Technical Report A

Number 19

Computer Laboratory

Analysis and inference for English

Arthur William Sebright Cater

September 1981

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1981 Arthur William Sebright Cater

This technical report is based on a dissertation submitted
September 1981 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Table of Contents

Abstract....... et ecsessesetntsescssssesasne cecens cereeses cseessseensenns i
AcknowledgementS..cceeeeess ceenens S & |
DEAiCatioN . seeeeeeseeerssenecossossosasnsassscossssessssasssssssonsssss LIL
Table Of CONtENtES.tetveeesoscesssncsasssssssccsssscns Ceeesestesesenssess 1V

Chapter 1: INtrodUCEiON.eeeeeetesseseesesesscesesosessssnsscsnsccsnsannns
1.1) The form and focus of the pProject.veeieeacecteserscccesssccesssacnas
1.2) Whys and whereforeS.iceeeeterssccccccssssnccocnnnns teessscrtanessssena
1.3) How BD-HAC YUNS.eeesssesessss Cessssesscecnenne csesssassssencccansass
1.4) An example run of AD-HAC..cceusancns Ceeensscranssssarasetaenssennns
1.5) The organisation of the thesis....... Cettecescessesanans cesessesnen

NUTdN

Chapter 2: Representation..eeeeeesieeeeeceeescasaseccecassnsasssansacsns 7
2.1) Requirements for a representational sySteM...eeeceecessncccss A |
2.2) Schank's Conceptual Dependency.ceeeceessscccsssssaccasanes cessesses 8
8
9

2.2.1) In praise of the principles of Conceptual Dependency..s.eceeeesse
2.2.2) Criticisms of Schank's implementation of Conceptual Dependency..
2.2.3) Sumary of the original implementation......ceececescnssssceseess 10
2.3) A new implementation of Conceptual Dependency....... cessesssnsecess 10
2.3.1) The new format Of CDfOMMS.iveeseereesessssesesescsascacscansases 10
.1.1) EVENT representatioN..cceceececescecessesssecasssssesscnsans .. 10
.2) STATE representatioN...veeeeeeescesccassscessnnss tessesseasss 12
.3) CAUSE representatioN..eeccesceecsssccsssccsssesscsscsssessses 14

3
2.
2.3.1
2.3.1
2.3.1.4) The representation of conjunctionsS.....ceeceevecescescecnsess 15
)
)
)
)
)

3
.3.
3.
3
The conceptial YOleS..ceieesesesssessassssosscosssasssassssssossaes 16
FOCUS pathS.ceeeceseccecccsccacannes tessssscesessesscassesscssss 20
SUPEYPriMitiveS.ieieereseeeseenccssssessssscsoscsssonsscnscnscne 22
Time representation....... Cesstesssecsssssassscescesssssenssnsss 22
Features of tokens, and DUMMY tOKENS..eseeoeosscssssscsssascesss 24
riticisms of the AD-HAC development of CD.veeveeenens ceessessenses 25

Implications of this representational language....cceceesescssescnss 27
Wilks's semantic-primitive representation scheme.....cceveeeesesees 27

.3.2
3.3
3.4
.3.5
.3.6
) C
)

)

NI\)NNN

2.4
2.5
2.6
Chapter 3: GeneratioN...eeseeseeeescesesesseencsceesosssssscsncassnssanes 29
3.1) Previous work on generation........e... testecerssssssenss creectesens 30
3.1.1) Friedman...eecececescocoscses G 1
«1.2) Winograd..eeeseeseceeesessesssscssasssssssassnsanncsans eeessesss 30
1.3) HerskoVitS.ueeieoeeosessesosesescsasscssnssascsssesssssassssnsss 30
e1.4) MCDONALA .. eeeeeeesvasoscssscacssssanssasssssasssssssssasassnssns . 30
.1.5) Goldman......ceeeeuuens Cecesesecescsestststasesesasesssasesannnns 31
) Overview of BABEL...eceeseesessnssass PP 7 §
) Overview of AD-HAC'S generator...ececessescessscoss tesessescssesses 32
3.1) Similarities with BABEL...vecesecosnes ceesaes O
.3
3
3.
)
4

2) Canonicalisation..eeeeeeeeseseseeseeasesesssvensesosssssscnscaes 3D
3) Usage of discrimination netS.....ecee.. ceesssesssssscssssssessss 36
4) Interpreting the syntax net...cveeeceeeeseeceeseccescnsconeseanes 37
More detall.seeececsseoacessessassscssossscssssnscsvsnsnncsasannens 37

1) Processing vVerb SeNSeS...ccecsessccsscecsssossscssssssssossosccnss 37

4.1.1) Tense, form and modalityeseerivesseanconss D ¥
.4.1.2) Optional case-frame componentS...ceeessees U 1
.4.1.3) Wordsense-specific operationS.....ceeveeeeecssesesessscseceass 39
4.2) Noun phrase productioN....ecececececess R 1
«4.2.]1) POSSESSOrS.eeesessseacanss Ceecesessesansannns B ¥ §
4.2.2) AtEribULES.eeeeeeeeeervsnsserecessscsssscescssssssscscncanas 41
+4.2.3) AdJectiVeS.eieeeecesesscsoesssssosscsnsnnnns U X |

iv

3
3
3
3
3

3.4.2.4) Relative ClauSeS.eveeeesseccessccenns teeseesecesiessecascnnns
3.5) Scope for further work...eeeeeeeseeossonss cesesecne cevresssasssnase
.5.1) Abstract NOUNS.cieeeeeeenoenss s essasasssessecsacenerarsarraasas
.5.2) Translation into other langUAgeS....eceeeceseccssccsssssasosscas

5
5
5.
5
5

2

3) The interface with the inference mechanism.....ceeeececececacens
.4) Relaxing the sentence-per-CDform constraint.........

5) Pronominal reference to sentential antecedentS....eeeeeccecscsss

Chapter 4 — Analysis l: Background.....ceveeeieececcssocecsocncasncnans .

4.1) Some early approaches to analysis...... P
4.1.1) Kuno and Oettinger: The Harvard Predictive Analyzer.....ceoeeeess
.1.2) Kay: The Chart Parser...cesescesences P AN
3) Winograd: SHRDIU...eeeeaeess PN
4) SUNMMALY e vseeeeonosssnssssssssssasesassscnsssassossssssssssssssae
Analyers particularly relevant toO AD=HBC....eeeeeecescescsonsccsans
.1) RiesbeCK.iiieeeerssoenreroessesnoscensosescosanss teseterccnsanans
2) WilkSeevenonannanss teesssssannan Cesecesiaessssescetsacennesonnns
3) WOOAS essseesscessessonssssseessosssseascsnsasssansessaonsas ceees
Principles guiding the design of AD-HAC'S analySer..ceeecescsscncss

4

4

4
4
4
4
4
4.

2

1.
1.
)
2
2.
2.
3)

Chapter 5 — Analysis 2: AD-HAC'S @NalySel.e.cueecsseacococsocsnssnconncas

5.1) PrincipleS.eeeesscesscscccssssessscasssasanns
5.2) The basic componentS....... teseesccrasesesansssessanssasssnessansae
.2.1) TheA'm.ll...'.0..ll.....I.'..Ql.......'..0.....l.....ll...l....

5

5

5
5
5.
5.
5
5

(GO NG GO, 6]

3
4

2
2
2
2
2.
)
3.
3
3.
3.
3.
3.
)

2) The requestS.ceieerttcccensscsssnans cececterscessaenstsctnsnanananan
) The control mechanism: "theories"; and memory limitations.......
) The stages of processing: detailS...ieieeceecccsscesssssssesssanss

) Preference manipulationS..eeeescsccsscssessocsssossssasscssasons

3
4
.5) The dictionary entrieS..cceveeeesecnssnaas
6
L

inguistic phenomena: further details........

ss s 800000

Tr%-ulentof anbiguityﬂ.i..I'....I..'....‘I..‘.I.....C LA 4

Postponement mechanisms: Questions and Relative clauseS.........

Traps: dealing with the unexpected...cciieeeeceeeseccsccassossnsns

Tensing StruCtUreS.seeeescenscsccccosanns ceersssnenessasenneanas
Suggestion of inferenceS.cieceserssescesecsessssecscsccssssanans

hortcomings, and further development........

1)
2)
3)
4) The handling of negatioN....eceeeeeceeens cevesersesesrsssenenens
5)
6)
S

Chapter 6: Demonstration of the analyser.......ceceeevececnens cececnas aes

6.1) BILL AND JILL GO TO THE ZQO..eseess seeesrscecvssessensstsssessennaas
6.2) JACK AND JILL WENT UP THE HILL TO FETCH A PAIL OF WATER.....eeveaes
6.3)AMANWAS KII'I'EDWHEN.IO. ® B 6 0 20 0P PSSP0 e N e e s Ee e

Chapter 7: Inference 1l: Background........... cesesesesacasessssenassanas

7.1) Charniak: Deep Semantic Processing........ P

7

7

7.1.1) DSP's basic machinery..eeeecsescecoosses

e s 0800000000000 00000

7.1.2) DSP's machinery in actioN..eeeeececeescesccnsscoscsoscnssssnscas
7.1.3) DSP's approach to reference determination..ceeeeceeccescescccnss

7.1.4) SUMALY.veeeeeerassssnssssssnnsassans

7
7
7
7
7.
7

2

)
2
2.
2
2.
)
3
3.

Rieger: MEMORY . .uvecusecscssscsosssosoossesssassssssnssansosasssans
.1) MEMORY'S basic machinery..eeeeeeceesscsces treesectaessseananrsnn
2) MEMORY's machinery in action...eieeesseccesesscoscescnccssscsnnss
.3) MEMORY's approach to reference determination........ ceeeena ceven
4) SUMAYY.eeevececosss Csesssesesccnassesatesssssersasssssserennsans

The genesis of scripts and planS...c.cececesss

.1) SAM (Script Applier Mechanism)....ceieeseeceseceseanscecenennnns

2) PAM (Plan Applier Mechanism).......eeveee.

v

43
47
48
48
49
49
50

51
51
51
52
52
52
52
53
55
58
59

60
60
60
61
63
64
66
68
71
72
72
74
75
76
76
79
80

83
84
98
103

107
107
108
109
111
112
113
113
114
116
117
118
119
121

7.3.3) Review of scripts and planS...ceeeeceeececccasncnesncaens ceeeses 123
7.4) Conceptual OVErlayS.e.eeseseesssesvssscscsssssssacssssossssssseseses 123
7.5) Summary of previous work on inference......ceeceeeeeccecencensananes 124

Chapter 8: Inference 2: The AD-HAC inferencer......ceeeeeeecesccsss ceves 127
8.1) The task and some of its implications........ P 2.
8.2) The inference process: inference NetS....eeeereeeecescssescesnesses 129
8.2.1) Inference net ACTION NOdES.eesesessncesccssosssssssssssscscosess 130
8.2.2) Inference net TEST NOUJES..csesescscsescsesssssccsesssssssssossss 131
8.2.2.1) Simple tests: selecting paths, assisting pronoun resolution.. 133
8.2.2.2) Complex tests: inspecting a wider conteXt....ceececveceeeeses 133
8.3) The storage of conceptual patterns in MEMOYY...ccceeeeececcccecesss 134
8.3.1) Pattern specification...veeeeeeceececcecessosesccosncncnns ceesees 134
8.3.2) Pattern matching...eeeeeesevseceaceses ceessesse ceessesssanss ceess 137
8.3.3) Cross-referencing..ccvesescesesccssscesssscssssssosesssssssnsess 140
8.4) Certainty and Interest ratingS.....ececeeeess P I X
8.4.1) Certainty ratings and proposition merging....eeeeceeseececeesess 144
8.4.2) Interest ratings for controlling inference.....eeeecececcecseseas 145
8.4.3) Interest ratings for assisting generation of sentences.......... 146
8.5) Classification of inference typeS...cceeeceececceces ceseesenanns ceee. 147
8.5.1) Handling negation and ABILITY..eceeeeeccscoscossoancssosscsseces 149
8.5.2) Constructing causal chainS...eeeeeeeeseeeececocessscsssenassaeas 151
8.5.3) The role of inference types in updating stateS....ececeeeeeeeses 152
8.5
.6)
8.6
8.6

.4) Incompatible inferencesS...ccsieeeecerscssececescsssssssssasssesss 153
Pronoun resolution, question answering, and definite reference..... 154
.1) Resolution of IT/THEM/WHAT pronouns by using complaints......... 155
.2) The resolution of other ProNOUNS....cecveeeccccceses cessssenesss 158

8.6

Chapter 9: Demonstration of the inferencer.........ceeeeeeeeeececeesnsses 162

Chapter 10: Some contemporary WOYXKeeseeoessooseesosssoasassoseoascssesss 191
10.1) MAarCUS.eeeeevasossscoossosccocnsssonsans P X X
10.2) BOQUIAEVeceseosvssoassssasssnsssassssaseascans P £
10.3) Small.cieeeeesenncssccoccsocnse cteecsetsennsssrsansrassresene veesss 195

Chapter 1l: ConCluSiONS..ceeessesceccccossscasnnn teesesasesssssssscsssess 198
11.1) The separation of analysis and inference....eeeeeeeeeeceesecasees. 198
11.2) The AQNalySer.eeeeceececcesccsnscsscssscscsssasessossssssscsssessseess 198
11.2.1) Summary of analySiS.ceeccecssccecacscsscsosossossscscsssanssess 198
11.2.2) Problems for further research in analySiS...ceeeeeercecrsncenes 199
11.3) The interface between analyser and inferencer......eeeeeeeecesass. 200
11.4) The inferencer..ciceeceeeececscssossseessssesscsssscesssssssssssess 201
11.4.1) Summary of inference...cvieececrserececesccoccncances ceasenssas 201
11.4.2) Problems for further research in inference........ cecesesseasss 202
11.5) SUMMAYY .eeeseetosesssscoscosanssssscssossscsssasssasasossnsasansasses 203

Appendix A: The roles associated with CD primitiveS....ceeececeeceesesss 205
Appendix B: The analyser's vocabulary..eeeseeecesscoccsssscssassscssases 209
Appendix C: Pronoun reference, definite reference and question answering 211
ReferenceS....ceveenen. R £

vi

Chapter 1: Introduction

1.1) The form and focus of the project.

AD-HAC is a computer program which understands stories. The name AD-HAC
is intended to reflect two of its characteristics: firstly, many of its
processes are unashamedly 'ad hoc', reflecting my belief that finding a
workable solution to a problem is a good first step towards finding an ideal
solution to that problem; secondly, its development has proceeded by
repeatedly adding ‘'hacks'. This approach has resulted in a surprisingly
robust program, whose degree of understanding enables it to answer simple
questions about wvery short stories, and also to identify pronoun referents
in those stories. It accepts the text of the stories, and of the questions,
in ordinary English, and answers the questions in English.

The two tasks of question answering and pronoun resolution both require
some ability to draw inferences from a text. More generally, for texts
accepted as coherent, inferences are required to establish the underlying
connections which make the text coherent; only by finding these connections
can comprehension be achieved. Indeed, inference is often necessary even
for the satisfactory processing of single sentences. I take it as
self-evident that inferential processes must act upon some representation of
the content or meaning of a text or utterance, rather than upon, for
example, a purely syntactic or surface lexical characterisation; and this
implies that the nature of the representation is important. The
representational language developed for the project has been based upon
Schank's Conceptual Dependency, which assumes that a text meaning
representation is conceptual rather than linguistic.

AD-HAC contains three largely independent programs: a sentence analyser,
a sentence generator, and an inference mechanism. The project has focussed
on the problems of analysis and inference, with little emphasis on
generation. The sentence analyser is a novel blend of several existing
ideas. It exploits the notion of preference, using requests to build up a
conceptual analysis, and it uses an augmented transition network to locate
simple syntactic constituents. The analyser is essentially
nondeterministic, but this nondeterminism is restricted because the analyser
operates with a small bounded memory for partial analyses.

The knowledge used by the inference mechanism is represented by a set of
inference networks. Many of these networks are associated with the
conceptual primitives of the underlying representation language, and are
used to draw low-level inferences; some of the networks encode
higher-level, i.e. script-like, knowledge, but these script networks play a
subsidiary role, being accessed from the low-level networks when
appropriate. The entire system consequently has the ability to exploit
script-like knowledge, but does not rely upon scripts for its performance.

The program is intended to perform the tasks of pronoun resolution and
question answering, rather than to model the way humans perform them.
Psychological considerations have not played a very important role in the
construction of the program, though there are many aspects of the program
which seem psychologically plausible. It must however be emphasised that
the program is not intended as a cognitive model.

1.2) Whys and wherefores

There are clearly many areas where the introduction of computers would
ease, or even revolutionise, the work that must be done in everyday working
life, and in many of these areas the only obstacle is the awkwardness of the
man-machine interface. For such applications as these, the ability of the
computer to converse in a natural language (NL), such as English, would be a
great asset. Thus, a strong motivation for attempting to create an
automatic natural language processor (NLP) rests on the usefulness of such a
processor.

There are many language-using tasks to which the ideal NLP would be
applicable: translating between languages, abstracting scientific papers,
composing letters, etcetera. As a first step towards this ideal, we might
attempt to build a NLP which was as competent as a typical person in its use
of language: in particular, we might try to model how people use language.

At present, the oconstruction of such a model seems inconceivable.
Technical problems alone - the problems of computer speed and memory size -
are enough to rule out the realisation of this dream for many years. More
importantly, there remain a host of theoretical problems of all kinds and on
all fronts, many of which cannot even be effectively stated at this time. A
taste of the variety of these problems may be gained from the brief list
below.

How should auditory patterns be stored in machine memory?
What role does syntax play in the understanding process?
Why do people produce grammatically incorrect sentences?
Can the various senses of a single word be enumerated?
How should knowledge of the world be represented?

Is a language's vocabulary finite?

How can metaphors be understood?

What is consciousness?

Theoretical problems such as these are interesting in their own right:
and even though they cannot yet be studied practically in the context of an
overall computer model of language use, it is possible to examine some of
these topics in relative isolation, by constructing partial models. 1In
doing so, it is necessary to make assumptions about the more general model,
where these assumptions may themselves provide insights into other problem
areas.

One particularly common partitioning of language use into subproblems is
the division between speech processing and written text processing.
Computer models of text comprehension may ignore many aspects of spoken
language, such as the representation and use of phonetic information, or the
interpretation of certain cues - such as pauses, "um, er" - which do not
occur in texts; though a model of text comprehension will not be a
satisfactory cognitive model if it relies on the exclusion of such aspects.
Similarly, a model of speech processing need not consider various
text-specific phenomena, such as the extra ambiguity resulting from the
absence of cues such as stress and intonation; again, to be adequate as a
cognitive model, a speech processor must not rely on the exclusion of these
phenomena .

Most work in the field of NLP has been oriented towards text, rather than
speech, comprehension. There are several reasons for this. Firstly,
computers can easily handle textual material in a form which makes the
recognition of characters and words quite trivial, bypassing the real
problem of simultaneous deployment of many different sorts of knowledge;
secondly, speech input and output requires additional hardware; thirdly,
the problems of phonemic recognition appeared quite intractable until
relatively recently; and finally, the results of such phonemic recognition
would, in the most obvious and straightforward case, be the computer's own
representation of the printed word: thus the problems of text comprehension
would be augmented with problems of input.

AD-HAC is designed to understand stories presented in the most
straightforward form, as textual material presented via a computer terminal.
This mode of input permits the problems of speech- or character-recognition
to be sidestepped, so that attention may be focussed on the central problems
of comprehension; the restriction to stories sharpens up these interesting
fundamental problems by permitting their study in a simplified context.
Specific reasons for such a restriction include:

i) The provision of enormous quantities of specialised knowledge can be
avoided. This would not be the case if, for instance, one were to
attempt to abstract scientific papers.

ii) It is unnecessary to cater for exceedingly complex syntactic
constructions, but it is advisable to handle a fairly wide range.

iii) Stories naturally possess an event sequence, and provide a relatively
self-contained world about which questions may be asked, as in school
comprehension tests.

iv) Stories implicitly refer to the types of everyday knowledge possessed
by everybody, and thus do not artifically restrict or extend the types
of inference needed.

Story understanding is a good task precisely because these simplifications
do not alter the nature of the required processes: the right degree of
generality is captured. Story wunderstanding requires that global
language-using processes, for instance pronoun resolution and question
answering, be adequately modelled; but relatively local task-specific
processes, e.g. the use of two languages for translation, or the
recognition of speech input, do not need to be considered.

1.3) How AD-HAC runs

The implemented program has three principal components, reflecting a
similar division of the overall language-processing task. Individual
phrases and clauses (conventionally, sentences) forming a text must be
analysed; these analyses must be integrated to allow context to influence
the understanding of the whole text, and complementarily to complete the
understanding of the individual sentence; and sentences must be generated
to show understanding, for example as responses to questions.

These components simply fit together as shown below:

Sentence |---->| Inferential |---->| Sentence |
Analyser Processor Generator

In operation, sentences are analysed one-by-one, and initial representations
of their meaning are communicated to the inference component. This draws
inferences from the initial representations, deriving new information £rom
old, and sometimes calling on the sentence generator to express this
information in English. The representation used for communication between
the components is uniform, and so the sentence analyser can in practice be
linked directly to the generator if this is desired.

The inferencer's representation of a text - its "memory" - takes the form
of a number of simple propositions connected together by links of various
kinds. Typically, many of these propositions will be very similar, and the
inference mechanism tries to compress the network by merging
nearly-identical propositions. As a side effect of this compression, the
inferencer determines the referents of pronouns and the answers to
questions.

The entire program is written in Standard Lisp (sic), and runs on both
the IBM370 in Cambridge and the DEC20/50 in University College, Dublin. The
version which runs in Cambridge operates in batch mode, since only extremely
small programs may be run interactively there: AD-HAC is not a tiny
program, but occupies some 850Kbytes on the IBM machine, or some 200Kwords
on the DEC. The analysis phase takes up to 5 seconds on the DEC machine for
very complex sentences, though the typical time for an individual sentence
is less than one second. The inference component takes a lot of time, and
gobbles a correspondingly large amount of space: the processing of the
story shown in the next section takes about 30 seconds on the UCD DEC
machine.

1.4) An example run of AD-HAC

To give some indication of the system's capacity, an example run is shown
below. The remainder of the thesis shows how this behaviour is achieved.
The system prompts for more input with the phrase "Pray continue:", and
marks the beginning and end of the analysis with a "[" and "1" respectively.
The rest of the material here should be self-explanatory.

*(MAIN I)

Pray continue:

BILL AND JILL WENT TO THE ZOO.

[]

Pray continue:

THEY GAVE THE MONKEYS SOME PEANUTS, WHICH THEY ATE.
[1

Pronoun resolution : IT WAS JILL AND BILI, WHO GAVE SOME PEANUTS TO SOME
MONKEYS.

Pronoun resolution : IT WAS THE MONKEYS WHICH ATE SOME PEANUTS.

Pray continue:

THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.

[1]

Pronoun resolution : IT WAS JILL AND BILI, WHO MOVED TO A RESTAURANT.
Pray continue:

JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS TAIKING TO
THEM.

[1]

Pronoun resolved : IT WAS BILL FROM WHOM JILIL, TOOK SOME MONEY.

Pronoun resolved : IT WAS THE MONEY WHICH JILL GAVE TO A TRAMP.

Pronoun resolved : IT WAS JILL AND BILL TO WHOM A TRAMP SAID SOMETHING.
Pray continue:

WHAT DID SHE GIVE HIM?

[]

Pronoun resolved : IT WAS JILL WHO GAVE SOMETHING TO A MALE.

Answering question (1): JILL GAVE SOME MONEY TO A TRAMP.

Pray continue:
(Returning to Lisp...

1.5) The organisation of the thesis

The remainder of the thesis gives first the method of representing
meaning, which forms the language for communication between the components
of the overall program. Later chapters describe in detail the components
themselves.

Chapter 2 is devoted to a description of the representation language as
it now stands, which is a development of Schank's Conceptual Dependency. In
particular, it describes how conceptual primitives are combined to represent
a message, which may loosely be defined as the meaning a speaker wishes to
convey to his hearer. It also describes how simple messages may be combined
to form larger messages, with special emphasis on the uniformity of
representation of the meaning underlying various linguistic constructions:
this 1is one area where Schank's original CD was rather weak. The chapter
also describes the representation of time, which turns out to be very
important to the inference mechanism.

Chapter 3 then describes the sentence generator, which is based on
Goldman's BABEL. This was the first component of AD-HAC to be built, and it
is also the simplest. The generator is described here for two reasons:
firstly, so that the order of development may be reflected in the order of
exposition; but secondly, since the generator is relatively simple and
unoriginal, its description and illustration may further assist the reader
in understanding the representation language.

Chapters 4 and 5 are concerned with the sentence analyser: Chapter 4
gives some background, describing earlier work on analysis, concentrating on
earlier systems which were influential in the design of AD-HAC's analyser,
namely those of Riesbeck, Wilks and Woods. This chapter concludes by
outlining five principles which should be noted in designing a sentence
analyser. Chapter 5 describes AD-HAC's own analyser, showing how these five
principles have gquided its design.

. Chapter 6 gives an annotated run of the program, concentrating on the
role of the sentence analyser, but also giving a preview of the workings of
the inferencer.

Chapters 7 and 8 discuss inference: first, Chapter 7 gives background,
giving particular attention to the systems of Charniak and Rieger because
these had an especially strong influence on the development of AD-HAC;
Chapter 8 describes AD-HAC's inference mechanism, showing how inference
networks are constituted, how they function, and how background processes
maintain extensive cross-reference information which is critical to AD-HAC's
pronoun resolution and question-answering behaviour.

Chapter 9 gives another annotated run of the program, focussing this time
on the inference mechanism.

Chapter 10 describes some relevant parallel work which has taken place
during AD-HAC's development: the work discussed there did not influence
AD-HAC's design, but is of interest because it addresses many of the same
issues.

The concluding chapter, Chapter 11, examines the successes and failures
of AD-HAC, drawing the usual lessons for the future.

Chapter 2: Representation

2.1) Requirements for a representational system

When a speaker makes an utterance, his primary aim is usually to
communicate some message. His hearers have the task of extracting that
message from his utterance; they use syntactic knowledge to help them do
this, but their main interest is in the content rather than the form of the
utterance.

For any NL processing system, the internal language of that system must
represent messages, rather than the superficial textual form of their
corresponding utterances. Ideally, the internal language should also
facilitate all operations which must be performed by the system; namely
analysis of input natural language texts into internal language, generation
of natural language from this language, and the wvarious
representation-dependent operations necessary for inference, such as
assembling, dissecting and matching the internal forms of messages.

The most critical of these operations is matching internal forms of
messages: for upon this capability will rest the ability of an inference
mechanism to recognise, and hence merge, similar messages. This
consideration immediately implies that the internal language should exhibit
two features: first, each message should have a small number of possible
internal forms (ideally only one) ; and second, each internal form should
have only one interpretation.

This in turn suggests that the internal language should be based upon
symbols which represent elements of meaning common to a group of words. For
instance, there is some similarity of meaning between the words 'run' and
'walk', and a symbol can be designated to capture this similarity. Such a
symbol is called a semantic primitive. The difference between 'run' and
'walk' may be captured by the concurrent use of other symbols. Yet other
symbols may be used to denote the common meaning of deep relationships: for
instance a cause/effect relationship may usefully be denoted by some symbol.
It is irrelevant whether these symbols are themselves words in some natural
language: for they will not be manipulated in the same fashion as the words
of the natural language with which the system is dealing.

Other considerations may influence the design of a representational
system, though they should not be pemmitted to compromise the principal goal
of satisfactorily representing a wide variety of texts. The processes of
natural language analysis and generation are facilitated if the internal
language captures some of the regularities of natural languages. For
instance, in the course of the work described here, the representation of
modifiers has been found very important. For this and other purposes, an
intuitive classification of messages into EVENT, STATE and CAUSE relations
appears to work very well. The representation system adopted is based on
Schank's Conceptual Dependency (CD). Though there has been some
development, the system used will continue to be referred to as CD in the
sections which follow. References to CD should be understood as referring
to the representation system used in AD-HAC, except when, as in the next
section, the context clearly indicates that Schank's original system is
meant. What has hitherto been called "internal form" will now be denoted by
the term CDform.

2.2) Schank's Conceptual Dependency

Conceptual Dependency [Schank, 19721, [Schank, 19731, is a
representational language based on the use of conceptual primitives and
conceptual cases. Each primitive is associated with a particular set of
cases: these cases may be thought of as the names of slots which must be
filled by other conceptual entities.

The term conceptualisation — or sometimes conceptual diagram - is used by
Schank to mean a pattern in which one of these primitives is combined with
fillers for each of its cases: these fillers may themselves be
conceptualisations, but are often picture producers, which are conceptual
entities which usually correspond to concrete nouns in English. The picture
producers have an internal structure, which permits them to encode the
information provided in English by adjectives, possessives and relative
clauses. :

2.2.1) In praise of the principles of Conceptual Dependency

CD maintains a distinction between the notions of EVENT, STATE and CAUSE.
The conceptual primitives fall into two classes, the primitive ACTs and the
names of primitive STATEs, while causal relationships are encoded by the use
of subordinating roles.

The number of ACTs proposed by Schank is very small: the precise number
has fluctuated between 11 and 16, as the need for further acts was noticed,
or as new generalisations were found. The significance of these acts is
twofold. Firstly, each ACT needs a specific set of accompanying cases in
order for a valid, meaningful, conceptualisation to be formed; this means
that an inference mechanism can easily spot where further information is
needed, and can attempt to fill the corresponding slots with appropriate
information. Secondly, each ACT naturally indicates the appropriateness of
a specific set of inferences; these inferences, it has been argued, are
what make the ACT itself meaningful.

The number of states used in CD is relatively open-ended. Nevertheless,
each state leads to a set of inferences in the same way as the ACTs. The
distinction between states and events has some external Jjustification,
because it has been shown that a simple causal syntax exists when inferences
are made from conceptualisations: the "results" of an event occurring may
be represented either as new states arising, or as changes of some existing
state; the "results" of a state being true may be represented as the
enablement, or prevention, of some event.

Perhaps the most important merit of CD is that it encourages canonical
representation, because the number of primitives is very small. The main
criticism of the next section is that Schank's CD did not take full
advantage of this: the subsumption of many forms of linguistic modification
into "picture producers" seems to me to be mistaken. However, the choice of
primitives in (D very nearly pemmits the one-to-one correspondence between
messages and CDforms which is so desirable a property for the purposes of
matching. The CD representation of a message as "a reciprocal ACTOR-ACT
dependency", with subsidiary information according to the ACT primitive,
permits the analyser, the generator, and the various inferential processes
to exploit this implicit information when decisions must be made.

2.2.2) Criticisms of Schank's implementation of Conceptual Dependency

Several criticisms of CD can fairly be made. Principal amongst these is
the multiplicity of mechanisms for representing basically similar
information in different contexts. Contexts in which the same information
is present, in grossly different formulations, are shown as Figure 2.1. The
cause of this difference is a lack of structural devices within the
representational language.

Figure 2.1
"The hat is red" "The red hat ..."
(CON (ACTOR (£PHYSOBJ (CON (ACTOR (£PHYSOBJ
TYPE (*HAT*) TYPE (*HAT*)
oo) COIOUR (*RED*)
IS (COLOUR oo)
VAL (*RED*)) ees)
TOK CON1))

A related criticism concerns the representation of relative clauses;
whilst the presence of "(REL <conceptualisation>)" is strictly sufficient
for the purposes of an inference mechanism, it seems quite clumsy. A more
elegant approach is to identify the place where the relativised nominal
occurs, thus eliminating the fishing about within structures that must be
done if the only information is encoded by REL. This becomes especially
important for deeply embedded relative clauses; eg "The banana I asked you
to give the man"

A third criticism of CD, as developed by Schank et al, concerns the
representation of time information. A conceptualisation has two parts: the
"core" message, and an unstructured list of relationships between the time
tokens occuring in that message. This seems sufficient, but clumsy. Where
conjunctions such as 'WHEN' or 'BEFORE' are used to relate two clauses, the
conceptual representation of the corresponding sentence would be closely
related to that for 'AND'; I have doubts about even the sufficiency of this
scheme for handling such sentences as

"Did John eat breakfast before going to work?"

With the introduction of some structuring tools, the internal language
should be capable of representing all relevant information in one place.

Lastly, the use of (REF A) or (REF THE) to pass information between an
analyser and a generator seems misplaced. Recent literature on the subject
of definite reference indicates that such reference signifies that the
hearer should be able either to identify the referent, or to recognise that
the referent need not be identified. In either case, the provision of
(REF THE) or (REF A) is merely skating around the problem faced by a natural
language generator.

2.2.3) Summary of the original implementation

CD is a well motivated representation language: the combination of
primitive terms with specific sets of roles, corresponding to conceptual
case frames, and the ability to nest conceptualisations within one another,
make it easy to use as a formalism for inferential processes. Indeed, it
continues to be used by the Yale AI group, and forms the basis of several
experimental systems - SAM, PAM, QUAIM, TALE-SPIN, and others.

The main problem with the original implementation was that the same
information could be represented in different ways depending on the
linguistic context in which it was presented: there was one way of
representing conceptual information as conceptualisations, and another as
picture producers. Conceptualisations were usually used to represent the
information conveyed by a clause, while picture producers were used to
represent the information in noun phrases.

The problems raised above are not fatal defects, but are flaws of detail.
The challenge of implementing a new natural language processing system,
without any preexisting software on which to build, brings with it the
opportunity to tackle these problem areas in a new way.

2.3) A new implementation of Conceptual Dependency.

The discussion above has been concerned with Schank's Conceptual
Dependency, and specifically with its implementation in such projects as
MARGIE, SAM, PAM and TALE-SPIN. My criticisms of that implementation are
concerned with some detailed and relatively obscure aspects: they have
provided the impetus for me to implement a related internal representation
language, based on the same fundamental precepts but attempting to avoid
these criticisms.

2.3.1) The new format of CDforms

CDforms are labelled as EVENT, STATE, CAUSE or CONJUNCT, and consist of a
nunber of filled slots, which are also labelled. The top-level labelling is
actually superfluous, because each EVENT has an ACT and ACTOR slot, each
STATE has a STATENAME slot, each CAUSE has an ANTECEDENT and a RESULT slot,
and each CONJUNCT has a FIRST and SEQOND slot; the presence of these
top-level labels does however facilitate certain detailed aspects of the
necessary programming.

2.3.1.1) EVENT representation

Schank's CD concentrated largely upon the set of ACT primitives, and this
set has been retained. The 14 ACTs used in AD-HAC are:

ACT? ATRANS ATTEND DO EXPEL
GRASP INGEST MBUIID MFEEL MOVE:
MTRANS PROPEL PTRANS SPEAK

A good discussion of the significance of these primitives (excepting
ACT?) 1is found in [Schank, 1975]. "ACT?" is not one of Schank's original
acts; it has been introduced simply to have some representation for such
sentences as "WHAT DID FRED DO?", and is the mark of an outstanding problem
in the new CD. ‘

10

The set of acts is of especial importance in CD, for several reasons.
The ACT of an EVENT is analogous to a verb in most sentences of a natural
language: it provides the strongest influence on the production of
inferences (as will be seen in Chapters 7 and 8), and hence contributes most
to the meaning; it selects a set of subsidiary roles for the EVENT, and
constrains their possible fillers.

Some annotated examples of simple EVENTs follow.

"JOHN WENT TO THE PARK"

((EVENT (ACTOR JOHN) An event performed by JOHN

’
(ACT PTRANS) ; doing some movement
(OBJECT JOHN) ; of JOHN
(FROM DUMMY-PLACEL) ; from somewhere
(TO PARK1) ; to a particular park
(TIME (NAMED TIMEPOINTL) ; at some time

(COMPARISON ; that time being
4

(BEFORE *NOW*))))) in the past

"HE TALKED TO MARY"
((EVENT (ACTOR DUMMY-MALEL)
(ACT MTRANS)
(MOBJECT CONCEPTS1)
(FROMCP DUMMY-MALEL)

An event performed by some male
communicating

some unspecified information
from his "conscious part"

(TOCP MARY) to MARYs "conscious part"
(TIME (NAMED TIMEPOINT2) at some time
(COMPARISON that time being

.S ME NE NE ™e ws we o

(BEFORE *NOW*))))) in the past

Fach EVENT has, besides an ACT, an ACTOR and a TIME. Other roles may
appear as appropriate for the chosen ACT - thus, in the examples above, the
act PTRANS introduces the additional roles OBJECT, FROM and TO; and the act
MTRANS introduces MOBJECT, FROMCP and TOCP.

The roles TRUTH and ABILITY may also appear within an EVENT, but they are
mutually exclusive. The possible modifications of an EVENT are:

(TRUTH TRUE) - the event occurred

(TRUTH FALSE) ~ the event did not occur

(TRUTH TRUTH?) - the occurrence is being questioned
(ABILITY CAN) - the event could occur

(ABILITY CANNOT) - the event could not occur

(ABILITY ABILITY?)- the possibility of the event is being questioned

If, as above, no such modification is found, (TRUTH TRUE) is assumed. As
with the top-level 1labelling of structures as EVENT, STATE etc., the
provision of these distinct labels is superfluous, since the appropriate
label could be deduced from the content: and again, the redundancy
facilitates certain aspects of the implementation.

As an example of the use of the ABILITY modifier, the representation
shown overleaf is used for the sentence "JOHN CAN GO TO THE PARK".

11

((EVENT (ACTOR JOHN) Previously, if no other

r
(ACT PTRANS) ; information was available,
(OBJECT JOHN) ; TRUTH = TRUE was adopted as a
(FROM DUMMY-PLACE2) ; shorthand. Here, other info
(TO PARK1) ; is available: viz.
(ABILITY CAN) ; The action CAN be performed.
r

(TIME (NAMED TIMEPOINT4)
(COMPARISON (AFTER *NOW*)))))

2.3.1.2) STATE representation

CD distinguishes EVENTs and STATEs: besides an inventory of ACT
primitives, there is a selection of STATENAME primitives, though this is
less clearly defined. There is also a subcategorisation of states, into
scale-states and non-scale-states. The scale states are used to represent
the sort of static information which is commonly conveyed by adjectives in
natural languages. AD-HAC currently uses the scales listed below:

AGE eg for YOUNG,MIDDLE-AGED,OLD ,ANCIENT

ANGER for TRANQUIL,CALM,ANNOYED,FURIOUS,LIVID

ANXTETY for CAREFREE,ANXTOUS,FEARFUL

AWARE for SLEEPING,RESTLESS,DROWSY ,AWAKE

BENEFIT for no adjectives: see below

FEAR for CAREFREE,CALM,NERVOUS, FRIGHTENED ,SCARED

GUILT for OBDURATE, IMPENITENT ,REMORSEFUL ,GUILT-STRICKEN
HEALTH for DEAD,CRIPPLED,AILING,SICK,WELL ,HEALTHY ,FIT

HUNGER for BLOATED,SATED ,SATISFIED ,PECKISH, HUNGRY ,RAVENOUS , STARVING
IQVAL for IDIOTIC,STUPID,DUMB,STLLY,SMART,CLEVER,BRAINY

Joy for DEPRESSED,SAD ,UNEMOTIONAL,HAPPY ,ECSTATIC

LENGTH for SHORT,AVERAGE-LENGTH,IONG

PSTATE for RUINED,BROKEN,DAMAGED , INTEGRAL

QUALITY for ABYSMAL,LOUSY,BAD,POOR,REASONABLE,GOOD , EXCELLENT
SIZE for MINUTE,TINY,LITTLE,SMALL,AVERAGE,BIG,HUGE, ENORMOUS
SOBER for PISSHD,DRUNK,TIPSY ,SOBER

SOCGRACE for SCATHING,RUDE, IMPOLITE,OFFHAND ,POLITE,OBSEQIIOUS
THIRST for SLAKED,DRY,THIRSTY

WEIGHT for FEATHER-LIGHT,LIGHT,UNHEAVY ,HEAVY ,PONDEROUS

A scale-state always uses the roles STATENAME, THING, VAL and TIME.
TRUTH may also be specified, as with EVENTs, but ABILITY may not. In a
scale-state representation, VAL indicates a place on a notional scale from
-10 to +10; THING identifies the object - or person - which is
characterised by being at this position on the scale. The example
adjectives given above for each scale name correspond to progressively
higher numbers in the VAL roles; the scale BENEFIT, however, has no
adjectival correlates in English: it is used in a fuzzy fashion which is
explained later in section 2.3.4. As a simple example of the use of scale
states:

"THE TABLE IS BIG"
((STATE (THING TABLEL)
(STATENAME SIZE)
(VAL 4)
(TIME (NAMED *NOW*))))

A particular table is
characterised by having size
somewhat bigger than average
at this particular time.
(Inference will establish that
no change is likely over time)

~8 ™o we W we wo

12

In scale-state representations, VAL may alternatively encode a change of
state. This is achieved by having, eg, (VAL (HIGHERBY 2)) rather than, eg,
(VAL 2). A similar mechanism existed in Schank's CD. There is a further
option in the new (D: the VAL of a scale-state may be declared to be
somewhere in a given range of wvalues, by use of the special forms
"(VAL (HIGHERTHAN n))" and "(VAL (LOWERTHAN n))". In particular, this may
be used to represent the meaning of comparative adjectives; precisely how
this can be done is shown in section 2.3.3.

There are also several non-scale-states. Several new states have been
added to the set originally proposed by Schank; the full set now used is:

QOLOUR EXTST FAMILY GOAL IDENTITY
Isa IoC MIOC ONN PART
POSS QUANTIFY QUANTITY

These, like the ACTs, introduce a specific set of subsidiary roles. Many
of them also place strict requirements upon the fillers of these roles: for
instance, QUANTIFY uses the roles THING and VAL, but VAL must be one of a
special set of tokens: eg. ¥EVERY* *MANY* *NO*, Some annotated examples
of state-based CDforms are shown below:

"THE BIOCK IS ON THE TABLE"
((STATE (THING BIOCKL) ; B particular block has a
(STATENAME I.0OC) ; location relative to
(VAL TABLE2) ; a particular table
(SPATREL *ON*) ; the spatial relation being ON
(TIME (NAMED *NOW*)))) ; at this particular time.

"THE LAMB BELONGS TO MARY"
((STATE (STATENAME OWN) An ownership relation holds,
(THING LAMB1) where the lamb is owned
(VAL MARY) and MARY is the owner
(TIME (NAMED *NOW*)))) at this time.

s we “we “o

"FRED KNEN THAT MARY HAD GONE TO THE SHOPS"

((STATE
(STATENAME MLOC) Mentally located
(INCP FRED) in FRED'S "conscious part"

(TIME (NAMED TIMEPOINTI)
(COMPARISON (BEFORE *NOW¥))

at some time
that time being in the past

(MOBJECT was the information that
(EVENT (ACTOR MARY) MARY performed the action
(ACT PTRANS) of moving
(OBJECT MARY) MARY herself

(FROM DUMMY-PLACEL) from somewhere

(TO SHOPS1) to some set of shops
(TIME (NAMED TIMEPOINT2) at some time
(COMPARISON that time being
(BEFORE *NOW*)) in the past
(COMPARISON and also before the time of
(BEFORE the information being thus

TIMEPOINTL))))))) located. (Not implying

before all such times)

WO WME NE MO WE Me NG NG NG NE Ne WE NS WG we WP W WP

13

2.3.1.3) CAUSE represehtation

In the original implementation of CD, causal relationships were indicated
by the use of subordinating roles: thus an EVENT conceptualisation might
have, besides the roles for ACTOR, OBJECT etc., an extra role RES,
indicating a result of that event. There were in fact several such roles
corresponding to different types of causality.

In this new implementation, CAUSE may appear as a top-level label on a
conceptualisation: it has two roles, ANTECEDENT and RESULT, both of which
subordinate other conceptualisations. For example,

"FRED MADE MARY ANGRY"

((CAUSE
(ANTECEDENT
(EVENT (ACTOR FRED)
(ACT DO)
(TIME (NAMED TIMEPOINTI)
(COMPARISON (BEFORE *NOW*)))))
(RESULT
(STATE (STATENAME ANGER)
(THING MARY)
(VAL 4)

(TIME (NAMED TIMEPOINTL1))))))

Additionally, a CAUSE can have the roles ABILITY or TRUTH, though as in the
case of events, these two roles are mutually exclusive. A CAUSE CDform may
arise in several ways: when the word "BECAUSE" appears in a sentence is one
obvious way; many verbs, such as "MAKE" in the sense illustrated above, but
also verbs such as "HIT", "PREVENT", "ADVISE", demand the representation of
a causal relationship. One surprising use of causality occurs in sentences
such as

"JOHN CAN BE HAPPY"
((CAUSE ; A causal relationship
(ABILITY CAN) CAN hold between
(ANTECEDENT CONCEPTS2) some unspecified cause
(RESULT and the result of
(STATE (THING JOHN) JOHN being characterised by
(VAL 4) a higher—than-average position
(STATENAME JOY) on the JOY scale.
(TIME (NAMED TIMEPOINTS)
(COMPARISON (AFTER *NOW*)))))))

e we We We we ws %

This arises because the role ABILITY applies only to events and causes, but
not to states; even though the English sentence superficially demands that
the state be given an 'ability' marker, the semantics of the representation
language forbid this. It can be seen, therefore, that the conceptual
primitive 'CAN' is not the same as the English word "CAN", and the primitive
'CANNOT' is not the same as the word "CANNOT".

One problem with analysing English sentences into this representation
concerns the interpretation of negation when applied to causal
relationships. For instance, which is the appropriate paraphrase for the
sentence "FRED DIDN'T ANNOY MARY BY EATING THE BISCUITS"

14

Fred's eating the biscuits was not what annoyed Mary.
Fred didn't eat the biscuits, but Mary became angry.
Though Fred ate the biscuits, Mary did not become angry.
Fred didn't eat the biscuits, and Mary didn't get angry.

These four cases correspond to different ways of placing the negative in the
CDform, and the current analyser cannot select between the four options:

- negating the CAUSE

- negating the ANTECEDENT

- negating the RESULT

- negating both ANTECEDENT and RESULT
Consequently, the representation language has an optional role so that the
analyser may pass to the inferencer a representation which leaves this
ambiguity unresolved; the structure passed for the above sentence would be

((CAUSE
(ANTECEDENT
(EVENT (ACTOR FRED)
(ACT INGEST)
(OBJECT BISCUITS1)
(TIME (NAMED TIMEPOINTI)
(COMPARISON (BEFORE *NOW*)))))

(RESULT
(STATE (STATENAME ANGER)
(THING MARY)
(VAL 4)

(TIME (NAMED TIMEPOINT1))))
(UNKNOWN (TRUTH FALSE))))

It is to be hoped that later incarnations of the inferencer will be able to
resolve this ambiquity; at present, this cannot be done.

2.3.1.4) The representation of conjunctions

The new implementation of CD has three ways of handling conjunction,
because there seem to be three different types of conjunction:
- conjoined clauses, as in "FRED WENT TO THE KITCHEN AND ATE A BANANA"
- conjoined nominals, as in "FRED AND MARY WENT TO THE zOO"
- conjoined modifiers, as in "FRED ATE A GREEN AND UNRIPE BANANA"

Conjoined clauses are handled by means of CONJUNCT conceptualisations;
these take the roles FIRST and SEQOND. For example,

"FRED WENT TO THE KITCHEN AND ATE A BANANA"

((CONJUNCT
(FIRST (EVENT (ACTOR FRED)
(ACT PTRANS)
(OBJECT FRED)
(TO KITCHEN)

(TIME (NAMED TIMEPOINTI)

(COMPARISON (BEFORE *NOW*)))))
(SECOND (EVENT (ACTOR FRED)

(ACT INGEST)

(OBJECT BANANAL)

(TIME (NAMED TIMEPOINTZ2)
(COMPARISON (AFTER TIMEPOINT1))
(COMPARISON (BEFORE *NOW*)))))))

15

Conjoined nominals are handled by the use of a GROUP as the filler of a
role. A group has any number of elements, and these are labelled 1,2, etc.
For example,

"FRED AND MARY WENT TO THE ZOO"
((EVENT (ACTOR (GROUP (1 FRED)

(2 MARY)))
(ACT PTRANS)
(OBJECT (GROUP (1 FRED)
(2 MARY)))
(TO 7Z0OOlL)

(TIME (NAMED TIMEPOINTL)
(COMPARISON (BEFORE *NOW*)))))

Conjoined modifiers are handled by nesting one conceptualisation inside
another, in such a way that the particular object being modified is pointed
out within the embedded conceptualisation. This is achieved by use of the
FOCUS device, which is explained in section 2.3.3 below.

2.3.2) The conceptual roles

CDforms have the structures illustrated in the preceding subsections.
They comprise a set of role names and associated fillers, and this whole
assemblage is labelled with its type - EVENT, STATE, CAUSE or CONJUNCT.
These types demand that certain roles should appear: thus, all EVENTs have
an ACT and an ACTOR; all STATEsS have a STATENAME; all CAUSEs have an
ANTECEDENT and a RESULT; all CONJUNCTs have a FIRST and a SECOND.

Beyond these mandatory roles, individual ACTs and individual STATENAMES
require further roles. The situation is further complicated by the Ffact
that some pairs (or triples) of roles are mutually exclusive, and some
optional roles also exist. This section tries to give a comprehensive
picture of the status of the conceptual roles. The sets of roles which may
appear with given ACTs and STATENAMES is given in a more compact format in
Appendix A.

TRUTH and ABILITY

The role TRUTH may appear in any conceptualisation, and may be filled
with the values TRUE, FALSE or TRUTH?. An alternative, in EVENTs and CAUSEs
but not in STATEs, is the role ABILITY, which may take the tokens CAN,
CANNOT or ABILITY?. If neither of these roles actually appears, TRUTH is
assumed to have the value TRUE.

