]. =D(0)
[f], =0
[eVele=Tel-Ul¥]s
[eAd]e =[el-n[¥].

With respect to type constructions we define
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[¢x¢loxr ={(v,v) [ue[pl &vels]}

[l ¢lorr ={(0, u) Ju€elele\ {Lln@)}}U{z €D(0+7) | Lo €[]}
[ elosr = {(Lu) |uelel \{Lon}}U{eceD(o+7)| L) €lel,}
[¢ = Ylomir ={f € D(e) = D(7) | [¢]s T FY([4]-)}

[(e)rlo)e ={(0,u) [ue el }

[elrect.o = {e(u) [ v € [@lot(rect.one }

where ¢, : D( o[ (rect.o)\t]) — D(rect. o) is the equality arising form the initial solution

to the domain equation associated with type rect. o in the category of dI-domains.

9.5 Completeness

In this section we show that the proof system introduced for dI-domains is sound and

complete. The definitions, propositions, and proofs have a similar style to those in Section
9.3.

Definition 9.5.1 For ¢, ¢ € C,, write |z, ¢ <, ¢ if [¢], C [¢],-

Definition 9.5.2 For ¢, ¢ € C,, write I, ¢ <, 9 if ¢ <, % can be derived from the

proof system given in the previous section.

Definition 9.5.3 The proof system is called sound if - ¢ <, ¢ implies E o <, .
It is complete if = ¢ <, 9 implies F ¢ <, . An axiom is valid if it is a valid formula. A

rule is sound if it produces valid formulae from valid formulae.

Proposition 9.5.1 There is an isomorphism between atomic assertions of o and

tokens of D(o) such that for any ¢, 1, atomic assertions of type o, @ # P iff

[elon %], S0.

Proof By an easy induction on the types. Il

Proposition 9.5.2 Let ¢, 1 be prime assertions of type 0. Then ¢ ~ 1 iff [¢] = [].

Proof
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(=) By inspecting the definitions..

(«) Note that for prime assertions ¢ and 1, (¢)* # (4)* implies [¢] # [#] provided
that we have ¢ o ¢ implies [¢] # [1] for atomic assertions ¢ and 1. Therefor it is enough
to check the conclusion for atomic assertions. We show that ¢ o4 v implies el # [¥].
This is done by structured induction on types. For base type 1, @:11is primeiff p = A0
by definition, since type 1 has no atomic assertion. Therefore the statement “for prime
assertions ¢, 1, ¢ ot ¢ implies [p] # [1]’ is vacuously true since there is not prime
assertions ¢, 1 of 1 for which ¢ o . Next we show that the rules for Similarity Relation
preserves the property ¢ £ ¢ implies [] # [¢], but that is trivial. il

Proposition 9.5.3 1. Suppose ¢ is an atomic assertion of type . Then there exists
z € D(o), a complete prime, such that [¢], = 7. 2. Suppose ¢ € C, and P(e).
Then there exists a finite element € D(c) such that [p], = 7. 3. Let ¢ be a
prime assertion of o and write @ for the finite element of D(o) such that [ ], = @1. If
[Pl ={piliel},then{@i|i€I}={ye (D) |yCEp kX o] ={p:i|ic I},
then {¢; |[i € T} ={y € (D(o))! | yC ¢ }. 4. Suppose ¢ € C, and ¢ |. Then
Do [

Recall that D° stands for the set of finite elements of D and D! stands for the set of

complete primes of D.

Proof The proofs for 3 and 4 are routine. We use an induction on types to show 1
and 2. The nontrivial case is function space. However, that follows from Definition 8.2.2,

Proposition 8.2.1, and Proposition 8.2.6. 1

Proposition 9.5.4 If [¢] # [¢] for prime assertions ¢, ¢ of o, then [¢], # [+/],-

Proof It is easy to show that [¢] # [v¢] implies ¢ # 1. The conclusion then follows
from Proposition 9.5.3. |

Theorem 9.5.1 establishes the soundness of the proof system.

Theorem 9.5.1
o The logical axioms are valid and logical rules sound.
e The axioms for sum, product, lifting, and function space are valid.

o The rules for sum, product, lifting, and function space are sound.
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Proof We check this fact for the function space construction. Other cases are much

easier.

The soundness of (— —V), (— —A) follows from Proposition 8.3.2 and Proposition
9.5.3. The soundness fo (— — <) follows from Proposition 8.3.3, Proposition 9.5.1 and
Proposition 9.5.3, while the soundness of (— —f) follows from Definition 8.3.1 and the
fourth conclusion of Proposition 9.5.3. The rule (—) is sound since if f is a stable function

and z, y € pf~!(A) with z T y, then we must have z = y. |

Definition 9.5.4 Write Q, for the proof system associated with type o. Q, is called
prime complete if it has property po, prime normal if it has property p;, and complete if

it has property ps, where

(Po) Voo, b1 0. (Pp) & P(¥) & [, € [W]e = F 9 < o)
(p1) pi0=>Hpi|t€l}Vie L.P(p;)) & F ¢ = Vier i
(p2) Vo, ¥ 0. ([e] Clv] =t ¢ <)

In (p1), Vier @i is called a prime normal form of o.