In the special case of CAUSE CDforms, the role UNKNOWN may appear, and
will contain as its filler either the expression (TRUTH FALSE) or
(ABILITY CANNOT).

TIME
All events, and all states with the exception of IDENTITY, must have a
TIME role. The filler of this role must be either a TIMEPOINT or a

TIMESPAN; these fillers have a detailed internal form, and are discussed
further in section 2.3.5.

16

ACTOR

All EVENT CDforms have an ACTOR role: the nature of the filler of this
role depends on the particular ACT, but is in all cases a conceptual token
rather than an embedded conceptualisation.

INST

EVENT CDforms may optionally have an INST role. If it occurs, it must be
filled by another EVENT having the same ACTOR and the same TIME.

OBJECT

Almost all EVENTs have an OBJECT role, exceptions being MFEEL, MTRANS,
MBUIID and SPEAK; the primitive acts DO and ACT? make take, but do not
need, this role. The object role, where it appears, is a conceptual token,
though in the case of the act ATTEND it must be one of a small number of
sensory organs, eg. *EYE*, *EAR¥,

THING and VAL; also RELATION and SPATREL

Each of the 19 scale states listed earlier needs the roles THING and VAL;
for these states, which correspond to many simple adjectives, The THING role
is filled by some conceptual token, eg. FRED or TABLEl, while the VAL role
is filled with one of the forms:

(VAL <number>)

(VAL (HIGHERBY <number>)) or (VAL (LOWERBY <number>))

(VAL (HIGHERTHAN <number>)) or (VAL (LOWERTHAN <number>)):
The roles THING and VAL are also used by most of the other states (the
exceptions being EXIST, GOAL and MIOC): in each case, THING will still
refer to a conceptual token, but the filler of the VAL role will be of a

type determined by the particular STATENAME at hand. The roles, and the
types of their fillers, are associated with particular states as follows.

DIOUR needs a THING and a VAL, where the VAL will be the token
corresponding to the name of a colour - eg RED.

EXIST needs only a THING, which must be a physical object.
FAMILY needs a THING, a VAL (which must be an animate entity of the same

type as the THING), and the additional role RELATION, which must be the name
of a familial relationship - eg SISTER.

IDENTITY needs a THING and a VAL; it does not matter which is which
since identity is a transitive relationship.

ISA needs a THING and a VAL, both of which are conceptual tokens. This
state is not actually used in the system, but is provided as a hook on which
future extensions of the system may be hung; specifically, metaphorical
statements such as "FRED BIOGGS IS A FOX".

17

I0C needs a THING and a VAL, and has an optional role SPATREL. Where
this role 1is present, it holds one of the tokens which designate spatial
relationships, such as *ON*, *BELOW*. Where this role is absent, the entire
IOC state merely means that THING is near VAL: nearness, like identity, it
a transitive relationship, and so it does not matter which object or place
fills the THING role, and which the VAL. Both THING and VAL are constrained
to be either physical objects or places; where the role SPATREL is present,
its filler will further constrain these in an obvious fashion.

OWN, PART and POSS each take both THING and VAL, and provide distinct
representations for the various forms of relationship expressed by
possessives in English. The VAL in OWN and POSS is constrained to be a
beast, whereas in PART it may be any physical object. The THING must be a
physical object in all three cases, and represents the thing possessed.

QUANTIFY needs a THING and a VAL; the THING role must be filled by a
(plural) token representing physical objects, while the VAL must be one of
the tokens representing quantities.

QUANTITY also needs a THING and a VAL, but in this case the THING may
relate to any physical object, while the VAL represents some measure of
quantity, eg. *BUCKETFUL*.

MOBJECT and GOALSTATE

The role MOBJECT is used to subordinate an entire conceptualisation,
specifically one which corresponds to some information. Thus, in an MTRANS
event, it shows the information communicated; in an MBUIID event, it shows
the information constructed or deduced; in an MIOC state, it shows the
information held in some appropriate repository.

The role GOALSTATE occurs only in a GOAL - one of the primitive states.
Like MOBJECT, it holds an embedded conceptualisation, but this is
constrained to be a state. The statename GOAL is actually redundant, since
the same information could be represented as an MIOC state, where the
MOBJECT is a CAUSE relationship between the desired state and resulting
BENEFIT for the person (or beast). The use of GOAL, however, introduces a
welcome abbreviation into this form of representation.

INCP, INLTM, IN, and WANTER

In the original implementation of CD, higher animates were endowed with a
CP and an LIM: these were "Conscious Processor" and "Long Term Memory"
respectively, and they served as the repositories, sources and destinations
of information. The use of picture producers for concrete nouns was applied
to the representation of these hypothesised entities also; thus, if "John
told Mary ...", the CD representation would include the elements

(FROM (*CP* PART JOHN)) and (TO (*CP* PART MARY))
In this new implementation, these entities are subsumed into special roles,
providing a further abbreviation of the CDforms. The state MIOC uses one of
the roles INCP, INLTM and IN, to reflect the information store in which the
MOBJECT is held; a given CDform may use only one of these roles: they are
mutually exclusive.

18

The role IN is used when the information 1is held in some inanimate
entity, for example a book or a tape recording.

The role WANTER is used only in a GOAL state, and indicates the
(necessarily animate) being which desires some state.

FROMCP, FROMLIM, and FROM; TOCP, TOLTM, and TO

In similar fashion, these roles are used to indicate the sources and
destinations of information in an MTRANS event; again, only one of FROMCP,
FROMITM and FROM may be used in a given CDform, and only one of TOCP, TOLTM
and TO. Also, FROM and TO are used when a book, for instance, is the
relevant filler.

FROM and TO

The acts ATRANS, PTRANS, and PROPEL use the roles FROM and T0, for
destination and source respectively. The fact that these roles are not
free-standing primitives, but occur only inside whole CDforms, means that
the difference in nature between the FROM in an ATRANS and the FROM in a
PTRANS does not need to be reflected in having different names for the
roles.

Additionally, the acts ATTEND and MFEEL use the role TO. In the case of
ATTEND, the TO role indicates the object or place to which a sensory organ
is directed; in the case of MFEEL, it indicates the (usually animate)
object towards which some emotion is felt.

Other special-purpose roles

There are several roles which are specific to a single act or state.
Some of these, WANTER, INCP et al, RELATION and SPATREL, have already been
described. Those which remain are:

FROML and FROM2, which are used in MBUIID acts to describe the "old"
information from which some "new" information is constructed. These roles
take embedded conceptualisations for fillers.

EMOTION, used in MFEEL, and taking one of a small set of primitive
tokens representing an emotion felt by somebody.

SOUND, used in SPEAK events, whose filler must be one of a set of
tokens representing sounds.

CERTAINTY, which is an optional role in an MIOC state, and which is
used to distinguish the English verbs SUSPECT, THINK, KNOW, and BELIEVE.
The filler is a number in the range 0 to 1.

MANNER: an embarassment!

The role MANNER may be used in any EVENT, and may take tokens such as
QUICKLY, REPEATEDLY; it is an unhappy bedfellow with the other roles, and
the suspicion that this is merely a hack to get adverbs in somehow is well
founded. One of the most pressing problems with this new implementation of
CD is the satisfactory representation of adverbs in general; and it is not
anticipated that MANNER will survive when this problem is seriously
considered.

19

2.3.3) FOCUS paths

The ordering of the roles within a CDform is immaterial; the examples
given earlier were ordered to simplify the annotation, and were not in the
order which is conventionally adopted in the program. The names of the
roles serve as labels on substructures of a CDform, and entire CDforms are
also labelled with their type. This labelling can be used to construct
descriptions of locations within a CDform: such descriptions I call paths.
The programs based on the original implementation of CD used similar paths
to access substructures; in the present context, where the labelling is
augmented with the type of structure, the paths are correspondingly
~different. For example, in one of the CDforms given earlier to illustrate
states,

"FRED KNEN THAT MARY HAD GONE TO THE SHOPS"
((STATE (STATENAME MIOC)
(INCP FRED)
(TIME (NAMED TIMEPOINT1)
(COMPARISON (BEFORE *NOW*)))
(MOBJECT (EVENT (ACTOR MARY)
(ACT PTRANS)
(OBJECT MARY)
(FROM DUMMY-PLACEL)
(TO SHOPSL)
(TIME (NAMED TIMEPOINT2)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (BEFORE TIMEPOINT1)))))))

the path (STATE MOBJECT) may be used to pick out the entire embedded
conceptualisation, that is, ((EVENT ...)). Similarly,

the path (STATE INCP) leads to (FRHD)

the path (STATE MOBJECT EVENT TIME NAMED) leads to (TIMEPOINT2)

One crucial difference between this new implementation of CD and the
original implementation 1lies in the fact that these paths may explicitly
appear in the CDform. Paths occurring within the CDform are prefixed by the
label FOCUS, and so are called focus-paths.

They are used to embed one conceptualisation within another, in such a
way that a particular part of the CDform is "in focus". This is the
essential tool which gives the new CD many valuable features. For instance,
the examples in figure 2.1, cited earlier as evidence of the non-uniform
representation of identical information in Schank's system, may be recast in
the new CD as shown in figure 2.2.

Figure 2.2
"The hat is red" "The red hat ..."
((STATE (STATENAME COLOUR)
(THING HAT1) (FOCUS (STATE THING))
(VAL RED) (STATE (STATENAME COIOUR)
(TIME (NAMED *NOW#*)))) (THING HAT1)
(VAL RED)
(TIME (NAMED *NOW*))))

Uniform representation in the new CD

20

It can be seen that the information about the hat's redness is expressed
in identical fashion, regardless of context. This I believe to be a
desirable property.

This same mechanism can treat deeply-embedded relative clauses: for
example, "The banana I asked you to give the man", becomes
(omitting detailed time descriptions)

(... (FOCUS (EVENT MOBJECT CAUSE ANTECEDENT EVENT OBJECT))
(EVENT (ACTOR *SPEAKER¥*)
(ACT MTRANS)
(FROMCP *SPERKERY*)
(TOCP *HEARERY¥)
(MOBJECT (CAUSE (ANTECEDENT (EVENT (ACTOR *HEARER*)
(ACT ATRANS)
(OBJECT BANANAL)
(FROM *HEARER¥)
(TO MANL)
(TIME ...)))
(RESULT (STATE (STATENAME JOY)
(THING *SPEAKER¥)
(VAL (HIGHERBY 2))
(TIME ...)))))
(TIME ...)))

Embedded conceptualisations, prefixed with a focus-path as in these
examples, may be used in the same way as simple tokens, to fill roles in
larger conceptualisations; the focus-path provides a mechanism for
interlacing two CDforms.

Focus-paths are applicable to many situations besides the obvious ones of
representing adjectives, relative clauses and possessives. For example,
comparative adjectives may be represented by having some dummy value, and
focussing on that value within a HIGHERTHAN clause. So,

"FRED IS BIGGER THAN MARY"
((STATE (STATENAME SIZE)

(THING FRID)

(TIME (NAMED *NOW¥))

(VAL (HIGHERTHAN (FOCUS (STATE VAL))

(STATE (STATENAME SIZE)

(THING MARY)
(TIME (NAMED *NOW*))
(VAL DUMMY-VALL))))))

Similarly, conjoined modifiers or adjective strings may be easily
handled:

" ... THE BIG RED LORRY"
(... (FOCUS (STATE THING))
(STATE (STATENAME SIZE)
(VAL 4)
(THING (FOCUS (STATE THING))
(STATE (STATENAME COLOUR)
(THING LORRYL)
(VAL RED)))))

21

2.3.4) Superprimitives

One of the principal attractions of a primitive-based representation
language 1is the concomitant simplicity of the matching procedures: one of
the disadvantages, from the point of view of a complete system handling
ordinary text, 1is the explicitness of representation that appears to be
necessary. This disadvantage is also apparent when, in the course of
producing inferences, it is necessary to inspect the surrounding context.

In Schank's original CD, the role-filler primitives DO, JOY and CONCEPTS
were "fuzzy" primitives: the act DO could be matched with any other act;
the state JOY could be matched against some other states; and the special
token CONCEPTS could match against any whole conceptualisation. Tokens with
this fuzzy matching property may be termed superprimitives, indicating not
that they are more primitive than primitives, but that they give a
(slightly) higher level of description. It may be noted in passing that
Wilks used some primitives in this fashion: his '*ANI', for instance, could
match 'MAN', 'BEAST', and 'FOIK'.

It has proved useful to extend this idea by introducing a small number of
special tokens, each of which can be matched to a small set of proper
primitives: for example, **POSEMOTION** may match *LOVE* *LIKING*, or
ATTRACTION, and **SOUND** may match *SPEECH* ,* LAUGHTER* ,*SONG* or *NOISE*.
These superprimitives may appear in CDforms in the same fashion as any other
primitive, but have special behaviour concerning pattern-matches and the
merging of CDforms. This will be discussed further in Chapter 8, section
8.3.2, where the superprimitive classifications are given in full.

In AD-HAC, the state BENEFIT exhibits the fuzzy matching properties shown
by JOY in Schank's CD; DO and CONCEPTS also are superprimitives. My
notation in this area has become somewhat muddled, however. In general, the
names of role-filler primitives begin and end with asterisks: for example,
SPEECH , *MANY*, *BELOW*, *EYE*; and the names of superprimitives begin
and end with doubled asterisks: thus **POSEMOTION**, **SOUND**. However,
primitive tokens like ATRANS, MIOC, CAUSE etc., are also primitives, yet
their names do not have the asterisks; and, as just noted, the tokens DO,
BENEFIT and CONCEPTS are superprimitives, but lack the double asterisks.
This is of no real consequence, but the muddle must be admitted.

2.3.5) Time representation

There are two sorts of time token used in the system, TIMEPOINTs and
TIMESPANs. Each TIMESPAN indicates an interval of time, and is bounded by
two TIMEPOINTs, indicated by TS (Time of Starting) and TF (Time of
Finishing). A TIMEPOINT indicates a point in time. The tokens *NOW¥,
ABINITIO and *EVERMORE* are special cases of TIMEPOINTs, corresponding to
now, infinitely 1long ago and infinitely far ahead. If a TIMESPAN lacks
either (or both) TS or TF, these are assumed. As earlier examples show, the
time of a conceptual fragment is indicated by the label TIME, and the name
of the time token is labelled NAMED. Examples of TIMESPANs are:

(TIME (NAMED TIMESPANl) or, equivalently, (TIME (NAMED TIMESPANL)
(TS *NOW)) (TS (NAMED *NOW*)))

(TIME (NAMED TIMESPAN2)
(TS TIMEPOINTL)
(TF TIMEPOINT2))

22

If it is necessary to compare two time tokens, a specification of the
relationship is labelled with COMPARISON. The specification itself consists
of a time token, or time specification, 1labelled with one of the time
relation labels, which are :

BEFORE , AFTER , NOTBEFORE, NOTAFTER , DURING , ~DURING
For example, to indicate that TIMEPOINT3 lies within TIMESPAN2, we say

(TIME (NAMED TIMEPOINT3)
(COMPARISON (DURING TIMESPANZ2)))

Some more complex examples are given below.

(TIME (NAMED TIMEPOINT3)
(COMPARISON (DURING (NAMED TIMESPANZ2)
(TS (NAMED TIMEPOINTL))
(TF (NAMED TIMEPOINT2)
(COMPARISON (BEFORE *NOW*))))))

(TIME (NAMED TIMESPAN3)
(COMPARISON (-DURING (NAMED TIMEPOINTZ)
(COMPARISON (AFTER *ABINITIO*)))))

The time relation label DURING can only be used to relate some time token
to a TIMESPAN: in the first example given above, TIMEPOINT3 is being
related to TIMESPAN2, which has a TS and a TF which are not shown but which
are held on its property list. Suppose these are TIMEPOINT1 and TIMEPOINT2
respectively: the time relationships which hold may be diagrammed as
follows:

TIMESPAN3
(TS) (TF)

TIMEPOINT1 TIMEPOINT2

? _?_

TIMEPOINT3

The relation DURING refers to the TS and TS of the TIMESPAN, and indicates
that the NAMED time lies somewhere between these points. This is
expressible in terms of the simpler time relations, BEFORE and AFTER. Since
however it may be the case that TIMEPOINT3 is actually identical with one of
these points, the simple relations NOTBEFORE and NOTAFTER are actually used.

The second example shown above differs from the first in two respects:
firstly, the TIMESPAN with which comparison is being made has its end-points
explicitly given; secondly, one of these it itself compared with another
time token, viz. *NOW*.

The third example shows the use of the inverse label, -DURING. This

label requires the NAMED time token to be a TIMESPAN, and indicates that
that span includes the compared token.

23

The labels BEFORE and AFTER are used liberally; indeed, the annotated
examples of CDforms have illustrated their use, and nothing more will be
said about them here.

This may seem like an elaborate treatment of time; yet in fact it is not
even adequate for the representation of many temporal references which occur
in real texts. For instance, there is no way in which "FRIDAY EVENING" or
"3 pm" can be referred to. This is one of the outstanding problems which
must be tackled in future.

2.3.6) Features of tokens, and DUMMY tokens

In Schank's CD, concrete nouns were represented by means of picture
producers: these were actually Lisp atoms, on whose property lists were
stored various forms of information; the printed versions of CD structures
expanded these property lists into the form shown in earlier in figure 2.1.
In these printed versions, there appeared tokens like £PHYSOBJ and £HUMAN,
which indicated that the picture producer was an instance of the class
£PHYSOBJ etc.

In this new version of CD, concrete nouns are represented by Lisp atoms,
usually with mnemonic names. Thus, tokens like HAT3, TABLEl and JOHN appear
in the printed CDforms. These tokens are created behind the scenes, and are
equipped with features which serve to classify the tokens. Thus, suppose
the noun TABLE occurs in an input text: the analyser will create a new
atom, say TABLEl, which will be used to represent this concept; it will
also record, on its property list, that TABLElL ISA TABLE.

The features of TABLEL may be found by following the ISA link to TABLE,
and looking at its "features" property: this will say "(RIGID)".

The features are organised in a hierarchy, shown below: thus, if TABLEL
has the feature RIGID, then it has all the features
{RIGID SOLID CONCRETE ANYTHING ABSOLUTELYANYTHING)

ABSOLUTELYANYTHING
/ / l \ \
/ / \ \
ABSTRACT DIRECTION MESSAGE AGENCY ANYTHING
/' \ / | \
/\ / \
GERUND ABSTRACTNOUN CONCRETE ORGANISATION PLACE
/ \ /\
/ \ / N\
_ SOLID FLUID OPEN-PLACE ENCILOSED-PLACE
/ \ / l \
/ \ / \
FIOPPY ANIMATE RIGID POWDER GAS LIQUID
/\ /' \
/\ /\
BEAST PLANT INERT MACHINE
/\
/\
HUMAN ANIMAL
/' \
/ N\
MALE FEMALE

24

These features are called primary features, and they are used throughout
the system to give information about the tokens to which they are
(indirectly) attached. There are also "secondary features", such as
PROPERNAME or MASSY, which give purely linguistic information about the
associated words.

Each primary feature has associated with it a dummy. This is a token
such as DUMMY-HUMAN or DUMMY-MALE, which can be used to represent an
prototypical bearer of that feature. Instances of these dummy tokens,
particularly tokens such as DUMMY-MALEl, DUMMY-MALE2, are created by the
analyser to represent pronouns.

Fach primary feature also has an inverse feature, which may be explicitly
given for particular token types. Thus, the token which the analyser
creates for the pronoun THEY will be say DUMMY-UNKNOWNS3, and this will lead
to the feature set (ANYTHING NOTFLUID); this enables the inference
mechanism to match such a token against almost anything, but not to match it
against tokens bearing any of the properties

FLUID, LIQUID, POWDER, GAS.

2.4) Criticisms of the AD-HAC development of CD

One wholly spuriocus criticism concerns the use of tokens such as HAT3,
JOHN, TABLEL. Tokens like this, bearing such an obvious resemblance to
English words, are often thought to be just English words; it tends to be
assumed that, because a token is printed as "HAT", the only knowledge that a
system has is bound up in this sequence of characters. This is patently
false. The only reason for using mnemonic tokens is to assist people who
inspect the programs internal data structures. Indeed, there is an option
in AD-HAC which permits all these generated tokens to be Lisp GENSYMs: the
program actually works better when this option is set, being faster and
using less space; but if I were to explain its representation language
using examples generated in this mode, I would constantly be saying "'G0017'
represents John, 'G0023' represents the banana". Using perspicuous tokens
does not mean that the name is being taken for the meaning.

As mentioned in section 2.3.6 above, tokens have associated features, and
these serve to convey some of the meaning of nouns. All the concrete nouns
known to the system are also placed on an ISA hierarchy, which functions as
a rudimentary thesaurus. Additionally, many of them have functions; these
are little used by the sentence analyser, but serve rather to index
object-specific knowledge for use by the inference mechanism: this
knowledge takes the form of inference networks, which can be activated when
tokens bearing these function labels occur in contexts where this knowledge
is appropriate.

There are however some more fundamental weaknesses in this language,
specifically in its treatment of quantification and of spatial
relationships. Attempts have been made to cover both topics.
Quantification is represented by a STATE, named QUANTIFY, which has special
properties relating to the scope of information expressed within that state.
Thus

25

(... (FOCUS (STATE THING)) ; "... all happy men"
(STATE (STATENAME QUANTIFY)
(VAL *EVERY*)
(THING (FOCUS (STATE THING))
(STATE (STATENAME JOY)
(THING MEN1)

(VAL 2)))))
(... (FOCUS (STATE THING)) ; "...all men -
(STATE (STATENAME JOY) ; who incidentally are happy -"
(VAL 2) :

(THING (FOCUS (STATE THING))
(STATE (STATENAME QUANTIFY)

(THING MENL)

(VAL *EVERY*)))))
are not equivalent statements, and are handled appropriately by all
components of the system being described. Note that, if QUANTIFY and
EVERY were replaced with, say, SIZE and -3, the two fragments would refer
to "SMALL, HAPPY MEN" and "HAPPY SMALL MEN", and would be equivalent: the
special status of the state QUANTIFY lies in its special scoping effect.

Spatial relationships are represented by means of the role SPATREL which
may appear in the state LOC, and may have values such as *ON*, *BELOW* etc.
However, no mechanism exists for the representation of distance between
points in space. The problem here is similar to the representation of
duration of time spans. In both cases, a very precise measure is available,
but usually a sloppy measure is required. A further extension of the idea
of superprimitives may suffice, but it appears that the number of such
primitives would be enormous.

Another problem is that there is no means within the representation
language to distinguish between restrictive and non-restrictive relative
clauses; both are reflected by the use of focus-paths surrounding embedded
CDforms. While this uniformity of representation has some definite merit,
it would be nice to have some way of telling whether the embedded CDform is
intended to restrict the referents of the token in focus, or intended merely
to further gqualify the token.

To summarise, the new implementation of CD represents a significant
improvement over the original, largely because the use of focus-paths within
CDforms pemmits canonical representation; but also because the
representation of time is more thorough, and because of the introduction of
several superprimitives which allow a degree of slop. Nevertheless, there
remain flaws and weaknesses, most particularly in the representation of
space, time and quantification.

There are other problems which have become apparent as AD-HAC grew:
these later problems are discussed in the concluding chapter.

26

2.5) Implications of this representational language

For the analyser, a language such as this implies that the same, or at
least equivalent, structures of semantic primitives must be built for all
different acceptable ways of expressing the same thought. The constraints
on the CDforms, such as the interpretation of ABILITY relating to
state-based CDforms, must be particularly observed and exploited. The
addition of FOCUS paths to the structures relating to relative clauses,
adjectival modifiers and all other forms of modification, must be effected
consistently. A major problem in analysis is the interpretation of tensing
patterns, both in complex sentences and between sentences. This point will
be discussed further in Chapter 5, section 5.3.5.

The primitive acts and statenames provide a natural organisation for an
inference processor. The presence of superprimitives, as mentioned above,
facilitates the processes of matching propositions and of 1nterrogat1ng
context, at the (small) price of prov1d1ng special mechanisms for merging
propositions. For technical reasons concerning space and search eff1c1ency,
the information passed between the high-level components of the system, ie
the analyser, generator and inferencer, are reconfigured within the
inferencer to property-list format; and so there are additional mechanisms
for translating in both directions. The presence of features, ISA links etc
must also be utilised, both when attempting to match CDforms and when
determining which inferences to make.

For an English generator, the complete absence of syntactic information
coupled with the presence of primitives rather than English words implies
that the generator itself must make decisions about word usages, syntactic
frameworks, and the level of specification of items occurring in its inputs.

2.6) Wilks's semantic-primitive representation scheme.

A completely different representation language was developed by Wilks,
for use in his machine translation project. This language was also based on
the use of semantic primitives.

The most attractive feature of this language was the flexibility with
which primitives could be combined into formulas to represent the senses of
individual words. For example, the (single) formula for the word
"policeman" was

((FOLK SOUR) ((((NOTGOOD MAN) OBJE) PICK) (SUBJ MAN)))

ie. sonebody who selects a bad person from amongst a group
This is’a very simple example of the combination of prlmltlves into
formulas. Some more examples, and more explanation, is given in Chapter 4.

Wilks used some 80-100 primitives, though in Wilks's sense the case
labels (like SUBJ, OBJE and SOUR in the above example) were counted as
primitives: Schank, on the other hand, did not consider the names of cases
to be primitives. Wilks further notes that the set of primitives which he
uses corresponds well with the hundred or so words which are most frequently
used in the definitions of other words in a dictionary; and adduces this as
evidence that his is a "good" set of primitives, meanwhile arguing
[Wilks, 19771 that there is no reason to seek "the right" set.

27

Though Wilks uses primitive terms to good effect in characterising the
meanings of words, the larger structures in which these word-sense formulas
are embedded are less uniform and less natural than those of CD. The
formulas are assembled in triples, called templates, which are themselves

linked by paraplates.

The templates may in many cases be thought of as actor-action-object
triples; other situations which are easily handled by templates include,
for example, thing-be-adjective. The use of "dummies" permits intransitive
verbs to be represented, by simply omitting the "object" slot of the
template; but difficulties arise in circumstances where more than two noun
phrases are associated with a verb - as happens, for instance, with verbs
which expect an indirect object. For these cases, paraplates are employed
to tie several templates together into a larger structure. Paraplates are
usually associated with prepositions in Wilks's system.

When one considers that many of Schank's primitive acts require the
specification of many cases, it becomes apparent that tying templates into
larger structures is an inelegant solution to a widespread problem. The
basis of the trouble, I believe, is that the actor-action-object paradigm
which led to the three-slot nature of templates is not sufficiently general,
and that extra generality had to be grafted on by joining these triples
together.

28

Chapter 3: Generation

This chapter describes the sentence generator used in AD-HAC. The basic
components of the system were developed in what may appear to be a rather
idiosyncratic order: first the generator, then the analyser, and finally
the inference mechanism. The reason for this was quite simple. It was
imrediately apparent that the representation adopted was of critical
importance; that some of the details of representation could not be
determined outside the context of some concrete program; and that changes
to the representation would entail modification of that program. This
indicated that the least complex system component utilising the
representation should be attempted first. In AD-HAC, the least complex of
the components is the generator, which, as will become apparent, is based
largely upon Goldman's previous work on BABEL.

This chapter on generation appears here for several reasons. Firstly,
the historical development of the components as a whole may be reflected in
the order of their discussion; secondly, the fact that this generator is
based upon previous work, and shares much of the apparatus developed by
Goldman, deprives this chapter of much claim to originality. Finally, and
relatedly, much of the discussion may be familiar and hence simpler to
follow than that in succeeding chapters; for readers acquainted with this
discussion, more familiarity with the representational system described in
the preceding chapter may be gained.

The overall problem of sentence generation may be characterised as having
three parts. The first of these, choosing words, has, in its more demanding
aspects, often been neglected. 1In a rigorous treatment this extends £rom
the choice of verbs, nouns and adjectives, through the choice of function
words, such as prepositions and conjunctions, and may be extended to the
determination of those contexts in which the use of a pronoun is
appropriate.

The second part, word formation, passes under the name of "morphology".
This is one of the fundamental concerns of linguistics, but has seldom been
considered a serious problem in computer-based language processing systems
outside the MT context; for the range of vocabulary with which systems not
attempting translation are endowed, a superficial treatment will often
suffice.

The third part of the problem, word ordering, is often regarded as the
principal aspect of the problem of language production. The study of word
ordering has occupied many linguists, and their researches have taken many
forms and produced many theories. Foremost amongst these theories in recent
decades is the theory of Transformational Grammar.

Section 3.1 comments briefly upon some of the earlier work on generation
of natural language; Section 3.2 provides an overview of Goldman's BABEL,
as a prelude to section 3.3, which provides an overview of AD-HAC's
generator. Section 3.4 provides more detail about this generator, and
section 3.5 indicates those areas in which further work would have to be
done.

29

3.1) Previous work on generation

Generation has traditionally been the poor relation in NL work: far more
effort has been directed towards the analysis of language. Nevertheless,
generators have been written, either for their own sake, or as part of some
larger system. The following paragraphs sketch some of these earlier
generation programs.

3.1.1) Friedman

Friedman's work was concerned with transformational generative grammar,
and aimed to provide a testbed for exploring the effects of new
transformations and constraints. No effort was made to ensure that the
program's output was semantically sensible: the program had nothing to say,
but knew lots of ways of saying it.

3.1.2) Winograd

Winograd was concerned primarily with analysis and various forms of
inference [Winograd, 1971]1. Though his program did indeed have reason to
communicate, the range of expression needed was very small. Winograd made
no comprehensive attempt to generate English from any meaning
representation: much of the generator's output took the form of "patterned
responses", involving only the insertion of content words into prepared
templates. There was a rudimentary ability to construct descriptive noun
phrases, and also to incorporate these into clauses formed by programs
attached to the "concepts" of the blocks world. A small number of discourse
heuristics were also employed to render the generator's output reasonably
fluent.

3.1.3) Herskovits

Herskovits constructed the French-generation component for the
English-French translation program written by Wilks, which employed
Preference Semantics as its meaning representation [Herskovits, 19731.
Intermingled with this representation was information, derived directly from
the surface words of the English input, which gave the appropriate French
words, and often specific constructions, to be used in the French output.
This information was held in "stereotypes" which were associated with
individual English word senses. Whilst this approach can produce fair
translations - and could no doubt provide truly excellent "paraphrases" - it
would be difficult to adapt to the task of expressing inferences, for which
new word senses would have to be discovered by other means.

3.1.4) McDonald

McDonald's MUMBLE program is intended both as a useful generation
program, and as a psycholinguistic model [McDonald, 19771. It is
constrained to produce sentences in a deterministic left-to-right fashion;
one of its more interesting consequent properties is that, like people, it
sometimes does make wrong decisions and finds itself unable to complete a
sentence it has started. Unlike any other generation program of which I am
aware, MUMBLE takes account of rhetorical factors, and uses these to
determine how best the speaker's intentions for the text may be effected.

30

3.1.5) Goldman

Goldman's BABEL was used in the MARGIE program [Goldman, 1974]. It
accepted conceptualisations from either the analyser or the memory/inference
component, and cast these into English. Since one of the aims of the MARGIE
project was to prove that CD was capable of capturing meaning, BABEL was
designed to produce many synonymous English sentences for each input
conceptualisation. Another aim of the overall project was to demonstrate
that CD could be used as an interlingua, and so Goldman produced a modified
version which produced German sentences. Since then the basic program has
been adapted to produce a wide variety of languages, apparently without
significant development.

3.2) Overview of BABEL

As just noted, Goldman's BABEL produced English sentences to reflect the
meaning of conceptualisations. This represented the first attempt to
generate sentences given some representation of their desired meaning; and
since this representation was very close to that used in AD-HAC, BABEL's
approach to generation provided a relevant model on which a new effort could
be based. The following sections describe AD-HAC's generator, and give
special emphasis to the improvements and developments embodied in it. I
wish to give here a brief overview of BABEL's operation, so that subsequent
description can rest on an understanding of how pieces of AD-HAC's generator
are fitted together to make the whole; and so that the similarities with,
and differences from, BABEL may be easily pointed out.

The structures from which BABEL generated a sentence contained no
reference at all to the main verb to be used, but did contain a CD
expression of the desired meaning of the sentence, and, indirectly,
reference to the specific nouns to be used in the sentence. The first
operation to be performed then was to select a suitable main verb: this was
done by the use of discrimination nets. The discrimination nets applied
performed various tests on the conceptualisation, and ended up by selecting
a suitable case frame. The case-frame contained, besides a verb stem, a set
of "syntactic roles" for noun groups and subordinate clauses, each being
associated with a specification of a place within the conceptualisation
which should be used to £ill these syntactic roles. The case-frame thus
contained sufficient information to unpick this conceptualisation in order
to associate particular conceptual roles with particular syntactic roles.

The verb stem and all the syntactic labels were placed in a newly-created
node in a "syntax net": subordinate clauses were treated by a recursive
application of the same mechanisms, and the nodes for these clauses were
linked to the main clause node via the appropriate syntax label. Noun
groups corresponded to "picture producers" (PPs), and caused a similar
linking of syntax nodes via syntactic role labels. A simple mechanism
permitted the attachment of prepositions to these nodes at the same time.

The resulting syntax net was scanned by a simple ATN grammar, which used
routines to effect tensing, agreement between subject and verb, and the
location of irregular verb forms in a lexicon. The operation of the grammar
upon the syntax net caused the production of the actual text sentence.

31

The overall structure of BABEL was as diagrammed below. The "concexicon"
was the external file in which the case-frames were stored.

Discrimination | Concexicon | ‘ Property
nets € -->| scales
\ /
\ /
/ Memory \ / Generation \ / Grammar \
| Model |¢———- >| control |---->| control |
\ / \ algorithm / \ algorithm /
7 \'2 \'4
/ TLanguage \ | Iexicon | \ AFSTN
specific grammar

\ functions /

3.3) Overview of AD-HAC's generator

Much of AD-HAC's generator is the same as BABEL, but there are some
differences, partly because the representation languages are not identical,
and partly because improvements on BABEL's performance could be achieved by
modifying the approach.

Section 3.3.1 describes in some detail those aspects of the present
generator which are essentially copied from BABEL. Section 3.3.2 then
discusses how, and why, the input CDforms are processed before the generator
proper goes to work; this process is called canonicalisation, and is
performed by the inference mechanism also. Section 3.3.3 shows that
discrimination nets may usefully be permitted to execute actions, rather
than being restricted to merely conducting tests; and shows that for some
purposes it is necessary to have a collection of discrimination nets, rather
than just one huge net. Section 3.3.4 describes the greatest difference
between BABEL and the present generator, which lies in the way the syntax
net is used to produce the final text sentence: briefly, where BABEL used
an ATN grammar to inspect the net, in AD-HAC the syntax relations correspond
to the names of small programs, and there is a standard and uniform ordering
which can be applied to these roles which will produce grammatical English
sentences.

3.3.1) Similarities with BABEL

Since, like BABEL, my generator is given no information about the words
to be used in the generated sentence, but only a conceptual specification of
meaning, it must select a set of words. For simple nouns, this is easy
since a token like IAMP-POSTL has a ISA link pointing to the "concept"
ILAMP-POST, which in turn has an ENGLISH property pointing to the word list
(LAMP POST); 1in the case of a token like DOGl, whose ISA link points to the
concept "DOG", the homography of the concept and the appropriate English
word can be exploited to remove the need for even the ENGLISH property.

For verbs, however, there is no simple mechanism 1like this available,

because the conceptual pattern determines the meaning of a
conceptualisation, and the verb is the most important element for conveying
meaning. (The meaning of abstract nouns is related to this; for instance,

the pattern which corresponds to 'DECIDE' will also correspond to

32

'DECISION') So some 1mechanism for inspecting the pattern of a
conceptualisation must be used: for this task, like Goldman, I use
discrimination nets; and these yield a reference to a case-frame. A simple
example of such a case-frame is

(TELLL : the key for lookup purposes
TELL + the verb stem
((ACTSBJ : a syntactic label, for the subject
(EVENT ACTOR)) : specifying a location in the conceptualisation
(OBJ : : syntactic label, for the object
(EVENT TOCP)) : another location
(s2 : syntactic label, clause preceded by 'THAT'

(EVENT MOBJECT)))) : location of a sub-conceptualisation

When such a case-frame has been chosen by the discrimination nets, the
verb stem is added to a node in a new structure, the "syntax net". This
node will correspond to a clause in the sentence. For the moment I shall
assume this is the main clause, and so I shall refer to the created node as
the "main clause node". Miscellaneous items, such as negation, tense, form
and modality will be added at this point. Iet us assume the main clause
node is Syntax-node-l; then the syntax net at this point will consist of
that one node, which will contain

((LEXVERB . TELL)
(TENSE . PAST)
(FORM . NIL))
if we assume no negation, no modality and past tense.

Attention now shifts to the other components of the case-frame. These
are pairs of syntactic labels and "path specifications”, optionally followed
by specifications of prepositions and the like, which this simple example
lacks. With a few exceptions not treated here, the syntactic labels fall
into two categories corresponding to noun phrases and subordinate clauses.
When a label corresponding to a subordinate clause is found, like S2 in this
example, a new node is created; the specified sub-conceptualisation,
identified by the path specification, is presented to the discrimination
nets, and a verb-sense is found and processed in the same manner as the main
clause. Upon completion of this process, the node for the subordinate
clause is linked to the main-clause-node, prefixed by the syntactic function
label in the original case-frame.

Labels corresponding to noun phrases also cause the creation of new
nodes; this process is quite complex and is dealt with in section 3.4
below. For the moment, all that matters is that an appropriate node is also
linked, via the syntactic label, to the clause node.

During the process of case-frame interpretation, several subsidiary
processes must occur: appropriate tenses must be determined, prepositions
may be needed, subconceptualisations may need to be preprocessed before verb
senses are selected, and some specific transformations of the syntax net may
have to be applied; these are all discussed in the next section.The result
of this phase of processing is a network whose nodes contain information
about specific words to appear in the sentence, and information about the
syntactic relationships between items. An example is given here. (The
sentence produced is "JOHN TOLD A CHIID THAT A MONKEY HAD MANY BANANAS.")

33

Input conceptualisation
((EVENT (ACTOR HUMAN-JOHN)
(ACT MTRANS)
(MOBJECT
(STATE (STATENAME POSS)
(THING (FOCUS (STATE THING))
(STATE (STATENAME QUANTIFY)
(THING BANANASL)
(VAL *MANY*)
(TIME (NAMED TIMEPOINTL)
(COMPARISON (BEFORE *NOW*)))))

(VAL MONKEY1)
(TIME (NAMED TIMEPOINTL)
(COMPARISON (BEFORE *NOW*)))))
(FROMCP HUMAN-JOHN)
(TOCP CHILD1)
(TIME (NAMED TIMEPOINT1)
(COMPARISON (BEFORE *NOW*)))))

Map of syntax net (The top node is Syntax-node-1)
Syntax-node-1 contains: ((ACTSBJ . Syntax—node-2)
(TENSE . PAST)
(FORM)
(LEXVERB . TELL)
(OBJ . Syntax-node-5)
(82 . Syntax-node-8))

Syntax-node-2 contains: ((LEXNOUN . Syntax-node-3))
Syntax-node-3 contains: ((ENGLISH . Syntax-node-4))
Syntax-node-4 contains: (JOHN)
Syntax-node-5 contains: ((LEXNOUN . Syntax-node-6))
Syntax-node-6 contains: ((ENGLISH . Syntax-node-7))
Syntax-node-7 contains: (CHIID)
Syntax-node-8 contains: ((ACTSBJ . Syntax-node-9)

(TENSE . PAST)

(FORM)

(LEXVERB . HAVE)

(OBJ . Syntax~node-12))
Syntax-node-9 contains: ((LEXNOUN . Syntax-node-10))
Syntax-node-10 contains: ((ENGLISH . Syntax-node-11))
Syntax-node-11 contains: (MONKEY)
Syntax-node-12 contains: ((LEXNOUN . Syntax-node-13))

Syntax-node-13 contains: ((QUANTIFIER . MANY)
(ENGLISH . Syntax-node-14))

Syntax-node-14 contains: (BANANAS)

34

In this example, the verb sense chosen to express the conceptualisation
was TELLL, whose concexicon-entry reads:

(TELL1 TELL
((ACTSBJ (EVENT ACTOR))
(OBJ (EVENT TOCP))
(52 (EVENT MOBJECT))))

For this verb sense, the verb stem is TELL, and the syntactic roles required
are ACTSBJ (the subject), OBJ (the object), and S2 (an embedded clause
preceded by "THAT"). Each role name is followed by a "path specification”,
which is interpreted by taking the first member of the list, and treating
the current conceptualisation as an association list; the part of the
conceptualisation keyed by this item is then the context for the next member
of the specification. Thus, in the example,

(EVENT ACTOR) points to (HUMAN-JOHN) ,
(EVENT TOCP) points to (CHILD1)
and (EVENT MOBJECT) points to ((STATE (STATENAME etc...)))

The syntax role S2, for the embedded clause, again requires the selection
of a verb sense. The discrimination nets are used to find the sense HAVEL,
whose concexicon-entry is

(HAVEL HAVE
((ACTSBJ (STATE VAL))
(0OBJ (STATE THING))))

As can be seen in the above example, the roles specified by the
verb-sense framework are reflected in the current syntax-node, and indicate

another syntax-node which contains further information. In this example,
the element (ACTSBJ (EVENT ACTOR)) in the case-frame for TELLLl is reflected
as (ACTSBJ . Syntax-node-2) in node 1 of the syntax net. Also,

miscellaneous relations are added for TENSE, FORM (here always null) and
LEXVERB .,

This much of the generator's operation is essentially the same as BABEL.
One further close similarity remains, the provision of a lexicon which
contains irreqgular verb forms. Normally the present, past and participial
forms of verbs are computed by appending -s,-d or -ed, -ing to the verb
stem. Forms which cannot be so computed are held in the lexicon: thus, for
the present example, TELL -> TOLD.

3.3.2) Canonicalisation

The first thing the generator does is to ‘"canonicalise" the conceptual
structure. This is done for two reasons: to collect together all the
modifiers of nominals, making them easily accessible to the noun-phrase
generation routines; and building a data structure which permits easy
determination of temporal relationships.

All the modifiers, ie conceptual structures headed by FOCUS, are
collected on a list called "global-subpropositions", which is indexed
according to the modified nominal, and organised in such a fashion that a
unique copy of each modifier is held. Quantification is specially treated
at this point - quantified structures are not dissected: thus modifiers
within a quantified structure have no effect outside the scope of that

35

quantifier. All the information in "global-subpropositions" is then plugged
into the main conceptualisation, so that this contains all available
information.

The information collected in this fashion is wused principally for the
production of noun phrases, but is sometimes also useful for verb-selection.
Occasionally, a verb-choice will be dependent upon the presence of some
modifying structure, and in such a case it is often useful to be able to
delete this modifying structure by specifying the general pattern which it
will have. For example, one of the case-frames for MEET is "X meet Y by 2";
but, unless part of the information is deleted at some stage, we will get
odd sentences like "JOHN MET MARY, WHO WAS NEAR A CHURCH, BY THE CHURCH".

3.3.3) Usage of discrimination nets

The general application of discrimination nets in AD-HAC is similar to
BABEL; however there are several differences in detail. Firstly, in some
circumstances the application of a discrimination net may be entirely
circumvented. This will occur when the generator is working at the behest
of the inference component, and the latter can determine at least the top
level construction appropriate (eg IF ... THEN ...). This parallels
modifications to BABEL for use by SAM, PAM, QUAIM etc.

Secondly, the discrimination nets are not constrained to apply tests
only, but are permitted to perform certain actions. This enables the
discrimination nets to perform such tasks as adding
query-markers,neg-markers and modals to the syntax net, and also to specify
the deletion of parts of the current structure. These are operations which,
in BABEL, could be done only within word-sense processing. An unpleasant
consequence of this restriction was that all operations of this sort had to
be done by a case-frame; and therefore a "word-sense" had to be provided.
Many of these operations corresponded in practice to the modal structures:
BABEL, was unable to use modals except through the device of having
"word-senses" like ABLEl, OUGHTL. These introduced a non-uniformity into
the structure of the syntax nets, which is eliminated in AD-HAC's generator
as a direct consequence of permitting the discrimination nets to perform
these actions directly.

A prerequisite for this style is that the discrimination nets be
segmented, and that one net may specify that the current conceptualisation
(or part of it) should be examined by another net. For example, the
representation of OUGHT TO is a causal, where the antecedent is the action
which ought to be done, and the result is the (general) benefit which will
ensue. When this pattern is detected, the OUGHT modal can be added to the
syntax net, and the antecedent part can be passed directly to the EVENT
discrimination net. The result of this is that no dummy node is needed, and
the uniformity of syntax-nodes corresponding to clauses can be retained.

Additionally, some new discriminating tests have been provided. The most
important of these tests whether some sub-conceptualisation will be
expressed using a verb or a conjunction. Such subpart tests are significant
for two reasons: firstly, they could be extended to allow abstract nouns to
be selected; secondly, they provide a mechanism for maklng high-level
decisions dependent upon their low-level consequences. This is implemented
simply by recursively applying discrimination nets to the indicated subpart,
and inspecting the structure of the resulting word-sense.

36

The remaining novel tests simply see whether there is focus on a
specified part of the conceptualisation, or whether a specified part will be
expressed as a dummy, ie "something" or "somebody". The former allows the
choice of wverbs which will convey the desired focus, whilst the second
permits the selection of word—-senses,corresponding to case-frames, which
entirely omit stylistically superfluous parts of the conceptualisation. For
example, this permits the generator to produce a sentence like
"JOHN LEFT THE HOUSE" rather than "JOHN WENT FROM THE HOUSE TO SOMEWHERE",

3.3.4) Interpreting the syntax net

To produce a sentence from a syntax-net, BABEL uses an ATN., The
mechanism used here is vradically different, in that the syntax net is
regarded as a program which can be executed to produce a sentence. Each
syntactic role is the name of a function, taking as argument either a syntax
node, or a word or special label. The contents of the top node are
evaluated, and cause the contents of all other nodes to be either evaluated,
or added directly to the sentence (as for Syntax-node-4 above). This
mechanism, though very simple, is adequate for the production of quite
complex sentences. The only complication is, how does one know the order in
which the contents of a node should be executed? It turns out that the
answer to this is very simple also: there exists a standard ordering,
which, applied to the syntactic functions which may exist on any one node,
will yield the correct sequence. If this ordering is imposed when a node is
completed - ie a clause has been processed, or a noun phrase - operations
such as wh-movement present the only complication; and even this is very
much easier than with an ATN,

In this scheme, many operations are facilitated; specifically, the
addition of neg-particles, the preposition of auxiliaries for vyes/no
questions, determiner selection and pronominalisation, and the addition of
commas, can be easily programmed in this environment.

3.4) More detail
This section gives more detail about the generator's treatment of two
large topic areas: the relationship between case-frames and nodes in the

syntax net corresponding to verbs, and the production of noun phrases.

3.4.1) Processing verb senses

3.4.1.1) Tense, form and modality.

Whenever a conceptualisation is processed by the discrimination nets, a
verb-sense or a conjunction is selected as the main component of the
corresponding clause. Except when a conjunction 1is selected, it is
necessary to select a tense for the corresponding clause. The selection of
tense is discussed at length by Goldman, but a need for additional
heuristics soon became apparent when the generator began to process "real"
conceptual structures produced by the sentence analyser. Furthermore, BABEL
did not handle intervals of time; their satisfactory treatment, necessary
if the generator is to be reliable as an interpreter of conceptual
structures produced by the other components of the system, necessitated an
overhaul of the processes of tense and form selection.

37

BABEL had nine tenses: PAST, PRES, FUT were the simple tenses, and could

be joined (for embedded clauses) to produce
PASTPAST PRESPAST FUTPAST PASTFUT PRESFUT FUTFUT

(where FUTPAST is FUT in a PAST environment: eg WILL HAVE DONE)
It appears that the tense FUTFUT, though valid in conceptual terms, does not
differ from FUT, in English anyway. Therefore FUTFUT has been discarded.The
tenses PRESPAST and PRESFUT are also discarded, since they correspond to the
addition of progressive fomm rather than to a discrete tense structure.

The principal heuristic employed by Goldman was that the tensing
structure be derived from the relationship between the TIME of the clause
and the TIME of the embedding clause, or the time of utterance in the case
of the main clause. This remains valid, given a generous interpretation of
time relationships inwolving intervals, and allowing for the fact that the
state IDENTITY does not carry any time information at all.

The absence of progressive form for STATE-based verbs (eg KNOW, OWN) was
noted by Goldman, and a problem area in connection with perception verbs
(SEE, HFAR, SMELL etc) was also identified. Such verbs I now treat as
exceptions, in that they are based on MIRANS, an ACT, but cannot take
progressive form merely because of time relationships. A further class of
exceptions has been identified, namely verbs based on the act MFEEL;
anomalous sentences such as "John thought that Mary was hating him" are not
produced.

These exceptional cases, STATE-,MFEEL-based and perception verbs, merely
prohibit the addition of progressive form on the basis of time
relationships: progressive form is still permitted when the relevant clause
is in certain subordinate relationships which demand progressive form.

The form of a verb phrase may have a value from the set
{NIL,PROG,BASE,TO}. Normally it will be NIL, but, as discussed above,
time-relationship considerations may select PROG. Additionally, certain
syntactic roles for embedded clauses may dictate the use of PROG, BASE or
TO. These are mutually exclusive. PROG corresponds to progressive form, TO
corresponds to the infinitive, and BASE corresponds to the uninflected
verb;as in "I saw Fred punch her". Certain syntactic roles, namely INF,
PRSNT, GOBJ and their variants, dictate the use of a particular form - TO,
BASE and PROG respectively. The functions to which these syntactic roles
correspond modify the subordinate-clause syntax node before executing it.
The ease of this operation is one of the benefits of abandoning the idea of
a general grammar in favour of a functional representation of syntax.

Modality is given a rather extended meaning. Thus the production of
words like OUGHT, CAN, BEGAN is specified by "modality", and is often
crucially dependent upon the ability to switch between different
discrimination nets as mentioned above. Since these "modals" are not
necessarily mutually exclusive, the values may be added one-by-one to the
syntax net. The function "MODALITY" is an exception to the general rule
that the syntactic-role functions take a node as argument.

3.4.1.2) Optional case-frame components

BABEL's verb-senses specified a verb stem and an accompanying case frame,
together with miscellaneous operations upon the current conceptualisation
such as addition and deletion. Whilst the basic pattern has been retained
in AD-HAC's generator, one simple modification has been introduced. Certain

38

elements of the case frame may be specified as optional. Noun phrases, or
more commonly prepositional phrases, if optional, will be omitted if they
are "dummy", ie they would be expressed as "somebody","something" etc, they
do not already appear elsewhere in the sentence, and they are not the focus
of the conceptualisation. Similarly, optional verb phrases will be omitted
if they would only produce a phrase like "by doing something". This simple
mechanism strikingly enhances the quality of the English produced, without
either introducing trivially different verb-senses or increasing the
complexity of the discrimination nets.

3.4.1.3) Wordsense-specific operations

The word-sense entries in BABEL's "concexicon" may specify operations to
be performed upon the current conceptualisation before further processing
takes place,and were, in practice, only addition and deletion of parts of
the conceptualisation. This ability is retained in AD-HAC, but, since the
discrimination nets may themselves alter the conceptualisation, this
facility is little used. It has been found desirable to allow certain
word-senses to specify operations which may alter the syntax-net which they
build. This process I call postediting, and is used principally by the
sense of "BE" corresponding to the state IDENTITY, and permits the
construction of syntax nets which will produce sentences like:

~IT WAS BILL WHO WENT TO PARIS.

~THE THING I GAVE BILL WAS THE SAME THING WHICH FRED GAVE TO ME.

These cannot be produced by the normal mechanisms, because
(a) "IT" here has no referent, but is an idiomatic usage
(b) "SAME" is functioning syntactically as an adjective, but there is no
conceptual correlate other than the IDENTITY which has caused
production of the whole sentence. This is one instance where
superfluity is desirable.

The other use is for sentences like "I KNOW WHO ...", again based upon
the state IDENTITY. Here an over-literal translation from the conceptual
representation would yield "I KNOW THAT SOMEBODY IS THE PERSON WHO ...".
These alterations are carried out by small - typically 15 line - program
segments. Implementation of such editing processes requires little new
machinery besides the provision of some function able to traverse "chains"
in the syntax net, analogous to the paths in the conceptual structures.

3.4.2) Noun phrase production

Because of the complexity of the production of noun phrases, this topic
was not discussed in section 3.3. The generator has a wide range of ways of
expressing noun phrases, many of which are subject to quite complex
constraints, but which, taken together, constitute a respectable assault on
the problems of reference; and yet there are significant omissions.
Specifically, the generator is currently limited to concrete nouns, though
it is believed that an extension to allow abstract nouns would be quite
feasible.

The program derives, as discussed above, information about the desired
syntactic function of a noun phrase, and paired with this is a specification
of the corresponding subpart of the conceptualisation. This specification
is in the formm of a path through the conceptualisation, and will point to a
structure, which, in the simplest case, will have the form "(CHILD1)", as in
the example above; or a more complex structure headed by FOCUS, eg

39

((FOCUS (STATE THING))
(STATE (STATENAME QUANTIFY)
(THING BANANAS]L)
(VAL *MANY*)
(TIME ...)))
also in the above example.

In either case, the "token" is extracted, ie "CHIID1" or "BANANAS1", and
is used to find all associated information which has been collected in the
canonicalisation phase mentioned earlier. When this has been done, this
qualifying information 1is removed so that multiple references to the same
token do not cause repeated addition of the same qualifying information.
The 1link between the current clause and a noun phrase being processed
involves the use of three syntax nodes, which we can call "lexnoun-node",
"nominal-node" and "english-node".

The english-node contains the word, or words, which correspond to the
token. The nominal-node corresponds to the noun-phrase as a whole, and
contains at least a link to the english-node. This nominal-node is used
whenever a reference to that noun phrase is needed within the one sentence.
The lexnoun-node corresponds to a particular use of this noun-phrase, and
contains at least a link (LEXNOUN . <nominal-node>). Additionally it may
contain reference to prepositions, eg (PREP . FROM), or other words, all
specified by the verb-sense case frame. The clause-node will contain a link
(<syntax-rel> . <lexnoun-node>), serving to define the function of the noun
phrase in the current clause.

Thus, if a nominal-node already exists for this token, it is located and
immediately bound to the newly-created lexnoun-node. Otherwise, a
nominal-node and an english-node are created and endowed with suitable
properties, and a scan is made for extra qualification.

Any qualifying information about the token, which has been gathered
during the canonicalisation phase and placed on "global-subpropositions", is
then categorised. The available categories are

i) POSSESSORS : corresponding to the conceptual pattern
((FOCUS (STATE THING))
(STATE (STATENAME POSS | PART | OWN)

(THING ...)
(VAL ...)))

ii) ATTRIBUTES : corresponding to the conceptual pattern

((FOCUS (STATE VAL)
(STATE (STATENAME POSS | PART | OWN)

(THING ...)

(VAL ...)

(TRUTH FALSE) - optional extra
iii) ADJECTIVES : corresponding to any scale state.
iv) RELATIVES : for anything else.

These categories are then separately treated as follows.

40

3.4.2.1) Possessors

There are three ways in which possessors may be treated, which I shall
illustrate by example.

l) FRED'S CAT
2) THE HAIR OF THE DOG THAT BIT YOU

3) THE CAT WHICH BELONGS TO FRED
THE CAT WHICH FRED HAS
THE HAIR WHICH IS PART OF THE DOG

Mode (1) can only be used when the possessor can be expressed without
post-modification. Thus any information about the possessor must be either
adjectival, or possessive. This entails a recursive inspection of
qualifying information about the possessor (if any) of the possessor. This
means that the program is able to say things like "FRED'S BROTHER'S CAT" or
even "FRID'S BIG BROTHER'S CAT", etc.

Mode (2) must be chosen when the possessor must be post-modified.
Expression in mode (3) is only selected when a special debugging flag,
"distinguishing-withs", is set, requesting that possessors and attributes
should be clearly distinguished, and is only used when it is suspected that
the analyser is faulty. Possessive and attributive relationships are then
expressed as relative clauses, causing different verbs to be chosen to
express the relationship.

When a possessive relationship, of whatever form, is added to the syntax
net, the token corresponding to the possessor is treated as a noun phrase
immediately, and so will have its own lexnoun-node,nominal-node and
english-node. This 1is true for all the types of non-adjectival
modification.

3.4.2.2) Attributes

This conceptual pattern will, in the general case, promote production of
syntax-net structures corresponding to the phrases "X WITH Y" or "X WITHOUT
Y". This is achieved primarily by the use of two more syntax-net functions,
named WITH and WITHOUT, each taking a syntax-node as argument.

There are two improvements upon this, both concerned with the conceptual
PART relationship. One concerns the conceptual information "Y is not part
of X", where Y is a simple, ie unqualified, nominal: this can be better
expressed as "Y-LESS X". The other is the special case , "Y is part of X",
where Y is itself modified by a single adjective: this is better expressed
as " <adj>-¥-ed X". These transformations are effected by inspecting the
syntax-net structure which has been created, and effecting appropriate
modifications to this structure. One example should suffice to show both
these phenomena. From the conceptual structure shown overleaf, the
generator produces the sentence:

"THE BIG WINDOWLESS TRUCK BUMPED INTO THE LONG-HAIRED GIRL."

41

((EVENT (ACTOR *MOMENTUM*)
(ACT PROPEL)
(OBJECT (FOCUS (STATE THING))
(STATE (STATENAME SIZE)
(THING (FOCUS (STATE VAL))
(STATE (STATENAME PART)
(THING WINDOWS2)

(VAL TRUCK1)
(TIME (NAMED TIMEPOINTZ)
(COMPARISON

(BEFORE *NOW*)))
(TRUTH FALSE)))
(VAL 3)
(TIME (NAMED TIMEPOINT2)
(COMPARISON (BEFORE *NOW*)))))
(FROM DUMMY-PLACEL)
(TO (FOCUS (STATE VAL))
(STATE (STATENAME PART)
(THING (FOCUS (STATE THING))
(STATE (STATENAME LENGTH)
(THING HAIRL)
(VAL 3)
(TIME (NAMED TIMEPOINT2)
(COMPARTISON
(BEFORE *NOW*)))))
(VAL GIRL1)
(TIME (NAMED TIMEPOINTZ2)
(COMPARISON (BEFORE *NOW*)))))
(TIME (NAMED TIMEPOINTZ2)
(COMPARISON (BEFORE *NOW*)))))

Map of syntax net (The top node is Syntax-node-1)

Syntax-node-1 contains: ((ACTSBJ . Syntax—-node-2)

(TENSE . PAST)

(FORM)

(LEXVERB . BUMP)

(OBJ . Syntax-node-8))

Syntax-node-2 contains: ((LEXNOUN . Syntax-node-3))
Syntax-node-3 contains: ((ADJ BIG)

(ADJ WINDOWLESS)
(ENGLISH . Syntax-node-4))

Syntax-node-4 contains: (TRUCK)

Syntax-node-5 contains: ((LEXNOUN . Syntax-node-6))
Syntax-node-6 contains: ((ENGLISH . Syntax-node-7))
Syntax-node-7 contains: (WINDOWS)

Syntax-node-8 contains: ((PREP . INTO)

(LEXNOUN ., Syntax—node-9))

Syntax-node-9 contains: ((ADJ LONG-HAIRED)

(ENGLISH . Syntax—node-10))

Syntax-node-10 contains: (GIRL)
Syntax-node—1l contains: ((LEXNOUN . Syntax-node-12))
Syntax-node-12 contains: ((ADJ LONG)

(ENGLISH . Syntax-node-13))

Syntax-node-13 contains: (HAIR)

This example illustrates the way in which a syntax net is modified:
5,6 and 7 were created but are now redundant and no longer accessible.

42

nodes

3.4.2.3) Adjectives

Apart from the mode of adjective formation from PART just mentioned,
adjectives are derived from states other than { POSS, PART, OWN, MIOC, LOC,
IDENTITY }. Such states are usually in the form of scales, ie the VAL will
be in the range ~10 to 10. Exceptionally, as in the case of COLOUR, the
English word occurs directly in the VAL slot.

For scales, the number found is looked up in a file keyed on the
STATENAME, which typically has the form
((SCALE (adjl numl adj2 num2 adj3 num3 ...))
(UP (adj4))
(DOWN (adij5)))

In the case where the VAL is a simple number, it 1is compared against
numl ,num2 etc until a number is found which does not exceed it. The
adjective which precedes that number is then selected. This parallels
BABEL's method of handling adjectives.

In the case where the VAL has the form (HIGHERBY ...), the adjective
indicated by UP is selected; similarly, DOWN corresponds to (LOWERBY ...).
It should be noted that comparatives cannot yet be handled.

3.4.2.4) Relative clauses

Relative clauses are produced for those forms of qualification which do
not fall into any of the categories listed above. For relative clauses,
this qualifying conceptual information is filtered through a discrimination
net, just as for the sentence and ordinary subordinate clauses, and the
syntax net augmented accordingly. During this process, the fact that the
relativised object is indicated by FOCUS in the sub-conceptualisation
ensures that it will not be omitted from the resulting syntax net, even if
it is a dummy, as a consequence of either verb-sense selection or optional
syntax-roles.

The clause-node for the conceptualisation which has just been processed
will contain pointers to other nodes, and will at this stage be equivalent
to an ordinary sentence. This clause-node may be called the
"yel-clause-node". One of the pointers from it, in the simple case to be
discussed first, will denote a structure of a newly-created lexnoun—node,
the original nominal-node and the original english-node. To avoid
confusion, let the newly-created lexnoun-node be called "rel-lexnoun-node".

The situation may be envisaged thus:

top—clause-node: (...
(syntax-rel . lexnoun-node)
eed)
lexnoun-node: ((PREP . TO) <- optional
(LEXNOUN . nominal-node))
nominal-node: ((ADJ . BIG) <- optional
(ENGLISH . english-node))
english-node: (BANANAS)
rel-clause-node: (...
(syntax-rel . rel-lexnoun—node)
eed)
rel-lexnoun-node: ((LEXNOUN . nominal-node))

43

For simple relative clauses, the operations that must be done are threefold:
-Associate rel-clause-node with the token
-Reorder rel-clause-node so that the reference to rel-lexnoun-node comes
first (since rel-clause-node has already been sorted at this stage)
-Doctor rel-lexnoun-node so that a relative pronoun is used.
For simple cases, the procedure is:
i) Add the pair "(REL . rel-clause-node)" to the end of nominal-node.
ii) Reposition the pair "(syntax-rel . rel-lexnoun-node)" at the top of
rel-clause-node
iii) Change LEXNOUN to WHINDIC on rel-lexnoun-node. WHINDIC is a function
which produces the relative pronouns WHO, WHOM, WHICH and WHERE ,
making its choice on the basis of the syntax-relation and the
properties of the token.
Thus, when the syntax net is "evaluated", the English name of the token is
followed by the entire relative clause, which may, depending on syntactic
context, be enclosed in commas. The fact that prepositions are attached to
lexnoun-nodes ensures that, if the relativised object is dominated by a
preposition in the relative clause, the preposition is correctly placed
after the relative pronoun.

There are three refinements to this procedure for less simple cases.
Firstly, some case-frames specify prepositions which should be dropped if
the object is relativised. For instance, compare "I WENT TO PARIS" and
"PARIS, WHERE I WENT" This is handled by having a syntax-relation
NOTFRONTPREP, which is stripped off rel-lexnoun-node if it is present.

Secondly, there are instances where multiple relative clauses are needed.
For the second and subsequent relative clauses, the relation ANDREL is
placed at the end of nominal-node. The actual mechanism for this involves
always using ANDREL, then changing the £first to REL at the end of the
process.

The third refinement is more complex. Some relative clauses may contain
their only reference to the relativised object inside a subordinate clause.
Such cases, which Winograd refers to as DOWNREL, appear to be confined to
situations such as

THE MAN WHO, FRED TOLD MARY, HAD GONE TO THE PARK.
which is derived from

FRED TOLD MARY THAT THE MAN HAD GONE TO THE PARK.

The straightforward subordinate relationship is handled by the syntax
relation "S2", whose effect is to prefix the embedded clause with the word
"THAT". 1In such a case, the reference to rel-lexnoun-node will not be found
on rel-clause-node; but rather will be found on the node indicated, on
rel-lexnoun-node, by S2. To handle this problem, the program will locate
rel-lexnoun-node on this node, and in addition to performing all the normal
actions will alter S2 to S3. Since this inwolves stripping a pair from the
subordinate-clause node and placing it at the head of rel-clause-node,
occasionally, as in the example cited, the subject of that clause may be
removed. The effect of this will be that at net "execution" time, the
number is unknown (since ACTSBJ has the side-effect of discovering and
communicating number). So, if this occurs, ACTSBJ is not deleted, but is
replaced with a special function TRACE-ACTSBJ which has the same properties.

As a final direct illustration of the generator, a simple sentence with a

relative clause would be produced from an input conceptualisation as shown
overleaf:

44

Conceptualisation:

((STATE (STATENAME ANGER)
(THING (FOCUS (CAUSE RESULT EVENT TO))
(CAUSE
(ANTECEDENT
(EVENT (ACTOR FRED)
(ACT PTRANS)
(OBJECT (FOCUS (STATE THING))
(STATE (STATENAME PART)
(THING HANDY-HANDIL)
(VAL FRED)
(TIME (NAMED TIMEPOINTL)
(COMPARISON
(BEFORE *NOW*)))))
(FROM FRED)
(TO MANL)
(TIME (NAMED TIMEPOINTI)
(COMPARISON
(BEFORE *NOW*)))))
(RESULT
(EVENT (ACTOR *MOMENTUM*)
(ACT PROPEL)
(OBJECT HANDY-HANDL)
(FROM FRED)
(TO MAN1)
(TIME (NAMED TIMEPOINTI)
(COMPARISON
(BEFORE *NOW*)))))))
(VAL 3)
(TIME (NAMED TIMESPANL)
(TS (NAMED TIMEPOINT8)
(COMPARISON
(BEFORE *NOW*))))))

The first step is to canonicalise the conceptual structure, collecting
together all the time references, and putting the entire substructure headed
by FOCUS onto the 1list "global-subpropositions". Then, an appropriate
discrimination net 1s sought for the main conceptual structure; the one
initially selected is the one used for all states.

This discrimination net first discovers that the time reference is to a
TIMESPAN with a definite starting time, but an indefinite end. It checks
against a few special cases - for instance, had the STATENAME been POSS, the
verb ACQUIRE would have been selected - but finds that none of these apply;
consequently, it chooses the verb sense BECOMEL, whose case frame is:

(BECOMEL : the lookup-key
BECOME : the verb stem
((ACTSBJ (STATE THING)) ; syntax role ACTSBJ, and path
(P_ADJ NOTHING (ONSCALE))) ; an unusual syntax role, see below
(TIME-SOURCE (STATE TIME TS))); A "special action", see below

(This case frame has two special features. First, no path is specified
for the P _ADJ role, but the function ONSCALE is to be applied; second, a
"special action" is given, indicating the time to be used for tensing
purposes, and overriding the general-purpose defaults.)

45

A new syntax node, Syntax-node-l, is created; the first activity is to add
to it the role-value pairs

{LEXVERB . BEQOME) ; the verb
(TENSE . PAST) ; because of the relationship between
(FORM . NII) ; TIMEPOINT8 and *NOW¥

Then the specific contents of the case-frame are processed; ACTSBJ is one
of the roles which produce noun phrases, and so the nodes Syntax-node-2,
Syntax-node-3 and Syntax-node-4 are created: 1in the terminology introduced
in section 3.4.2, these are the lexnoun-node, the nominal-node and the
english-node respectively.

The path specification (STATE THING) is followed, and leads to MANIL.
This contains a (hidden) pointer to the token MAN, for which the appropriate
English word is MAN; so the english-node is set to hold the symbols (MAN).
(This is a list, because one could have, say, LAMP POST) The nominal-node is
then set to contain a link to the english-node, and to any other information
known about the token MANl. Such information is known, and was placed on
"global-subpropositions” during canonicalisation. This information is
retrieved - and deleted from that list - and is inspected to see what sort
of information it encodes. Since the modifying structure is not a state at
all, it cannot be possessive, attributive or adjectival in nature; so a
relative clause must be formed.

The formation of a relative clause inwolves first the production of a
clause: discrimination net application, case frame retrieval, and syntax
net construction; all of which proceed without significant diversion in
this example. When this process 1is completed, the syntax node
"representing” the clause, Syntax-node-5, is sorted so that the syntactic
labels are in the standard order. Then the transformation of this, simple,
clause into a relative clause begins.

At this point, the syntax net is as shown below:

Syntax-node-1 contains: ((TENSE . PAST)

(FORM)

(LEXVERB . BEQOME))
Syntax—-node-2 contains: NIIL
Syntax-node-3 contains: ((ENGLISH . Syntax-node-4))
Syntax-node-4 contains: (MAN)
Syntax-node-5 contains: ((ACTSBJ . Syntax-node-6)

(TENSE . PAST)

(FORM . PROG)

(LEXVERB . PUNCH)

(OBJ . Syntax-node-9))
Syntax-node-6 contains: ((LEXNOUN . Syntax-node-7))
Syntax-node-7 contains: ((ENGLISH . Syntax-node-8))
Syntax-node-8 contains: (FRED)
Syntax-node-9 contains: ((LEXNOUN . Syntax-node-3))

Firstly, the english-node is given the extra pair (REL . Syntax-node-5).
The nominal-node, Syntax-node-3, is then compared with all the nominal-nodes
accessible from Syntax-node-5, permitting just access via a lexnoun-node.
The pair (OBJ . Syntax-node-9) is found to indicate the same nominal-node,
and so indicates the link between the relative clause and the relativised
object. The rel-clause-node, node 5, is then reordered with this pair at

46

the front; this is step 2. Finally, Syntax-node-9 is modified so that,
rather than saying (LEXNOUN . Syntax-node-3) it says (WHINDIC
Syntax-node-3); this, the final step in simple relative-clause processing,
ensures the use of a relative pronoun.

The simple noun-phrase procedures are now resumed: the lexnoun-node is
given a link to the nominal-node, and any prepositions (here there are none)
are also added to the lexnoun-node; it is sorted; and then the clause node
- Syntax-node-1 - is linked to it via the appropriate syntax relation.

The other element of the case-frame for BECOME, P ADJ, is much simpler,
but wunusual. It specifies that no part of the conceptual structure should
be used to £ill this slot; but also specifies that the function ONSCALE is
to be applied. ONSCALE is the function which retrieves adjectives, and here
selects the adjective FURIOUS. When this has been done, the top-level
syntax node is itself sorted, and the final structure of the syntax net is
as reproduced on the next page.

Syntax-node-1 contains: ((ACTSBJ . Syntax-node-2)
(TENSE . PAST)
(FORM)
(LEXVERB . BECOME)
(P_ADJ . Syntax-node-10))
Syntax-node-2 contains: ((LEXNOUN . Syntax-node-3))
Syntax-node-3 contains: ((ENGLISH . Syntax-node-4)
(REL . Syntax-node-5))
Syntax-node-4 contains: (MAN)
Syntax-node-5 contains: ((OBJ . Syntax-node-9)
(ACTSBJ . Syntax-node-6)
(TENSE . PAST)
(FORM . PROG)
(LEXVERB . PUNCH))
Syntax-node-6 contains: ((LEXNOUN . Syntax-node-7))
Syntax-node-7 contains: ((ENGLISH . Syntax-node-8))
Syntax-node—-8 contains: (FRED)
Syntax-node-9 contains: ((WHINDIC . Syntax-node-3))
Syntax-node-10 contains: ((ADJ FURIOUS))

Executing this "program" produces the sentence

THE MAN,WHOM FRED WAS PUNCHING,BECAME FURIQUS.
Further examples of the output of the generator are given in chapter 6,
where the performance of the system as a whole is illustrated.

3.5) Scope for further work

The techniques used in BABEL have been largely carried over into AD-HAC's
generator, with some modification and resultant improvement. The present
generator tackles some problems which BABEL did not, but has left several
others for future attention. This section identifies some of these
problems, pointing out where possible how the existing program would have to
be modified in order to solve them.

47

3.5.1) Abstract nouns

In English, the wverb of a sentence usually carries the major
responsibility for conveying meaning, while nouns can be slotted in to
appropriate syntactic positions; however, it is easy to find sentences
where it 1is not-the verb which conveys meaning, but one of the nouns: in
particular, there are almost meaningless verbs which positively require
this. For example,

THE SOVIET INVASION OF CZECHOSLOVAKIA OCCURRED IN 1968.

In this sentence, the main verb - OCCURRED - says very little; most of the
meaning 1is conveyed by the noun INVASION, which is closely related to the
verb INVADE. Such nouns are abstract nouns, rather than concrete nouns.

Abstract nouns can be used to shift the emphasis in a sentence, and their
use makes texts correspondingly more fluent. The current generator is
unable to use abstract nouns, though I believe the modifications required
would be quite simple (though extensive). Briefly, abstract nouns are very
similar to verbs: they convey meaning in the same way as do verbs, and they
may be associated with case frames in the same way as verbs. The principal
difference, from the point of view of a generation program, seems to be that
the selection of a verb as the main information carrier in a sentence
guarantees that a syntactically well-formed sentence can be produced; while
selecting an abstract noun still leaves open the problem of selecting a
verb, even though it will often be a neutral one like "occur".

Since abstract nouns are so similar to wverbs, and indeed are usually
closely related to vwverbs, they could be incorporated into the present
program as follows. In the discrimination nets which select verb senses,
tests could be made to see if some higher-level clause was actively seeking
a noun rather than a verb; and if so, returning a case-frame pointer for
the associated abstract noun rather than for the verb. In the program as it
stands, there are already facilities whereby tests in the discrimination
nets may involve seeing what answer another discrimination net will deliver;
this could easily be extended so that some declaration of what was wanted
could guide the selection in the lower network.

This schane would inwolve the provision of case frames for abstract
nouns, and would allow higher-level verb-selection decisions to depend on
the availability or otherwise of abstract nouns to express some embedded
conceptualisation. Two points are worth noticing about this proposal:
firstly, it would permit the use of abstract nouns to replace embedded
clauses, but would not account for the use of abstract nouns as the major
meaning element of top-level clauses; secondly, it seems 1likely that the
syntax roles used in the case frames would have to be different from those
in use for verbs.

3.5.2) Translation into other lanquages

The generator described here produces only English. It forms part of a
larger system which understands stories stated in English, and is typically
used by the inference mechanism for such tasks as expressing the answers to
questions, reporting the identification of pronoun referents, and in the
most general case, expressing arbitrary inferences. As noted in the
introductory chapter, it is possible to link the generator directly to the
sentence analyser, thus getting a line-by-line paraphrase of a story: it
would be trivial to have the generator paraphrase the story on a
line-by-line basis after the inference mechanism had done its work, and

48

thereby get the benefits of the programs pronoun-resolution capability
reflected in the paraphrases.

An interesting extension of this idea is to have the generator produce
some different language, rather than the language in which the story was
told, and thereby producing translations of the stories: many would regard
this as a stronger demonstration of understanding than merely, as at
present, answering questions and such like.

AD-HAC's generator has in fact been modified to produce Japanese
[Abe, 1980], and it is my belief that it could be modified, with little
further effort, to produce sentences in other languages too.

3.5.3) The interface with the inference mechanism

As Goldman pointed out, good generation requires the exploitation of the
inference mechanism, and particularly of its associated memory; only by
these means, for instance, can the generator select the verb RETURN rather
than GIVE to express a particular act of giving.

In AD-HAC, the interface between the generator and the inference
mechanism is extremely crude. The facility, suggested by Goldman, of
permitting the generator to ask for something matching a specified
conceptual pattern, has been implemented in a rudimentary fashion; but
since the generator is often used to express inferences "on the fly", the
existing implementation often gets in the way of the inferencers normal
work: consequently, the facility is in practice little used.

3.5.4) Relaxing the sentence-per-CDform constraint

AD-HAC's generator, like BABEL, takes one CDform as its input, and
produces one sentence as its output. This simplifies the generation task
enormously, yet seems hardly realistic. One consequence of this approach is
that most of the sentences produced by the generator are extremely short,
because it is given only one simple thing to say; but some sentences are
ridiculously long because the generator has been given a complex CDform to
express, and many of the nominals it will use need to have modifiers
attached to them.

The roots of this problem lie in the fact that the generator does not
have any metric for judging the complexity of the sentences it produces. If
it had, and if it could be guaranteed that the successive sentences it was
going to produce belonged together in a coherent text, then the generator
could simply collect sentences together until some threshold of complexity
was reached, and then conjoin all these simple sentences to make one larger
one; in the case where it was called on to express some CDform which was
too complex, it could split the unwieldy sentence into parts.

However, such a metric is not easy to find. The first approximation, a

simple word count, is inadequate, as inspection of any realistic text will
show.

49

3.5.5) Pronominal reference to sentential antecedents

The current generator's approach to pronoun use is extremely simple.
Pronouns are produced when a nominal token is used for the third and
subsequent times in a sentence, or when the referent of the token needs to
be expressed as "I" or "YOU".

This approach is much too simple, even for the simplified case of
reference to nominal tokens. More significantly, it completely rules out
the use of pronouns to refer to previously related events. Extending the
generator to use pronouns with sentential antecedents would inwolve both
equipping the generator with a memory for what it had already said, and
dealing with many of the problems which would have to be tackled in using
abstract nouns.

50

Chapter 4 - BAnalysis l: Background

A great deal of effort has been directed at the analysis of natural
language, mostly concerned with English, and a correspondingly large number
of analysis programs have been written. As time has passed, attention has
shifted from purely syntactic parsing to semantic analysis.

The very profusion of analysis programs precludes a discussion of all of
them here. The first section of this chapter gives a very brief historical
survey, whilst the second section describes more fully those aspects of
particular analysers which influenced the design of that used in AD-HAC.
This entire chapter is merely a prelude to the next, which describes
AD-HAC's analyser in detail.

4.1) Some early approaches to analysis.

This section discusses the analysers built by Kuno and Oettinger, by Kay,
and by Winograd. I have selected these because, in their own terms and in
their own times, they were highly influential. Many of their innovations
have had consequences which may be traced through to the present, but which
are hard to acknowledge properly because they have become assimilated into
the folklore.

Because none of the analysers discussed in this section have had any
direct bearing on the design or implementation of AD-HAC, the discussions
here are brief to an extreme: extensive descriptions may be found in [Kuno
and Oettinger, 19621, [Kay, 19641, [Kay, 1973], [Winograd, 1971].

4.1.1) Kuno and Oettinger: The Harvard Predictive Analyzer

One of the earlier analysers was the Harvard one of Kuno and Oettinger,
which was designed for machine translation. It was focussed on syntax, and
was based on a technique of predictive syntactic analysis. Prior to the
development of this analyser, the application of this technique had been
frustrated by an inability to discover more than one analysis for a given
sentence; part of the significance of this analyser lies in its application
of parallel processing techniques to sentence analysis.

For this analyser, as for its progenitors, a "grammar" consisted of a set
of production rules, and a set of syntactic labels was associated with words
in the language. Initially, productions which predicted that label found on
the first word of the sentence were placed in the "prediction pool", and
constituted the "grammar" for the remainder of the sentence. (The entire
grammar could be regarded as forming the initial prediction pool.)

Kuno and Oettinger introduced a number of refinements to this basic
technique, facilitating the production of multiple (alternative) analyses.
Firstly, they transformed the grammar from a set of productions into an
array, keyed on structures predicted and syntactic labels found, and
containing in each element of the array a set of predictions, each of which
was a sequence of expected structures. Secondly, they split the prediction
pool into a number of subpools, each corresponding to a prediction. These
subpools may generate new subpools if their topmost element is compatible
with the next word, or be discarded otherwise.

51

4.1.2) Kay: The Chart Parser

Still within the syntactic analysis paradigm, Kay introduced the
algorithm which he called a "Chart Parser". This built upon an earlier
development, the "well-formed substring table", which eliminated the need to
process the same string of words more than once when trying alternative
predictions. The chart parser algorithm builds a structure which initially
contains, associated with each word, a set of primitive syntactic labels.
These may be augmented with higher-level syntactic labels which may
correspond to more than one word, such as NP, PP etc., which may themselves
generate the sentence symbol, S. By keeping track of the derivation of
higher-level symbols, this recognition capability is easily extended to a
parsing capability, ie. the ability to generate syntactic structures
representing the sentence.

4.1.3) Winograd: SHRDLU

Whereas previously it had generally been assumed that semantic procedures
should be used to select between competing syntactic readings of a whole
sentence, Winograd utilised semantic judgement to guide syntax-based
analysis, eliminating the production of many implausible syntactic readings.
He used Halliday's "Systemic Grammar", which emphasises characteristics of
clauses, phrases or sentences. His parsing routines were written in a
language called PROGRAMMAR which was tailored to the operations needed for
conducting a systemic analysis. This style of analysis is heavily top-down
in its general nature, since the '"systems" specify sets of alternative
features, but Winograd was concerned to rely upon intelligent backtracking
rather than blind search; and so he implemented a system of "messages"
which could communicate not only that a given feature was not present, but
could be used to determine which feature most probably was present.

4.1.4) Summary

Although these earlier analysers were dissimilar on a gross plane, it is
apparent that there were common threads running through: for instance, the
notion of prediction, and the handling of multiple syntactic readings.
These shared features contribute greatly to the background of folklore on
which later work must build. The analysers described in the next section,
those of Riesbeck, Wilks and Woods, draw on this, and themselves form the
background to my own work which is described in the next chapter.

4.2) Analyers particularly relevant to AD-HAC

This section discusses in some detail the analysers constructed by
Riesbeck, Wilks and Woods. These three have had significant influence on
the construction of the analyser used in AD-HAC, each having some features
considered desirable but others considered less so. Naturally, it has been
a goal of mine to combine the strengths whilst eliminating the weaknesses.
The next chapter sumnarises, in the form of a set of gquiding principles, the
lessons learnt from these particular programs.

52

*1

4.2.1) Riesbeck

Riesbeck constructed an analyser [Riesbeck 1974] which was intended to be
a model of human language understanding, producing a purely semantic
representation of the sentences it parsed in a single left-to-right pass.
Specifically he hoped to find the meaning of a sentence without having to
sift through syntactic alternatives at any stage.

In achieving these goals, he developed the notion of "expectation", which
was already present, though in a purely syntactic form, in the work of Kuno
and Oettinger (see above). In Riesbeck's work, syntactic prediction was
replaced by semantic expectation. Whereas earlier the predictions were
expressed as a general grammar, Riesbeck's expectations were more closely
associated with the individual words in the dictionary. Naturally, some of
the semantic expectations were rather vacuous, such as those attached to
deteminers; but for verbs especially, they could be quite specific.

Expectation may provide a solution to determining the intended senses of
subsequent words, but a parser must also build some structure, be it
semantic or syntactic, to represent a sentence; for otherwise it can, at
best, only recognise a string as meaningful/meaningless or well-/ill-formed.
The "requests" in Riesbeck's system were therefore a combination of
expectations and actions, and were associated with the words in the
dictionary. These requests had two parts, a test, corresponding to the
expectation, and an action, a piece of program which was executed when the
expectation was satisfied. These actions were unrestricted, and in
particular could add new requests to the current list, as well as building
and modifying semantic structures expressed in Conceptual Dependency.

The basic operation of Riesbeck's program, simplified to consider only
declarative sentences, was as follows. Suppose the sentence was "JOHN GAVE
MARY A BOOK". Initially, there would be a request whose "test" portion
corresponded to an expectation for a noun phrase, and whose "action" would
store this noun phrase somewhere and added a new request looking for a verb.
For the example sentence, 'JOHN' will somehow satisfy the request for a noun
phrase, and so the request will be used and then deleted. Additionally, any
requests attached to 'JOHN' will be added to a list of requests, but I shall
assume here that there are none. Then the next word, 'GAVE', is inspected,
and is found to satisfy the request for a verb; so the action part of this
request is executed.

At this point, the word 'GAVE' has been accepted, and the request list is
empty. The requests associated with 'GAVE' are loaded. One of these has a
test which is immediately satisfied without inspecting more words, and
produces a semantic structure corresponding to giving things to people, also
moving the structure for 'JOHN' from its temporary location into the correct
place - the ACTOR and FROM slots - in this structure. Another request will
be looking for a further noun phrase with the feature "HUMAN" for the
recipient, and yet another will look for a noun phrase with the feature
"PHYSICAL OBJECT" for the object (*1).

Following through this example, the noun phrases 'MARY' and 'A BOOK'
activate requests which are specific to the verb GIVE, whose associated
actions augment the semantic structure built by 'GAVE' with appropriate

Other requests, not used in this example, would be used to pick a particular
sense of the word 'TO', or to handle sentences like JOHN GAVE MARY A BEATING

53

"picture producers" - these being the structures used to represent concrete
nouns in CD. Finally, the full stop is accepted and causes the analysis to
terminate. Throughout this processing, the verb assumes a central role:
both in terms of the construction of a semantic structure, and in terms of
providing the information which guides the analysis of the remainder of the
Sentence.

The outline given above, though very brief, serves both to introduce some
terminology and to provide a background for a critical discussion. There
are several features of this system which I consider desirable, but also
some which I believe should be eliminated. Desirable features are

+i) The flexibility of the request mechanism.

The association of unrestricted actions with arbitrary tests will enable a
program to respond appropriately in very complex situations.
+ii) The direct transition from surface form to meaning representation.

For the normal purposes of communication, conventional syntactic structures
are of little interest, except insofar as they may give a clue to the
attitudes of the speaker/writer; and even this function may be performed by
suitable requests. If it 1is possible to analyse sentences directly for
content, exploiting syntactic «clues but without first generating
intermediate syntactic structures, this appears to be the correct way to
proceed.

+iii) The central role of the verb.

Though the situation is complicated for abstract nouns, in mundane sentences
involving physical objects the principal meaning content is often determined
by the verb, the primary role played by the objects being to select between
alternative senses of the verb or alternative case-frames. It seems
sensible to embody principles such as these in the operation of a language
analyser.

Features considered undesirable are

-i) Purely deterministic operation.
One of the goals of Riesbeck's work was to provide a computational model of
human language understanding, and he took this to mean that a single
left-to-right scan was mandatory. Although he accepted that multiple
readings are occasionally valid, and that it is not always possible to
select the correct interpretation first time, he did not allow for any form
of backtracking at all. Essentially, his approach in situations where
nondeterminism would be useful was to provide a specification of how to
correct, on the spot, an analysis which was incorrect. And this despite his
protestations that

"The use of ... a decision point mechanism would be making an
implicit claim, that when people make decisions, they expect them
to go wrong." (p.4l).
-ii) Awkwardness of word-by-word processing.
The absence of any standard syntactic recognition component means that
strings of words cannot easily function as units. Each determiner, for
instance, must carry requests which inwvoke noun-phrase finding routines.
Similarly, the analysis of complex verb groups via the request mechanism
must be exceedingly cumbersome.

54

-iii) Inability to remove requests except by executing them.
There was no mechanism for removing requests, unless they "fired". If a
request was liable to cause problems if left around too long, the only way
it could be removed was by arranging that it should "fire" in all
circumstances, but only perform some real action in some of those
circumstances. This led to the "action" parts of some requests in fact
containing the operative predicate; which confounds the advertised standard
predicate-action pattern.

-iv) Fiddling with word definitions.
Though not illustrated in the example above, one of the requests loaded by
'GAVE' can set the preferred interpretation of the word 'TO'. It does this
by rearranging the dictionary definition of the word; this has then to be
reset in some way before the analysis of the next sentence. (It is not
clear how the analyser would cope with a sentence where the word 'TO'
occurred twice, once in the context of 'GIVE' and once elsewhere: for
instance, "JOHN GAVE THE BOOK TO MARY TO READ".) Such operations are a grave
setback to the ideal of extensibility of any system, and introduce an
unwarranted degree of complexity into the otherwise modular behaviour of the
dictionary entries. '

This work of Riesbeck greatly influenced the development of AD-HAC's
analyser, which also uses requests associated with words, but overcomes all
the problems mentioned. Chapter 5 describes how.

4.2.2) Wilks

Wilks produced an analyser for an English-French translation system
[Wilks, 19731, [wWilks, 1975b], whose generation component has already been
discussed in Chapter 3. Underlying this whole project was the notion of
"preference semantics"; its application extends beyond the boundaries of
analysis as narrowly conceived, and into the domain of pronoun resolution.
One of the major problems in understanding language is the problem of
choice: words, phrases and entire texts may be capable of more than one
meaning, and any absolute rules for selecting one interpretation rather than
another are remarkably elusive, if they exist at all. A natural text will
however contain many clues to the intended interpretation; though any
individual clue may be misleading, their cumulative effect is to prefer one
interpretation over all others. This is the principle underlying preference
semantics.

In Wilks's system, the representation of sentences, and indeed of whole
texts, was semantic rather than syntactic in nature. An inventory of about
80 primitives was used to encode lexical information, and also to specify
structural information, via deep semantic cases. The analysis of text,
involving lexical and structural ambiguity, was done with primitive matching
within the framework of patterns specifying collocational requirements. The
system strove to satisfy these.

Many of the primitives described objects, actions and properties. For
convenience in characterising patterns, some of these primitives were
grouped into classes: for instance '*ANI' could refer to any of {MAN FOLK
BEAST} . This was not, however, a hierarchical organisation. These
primitives were combined in "Formulas" which characterised each sense of
each word distinguished by the system: the formulas had a rigid internal
syntax which, in particular, designated one of these primitives as the
"head" of the formula. This head essentially indicated the defining
characteristic of the real-world entity to which the formula referred.

55

Some examples of simple word-sense formulas are reproduced here: note
that the head elements are at the right.

Interrogate: ((MAN SUBJ) ((MAN OBJE) (TELL FORCE)))

Policeman; ((FOLK SOUR) ((((NOTGOOD MAN) OBJE) PICK) (SUBJ MAN)))

Crook (1): ((((NOTGOOD ACT) OBJE) DO} (SUBJ MAN)))

Crook (2): ((((((THIS BEAST) OBJE) FORCE) (SUBJ MAN)) POSS) (LINE THING))

The system made use of a list of "bare templates", which were triples
usually of the form Actor-Action-Object. Bare templates, defining basic
propositional forms as sequences of formula heads, were useful for selecting
possible meanings of ambiguous words on the basis of immediate context. For
instance, some bare templates are:

(MAN FORCE MAN)
(MAN FORCE THING)

For simple clauses, the structures built in the course of analysis would
also consist of triples: the formulas for individual senses of words would
only be combined into such a triple if their heads matched one of the bare
templates. These triples of full formulas, matching some bare template,
were called "templates", and could themselves be linked together by means of
higher structures called "paraplates", indicating other case relationships
than that encoded by the Actor-Action-Object template structure. The
relationships indicated by prepositions, for instance, were coded in this
way, the case primitive heading the preposition formula being the 1link
between a pair of templates.

In order to parse a sentence to yield structures like these, it is
necessary to somehow locate those words which correspond to the Actor,
Action and Object (in the simplest case). To handle this task, Wilks made
use of a "fragmentation routine" which broke the string of words at various
points, selected largely by wusing key words like prepositions and
conjunctions. Then the important words, verbs and head nouns, would yield
up a number of formulas which encoded their various senses. The heads of
these formulas were compared against the stock of bare templates, and
sequences of formulas would be built into triples if some appropriate bare
template was found. Similar operations would be performed within the
individual fragments, thus associating senses of modifiers with senses of
nouns for example.

At this point, it can readily be imagined that complex sentences would
give a seething mass of competing templates, and that the remaining task is
to select those which correspond to the intended meaning. The bare
templates do however ensure that many absurd interpretations are never even
considered. The collection of instantiated templates is now scanned with
the goal of detecting further agreements between what is found and what is
expected: An example given by Wilks,

"The policeman interrogated the crook",
demonstrates the principle of this operation. The formulas for the word
senses are as given above, and two bare templates, (MAN FORCE MAN) and
(MAN FORCE THING) will have been matched and then instantiated by
substituting the corresponding word-sense formulae. Now, the two senses of
"CROOK" have the heads 'MAN' and 'THING'; "POLICEMAN" has only one sense,
head 'MAN'; and "INTERROGATE" has the single sense, headed by 'FORCE',
whose formula is
((MAN SUBJ) ((MAN OBJE) (TELL FORCE))).

56

In this formula, 'SUBJ' and 'OBJE' are case relation primitives. The
pair (MAN SUBJ) indicates that the preferred subject will have head 'MAN';
both instantiated templates have a subject whose head is indeed 'MAN'.
Similarly, (MAN OBJE) indicates a preference for an object having head
'MAN'; but now only one of the instantiated templates has an object which
satisfies this preference. As indicated, the formula for "INTERROGATE"
expresses a preference for, rather than a restriction of, certain features
of the surrounding words. Since one of the templates satisfies this, that
template is "preferred"; in this example, this is the only preference which
discriminates at all, and so it determines the correct interpretation of the
word "CROOK". More complex sentences would be handled by counting the
number of preferences satisfied, selecting that sequence of templates (and
formulas) which satisfied most; applying paraplates will clearly have
similar effects, leading to a gradual sorting out of the possible sentence
interpretations.

This is one aspect of the process of exploiting redundancy, where
redundancy takes the form of predicating descriptors which already exist:
in this example, the element (MAN OBJE) is predicating the descriptor 'MaAN',
which is found as expected. The same principles guide all the operations
performed by the analyser, including pronoun resolution, which may involve a
variety of pattern-matching procedures, and may even include the application
of "common sense inference rules".

To summarise the lessons drawn from studying this analyser, the most
valuable feature is:

+i) The notion of preference.
The application of preference, as opposed to selectional restrictions,
combines the ability to discriminate senses of words according to contextual
cues with an extraordinary resilience in the face of violation of those
preferences. Though the precise set of semantic primitives used may be
changed, and though the organisation of these primitives may be
reconfigured, preference as a guiding principle of analysis will retain its
value.

There are however several aspects of this system which appear
unsatisfactory, and in the construction of the analyser for AD-HAC I was
determined to avoid these. They are:

-i) The fragmentation process.

This appears to be based upon a collection of ad-hoc rules, rather than
being motivated by any theoretical considerations.

-ii) Processing by triples.
Assuming that Actor-Action-Object is the fundamental structure, which can
fit all circumstances, perhaps by supplying dummies, is clearly mistaken,
and furthermore there is no magically correct number of elements which will
work for all cases. This is substantially a remark about the semantic
representation employed in Wilks's project; but the triple has been allowed
to dominate the design of the analyser also. The result of this is an
artificial treatment of many phenomena.

-1ii) The multiple "cycles of mapping".
This system was not intended to be a model of model human language
comprehension, but to be a working translation program. Whereas I earlier
criticised Riesbeck's rigidity on left-to-right processing, I am equally
critical of Wilks's complete abandonment of any pretence of psychological
plausibility.

57

4.2.3) Woods

Woods has described the LUNAR system, a natural language front-end to a
database which stores information about moon rocks [Woods, 1972]. This
system is radically different to those of Wilks and Riesbeck, principally in
its subordination of semantic processing to conwventional syntactic analysis.
In this system, the role of semantic analysis was principally to wvalidate,
or to reject, the syntactic structures that are found for a sentence; and
if a structure is semantically acceptable, to construct a query which is
interpreted by a retrieval mechanism which inspects the data base. In
Woods's system, the syntactic analyses are "deep structures" of the sort
postulated by transformational grammar (TG) [Chamsky, 1965], and are
generated by an ATN (augmented transition network) [Woods, 1970].

Woods asserts that, in the LUNAR context, it 1is computationally
disadvantageous to perform semantic processing in parallel with the
syntactic recognition process; disadvantageous, because slower.
Consequently, it becomes important to select the correct parse first, so
that the semantic routines do not have to vet large numbers of implausible
readings; and this in turn demands a careful ordering of the arcs leaving
particular states in the grammar. Even apart from this, there are good
reasons, in the context of a sentence grammar, to order some arcs carefully:
though backtracking will permit the discovery of a parse, this may be
inefficient. For instance, some forms of relative clause appear
superficially identical to main clauses, but are distinguished only by the
presence of another main clause: so it makes sense to try to get the main
clause first, since this is a mandatory component of the sentence.

It is unlikely that there exists any static ordering of arcs leaving a
state which will always choose the most likely analysis first, and the ATN
formalism does not allow for dynamic ordering to be applied - nor should it,
for in the abstract nondeterministic machine, all arcs are of equal status.
The effect of modifying the order could be achieved by providing several
states with the same arcs, but in different orders, and selecting between
these on whatever criteria would be used if a reordering operation were
available: however I feel that the ungainliness of this solution reflects
an unnatural dependence upon arc ordering.

There are many aspects of the LUNAR system which I shall not describe
here because they did not influence the design of AD-HAC's analyser. In
particular, the procedural semantics employed by LUNAR is not described
here.

To summarise:

+i) Convenience of expression of syntactic regularities.
Where syntactic regularities are commonplace, it 1is highly desirable to
express syntax rules in such a way that these regularities are captured:
the ATN formalism does this very effectively. For instance, it provides a
convenient and elegant mechanism for "parsing" verb groups and simple noun
phrases.

-i) The presupposed uniformity of syntactic structures
Whilst there are undoubtedly regularities in syntactic structures, for
instance, the association of objects and sometimes indirect objects with
certain verbs, there are also many special cases: 1if a grammar is to handle
these, it must both know about all the special cases, and know when they are
applicable.

58

-ii) Special cases need new verb features.
The grammar specifies, albeit implicitly, a set of syntactic paradigms: the
dictionary must supply information to enable the grammar to attempt to parse
only those paradigms which are valid for a particular verb, and does this by
associating "features" with these verbs. One effect of this is that each
special case must be assigned a unique feature; unfortunately, though the
number of special cases is very large, the grammar must be prepared to deal
with each of them - there is no mechanism permitting the dictionary to
supplant the grammar in dealing with special cases.

-iii) Necessity of getting all syntactic structures.
Since the ATN makes no provision for semantic Jjudgement, there are many
cases where local ambiguity cannot be resolved; for instance in the
placement of prepositional phrase modifiers. For a system which is
interested in the content of a sentence, such information must be accurately
represented; and since there is no syntactic justification for preferring
one analysis over another, in the case of multiple modifying prepositional
phrases for instance, it beocomes necessary to return all possible
combinations for inspection by some later semantic component.

4.3) Principles quiding the design of AD-HAC's analyser

The next chapter describes the construction of a sentence analyser whose
design has been heavily influenced by the considerations indicated above.
This analyser, which is used in AD-HAC, attempts to draw together the merits
of the analysers described above, whilst avoiding their weak points; and,
as will be seen, provides some new insights into the nature of the problems
of natural language analysis.

The specific influences on AD-HAC may be summarised in the form of a set
of principles, drawn from considering the good and the bad aspects of the
forerunners described in section 4.2. The five principles are as shown
below, and carry an indication of whether the previous systems were
satisfactory or not in this regard.

1) The information to guide analysis of a sentence should be derived from
words in the sentence, and packaged in the form of test+action structures
which we may call requests.

(+Riesbeck)

2) However, syntactic processing should be used in a supporting role to
locate groups of words which may be treated as a whole: neither a
request mechanism, nor any keyword-based algorithm, should be expected to
perform this task. Nor should a syntactic analysis of whole sentences be
sought.