Clearly Q; has property po, p1, and p,. The proof for the completeness of the system
is achieved by showing that each type construction preserves property (po), (p1), and
(p2). We omit the cases for lifting, sum, and product, since they are straightforward.

Note that for each case the proof of (p,) is routine. It follows from (po) and (p;) directly.
Proposition 9.5.5 Function space preserves po, p;, and ps.

Proof The proof of property po is easy. We prove the interesting property p; for

function space. Similarly to the proof of Proposition 9.3.5 we have

Fe—v= VA (s(a)~a).

k: [¢]—[¢] onto a€f4]
Note

A\ (k(a) — a)

aef4]

need not be a prime assertion, since the property

VieIVE e [Pl el i € [p;] &&~;

required for a prime assertion A;cr ¢; — %; may not hold. To get a prime normal form
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we have to apply the same procedure again to x(a) — a for each conjuncts of

A\ (k@) — a).

a€f¥]

Repeat this procedure for a finite number of times we get a prime normal form for ¢ — .

From the above we get
Theorem 9.5.2 The proof system for the logic of coherent spaces is complete.
The expressive result is what one can expect:
Theorem 9.5.3 Let o be a closed type expression. Then
[ I:(C/=, <o) — (KSN(D(0)), C).
is an isomorphism, where KSN(D) is the set of compact stable neighbourhoods of D.
Proof Similar to that of Theorem 9.3.3 I |

Thus we obtain results for dI-domains analogous to those of Abramsky for Scott do-

mains. Admittedly the term language is not considered here.
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Chapter 10

Conclusion

10.1 What Has Been Achieved

We have studied domain logics of two important frameworks for denotational seman-
tics, the SFP objects and the dI-domains with stable functions. Domain logics are shown
as the appropriate bridges with which to connect denotational semantics and program
logics. They are demonstrated to be an important link in the systematic derivation of

proof systems for programming languages from their semantics.

10.2 Further Work

While this thesis contributes to various aspects of domain logics, it has left some open
questions as well as rooms for further development. Chief among these is the omission of
a treatment of morphisms and the consequent lack of general proof rules reasoning that a
program satisfies an assertion (In [Ab87] a general notion of weakest precondition is used

for this purpose). The following are additional suggestions for future research.

1. In Chapter 3 we presented an improved version of Brookes’ proof system without
using labels. In Chapter 5 the style of the assertion language of the improved proof system.
1s shown to be derivable from Plotkin’s domain of resumptions. There are two projects
related to Brookes’ proof system. One is to prove the completeness (or incompleteness)
of the improved version of Brookes’ proof system. The other is to show that not only the

assertions, but also the proof rules of Brookes’ proof system are semantics derived.

* 2. In Chapter 4 we introduced generalised information systems. Special kind of such
systems called strongly finite information systems are made into a category, which is equiv-
alent to the category SFP. It would be interesting to know what kind of domains gener-
alised information systems represent; whether these domains form a reasonable framework

for denotational semantics; and how does it relate to the the existing frameworks.

3. Chapter 6 provided a basic framework for the domain fixed-point calculus. There

are several interesting aspects that need further study. It would be satisfying to get the
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completeness result in general. The proof for the general completeness is expected to

follow the same style as that for the integer case, through normal form theorems.

Some syntactic restriction is imposed to get the completeness of the integer mu-
calculus. It is a project to study whether the restriction is necessary, and whether in
general it is possible to get completeness without such syntactic restrictions. Normal
form theorems should automatically provide decidability results. However, it is not clear
whether there are normal forms for mu-assertions in general. It is also not clear to the

author whether or not the domain mu-calculus is decidable.

The mu-calculus of Chapter 6 should be easily extendible to a mu-calculus of SFP ob-
jects, with modal operators O and <. It would be interesting to see what is its connections

with the mu-calculus of Hennessy-Milner logic.

To get more expressive power further extending of the mu-calculus is necessary. It is
tempting to add negation, and nu-operator, to express maximum fixed-points. However,
that necessarily leads us outside the Scott open sets, and it is not clear what kind of sets

should be used (Mike Smyth has proposed the Gs sets in [Sm83)).

4. In Chapter 7 the relationship between some of the categories of dI-domains is not
established. It would be pleasing to complete the diagram of the relationships between

various categories of dI-domains given at the end of Chapter 7.

5. An immediate question about the logic of coherent spaces is whether it has anything
to do with linear logic since coherent spaces are used as a semantics for linear logic.
Notice, however, there is a mismatch here. In linear logic each proposition is interpreted
as a coherent space while in the logic of coherent spaces each assertion is interpreted as a
stable neighbourhood of certain coherent space. Resolving this mismatch would be a first
step toward the understanding of the relationship, if there is any, between linear logic and

the logic I have presented for coherent spaces.

As mentioned, it would be interesting to introduce a language of morphism terms for
coherent spaces and dI-domains, and to establish the corresponding logical frameworks so
that it is possible to express special kind of Hoare triples and dynamic logic. It is sensible

to formulate mu-calculi of coherent spaces and dI-domains.

Although some potential difficulties in formulating logic of partially synchronous mor-
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phisms was pointed out, one can still try to get a logic for SEV,,, and SEV7,., possibily
with limited forms of quantification over assertions as proposed at the end of Chapter 8.

Such a logic might be helpful in understanding logics for event structures and CCS-like
languages.
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