(~Riesbeck, -Wilks, +Woods and -Woods)

3) The requests used should be manipulable and clean: capable of being
ranoved when no longer applicable, and not modifying the definitions of
other words.

(~Riesbeck)

4) The analysers progress through a sentence should be predominantly
left-to-right; yet it should be able to backtrack if necessary.

(+Riesbeck and -Riesbeck, -Wilks)

5) There should be a mechanism for specifying and applying preferences, in
relation to diverse linguistic phenomena.

(+Wilks)

How these principles are applied to the design of a new analyser, the

structure of such an analyser, and the extra details which need to be filled
in, are the topic of the next chapter.

59

Chapter 5 — Analysis 2: AD-HAC's analyser

5.1) Principles

The previous chapter studied in some detail the analysers of Riesbeck,
Wilks and Woods, and concluded by extracting five principles which should
guide the design of a new semantic analyser. These principles are:

1) The information to guide analysis of a sentence should be derived £rom
words in the sentence, and packaged in the form of test+action structures
which we may call requests.

2) However, syntactic processing should be used in a supporting role to
locate groups of words which may be treated as a whole: neither a
request mechanism, nor any keyword-based algorithm, should be expected to
perform this task. Nor should a syntactic analysis of whole sentences be
sought.

3) The requests used should be manipulable and clean: capable of being
removed when no longer applicable, and not modifying the definitions of
other words.

4) The analysers progress through a sentence should be predominantly
left-to-right; yet it should be able to backtrack if necessary.

5) There should be a mechanism for specifying and applying preferences, in
relation to diverse linguistic phenomena.

The analyser constructed for AD-HAC adheres to these principles. It
integrates its higher-level syntactic processes with its semantic
processing, to produce a conceptual representation of the form illustrated
in Chapter 2.

The main components of the analyser are:

a) An ATN whose task is to locate the basic building blocks of sentences:
simple noun groups, verb groups, prepositional phrases, conjunctions and
wh-forms.

b) A set of requests, classified into 5 types, associated both with
individual words in the dictionary and with standard operations, such as
relative-clause processing.

c) A control mechanism for applying these requests, with a small finite
memory and a preference-based strategy for controlling a
nondeteministic, predominantly left-to-right, analysis.

Section 5.2 describes these components in detail, using one of the

dictionary entries by way of example, and also explaining the "small finite

memory" requirement. Section 5.3 then describes this analyser's treatment
of some linguistic phenomena, such as ambiguity, and that of some specific

constructions such as relative clauses and conjunctions. Section 5.4

indicates some of the present shortcomings of the implementation, but

suggests that no fundamental modifications to the analyser are needed to
overcome these.

5.2) The basic components

Figure 5.1 below illustrates how the three basic components of the system
are related: it is intended simply to provide some context for the
following subsections, which describe in some detail the ATN, the requests,
and the control mechanism.

60

—— - Figure 5.1

Sentence

ATN < | Word syntactic labels |

constituent tree

Vv

Strategy box | analysisl

with limited | analysis2

memory for | analysis3 | <-—----- | ‘situation requests |
partial analysis4
analyses analysisb

analysis6 | <-——--—- | word requests |
analysis?
\Y

conceptual analysis

- The gross structure of the analyser
5.2.1) The ATN

An ATN is used here to isolate "constituents" of a sentence, rather than
to build a complete structure which gives the syntactic relationships
between all the constituents. The constituents it recognises are
conjunctions, verb groups, simple noun phrases, prepositional phrases and
wh-forms, all defined in a conventional way.

Conjunctions
Since the ATN is here merely isolating constituents, rather than building a
representation of an entire sentence, the notorious problem of conjunctions
is simply bypassed: the constituent analysis of the word AND is just "(conj
AND)".

Verb groups
The ATN's analysis of verb groups is very simple, since all that is required

later is access to the main verb, tense, woice, form and negation. Thus
"WAS NOT BEING GIVEN" would be represented by the ATN as the constituent
(VP (tense PAST) (form PROG) (voice PASSIVE) (neg T) (verb GIVE))

Simple noun phrases

The phrase "simple noun phrases" is used here to exclude prepositional
phrase modifiers, appositives and relative clauses: these are treated
elsewhere. Simple noun phrases may include, for example, determiners,
quantifiers and adjectives: for such noun phrases, the ATN will provide an
analysis of the same gross form as the ultimate conceptual analysis of that
noun phrase, omitting time-references and the resolution of ambiguous
adjectives or nouns.

61

The characterisation of "SEVERAL OF FRED'S BIG BILUE BLOCKS", for
instance, is almost precisely in the CD notation described in Chapter 2:

(NP (FOCUS (STATE THING))
(STATE (STATENAME QUANTIFY)
(VAL *SOME*)
(THING (FOCUS (STATE THING))
(STATE (STATENAME POSS)
(VAL FRED)
(THING (FOCUS (STATE THING))
(STATE (STATENAME SIZE)
(VAL 4)
(THING (FOCUS (STATE THING))
(STATE (STATENAME COLOUR)
(VAL BLUE)
(THING BLOCKS)))))))))

Wh-forms are treated similarly, but using the label WHNP rather than NP;
relative pronouns - WHO, WHICH, WHERE, THAT - are labelled RELNP.

Prepositional phrases
Prepositional phrases are treated as incorporating noun phrases, and may be
keyed by PP, WHPP and RELPP as appropriate; the constituent corresponding
to the phrase "NEAR SEVERAL OF FRED'S BIG BLUE BLOCKS" would be

(PP (prep NEAR)
(noun (FOCUS (STATE THING))
(STATE (STATENAME QUANTIFY)
... etc

Even in this restricted application of an ATN, it must be noted that
nondeterministic processing is still necessary, since strictly local
ambiguity may still be present. To illustrate this, imagine that a
constituent analysis must be found for the words "HER MONEY": and, for
simplicity, imagine that the ATN consists of just an NP network. The two
constituent analyses, for (1) "HER MONEY" as a single NP, and for (2)
"HER" "MONEY" as two discrete NPs, must be found. More complex examples can
be readily imagined; for instance, "HER SAW MILLS" where SAW and MILLS may
both be either verbs or nouns, and where the concatenation "SAW-MILLS" may
be considered.

The ATN, as mentioned earlier, is used essentially as a first-pass
fragmentation routine to make groups of words easily handled by the later,
main, stage of processing; and this later stage operates in a predominantly
left-right fashion. The data structure produced by the ATN, designed to
facilitate this later processing, is called a "constituent tree".

The structure of a constituent tree is recursively defined: it comprises
a list of ‘'"branches", each having a single constituent - which will
correspond to some substring of the sentence — followed by the constituent
tree for the remainder of the sentence.

There are in fact several separate networks in the ATN, corresponding to
noun phrases, verb groups, prepositional phrases and (trivially)
conjunctions. All networks are tested against all substrings; and, if no
network accepts a substring, the first word is treated as an isolated word,
and the remaining substring considered by all networks.

62

This use of an ATN has three principal advantages. Firstly, it provides
a convenient mechanism for treating words with more than one syntactic
category, especially since frequently only one category will be considered
because of the influence of the preceding context. Secondly, it provides a
motivated and isolable fragmentation scheme, in contrast to that of Wilks,
which can identify the important words in a sentence (verbs and head nouns),
and thus allow groups of words to be treated as a whole, unlike Riesbeck's
system. (A similar strategy has been adopted by Boguraev, as described in
[Boguraev, 1979]1) Thirdly, each element has an easily identified head word
with which requests are often associated.

The utility of the ATN is improved by the addition of a test which may be
used on the arcs leaving a state. This test, called PARSING-FAILED, can
detect whether any previous arcs leaving a state have succeeded, ie reached
a POP arc. 'The use of this test acknowledges that an ATN is fact depends
sometimes upon the ordering of arcs leaving a state, and enables the ATN to
exploit this dependence. It is used in two situations: firstly, to block
the spurious recognition of verb phrases which actually are merely auxiliary
to some other verb phrase, eg 'WAS' in 'WAS NOT BEATEN'; and secondly, to
recognise that the content of a quantified noun phrase has been elided, eg
in "I HAVE A FEW".

5.2.2) The requests

A set of requests, each having two predicate parts and one action part,
is used to gquide the analysis of sentences. They work on the constituent
trees delivered by the ATN, to build up the conceptual analysis of the whole
sentence. The first predicate of a request determines whether the action
part is to be executed, while the second determines whether the request
should be discarded if it 1is not used. These two predicates are named
respectively the MAIN and the KEEP predicate. The requests are used to
specify what should be expected,syntactically and semantically, of the
remaining text, and to determine the utilisation of the expected items when
they arrive.

The requests come from two sources: firstly from the definitions of
words in the dictionary, principally from wverbs and conjunctions; and
secondly from places in the program where a standard situation has been
recognised; for instance, the beginning of a sentence, relative clauses, or
sentences of the form "x DO y TO DO z".

The requests fall into five request classes, each corresponding to a step
in the processing of a constituent, which proceeds in a cyclic fashion
described in the next section. Each request is labelled with its type. The
five types are:

i) USE - use a constituent found by the ATN; if a constituent can be
used, any program associated with the head word is executed.
In the case of verbs, this loads in the requests which will
process the rest of the sentence. .

ii) TRIVIAL - perform any (unconstrained) action; all verbs load requests
of this type whose purpose is to build up structures, insert
time information and negation, and to add further requests.

iii) USE-REG - handle constituents which have been placed in "registers",
a form of local storage. Most usually this is just for
placing the subject into the structure built by a verb sense.

63

iv) UNBEMBED - insert the structures corresponding to embedded clauses,
relative clauses and prepositional modifiers, into a
predetermined place in the clause above. Also resets
structure, registers and the list of requests.

v) BMBED - save existing structure, registers and requests, and prepare
to process an embedded clause of some kind.

The characteristics of these five types which make it wuseful to
differentiate between them will be explained in detail in section 5.2.4,
after the control mechanism and "theories", the objects the mechanism
manipulates, have been described. Figure 5.2 1is a grossly simplified
illustration of the application of requests to the simple sentence "JOHN
WENT TO THE PARK". The fragments "JOHN" "WENT" "TO THE PARK" have been
found, and partially processed, by the ATN. The first four steps are part
of a standard sequence for handling declarative sentences, and the remaining
six are specific to the verb "GO". Each USE step is preceded by a GET,
which is responsible for selecting an item from the constituent tree
delivered by the ATN.

- ~=---- Figure 5.2 -
JOHN WENT TO THE PARK
GET-—-->USE-->GET———->USE~-->TRIVIAL~->USE-REG-~>GET-->USE-~->GET-->USE
standard sequence | loaded loaded ends
the request by by sentence
for "GO" WENT WENT

builds sem.str.
& loads requests

- - Simplified example of request application

5.2.3) The control mechanism: "theories"; and memory limitations.

Based on the notion of preference, a control mechanism for the
application of requests has been developed which, though in a
non—-deterministic environment, has the important property of needing only a
small finite memory for partial analyses.

The objects with which this mechanism works, I call "theories": these
correspond to partial analyses: they essentially "package" requests with
environments. When tried, a theory will usually generate new theories.

Each theory has seven components:

1) A numeric score, usually in the range -10 to 50.

2) A partial semantic structure.

3) A set of available requests.

4) An indication of the reguest-class to be selected.

5) The remaining constituent-tree (the product of ATN processing)
6) A current constituent if the request-class is USE

7) A set of registers, a fom of local storage

The basic mechanism is simple, and is related to the Graph Traverser
[Doran, 19651, Woods's "theories" [Woods, 1977] and the KRL scheduler queue
[Bobrow et al, 1977]. The theories are maintained in order of preference,
and the most-preferred theory is selected and evaluated: that is, those
requests which are of the class indicated by the class tag (item 4 above)

64

are tried. If the first predicate of a request succeeds, the action part is
executed: then this request, and any other request of the same class whose
KEEP predicate fails, is discarded, and a new theory generated. The
generation of a new theory requires specification of a request class. This
follows the pattern

entry

/N

USE
\ exit if there are no more constituents

/ 0\
TRIVIAL

USE-REG This loop is used if an UNEMBED
succeeds

UNEMBED

___/

EMBED

_/

The loop shown from UNEMBED to TRIVIAL applies only when an UNEMBED has
been obeyed, permitting multiple unembeddings without consuming more
constituents, and also permitting an UNEMBED to influence TRIVIAL or USE-REG
requests directly (though this is seldom needed). When no UNEMBED is done,
EMBED is selected next; or in the absence of EMBED requests, GET.

(GET does not label any requests at all, but is the stage of - processing
where a new constituent is found, usually from the constituent-tree returned
by the ATN (but see section 5.3.2). With the exception of GET and USE, a
theory will bear a given class-tag only if there are requests of that type
in the theory; otherwise the class is chosen to be the next in the abowve
cycle for which requests do exist, and failing that, GET.)

The actual mechanism is in two respects more sophisticated than this
simplified account suggests: I have said that a theory is selected from the
top of the stack of theories, on the basis of preference, but it may be that
there are several theories of the same preference. These are all separated
from the stack, and processed in turn. This avoids problems where one
theory generates new theories with a slightly higher preference, causing the
next theory, intrinsically of the same value, to be obscured.

The second difference has, I believe, important implications concerning
the relation between memory and linguistic faculties. This is the
observation that, despite the apparently non-deterministic operation of the
analyser, the depth of its stack of theories need only be small; the size
of stack needed compares with the supposed size of human short-term memory.
Specifically, limiting the size of this stack to seven theories, and simply

65

discarding any theories which fall off the end, actually improves the
performance of the analyser for complex sentences, even elaborately embedded
ones. Indeed, the largest stack needed for any sentence which has been
processed so far (using the present grammar and vocabulary) is only 5
theories long. This result is an empirical observation, and does not depend
on any fine-tuning of the preference manipulations. It may turn out that
the addition of large numbers of highly-polysemous words may require
adoption of a wait-and-see strategy, such as those used by [Hayes2, 1977]
and [Marcus, 1980] However, though the dictionary does contain a number of
polysemous words, no problems of this nature have been encountered so far.

[Marcus, 19801 proposes a "determinism hypothesis", and describes an
analyser which also has a limited memory. This memory consists of a stack
of partial syntactlc structures, and the rules of the grammar are permitted
to inspect, using look-ahead, only a small number (usually 3) of these
structures. However, Marcus does admit that his analyser is unable to deal
with complex sentences, and must seek advice from some other, more powerful,
component of the larger system. It seems to me that this is tantamount to
accepting that syntax rules are inadequate when so constrained; and his
analyser does not in fact attempt to provide the required additional
semantic analysis. My approach includes semantics.

To close this section on an optimistic note, let me make an untested
proposal. A vexing problem, to which I believe the concept of a limited
memory prov1des a partial answer, is the problem of determining when a
sentence is structurally ambiguous. There seems to be a highly plausible
rule: Only if, working within the memory limitations of the analyser, more
than one analysis can be found, and later analyses violate no more
noun-feature preferences than did the first analysis, then that sentence is
ambiguous.

5.2.4) The stages of processing: details

The stages of processing, excepting GET, are conveniently described by
reference to the classes of request to which they correspond, since these
stages form the the basis of the classification.

The requests themselves, as mentioned in section 5.2.2, always have a
MAIN predicate, a KEEP predicate, and a set of actions. A theory has a type
which - excepting GET - selects a subset of the requests for evaluation.
When a request is evaluated, the resulting theory (if any) does not receive
a copy of that request, nor of any other requests of that type whose KEEP
predicates fail.

i) GET

GET is the first step in each cycle; it is exceptional since it labels no
requests. GET is discussed more fully in section 5.3.2 below, where the
treatment of questions and relative clauses is examined: for present
purposes, I simplify by saying that GET retrieves an item £from the
constituent-tree given by the ATN; for each retrieved item, a new USE
theory is constructed, with the appropriate "current constituent" and
"constituent-tree".

66

ii) USE
USE requests have a MAIN predicate which nommally specifies the syntactic
class expected. Their action parts, in addition to specifying the use to be
made of the constituent they accept, will often contain preference
manipulations based wupon the features associated with nouns: for this
purpose, features are arranged in a hierarchy, which was given in Chapter 2.

For each sense of the head word of a constituent, each USE request is
applied. (USE requests may branch in two different ways; for different
senses of words, and for different ways of using the constituent.) For each
successful request application, that is, where the MAIN predicate succeeds,
a new theory is created, with a class-tag determined according to the rules
given in section 5.2.3 above.

If a constituent is encountered for which no request succeeds, it is
tested to see if it can be "trapped"; traps handle conjunctions, and
purposive TO-complements, as in "I WENT TO THE KITCHEN TO MAKE SOME COFFEE".
Traps are discussed more fully in section 5.3.3 below.

iii) TRIVIAL

TRIVIAL requests are simple - hence the name - and cause the creation of
only one new theory. Any number of such requests may be present; the MAIN
predicate of each determines whether the action should be performed but the
KEEP predicate is a vacuous formality.

TRIVIAL requests are extremely common, being the vehicle for the
introduction of other requests from the dictionary. These requests are
often used to build conceptual structures, add time and negation
information, and load the other requests which will analyse the remainder of
a clause.

iv) USE-REG
USE-REG requests take a constituent, usually the subject, £from temporary
storage in a register. Since the constituent has been placed there by a USE
request, it corresponds to only one sense of the head noun. However, it
sometimes happens that more than one USE-REG request exists, and in this
case all the available USE-REG requests are applied, producing one new
theory each. This situation occurs mostly for the passives of
indirect-object verbs, where the subject may £fill either the slot
corresponding to the direct object or the indirect object in an active
sentence.
v) EMBED

EMBED requests deal with embedded clauses, relative clauses and
prepositional phrase modifiers. An EMBED request is usually optional; one
theory will be created just as though there had been no EMBED requests
present. For each EMBED request whose MAIN predicate has succeeded, a
distinct embedded theory will be created. These theories will have the
current state of the registers, the current set of requests, and the current
semantic structure, all saved on an otherwise blank list of registers. When
this has been done, the actions of the applicable EMBED request are
executed. These will always add new requests to deal with the embedded
clause, and will often set a few registers. For the latter purpose, there
" is temporary access to the saved registers, which is necessary to handle the
tensing structures which occur in embedded clauses, and those clauses which
borrow the subject from a higher-level clause.

67

An obvious point is that an analysis cannot be allowed to terminate while
still in an embedded state.
vi) UNEMBED; and constraints.
UNEMBED requests are the converse of EMBED. There can only be one UNEMBED
request present at any time. Requests of this class restore the registers,
requests and semantic structure before their action parts are executed.

An UNEMBED request is also optional; thus one theory will always be
created which corresponds to a failure to unembed. If an unembedded theory
is created, its preference is modified according to the following rule: 1If
there are any USE requests which are being lost by unembedding, decrease by
3; otherwise decrease by 1. This means that there is always a tendency to
remain embedded. The strategic reasons for this are discussed in section
5.2.6.

However, the MAIN predicate on the UNEMBED request is not regarded as
sufficient to permit an unembedding. A further mechanism, the specification
of constraints, is inwlved. A general constraint on unembedding is that
there must be a semantic structure which has been built. Certain verbs,
however, specify further constraints - saying such-and-such a request must
be used. If any of these constraints have not been satisfied, no
unembedding can take place. (This mechanism applies also to accepting the
end of the sentence, which is seen as a special case of unembedding.)

It has also been found useful to allow requests to specify certain
operations to be performed at the end of a clause; this is done by means of
the two functions BEFORE-UNEMBED and AFTER-UNEMBED, which load small
programs which are executed just before, and just after, the process of
restoring registers, requests and semantic structure: or, for the main
clause, at end of sentence.

Taken together, these requests constitute an effective mechanism for
driving a semantic analyser which can exploit syntactic information. The
addition of a KEEP predicate to the simple test-action requests Reisbeck
described neatly solves the problem of discarding irrelevant requests, and
the nondeterministic framework in which requests are activated takes over
the task of selecting amongst possible analyses. The criticisms of
Reisbeck's work, that the requests were neither manipulable nor clean, do
not apply to this work. However, the requests can become rather complex:
the next section describes how this complexity is handled by the use of
acros. With this addition, the requests acquire elegance without
sacrificing effectiveness.

5.2.5) The dictionary entries

The analyser is controlled to a high degree by the definitions of the
words in sentences, and particularly those of verbs. These definitions are
encoded as requests, which (apart from the auxiliaries BE,DO,HAVE) follow
the same general pattern, being TRIVIAL requests which:

a) Set up a semantic structure

b) Make various declarations about that structure

c) Put time information into the structure

d) Create new tokens to fill certain slots of that structure

e) Add a set of requests to handle the rest of the sentence (or clause).

68

The dictionary entry for DISPLEASE, a verb with only one sense, is shown
below. It should become apparent that the verb definitions are equivalent
to the specification of case-frames; it may be convenient to consider the
analysis process as following a dynamically-created ATN.

(DISPLEASE
((requests
(ADDREQ
(TRIVIAL T NIIL
(BUILDS
((CAUSE
(ANTECEDENT
(EVENT (ACTOR DUMMY-HUMANI)
(ACT DO)))
(RESULT
(STATE (STATENAME JOY)
(THING DUMMY-HUMANZ2)
(VAL (LOWERBY 2)))))))
(TIME-PLACE)
(VERBS-DUMMIES '
((CAUSE ANTECEDENT EVENT ACTOR) DUMMY-HUMAN)
((CAUSE RESULT STATE THING) DUMMY-HUMAN))
(COND
((ACTIVE)
(PLACE-SUBJ (CAUSE ANTHCEDENT EVENT ACTOR) ANYTHING)
(PLACE-OBJ (CAUSE RESULT STATE THING) BEAST
(PLACE~-SUBJECTLESS—-CLAUSE BY (CAUSE ANTECEDENT)
(AND (TENSE-IS PRES) (FORM-IS PARTICIPLE))
subj)))
((PASSIVE)
(PLACE-SUBJ (CAUSE RESULT STATE THING) BEAST)
(PLACE-CLAUSE BY (CAUSE ANTHCEDENT)
(AND (TENSE-IS PRES) (FORM-IS PARTICIPLE)))
(PLACE-PP BY (CAUSE ANTECEDENT EVENT ACTOR) ANYTHING)
(PLACE-SUBJECTLESS-CLAUSE BY (CAUSE ANTECEDENT)
(AND (PASSIVE) (FORM-IS PROG))
subj)
(PLACE-SUBJECTLESS~CLAUSE AT (CAUSE ANTECEDENT)
(BND (PASSIVE) (FORM-IS PROG))
subij)}))))))

In this example, there is only one definition for the verb; 'requests’
labels the part of the definition which is to be executed. Here the
function ADDREQ is used to add a request. The request is of class TRIVIAL,
and its MAIN predicate is T: therefore it will succeed. Its actions are:

BUIIDS to build a semantic structure

TIME-PLACE to insert temporal information in a standard way
VERBS-DUMMIES to create new 'tokens' to fill in parts of the structure:
this corresponds to assuming features of objects in default.

Both ACTIVE and PASSIVE are functions which inspect registers which have
been set up at the time the verb group was encountered.

As requests can be fairly complex objects, involving two predicates and
an arbitrary set of actions, their full specification on each verb
definition would be a tedious and repetitive process. Advantage can be
taken of the repetitiveness of simple requests however, by defining a set of

69

macros with which they can be built up. These macros expand into full
requests while the analyser is running. Several such macros have been
provided, and very few verbs need facilities which these macros do not
provide. However, when such facilities are needed, it is still possible to
write special-purpose requests. The existence of the macros does greatly
ease the definition of new verbs. The macros are:

PLACE-SUBJ for using the subject: generates a USE-REG request
PLACE-OBJ for using a noun-phrase: generates a USE request
PLACE-PP for using a prep-phrase: generates a USE request

PLACE-CLAUSE
PLACE-SUBJECTLESS-CLAUSE look for various sorts of embedded clause
PLACE~OBJECTIVE-CLAUSE

GET-PARTICLE looks for a specific word, and is capable of splitting it £rom
any component with which it is associated in the constituent-tree.

In the ACTIVE branch for DISPLEASE,
(PLACE-SUBJ (CAUSE ANTECEDENT EVENT ACTOR) ANYTHING)
adds a USE-REG request which will look at the 'subj' register, and place the
conceptual representation of the subject at the end of the path
(CAUSE ANTECEDENT EVENT ACTOR); also it will apply, in this case, the
undiscriminating preference for the feature ANYTHING (since ANYTHING is very
near the top of the feature hierarchy described in chapter 2).

The second macro call in the ACTIVE branch,

(PLACE-OBJ (CAUSE RESULT STATE THING) BEAST ...),
adds a USE request which seeks a noun phrase, preferring the feature BEAST
to be present: when this has been found,

(PLACE~-SUBJECTLESS-CLAUSE BY (CAUSE ANTECEDENT) X...X subj)
adds a further request, which corresponds to an EMBED. This will only be
used if the word BY is located, in which case an embedded clause is
expected, which will lack a subject, and whose verb is a present participle.
The current contents of the register 'subj' (ie whatever did the
displeasing) is to be used again as the subject of the embedded clause. The
conceptual representation of the entire embedded clause is to be placed at
the end of the path (CAUSE ANTECEDENT).

In the PASSIVE branch, there is again a PLACE-SUBJ macro call, and two
PLACE-SUBJECTLESS-CLAUSE macros which differ only in the word they expect as
a cue. The two new items are:

i) (PLACE-CLAUSE BY (CAUSE ANTECEDENT) X...X),
which looks for a complete clause cued by the word BY, whose verb is, again,
a present participle. This will correspond to sentences like
"FRED WAS DISPLFASED BY MARY GOING TO THE SHOPS"
ii) (PLACE-PP BY (CAUSE ANTECEDENT EVENT ACTOR) ANYTHING)

creates a USE request which looks for a prepositional phrase, with the

preposition BY. This will correspond to sentences like
"FRED WAS DISPLEASED BY MARY"

70

5.2.6) Preference manipulations

Preference, the numeric score associated with a theory (and typically in
the range -10 to +50), is important because it provides the basis for the
selection of theories in a nondeterministic environment. The idea of
preference is taken from Wilks; but the implementation in AD-HAC is rather
different. It was noted in section 5.2.3, in connection with the
observation that only a small stack is needed for theories, that this small
memory requirement does not depend upon finely tuning the preference
manipulations. Preference 1is however an important device, and is
manipulated in several situations:

Feature matches and mismatches

These correspond in spirit to Wilks' preference mechanisms; however,
whereas Wilks uses direct matches between semantic primitives, with the
possibility of matching against classes, I have found it useful to perform
two distinct types of matching operation. Firstly, there are "primary
features", which are organised in a hierarchy, and which were discussed in
Chapter 2: a request which "prefers" feature X will accept a noun-sense
with feature Y if Y is anywhere on the branch of the hierarchy headed by X.
(By "accept a noun-sense", I mean the preference will be applied.) Secondly,
there are "secondary" features, such as MASSY, PROPERNAME and RELATION,
which do not occur on the hierarchy, and with which only direct matches are
considered.

Normally, feature preferences are applied positively: 1f there is a
match, the 'score' of the next theory generated is increased by 2.
Simultaneously, all USE requests decrease the score of the next theory by 2.
This has two effects. Firstly, when a noun sense has the expected features,
the new theory will have the same preference as the original (and so will
still be at the top of the stack), but if the expected features are not
present, the preference will drop; any competing sense of that noun will be
preferred (preference only makes sense when dealing with competing
alternatives). Secondly, USE requests which pick up wverb groups do not
usually apply any preference: therefore the subsequently formed theory will
have a lower score than its parent, and will possibly not be at the top of
the stack any more; other analysis paths which are sufficiently close will
now have a chance to proceed, and may perhaps increase their score. This is
a helpful feature, because different analysis paths may correspond to
different syntactic expectations, and may not be in step with one another;
this mechanism helps to make the processing of such alternatives more
uniform.

Frnbedded clauses, and unembedding.

When an EMBED request may be applied, two theories are created which
correspond to embedding and failure to embed, and these have the same
preference. However, the macros from which these requests are usually
generated specify a number of USE requests on the lower level, and the first
of these will, if successful, increase preference by 2. The effect of this
is to stimulate an embedded path which has located a component which it
needs.

71

It has been noted (section 5.2.4) that UNEMBED requests will decrease the
preference of the unembedded analysis, by 3 if some other component is
expected, by 1 otherwise. The general disinclination to unembed reflects
the observation that ambigquously placed conjunctions are most often taken to
conjoin clauses at the most deeply embedded level. For instance, a sentence
given by [Cullingford, 1978] (which he quotes from a newspaper) illustrates
this point nicely:

"A NEW JERSEY MAN WAS KILLED FRIDAY EVENING WHEN THE CAR IN WHICH
HE WAS RIDING SWERVED OFF ROUTE 69 AND STRUCK A TREE"

Cues

There are some words, such as BILL and JOHN, which may be either simple
nouns or proper names. The use of names is notoriously complex [Carroll,
1979]; AD-HAC takes a very simple, and probably inadequate, view. The use
of a determiner, or of a possessive construction, is taken as a cue to the
sort of noun expected: if one exists, then the noun is expected to be a
simple noun; if not, a proper name. In general, the selection of a noun
sense is penalised if these cues are inappropriate. An exception occurs
when a relative clause follows, for instance "THE BILL TO WHOM I SPOKE". In
such a case, no penalty is applied, and .the usual feature-matching
procedures must work unassisted.

Overwriting

Once a constituent has been placed into the semantic structure, any
attempt to replace that part of the structure will be penalised; in
practice, this permits verbs to be more easily defined.

5.3) Linguistic phenomena: further details

The preceding sections, 5.1 and 5.2, have described the principles behind
the design of the analyser, and the basic components of the implementation.
This section explores the application of the analyser to its task, namely
the representation of the meaning of sentences, by considering several
features of language use, and describing how the analyser accounts for them.
I consider a global phenomenon, ambiguity; and then particular features:
particular syntactic structures, relative clauses, questions, conjunctions,
negation, and tensing structures.

5.3.1) Treatment of ambiguity

The analysis model described above attempts to handle four kinds of what
might be loosely termed ambiguity.

i) Single words in multiple syntactic classes, related in sense or not

An explicit syntactic analysis, whether of complete sentences or, as
here, of well-formed constituents, goes a long way towards handling this
form of ambiguity. In this model, the ATN performs this function, but
sometimes is unable to determine the correct constituent. The application
of requests, which correspond to expectations, will in these cases make a
decision on the basis of surrounding context. .

72

ii) Multiple senses of a word, with a common syntactic category

The treatment of this phenomenon differs according to the syntactic
category.

Verbs with more than one sense are normally distinguishable on the basis
of their case-frames, though occasionally there is an interaction with the-
features of surrounding nouns. Already, in my (pathetically) small
dictionary, there is one example that cannot be determined by this
technique: this is the choice of GET = FEICH or GET = ACQUIRE; I have had
to leave this as an open problem. This is clearly unsatisfactory.

Nouns with several senses are normally distinguishable by their features,
but occasionally CUES are useful: for instance, proper names are not
normally introduced with determiners. This information is communicated to
the overall request mechanism by inspecting CUES in the USE phase; this
causes behind-the-scenes preference changes.

Prepositions usually have a large number of senses; each sense 1is
however applicable only in certain syntactic contexts. The most common use
of prepositions is to indicate that a following noun phrase fulfils some
role in the case-frame associated with a verb; prepositions serving this
function are picked up by the use of PLACE-PP macros in the verb definition,
and any independent sense the preposition may have is irrelevant. For use
as postmodifiers, however, prepositions do need definitions, and these are
kept as requests associated with the preposition.

Adjectives may have many senses; the current program does not attempt to
disambiquate these, but simplistically assumes each adjective has one sense
only.

Despite the weakness with adjectives, this treatment of lexical ambiguity
seems quite good.

iii) Structural ambiguity of sentences

The analyser presented here is intended as a front-end to an inference
mechanism, and attempts to find the most plausible reading of a sentence. A
sentence is reanalysed only if the inference component finds that the first
reading found is Jludicrous. 1In this case, the analyser will repeat its
analysis, but reject the first reading encountered. If the next reading is
also found to be ludicrous, the analyser will repeat, and reject both of
these. And so on, until either the inference component finds an acceptable
reading, or the analyser can find no more readings.

This is not a long-term solution to the problems of genuine structural
ambiguity; but the discussion in section 5.2.3 may point the way.

iv) Referential ambiquity

Referential ambiguity is not tackled by the analyser itself, but its
resolution is one of the principal tasks of the inference mechanism, and
will be discussed in Chapter 8. The part played by the analyser in the
resolution of referential ambiguity is twofold: for pronouns, it must
provide information to the inferencer which will pemit it to determine
whether other nominals could or could not be the referent of the pronoun;
and for definite references, it must flag the corresponding tokens in such a

73

way that the fact of definite reference is accessible to the inferencer.

The analyser's treatment of ambiguity is clearly quite comprehensive,
though there remain areas where it is not as strong as might be wished. The
simplistic treatment of adjectives is probably the weakest spot of all, and
work is in progress on this - as on so much else!

5.3.2) Postponement mechanisms: Questions and Relative clauses.

Yes/no questions, and wh-questions which do not focus upon the subject,
both exhibit the splitting of an auxiliary from the main verb group. For
example, "DID MARY ANNOY JOHN?", "WHO DID MARY ANNOY?". Even a sentence
like "WAS IT JOHN WHO ANNOYED MARY?" can be seen as an example of this
phenomenon, if we allow "WAS" to function as both a fronted aux111ary, and
as the entire main verb phrase. This general phenomenon is handled by
modifying the basic behaviour of GET as described below.

Relative clauses are commonly regarded as containing a "trace" of the
relativised object which belongs in, but has been elided from, the sequence
of words forming the relative clause. Wh-questions are similar in this
respect. This phenomenon is also treated by a modification of GET.

Section 5.2.4 simplified the operation of the GET phase by omitting
mention of these two aspects, and presented the basic model which inwvolves
taking the next set of syntactic constltuents, and creating new theories
corresponding to each one. The GET phase in fact does more than this. Its
more complex operations are controlled by the settings of reglsters (local
to an analysis path), and include

i) Inserting an auxiliary to make a complete verb group

This is done for yes/no questions and some wh-questions. The auxiliary
is taken from the register in which it 1is stored, and placed at the
beginning of the remaining words of the sentence. The substring so formed
is reanalysed by the ATN constituent grammar.

ii) Replac1ng a noun phrase or prepositional phrase constituent
This is common to relative clause and wh-question processing, and
involves simply generating a new USE theory which must use the constituent.
Wh-words in relative clauses are replaced by the selected sense of the
relativised object. Examples of the situations where this replacement
operation may be done occur in the sentences:

WHO DID JOHN ANNOY?

WHO ANNOYED MARY?

THE PERSON JOHN ANNOYED HIT HIM.

THE BANANA WHICH JOHN GAVE TO MARY WAS ROTTEN.

THE PERSON TO WHOM JOHN GAVE THE ROTTEN BANANA BECAME SICK.

Sometimes a relative clause, or wh-question, is deeply embedded. By
this, I mean that a further clause is embedded within the relative clause
(or question), and the "trace" of the relativised object is to be found
within this embedded clause; for instance,

"THE CAR YOUR BROTHER SAID HE WAS EXPECTING US TO TELL JANE TO BUY"
(an example from [Winograd, 1971], which he calls "downrel") This often
happens with verbs, such as 'SAY', which normally expect a clause optlonally
introduced by 'THAT'; however when the embedded clause contains a "trace"
of a relativised object, 'THAT' seems quite out of place. Consider:

74

FRED SAID THAT THE MONKEY ATE THE BANANA.
*THE BANANA FRED SAID THAT THE MONKEY ATE WAS ROTTEN.

FRED SAID THE MONKEY ATE THE BANANA.
THE BANANA FRED SAID THE MONKEY ATE WAS ROTTEN.

When such an embedded clause is processed, the semantic structure will
indicate the position of the relativised object (or queried object) within
itself, and this must be combined with the position of the embedded clause
to give a true representation.

It is necessary when processing relative clauses to make sure that
quantifiers, if present, are properly scoped. In the representational
language used here, this requirement is easily and simply met by placing the
semantic representation of the relative clause inside any existing
qualifying information. '

iii) Combining a noun phrase constituent with a dangling preposition.

This operation is wvery similar to the straightforward replacement
outlined above, but is performed (additionally) if the next word in the
remaining part of the sentence is a preposition, and the constituent to be
replaced is not a prepositional phrase (eg "TO WHOM").

5.3.3) Traps: dealing with the unexpected.

It has been explained that verb definitions provide a set of case-frames,
which denote the expected gross syntactic elements of a clause. In an
expectation-driven system, conjunctions present a special problem: it seems
unreasonable to "expect" conjunctions, because they occur almost anywhere;
yet if they are not expected, how can the system handle them when they
occur?

In AD-HAC, conjunctions determine themselves how they are to be used.
They are equipped with "traps", which, like requests, have a predicate and
an action. The predicate part of these traps will normally test whether a
clause can be terminated; and the actions will normally

a) remove all existing requests except UNEMBED requests
b) Build a new semantic structure, having the existing structure as a part
c) Forbid further conjunctions from operating at this level
d) Initiate the processing of a new clause, EMBEDded into the newly-built
structure.
The treatment of AND, BECAUSE, BEFORE and AFTER follows this outline.
However, BECAUSE, BEFORE and AFTER may also begin a clause; for instance
"BECAUSE MARY WENT TO THE PARK, JOHN FELT UNHAPPY"
These conjunctions therefore have several traps, whose predicates
distinguish the particular cases. The action-parts for these senses will
also consume a comma if it occurs at the end of the first clause.

Similarly, purposive TO-complement constructions are handled by a trap;
again, there is a test to ensure that the first clause is complete, and
other requests are discarded.

Commas, apart from those expected at the end of certain classes of
clause, are handled by a trap. This trap looks at the next constituent, to
see if it too will be handled by a trap. Thus conjunctions may always be
preceded by commas, as may purposive TO-complements.

75

5.3.4) The handling of negation.

DD-HAC's analyser recognises two ways in which a sentence may be negated:
by the use of the word 'NOT' (or DIDN'T, WASN'T etc.); or by use of a
phrase like 'NOBODY' or 'NONE OF THEM'.

The representation built for a negated clause differs in two respects
from that built for a straightforward affirmative clause. Firstly, the
conceptual structure has "(TRUTH FALSE)" instead of "(TRUTH TRUE)", or vice
versa (though even this is not straightforward in the case of causal
structures: see 2.3.1.3); secondly, some of the tokens appearing in that
structure will be flagged as "existentially-qualified", which indicates to
the inference mechanism that no referent for them should be expected. The
significance of this flag to the inferencer will be discussed in section
8.5.1. '

When either of the two sources of negation is found, a register is set to
record that the current clause must be negated. From that point on, any
noun phrase with the quantifier 'ANY' is flagged in the above manner; if
the negation is introduced by the use of 'NOBODY' or similar, the
corresponding token is also flagged in this way; and if any of the tokens
introduced by VERBS-DUMMIES ramain in the conceptual structure when the
analysis of the clause is complete, they too are flagged.

Negation is a complex topic, and has received a great deal of attention
from linguists. The treatment outlined above is offered as an engineering
solution to a complex problem.

5.3.5) Tensing structures

The interpretation of tensing as reflecting relationships between the
various points or intervals of time mentioned in a text is considered as two
separate problems, intra-sentential and inter-sentential, and different
mechanisms are used. Before discussing these separately, a brief reminder
on the representation of time is in order.

"Time tokens" represent either points in time, or intervals. Time
intervals use time points to denote their start and end points, and these
may be definite or indefinite. The relations BEFORE and AFTER may hold
between time points; and the relations DURING and -DURING provide a
shorthand for relating intervals to time points or to other intervals. Some
examples of the structures which may be generated are:

(TIME (NAMED *NOW*))

(TIME (NAMED TIMEPOINTI)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT2)))

(TIME (NAMED TIMEPOINTI)
(COMPARISON (DURING (NAMED TIMESPANI)
(TS TIMEPOINT2)
(TF *NOW*))))

(TIME (NAMED TIMEPOINT3)

(COMPARISON (BEFORE (NAMED TIMEPOINT4)
(COMPARISON (BEFORE *NOW*)))))

76

The first example illustrates the simplest possible time reference, while
the second and third examples show two ways of relating the times
TIMEPOINT1, TIMEPOINT2 and *NOW*. The third example does this by saying
that TIMESPANL embraces TIMEPOINTL, and has TimeStart = TIMEPOINT2 and
TimeFinish *NOW*., The last structure is one such as might be generated to
represent the time reference of the sentence "FRED HAD GONE TO THE PARK",
where TIMEPOINT4 is called an "intermediate time token", because it is
implicitly referenced and mediates between two "real" points. Such
intermediates play an important role in 1linking complex time references,
both between sentences and within sentences.

Inter-sentential relationships.

The most basic observation here is that sentences whose main verbs have
the same tense can be placed in a simple sequence. The use of complex
tenses, such as past perfect, indicates that the time of this sentence is
related in some other way to the time of preceding sentences. In the case
of past perfect in a predominantly simple-past narrative, for instance, the
past-perfect is earlier than the prior simple-past. For example,

JOHN WENT TO THE PARK. HE HAD QUARRELLED WITH MARY.
For such cases, the "intermediate time token" is identified with the main
time token of the previous sentence.

Questions, however, cannot be related to previous sentences at all; the
determination of time references for questions must be performmed by
inference, and is discussed in Chapter 8.

Unfortunately, there does appear to be a class of verbs for which these
general rules are invalid, which is illustrated by the example:
JOHN ATE A BANANA. IT TASTED GOOD.
I have not pursued this problem.

Intra-sentential relationships.

The analyser described here attempts to use the information conveyed by
tenses and tense shifts, and to assign time tokens to the various semantic
structures which represent the clauses and phrases of a sentence. However,
this sub-problem is beset with many difficulties, and the analyser is not
entirely successful in this respect.

Given that time tokens refer either to points in time or to intervals,
and that BEFORE, AFTER and DURING relationships may be represented, the
problem is to determine, using the tense, and occasionally the form, of
verbs in clauses, the relationships between the times to which they refer.

The mechanism used here involves the use of two "registers", which I call
this-time and curr-time. "this-time" corresponds to the time token for an
individual clause, and "curr-time" indicates a gross temporal environment.
At the beginning of the processing of a sentence, both are set to NOW. When
a verb is located, "this-time" is replaced with a new time token, and the
tense of the verb is used to determine the relationship between "this-time"
and "curr-time". When an embedded clause is to be processed, "curr-time"
for this clause is set to the time token held in "this-time" for the major
clause, and the tense of the verb of the embedded clause is used to relate
these two times in much the same way.

77

There are many phenomena which cannot be handled by such a simple

technique, and which unfortunately require divers modifications to the basic
scheme. These I discuss individually, with the aid of examples. It will be
noted that several unsolved problems remain in this domain.

a)

b)

c)

d)

e)

JOHN EXPECTED MARY TO GO TO THE PARK.

This is an example of a verb, EXPECT, which explicitly relates the times
of main clause and subordinate clause. To handle this, it is necessary
to set up "curr-time" for the embedded clause to be AFTER "this-time" for
the main clause. This is done by using the function PASS-TIME in the
call to the request macro PLACE-SUBJECTLESS-CLAUSE; this is done very
easily in the AD-HAC framework, and this ease is one of the strongest
points in favour of the request-based approach to parsing.

JOHN KNEW MARY WAS AT THE PARK or JOHN KNEW MARY WAS HITTING BILL.
In the case of embedded clauses which have simple tenses and either
denote states or have a verb in progressive form, the tense of the verb
is ignored and the time token used is the same as that for the major
clause. The mechanisms for recognising these situations and taking
appropriate steps are built into the basic time-manipulating functions.

DID JOEN GO TO THE PARK? or JACK CAME TUMBLING DOWN.

In section 5.3.2, it was noted that yes/no questions cause the auxiliary
to be reunited with the rest of the verb group. Thus in the first of
these examples, the constituent 'DID GO' appears. This constituent will
have a tense, and it is this tense which must be considered rather than
the tense of 'DID' alone; as may be seen in the sentence "HAS FRED GONE
TO THE PARK?". Since no semantic structure is built until the main verb
is encountered, these cases present no trouble. However, in the case of
"JACK CAME TUMBLING DOWN" the roles are reversed: TUMBLING provides the
semantic structure, but the time information is derived from CAME alone.
The problem here is to suppress the effect of the tensing of a verb; and
this requirement is met elsewhere, with the conjunction WHEN, and also
with modal verbs, such as START and STOP. Therefore, rather than
overcome the problem by arranging that the ATN grammar should recognise
'COME TUMBLING' as a separate constituent, the functions which manipulate
time may be suppressed, by setting a special register.

THE BANANAS YOU GAVE ME WERE ROTTEN.

When a relative clause modifies the subject of a sentence, or of any
subordinate clause, the basic problem is that the time token with which
the relative clause is to be compared is not yet known. Where all verbs
have a simple tense, it is normally impossible to determine the temporal
relationships except by inference, but in those cases where a complex
tense is wused, the implied intermediate time should be identified with
another time-reference in the sentence. The analyser is currently unable
to do this.

MARY WAS HITIING BILL.

Progressive form, except in cases covered above (subsection (b)), usually
indicates that the time referred to was an interval. This is not true
for this example; rather the influence here is to indicate repetition.
This problem has not been studied.

78

f) THEY HIT THEIR CHIIDREN.
The verb HIT is rather special, insofar as its stem is identical with
both the simple past form, and with the past participle. The example
sentence illustrates the difficulty of determining time reference in such
a case, since, in isolation, this sentence may be interpreted as
reporting either an isolated event or a habitual activity. The general
use of present tense to denote habit is not handled by the analyser.

g) MARY WAS GOING TO HIT BILL.
Reference to future times, even future with respect to some past time, is
seldom straightforward. Often its use implies either intention, as in
the above example, or that an event is "on the way". In either case, it
often implies that the predicted event did not happen or could be
averted. The analyser does not currently represent this information.

The interpretation of tensing patterns in AD-HAC is based on a set of
standard rules; when these rules break down, the inherent flexibility of
the request-based parsing approach comes to the rescue by pemitting
non-standard operations to be performed. This may be clearly seen in case
(a) above: the request macros provide a set of actions for standard
syntactic contexts, but these may be viewed as default actions which are
easily overridden by providing extra arguments to the macros. By exploiting
this flexibility, a wide range of phenomena can be easily handled.

5.3.6) Suggestion of inferences.

The 'ideal' NL system would have a fully integrated analysis and
inference system: AD-HAC does not, but rather tries to factor out the
linguistic aspects of understanding from the inferential aspects. One of
the areas where this factorisation can be problematic concerns the use of
words, or turns of phrase, which carry implications.

The point may be illustrated with two examples:
(1) "DIDN'T JOHN GO TO THE PARK?"
carries, over and above its literal interpretation as a yes/no question, the
implication that the speaker supposed that John had gone.
(ii) "JOHN TOOK MARY A BOOK" vS. "JOHN TOOK A BOOK TO MARY"
suggests that John then gave the book to Mary.

While it is not clear that the unification of linguistic and extra-
linguistic information would be of much help in accounting for these
phenomena, it remains true that the separation of analysis from inference
poses problems in cases such as these: the analyser, having access to the
actual words used, should present the inferencer with a representation of
the meaning of the words; but in these cases, there are two meanings, and
furthermore they are meanings of different kinds. Simple conjunction of the
various meanings is inadequate, at least when the representation language
has no notion of “prcbably true".

The approach adopted here is to provide the analyser with a broader
channel of communication with the inferencer. 1In addition to passing across
a CDform which encodes the literal meaning of sentences read, it may also
suggest inferences. Inferences suggested in this fashion are not yet used
by the inference mechanism, but it is anticipated that they will have much
the same status as the regular conceptualisations representing sentence
meaning, and that the existing suggestion mechanism will have to be extended
to associate probability ratings to the inferences suggested.

79

5.4) Shortcomings, and further development.

As noted at various points in the body of the chapter, my analyser is not
capable of handling the full range of English. It is my belief that its
defects could be corrected without making fundamental alterations to the
system; but naturally this cannot be proved. Below, I discuss some of the
more obvious areas where further work needs to be undertaken.

i) Constraints on pronoun reference, and reflexive pronouns.

ii)

In recent years, there has been a great deal of work in linguistics
aiming at deriving rules which would reproduce judgements of
acceptability of sentences where some pronoun is to be read as
coreferential with some other noun phrase in the same sentence. For
instance, [Culicover, 1976] has proposed a set of constraints,
expressed in terms of syntactic structures within the transformational
paradigm, upon the possible referents for pronouns. Though the
analysis program described above does not build a syntactic
representation of the whole sentence, much syntactic information is
implicit in the pattern of embedding and unembedding; and this
information would not need to be made explicit in order to derive the
constraints he proposes.

Pronoun reference is not carried out by the analyser at all, but by
the inference mechanism which inspects the semantic structures produced
by the analyser. It is clearly desirable for the analyser to give
further information, where applicable, about those referents which
should not be considered at all.

Similarly, the analyser should inform the inference mechanism that a
reflexive pronoun must be coreferential with some other token in the
same sentence. Where there is only one compatible token, the analyser
could simply replace the token for the reflexive pronoun with the other
token; but there are cases where several such tokens exist, and
therefore the inferencer must resolve the token.

The two problems, of mandatory coreference and of forbidden
coreference, would require a further broadening of the channel between
the analyser and the inferencer, in addition to extension of the
analyser to decide what extra information should be passed.

Participial premodifiers.

At present, phrases such as "A SWINGING LAMP" or "A WASHFED CAR" are
not handled. Their analysis would not, I believe, involve the addition
of any new mechanisms; embedding and unembedding, together with the
application of constraints, would suffice for this purpose.

iii) Abstract nouns.

Abstract nouns must be represented in the same manner as the verbs
to which they correspond: similar conceptual structures must be built
to represent, for example,

80

iv)

v)

FRED'S DEATH
FRED DIED.

FRED'S DECISION TO ASK MARY FOR THE BOOK
FRED DECIDED TO ASK MARY FOR THE BOOK.

THE REVELATION OF THE COMPANY'S FINANCES
THE COMPANY'S FINANCES WERE REVEALED.

Since nouns may carry requests in the same way as werbs do, the
analysis of abstract nouns could be implemented in the same manner;
the principal problem is that, since structures are to be built rather
than simple tokens, strong constraints must be applied when they are
placed into the semantic representations built. Also, the presence of
a structure of this sort will often influence the interpretation of
subsequent words. Whilst these interactions are the raison d'etre of
the request mechanism, their variety is daunting. Nevertheless, it is
planned that the analyser will be able to handle abstract nouns in the
future; and it is expected that the philosophy of the analyser's
construction will remain unchanged.

"HOW" questions.

Questions "how" may be analysed in different ways. In terms of the
semantic representation used here, they may relate to the "instrument"
role of events, or to the "antecedent" role of any "cause"; or to
"manner". Except by knowing the answer, there seems to be no way of
knowing which is the correct analysis. In this situation, it appears
to be wise not to make a commitment to any particular analysis, but
rather to indicate, by the use of some convention, that information
belongs in the analysis, but fills an unknown role; and to let the
inference mechanism decide. A discussion of "how" questions may be
found in [Iehnert, 1978].

Garden paths

One of the topics discussed by Marcus is the analysis of garden path
sentences, for which he gives a good explanation in terms of the
parsing model he has developed [Marcus, 1980]. Among his examples are

THE HORSE RACED PAST THE BARN FELL.
THE BOAT FLOATED DOWN THE RIVER SANK.

These two are examples of a wide range of garden path sentences with
one common property: the first verb (RACED or FLOATED) can be seen as
either a past participle or as a simple past form; and it is at first
perceived as a simple past, and hence as the main verb of the sentence.
It is also noteworthy that there is no semantic anomaly in taking the
first verb as the wain verb; the trouble comes later, when an
extraneous word canmnot be fitted in to the existing syntactic
framework. The correct analysis involves taking these words to be past
participles introducing a reduced relative clause.

In AD-HAC, sentences such as these cannot be analysed either. This
is because the ATN used to isolate syntactic constituents attempts to
find only the right constituents, and for this purpose uses the
"PARSING-FAILED" test on arcs to see if any previous analysis path
successfully reached a POP state (as mentioned in section 5.2.1); and

81

when a word such as RACED can be analysed as either a participle or as
a simple past form, this test ensures that only the simple past is
seen. Therefore, sentences such as the examples above cannot be
parsed; but if the function PARSING-FAILED is overridden and all
analysis paths are taken, those sentences can be analysed.

This seems like an easy solution to the garden-path problem, but
unfortunately it is wrong: a sentence such as
"THE CARS MADE IN JAPAN ARE SMALL"
cannot be analysed either, for the same reasons as the genuine garden
paths. If this phenomenon is to be handled by AD-HAC, some further
work must clearly be undertaken.

Summary

The analyser described here tackles a large variety of phenomena in the
domain of single English sentences, and successfully builds representations
of their meaning in a formalism which is both far removed from English, and
which is hospitable to an inference mechanism. It has its limitations; but
the general framework has permitted steady expansion of its coverage of
English, and there seems no reason to suppose that its coverage will not be
further extended.

82

Chapter 6: Demonstration of the analyser.

This chapter shows AD-HAC running on three simple texts. The focus here
is on the analyser, but the other components are to some extent represented
also: the CDforms built by the analyser for the first story are passed over
to the sentence generator for paraphrasing, and are then also passed to the
inferencer.

The example texts are:

BILL AND JILL WENT TO THE ZOO. THEY GAVE THE MONKEYS SOME PEANUTS, WHICH
THEY ATE. THEY WENT TO THE RESTAURANT AND DRANK SOME TEA. JILL TOOK
BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS TALKING TO THEM.
WHAT DID SHE GIVE HIM?

JACK AND JILL WENT UP THE HILL TO FEICH A PAIL OF WATER.
JACK FELL DOWN AND BROKE HIS CROWN, AND JILL CAME TUMBLING AFTER HIM.

A MAN WAS KILLED WHEN THE CAR IN WHICH HE WAS RIDING SWERVED OFF THE
ROAD AND STRUCK A TREE.

These texts are entered one sentence at a time, in response to the prompt
"Pray continue:". Each input sentence has been placed at the top of a page
to facilitate inspection; varying amounts of program output follow.

The following pages show the program's actual output, edited in three
ways only: some reformatting has been performed, mostly involving adding
and removing blank lines to enhance legibility; some annotation has been
added, prefixed with semicolons; and a "parsing graph" for the very first
sentence - also produced by the program - has been spliced into the text.
The parsing graph appears on page 86, reduced in size to fit a page. Such
graphs were produced for the other sentences, but are too large to show here
even when photo-reduced.

The analyser normally runs faster than the timing figures shown here
would indicate. ‘The gathering of statistics about the performance of the
program, and especially the formatted printing of the constituent trees and
the conceptual analyses, inflates the time taken by a factor of
approximately 2.

83

6.1) BILL AND JILL GO TO THE %00.

This page shows the setting of a few variables whose default values are
being overridden for this run of the program, and the function MAIN being
called with a few options. These settings account for the difference in the
output shown here and that shown in the introduction. The text is the same.

@RUN HAC

NIL

*(SEIQ syntax T) This setting causes the program to display
the ATN's component analyses for sentences.

~e e

T

*(SETQ plotting T) This causes the analyser to produce graphs
showing how the analyser's "theories" led

to one another, what their preferences were,
at what level of embedding they operated,
what class of request was being tried,

and whether they were tried/untried/forgotten

T

The first of these graphs has been inserted
into the material shown here. The others
are not shown because they are too large.

B MO NE NS NG N we Ne e W

This causes the inferencer to inwvoke the
generator to express some of its inferences.

*(SETQ generation-level 1)

~e weo

1
*(MAIN A I P) This enters AD-HAC, with the options
A to print the analyser's output
I to inwoke the inferencer.
P to paraphrase sentences before
inference takes place

“e we wa we e

~e

let's go...

84

Pray continue:
BILL AND JIIIL WENT TO THE ZOO.
————— Next sentence (BILL AND JILL WENT TO

Component analysis :
(((NP BILL)
((CONJ AND)
((NP JILL)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb GO))
((PP (prep TO) (noun ZOOl))
(((end input))))))))) H

e wEe we wmE w2 we W

Analysis is

theory2l :

((EVENT (ACTOR (GROUP (1 HUMAN-BILL) (2
(ACT PTRANS)

THE 200)

This component analysis is the
structure produced by the ATN,
In this case, each string of
words has only one syntactic
analysis: 'BILL' is not in the
dictionary as a verb, but it

"does have two noun readings.

Marking the end of the sentence

The name of the winning theory
JILL)))

(OBJECT (GROUP (1 HUMAN-BILL) (2 JILL)))

(FROM DUMMY-PLACE2)
(TO ZOOl1)
(TIME (NAMED TIMEPOINT2)

(COMPARISON (BEFORE *NOW*)))))

(propernames JILL HUMAN-BILL) ;
(defrefs 7001) H

time so far =1.864 seconds (including 0.515

we NP me N8 we W

preference of winning theory is 7
Efficiency of search was 80%

Maximum depth of memory needed 2

Maximum depth of memory searched 2

WE Me WO WG w4 WO e We Wy wo

Maximum depth of stack built 3
Plotting occupied 0.247 seconds

Lists provided to give the
inferencer easy access.

seconds) + 0.000 seconds

These figures mean that, in this
case, 1.864 seconds were used
for the analysis, of which

0.515 seconds were used reading
the definition of '@Q0' from disc
and no time garbage collecting

This means that 80% of the
theories which were tried lay
on the path to the final
analysis.

One (or more) of the theories
on the successful analysis path
fell to 2nd place in the queue.
The analyser never evaluated a
theory which was placed lower
than second in the queue.

Total time taken = 2.327 seconds+0.000 seconds

.
’
°
14

85

Includes gathering and printing
all the statistics shown above.

theoryl
level ¢
pref=g¢
GET
tried

theory2
level 9
pref=g0
USE
(BILL)
tried

ty

theory4 theory3
level 0 level ¢
pref=-4 pref=2

EMBED EMBED
untried tried
it
theory6 theorys
level 1 level 4
pref=2 pref=2
GET GET
tried tried
i :
theory8 theory?7
level 1 level 9
pref=2 pref=2
USE USE
(JILL) (AND)
tried tried
!
theory9
level 1
pref=4
TRIVIAL
tried
§
theoryl@

level 1
pref=5
UNEMBED
tried

!

theoryl2 Eheoryll

level 0 level

1

pref=4 pref=5

GET GET
tried tried

|

theoryld theoryll

level 0 level
pref=4 pref=5
USE USE
(WENT) {WENT)
tried tried

theoryls
level ¢
pref=2
TRIVIAL
tried

i
theoryl6
level ¢
pref=2
USE~REG
tried

theoryl?
level 0
pref=5
GET
tried

theoryl8
level @
pref=5%

USE

(TO THE 200} -
tried

theoryl9
level ¢
pref=7
TRIVIAL
tried

theory20
level ¢
pref=7
GET
tried

!

theory2l
level ¢
pref=7
USE
accepted

1

Ne MO NE ME WE WO WO WE WA e NG Me MO NS NS WO WE N WE WS WO WM WE WE WG WO WE N NS NI We N WE W W We We We NE Ve We Ne Ne We N Ne N e e

theoryl has the standard requests for starting.
It creates one USE theory because there is one
constituent only.

theory2 applies the request which seeks a noun
phrase to start a declarative sentence. The
presence of "AND" on the constituent tree causes
the creation of an optional EMBED request, which
will swallow the word "BND", creating a GROUP
structure with the present noun phrase and the
next one.

Since "BILL" has two noun meanings, a branch
occurs: the cues associated with proper names,
and the absence of a determiner, conspire to
prefer one branch over the other, and theory4
never comes to the top of the queue and so is
never tried.

theory3 has an optional EMBED, so creates two
new theories: theory5 is not embedded, so when
"AND" is found in theory7, nothing can be done
with it and that line of processing is aborted.
The embedding that occurs in creating theory6
also swallows AND, and adds a new USE request to
find another NP. Theory6 gets an NP, and theory7
happily uses it in the group and adds an UNEMBED
request. The embedding action in theory3 also
adds a TRIVIAL request, whose sole effect is to
increase the preference score by 1l: this is done
in theory9. ‘

The unembed is optional, so two theories are
created: the path where unembedding is not done
comes to grief when it cannot use "WENT". The
path which did unembed was expecting a verb, and
so reads in its definition: this is a TRIVIAL
request (as all verb definitions are), and is
executed in theoryl5. Its effect is to build the
skeleton semantic structure, and to add various
requests which £ill in parts of that structure.
One of these is the USE-REG which picks up the
contents of the "subj" register containing the
(GROUP (1 BILL) (2 JILL)); this is done in
theoryl6.

The next constituent is picked up in theoryl7,
and used in theoryl8 by a PLACE-PP macro.

The trivial request in theoryl9 is a remnant of
a GET-PARTICLE looking for the word "AWAY", and
fails. theory20 picks up the "(((end input)))"
which marks the end of the sentence: since all

; constraints are satisifed, the analysis ends at

theory2l.

86

You said : BILL AND JILL WENT TO THE ZOO.

My version is : JILL AND BILL WENT TO A Z0O.

~8 we wa we

- we e we

Repeating the original sentence
(With all these statistics, it
is quite possible to forget
what you typed!)

This paraphrase is produced
without reference to the
original text: just the
conceptual analysis is used.

A certain precondition inference is : JILL AND BILI WERE NEAR THE PLACE FROM

WHERE JILL AND BILL WERE GOING TO A Z0O.

TR NE ME WO NI NE NS NE NP NS W we wo

The inference mechanism uses
the generator to express some
of its inferences: because
'generation-level' was set to
1, the inferencer asks for
only the more interesting
inferences to be expressed.
The generator found that it had
to indicate "THE PLACE", and
so it asked the inferencer for
some qualifying information:
this is expressed by the
relative clause.

A certain resultative inference is : JILL AND BILL ARRIVED AT A Z0O.

An alternative possible motivation inference is : JILL AND BILL DESIRED THAT
JILL AND BILL NOT BE NEAR THE PLACE,FROM WHERE THEY HAD GONE TO A Z0O.

87

WS NE MO MO NE W WP w2 WO w8

There was another "motivation"
inference, but the inferencer
did not consider it interesting
enough to ask for it to be
expressed in English. However,
it does want this expressed,
and, recognising that
motivation inferences are often
mutually exclusive, it calls
this "An alternative motivation"

Pray continue:
THEY GAVE THE MONKEYS SOME PEANUTS, WHICH THEY ATE.
————— Next sentence (THEY GAVE THE MONKEYS SOME PEANUTS , WHICH THEY ATE)

Component analysis :
(((NP DUMMY-UNKNOWNSL)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb GIVE))
((NP MONKEYS1)
((NP PEANUTS)
((isolated~-word 1!,)
((RELNP RELPRON1)
((NP DUMMY-UNKNOWNSZ2)
((VP(tense PAST)
(voice ACTIVE)

(form SIMP)
(neg NIL)
(modal NIL)
(verb EAT))
(((end input))))))))))))
Analysis is
theory71
((EVENT (ACTOR DUMMY-UNKNOWNSL)
(ACT ATRANS)

(OBJECT (FOCUS (EVENT OBJECT))
(EVENT (ACTOR DUMMY~UNKNOWNS2)
(ACT INGEST)
(OBJECT PEANUTS3)
(TIME (NAMED TIMEPOINTI2)
(COMPARISON (BEFORE *NOW*)))))
(FROM DUMMY-UNKNOWNSL1)
(TO MONKEYS1)
(TIME (COMPARISON (AFTER TIMEPOINT2))
(NAMED TIMEPOINT9)
(COMPARISON (BEFORE *NOW*)))))
(pronouns DUMMY~UNKNOWNS2 DUMMY-UNKNOWNS])
(defrefs MONKEYSL)
(indefrefs PEANUTS3)

time so far =4.069 seconds (including 0.334 seconds) + 1.686 seconds
preference of winning theory is 6

Efficiency of search was 43%

Maximum depth of memory needed 4

Maximum depth of memory searched 4

Maximum depth of stack built 5

Plotting occupied 0.949 seconds

Total time taken = 5.214 seconds+1.686 seconds

88

You said : THEY GAVE THE MONKEYS SOME PEANUTS,WHICH THEY ATE.

My version is : SOME ENTITIES GAVE THE PEANUTS,WHICH SOME ENTITIES WERE
EATING,TO SOME MONKEYS.

TIMEPOINTY was "time of giving", and TIMEPOINT12 was "time of eating"
The analyser could not determine how these times should be related.
Consequently, the generator finds no information to help its tense
selection processes, and so uses present progressive, indicating that
the two times might be the same.

TIMEPOINT2 was the time of the previous sentence, and the analyser
assumes that successive sentences in simple past tense relate
progressively later times.

At this point, no pronouns have been resolved. The generator uses the
word 'ENTITIES' to indicate that it doesn't really know what it is
talking about: this is a deliberate policy, since use of words like
'THEM' or 'THEY' can mislead people into thinking that the program
knows more than it actually does.

NME NE N WO WS MO W e WS me We W o

A certain precondition inference is : IF IT WAS THE MONKEYS WHICH ATE SOME
PEANUTS THEN THE MONKEYS WOULD HAVE THE PEANUTS.

A certain precondition inference is : IF IT WAS JILL AND BILL WHO ATE SOME
PEANUTS THEN JILL AND BILL WOULD HAVE THE PEANUTS.

A certain precondition inference is : IF IT WAS JILL AND BILL WHO GAVE SOME
PEANUTS TO SOME MONKEYS THEN JILL AND BILL WOULD HAVE THE PEANUTS.

A certain resultative inference is : IF IT WAS JILL AND BILL WHO GAVE SOME
PEANUTS TO SOME MONKEYS THEN THE MONKEYS WOUID ACQUIRE THE PEANUTS.

A possible follevent inference is : SOME MONKEYS STARTED EATING SOME
PEANUTS.

Pronoun resolution : IT WAS JILL AND BILL WHO GAVE SOME PEANUTS TO SOME
MONKEYS.

Pronoun resolution : IT WAS THE MONKEYS WHICH ATE SOME PEANUTS.

89

Pray continue:
THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.
————— Next sentence (THEY WENT TO THE RESTAURANT AND DRANK SOME TEA)

Component analysis :
(((NP DUMMY-UNKNOWNS3)
((VP(tense PAST)

(voice ACTIVE)

(form SIMP)

(neg NIL)

{modal NIL)

(verb GO))

((PP (prep TO) (noun RESTAURANTL))

((CONJ AND) Note that the ATN's analysis does not
((VP(tense PAST) distinguish in any way the role
(voice ACTIVE) of this conjunction: the analysis is

s NE NS NP we we we

(form SIMP) the same as for the conjunction in
(neg NIL) the first sentence, which served
(modal NIL) there to conjoin nominals. Here, it
(verb DRINK)) conjoins clauses.

((NP TEA)

(((end input))))))))))

Bnalysis is
theory3l
((CONJUNCT (FIRST (EVENT (ACTOR DUMMY-UNKNOWNS3)
(ACT PTRANS)
(OBJECT DUMMY-UNKNOWNS3)
(FROM DUMMY~PLACEA4)
(TO RESTAURANT1)
(TIME (COMPARISON (AFTER TIMEPOINT9))
(NAMED TIMEPOINT4L1)
(COMPARISON (BEFORE *NOW*)))))

(SEQOND (EVENT (ACTOR DUMMY-UNKNOWNS3) ; nhote that the same
(ACT INGEST) ; subject is used
(OBJECT TEFAl) ; for both clauses.

(TIME (COMPARISON (AFTER TIMEPOINT9))
(NAMED TIMEPOINT44)
(COMPARTSON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT41)))))))
(pronouns DUMMY-UNKNOWNS3)
(defrefs RESTAURANTL)
(indefrefs TEAL)

time so far =2.089 seconds (including 0.413 seconds) + 0.000 seconds
preference of winning theory is 10

Efficiency of search was 80%

Maximum depth of memory needed 2

Maximum depth of memory searched 2

Maximum depth of stack built 3

Plotting occupied 0.333 seconds

Total time taken = 2.636 seconds+0.000 seconds

90

You said : THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.

My version is : SOME ENTITIES MOVED TO A RESTAURANT AND THOSE ENTITIES DRANK
SOME TEA.

A certain precondition inference is : THE ENTITIES,WHICH WERE MOVING TO A
RESTAURANT,WERE NEAR SOMEWHERE,OTHER THAN THE RESTAURANT.

A certain resultative inference is : THE ENTITIES,WHICH HAD MOVED TO A
RESTAURANT ,ARRIVED AT THE RESTAURANT.

An alternative possible motivation inference is : IF IT WAS JILL AND BILL
WHO MOVED TO A RESTAURANT THEN JILL AND BILL WOULD DESIRE THAT THEY NOT BE
NEAR THE PLACE,WHERE THEY HAD BEEN.

A certain precondition inference is : IF IT WAS JILL AND BILL WHO MOVED TO A
RESTAURANT THEN JILL AND BILL WOULD HAVE SOME TEA.

An alternative possible motivation inference is : IF IT WAS THE MONKEYS
WHICH MOVED TO A RESTAURANT THEN THE MONKEYS WOULD DESIRE THAT THEY NOT BE
NEAR THE PLACE,WHERE THEY HAD BEEN.

A certain precondition inference is : IF IT WAS THE MONKEYS WHICH MOVED TO A
RESTAURANT THEN THE MONKEYS WOUID HAVE SOME TEA.

Pronoun resolution : IT WAS JILI, AND BILL WHO MOVED TO A RESTAURANT.

91

Pray continue:

JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS TALKING TO

THEM.

———--Next sentence (JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE
TRAMP WHO WAS TALKING TO THEM)

Component analysis :
(((NP JILL)
((VP(tense PAST)
(voice ACTIVE)
(foxrm SIMP)
(neg NIL)
(modal NIL)
(verb TAKE))
((NP(FOCUS (STATE THING))
(STATE (STATENAME POSS) (THING MONEY) (VAL BILL)))
((PP (prep FROM) (noun DUMMY-MALEL))
((CONJ AND)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb GIVE))
((NP DUMMY-THINGL)
((PP (prep TO) (noun TRAMP1))
((RELNP RELPRON1)
((VP(tense PAST)
(voice ACTIVE)
(form PROG)
(neg NIL)
(modal NIL)
(verb TAIK))
((PP (prep TO) (noun DUMMY-UNKNOWNS4))
(((end input))))))
((WHNP ?DUMMY-HUMAN4)
((VP(tense PAST)
(voice ACTIVE)
(form PROG)
(neg NIL)
(modal NIL)
(verb TAIK))
((PP (prep TO) (noun DUMMY-UNKNOWNS4))
(((end input)))))))N)IN))

92

Analysis is

theory77

((CONJUNCT (FIRST (EVENT (ACTOR JILL)
(ACT ATRANS)

(OBJECT (FOCUS (STATE THING))
(STATE (STATENAME POSS)

(TO JILL)

(THING MONEY3)
(VAL HUMAN-BILL)
(TIME (NAMED TIMEPOINT72)
(COMPARISON
(BEFORE *NOW*)))))

(FROM DUMMY-MALEL)
(TIME (COMPARISON (AFTER TIMEPOINT44))
(NAMED TIMEPOINT72)
(COMPARISON (BEFORE *NOW¥)))))
(SECOND (EVENT (ACTOR JILL)
(ACT ATRANS)
(OBJECT DUMMY-THINGL)

(FROM JILL)
(TO (FOCUS
(EVENT

(EVENT ACTOR))

(ACTOR TRAMP1)

(ACT MTRANS)

(MOBJECT CONCEPTSIL)

(FROMCP TRAMPL)

(TOCP DUMMY-UNKNOWNS4)

(TIME (NAMED TIMEPOINT75)
(COMPARISON (BEFORE *NOW*))
(COMPARISON

(AFTER TIMEPOINT72)))))

(TIME (COMPARISON (AFTER TIMEPOINT44))
(NAMED TIMEPOINT75)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT72)))))))
(pronouns DUMMY-UNKNOWNS4 DUMMY-THINGlL DUMMY-MALEL)

(propernames HUMAN-BILL JILL)
(defrefs TRAMP1)
(indefrefs MONEY3)

time so far =6.375 seconds (including 0.687 seconds) + 1.568 seconds

preference of winning theory is 17
Efficiency of search was 60%
Maximum depth of memory needed 3
Maximum depth of memory searched 5
Number of theories forgotten 1
Plotting occupied 1.128 seconds

Total time taken = 7.766 seconds+l.568 seconds

93

You said : JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS
TALKING TO THEM,

My version is : JILL TOOK BILL'S MONEY AND JILL GAVE SOMETHING TO THE TRAMP,
WHO WAS STATING SOMETHING.

A certain precondition inference is : THE ENTITIES,TO WHICH A TRAMP HAD SAID
SOMETHING,WERE NEAR THE TRAMP.

A probable motivation inference is : A TRAMP DESIRED THAT THE ENTITIES,TO
WHICH THE TRAMP HAD SAID SOMETHING,PONDER.

A probable instrumental inference is : A TRAMP SPOKE.

A probable resultative inference is : IF THE ENTITIES,TO WHICH A TRAMP WAS
SAYING SOMETHING,LISTENED TO THE TRAMP THEN THOSE ENTITIES WOULD PONDER.

A possible normative inference is : IF THE ENTITIES,TO WHICH A TRAMP WAS
SAYING SOMETHING,DIDN'T LISTEN TO THE TRAMP THEN HE WOULD START TO BE ANGRY
WITH THOSE ENTITIES.

A certain precondition inference is : THE MALE,FROM WHOM JILL WAS TAKING
SOME MONEY ,HAD THE MONEY .

A certain resultative inference is : JILL ACQUIRED SOME MONEY.

A certain motivation inference is : JILL WANTED SOME MONEY.

A probable resultative inference is : IF THE MALE,WHO HAD SOME MONEY,DIDN'T
GIVE JILL PERMISSION TO TAKE THE MONEY THEN JILL WOUID BE REMORSEFUL.

A probable normative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN
SOME MONEY ,THOUGHT THAT ‘THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT
THEN THAT MALE WOULD TELIL THE POLICE THAT THAT PERSON TOOK IT.

A certain nomative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN SOME
MONEY , THOUGHT THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT THEN
THAT MALE WOULD WANT IT.

A probable resultative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN
SOME MONEY , THOUGHT THAT IT BE JILL WHO TOOK THE MONEY THEN THAT MALE WOUID
HOPE TO TAKE IT FROM JILL.

94

B certain normative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN SOME
MONEY ,DIDN"T THINK THAT IT BE JILL TOOK THE MONEY THEN THAT MALE WOULD START
TO DESIRE THAT HE KNOW.

A certain precondition inference is : JILL HAD THE THING WHICH JILL WAS
GLVING TO A TRAMP,

A certain resultative inference is : A TRAMP ACQUIRED THE THING WHICH JILL
WAS GLVING TO THE TRAMP.

Pronoun resolved : IT WAS BILL FROM WHOM JILL TOOK SOME MONEY.

Pronoun resolved : IT WAS THE MONEY WHICH JILL GAVE TO A TRAMP.

Pronoun resolved : IT WAS JILL AND BILL TO WHOM A TRAMP SAID SOMETHING.

95

Pray continue:
WHAT DID SHE GIVE HIM?
--—--Next sentence (WHAT DID SHE GIVE HIM)

Component analysis :
(((RELNP RELPRONL)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb DO))
((NP DUMMY-FEMALEL)
((VP(tense PRES)
(voice ACTIVE)
(form UNTENSED)
(neg NIL)
(modal NIL)
(verb GIVE))
((NP DUMMY-MALE2)
(((end input))))))))
((WHNP ?DUMMY-THING4)
{(VP(tense PAST)
{(voice ACTIVE)
{form SIMP)
(neg NIL)
(modal NIL)
{(verb DO))
((NP DUMMY-FEMALEL)
((VP(tense PRES)
(volce ACTIVE)
(form UNTENSED)
(neg NIL)
(modal NIL)
{(verb GIVE))
((NP DUMMY-MALEZ2)
(((end input)))))))))

96

Analysis is
theory40
((FOCUS (EVENT OBJECT))
(EVENT (ACTOR DUMMY-FEMALEL)
(ACT ATRANS)
(OBJECT ?DUMMY-THING4)
(FROM DUMMY-FEMALEL)
(TO DUMMY-MALE2)
(TIME (NAMED TIMEPOINT145)
(COMPARISON (BEFORE *NOW*)))))
(pronouns DUMMY-MALE2 DUMMY-FEMALEL)
(queries ?DUMMY-THING4)

time so far =3.519 seconds (including 0.278 seconds) + 1.654 seconds
preference of winning theory is 6
Efficiency of search was 52%
Maximum depth of memory needed 2
Maximum depth of memory searched 2
Nuber of theories forgotten 1
Plotting occupied 2.170 seconds
Total time taken = 5.918 seconds+3.334 seconds
You said : WHAT DID SHE GIVE HIM.

My version is : WHAT DID A FEMALE GIVE TO A MALE?

A certain precondition inference is : THE FEMALE,WHO WAS GIVING SOMETHING TO
A MALE,HAD THAT THING.

A certain resultative inference is : THE MALE,WHO WAS RECEIVING
SOMETHING,ACQUIRED THAT THING.

Pronoun resolved : IT WAS JILL WHO GAVE SOMETHING TO A MALE.
Answering question (1): JILL GAVE SOME MONEY TO A TRAMP.
Pray continue:

(Returning to Lisp...

Note: The inference processes will be demonstrated in Chapter 9, using
this same example, and taking for granted the behaviour of the analyser and
of the generator.

97

6.2) JACK AND JILL WENT UP THE HILL TO FETCH A PAIL OF WATER.

This well-known story has to be modified for AD-HAC to handle it; the
traditional second line is
JACK FELL DOWN AND BROKE HIS CROWN, AND JILL CAME TUMBLING AFTER.
Unfortunately, AD-HAC's analyser cannot handle this as it stands: it
expects something to follow the word "AFTER". Further work would enable the
analyser to handle the unedited text. Meanwhile, the simplest modification
is to add the word "HIM", which is the approach I have adopted here.

There are however some tricky points in this text, which AD-HAC deals
with quite successfully. The use of the purposive TO-complement in the
first sentence, the two ways of using the word "AND", and the expression
"CAME TUMBLING", are all successfully handled.

The initial variable settings are not shown for this example. The
CDforms generated for these two sentences have been reformatted in order to
fit them onto these pages, and multiple specifications of time relationships
have in some cases been eliminated for the same reason. It must be
emphasised however that no substantive alterations have been made.

Pray continue:

JACK AND JILL WENT UP THE HILL TO FETCH A PAIL OF WATER.

————— Next sentence (JACK AND JILL WENT UP THE HILL TO FEICH A PAIL OF
WATER)

Component analysis :
(((NP JACK)
((CONJ AND)
((NP JILL)
((VP(tense PAST)

(voice ACTIVE)

(form SIMP)

(neg NIL)

(modal NIL)

(verb GO))

((PP (prep UP) (noun HILLL))

((VP(tense PRES)
(voice ACTIVE)
(form INF)
(neg NIL)
(modal NIL)
(verb FEICH))
((NP PAIIL)
((PP (prep OF) (noun WATER))
(((end input))))))))))N)

98

Analysis is
theory54
((CAUSE
(ANTECEDENT
(STATE
(STATENAME MIOC)
(INCP (GROUP (1 JACK) (2 JILL)))
(TIME (NAMED TIMEPOINTZ2)
(COMPARISON (BEFORE *NOW*)))
(MOBJECT
(CAUSE
(ANTECEDENT
(EVENT (ACTOR (GROUP (1 JACK) (2 JILL)))
(ACT PTRANS)
(OBJECT (GROUP (1 JACK) (2 JILL)))
(FROM DUMMY-PLACE2)
(TO (FOCUS (STATE THING)) ;
(STATE (STATENAME PART) ;
(THING *HIGHPART*1) : below
(VAL HILLL) H
(TIME (NAMED TIMEPOINTZ2)))) ;
(TIME (NAMED TIMEPOINT2))))
(RESULT
(EVENT (ACTOR (GROUP (1 JACK) (2 JILL)))
(ACT PTRANS)
(OBJECT
(GROUP
(1 (GROUP (1 JACK) (2 JILL)))
(2 (FOCUS (STATE THING))
(STATE (STATENAME QUANTITY)
(THING WATERL)
(VAL *PAILFUI*1)
(TIME (NAMED TIMEPOINT3))))))
(TO DUMMY-PLACE3)
(FROM DUMMY-PLACE4)
(TIME (NAMED TIMEPOINT3)
(COMPARISON
(AFTER
(NAMED TIMEPOINT2))))
(ABILITY CAN}))))))
(RESULT
(EVENT (ACTOR (GROUP (1 JACK) (2 JILIL)))
(ACT PTRANS)
(OBJECT (GROUP (1 JACK) (2 JILL)))
(FROM DUMMY—-PLACEZ)
(TO *HIGHPART*1)
(TIME (NAMED TIMEPOINT2)
(COMPARISON (BEFORE *NOW*)))))))
(propernames JILL JACK)
(defrefs HILLL)
(indefrefs WATERL *PAILFUI*1)

; The underlining of *HIGHPART*1 indicates that the token shown is
; embedded in a modifying structure which has already been shown.

99

time so far =5.698 seconds (including 0.794 seconds) + 0.000 seconds
preference of winning theory is 4

Efficiency of search was 63%

Maximum depth of memory needed 3

Maximum depth of memory searched 3

Maximum depth of stack built 5

Total time taken = 5.939 seconds+0.000 seconds

You said : JACK AND JILL WENT UP THE HILL TO FEICH A PAIL OF WATER.

My version is : JILL AND JACK WENT TO A HILL'S UPPER REACHES IN ORDER TO
CONVEY THE *PAILFUL*1 WATER.

The generator has placed a bit of CD structure into the sentence!
This has occurred because the state QUANTITY is not known to the
generator: when the generator encounters unknown states, it treats
them as communicating some information which should be expressed as
an adjective. Clearly, the generator should be told about QUANTITY.

~e we w2 we o

100

Pray continue:

JACK FELL DOWN AND BROKE HIS CROWN, AND JILL CAME TUMBLING AFTER HIM.

————— Next sentence (JACK FELL DOWN AND BROKE HIS CROWN , AND JILL CAME
TUMBLING AFTER HIM)

Component analysis :
(((NP JACK) '
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb FALL))
((isolated-word DOWN)
((CONJ AND)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
{(modal NIL)
(verb BREAK))
((NP(FOCUS (STATE THING))
(STATE (STATENAME POSS)
(THING CROWN)
(VAL DUMMY-MALEL)))
((isolated-word !,)
{ (CONJ AND)
((NP JILL)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIIL)
(verb COME))
((NP TUMBLING)
((CONJ AFTER)
((NP DUMMY-MALE2)
(((end input))))))
{(VP(tense PRES)
(voice ACTIVE)
(form PARTICIPLE)
(neg NIL)
(modal NIL)
(verb TUMBLE))
((CONJ AFTER)
((NP DUMMY-MALE2)
(((end input))))))))))N)IN)

101

Bnalysis is

theory88
((CONJUNCT
(FIRST
(EVENT (ACTOR *GRAVITY*)
(ACT PTRANS)
(OBJECT JACK)
(FROM DUMMY-PLACES)
(TO *GROUND*)
(TIME (NAMED TIMEPQOINT4)
(COMPARISON (BEFORE *NOW*)))))
(SHOOND
(CONJUNCT
(FIRST

(CAUSE

{ ANTECEDENT

(EVENT (ACTOR JACK)
(ACT DO)
(TIME (NAMED TIMEPOINTG)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT4)))))
(RESULT

(STATE (STATENAME PSTATE)
(THING (FOCUS (STATE THING))
(STATE (STATENAME POSS)
(THING PATE2)
(VAL DUMMY-MALEL)
(TIME (NAMED TIMEPOINT®))))
(VAL (LOWERBY 4))
(TIME (NAMED TIMEPOINTG)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT4)))))))
(SEQOND (EVENT (ACTOR *GRAVITY*)
(ACT PTRANS)
(OBJECT JILL)
(FROM DUMMY-PLACES)
(TO *GROUND*)
(TIME (COMPARISON
(AFTER ‘
(FOCUS (EVENT TIME))
(EVENT (ACTOR *GRAVITY*)
(ACT PTRANS)
(OBJECT DUMMY-MALE2)
(FROM DUMMY-PLACES)
(TO *GROUND*)

(TIME (NAMED TIMEPOINT9)))))

(NAMED TIMEPOINT7)
(COMPARISON (BEFORE *NOW*))
(COMPARISON (AFTER TIMEPOINT4))
(COMPARISON (AFTER TIMEPOINT6)))))))))
(pronouns DUMMY-MALE2 DUMMY-MALEL)
(propernames JILL JACK)
(indefrefs PATE2)

102

time so far =8.390 seconds (including 0.916 seconds) + 1.569 seconds
preference of winning theory is 19

Efficiency of search was 58%

Maximum depth of memory needed 4

Maximum depth of memory searched 4

Number of theories forgotten 1

Total time taken = 8.625 seconds+1.569 seconds

You said : JACK FELL DOWN AND BROKE HIS CROWN,AND JILL CAME TUMBLING AFTER
HIM.

My version is : JACK FELL DOWN AND JACK DAMAGED A MALE'S PATE AND JILL FELL
DOWN AFTER A MALE FELL DOWN.

Pray continue:
(Returning to Lisp...

Note: The inferencer to be described in Chapter 8 has not yet been
equipped with sufficient inference networks to handle this simple story. 1In
particular, no inferences are yet drawn from the state MIOC. Since the
representation of the first sentence has an MIOC as one of its principal
elements, the inferencer's performance on this story is not particularly
impressive.

6.3) A MAN WAS KILLED WHEN

The final example demonstrates the analyser's strengths and weaknesses.
[Cullingford, 1978] quotes the sentence
A NEN JERSEY MAN WAS KILLED FRIDAY EVENING WHEN THE CAR IN WHICH HE WAS
RIDING SWERVED OFF ROUTE 69 AND STRUCK A TREE.
noting that ELI (the later version of Riesbeck's analyser) "was not up to
analysing the complicated, nested relative clauses this sentence contains".

AD-HAC is quite capable of handling the complex nested relative clauses,

but cannot handle the phrases

- A NEW JERSEY MAN

— FRIDAY EVENING

- ROUTE 69
The remaining pages of this chapter show the analysis built by AD-HAC for a
simplified version. The conceptual structure has again been reformatted,
and redundant time specifications have been removed.

103

Pray continue:
A MAN WAS KILLED WHEN THE CAR IN WHICH HE WAS RIDING SWERVED OFF THE ROAD
AND STRUCK A TREE.
----- Next sentence (A MAN WAS KILLED WHEN THE CAR IN WHICH HE WAS RIDING
SWERVED OFF THE ROAD AND STRUCK A TREE)
Component analysis :
(((NP MAN)
((VP(tense PAST)
(voice PASS)
(form SIMP)
(neg NIL)
(modal NIL)
(verb KILL))
((CONJ WHEN)
((NP CARL)
((RELPP (prep IN) (noun RELPRON))
((NP DUMMY-MALE]L)
((VP(tense PAST)
(volce ACTIVE)
(form PROG)
(neg NIL)
(modal NIL)
(verb RIDE))
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIIL)
(verb SWERVE))
((PP (prep OFF) (noun ROAD1))
((CONJ AND)
((VP(tense PAST)
(voice ACTIVE)
(form SIMP)
(neg NIL)
(modal NIL)
(verb STRIKE))
((NP TRER)
(((end input)))) NN

104

Analysis is
theory83
((CAUSE
(ANTECEDENT
(EVENT (ACTOR DUMMY-HUMANL)
(ACT DO)
(TIME (NAMED TIMEPOINTL)
(COMPARISON (BEFORE *NOW*)))))

(RESULT
(STATE (STATENAME HEALTH)
(THING MAN1)
(VAL -10)

(TIME (NAMED TIMESPANL)
(COMPARISON (BEFORE *NOW*))
(TS (COMPARISON
(NOTBEFORE
(FOCUS (CONJUNCT FIRST EVENT TIME))
(CONJUNCT
(FIRST
(EVENT' (ACTOR *MOMENTUM*)
{(ACT PTRANS)
(OBJECT
(FOCUS (EVENT ACTOR))
(EVENT (ACTOR CAR1)
(ACT PTRANS)
(OBJECT
(GROUP (1 CaARL)
(2 DUMMY-MALEL)))
(FROM DUMMY-PLACE2)
(TO DUMMY-PLACEL)
(TIME (NAMED TIMESPAN3)
(COMPARISON
(BEFORE *NOW*)))))
(FROM ROAD1)
(TO DUMMY—PLACESG)
(TIME (NAMED TIMEPOINTLO))))
(SECOND
(EVENT (ACTOR *MOMENTUM*)
(ACT PROPEL)
(OBJECT CAR1)
(FROM DUMMY-PLACE7)
(TO TREEL)
(TIME (NAMED TIMEPOINT14)
(COMPARISON
(AFTER TIMEPOINTL0))))))))
(NAMED TIMEPOINTIL)
(COMPARISON (BEFORE *NOW%))))))))
(pronouns DUMMY-MALEL)
(defrefs ROAD1 CAR1)
(indefrefs TREEL MANL)

105

time so far =7.764 seconds (including 1.187 seconds) + 0.000 seconds
preference of winning theory is 0

Efficiency of search was 67%

Maximum depth of memory needed 3

Maximum depth of memory searched 3

Maximum depth of stack built 5

Total time taken = 8.059 seconds+0.000 seconds

Pray continue:

(Returning to Lisp...

106

Chapter 7: Inference l: Background

Story understanding requires the application of real-world knowledge,
which often takes the form of plausible inferences as distinct from logical
inferences. Consequently, although Predicate Calculus is a proven formalism
in which deductive rules may be easily stated and applied, the non-deductive
nature of the inference rules required for understanding texts has led many
researchers to adopt different models of inference; though Hayes has argued
that logic has been dismissed for questionable reasons [Hayesl, 1977].

The inference mechanism used in AD-HAC is described in Chapter 8. It
represents a return to the style of inference adopted by Rieger in his
MEMORY program, and earlier by Charniak, but with critical modifications
designed to overcome the defects of these earlier systems. As elaborated
below, Rieger's program suffered from problems of combinatorial explosion
which left it unable to handle stories about stereotyped situations. These
problems prompted Schank and Abelson to postulate higher-level knowledge
structures, "Scripts" and "Plans", and to see the story-understanding
process as largely the matching of story statements onto these pre-stored
structures. The approach adopted in AD-HAC is rather different: where
scripts and plans emphasise higher-level knowledge, AD-HAC's inference
processes are driven mostly by low-level knowledge structures which have the
ability to invoke script-like and plan-like structures when appropriate.

In this chapter, I trace the development of these ideas by describing the
work of Charniak and Rieger, the experimental systems SAM and PAM (which
exploited scripts and plans respectively), and Rieger's later work on
conceptual overlays. For further dJdetails, the reader is referred to
[Charniak, 19721, [Rieger, 1974], [Schank and Abelson, 19771,

[Wilensky, 19771, [Cullingford, 1978], and [Rieger, 1975].

With the exception of Charniak's work, the systems described here are
based on CD; but this is not the justification for describing only these
systems. Inference is one of the central topics in artificial intelligence
research, and models of inference have taken many forms. It is necessary
therefore to restrict attention here to those earlier systems which are
particularly relevant to AD-HAC. As the next chapter shows, AD-HAC exploits
some of the key ideas which characterised the work discussed here:

inference processes associated with conceptual primitives; the
identification of classes of inference; the formulation of inference
processes as networks; the use of mundane knowledge; the use of

higher-level (script-like) knowledge; and the use of "certainty ratings" to
permit the use of uncertain information.

7.1) Charniak: Deep Semantic Processing

Charniak's work was concerned with the representation of common-sense
knowledge, and particularly with how such knowledge could be brought to bear
in the understanding of children's stories. [Charniak, 1972] describes
several aspects of a theoretical model, and a partial implementation of this
model in an unnamed computer program, which, for convenience, I shall call
DSP (for "Deep Semantic Processing").

Neither DSP, nor the theoretical model, was particularly concerned with
the processes of sentence analysis or sentence generation, but were assumed
to take as input a representation of the meaning of sentences (broadly
speaking, as sets of elementary propositions), and to return similar

107

representations as output. The inputs were intended to reflect only that
information which could be extracted from a sentence in isolation: the
model, and the program DSP, then supplied and applied knowledge of the real
world, resulting in an understanding of these sentences in context.

DSP used Micro-Planner (henceforward "uPlanner"), a language designed for
theorem-proving, based on pattern-matching and providing automatic
backtracking. Charniak's theoretical model is in fact couched in terms
which assume the availability of these features, and so corresponds in many
details to DSP, the partial implementation: I shall therefore speak of the
program and the theory as though they were the same, and I shall use the
term DSP to cover them both.

7.1.1) DSP's basic machinery \

uPlanner maintains a data base of assertions, and provides facilities for
storing, retrieving and erasing these assertions. uPlanner programs
typically work by stating goals to be achieved; theorems provide methods of
'proving' goals, often by setting up subgoals; the uPlanner system then
tries to satisfy the stated goals either by finding suitable assertions in
the data base, or by setting up and proving appropriate subgoals. Brief
descriptions may be found in [Charniak, 1972] and [Winograd, 1971]; it is
also discussed by [Sussman and Winograd, 1971] and [Bobrow and Raphael,
1974]. '

In DSP, the input representations were converted into uPlanner assertions
for storage and manipulation, while the world knowledge was held as uPlanner
theorems. In particular, uPlanner's antecedent theorems were heavily used.
An antecedent theorem has several parts, of which the most important are the
pattern and the body. In a uPlanner program, whenever an assertion is added
to the data base, the stock of antecedent theorems is scanned, and any
theorem whose pattern can be matched with the new assertion is fired, ie.
its body is executed. In practical terms, this means that an antecedent
theorem will lie in wait until a certain condition arises, and will then
spring into action and cause some program fragment - the theorem's body - to
be executed. Such program fragments may be called demons.

DSP had three principal components, called demons, base routines and
bookkeeping, and also subsidiary fact finders. In Charniak's own words,

Demons - Facts which are introduced by "concepts" occurring in the
story are called "demons" since in many cases they must wait
for further information. In such cases we can think of them
"looking" for the appropriate fact. So "not being willing
to trade" might put in a demon looking for a better offer.

Base routines - These constitute what we know about a "concept" independent
of "context". So, for example, if A gives B to C then C now
"has" B. This is not dependent on what happened earlier in
the story.

Bookkeeping ~— This does chores like keeping the data base relatively
consistent and non-redundant. So, should a person in the
story change location, we must update the old location
statement.

108

Fact finders - These are utility routines for doing standard deductions
which aren't worth asserting separately. A typical fact
finder might say, "If you want to know if person P Kknows
fact F, Jjust see if when F occurred, (or was said by some
character in the story) P was around."

Charniak argued that to have all DSP's knowledge always accessible would
have deleterious effects. Firstly, the program would be slower and would
occupy more memory space. Secondly, and much more importantly, irrelevant
knowledge could be mistakenly applied and would result in an incorrect
understanding of the story. (Indeed, special steps were taken in DSP to
remove potentially relevant demons which have outlived their usefulness,
since these might otherwise be mistakenly applied later on and cause similar
problems.) Charniak therefore introduced the notion of "concept" as a handle
on a body of knowledge potentially relevant to inputs invoking that concept.

DSP works by keeping assertions both in the data base, and on a list of
assertions "TO-BE-DONE"; to each assertion on this list, the three main
components described above are applied, and new assertions are placed at the
end of this list and processed in their turn. In discussing the order of
application of these three components, Charniak concludes that base routines
must be split into two sections, one corresponding to knowledge about simple
entailments which can be stated without knowing the referents of noun
phrases, and one corresponding to more complex knowledge - typically
manifested as the introduction of demons - which does depend on knowing
these referents. The application of these components is then shown to be

Demons

Base routines, part 1
Bookkeeping

Base routines, part 2

7.1.2) DSP's machinery in action

The sentences comprising a story were translated by hand into the input
format, which was closely related to uPlanner's assertion format, but in
which noun phrases particularly required further processing in order to
determine reference. DSP's reference determination is covered in the next
section: briefly, the conversion into the assertion format requires that
uPlanner tokens are created to represent these noun phrases, are associated
with relevant descriptive information, and are substituted in the
appropriate places.

Thus, the sentence "Janet baked a cake" might come to be represented as a
set of assertions, which can be given in a simplified form as follows:

(BAKE JANETL CAKEL)

(IS JANET] PERSON)

(NAME JANET1 JANET)

{SEX JANET1 FEMALE)

(AGE JANETIL YOUNG)

(IS CAKEL CAKE)

(DSP's actual assertions are somewhat more complicated, as they include
assertion numbers, tense markers, negation markers, assertion types and
property lists. These details are omitted for the present illustrative
purpose.)

109

*1

As each assertion is made, any preexisting demon whose pattern matches
the assertion will fire. Such demons may have been created in response to
earlier lines of the story. When the process of adding assertions is
completed, the appropriate (first part) base routines go to work. These
base routines are associated with concepts: predicates - BAKE,IS,NAME etc.
- and classes of object, eg. CAKE. The base routines each function as a
handle on knowledge specific to a oconcept: they therefore add new
assertions corresponding to entailments, and add new demons to pick up
incoming assertions and give them a context-dependent interpretation.

Whilst DSP depends crucially upon the ability of demons to anticipate
further information, Charniak demonstrates that in general demons must also
be allowed to apply to existing information. For example, the concept
'RAIN' might add a demon embodying the knowledge that any person who is
outside while it is raining will get wet. This demon will have a pattern,
say "(OUTSIDE ?PERSON)" (*1), and the body will add a new assertion, say
"(BECOME-WET ?PERSON)". In a text such as

"It was raining. Fred was outside."
this demon is added by the concept 'RAIN' introduced by the first sentence.
When the second sentence is converted to assertions, the demon fires,
matching ?PERSON with FREDL (say) and asserting that Fred becomes wet.
However, in a trivially different text,

"Fred was outside. It was raining."
the straightforward demon-application mechanisms of uPlanner would fail to
draw this conclusion. This is a pervasive problem, so DSP provides an
alternative method of demon introduction which permits demons to look back
at old assertions, as well as waiting for new ones. Without such an
ability, knowledge would have to be duplicated and scattered throughout the
gystem: in the example above, the concept 'OUTSIDE' would have to be
equipped with a demon which waits for a RAIN assertion, and then asserts
that the person outside will get wet. Naturally, Charniak sought to avoid
such duplication.

However, there is a further case where, if the system is to perform
acceptably, special steps must also be taken to avoid the repetition of
information. Demons are largely used to relate new information to old:
thus, to handle the text

"Janet was going to get a present for Jack. She needed some money"
the 'GET PRESENT' concept will introduce a demon which looks for an
assertion that the present-getter needs money, and responds by asserting
that the need for money is a vresult of (intending to) get a present.
Similarly, for

"Janet needed some money. She went to get her piggybank"
the 'GET PIGGYBANK' concept introduces a demon which looks for a need-money
assertion, and responds by asserting that the need for money is the reason
for fetching the piggybank. However, for the text

"Janet was going to get a present for Jack. She went to get her

piggybank"

both these demons would be introduced, and each would provide a partial (and
complementary) explanation for the 1line "She needed money" if it
subsequently appeared; yet no assertion that she needed money would be
made, and consequently DSP's understanding of this text would be
unsatisfactory. Charniak proposed that in circumstances such as these,
demons should be permitted to interact with other demons: such an approach
The notation "?PERSON" indicates the use of PERSON as a uPlanner variable:
pattern matching results in (temporary) assignment to this variable.

110

is preferable to adding further demons which, for example, look for various
ways of getting money. But Charniak noted that for this some classification
of demons would be necessary, since in the case of

"Janet was going to get a present for Jack. She was going to the

store."
both the 'GET PRESENT' and 'G0 TO STORE' concepts would suggest a reason for
needing money, yet both reasons taken together seem insufficient evidence
for asserting that Janet does in fact need money. Only in a case where the
text gives both a reason for and a consequence of needing money, do we have
sufficient evidence. 1In DSP, the necessary classification of demons was
never provided, though it was implicitly present in the actions the demon
would perform when running. As will be seen in section 7.2.1, Rieger did
classify the inferences made by his system; similarly, AD-HAC employs a
classification of inference types which is discussed in section 8.5. Both
classification schemes are considerably more complex than the simple
cause/result division suggested by Charniak.

7.1.3) DSP's approach to reference determination

The conversion from input format to assertion format involves the
creation and use of uPlanner tokens to represent the referents of noun
phrases, and the creation of additional assertions concerning each token.
Thus, the NP "a cake" in the sentence "Janet baked a cake" is represented by
the token CAKEL in the assertion derived from the input,

(BAKE JANET1 CAKEL)
and additional assertions are created which concern that token, eg.

(IS CAKEL CAKE)

As illustrated in the preceding section, the NP "Janet" is represented by
the token JANET1, and several further assertions involving JANETL are
generated.

In the case where previous sentences have been processed, NPs will often
be wused which refer back to previously mentioned objects or people, and it
is naturally desirable to have a single token which represents this
referent. However, NPs in later sentences will not necessarily refer back
in this manner, and so the problem arises of detemmining when two NPs do
corefer and when they do not.

DSP's first step along the path to determining referents is the
construction for each NP of a possible referent 1list (PRL). The PRL
contains all those tokens generated so far which could possibly corefer,
including others from the same sentence, subject to linguistic constraints
on pronoun coreference proposed by Iees and Klima.

Finding possible referents is a complex process. DSP takes note of the
use of definite and indefinite reference, and uses special heuristics in the
case of over-specified noun phrases. Essentially, this boils down to using
all the descriptive information available to prune the PRL until continuing
would eliminate at once all the remaining items in the PRL. Pruning is
therefore stopped, and the remaining item(s) are deemed to be those sought.
The PRL is then augmented by a newly created token in case the new NP does
not refer back to a previous token.

In the case of pronouns, the PRL contains all the previously generated
tokens which might be referred to by that pronoun, excepting those referents
forbidden by linguistic considerations. A uPlanner variable is then
created, and the PRL is associated with that variable by using uPlanner's

111

"restriction" facility; this means that the variable is restricted in the
range of tokens it will match; in this case, only tokens mentioned in the
variable's PRL can subsequently be matched with the variable.

NPs other than pronouns are also given a PRL. In cases where the PRL is
empty, a new token is created. (In section 7.1.2, I was assuming this to be
the case, and so used JANETL and CAKEL.) Where there are possible referents,
a restricted variable is used in the same manner as for pronouns.

When demons are applied to the assertions, there may be a match between
these restricted variables and some acceptable token. This relies on the
specification of demons, where a demon's own variables may be assigned
values when the demon is created: such a demon is effectively tailored to
recognise assertions specific to individual people or objects. If this
occurs, the restricted variable is assigned the value it was matched
against, and this assignment becomes permanent. By this means, the
pronominal reference - or definite reference, or whatever — is determined.
The situation may arise where two restricted variables are matched against
one another, in which case both are further restricted. Inh general, demons
are assumed to have sufficient knowledge to determine pronominal reference.
When no demon can uniquely determine a referent for such a token, DSP will
pick the most recent referent. This corresponds to the observation that a
pronoun is more likely to refer to the most recently mentioned possible
referent than to any other.

7.1.4) Summary

DSP attacked the problem of how real world knowledge could be applied to
the task of understanding stories. The theoretical model of how this should
be done corresponded in many respects to a partial implementation in
Micro-Planner; but since the implementation was never completed, it is
difficult to judge in concrete terms just how successful the model was.

One of the fundamental tenets of DSP was that inference should be
performed "on the £ly", rather than waiting until some specific task needing
inference - for instance, resolving an anaphora or answering a question -
had to be performed; and this assumption underlies most of the subsequent
work on inference.

One of the principal features of DSP was the way inferential activity
contributed to reference determination, though it should be noted that there
is a serious asymmetry in the way DSP permits demons to determine reference,
since cases may arise where several demons are looking for similar patterns:
in these circumstances, the first such demon which is matched against the
assertion makes its own idiosyncratic decision, regardless of the
preferences of other demons which are later in the queue. Charniak defends
this asymmetry on the grounds that demons are applied in inverse
chronological order of addition, saying that the most recently added demon,
and hence the first to be applied, has the most up-to-date information and
so can make the most informed decision. This argument tacitly assumes that
all demons are of equal importance, which is not the case. As will be seen
in section 7.2.3, Rieger's scheme overcomes this problem by associating
confidence ratings with inferences; and a similar method is used in AD-HAC.

112

DSP's major weakness was its rigid distinction between "real facts" and
"potential facts". uPlanner assertions were used to represent the state of
the world, and demon patterns loosely corresponded to possible inferences.
This impelled Charniak to propose that demons should be classified, and this
is an idea which was taken up in Rieger's work (as described in the next
section), and which has been pursued also in AD-HAC. Apart from motivating
this idea, however, the distinct status of demon patterns meant that DSP's
inferences had to be rather shallow, and consequently DSP could only
understand very simple stories.

7.2) Rieger: MEMORY

Rieger attempted to construct a model of human memory and human
inferential processes, wusing Conceptual Dependency as the representation
language. The resulting program, MEMORY, was linked with Riesbeck's
sentence analyser and Goldman's sentence generator, to form MARGIE. The
resulting system was therefore a more complete model of human understanding
than was Charniak's, and was certainly easier to popularise.

CD was introduced to meet the need for a language-free formalism for
representing meanings 1in a canonical fashion. One of the advantages of CD
is that the primitive ACTs do indeed capture significant (conceptual)
generalisations, and so do promote the ideal of canonical representation.
However, the very low-level nature of the representation did emphasise
several problems which Charniak has been able to sidestep. For instance,
the CD representation of

"Janet baked a cake"

is considerably more complex than Charniak's "(BAKE JANETL CAKEL)", even
allowing for the extra constituents, like tense markers, mentioned earlier.
In CD, the representation is centred upon the use of conceptual primitives,
specifically primitive acts and primitive states, and the inference
mechanism is presented with a set of conceptualisations, each of which is a
very simple proposition based on an act or state. Part of the problem of
drawing inferences from such data is the problem of noticing larger patterns
covering several members of the set, and the failure to overcome this
eventually proved to be MEMORY's downfall; nevertheless, CD is a better
motivated representational language than the ad-hoc collection of temms used
by Charniak, as is shown by the continuing Yale work on story understanding
based on it.

7.2.1) MEMORY's basic machinery

Where DSP uses uPlanner assertions, MEMORY uses superatoms to represent
conceptual information. These superatoms are Lisp atoms, generated as
needed, whose property lists hold conceptualisations in an internal formwat
which is equivalent to, but more easily worked with than, the list format
used for input purposes. Superatoms also have a confidence rating and an
interest rating, and various types of cross-reference information.

MEMORY's inference mechanism comprises a set of inference molecules, each
associated with an individual primitive. These inference molecules specify
the inferences to be made from a conceptualisation which employs the
corresponding primitive. (A significant part of the justification of CD's
collection of primitive terms, given in [Schank, 19751, is that the
appearance of a certain primitive in a conceptual representation signals the
appropriateness of a set of inferences.)

113

The inference molecules are applied to conceptualisations, which may be
either new input to MEMORY or previous inferences. When an inference
molecule specifies a new inference, it has to specify also a confidence
rating, an interest rating, and a class of inference. The inference itself
is specified as a conceptual pattern, and is converted to a superatom: the
inference class is used, together with the superatom on which the molecule
is working, to indicate where the inference came from - its reasons. Rieger
used a total of 16 inference classes, as shown overleaf.

A newly created superatom, corresponding to an inference drawn from some
old superatom, was also given confidence and interest ratings which depended
upon both the ratings given by the inference molecule, and the weights given
to the old superatom. If the inference was sufficiently interesting and
sufficiently certain, it would in turn be used for the generation of new
inferences. When no inferences (superatoms) met this criterion, MEMORY saw
if there remained any unresolved references, pronouns for example, for input
text. If such references did remain, MEMORY tried to resolve these
references, or at least to eliminate some possibilities. When a reference
was resolved, some of the existing inferences often became identical, and so
they were merged. 1In the process of merging, they usually became more
certain and more interesting, and sometimes became eligible for serving as
the basis of further inferences. When this happened, the MEMORY program
interleaved inference with reference: Rieger called this the
inference/reference relaxation cycle.

7.2.2) MEMORY's machinery in action

The input to the MEMORY program was in the form of conceptualisations,
also called conceptual diagrams, which represented the meanings of
individual sentences. Initially these were produced by hand, but when
MEMORY was incorporated into MARGIE they were produced by Riesbeck's
sentence analyser. The conceptualisations were then converted into
superatoms, while the PPs (Picture Producers, corresponding to concrete
nouns) were stored in "PP-memory" for use in reference determination, = which
is further described in the next section. The appropriate inference
molecules were applied to the newly created superatoms, causing further
superatoms to be created and equipped with confidence ratings, interest
ratings, and reasons.

When a superatom was created, its name would be added to a 1list of
appearances for each of the PPs in the corresponding conceptual diagram,
termed the PP's occurrence set. This provided an indexing scheme between
PPs and relevant conceptual information, which was exploited, using a simple
intersection search, to discover when an inference was being repeated: the
program could therefore simply ensure that each conceptual diagram was
uniquely stored.

'Repeated' inferences - ie. the same inference drawn from different
processes - were of great importance to MEMORY. Just as DSP needed to
permit demons to interact with other demons in order to assert information
which provides a link between one part of the text and another, so MEMORY
attempted to find inferences which were predicted consequences of one
sentence, and precursors of another. Rieger's elaborate classification of
inferences pemmitted such links to be recognised reliably. Further, where
DSP's demons, triggered by individual 1lines of the story, looked for
specific assertions, MEMORY applied inference processes to its own
inferences in a less directed manner, and so could construct much longer

114

i)

ii)

iii)

iv)

v)

vi)

vii)

viii)

ix)

X)

xi)

xii)

xiii)

xiv)

Xv)

Xvi)

MEMORY's classification of inference types

specification inferences: What are the missing conceptual components
in an incomplete graph likely to be?

causative inferences: What were the likely causes of an action or
state?

resultative inferences: What are the likely results (effects on the
world) of an action or state?

motivational inferences: Why did (or would) an actor want to perform
an action? What were his intentions?

enablement inferences: What states of the world must be (must have
been) true in order for some action to occur?

function inferences: Why do people desire to possess objects?

enablement-prediction inferences: If a person wants a particular
state of the world to exist, is it because of some predictable
action that state would enable?

missing enablement inferences: If a person cannot perform some action
he desires, can it be explained by some missing prerequisite state
of the world?

intervention inferences: If an action in the world is causing (or
will cause) undesired results, what might an actor do to prevent
or curtail the action?

action-prediction inferences: Knowing a person's needs and desires,
what actions is he likely to perform to attain those desires?

knowledge-propagation inferences: Knowing that a person knows certain
things, what other things can he also be predicted to know?

normative inferences: Relative to a knowledge of what is normal in
the world, determine how strongly a piece of information should be
believed in the absence of specific knowledge.

state-duration inferences: Approximately how long can some state or
protracted action be predicted to last?

feature inferences: Knowing some features of an entity, and the
situations in which that entity occurs, what additional things can
be predicted about that entity?

situation inferences: What other information surrounding some
familiar situation can be imagined (inferred)?

utterance-intent inferences: What can be inferred from the way in
which something was said? Why did the speaker say it?

115

*2

chains of inferences than could be obtained with DSP. However, since many
of MEMORY's inferences were not logically entailed by its input texts,
inferences drawn from them were on shaky ground. In DSP, the patterns of
demons represented potential facts, while assertions represented "the
truth": when the same demon pattern, or potential fact, was suggested
independently from two lines of a text, DSP was happy to assert that it was
true. In MEMORY, the superatoms played both the role of assertion and the
role of demon: the association of confidence ratings with superatoms
permitted the system to handle uncertain information.

As just noted, MEMORY used its own inferences to draw further inferences.
Consequently, processing the successive sentences of a story led to the
creation of a huge number of inferences, fomming, in Rieger's words, a cloud
of inferences surrounding each input conceptualisation (*2). The
connectivity of a text was seen to lie in the collision of such clouds:
when the same inference was drawn from two successive sentences, some link
had been found: that inference, and the chains of inferences leading to it
from both directions, enjoyed increased plausibility. Since the most
convincing such chains employed predominantly causal links, where A "leads
to" B "leads to" C and so on, Rieger called them causal chains. The
understanding of a text was then seen as the construction of such causal
chains.

As described in the next chapter, section 8.5.2, AD-HAC is also able to
construct causal chains: but, as pointed out there, it does not place the
same emphasis on these as did MEMORY.

7.2.3) MEMORY's approach to reference determination

Noun phrases tend to be represented in CD as "Picture Producers". MEMORY
accordingly placed the corresponding conceptual representations in
"PP-memory", keeping also a record of all the superatoms in which a given PP
played a role. This was the PP's occurrence set mentioned above, and had to
be recorded explicitly; in DSP, by contrast, uPlanner automatically
recorded the set of assertions which mentioned a given token, so there was
no visible analogue of Rieger's occurrence sets.

PPs describe what is known about a real-world object by using a
descriptive set, a transfommation into CD notation of any adjectives,

possessives or relative clauses used in the text to qualify a head noun,
together with information about the selected sense of the noun itself.
Rieger, following Charniak, constructed a list of possible referents for any
new PPs, whether pronominal or not, when they occured in the input
conceptualisations; and, like Charniak, he applied a ranking to the various
possible forms of modification, ensuring that over-specified noun phrases
were permitted to refer back to previously mentioned objects.

To determine the reference for a given PP, MEMORY reordered the
descriptive set of that PP, and then conducted an intersection search using
each descriptor in turn, until either
(a) Only one candidate remained

In this case, the single remaining candidate was assumed to be the
correct referent. Any unused descriptors in the descriptive set were

The number of inferences produced was so large that MEMORY was usually .
artificially restricted to producing inferences only of selected types when
running. This restriction could be lifted if more memory were available.

116

taken to be new information, and were added to the chosen candidate's
descriptive set.

(b) The descriptive set had been exhausted
When the set of descriptors had failed to select one candidate over the
others, two heuristics were used to break the tie: if one candidate had
been explicitly referred to more recently than the others, that was
chosen; if this heuristic failed, but one candidate had been "touched"
by the inference processes more recently than the others, that was
chosen; if still no single referent could be selected, then a new token
was created having as its descriptive set the intersection of the
descriptive sets of all remaining candidates. Such a token could then
be used in the same way as proper references. These created tokens were
placed on a 1list called !REFDECISION, which was scanned when the
inference-drawing process came to a halt.

(c) Using the next descriptor would eliminate all remaining candidates
If there were no candidates at all - that is, the first element of the
descriptive set would eliminate all existing tokens - then a new concept
was created with the new descriptive set, and also placed on a list
called !REFNOTFOUND; if part of the descriptive set had been processed,
however, the same operations as for case (b) above were performed. If
one candidate was selected by the 'recency' and 'touched' heuristics,
that candidate was deemed to be the referent, and its descriptive set
was augmented with the unused items from the new descriptive set.

However, where DSP permitted a demon to resolve a pronoun reference,
MEMORY was much more cautious. The inference process continued apace,
manipulating pronominal PPs in fundamentally the same manner as it
manipulated PPs with determined references, for as 1long as there were
superatoms which met the criteria of certainty and interest which determined
whether they should be used for further inference production. When no more
inferences could be drawn, because no superatoms fulfilled these criteria,
the reference processes came into play. Generally, they succeeded in
determining some reference, and the inference processes then continued.
This was the inference/reference relaxation cycle.

7.2.4) Sumnary

MEMORY was able to understand more complex stories than DSP ever could,
since it handled inputs with less explicit connectivity. It was able to
figure out much more for itself; however, it remained unable to handle
realistic stories. In particular, stories about stereotyped activities -
such as trips to a restaurant - were found to require the construction of
inordinately long causal chains to explain how one event might lead to
another. Because there is no absolute criterion for determining whether a
given causal chain is the correct one without comparing it with others, the
search for a causal chain must be breadth-first: and this is a recipe for
combinatorial explosion.

Realistic stories are often concerned with stereotyped situations; to
understand such a story requires the deployment of knowledge which is
specific to that situation. The sort of knowledge MEMORY had was of a quite
different nature, being largely concerned with the preconditions of events,
and the results of events occurring. In short, MEMORY's knowledge of the
world was at too low a level to handle these stories.

117

The model of inference embodied in MEMORY was ultimately abandoned in
favour of "scripts" and "plans", which were oriented towards the
higher-level knowledge which MEMORY lacked. However, the primacy of scripts
and plans in subsequent programs, such as SAM and PAM, restricts the
applicability of these programs to stories of a particular type, as
discussed in section 7.3. Furthermore, many problems, such as script
selection and script temination, have appeared.

AD-HAC returns to the style of inference used in MEMORY, and seeks to
overcome its problems in a different manner. The similarities between
AD-HAC and MEMORY are many: inference processes are keyed on the primitive
ACTs and STATEs; individual inferences are assigned certainty and interest
ratings; inferences may (though only occasionally) be used to generate new
inferences; and the inferences made by the system are classified, though
using an altered classification. The problem of handling "scripty" stories
is solved, however, by associating inference procedures with particular
concepts, augmenting the ordinary 1low-level inferences with higher-level
domain-specific inferences.

7.3) The genesis of scripts and plans

Though MEMORY's performance was superior to that of DSP, this raised
false hopes about the complexity of the stories which could be handled. As
noted above, many realistic stories are about highly stereotyped situations,
and require the reader to apply extensive background knowledge. Roughly,
the necessary knowledge is episodic rather than semantic. If MEMORY were
presented with such a story, the requisite causal chains would be very long
indeed. 1In seeking these chains, enormous numbers of inferences would have
to be created, and most of these would in fact be irrelevant.

Scripts were proposed as a solution to this problem. In essence, scripts
were seen initially as precoded inference chains: when a MEMORY-like
inference mechanism finds itself dealing with a stereotyped situation, it
can exploit the information encoded in the script to predict further inputs,
and thereby obviate the need to seek explanatory causal chains by the more
conventional bottom-up approach. This of course assumes that the inference
mechanism can recognise that it is dealing with a stereotyped situation, and
this asssumption has been the root cause of many problems in script-handling
systems: indeed, script identification remains a serious problem to this
day, and has prompted a great deal of development in the theoretical notion
of scripts. Thus, scripts are no longer merely precoded inference chains,
but are equipped with "precondition headers" and "default tracks", and are
classified as "situational scripts", "personal scripts" and "instrumental
scripts". The rationale for these developments is given in
[Schank and Abelson, 1977].

Other stories which MEMORY could not handle, for wvery much the same
reasons, were concerned with more general situations than scripts could
handle: scripts are relatively specialised knowledge structures, dealing as
they do with trips to restaurants, taking girls to cinemas, starting cars
and so on. In particular, stories concerning goal-oriented behaviour are as
much beyond the abilities of a script-based system as they were beyond
MEMORY's: it is impractical to provide a script which lists the various
ways in which a person might seek to raise a large sum of money, for
instance. Understanding such goal-based stories involves first recognising
the goals of a protagonist in a story, and then recognising his plans, that
is, the actions he undertakes in pursuit of those goals. Therefore, a

118

plan-recognition mechanism has to be provided.

A large part of the work of a script-based understander involves matching
story statements with predictions generated by a script. When a script is
deemed to be applicable to a story, the script is instantiated: as the next
section will make clear, this inwolves determining which track is being
followed, and which actors and objects in the story correspond to which
scriptal roles. The use of plans is more complex: a plan will often
suggest a number of scripts which an actor might employ in order to achieve
his goals; the instantiation of plans is correspondingly more elaborate.
Plans operate at a higher level than do scripts: there is even speculation
that script-like knowledge in humans is constructed when the same plan steps
are chosen repeatedly in real life.

In order to explore how scripts and plans could be applied to story
understanding, the SAM and PAM programs described below were developed. As
a way of testing their interpretations, each used Iehnert's QUAIM
[Iehnert, 1978] in order to be able to answer questions about the texts they
dealt with. The input conceptualisations for each program were provided by
Riesbeck's English ILanguage Interpreter, ELI (*3), and sentences were
generated in a variety of languages - English, Spanish, Chinese, etc. - by
various upgraded versions of BABEL, Goldman's original sentence generator.
However, there has been no attempt to construct a program capable of
handling both scripts and plans: SAM and PAM are only able to handle
script— and plan-based stories respectively. (PAM does use SAM as a
subroutine, but still expects its stories to be plan-based: the whole is
less than the sum of its parts.)

7.3.1) SAM (Script Applier Mechanism)

SAM was built to explore the role of scripts in the understanding of
stories, and to explicate the nature of scripts themselves
[Cullingford, 19781, [Schank et al, 1975]. Its input was a set of
conceptual diagrams, constructed by ELI, and its output was a giant causal
chain which could be inspected by other programs to answer questions, or to
summarise the text, or to translate the text into other languages.

Each script was given a name, eg. 'SRESTAURANT', and contained a
precondition header, one or more maincon, and one or more track. Thus, for
the $RESTAURANT script, the precondition header would state that the visitor
to the restaurant was hungry; eating some food in the restaurant would be a
maincon; and this maincon, together with inferences about seating,
ordering, paying, tipping and leaving, would constitute a track.

A script would often have more than one track, and in such cases one of
the tracks, corresponding to the most normal set of inferences, would be
designated the default track: for the SRESTAURANT script, the default track
would be that just outlined. Other tracks in a script would provide sets of
inferences appropriate to relatively infrequent occurrences, and diverge
from the default track at well-defined points. For instance, where the
default track specifies paying-tipping-leaving, another track would specify
dishwashing-leaving.

Each script had an associated set of "script roles", which served as
variables in an analogous fashion to the variables in DSP's demons. When a

*3 ELI is a later version of Riesbeck's analyser described in Chapter 4.

119

script was instantiated, some of the variables were bound to particular PPs:
thus, when SRESTAURANT was instantiated during the processing of the text
"John went to ILeone's"

one of the script roles, say '&PATRON', would be bound to the PP
representing "John". Subsequently, conceptualisations which matched onto
one of those specified in the script, but which used the pronoun "he", could
exploit the binding of the variable &PATRON to determine the referent of
llhell .

Similarly, some script roles would be associated with default values when
the script was instantiated, pemitting subsequent definite references to be
understood, even when the referent had not already been mentioned. The role
of scripts in rendering such references acceptable is well demonstrated by a
contrasting pair of examples given in [Schank and Abelson, 19771]:

a) John went to a restaurant.

He asked the waitress for coqg au vin.
He paid the check and left.

b) John went to a park.
He asked the midget for a mouse.
He picked up the box and left.

In example (a), our knowledge of restaurants provides a context in which
the definite references "the waitress" and "the check" make sense. Our
knowledge of parks, however, does not provide any comparable context in
example (b) for "the midget" or "the box" (even though it is perfectly
reasonable for midgets and boxes to be in parks); consequently, the text
seems odd: the definite reference leaves us somewhat confused.

Scripts are, as mentioned earlier, relatively specialised knowledge
structures. They are of no utility at all outside their domain; therefore
a script-based system needs a variety of scripts if it is to handle a
variety of stories. This immediately introduces the problem of script
selection.

One of the problems tackled by SAM was that of determining which of its
scripts to apply to a particular text, initially assuming that only one
script will be appropriate. It was assisted in this by MEMTOK, a module
which served much the same function in SAM as PP-memory did in Rieger's
MEMORY. MEMTOK internalised the representations of PPs, and further
suggested that particular scripts might be appropriate. Thus, for the
sentence

"John went to a restaurant"
the script SRESTAURANT would be suggested, simply on the grounds that the
word "restaurant" appeared in the sentence. SAM noted such advice, but
demanded that some match within the body of the script should be £found
before it was prepared to instantiate the script: thus, though MEMTOK would
make the same suggestion for

"Fuel oil was delivered to the restaurant"
there was no corresponding conceptualisation stored in the script, and so
MEMICK's simplistic advice was ignored.

The total number of scripts available to SAM was never very large, and so
it was feasible, if necessary, to search for a matching conceptualisation in
each script in turn. A later script-based program, FRUMP [DeJong, 19791,
had a considerably larger number of scripts, but each was considerably less
detailed than one of SAM's: furthermore, FRUMP was intended only to "skim"

120

stories in order to produce quick-and-dirty summaries; if a particular
sentence in one of FRUMP's inputs could not be understood, it was simply
ignored.

Even referring only to situations covered by the small number of scripts
SAM had, it was quite possible to construct stories which made fleeting
reference to several scripts. The complexity of interaction needed between
scripts seems unlimited; coherent stories can easily be constructed to
relate arbitrary information from various scripts: SAM however had
unsophisticated script switching operations.

One of the trickier problems for SAM was determining when a story
deviated from a script, and in particular, determining when a particular
script was of no further use in understanding a story. SAM applied several
heuristics to overcome these problems, principally requiring fairly
conclusive evidence that a script was applicable to a story before
instantiating it: nevertheless, these problems were never adequately
solved. A script-based story which took an unusual turn would frequently
leave SAM nonplussed.

SAM's processing of a story consisted essentially of matching the
conceptual representations of successive sentences to a prestored tamplate,
the script. 1In doing so, much of the generality of Rieger's MEMORY was
lost, resulting in an inability to understand non-script-based stories.
Further, SAM is so biased towards handling stories of the script-based
variety that it is hard to imagine how the existing framework could be
retained, but augmented to restore the lost generality.

Scripts nevertheless have definite merits. In particular, the ability to
name scripts, and to refer to a large sequence of conceptualisations by
naming the script, specifying the variable bindings, and indicating the
track taken, is a valuable step towards a theory of forgetting. As Schank
points out, forgetting is not a wholly bad thing: only by forgetting detail
is it possible to remember the gist of a text; by such means as those
sketched above, it would be possible to do so economically, and hence to
infer some of the details later if required. Similarly, having names for

such large-scale events - names, that is, which mean something to an
understanding program - means that the fine grain of a conceptual
representation can be bypassed in certain circumstances: the very

representation language used by the system can incorporate these
higher-level concepts. Provided that a symbol such as SRESTAURANT can
ultimately be reduced to the primitive concepts of CD, such a facility is of
great value. As will be seen in the next section, the ability to refer to a
script as an entity can be very helpful in representing higher-level
knowledge.

7.3.2) PAM (Plan Applier Mechanism)

PAM was built to determine how plans could help in the comprehension of
goal-based stories, and to clarify the nature of plans [Wilensky, 1977].
PAM's input and output were in the same form as described above for SAM.

In order to understand stories about goal-directed behaviour, PAM used
knowledge about themes to explain how goals might arise; the discovery of
goals led to the suggestion of sketchy plans which might be employed in the
furtherance of these goals. Each plan specified the goal it was expected to
achieve, various conditions which had to be satisfied in order to proceed

121

with the plan, and a set of planboxes which specified the options for each
step of the plan.

Some texts explicitly describe a character as having a certain goal, but
more frequently such goals have to be inferred. So, in the text:

"John loved Mary but she didn't want to marry him.

One day, a dragon stole Mary from the castle.”
PAM used the 'LOVE' theme, which is explicitly stated, to infer that John
wanted to marry Mary. The story, in this case, explicitly indicated that a
related goal was absent, viz. that Mary did not have the goal of marrying
John. When the second line of the text was processed, PAM inferred that
Mary was in danger, and the LOVE theme predicted that John would want to
rescue Mary.

For the example text above, John's goal of marrying Mary caused PAM to
suggest a standard plan, getting the lady to church; this plan had a
precondition, namely that the lady wants to marry the man, which in this
case does not hold. PAM knew only the one plan for getting married, and it
discovered it wouldn't work: so John's plan was blocked, and his goal was
unachievable.

The second goal, John wanting to rescue Mary, caused PAM to suggest a
second plan, quite independent of the first. This plan had the goal of
achieving Mary's safety, and the planboxes involved
a) Getting near to Mary
b) Freeing Mary from the dragon
c) Taking Mary away again
These planboxes were themselves reminiscent of goals, but they also
specified known means of achieving these goals, often by naming scripts.
PAM was able to use SAM as a subroutine when it was trying to match inputs
against scripts named as means of achieving certain goals.

If the story continued:
"John got on his horse...."
this could be recognised as part of a horse-riding script, which would be
one of the specific means suggested by the first planbox. Similarly,
"....and killed the dragon."
could be recognised as a way of achieving (b) above.

Goal-oriented stories can be much more complex than this, especially when
there are several actors in a story with conflicting goals. The
interactions between the goals of one or more actors have been partially
classified in [Schank and Abelson, 19771, and the resulting taxonomy
involves:

i) Goal origin
Goals may have a thematic origin, as "John wants to marry Mary";
They may arise regularly and spontaneously, as in wanting to eat;
they may arise as subgoals of other goals, as in John wanting to
get near Mary; and they may arise in response to a crisis, as in
John wanting to rescue Mary.
ii) Goal specification and substitution

The general goal of wanting to eat may be converted to a more
specific goal of wanting to eat oysters; the goal of going to the
pub may be substituted for the goal of going to the cinema.

122

iii) Goal suspension
Some goals are considered more urgent than others. When an urgent
goal arises, a less urgent one may be temporarily set aside, but
will typically be resumed when the more urgent goal has been
either achieved or abandoned.

iv) Goal embellishment
When a goal has already been achieved, further goals may arise.
Having acquired a good steak in a restaurant, for instance, the
goal of acquiring mustard may arise.

In order to recognise the plans being used by a story actor, PAM needed
to know about his goals, about how they might be achieved, and about how the
plans used might affect other goals. In understanding a story, PAM
therefore constructed goal fate graphs, showing how each goal originated,
whether a particular goal succeeded or failed, and how goals related to one
another according to the above taxonomy. It should be noted that all this
related to the goals of one individual: though PAM had an impressive
ability to tell back a story from several different points of view, it had
great difficulty in appreciating the interactions between the plans of
different individuals.

7.3.3) Review of scripts and plans

MEMORY's troubles arose because it lacked high-level knowledge. The
knowledge it had was oriented towards the conceptual primitives of CD: the
knowledge it lacked was of situations and behaviours. Scripts and plans
were part of an effort to formalise these missing kinds of knowledge. They
are specialised "frames", serving to organise knowledge in chunks which may
be used both for recognition and for prediction. Scripts may be seen as
frames prescribing sequences of actions, while plans often suggest sequences
of scripts, but may descend to the level of specific actions if necessary.

There can be no doubt that higher-level knowledge, such as that which
scripts and plans are intended to capture, is a necessary ingredient of a
general story understanding system. The experimental systems SAM and PAM
were constructed partly in order to elucidate the nature of scripts and of
plans; it is unfortunate that the processing which they apply is so
specific to their domains, and that no program has been built that can
operate in both domains.

One of the problems with these systems is that their understanding of a
text is wholly dependent upon these higher-level knowledge structures: the
low-level inferencing performed by Rieger's MEMORY has been almost
completely abandoned (though ILehnert's QUAIM does do some of this when
answering questions about the stories read by SAM and PAM).

7.4) Conceptual overlays

EX-SPECTRE-1 [Rieger, 1975] was intended to interpret sentences in
contexts set up by previous sentences; particularly, to reach different
interpretations for the same sentence in different contexts, and to explain
why some sentences are judged "peculiar" in certain contexts.

The fundamental feature of EX-SPECTRE-1 was its use of conceptual
overlays, whose main components were a cloud of expectancies and a set of
exXpectancy selectors. A line in a text was intended to activate such a
conceptual overlay, which would then perform various tests to set the

123

"saliency" of the various expectancies.

The conceptual overlays were implemented as ternary discrimination
networks: from each test, there would be three branches, for "Yes", "No"
and "Don't know". (In most cases, the "Don't know" branch would take the
same route as one of the other tests, and so provided a default path.) When
a path was taken, the saliencies of nominated expectancies were set, and
then the test (if any) at the end of the path was performed.

The set of expectancies generated by previously activated overlays
constituted the context in which a subsequent sentence was to be understood,
while the saliencies determined how strong an expectation was, rated roughly
0.1 to 0.9. A matching operation was intended to determine whether an
expectation was fulfilled or not, but some of the expectancies served a
different function: these were switchers, and a match with one of these
would bring in a new overlay.

For example, if "X steals Y from Z", this activates the THEFT overlay,
where tests like
Is Y valuable?
Does X know who Z is?
Are 7 and X friends?
Is it difficult for Z to replace Y?
Had 7 insured Y?

would be used to determine the probability of such future actions as
X will sell Y to somebody else.
X will avoid 7.
X will deny stealing Y.
Z will replace Y.
Z will report the theft to the authorities.

There would also be "switchers" corresponding to "X is happy" and "Z 1is
upset"; these, if matched in subsequent sentences, would cause the
introduction of further overlays, "PRACTICAL, JOKE" and "ATONEMENT"
respectively. (These switchers might be thought of as demons.) These
switchers explicitly state what next sentences would be peculiar.

AD-HAC, 1like EX-SPECTRE-1l, uses hnetworks to control its inference
processes, and also uses '"certainty ratings" which are analogous to
"saliency" and to MEMORY's "confidence". The details of the networks, and
the wuse made of the certainty ratings, are however different; in
particular, AD-HAC's approach to the "Don't know" answer to tests is to take
both "Yes" and "No" paths, and to mark the resulting inferences as
incompatible with each other. This is discussed further in section 8.2.2.2.

7.5) Summary of previous work on inference.

The preceding sections have illustrated the earlier work on inference
which has been most influential in the design of AD-HAC's inference
mechanism, which is described in the next chapter. Charniak's DSP set a
trend in the understanding of texts, by using "informal" inferences to
provide the connectivity between individual sentences. Rieger's MEMORY
expanded upon this, by constructing much longer chains of inferences with
well-defined causal links. However, realistic stories could still not be
handled by these means, because their authors expect their readers to
possess, and to be able to apply, knowledge about routine situations and

124

about human goal-oriented behaviour, which is not explicitly mentioned in
the stories. The notions of scripts and plans arose as part of an effort to
characterise such knowledge, but their use requires specialised processing.
The existing programs for applying this knowledge are not integrated:
consequently, away from their specific domains, they understand less than
MEMORY did.

While there has been much other work on inference, I have focussed upon
those projects which used CD-like representations, because the inference
mechanism used in AD-HAC has been inspired mostly by that work. Naturally,
there are certain similarities with work in other paradigms. Wilks, for
example, used chains of inferences to resolve difficult anaphoric
references. Aspects of his translation system have been described in
chapters 3 and 4. As mentioned there, the system was based upon "preference
semantics", and one way of viewing preference, as applied by Wilks, is that
the preferred meaning of a text is that interpretation which introduces the
least new information. During the "extended mode" of processing
[Wilks, 1975a], common sense inference rules are applied to the various
semantic structures created by the earlier phases. The existing structures
undergo a process of extraction, during which more tractable structures are
produced; the inference rules are then applied, and are permitted to form
chains of inferences. The shortest such chain, which corresponds to making
the fewest assumptions, is then selected as determining the correct
anaphoric referent. Wilks's system is radically different from Rieger's and
Charniak's, however, in that it only uses these inference rules in order to
solve specific problems - namely, to resolve "tricky" anaphoric references.
However, the extension of this approach in other circumstances is discussed
in [Wilks, 1978].

BELIEVER [Schmidt et al., 1978] is proposed as a psychological model of
how beliefs, intentions and goals are attributed to an actor in response to
simple descriptions of his actions. (BELIEVER is restricted to the plans of
one actor.) It infers his goal, generates a plan for achieving that goal,
and tries to match the descriptions of his actions onto the plan it has
generated; it 1is also capable of revising the currently hypothesised plan
if it does not fit the described actions.

BELIEVER maintains a "world model" which records facts about the world,
and a "person model" which records the beliefs and desires of the actor.
Plan generation begins when some goal for the actor appears in the person
model: the plan grows by expansion of subgoals (and hence subplans) when
some precondition is not satisifed in the person model. When complete, the
plan becomes an expectancy structure, which makes predictions about the
actions which will be described next. When a prediction is satisfied by an
actual description, it becomes part of a "grounded plan", and subsequent
plan steps are then expected.

When predictions are confounded, however, BELIEVER tries to revise its
hypothesised plan. There are several rules which have been developed for
this revision process, the rules. being local to certain linkages of
propositions: for instance, "Outcome" or "Subgoal". Revised plans are
submitted to a set of "critics", which may constrain the order in which plan
steps could be carried out, or may mark certain steps in the new plan as
"will not be observed", or may reject the new plan altogether.

125

The basis of the psychological modelling 1is this Hypothesise/Revise
cycle: Schmidt et al. argue that plan recognition is an ill-formed task,
and therefore not amenable to the generate-and-test paradigm of artificial
intelligence research.

Back within the CD paradigm, TALE-SPIN [Meechan, 1976] used plans to
generate stories rather than to understand them. Plans are only one of
several knowledge sources which have to be integrated by the program, though
they do play the principal role because they provide motivation for events
which the program can then relate. Meehan's work on story generation showed
how diverse was the knowledge needed to perform well in this area: one is
left with the suspicion that a program which merely understands stories,
even when supplied with the additional knowledge provided in scripts, is
able to conceal a great deal of ignorance. Ignorance becomes plainly
obvious in story telling.

The next chapter describes AD-HAC's inferencer, which exploits many of
the ideas whose development and implementation have been traced in this
chapter. AD-HAC uses "inference networks" to specify inferences to be drawn
from an input CDform. The networks contain both tests and actions: the
tests are largely concerned with selecting a path through the network, while
the actions are mostly inference specifications.

AD-HAC's inferences bear certainty and interest ratings, and they are
also classified; the ©precise <classification used has interesting
consequences when inferences must be drawn from negated propositions, since
the various classes of inference are modified in idiosyncratic ways.

One of the most important features of the inferencer to be described is
the uniform treatment afforded by the use of inference networks to low-level
(primitive-oriented) knowledge and high-level (object-oriented, script-like)
knowledge: both are encoded and used in the same simple fashion.

126

Chapter 8: Inference 2: The AD-HAC inferencer

This chapter describes AD-HAC's inferencer, which associates inference
networks with both conceptual primitives and classes of object. The
inference networks apply tests to conceptual structures and to preexisting
context, and generate appropriate inferences. Extensive cross-reference
between individual inferences is maintained behind the scenes, and is
exploited to compact the set of inferences which constitute the memory:
this compaction 1leads naturally to referent identification, both for
pronouns and for the answers to WH-questions.

Section 8.1 outlines the tasks which the inference mechanism is intended
to perform, why inference is necessary, and what overall structure an
inferencer should have to perform those tasks.

Section 8.2 explains how "inference nets" may selectively draw inferences
from conceptual structures; how TEST and ACTION nodes are interleaved in
these networks; how the appropriate networks are accessed; how they are
traversed; and how they may influence the selection of pronoun referents.

The manipulation of conceptual patterns is discussed in section 8.3. The
specification and matching of CDforms are among the most fundamental
activities of the inference mechanism: for an inference to be drawn, a
corresponding CDform must be specified; and for that inference to be useful
to the process of reference determination, it must be internalised, that is,
converted into a form which facilitates the comparison of CDforms, and the
association of various forms of cross-reference information with individual
CDforms.

Section 8.4 describes the use made by AD-HAC of "certainty ratings" and
"interest ratings", which are numeric scores attached to the inferences when
they are made, and which may be modified when similar inferences are merged.

The inferences themselves are classified as described in section 8.5.
The classification which has been developed, besides being applicable to the
construction of causal chains, also provides a simple mapping between the
inferences drawn from affirmative sentences and those drawn from negated
sentences, or sentences using the modals CAN, CANNOT.

Section 8.6 shows how the varied mechanisms contribute to the system's
pronoun-resolution and question-answering abilities. These two tasks are
perceived as being essentially the same: in either case, the determination
of referents for WH-questions or for pronouns is accomplished by compacting
the entire set of inferences drawn from the sentences constituting a story;
and in either case, the inference nets may assist the pronoun resolution
process by a process analogous to the specification of selectional
restrictions on the conceptual level.

8.1) The task and some of its implications

The principal aim of this project was to explore the question of how
understanding of a text might be achieved by a computer program, where
"understanding" is judged by the ability to perform certain tasks. Foremost
among these tasks is reference determination, an obvious and essential facet
of human language comprehension which underpins our ability to answer
questions and to resolve pronouns in discourse. AD-HAC was not intended as
"a question-answering system", merely as a program which exhibited these

127

abilities.

The production of inferences from some given conceptual pattern is not
necessarily a proper task in its own right: only insofar as it enables, or
facilitates, the answering of questions and the resolution of pronouns, is
it a desirable component of a NL 'understanding' system. The assumption
underlying this research has been that the mechanisms which permit reference
determination do in fact depend critically upon inference. From this
viewpoint, the processing required to resolve pronouns is very similar to
that required for answering questions: an understander determines a pronoun
referent by asking himself a question.

The inferences produced must be incorporated into some memory if they are
to be useful: mere production of inferences solves no problems at all;
rather, similarities between inferences drawn from different sources must be
recognised. AD-HAC's representation of a text does not take the form of a
giant conceptualisation; the memory is instead a network-like structure,
with nodes corresponding to individual simple CDforms, and with varied types
of link between these CDform nodes. Each CDform, whether produced by the
sentence analyser or by the action of inference networks, bears extensive
indexing and cross-reference information: it proves expedient also to give
each "such CDform a name for reference from other parts of the memory. The
insertion of a new CDform into this memory is called internalisation, and is
discussed at length in section 8.3.

Overall structure

The sentence analyser described in Chapter 5 feeds the inferencer with
conceptual representations of the successive sentences of a text. The
inferencer splits these representations into elementary propositions,
"canonicalising" them as described in section 3.3.2; for each such
elementary proposition, the main conceptual primitive ~ the ACT or the
STATENAME - identifies the appropriate inference network. This network is
then activated. These networks contain both tests and actions: the tests
serve to determine a path through the network, inspecting both the structure
of the CDform at hand (the driving conceptualisation or driver) and the
global context (the state of the memory); the actions produce inferences,
which are themselves incorporated into the memory.

When all the CDforms from the analyser have served for the production of
inferences, the memory is compacted: the cross-reference information
associated with the propositions stored in the memory indicates (among other
things) which other propositions are similar, and what identifications would
have to be made for two propositions to become identical. Compacting the
memory involves collating this information, and determining which
identifications should be made: these decisions are guided by certainty
ratings associated with individual propositions; the inferencer attempts to
merge propositions which agree with one another, and to avoid merging those
which disagree. Since tokens representing pronouns and WH-elements will be
among the suggested identifications, pronoun resolution and question
answering are natural side-effects of the compaction process.

128

*1

Below is a block diagram sketching this overall structure.

| “Sentence analysis |

i

| Canonicalisation | The memory
¥ . .
| _Internalisation | =—-—- > . memory and cross-reference .
‘7 L .
€= . contextual tests on memory .
Inference net(s) . .
~--=-=> ., inferences drawn .

| Compaction |

8.2) The inference process: inference nets

The inferencer described here uses a set of networks to produce
inferences from a conceptualisation: each network is for a time totally in
control of the inference process, and may make arbitrary inferences relating
to the current driving conceptualisation. Many of the inferences made in
fact correspond to presuppositions; in general, the inferences are
idiosyncratic and non-deductive. These networks are initially keyed on the
main primitive; thus there is a network devoted to ATRANS events, another
for PTRANS events, and so on. The networks themselves may be viewed as a
development of discrimination nets (*1). They have TEST nodes, which
determine a path through the net, and ACTION nodes, which perform a variety
of functions in addition to the main one of drawing inferences.

The selection of a path through a network is a simple way of making
certain inferences dependent upon the local context. Meehan, describing his
TALE-SPIN program, relates how the inference "GRAVITY DROWNED" was produced
from "HENRY ANT FELL INTO THE RIVER": the principal cause of this was that
'x falling' was represented as 'GRAVITY PTRANSing x'; and an inference
produced from a PTRANS event was that the ACTOR of the event changed
location, as well as the OBJECT. Meehan's solution to this problem was to
change the representation of "FALL" to use the CD primitive PROPEL. This
seems completely wrong, since gravity always PROPELs things. A better
solution is to make such an inference depend on the context (here, strictly
local context), and this is achieved by the use of path-selecting tests.
Other uses of tests are discussed in section 8.2.2.

This network formulation of the inference process proves extremely
flexible: the basic networks - those keyed on conceptual primitives -
perform a lot of bottom-up processing; others, often keyed on functions of
objects, provide top-down processing corresponding to scripts and plans.

Each network is represented as an association list, where the transition
from one node to another is achieved by reference to the tag.

These tags are numeric, simply to facilitate the writing of an independent
FORTRAN program to produce plots showing the structure of the networks.

129

All of these networks have the same gross structure, differing in their
roles but not in their form: therefore they can be processed in the same
way .

8.2.1) Inference net ACTION nodes

The ACTION nodes of a network may do several things besides producing
inferences. All basic networks begin by placing selected roles of the
driving conceptualisation into registers, for easy access later on. Other
operations include (i) declaring that two tokens must be distinct, and

(1ii) defining a token in terms of some conceptual pattern

The uses of ACTION nodes will be illustrated using examples from the
ATRANS inference network, whose first node reads as follows:

(1 (ACTIONS
(EXTRACT actor (EVENT ACTOR))
(EXTRACT obj (EVENT OBJECT))
(EXTRACT from (EVENT FROM))
(EXTRACT to (EVENT TO))
(EXTRACT-TIME~-INFO)
(DISTINGUISH from to)
(DISTINGUISH from ob3j)
(DISTINGUISH to obj)
(DISTINGUISH actor obj)
(INFER implicit 0.95 0.1
((STATE (STATENAME EXIST)
(THING (r to))
(TIME (c timearound)))))
(INFER implicit 0.95 0.1
((STATE (STATENAME EXIST)
(THING (r from))
(TIME (c timearound)))))
(INFER implicit 0.95 0.1
((STATE (STATENAME EXIST)
(THING (r ob3j))
(TIME (¢ timearound)))))
(INFER precondition 0.8 0.4
((STATE (STATENAME IOC)
(THING (r from))
(VAL (r to))
(TIME (c startspan)))))
(GOTO 24)))

The function EXTRACT is used to place subparts of the ATRANS driving
conceptualisation into registers. Thus, given the driver

((EVENT (ACTOR FRED) ; "FRED TOOK A BOOK FROM HIM"

(ACT ATRANS)

(OBJECT BOOK1)

(FROM DUMMY-MALEL)

(TO FRED)

(TIME (NAMED TIMEPOINTL)))) :
the first call to EXTRACT would place '(FRED)' in the register ‘'actor'.
Similarly, 'obj' would hold '(BOOK1l)' and so on.

130

The function EXTRACT-TIME-INFO then fills out a number of registers,
allowing easy subsequent reference to the time of the driver, and various
related times, such as the start~ and end-points of a timespan.

The function DISTINGUISH is then called to specify to the pattern matcher
that the fillers of certain registers can never be identified. In the
present example, the matcher might otherwise consider 'FRED' as compatible
with 'DUMMY-MALEL'; the call (DISTINGUISH from to) tells the matcher that
this is not so. The other calls do not, in this example, have any
significant effect.

Next, some inferences are proposed. The function INFER takes

(a) A class of inference - see section 8.5
(b) A certainty rating - see section 8.4
(¢} An interest rating - see section 8.4
(d) A conceptual pattern specification - see section 8.3.1
In this example, many of the inferences are in fact trivial. The first

inference made is of the class implicit, quite certain, and uninteresting:

(INFER implicit 0.95 0.1
((STATE (STATENAME EXIST)
(THING (r actor))
(TIME (¢ timearound)))))
The conceptual pattern specification in this example uses the contents of
register ‘'actor', and also information supplied by EXTRACT-TIME-INFO, to
build, in this case, the conceptual pattern:

((STATE (STATENAME EXIST) ; "FRED EXISTS" (*2)
(THING FRED)
{TIME (NAMED TIMESPANL)
(COMPARTISON (~DURING TIMEPOINTL)))))
The other inferences made by this first node of the ATRANS network for our
example sentence will be:
"THE MALE, FROM WHOM FRED TOOK A BOOK, EXISTS"
"A BOOK EXTISTS"
"FRED WAS NEAR THE MALE, FROM WHOM FRED WAS TAKING A BOOK"

Finally, '(GOTO 24)' directs the inference processor to node 24 of the
ATRANS inference net, a TEST node.

Another use of ACTION nodes - (ii) above - is the definition of a token
in termms of some conceptual pattern in which it appears. For instance, if
Fred takes something from Bill (say), it 1is desirable to ask if Bill
realises that Fred, or at any rate somebody, has taken something from him:
in the latter case, the 'somebody' has no real existence as a separate
entity, but is defined in terms of Bill's realisation. The same definition

" process is used to prevent the pronoun reference mechanism from trying to

*2

identify quantified expression tokens with story objects.

8.2.2) Ihference net TEST nodes

The test nodes in inference nets fall into two basic classes:
(i) Simple predicates concerning the driver or its components

Strictly, "FRED EXISTED AT THE TIME HE TOOK THE BOOK"; the generator,
perhaps mercifully, does not give that much detail about times.

131

*3

(ii) Complex predicates concerning the context in memory

The simple predicates are concerned with the elements of patterns, rather
than patterns as wholes. Thus, they are concerned with the equality of role
fillers, the features of fillers, the structure of embedded
conceptualisations (*3), the presence of certain roles, the relative sizes
of objects, the commercial value of objects, etc. The complex predicates
involve searching the memory for whole patterns matching a given conceptual
structure. These two types will be discussed separately.

8.2.2.1) Simple tests: selecting paths, assisting pronoun resolution

The simplest tests are concerned with the equality of fillers and the
features of fillers. Simple examples of these, in the PTRANS net, are:

(12 (TESTS (EQR actor object) ; if the registers actor and
13 ; object hold the same filler,
15)) ; advance to node 13, else to 15
(20 (TESTS (IS actor SOLID) if filler of register actor
22 has feature SOLID, advance to
QUIT)) node 22, else leave the net.
In some situations, it is possible to declare that a sequence of these tests
must not have a given outcome. Eg:
i) In an ATRANS event, ACTOR = FROM or ACTOR = TO
ii) In an MTRANS event, ACTOR must have feature HUMAN
iii) In a PROPEL event, OBJECT must have feature CONCRETE.
When a sequence of tests gives an impossible answer, the inference net
issues a complaint, which can be used to constrain potential pronoun
referents. This is not the main technique used for pronoun resolution,
though it is the case that most complaints are provoked by pronoun
occurrences: exceptionally, complaints may indicate that the sentence
analyser has built a semantically inconsistent structure.

~e weo we

An example of a 'complaining' node might be:

(12 (TESTS (IS actor HUMAN)

13

(COMPLAIN 12)))
meaning, if register 'actor' holds a token with the feature HUMAN, advance
to node 13; otherwise issue a complaint which is interpreted as suggesting
retrying node 12. (In general, there may be an arbitrary number of TEST
nodes to be retried.) When this complaint is issued, the register 'actor'
will be inspected to see if it holds a pronominal token. If the offending
token 1is a pronoun, the inference process for the current conceptualisation
is suspended until all the conceptualisations in the representation have
been either processed to completion, or suspended in a similar manner. The
original inference process is restarted by finding potential referents for
the pronoun which now give new results for one of the indicated TEST nodes,
and reentering the network at the appropriate node, thus generating more
inferences.

Finding these potential referents involves scanning the cross-reference
information associated with any inferences which involve the pronominal

Embedded conceptualisations may occur even after canonicalisation, when a
CDhform has roles such as MOBJECT which require them. Canonicalisation only
separates out those embedded conceptualisations headed by FOCUS.

132

token, so it is desirable to draw some inferences before any complaint
arises: this is partly the reason for the first ACTION node of the ATRANS
net inferring that the 'FROM','TO' and 'OBJECT' elements all "exist". Also,
it is wuseful to have some indexing between tokens and the inferences in
which they appear.

Thus, these complaints assist the process of pronoun resolution by
specifying the combinations of features of acceptable referents. This
mechanism is only applicable to 'IT' or 'THEM' pronouns, since the pronouns
'HIM' and 'HER' will already have the feature HUMAN, and so will give the
same results for any feature test as would, say, FRED. These are handled by
the more general mechanisms described in section 8.6.2.

The other simple tests - presence of optional roles, relationships
between objects, typical values of objects, etc - have no incidental uses
for pronouns. Their function, like the primary function of EQR and IS, is
to alter the path through the net, or to vary the strengths of inferences
(see section 8.4). Additionally, the predicate EQR, which tests for
equality of the contents of two registers, will "DISTINGUISH" the contents
if they are not immediately equal. This too proves useful in constraining
the resolution of pronouns.

8.2.2.2) Complex tests: inspecting a wider context

Test nodes may also interrogate the memory by specifying a conceptual
pattern. This is done by the function MBELIEVE: the method of specifying
conceptual patterns is the same as that used for specifying inferences.

In general, when a question is asked of the memory, no existing inference
will match the pattern specified - although further inference may provide
some answers. If it were assumed that the absence of a match indicated that
the question should be answered negatively, the entire inference process
would become unstable, since different English constructions can easily
cause the initial conceptualisations to be processed in different orders.
(Similar observations hold if the default answer is affirmative.) In any
case, it is not always possible to determine whether a proper match has been
found, since temporal relationships in particular may not always be
decidable.

There are several possible strategies for situations of this sort. One
option would be to "wait and see": this would involve leaving some demon to
pick up the trail if an answer was ever found, and possibly leave another
demon to assume some default answer if too much time elapsed. (This
approach is taken in the Word Expert Parser, albeit in a different domain.
The Word Expert Parser is discussed in section 10.3)

An alternative is to provide an immediate default: if the answer is not
known at the time the question is asked, take one path rather than the
other. This is Rieger's method in the "conceptual overlays" used by
EX-SPECTRE-1; there seems to be no method for undoing the damage if the
answer later turns up.

The approach taken in AD-HAC is to take both paths: the inference
process branches, and all the potential inferences are made. If the test
ever becomes decidable, then some of the inferences made may be invalidated,
and are expunged; if the test remains undecided, then some sets of
inferences are marked as incompatible with others. Some degree of

133

*4

rever51b111ty occurs here too, because it may be that a contextual question
is answered because the inferences resulting from that answer give good
agreement with other, independently derived, inferences.

The incompatibility of sets of inferences drawn from different assumed
answers to these tests is one of the many forms of cross-reference
information maintained by the system: sections 8.3.3 and 8.5.4 return to
the topic of incompatibilities.

8.3) The storage of conceptual patterns in memory

The conceptualisations produced by the sentence analyser, and indeed by
the inferencer itself, have a syntactic structure as well as conceptual
content, and these two facets are 1ndependent The syntax 1is designed to
simplify the interfaces between the various components of the system, whilst
the conceptual content is designed to facilitate the processes of inference.
Section 8.1 indicated that conceptual patterns needed to be named, indexed,
and cross-referenced. Section 8.2.2.1 showed, in gross outline, one use of
this index and cross-reference 1nformatlon. For these purposes, the
inferencer transforms the syntax of the conceptualisations.

The storage of conceptual patterns, and the maintenance of various forms
of cross-reference information, are essential to the approach taken by the
inferencer. Section 8.3.1 describes how the inference networks specify
conceptual patterns; section 8.3.2 then explalns how these patterns are
matched with other patterns which already exist in the memory; and section
8.3.3 shows how cross-reference information is gathered and stored. It
might be mentioned here that the matching process itself is responsible for
gathering one of the most critical forms of cross-reference information,
namely specifications: these are used later to indicate which prop051tlons
might be merged during the compaction of the memory, as described in section
8.6.

The indexing of conceptualisations is based largely upon the main
conceptual primitive, usually the ACT or STATENAME. When a new inference is
made, its main primitive is used to select a list of other existing
conceptual patterns based upon that primitive, and a match between the new
pattern and any of the old ones is sought. Exceptionally, it may be that an
identical inference has been made already, in which case no further action
is needed. More often, it is necessary to internalise the new conceptual
pattern. This is done by creating a Lisp atom, say ATRANS4 (*4) for some
ATRANS-based event, and storing the conceptual content on the property list
of this atom. It is convenient to call such an atom a Qropgs1tlon. The new
proposition is added to the list of patterns based upon the main prlmltlve,
so that later patterns may match it. Also, for each token appearing in the
pattern, the proposition is added to a list of propositions in which that
token appears. Finally, the newly created proposition is cross-referenced
by using information about partial matches.

8.3.1) Pattern specification

Conceptual patterns are specified by the function INFER, and also by the
function MBELIEVE. A simple example was given in section 8.2.1. In more

It was mentioned in Chapter 2 that this naming convention for nominal tokens
was just a convenience in development and debugging,serving to make
intermediate results intelligible; the same observations apply here.

134

complex cases, a pattern specification has two parts. The first part is a
template, the second (optional) part is a filler list.

Various prefix characters may be used within the template to indicate
that wvarious substitutions should be made, and any part of the template
which does not have such a prefix is copied directly to the new conceptual
structure. The prefix characters are: r,c,v,$.

The prefix 'r' is used to indicate that the contents of a register are to
be inserted into the conceptual structure. Thus, in the example given
earlier, (THING (r actor)) uses the contents of the register 'actor', and is
copied over as (THING FRED).

The prefix 'c' is used to create conceptual time representations. Its
use must be preceded by a call to EXTRACT-TIME-INFO, which sets up various
registers holding parts of the driver's time specification. These registers
are:

time the driver's complete time structure

startpoint if the time is a TIMESPAN, its TS
if it is a TIMEPOINT, that TIMEPOINT

endpoint if the time is a TIMESPAN, its TF
if it is a TIMEPOINT, that TIMEPOINT

For example, suppose the driver is

((EVENT (ACTOR FRED)
(ACT ATRANS)
(OBJECT BANANASL)
(FROM FRED)
(TO MONKEYS1)
(TIME (NAMED TIMEPOINTL)

(COMPARISON (BEFORE *NOW*)))))

Then calling EXTRACT-TIME~INFO will fill the registers as follows:

time = ((NAMED TIMEPOINTL) (COMPARISON (BEFORE *NOW*)))
startpoint = TIMEPOINTL
endpoint = TIMEPOINTL

Alternatively, given the driver
((EVENT (ACTOR FRED)

(ACT PTRANS)

(OBJECT FRED)

(FROM DUMMY-PLACEL)

(TO 7001)

(TIME (NAMED TIMESPANL)
(TS TIMEPOINTL)
(TF TIMEPOINT2))))

the registers would be filled thus:

time = ((NAMED TIMESPANL) (TS TIMEPOINTL) (TF TIMEPOINT2))
startpoint = TIMEPOINTL
endpoint = TIMEPOINT2

When these registers are set up, the 'c' prefix can be used as follows:

135

(TIME (c beforespan)) yields (TIME (NAMED TIMESPANx) (*5)
(TF “startpoint)) (*6)
(TIME (c afterspan)) yields (TIME (NAMED TIMESPANX)
(TS “endpoint))
(TIME (c timearound)) yields (TIME (NAMED TIMESPANX)
(COMPARISON (-DURING ~“time)))
(TIME (c startspan)) vyields (TIME (NAMED TIMESPANX)
(COMPARISON (-DURING ~startpoint)))
These commonly used time structures can thus be easily incorporated into the
specifications of conceptual patterns, and may be referred to by the use of
these mnemonics.

The prefix 'v' causes the substitution of the value of any Lisp
expression: most commonly this is simply a free variable.

The 'S$' prefix is used in conjunction with the second element of a
pattern specification, the filler list: it is used to prefix a number,
which is interpreted as a subscript for the filler list. Thus, ($ 1) refers
to the first element of the filler list, ($ 2) refers to the second, and so
on. A concept (a Lisp atom) in the filler list causes a new instance of the
concept to be created; if the first element is TIMEPOINT, for example, the
instance TIMEPOINT3 might be created, and will be used in place of each
occurrence of the subpattern "($ 1)" in the pattern specification. There
are other ways of using the filler list, but I shall not describe them here:
they are seldom used and their effects could be achieved in other ways.

The use of filler lists can be illustrated with an example from the
MIRANS network. This call to INFER occurs when the driver corresponds to,
eg, "FRED WROTE A BOOK". This motivation inference picks up "FRED", "BOOK"
and "CONCEPTS" from the driver (via the registers), but needs to invent a
new DUMMY-HUMAN and a new TIMEPOINT in order to express the idea that
"FRED THOUGHT THAT SOMEBODY WOUID BENEFIT FROM READING WHAT HE WROTE"

(INFER motivation 0.8 0.5
((STATE (STATENAME MIOC)
(INCP (r actor))
(TIME (r time))

(MOBJECT
(CAUSE
(ANTECEDENT
(EVENT (ACTOR ($ 1))
(ACT MTRANS)
(MOBJECT (r info))
(FROM (r to))
(TOCP ($ 1))
(TIME (NAMED ($ 2))
(COMPARISON (AFTER (r time))))))
(RESULT :
(STATE (STATENAME BENEFIT)
(THING ($ 1))

(VAL (HIGHERBY 2))
(TIME (NAMED ($ 2)))))))))
(DUMMY-HUMAN TIMEPOINT))

*5 The notation TIMESPANx means a newly created TIMESPAN token

*6 The notation ~startpoint means the contents of the register startpoint

136

Taken together, the various methods of substituting partial structures
into a pattern provide a convenient pattern specification mechanism. The
most important feature of this scheme is that the pattern specifications are
easily written and are easy to read later.

8.3.2) Pattern matching

As mentioned earlier, conceptual patterns have a main primitive, usually
an ACT or STATENAME. With this primitive is stored a list of propositions
based upon it. When a new pattern comes along, this primitive is identified
and the relevant list of propositions is retrieved. Then the subsidiary
roles of the new pattern are split into several groups, according to the
type of matching appropriate for them. These groups are:

(a) Truth selectors, eg. (TRUTH TRUE) ,(ABILITY CANNOT)

(b) Simple nominals, eg. (ACTOR FRED) ,(OBJECT DUMMY-THINGL)

(c) Procedurals, eg. (TIME (NAMED TIMEPOINT3)),(VAL (HIGHERBY 2))
(d) Embedded conceptualisations

The pattern matching procedures always check for compatibility, as
explained below, as well as for identity between the elements of a pattern
and the corresponding elements of previously stored patterns. When two
patterns are not identical, but are in all respects compatible, the pairs of
compatible elements are passed on as cross-reference information, as
described in more detail in section 8.3.3 below.

Compatibility of truth selectors

In matching, the truth selectors are dealt with quite simply. The
possible truth modifiers are
{TRUE, FALSE,CAN, CANNOT, TRUTH? ,ABILITY? ,UNTRUTH? , INABIL.ITY?}
The matcher regards {TRUE,TRUTH?,CAN,ABILITY?} as compatible with one
another, and {FALSE,UNTRUTH? ,CANNOT,INABILITY?} likewise.

Compatibility of simple nominals

For simple nominals the rules governing the compatibility of two
non-identical tokens are more complex. Firstly, they must not have been
marked as distinct (by the functions DISTINGUISH or EQR); secondly, they
must either be instances of the same nominal, or one of them must be a
pronominal token having features compatible with the other.

These rules permit MONKEYl to match MONKEY2, by virtue of their being
instances of the same nominal - both having the property (ISA MONKEY) - and
permit DUMMY-MALEL to match FRED, since DUMMY-MALEL is a pronominal token
with the single feature MALE. These rules do not however permit NUTSL to
match PEANUTSL, because neither of the rules given above apply. This is a
weakness of the currently implemented program: in order to overcome this
problem, it is necessary to introduce some further classification of
objects, organised along the lines of a thesaurus.

In the implemented program, components of patterns are classified as
"simple nominal" by default: ie. if they do not fall into any of the other
classes. Thus, in particular, the handling of superprimitives is performed
by this part of the pattern matcher. Section 2.3.2 in the chapter on
representation mentioned the introduction of superprimitives. The use of
conceptual primitives carries significant benefits, allowing many fine
distinctions of meaning to be represented. This can however be a

137

*7

disadvantage if all messages encoded in these primitives must be highly
precise and explicit. For example, we may wish to infer that somebody who
discovers that somebody else has stolen something will feel badly towards
the thief, but there are several forms of bad feeling. Suppose "Fred
discovers that Mary stole his wallet"; do we infer

"Fred dislikes Mary"

"Fred hates Mary"

"Fred is angry with Mary"

"Fred finds Mary repulsive"

"Fred loathes Mary"
The use of superprimitives permits the primitives corresponding to these
"bad feelings" to be grouped together. In pattern matching, a
superprimitive is regarded as compatible with any of the primitives which it
groups together. The existing superprimitives, and the groups of related
primitives, are shown below. (*7)

** SOUND** *LAUGHTER* ,* SPEECH* ,* SONG* ,*NOLSE*

% SENSOR * *EYE* % EAR* ,*NOSE* ,*PALATE* ,* SKIN*

NEGEMOTION *HATRED* ,*ANGER* ,*DISLIKE* ,* LOATHING* ,*REVULSION*
*%POSEMOTION** *IOVE* ,* TOLERANCE* ,* LIKING* ,* ADMIRATION* ,* ATTRACTION*

* AGENCYH* *GRAVITY* ,* PRESSURE* , * MOMENTUM* , * COHESION* ,* ADHESION* ,
EFTE[D ,*MFIELD*

DIRECTION *NORTHX ,* SOUTH¥ ,* EAST* , *WEST* , *UP* , ¥ DOWN*

*%QUANTITY** *EVERY* ,*MBNY* ,*SOMEX , *FEW* ,NO*

KR OTH* *EVERY* , *MANY*

#*,TTTLE** *FEA* , %NO*

#*DART** *TOP* , *BOTTOM* , *MIDDLEX ,* END* ,* INSIDE* ,*OUTSIDE¥ ,
HIGHPART ,* LOWPART*

This shows, incidentally, that a single primitive may match more than one
superprimitive. For example, *EVERY* will match both **QUANTITY** and
*%IOT**, The contexts in which these primitives and superprimitives may
appear are, of oourse, restricted. For instance, **SOUND** and its
associated primitives may only appear as either the SOUND role of a SPEAK
act, or as the TO role of an ATTEND act.

Compatibility of procedurals

The matching of procedurals is concerned with temporal information, and
also with the scales used to represent many adjectives. Two non-identical
times are seen as compatible, regardless of whether they are points or spans
of time, if it is impossible to prove that one time is before the other:
this can be an expensive operation, particularly since in almost all cases
different time tokens are compatible. The internal representation of the
time information has been tailored to make this operation as cheap as

Items surrounded by single asterisks are primitives, those surrounded by
double asterisks are the superprimitives

138

possible, and the checking of temporal compatibility is the last, and hence
least frequent, matching operation performed.

The scales used for the representation of most adjectives involve the use
of a number to indicate a point on the scale. For instance, the SIZE scale
takes a VAL in the range -10 to 10; various adjectives correspond to
subranges, as follows:

MINUTE -10 to -8

TINY -7 to -5
SMALL -4 to -1
BIG lto5
HUGE 6 to 8

ENORMOUS 8 to 10
The pattern matcher does not insist that the numbers given match exactly,
but instead allows some degree of slop by permitting a match between two
numbers which differ by less than 3.

An alternative form of these scales is used to indicate a change of
state. Thus, the verb "TO GROW" might be represented as a SIZE scale, with
(VAL (HIGHERBY 2)), and "TO SHRINK" might be represented with
(VAL (LOWERBY 2)). In pattern matching, these forms are permitted to match
any number, and a HIGHERBY can match another HIGHERBY with some slop as
above.

Compatibility of embedded conceptualisations

Embedded conceptualisations can occur in several situations. For
instance, any MIRANS has a MOBJECT role which is an embedded
conceptualisation, and any EVENT may have an INST role. These embedded
conceptualisations are treated as patterns in their own right, going through
pattern matching and then internalisation. These processes return a
proposition token which has some cross-reference information attached to it;
this in particular refers to the compatible propositions. When a pattern
with an embedded conceptualisation is being matched against an existing
proposition, the match will proceed if the existing proposition has a
compatible embedded conceptualisation.

The matching proceeds in several stages:

(1) The main primitive is identified, and the list of propositions based on
that primitive is retrieved.

(2) The conceptual roles are split into the groups mentioned above.

(3) Embedded conceptualisations are recursively matched and internalised.

(4) The truth selectors are used to prune the possible matches.

(5) The simple nominals are considered, one at a time. For example, the
ACTOR might be considered first, then the OBJECT, etc.

(6) If the pattern is a scale, the VAL is considered.

(7) If embedded conceptualisations are present, the corresponding
propositions are considered.

(8) Time tokens are checked for compatibility.

There is a final check to ensure that no token must be regarded as

compatible with more than one other token. If this check were omitted, the

structures

139

((EVENT (ACTOR DUMMY-MALEL)
(ACT ATRANS)
(OBJECT BOOK1)
(FROM DUMMY-MALEL)
(TO FRED)
(TIME (NAMED TIMEPOINT1))))

((EVENT (ACTOR FRED)
(ACT ATRANS)
(OBJECT BOOK1)
(FROM GEORGE)
(TO FRED)
(TIME (NAMED TIMEPOINTL1))))

"HE GAVE FRED THE BOOK" "FRED TOOK THE BOOK FROM GEORGE"
would be regarded as compatible: this problem can appear in many forms, bhut
the check described here traps all of its manifestations.

8.3.3) Cross-referencing

The cross-reference information attached to propositions is a critical
element of the entire inference apparatus. Drawing inferences, and even
expressing these inferences in English, is a limited, nay futile, exercise
unless inferences made from different sources can be compared and perhaps
merged. The comparison of conceptual structures is done by the pattern
matcher, as described in the preceding section. The results of these
comparisons are passed on to the rest of the system as cross-references
between the propositions. Cross-referencing serves a variety of functions,
as described below, all of which serve in particular to promote the system's
major activities of pronoun resolution and question answering.

The cross-reference information is added when a conceptualisation is
internalised: suppose we had the two conceptual patterns shown below, and
the second one, ATRANS3, was being internalised:

ATRANS1: "HE TOOK A BOOK FROM BILI"

ATRANS3: "FRED TOOK IT FROM BILL"

((EVENT (ACTOR DUMMY-MALEL)
(ACT ATRANS)
(OBJECT BOOK1)
(FROM BILL)
(TO DUMMY-MALEL)
(TIME (NAMED TIMEPOINTL1))))

((EVENT (ACTOR FRED)
(ACT ATRANS)
(OBJECT DUMMY-THING7)
(FROM BILL)
(TO FRED)
(TIME (NAMED TIMEPOINTZ2))))

The pattern matching procedures described above would have detected that the
following pairs of items were compatible (but not identical) (*8):

In ATRANS3 (new) In ATRANSL (old) Role(s)
FRED DUMMY-MALE]L ACTOR,TO
DUMMY~-THING7 BOOK1 OBJECT
TIMEPOINTZ2 TIMEPOINTL TIME

Therefore, the specifications attached to ATRANS3, the new proposition,
indicate the similarity with ATRANSl, and the substitutions which would have
to be made in ATRANS3 for these two propositions to be identical, thus:

(ATRANS]1 ((FRED ., DUMMY-MALEL)
(DUMMY-THING7 . BOOK1)
(TIMEPOINTZ2 . TIMEPOINTL)))
ATRANS1 would also be given the "reverse" specifications

(ATRANS3 ((DUMMY-MALEl . FRED)
(BOOK1 . DUMMY-THING7)
(TIMEPOINT1 . TIMEPOINT2)))

*8 This discussion assumes that these pairs are in fact compatible.

140

These specifications are used for many purposes: proposing pronoun
referents, evaluating pronoun referents, answering queries generated within
the system, and determining when two propositions have become identical.

These specifications, recording the similarities between different
propositions, are provided by the pattern matching procedure. The KRL
pattern matcher, described in [Bobrow and Winograd, 19771, can be used in a
similar fashion if the resources available are limited. Their matcher takes
a pattern and a single datum, and they say:

Resource limitation and pinpointing of further problems: In a
case where the processing so far has not produced a definite
answer, the matcher should be able to return specific details in
addition to the result of "don't know yet". Given the problem of
matching (which Owns (a Pet)) against Mickey, with sufficient
resources it could answer "Yes". With less resources, it
could answer "Yes, if (a Dog) matches (a Pet)", and with still
less, "Yes, if Pluto matches (a Pet)".
The specifications returned by the matcher in AD-HAC may be seen as a
"Yes, if..." answer. The representation language used does not contain
embedded descriptions in the way KRL does, which makes the application of
deductive procedures inappropriate for AD-HAC's matcher. The most germane
difference, however, is that in KRL the matcher attempts to establish
references as soon as possible; in AD-HAC, the possibility of reference is
noted at the time a match is attempted, and the entire set of possible
references is later used to determine what identifications should be made.

There are other forms of cross-reference information attached to
propositions and to tokens. When a proposition is created to hold a
conceptual pattern, the name of that proposition is also added to the list
of appearances of each token which occurs in that proposition. Suppose we
had just the propositions ATRANS1 and ATRANS3 shown above, the appearances
of various tokens would be as follows:

DUMMY-MALEL (ATRANSL)

FRED (ATRANS3)
BOOK1 (ATRANS1)
DUMMY-THING7 (ATRANS3)
BILL (ATRANS3 ATRANSL)
TIMEPOINTL (ATRANSL)
TIMEPOINT2 (ATRANS3)

This ‘'appearances' information is used, for example by the
complaint-handling process introduced in section 8.2.2.1, to retrieve the
set of propositions which may be relevant in making some decision about a
token; when handling complaints, the specifications attached to these
propositions are scanned to find potential referents for pronominal tokens.

When an inference is made, it is assigned an inference class, and this is
also recorded as a form of cross-reference. As explained in detail in
section 8.5 below, most inference classes are paired up with their
complements, for use in mutual cross-reference. Thus, suppose the driver is
ATRANS1, and a resultative inference is POSSl, then the information

(resultative . ATRANSI1)
is added to POSSl, and the complementary information,
(causative . POSSL)
is added to ATRANSl. Cross-references of this kind are called inf-links.

141

Whenever a conceptual pattern is internalised, a proposition is created
which names that pattern and stores the conceptual content on its property
list. To facilitate the cross-reference process, an inverse proposition is
also created, which differs by having the opposite truth value. Thus, when
ATRANS3 is created as shown above, the inverse proposition ATRANS4 is also
created having (TRUTH FALSE). The two propositions are linked together by
having the property 'inverse'. Similarly, ATRANSL would have an inverse,
ATRANS2. While the provision of these inverses does facilitate the
cross-reference process, it is rather clumsy and complicates various other
parts of the program; eventually, it 1is hoped that these inverse
propositions can be eliminated.

Assumptions and incompatibilities

As mentioned in section 8.2.2.2, contextual tests in inference networks
result in both paths through the net being taken, and the resulting sets of
inferences being marked as incompatible with one another. This is another
form of cross~reference.

When a contextual test is made, using the function MBELIEVE, the
conceptual pattern 1is internalised, and both branches of the network are
followed. When following the "yes" branch following an MBELIEVE test, the
proposition is added to a global list called 'assumptions'. Similarly, when
the "no" branch is followed, the inverse proposition is added to this list.
Whenever an inference is made (*9), the contents of the 'assumptions' list
are copied to the assuming property of the resulting proposition, and this
proposition 1is added to the assumption-indicates property of each of the
assumptions. '

Each inference produced in this manner is dependent both upon the current
driver, and upon the current set of assumptions; in general, when a
contextual test is made, disjoint sets of inferences are produced depending
repectively on an affirmative and a negative answer to the test. If
independent evidence is found which supports such an assumption—dependent
inference, this support can be seen as preferring one answer to the test
over the other. Hence these contextual tests may be answered indirectly,
because of the inferences to which they lead. Also, if one such dependent
inference finds support, the inferences dependent on the other answer to the
test lose some credibility. To facilitate this interplay between the
competing sets of inferences, it is desirable to have some direct reference
between the elements of different sets, particularly since the paths through
the inference network may later rejoin: in such a case, relatively complex
computations would have to be repeatedly performed. Consequently,
propositions depending on one answer to a test rather than another index all
the propositions which assume the alternative answer. This form of
cross-reference is called incompatibilities, and is also used when multiple
inferences of particular types are drawn from a single driver. For example,
several motivations may be inferred for an actor performing a particular
act, yet usually only one of these motivations actually applies. This is
discussed further in section 8.5.4 below.

The 'assumptions' mechanism is also used when an inference network is
resumed after a complaint was issued by a simple IS test, as briefly
described in section 8.2.2.1, and more fully described in section 8.6.1

*9 When an inference is expressed in English, the first assumption (if any) is
also picked out, and the generated sentence has the form "IF ...,THEN ...".

142

below. In such a case, a proposition is created which asserts identity
between a pronominal token and some candidate referent. This proposition is
placed on the 1list of assumptions, and the inference process continues,
marking each subsequent inference as assuming this reference for the
pronoun, as above, and recording each on the assumption-indicates property
of the proposition which asserts the identity of reference. Subsequently,
as shown in section 8.6.1, these inferences are scamned, and the agreement
between them and other independently-derived inferences is exploited to
select the best referent for the pronoun.

8.4) Certainty and Interest ratings

The specification of inferences is accomplished by use of the function
INFER, which, as indicated in section 8.2.1, requires a certainty rating and
an interest rating to be specified, along with a conceptual pattern and a
class of inference. These ratings are usually given as numbers in the range
0.1 to 0.9. When the conceptual pattern given to INFER is internalised,
causing the creation of a proposition as described in section 8.3 above,
this proposition is assigned a certainty weight and an interest weight on
the basis of the numbers cited in the original call to INFER, chosen in an
ad-hoc manner defended below.

A high certainty rating indicates that the proposition is believed to be
true, whilst a high negative rating indicates that the proposition is
believed to be false. Intermediate numbers indicate that the proposition is
more or less strongly believed. The value 1 is taken to mean that the
proposition is an unshakeable belief.

A high interest rating indicates that it may be fruitful to produce
further inferences, using this proposition as the driver. As will be seen
in section 8.5.2, these ratings may be systematically modified in order to
encourage the construction of causal chains.

The propositions corresponding to canonicalised constituents of the
conceptual structure delivered by the sentence analyser are initially
weighted at 0.99 for both certainty and interest. When inferences are
drawn, in the simplest (and commonest) case (*10), the weights given to the
inferred propositions are multiplied by the corresponding weights of the
driver: thus, when chaining occurs, there is a progressive weakening of
both the certainty and interest of remote inferences; this means, in
particular, that the inferential process can be halted if a threshold is
passed.

Whenever a proposition is created, an inverse is also created as
described in section 8.3.3 above. Such an inverse proposition has certainty
and interest weights complementary to those of the real proposition, and
hence negative in the range 0 to -1: thus, if the proposition POSSL is
created, saying "FRED HAS THE BANANA" for instance, POSS2 will say
"FRED HAS NOT GOT THE BANANA"; and if POSSl has a certainty of 0.7, then
POSS2 will have a certainty of -0.7.

When two propositions are merged, one of the operations performed is the
calculation of new certainty and interest weights. The new weights should
exhibit the following properties:

(a) The new weight should remain in the range -1 to +1

*10 More complex cases are dicussed in sections 8.5.1 and 8.5.2

143

(b) If one of the o0ld weights was +l1, the new weight should be +1;
conversely, if one of the old weights was -1, the new weight should be
-1. (If one of the old weights was +1, and the other was -1, the two
propositions should not be merged.)

(c) If one of the o0ld weights was zero, the new weight should be taken
directly from the other old weight.

(d) If both old weights were positive, the new weight should be positive and
higher than either of the old weights (unless one of them is +1, when
(b) above applies)

(e) If one of the o0ld weights is positive and the other is negative, the
result should take its sign from the largest in magnitude.

The calculation of these new weights is performed by the function AGREE,
which is reproduced below.

(DE AGREE (X Y)
(COND ((ZEROP X) Y)
((ZEROP Y) X)
((OR (EQN X 1.0) (EQN Y 1.0)) 1.0)
((OR (EQN X -1.0) (EQN Y -1.0)) -1.0)
(T (QUOTIENT (PLUS X Y)
(PLUS 1 (ABS (TIMES X Y)))))))

The use of numeric scores such as these is frequently, and mistakenly,
criticised on a variety of grounds.

i: People surely do not have precise measures of their beliefs.
The AD-HAC system does not pretend to be a model of how people
understand stories, but is simply a computer system for
understanding them. The use of numbers in such a wmachine-oriented
model 1is perfectly natural, and in any case these numbers are
peripheral to its reasoning abilities, providing it with some
ability to represent information it needs to guide its operation.
Some measure of the degree to which a proposition is believed is
necessary, and it must be possible to systematically change this
measure as more evidence for or against it is accumulated. Using
numbers for this measure makes this modification quite simple.

ii: The selection of ratings ought to be guided by uniform criteria.
The ratings are simply chosen to reflect how certain and important
an inference seems to be, in the context established by having
reached a particular point in the net. This is based on the
implementor's common sense.
iii: The numbers are obviously important, but are they right?

The precise values of these numbers does not seem to matter, at
least in the texts on which the system has been tested. It has
never been necessary to fine-tune the weights of any inference.

These ratings are used by the inference mechanism in several ways, which
are outlined in the following sections.

8.4.1) Certainty ratings and proposition merging

When the conceptual representation of a text, or even of a single complex
sentence, 1is used for the generation of inferences, it sometimes happens
that precisely the same conceptual pattern is created for two or more
inferences. Far more frequently, patterns are created which have an overall
similarity, but which differ in some respect, particularly in relation to
pronouns. For example, in processing the conceptual representation of the

144

sentence
"JILL TOOK BILL'S MONEY FROM HIM"
canonicalisation will produce two structures, say

((EVENT (ACTOR JILL) ((STATE (STATENAME POSS)
(ACT ATRANS) (THING MONEY1)
(OBJECT MONEY1) (VAL BILL)
(FROM DUMMY-MALEL) (TIME (NAMED TIMEPOINT1))))
(TO JILL)

(TIME (NAMED TIMEPOINTL))))
both of which will first be internalised and then used for the production of
inferences. Suppose the corresponding propositions are ATRANSL and POSSL.
One of the inferences drawn from ATRANSL will have the form

((STATE (STATENAME POSS)
{ THING MONEY1)
(VAL DUMMY-MALEL)
(TIME (NAMED TIMESPANL)
(TF TIMEPOINT1))))
ie., the male from whom Jill took the money had the money previously. This
inference will be internalised, and may end up as the proposition POSS3.
The pattern matching procedures described in section 8.3.2 will have noted
that this pattern is similar to the pattern of POSSl, so the proposition
will have been given the specifications

(POSSL ((DUMMY-MALEL . BILL)
(TIMESPAN] . TIMEPOINTL)))

and POSS1 will also have been given appropriate specifications.
Furthermore, the token DUMMY-MALEL will have been given appearances

(POSS4 POSS3 ATRANS2 ATRANSL) (*11)
(There will naturally be many more propositions, and much more
cross-reference information, than I show here.) The specifications attached
to POSS3 indicate that POSSL may be saying the same thing as POSS3, if
DUMMY~-MALEL can be identified with BILL, and if TIMESPANL can be identified
with TIMEPOINTL. Since both POSS3 and POSSl1 have a positive certainty
rating, the system concludes that it would be desirable to merge them. 1In a
realistic case, when many more inferences are made, with correspondingly
more specifications, the system has to choose which similar propositions to
merge: it does this by trying to merge those propositions which show the
highest agreement. Thus, if two propositions are similar, and are strongly
believed, this will act as an impetus to merge them. Conversely, 1if one
proposition is strongly believed and another is disbelieved, the system will
try to avoid merging them.

The certainty ratings, then, are used to determine which propositions the
system should merge. By merging propositions, the system is able to resolve
pronouns, answer wh—questions, determine many definite references, and
establish many temporal sequences. More details are given in section 8.6.

8.4.2) Interest ratings for controlling inference

The system has the ability to use derived inferences themselves as
drivers, to produce further inferences. This will generate chains of
inferences with links of different kinds as indicated by the various
networks. Similar chains were created by Rieger's MEMORY, as "expanding

*11 The appearances include the inverse propositions.

145

spheres of inference", and by Wilks [Wilks 1975al when applying “common
sense inference rules" (CSIRS) to resolve anaphora. Unfortunately, when
this chaining occurs, there is a danger of combinatorial explosion: in
Wilks's case, this was avoided by using inferences only in order to solve
specific problems, ie. to resolve certain difficult anaphoric references;
in Rieger's case, combinatorial explosion represented a serious problem.

The approach taken in AD-HAC involves assigning an interest rating to
individual inferences, and drawing further inferences from only those
inferences whose interest rating exceeds a certain threshold. This
threshold is set somewhat arbitrarily at 0.3. Since the interest ratings of
new inferences are always smaller than the weight given to the driver, this
ensures that the inference process will halt. Further, inferences are in
fact only chained when there is some causal relationship which is explicitly
asserted in a text, and the precise details of this causal relationship need
to be discovered.

Interest ratings can however be 'revived' in some circumstances. When
propositions are merged, the interest ratings of propositions are modified
in the same way as the certainty ratings, using the same AGREE function
illustrated above. It 1is therefore possible for the merging operation to
cause some inferred proposition to exceed the threshold, and therefore to be
considered for the production of further inferences, even though both of the
original propositions were considered insufficiently interesting.

8.4.3) Interest ratings for assisting generation of sentences

When the inferencer wishes to express some proposition in English, it
expands the conceptual information stored on the proposition's property list
into the external CD form, and passes this on to the sentence generator.
The CD form may of course contain references to pronominal tokens -
DUMMY-MALEL for example - and the generator may find that it is impossible
to cast the sentence in such a way that reference to this token is omitted.
When this happens, the generator secks further information which it can use
to describe this dummy token, and any further information it receives will
typically appear as a relative clause qualifying the dummy.

Upon receiving such a request from the generator for further information,
the inferencer needs to pick some proposition which mentions the Qummy
token, and go through the same unpacking process to create a further
representation in external CD form. Typically, there will be several such
propositions, and the inference mechanism needs to pick one which will
convey helpful information to a reader of the generated text, and preferably
the most helpful one. The original proposition, though it clearly does
mention the dummy, is not very helpful in giving further information. For
instance, the relative clause does not serve any useful function in the
sentence

"FRED GAVE MARY THE THING WHICH HE GAVE MARY".
(AD-HAC does not try to emulate bureaucrats!)

To pick the most helpful proposition, the system first looks at the
appearances property of the dummy token, to find the propositions in which
the dummy is mentioned. It then considers only those propositions which are
believed, ie. have a positive certainty rating, and which have not already
been passed to the generator for the production of this sentence. It then
picks the proposition which maximises a function of the certainty and
interest ratings. The interest rating plays the more important role in this

146

function, since very certain but uninteresting propositions 1lead to
ludicrous results. For instance, the following sentence was produced in the
early stages of this work:

THE MALE, WHO HAD SOME LEGS, LEFT THE PLACE FROM WHICH HE WENT TO THE ZQO.
Given a driver corresponding to "HE WALKED TO THE Z0O", a very certain
inference 1is that "HE HAD SOME LEGS"; but this is a very uninteresting
inference. Utilising interest measures to select a suitable qualifying
proposition greatly enhances the quality of the English produced.

8.5) Classification of inference types

Irrespective of the precise mechanism used to draw inferences, it is
clear that not all inferences are alike, and it is natural to try to
formalise the ways in which inferences may differ: that is, to classify
them. One obvious way in which inferences may be classified is on the
dimension of time: some inferences will be about the past, others about the
(relative) future. Within this broad classification, it 1is easy to

distinguish finer subcategories: "preconditions" and "motivations", for
example, will both concern the past, but are intuitively different types of
inference.

The preceding chapter mentioned that Rieger's MEMORY program used a
classification of inference types. Much of his classification has been
carried over into the present work, but some of his classes have been
dropped, and some new ones have been introduced. Additionally, as mentioned
in connection with cross-reference in section 8.3.3 above, AD-HAC's
inference types are paired up. In general, the pairings are rational,
though in some cases type and anti-type are the same, and in some other
cases pseudo-anti-types have had to be introduced. The types used, and
their pairings, are:

precondition : enabledact
enabledact : precondition

resultative : causative
causative : resultative
motivation : plannedact
plannedact : motivation
motivator : motivated
motivated : motivator

instrumental : helping

helping : instrumental

precevent : follevent

follevent : precevent

normative : normative (*12)
rewrite : rewrite (*12)
actorfeature : never-use (*13)
implicit : never-to-be-used (*13)
exclusion : excludes (*13)

*12 'rewrite' and 'normative' are their own anti-types
*13 'never-use','never—to-be-used' and 'excludes' are pseudo-anti-types

147

*14

*15

The names given to the various inference classes are hopefully indicative
of their meanings. These meanings are clarified below, along with
restrictions upon the types of proposition which may be linked by a given
inference type, and with simple examples in each case.

(1) precondition type inferences are made when the driver is an EVENT,
and relate to that event a prior STATE which must have been true for the
event to have taken place. (*14)

For example, "JOHN GAVE MARY A BOOK" ——-> "JOHN HAD THE BOOK"
Conversely,

(ii) enabledact type inferences are made when the driver is a STATE, and
relate to it an EVENT which may take place when this state is true.

For example, "JOHN HAS A BOOK" ---> "JOHN MAY GIVE THE BOOK TO SOMEBODY"
Only the most obvious and potentially helpful enabledact inferences are
actually made.

(iii) resultative type inferences are made when the driver is an EVENT,
and relate a STATE which becomes true as a consequence of the event being
performed to the driving event.

For example, "JOHN GAVE MARY A BOOK" —--> "MARY THEN HAD THE BOOK"
Conversely,

(iv) causative type inferences are made when the driver is a STATE, and
relate to it an EVENT which may have brought about that state.

For example, "MARY HAD A BOOK" -—-> "PERHAPS SOMEBODY GAVE THE BOOK TO MARY"

(v) motivation type inferences are made when the driver is an EVENT, and
relate a goal-type STATE to it. Specifically, the actor of the event is
inferred to have a goal of bringing about some state, and this state will
normally correspond to one of the resultative inferences from the same
event.,

For example, "MARY TOOK THE BOOK" ---> "MARY WANTED TO HAVE THE BOOK"
Conversely,

(vi) plannedact type inferences are made when the driver is a goal-type
STATE, and suggest EVENTs which may be performed to bring about the desired
state. (*15)

(vii) motivator type inferences are made when the driver is an EVENT, and
relate to it a STATE which might impel the actor to perform the event.
These should not be confused with motivation inferences.

For example, "FRED ATE THE BANANA" ——-> "FRED WAS HUNGRY"
Conversely,

(viii) motivated type inferences are made when the driver is a STATE, and
relate to it an EVENT which the state might impel the actor to perform.
(*15)

(ix) instrumental type inferences are made when the driver is an EVENT,
and relate to it another EVENT which may be performed by the same actor, and
at the same time, as a means of performing the driving event.

For example, "FRED TOLD MARY THAT ..." ——-> "FRED SPOKE"
These instrumental inferences are clearly related to the INST role, which is
an optional part of the representation of any event. Conversely,

(x) helping type inferences are made when the driver is an EVENT, and
relate to it another EVENT which the same actor may be performing at the
same time by means of the driving event.

For example, "FRED PUSHED THE TABLE" ——-> "FRFED MOVED THE TABLE"

Precondition inferences usually have a very high certainty rating to reflect
the strong expectation that they must have been true: but some are in fact
rated lower, and this reflects a problem of representation.

Currently, neither plannedact- nor motivated-type inferences are actually
made by the implemented program. However, their use is anticipated.

148

*16

Such inferences are seldom made: only the PROPEL network uses them.

(xi) precevent type inferences are made when the driver is an EVENT, and
relate an EVENT which may have occurred earlier to the later event.
For example, "FRED WAS SICK" —-—-> "FRED ATE/DRANK TOO MUCH"
Conversely,

(xii) follevent type inferences are made when the driver is an EVENT, and
relate to it an EVENT which may be expected to occur later.

For example, "FRED GAVE THE MONKEY A BANANA" --> "THE MONKEY ATE THE BANANA"
Both precevent and follevent inferences occur most frequently inside
script-like inference networks, and permit many intervening STATE
representations to be omitted.

(xiii) normative type inferences are made when it seems useful to make some
inference which does not fall into any other category.
For example, "FRED'S CAR WAS STOLEN" —--> "FRED WILL INFORM THE POLICE"
This is a catch—-all classification, and its existence indicates that further
work on the classification of inferences is needed.

(xiv) rewrite type inferences are provided as a programming hack to
overcome certain known weaknesses in the sentence analyser. They are used
in two places only; the first corresponds to the use of phrases 1like
"FRED'S SISTER", which is wrongly analysed using the state POSS; the second
use handles sentences like "FRED ATE ELEPHANT", which is analysed as though
"FRED ATE AN ELEPHANT"! Rewrite inferences specify a new conceptual
structure to be handled in place of the current driving conceptualisation.
This type clearly needs to be removed in system development.

(xv) actorfeature type inferences are made when the driver is an EVENT,
and an idiosyncratic inference is made because of some special feature of
the actor of the event.

For example, "GRAVITY PROPELs OBJECT" ---> "SOMETHING SUPPORTS OBJECT"

(xvi) implicit type inferences are always STATEs with the statename EXIST;
they are always quite certain, very uninteresting, and made early in the
inference nets.

For example, "FRED GAVE MARY A BOOK" ---> "FRED EXISTED"
The principal purpose of these inferences is to have some inference made
about every object or person mentioned in a story, so that candidates can be
found when a pronoun has to be resolved.

(xvii) exclusion type inferences are made when the driver is a STATE, and
some other state can be deduced to be false.
For example, "FRED HAS A MONKEY" ---> "NOBODY ELSE HAS THAT MONKEY"
Such inferences can usefully restrict the pronoun reference processes.

8.5.1) Handling negation and ABILITY

The inference networks are written with simple affirmative drivers in
mind: various inferences about preconditions of events, results of events,
motivations, etc., are made in a straightforward way. However, many of
these inferences would be invalid if such a simple driver is negated, or if
the conceptual structure mentions ABILITY, and so the system must avoid
making them. (*16)

The classification of inference types given above proves extremely useful
in handling this problem, for some classes of inference seem to be
independent of the truth of an assertion, whilst other inferences change in
a systematic way. By exploiting these observations, the inference networks
themselves need take no note of the truth value indicated for a particular

The handling of negation is often discussed in terms of 'presuppositions’'.
[Wilson 1975] gives a detailed treatment of this approach.

149

driver: the function INFER itself changes the inferences made in a variety
of ways, as follows.

When drawing inferences from a given driver, AD-HAC first inspects its
TRUTH or ABILITY roles, and uses these to split the various inference
classes temporarily into groups. These groups are called fullstrength,
weakened, disbelieved and existentially-dependent. These names are
mnemonic: "fullstrength" inferences have certainty and interest ratings
computed in the standard way, by multiplying the ratings of the driving
conceptualisation by the numbers given in the call to INFER; "weakened"
inferences are given a certainty rating of only 50% of this full strength;
"disbelieved" inferences have a negative certainty rating (their inverses
are assigned 40% of the full strength computed as above). The final
grouping, "existentially-dependent”", has an effect on certain inferences
involving "existentially-qualified" tokens: this is more complex, and is
explained later.

Inference classes are temporarily assigned to these groups as follows:
(1) For a straightforward affirmative sentence, i.e. TRUTH=TRUE, all
inference classes are fullstrength.
(2) If the driver has ABILITY=CAN (*17) then precondition, implicit and
precevent inferences remain as fullstrength, while motivation and motivator
inferences are disbelieved; all other inference types are ignored.
(3) If the driver has ABILITY=CANNOT, implicit inferences are weakened,
precondition and precevent inferences are disbelieved, and all other types
are ignored.
(4) If the driver has TRUTH=FALSE, then precevent and precondition
inferences are weakened, motivation, motivator and enabledact inferences are
disbelieved, and implicit inferences are existentially-dependent. The
system may flag various tokens as 'existentially-qualified'; this flag
indicates that the token, although a dummy, may never be permanently
identified with another token, but must be permitted to match any other
token at any time, provided the features are compatible. (This is one way
in which the system deals with quantification.) Most commonly, this
situation arises when the sentence analyser constructs dummy tokens to fill
parts of a conceptual representation for a negated sentence, as described in
section 5.3.4. For example, the sentence "THE BANANA WAS NOT EATEN" will be
represented as

((EVENT (ACTOR DUMMY-BEASTL)
(ACT INGEST)
(OBJECT BANANAL)
(TRUTH FALSE)
(TIME ...)))
When this representation is constructed, the token DUMMY-BEAST1 will be
flagged as existentially-qualified: with the flag, the conceptualisation
may be loosely read as
"THERE IS NO BEAST WHICH ATE THE BANANA"
Without the flag, it would be
"THERE IS SOME BEAST WHICH DID NOT EAT THE BANANA"
When the inference network for INGEST is working on this representation, it
will make an implicit inference that the ACTOR - ie. DUMMY-BEAST1 - exists.
The effect of making implicit inferences 'existentially-dependent' is to
make them sensitive to the presence of this flag. If the token whose
existence is being predicated is marked with this flag, then the certainty

*17 Only EVENT conceptualisations may have an ABILITY role.

150

rating of the corresponding inference is reduced to 30 percent of its normal
value; if the flag is absent, the full certainty rating is given.

Overall, this apparently simplistic handling of negation and ability
proves highly effective, and the system's success in handling texts which
involve these phenomena 1is encouraging. The most serious problem
encountered so far is that there is no uniform way of handling normative
inferences; but since this is a catch-all classification pending further
research, it is hardly surprising, though regrettable, to find a lack of
uniformity here.

8.5.2) Constructing causal chains

As outlined in the preceding chapter, Rieger's MEMORY program tried to
link together the conceptual representations of the sentences in a text, and
assumed that the identification of causal chains was a critical phase of
this activity. Rieger also assigned inferences to various classes, and
placed restrictions upon the types of conceptualisation which could be
linked to form chains by inferences of given types. The theory underlying
the MEMORY program essentially cultivated the nettle of combinatorial
explosion, stating that the production of inferences continued indefinitely:
when some sentence, a part of a text, caused the production of inferences,
these too should be used for the production of further inferences, and so on
ad infinitum.

The identification of causal chains was based largely on precondition and
resultative inferences: EVENTS resulted in STATEs which enabled further
EVENTs to occur. The MEMORY program therefore tried to find some sequence
of intervening states and events which would explain how one event might
follow another: such causal chains were seen as the fundamental explanation
of the comnectivity of texts, implying a particular view of the nature of
text in general.

AD-HAC has a similar ability to construct causal chains, though they do
not play the same central part in its processing of a story as they did in
Rieger's work: the availability of long-range inference types, such as
"follevent" and "precevent", and the formulation of script-like inference
networks which make such long-range inferences, removes the need for almost
all of this chain construction. However, chains may be constructed when the
driving conceptualisation is based on the primitive CAUSE. First, the
ANTECEDENT and RESULT parts of the driver are both subjected to inference.
Many of the inference classes described in the preceding section may be seen
as "forward-looking" or "backward-looking", that is, as predicting future
and past events and states. To construct causal chains, AD-HAC specially
emphasises the forward-looking inferences based on the ANTECEDENT part and
the backward-looking inferences based on the RESULT, by increasing the
interest ratings of inferences of these types. The direction categories are
shown below: note that the normative, actorfeature and rewrite types fall
into both camps, since these are not particularly well-defined inference
types. Note also that implicit and exclusion inferences are not
categorised, and are therefore not modified in this way.

151

forward—looking backward-looking

resultative causative
enabledact precondition
plannedact motivation
helping instrumental
motivated motivator
follevent precevent
normative normative
actorfeature actorfeature
rewrite rewrite

When a causal structure is being processed, the interest ratings of the
ensuing inferences are increased in such a way that they in turn will be
used for the production of inferences. This has the effect of increasing
the probability that some connection will be found between the initial
antecedent and the final result.

8.5.3) The role of inference types in updating states

It has been argued in [Schank 1975] and in [Rieger 1974] that the
"meaning" of a primitive act lies in the set of inferences which are made
about an event based on that act; and these inferences will usually be
STATE inferences. On this view, the precondition and resultative inferences
are primary: certain states are necessary for an event to occur, and
certain other states result. Frequently, one of the resultative inferences
changes a state referred to in one of the event's preconditions. Several
examples may be given of this:

(a) a precondition of a PTRANS is that the OBJECT be located at FROM

a result of a PTRANS is that the OBJECT is located at TO
(b) a precondition of an ATRANS is that the OBJECT be possessed by FROM

a result of an ATRANS is that the OBJECT is possessed by TO

a precondition of an INGEST is that the OBJECT be outside the ACTOR
a result of an INGEST is that the OBJECT is inside the ACTOR
In each of these examples, the resultative inference can be seen as an
update of the state referred to in the precondition inference: some state
has been superseded by another state as a direct consequence of the
occurrence of the event. AD-HAC's understanding of a text relies in part
upon keeping track of states of the world, and recording the updating of one
state by another. In all cases, the STATENAME role is constant. Thus, a
POSS state will be updated by another POSS, and a IOC will be updated by
another IOC, as in the examples given above. Similarly, the THING role is
constant. So, the token found in the OBJECT role of an ATRANS is placed in
the THING role of both the precondition and the resultative inferences, as
shown below. Where the relevant state is a scale, and consequently the VAL
is either numeric or of the form (HIGHERBY n) or (ILOWERBY n), the THING must
obviously be the same for both states for there to be any question of
updating.

(c)

The situation diagrammed below illustrates the updating of a
"precondition" state by a "resultative" state: the two states are both POSS
states, and their THING is the same; the VAL has changed, and the TIME
roles are consecutive. (Incidentally, this provides some justification for
placing the thing possessed in the THING role, since the single
generalisation then holds for all kinds of state.)

152

driver precondition

((EVENT (ACTOR FRED) ((STATE (STATENAME POSS)
(ACT ATRANS) (THING BOOK1)
(OBJECT BOOK1) (VAL MARY)
(FROM MARY) (TIME (NAMED TIMESPAN1)
(TO FRED) (TF TIMEPOINTL))))

(TIME (NAMED TIMEPOINTL))))
resultative

((STATE (STATENAME POSS)
(THING BOOK1)
(VAL FRED)
(TIME (NAMED TIMESPAN2)
(TS TIMEPOINTL))))
Several inference classes appear to be susceptible to the state updating
phenomenon. A resultative inference may update any precondition, implicit
or motivator inference made from the same event. When this occurs, the
proposition for the resultative inference is given the property update-of,
and the earlier proposition is given the property updated-by. For the
ATRANS driver and POSS inferences given above, if the precondition inference
is POSSL and the resultative inference is POSS3, the update links will be:
(updated-by . POSS3) on POSS1 '
(update-of . POSSl) on POSS3
This is a further form of cross-reference between propositions, and, as will
be shown in section 8.6.1, one which is particularly helpful in the
resolution of some pronouns.

8.5.4) Incompatible inferences

An event may have many different preconditions, and it may have several
results; yet usually only one of these results is the effect intended by
the actor. Similarly, there are often several possible instrumental
actions, but only one of them will actually be employed in the performance
of some event. It is desirable for an inference mechanism to have access to
information of this sort, since it may then build a more accurate and useful
representation of a text.

The inference classes which display this phenomenon are causative,
motivation, motivator, enabledact and instrumental. The system notices when
more than one inference of any of these types is made for a single driver.
When this happens, all the conflicting inferences are marked on each other's
list of incompatibilities, which, as section 8.3.3 hinted, allows
independent support for one of them to be regarded as evidence against all
the others.

As a concrete example, with a sentence such as
"FRED WAS GIVEN HIS MONEY BY HIS MOTHER"

one of the causative inferences drawn from the POSS state, representing the
information "HIS MONEY" as "HE HAD SOME MONEY", will suggest that he was
given the money by somebody: another causative inference will suggest that
he took the money from somebody; and these two inferences will be marked as
incompatible. Consequently, when the first is matched up with the main
proposition, "HIS MOTHER GAVE FRED SOME MONEY", the other causative
inference is weakened.

153

8.6) Pronoun resolution, question answering, and definite reference.

The previous sections have described the basic machinery of AD-HAC; the
way in which inferences are produced, how they are stored in memory, what
information is kept with propositions besides their conceptual content, and
the various forms of cross-reference maintained behind the scenes. This
section shows how all that machinery contributes to the performance
discernible from outside, viz. the resolution of pronouns and the answering
of questions.

The problems of pronoun resolution and question answering are the
principal focus of AD-HAC's inference mechanism. As stated in the
introduction to this chapter, merely drawing inferences is not a
partlcularly important activity, and even expressing these inferences in
English is merely a shiny addition. However, if the system is able to
answer questions and resolve pronouns, then it may be claimed that it has to
some extent understood a text. Stronger proofs, such as summarlslng texts
or applying knowledge gleaned from one text in the processing of another,
are possible: but an ability to resolve pronouns and to answer questions is
a sine qua non for an understanding system.

The machinery presented in the preceding sections gives the inference
mechanism in AD-HAC the basic tools with which it may tackle these tasks.
It turns out that pronoun resolution and question answering are essentially
the same activity; similarly, the handling of definite references within a
text, and the identification of temporal sequences, can be performed by the
same basic mechanisms. The system effectively views pronouns as implicit
wh—questions, and in either case the system's task is to select the referent
from a set of candidate referents (or candidates for short). Consequently,
I use the term pronoun to refer both to pronouns proper, and to WH-words.

The preceding sections have described the various forms of indexing and
cross-referencing which are employed, and have introduced a number of
special terms, which for convenience are collectively listed below.

(a) propositions are Lisp atoms which each store a conceptual pattern, and
various cross-references, on their property lists. There is a
straightforward mapping between the stored conceptual pattern and the
corresponding external CD form.

(b) specifications are data structures stored with propositions, indicating
similar propositions and the substitutions which would have to be made
for the two propositions to become identical.

(c) appearances are lists of propositions held on the property list of
tokens, showing, for each token, all those propositions in which the
token is mentioned.

(d) certainty is a number stored with a proposition, showing how strongly
that proposition is believed: the numbers range from +1 indicating
absolute belief to -1 indicating absolute disbelief.

(e) inf-links, stored with a proposition, indicate the other propositions
which have been inferred from it, and also the proposition(s) from which
it was inferred. Each link gives both a connected proposition and the
class of inference involved in making the connection.

(f) assumptions are 1lists of propositions, usually corresponding to
uncertain answers from contextual tests, which are stored with each
inference which depends upon such a test. Conversely,
assumption-indicates is a list of these inferences which is stored with
each provisional answer.

(g) incompatibilities are stored with a proposition, listing other

154

propositions which are in conflict with it. Conflict may arise in two
ways: firstly, when several inferences of particular classes are made
from the same driving conceptualisation - for example, several
motivation inferences may be made, but they conflict with one another;
secondly, when a contextual test is made, the inferences resulting from
a provisional YES answer will be incompatible with those resulting £from
a NO answer.

8.6.1) Resolution of IT/THEM/WHAT pronouns by using complaints.

In some cases, the semantics of the conceptual ACT or STATENAME will
demand that tokens appearing in a conceptualisation exhibit some feature, or
one of some set of features. The simple test nodes in an inference net have
the ability to inspect various characteristics ~of the driving
conceptualisation, and to select appropriate paths through the remainder of
the net. When a token does not carry appropriate features, one of the test
nodes will issue a complaint. For example, the ATRANS network includes the
test node numbered 24:

(24 (TESTS (IS from BEAST)
25
(COMPLAIN 24)))
This test checks the contents of the register from to see if its token -
which has come from the FROM role of the ATRANS driver - has the feature
BEAST. If so, the processor advances to node 25 of the net.

If the token does not have this feature, the other branch is taken, which
issues a complaint. The form "(COMPLAIN 24)" indicates that the test at
node 24 - the current node, as it happens - has given an impossible answer:
that 1is, in order for the driver to be meaningful, the test at node 24 must
succeed. How it is made to succeed is described shortly.

A more complex example of complaint generation occurs in the INGEST
network, where the following cascade of tests may be found:

(3 (TESTS (IS obj BEAST) 4 8))

(8 (ACTIONS
(INFER precondition 1.0 0.5
((STATE (STATENAME POSS)
(THING (r obij))
(VAL (r actor))
(TIME (c beforespan)))))
(G010 9)))

(9 (TESTS (HAS-FUNCTION obj MEDICILO 13))

(13 (TESTS (IS obj SOLID) 14 16))
(16 (TESTS (IS obj LIQUID) 17 25))
(25 (TESTS (IS obj GAS) 26 28))
(28 (TESTS (IS obj ANIMATE) 7 (COMPLAIN 28 25 16 13 9 3)))

In this case, the complaint issued at node 28 will be activated if there is
some token in the obj register, filled from the OBJECT role of the INGEST
driver, which has none of the features BEAST,SOLID, LIQUID,GAS,ANIMATE, and

155

which is furthermore not known to be a MEDICINE. Thus, this complaint
implies that one (or more) of the tests must succeed for the INGEST event to
make sense.

Responding to complaints

When a complaint is issued, the system looks at the register being tested
by the node issuing the complaint, expecting the token contained in that
register to be a dummy token. If the token is not a dummy, the inferencer
declares that the sentence analyser has delivered a faulty analysis: in
such a case, the analyser's design permits it to find different analyses,
although this feature is deliberately suppressed in the implemented program.

When the token which has provoked a complaint is indeed a dummy token,
this wusually reflects a pronoun in the text, and a referent must be found
for this. To start the search for a referent, the inferencer runs through
each of the indicated tests again, to record the answers given when the
dummy token is used. It then has some information it can use to screen
potential referents, since any referent for the pronoun must give different
answers to at least one of the tests.

It should be apparent that the pronouns HIM/HE/HIS and HER/SHE will never
provoke complaints of this kind, since the tokens used to represent these
pronouns - DUMMY-MALEn and DUMMY-FEMALEn -~ have the features MALE and FEMALE
respectively, both of which imply the feature HUMAN. They will therefore
give the same answer to any test as such tokens as FRED or MARY, and so
complaints are of no use in handling this form of pronominal reference.
Conversely, the pronoun IT is represented by tokens of the form
DUMMY~THINGn, which have the features (ANYTHING NOTHUMAN), and
THEY/THEM/THEIR are represented by tokens of the form DUMMY-UNKNOWNSh,
having the features (ANYTHING PLURAL NOTFLUID). In each of these case the
features are non-specific, permitting the tokens to match almost anything
else, but giving negative answers to most feature tests, and hence often
provoking complaints.

When a complaint occurs, the environment in which inference is currently
taking place, and information relevant to resumption of the processing, are
temporarily packed away until the present inference process can profitably
be resumed. The environment comprises the inference net, the driver, the
set of registers, the name of the register which provoked trouble, the token
contained in that register, and the results of all the tests using the dummy
token.

Since the conceptual representation delivered by the sentence analyser
may contain several conceptualisations, which may correspond to the use of
relative clauses, possessives, adjectives etc. in the sentence, suspending
one inference path following one complaint allows the inferencer to consider
other conceptualisations. Each of these will be used to drive the inference
process; and when a complaint is issued, the system proceeds at once with
any remaining conceptualisations. Any number of these may in turn provoke
complaints, and any that do so will themselves be suspended as above.
Finally, when all have been considered by the inference nets, the suspended
processes are restarted.

156

To restart a suspended inference-drawing process, it is necessary to
overcome the complaint which caused it to be suspended in the first place,
and this could be done in one of two ways. Firstly, it oould be assumed
that the troublesome token has the feature(s), or other characteristics,
which the inference network demands; alternatively, the program could hunt
around seeking candidate referents which satisfy the relevant tests, and use
these in place of the dumy token which is causing the problem. The second
option has been chosen, for two reasons.

(1) In the case of simple stories, such as those which the current program
handles, there tend to be only a small number of candidates which satisfy
these constraints, because the number of distinct objects mentioned in such
stories 1is very small; it is cheaper to adopt this approach because very
few candidates need to be tried. In understanding a novel, however, the
first option would be very much cheaper: the number of candidates for
"THEY" would typically be enormous, and it would be ridiculous to try out a
candidate which was last mentioned some hundred pages ago.

(ii) To implement the first option, the inference nets would have to take
explicit account of the fact that newly-generated dummy tokens might be
used; for instance, the ATRANS example shown above requires that the actor
role has the feature BEAST; if a token, DUMMY-BEAST] say, were created to
cope with a complaint, further tests which determine whether the actor is
HUMAN or NON-HUMAN would have to be incorporated. In short, there would be
administrative problems if the first option were chosen. (However, it could
in principle be the right option.)

The system therefore has to find candidate referents for the dummy tokens
which have provoked complaints, and it usually has to do this in an
environment where, because the processing was suspended, there are few
inferences which have been made: it thus cannot judge these candidates with
any reliability, still less rank them in order of 1likelihood. It
nevertheless has to do the best it can: its strategy is to try out the
candidates, and see how good an agreement can be obtained with inferences
from other sources.

Candidates are found by inspecting the appearances property of the dummy
token, leading to the set of propositions in which it appears; the
processor then inspects the specifications property of each such
proposition, to discover if similar propositions exist elsewhere, and in
particular to discover whether the dummy token is one of the tokens which
would have to be replaced if these propositions were to be considered
identical. When this occurs, the token with which it is paired is a
candidate referent: it is known to have compatible features, and there is
some reason to believe that these tokens might refer to the same object,
since they participate in similar propositions.

Since the search for potential referents is a critical phase in the
processing of these dummy tokens, it is essential that some candidate(s) be
found, and for this reason all inference nets make implicit inferences,
predicating the existence of all tokens. These EXIST propositions provide a
fall-back mechanism, since they consist solely of the token and some time
reference, and these time references are so loosely specified that they will
almost always match one another.

When candidates have been found, the suspended environment 1is restored.
Each candidate in turn is placed in the problematic register, and the
relevant tests are reapplied. If a candidate gives a different answer to
some test, the inference net is reentered at the appropriate branch from

157

that test; if it gives the same answers as the dummy token itself, the
candidate is discarded.

When resuming the inference process in this way, a new proposition is
created which asserts that the dummy token and the candidate are identical.
This IDENTITY token is placed on the assumptions 1list, and the normal
inference mechanisms will then place this identity token on the assuming
property of all subsequent inferences, and will also appropriately maintain
the assumption-indicates property of the identity token.

Thus, the groups of inferences which are made when various candidates are
assumed can easily be isolated, to facilitate the choice of the best group,
and hence the best candidate. There are frequently inferences which are
independent of these assumed matches, ie. no matter which candidate is
considered, these inferences are made. The groups of inferences resulting
from different choices of candidate are then inspected: their
specifications indicate other similar propositions, and the system selects
the candidate whose resulting inferences show the best agreement (of
certainty ratings) with inferences drawn from other sources, provided that
this agreement is substantially better than the agreement for any other
candidate; if there is 1little to choose between two candidates, the
resolution of this pronoun is deferred for the more general processes
described in the next section. In either case, when such a candidate is
eventually chosen, the inferences dependent on the identification of the
dummy token with other candidates are forgotten.

8.6.2) The resolution of other pronouns

The technique described above for the resolution of pronouns is
applicable only in cases where the inference nets complain about IT, THEM or
WH-words. It is not, however, an ad-hoc technique for finding referents for
these; rather, it solves the problem of how an inference net may proceed
when it discovers that the driving conceptualisation contains insufficient
information, and has the side-effect of assisting in the resolution of
certain pronouns.

Not all pronouns provoke complaints: HIMs and HERs never do so, and
there are many cases where THEMs and ITs do not either. Even when
complaints are provoked, there are occasions when the inferences made as a
result of assuming certain referents do not give substantially different
results, in terms of agreement between inferences from several sources. On
these occasions, the decision on referents for these pronouns is deferred.

Much pronoun resolution is done when all inference networks have
finished, at which time the reference processes have available the maximum
information and so can make the most informed decisions. The system
attempts to compact its representation of a text as much as possible, and to
do so it makes certain assumptions about the referents of pronouns, the
answers to questions, the referents of definitely-referred tokens, the
identity of time tokens, and the identity of internally-generated dummy
tokens. To demonstrate understanding of the text, the system generates
English sentences when it resolves pronouns or answers questions, but this
generation facility is suppressed when time tokens, or internally-generated
dummy tokens, are identified.

158

*18

The representation of the story is not a structured description of the
story, nor is it based upon higher-level structures such as scripts or
frames. Instead, it is a distributed set of individual propositions, each
of which has inf-links to other propositions, and which may also indicate,
via specifications, other similar propositions. To compact such a
representation is to reduce the number of discrete propositions, and this is
achieved by attempting to merge (*18) similar propositions.

For example, suppose inferences have been made from an input about
monkeys and bananas, which result in the creation of the propositions POSS1,
POSS3 and POSS5, and also their inverses POSS2, POSS4 and POSS6. The
corresponding CD forms and specifications, somewhat simplified, might be as
shown:

POSSl: ((STATE (STATENAME POSS) ((POSS3 ((BANANAL . DUMMY-THINGL)
(THING BANANAL) (TIMESPAN1 . TIMESPAN2))))
(VAL FRED)
(TIME (NAMED TIMESPANL))))

POSS3: ((STATE (STATENAME POSS) ((POSS1 ((DUMMY-THINGL . BANANAL)
(THING DUMMY~-THINGL) (TIMESPAN2 ., TIMESPAN1)))
(VAL FRED) (POSS5 ((FRED . DUMMY-MALEL)
(TIME (NAMED TIMESPAN2)))) (TIMESPAN2 . TIMESPAN3))))

POSS5: ((STATE (STATENAME POSS) ((POSS3 ((DUMMY-MALEL . FRED)
(THING DUMMY-THINGL) (TIMESPAN3 . TIMESPAN2))))

(VAL DUMMY-MALEL)

(TIME (NAMED TIMESPAN3))))
Note that, as the example shows, a proposition may have several
specifications: in this case, if DUMMY-THINGL is replaced by BANANAL in
POSS3, and TIMESPANZ2 is replaced by TIMESPANl, then POSS3 will become
identical to POSSl; conversely, if FRED is replaced by DUMMY-MALEl, and
TIMESPAN2 is replaced by TIMESPAN3, then POSS3 will become identical to
POSS5. For illustrative purposes, I assume that TIMESPAN] is not compatible
with TIMESPAN3, and therefore there is no specification linking POSS1 and
POSS5.

In the final stage of inferential processing, all the specifications
existing on any proposition are collected together. Using the example, the
specification linking POSSL to POSS3 would be considered relevant to the
identification of DUMMY-THINGl, whilst both of POSS3's specifications would
be relevant to TIMESPANZ2.

If the specifications shown above were the only ones that existed, which
we unrealistically assume in order to keep the example manageable, the
groups of specifications relevant to the identification of various tokens
would be:

Merging also occurs when two EXIST propositions are inferred which differ
only in their time references: in our world, things have one existence only.

159

For token specification appearance suggestion

TIMESPANL (POSS3 ((BANANAl . DUMMY-THINGL) POSS1 TIMESPAN2
(TIMESPAN1 . TIMESPAN2)))

TIMESPAN2 (POSS1 ((DUMMY-THINGL . BANANAL) POSS3 TIMESPANL
(TIMESPAN2 . TIMESPAN)))

(POSS5 ((FRED . DUMMY-MALEL) POSS3 TIMESPAN3

(TIMESPAN2 . TIMESPAN3)))

TIMESPAN3 (POSS3 ((DUMMY-MALEL . FRED) POSS5 TIMESPAN2
(TIMESPAN3 . TIMESPANZ2)))

DUMMY-MALElL (POSS3 ((DUMMY-MALElL . FRED) POSS5 FRED
(TIMESPAN3 . TIMESPAN2)))

DUMMY-THINGL (POSS1 ((DUMMY-THINGL . BANANAL) POSS3 BANANAL
(TIMESPAN2 . TIMESPANL)))

Supposing that the propositions POSS1, POSS3 and POSSS5 had certainty ratings
of 0.7, 0.4 and -0.5 respectively, this would indicate that matching POSSL
and POSS3 was preferable to matching POSS3 and POSS5. (Real situwations, of
course, are not this simple.) In determining which identifications to make,
and hence which propositions to merge, the system takes account of the
agreement of the certainty measures, and also of the number of other
identifications which would have to be made for any pair of propositions to
be merged. For each dummy token and time token, it constructs a data
structure containing the information shown above, split into subgroups
depending on the suggested referent; it then computes a measure of how
likely each resolution is, and selects the most likely. The resolution is
performed, substitution takes place throughout the set of propositions, and
any propositions which have become identical are then merged. Also, any
specifications -which have become invalid as a consequence of the
identification process are deleted; this task is complicated in the case
where time tokens are identified, because other time tokens may be related
to them.

When this process is completed for one token, thé process 1is repeated,
possibly resulting in further resolutions.

This procedure applies to many different situations:, since amongst the
tokens identified by this process are pronominal tokens, tokens
corresponding to wh-words, and tokens created by the analyser to reflect the
use of definite reference in the English text.

This process is illustrated in detail in appendix C, where the data
structures manipulated in the course of the compaction process for the final
sentence of the text below are reproduced in full with appropriate
annotations. Given the text

BILL AND JILL WENT TO THE ZOO.
THEY GAVE THE MONKEYS SOME PEANUTS, WHICH THEY ATE.
THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.
JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS TALKING
TO THEM.
WHAT DID SHE GIVE THE TRAMP?
processing the final sentence specifically involves
(a) Choosing JILL, rather than the first-mentioned tramp, as the referent of

160

" SHEII

(b) Identifying two time tokens, corresponding to the 1life-times of "She"
and "Jill"

(c) Determining that "THE TRAMP" means the same tramp as was mentioned
earlier

(d) Choosing the money, rather than the peanuts, the tea, or even the
monkeys, as the answer to the question

(e) Merging together all the newly-introduced time tokens.

As the appendix shows, the inference mechanism successfully does this
invoking the apparatus described above.

161

Chapter 9: Demonstration of the inferencer.

In this chapter, the program itself does the talking. Various options
have been set to print out a great deal of information about what the
inferencer is doing, though much of this information has been removed again
for the sake of brevity. For the first two sentences, however, the only
modification to the programs output is commentary, preceded again by ";".

The text, as promised, is the same as in the introductory chapter and
Chapter 6. This time, the analyser's output is suppressed, and the
generator is invoked to express all the inferences dictated by the inference
networks.

Virtually all the aspects of the inferencer are demonstrated in this
chapter: the results of canonicalisation, the use of inference types, the
addition of specifications, state updating, linking to assumptions,
complaints and the resumption of inferences afterwards, the use of
Scrlpt—llke inference nets, and of course pronoun resolution and question
answering.

The "memory" is empty at the start of the run, and so very few matches
are found for the earlier sentences. After a while, matches become the rule
rather than the exception, and so the printing of "specification" links is
omitted after the third sentence: otherwise, I would need about another
hundred pages.

162

Pray continue:
BIILI, AND JILL WENT TO THE ZQO.
[INow make inferences

Created token: PTRANS1 ; These messages are given
Attachments: none : when a CDform is
"internalised"

"attachments" are the same
as "specifications"

~e w8 ~we

Now try to produce inferences based on
((EVENT (ACTOR GROUP£1)
(ACT PTRANS)
(OBJECT GROUP£1)
(FROM DUMMY-PLACE2)

this structure has been
canonicalised: special
GROUP tokens have been

w8 we we ws wa

(TO Z0Ol) created to facilitate
(TIME (NAMED TIMEPOINT2) reference to the group.
(COMPARISON

(BEFORE *NOW*)))))

The sentence is : JILL AND BILI, WENT TO A Z0O.
This is called PTRANSL

Producing inference
Created token: IOCL
Attachments: none
Created token: LOC3
Attachments: none
Created token: LOCS
Attachments: none

Certain inferences which
involve groups are also
made for the members of
those groups. In this case
LOC3 and LOC5 correspond
to JILL and BILL being

; "near the place..."
A certain precondition inference is : JILL AND BILL WERE NEAR THE PLACE FROM
WHERE JILL AND BILL WERE GOING TO A Z0O.

This is called ILOCL

8 N8 e we W we

Linkage to PTRANS] is precondition
Certainty is 0.89100000
Interest is 0.59400000

Producing inference
Created token: EXISTL
Attachments: none
Created token: EXIST3
Attachments: none
Created token: EXISTS
Attachments: none

A certain implicit inference is : JILL AND BILL EXISTED.
This is called EXISTL

Linkage to PTRANSL is implicit

Certainty is 0.99000000

Interest is 0.49500000E-1

163

Producing inference
Created token: LOC7
Attachments: none
Created token: LOC9
Attachments: none
Created token: IOCI11
Attachments: none

A certain resultative inference is : JILL AND BILL ARRIVED AT A ZQO.
, This is called LOC7

Linkage to PTRANSL is resultative
This is update-of LOCL

Certainty is 0.89100000

Interest is 0.59400000

Producing inference

Created token: LOCL3

Attachments: LOC7

({ TIMESPANS TIMESPAN4)

This is one of the
"specification" links; in
this case, if the times of
being located near the zoo
are the same - in fact and
in Jill & Bill's hope -
then the propositions are
identical.

~e NP N we NE N we we @

Created token: GOALL
Attachments: none

A probable motivation inference is : JILL AND BILL DESIRED THAT JILL AND
BILL ARRIVE AT A ZOO.
This is called GOALL
Linkage to PTRANS]l is motivation
Certainty is 0.69299999
Interest is 0.39599999

Producing inference
Created token: IOC15
Attachments: none
Created token: GOAL3
Attachments: none

An alternative possible motivation inference is : JILL AND BILL DESIRED THAT
JILI, AND BILI, NOT BE NEAR THE PLACE,FROM WHERE THEY HAD GONE TO A Z0O.

This is called GOAL3
Linkage to PTRANSL is motivation
Certainty is 0.39599999
Interest is 0.49500000
the "compaction" phase begins now, but in this case there is nothing to
compact. The only link was between IOC7 and IOC13; but since LOCL3 was
subordinate to GOALl, and therefore had no 'certainty' rating, the
program refrains from jumping to conclusions.

~e we we w8

164

Pray continue:
THEY GAVE THE MONKEYS SOME PEANUTS, WHICH THEY ATE.
[INow make inferences
Created token: INGESTL
Attachments: none

Now try to produce inferences based on
((EVENT (ACTOR DUMMY-UNKNOWNS2)
(ACT INGEST)
(OBJECT PEANUTS3)
(TIME (NAMED TIMEPOINT12)
(COMPARISON
(BEFORE *NOW*)))))

This is one of the two
structures returned by the
canonicalisation phase for
for this sentence.

~e we we “wo

The sentence is : SOME ENTITIES ATE SOME PEANUTS.
This is called INGESTL

Producing inference
Created token: EXIST7
Attachments: EXIST1
(DUMMY-UNKNOWNS2 . GROUPEL)
(TIMESPAN6 . TIMESPAN3)
; This is suggesting the group
; as a referent for the "THEY"
; but we mustn't be premature
A certain implicit inference is : THE ENTITIES,WHICH HAD EATEN SOME PEANUTS,
EXTSTED.
This is called EXIST/
Linkage to INGESTL is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

Producing inference
Created token: EXIST9
Attachments: none
; The peanuts have been
; DISTINGUISHed from THEY,
: SO no match can be made.

A certain implicit inference is : SOME PEANUTS EXISTED.
This is called EXIST9

Linkage to INGESTL is implicit

Certainty is 0.94050000

Interest is 0.98999999E-1
; note that only the two EXIST
; propositions have been made
; before this complaint

A complaint has been issued
These inferences will be continued when DUMMY-UNKNOWNS2 can be resolved

165

Created token: ATRANSL
Attachments: none

Now try to produce inferences based on
((EVENT (ACTOR DUMMY-UNKNOWNSL)
(ACT ATRANS)
(OBJECT PEANUTS3)
(FROM DUMMY-UNKNOWNS1)
(TO MONKEYS1)
(TIME (COMPARISON
(AFTER TIMEPOINT2))
(NAMED TIMEPOINT9)
(COMPARTSON
(BEFORE *NOW*)))))

work now starts on the
other structure given by
canonicalisation, in the
hope that referents can
be suggested for this
awkward pronoun.

~e NS NS we we ws

The sentence is : SOME ENTITIES GAVE SOME PEANUTS TO SOME MONKEYS.
This is called ATRANSL

Producing inference
Created token: EXIST11
Attachments: EXIST7
(MONKEYS1. . DUMMY~UNKNOWNS2)
(TIMESPANS . TIMESPANG)
; there's a suggestion.
A certain implicit inference is : SOME MONKEYS EXISTED.
This is called EXISTL1
Linkage to ATRANSL is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

Producing inference ‘
Created token: EXISTL3
Attachments: EXIST/
(DUMMY~-UNKNOWNSL . DUMMY-UNKNOWNS2)
(TIMESPANYS ., TIMESPANG)
: there's another one
EXIST1
(DUMMY-UNKNOWNS1 . GROUP£L)
(TIMESPANS . TIMESPAN3)

A certain implicit inference is : THE ENTITIES,WHICH HAD GIVEN SOME PEANUTS
TO SOME MONKEYS,EXTISTED.
This is called EXIST13
Linkage to ATRANSL is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

166

Producing inference
~ Created token: EXIST15
Attachments: EXISTI9
(TIMESPAN1O . TIMESPAN7)

A certain implicit inference is : SOME PEANUTS EXTSTED.
This is called EXISTL5

Linkage to ATRANSl is implicit

Certainty is 0.94050000

Interest is 0.98999999E-1

Producing inference
Created token: IOCL7
Attachments: none

A probable precondition inference is : THE ENTITIES,WHICH HAD GIVEN SOME
PEANUTS TO SOME MONKEYS,WERE NEAR THE MONKEYS.
This is called LOCL7
Linkage to ATRANSl is precondition
Certainty is 0.79199999
Interest is 0.39599999

; ATRANS is unhappy now.

A complaint has been issued
These inferences will be continued when DUMMY-UNKNOWNS1 can be resolved

Created token: IDENTITY1

Attachments: none

All inference nets have
had a go, so it is time
to try the possible
referents.

~e we wo “w§

Producing inference
Created token: POSS1
Attachments: none

A certain precondition inference is : IF IT WAS THE MONKEYS WHICH ATE SOME
PEANUTS THEN THE MONKEYS WOULD HAVE THE PEANUTS.

This is called POSSl
Linkage to INGEST1 is precondition '
Linking to 'assumptions' (IDENTITY1) ; the IDENTITY serves as
; an assumption for several
: inferences, and the
; INGEST net is reentered
Certainty is 0.99000000
Interest is 0.49500000

Producing inference
Created token: HUNGERL
Attachments: none

A probable motivator inference is : IF IT WAS THE MONKEYS WHICH ATE SOME
PEANUTS THEN THE MONKEYS WOULD BE HUNGRY.

167

This is called HUNGERL
Linkage to INGESTL is motivator
Linking to 'assumptions' (IDENTITY1)
Certainty is 0.59400000
Interest is 0.19799999

Producing inference
Created token: EXIST17
Attachments: EXIST16
(TIMESPAN14 . TIMESPAN1O)

A certain resultative inference is : IF IT WAS THE MONKEYS WHICH ATE SOME
PEANUTS THEN THE PEANUTS WOULD CEASE TO EXIST.

This is called EXISTL7
the program doesn't yet
realise that this will be
true no matter who ate
the peanuts.

~8 we we we

Linkage to INGESTl is resultative
This is update—of EXIST9

Linking to 'assumptions' (IDENTITY1)
Certainty is 0.99000000

Interest is 0.19799999

Producing inference

(DURATION *HOURS*) being ignored
Created token: HUNGER3
Attachments: none

A possible resultative inference is : IF IT WAS THE MONKEYS WHICH ATE SOME
PEANUTS THEN THE MONKEYS WOULD BE SATHED.
This is called HUNGER3

Linkage to INGESTL is resultative
This is update-of HUNGERL
Linking to 'assumptions' (IDENTITY1)
Certainty is 0.49500000
Interest is 0.19799999

Created token: IDENTITY3

Attachments: none
now try the other
plausible candidate.
DUMMY-UNKNOWNSL is no
better than the existing
token, so is not tried.

~e w8 “e we we

168

Producing inference
Created token: POSS3
Attachments: none

A certain precondition inference is : IF IT WAS JILL AND BILL WHO ATE SOME
PEANUTS THEN JILIL AND BILL WOULD HAVE THE PEANUTS.
This is called POSS3
Linkage to INGESTL is precondition
Linking to 'assumptions' (IDENTITY3)
Certainty is 0.99000000
Interest is 0.49500000

Producing inference
Created token: HUNGER5
Attachments: none

An alternative probable motivator inference is : IF IT WAS JILL AND BILL WHO
ATE SOME PEANUTS THEN JILL AND BILL WOULD BE HUNGRY.
This is called HUNGERS5
Linkage to INGESTL is motivator
Linking to 'assumptions' (IDENTITY3)
Certainty is 0.59400000
Interest is 0.19799999

Producing inference
Perfect match: EXISTL7
Attachments: EXIST16
(TIMESPAN14 . TIMESPANLO)

A certain resultative inference is : IF IT WAS JILL AND BILL WHO ATE SOME
PEANUTS THEN THE PFANUTS WOULD CEASE TO EXIST.
This is called EXIST17
Linkage to INGESTL is resultative
This is update-of EXIST9
Linking to 'assumptions' (IDENTITY3)
Certainty is 0.99000000
Interest is 0.19799999

Producing inference
Created token: HUNGER7
Attachments: none

A possible resultative inference is : IF IT WAS JILL AND BILL WHO ATE SOME
PEANUTS THEN JILI, AND BILL WOULD BE SATED.
This is called HUNGERY
Linkage to INGESTL is resultative
This is update-of HUNGERS
Linking to 'assumptions' (IDENTITY3)
Certainty is 0.49500000
Interest is 0.19799999

169

Created token: IDENTITYS
Attachments: IDENTITY3

(DUMMY-UNKNOWNSL . DUMMY-UNKNOWNSZ2)
now it is time to reenter
the ATRANS network, since
INGEST has finished.

~ e we

Producing inference
Created token: POSS5
Attachments: POSS3
(TIMESPAN20 . TIMESPAN1G6)

A certain precondition inference is : IF IT WAS JILL AND BILL WHO GAVE SOME
PEANUTS TO SOME MONKEYS THEN JILL AND BILL WOULD HAVE THE PEANUTS.
This is called POSS5
Linkage to ATRANSl is precondition
Linking to ‘'assumptions' (IDENTITYS5)
Certainty is 0.89100000
Interest is 0.59400000

Producing inference
Created token: POSS7
Attachments: POSS1
(TIMESPAN21 . TIMESPAN12)

A certain resultative inference is : IF IT WAS JILL AND BILL WHO GAVE SOME
PEANUTS TO SOME MONKEYS THEN THE MONKEYS WOULD ACQUIRE THE PEANUTS.
This is called POSS7
Linkage to ATRANSL is resultative
This is update-of POSS5
Linking to 'assumptions' (IDENTITY5)
Certainty is 0.89100000
Interest is 0.79199999

Producing inference
Created token: POSS9
Attachments: POSS3
(TIMESPAN22 . TIMESPANL6)
Created token: GOALS
Attachments: none

A possible motivation inference is ¢ IF IT WAS JILL AND BILL WHO GAVE SOME

PEANUTS TO SOME MONKEYS THEN JILL AND BILL WOULD NOT WANT THE PEANUTS.
This is called GOAL5

Linkage to ATRANSL is motivation

Linking to 'assumptions' (IDENTITY5)

Certainty is 0.19799999

Interest is 0.39599999

170

Producing inference
Created token: POSS11
Attachments: POSS1
(TIMESPAN23 . TIMESPAN12)
POSS7
(TIMESPAN23 . TIMESPAN2L)
Created token: GOAL7
Attachments: none
Created token: MIOCL
Attachments: none
this is the inference shown below, but the
fact that a GROUP is involved causes more
propositions to be created.
Perfect match: POSS11
Attachments: POSS1
(TIMESPAN23 . TIMESPAN12)
POSS7
(TIMESPAN23 . TIMESPAN21)
Perfect match: GOAL7
Attachments: none
Created token: MIOC3
Attachments: none
Perfect match: POSS11
Attachments: POSS1
(TIMESPAN23 . TIMESPAN12)
POSS7
(TIMESPAN23 . TIMESPAN2L)
Perfect match: GOARL7
Attachments: none
Created token: MIOC5
Attachments: none

-~ ws we

An alternative possible motivation inference is : IF IT WAS JILL AND BILL
WHO GAVE SOME PEANUTS TO SOME MONKEYS THEN JILL AND BILL WOULD THINK THAT
THE MONKEYS WANTED THE PEANUTS.
This is called MIOCL
Linkage to ATRANS] is motivation
Linking to 'assumptions' (IDENTITYS)
Certainty is 0.49500000
Interest is 0.39599999

so far, inferences have
been drawn only from
ATRANS; now, the FOOD
"function" attached to
PEANUTS takes over, by
switching to another net.

e NO we we we s

171

Producing inference
Created token: JOY1
Attachments: none
Created token: GOAL9
Attachments: none

An alternative possible motivation inference is : IF IT WAS JILL AND BIILL
WHO GAVE SOME PEANUTS TO SOME MONKEYS THEN JILL AND BILL WOUILD DESIRE THAT
THE MONKEYS BECOME HAPPY.
This is called GOAL9
Linkage to ATRANSL is motivation
Linking to 'assumptions' (IDENTITY5)
Certainty is 0.49500000
Interest is 0.39599999

Producing inference
Created token: HUNGER9
Attachments: HUNGERL
(TIMESPAN25 . TIMESPANL3)
Created token: MIOC7
Attachments: none
Perfect match: HUNGER9
Attachments: HUNGERL
(TIMESPAN25 . TIMESPANL3)
Created token: MIOC9
Attachments: none
Perfect match: HUNGER9
Attachments: HUNGERL
(TIMESPAN25 . TIMESPAN13)
Created token: MIOCLL
Attachments: none

An alternative probable motivation inference is : JILL AND BILL THOUGHT THAT
SOME MONKEYS HAD BEEN HUNGRY.
This is called MIOC7
Linkage to ATRANSL is motivation
Certainty is 0.69299999
Interest is 0.19799999

Producing inference
Created token: INGEST3
Attachments: INGEST1
(MONKEYS1 . DUMMY-UNKNOWNS2)
(TIMESPAN26 . TIMEPOINT12)

A possible follevent inference is : SOME MONKEYS STARTED EATING SOME
PEANUTS.
This is called INGEST3
; this is of course a very helpful inference in this story. However,
; even if this inference is omitted AD-HAC can still resolve the
; pronoun, by reasoning that the peanuts must have existed while they
; were being given: therefore they were given before they were eaten:
; therefore the monkeys had them when they were eaten

172

Linkage to ATRANSL is follevent

Certainty is 0.29700000

Interest is 0.49500000

now compaction begins again. Some substitutions take place, resulting
in some propositions becoming identical. They are merged, and some
are forgotten.

~e weo weo

*% k% %% Destroying: EXISTL5

*% %% %% Destroying: EXISTL6

kk%k forgetting EXIST16

*kkkkk forgetting EXISTL5
These possible-matches were deleted
(POSS3 . POSS5) ; the specifications have to be kept
(POSS5 . POSS3) ; up to date when identifications are made

Pronoun resolution : IT WAS JILL AND BILL WHO GAVE SOME PEANUTS TO SOME
MONKEYS.
; there was only one possibility for this pronoun

Pronoun resolution : IT WAS THE MONKEYS WHICH ATE SOME PEANUTS.
; but there were two possibilities for this.
kkkk forgetting POSS4
*¥kk¥*k forgetting POSS3
kkkkdk forgetting HUNGERG
kkkk¥dk forgetting HUNGERS
**k%k% forgetting HUNGERS
kk*kk¥* forgetting HUNGER7
kkkk forgetting IDENTITY4
k%kk*%k forgetting IDENTITY3
Created token: LOCl9
Attachments: none
Created token: LOC21
Attachments: none
Created token: EXIST16
Attachments: EXIST3
(TIMESPAN9 . TIMESPAN3)
Created token: EXISTI9
Attachments: EXIST5
(TIMESPAN9 ., TIMESPAN3)
; further inferences are made during compaction, in order to extract
; information about members of groups.
*% &k k% EXTST7 and EXISTL3 can no longer match
k% *k k% BEXTST7 and EXISTL can no longer match
*% %% %% Destroying: EXIST5
*% k% ** Destroying: EXIST1
k% %% %% Destroying: EXIST3
k% %% %% Destroying: EXIST4
*kkkkk forgetting EXIST4
kkkk forgetting EXIST3
; and so on, destroying and forgetting.

173

Pray continue:
THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.
[INow make inferences ‘

From this point on, the messages from the matcher have been eliminated .
The reader should have some idea of what is happening by now.
try to produce inferences based on
((CONJUNCT (FIRST (EVENT (ACTOR DUMMY-UNKNOWNS3)
(ACT PTRANS)
(OBJECT DUMMY~-UNKNOWNS3)
(FROM DUMMY-PLACE4)
(TO RESTAURANTL)
(TIME (COMPARISON
(AFTER TIMEPQINT9))
(NAMED TIMEPOINT46)
(COMPARISON
(BEFORE *NOW*)))))
(SEQCOND (EVENT (ACTOR DUMMY-UNKNOWNS3)
(ACT INGEST)
(OBJECT TEAl)
(TIME (COMPARISON
(AFTER TIMEPOINT9))
(NAMED TIMEPOINT49)
(COMPARTSON
(BEFORE *NOW*))
(COMPARISON
(AFTER TIMEPOINT46)))))))

=z
o)
Z e ~

The sentence is : SOME ENTITIES MOVED TO A RESTAURANT AND THOSE ENTITIES
DRANK SOME TEA.
This is called CONJUNCTL

A certain precondition inference is : THE ENTITIES,WHICH WERE MOVING TO A
RESTAURANT,WERE NEAR SOMEWHERE,OTHER THAN THE RESTAURANT.
This is called IOC23
Linkage to PTRANS3 is precondition
Certainty is 0.89100000
Interest is 0.59400000

A certain implicit inference is : THE ENTITIES,WHICH HAD MOVED TO A
RESTAURANT,EXISTED.
This is called EXIST8
Linkage to PTRANS3 is implicit
Certainty is 0.99000000
Interest is 0.49500000E-1

A certain resultative inference is : THE ENTITIES,WHICH HAD MOVED TO A
RESTAURANT,ARRIVED AT THE RESTAURANT.
This is called IOC25
Linkage to PTRANS3 is resultative
This is update-of 1LOC23
Certainty is 0.89100000
Interest is 0.59400000

174

A complaint has been issued
These inferences will be continued when DUMMY-UNKNOWNS3 can be resolved

A certain implicit inference is : THE ENTITIES,WHICH HAD MOVED TO A
RESTAURANT , EXTSTED.
This is called EXIST6
Linkage to INGEST2 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is : SOME TEA EXISTED.
This is called EXIST2
Linkage to INGEST2 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A complaint has been issued
These inferences will be continued when DUMMY-UNKNOWNS3 can be resolved

A probable motivation inference is : IF IT WAS JILL AND BILL WHO MOVED TO A
RESTAURANT THEN JILL AND BILL WOULD DESIRE THAT THEY ARRIVE AT THE
RESTAURANT.
This is called GOALlL
Linkage to PTRANS3 is motivation
Linking to ‘'assumptions' (IDENTITY9)
Certainty is 0.69299999
Interest is 0.39599999

An alternative possible motivation inference is : IF IT WAS JILL AND BILL
WHO MOVED TO A RESTAURANT THEN JILL AND BILL WOULD DESIRE THAT THEY NOT BE
NEAR THE PLACE,WHERE THEY HAD BEEN.

This is called GOALL3
Linkage to PTRANS3 is motivation
Linking to 'assumptions' (IDENTITY9)
Certainty is 0.39599999
Interest is 0.49500000
now the "GO-TO-RESTAURANT" inference network
takes over, providing a fair number of situation-
specific inferences. Unfortunately, the generator
makes lots of mistakes here: "A FOOD", "SOME
WAITRESS" for instance.
Because these are mostly 'follevent' inferences,
and therefore not anchored to the past tense of
the story, the generator is obliged to use some
tense: it expresses such times by using present
tense, because it cannot "prove" the times to be
either BEFORE or AFTER *NOW#*

WS NG M NS NE NE we e WO wE o

175

A prcobable motivator inference is :

Linkage to PTRANS3 is motivator
Certainty is 0.69299999
Interest is 0.29700000

A probable follevent inference is :
FOOD.
; note that the generator

Linkage to PTRANS3 is follevent
Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is
BIIL.

Linkage to PTRANS3 is follevent
Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is :
Linkage to PTRANS3 is follevent

Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is :
RESTAURANT.

Linkage to PTRANS3 is follevent
Certainty is 0.79199999

Interest is 0.19799999

A probable follevent inference is :
Linkage to PTRANS3 is follevent
Certainty is 0.79199999

Interest is 0.19799999

A certain precondition inference is
RESTAURANT THEN JILL AND BILL WOUID

Linkage to INGEST2 is precondition

Linking to 'assumptions' (IDENTITY9)

Certainty is 0.99000000
Interest is 0.49500000

JILL AND BILL WERE HUNGRY.
This is called HUNGER11

JILL AND BILL ASK SOME WAITRESS FOR A

thinks WAITRESS is a plural!
This is called MTRANS1

SOME WAITRESS GIVES A FOOD TO JILL AND

This is called ATRANS5

JILL AND BILL INGEST A FOOD.
This is called INGEST5

JILL AND BILL GIVE SOME MONEY TO A

This is called ATRANS7

JILL, AND BILL, LEAVE A RESTAURANT.
This is called PTRANSS

« IF IT WAS JILL AND BIILIL WHO MOVED TO A
HAVE SOME TEA.
This is called P0OSS2

176

A probable motivator inference is : IF IT WAS JILL AND BILL WHO MOVED TO A
RESTAURANT THEN JILL AND BILIL, WOULD BE THIRSTY.
This is called THIRSTL
Linkage to INGEST2 is motivator
Linking to 'assumptions' (IDENTITY9)
Certainty is 0.69299999
Interest is 0.39599999

A certain resultative inference is : IF IT WAS JILL AND BILL WHO MOVED TO A
RESTAURANT THEN SOME TEA WOULD CEASE TO EXIST.
This is called EXIST4
Linkage to INGEST2 is resultative
This is update—-of EXIST2
Linking to 'assumptions' (IDENTITY9)
Certainty is 0.99000000
Interest is 0.19799999

A probable resultative inference is : IF IT WAS JILL AND BILL WHO MOVED TO A
RESTAURANT THEN JILI, AND BILIL, WOULD BECOME SLAKED.

: This is called THIRST3
Linkage to INGEST2 is resultative
This is update-of THIRSTL
Linking to 'assumptions' (IDENTITY9)
Certainty is 0.59400000
Interest is 0.29700000
the inferences continue now using MONKEYS1 as a
candidate resolution for the pronoun. The inference
nets (including the GO-TO-RESTAURANT network) do not
know any better.
An alternative probable motivation inference is : IF IT WAS THE MONKEYS
WHICH MOVED TO A RESTAURANT THEN THE MONKEYS WOULD DESIRE THAT THEY ARRIVE
AT THE RESTAURANT.

e we we “o

This is called GOALLS5
Linkage to PTRANS3 is motivation
Linking to 'assumptions' (IDENTITY1l)
Certainty is 0.62299999
Interest is 0.39599999

An alternative possible motivation inference is : IF IT WAS THE MONKEYS
WHICH MOVED TO A RESTAURANT THEN THE MONKEYS WOULD DESIRE THAT THEY NOT BE
NEAR THE PLACE,WHERE THEY HAD BEEN.
This is called GOALL7
Linkage to PTRANS3 is motivation
Linking to 'assumptions' (IDENTITY1l)
Certainty is 0.39599999
Interest is 0.49500000

Bn alternative probable motivator inference is : SOME MONKEYS WERE HUNGRY.
This is called HUNGERL3

Linkage to PTRANS3 is motivator

Certainty is 0.69299999

Interest is 0.29700000

177

A probable follevent inference is : SOME MONKEYS ASK SOME WAITRESS FOR A
FmD.
This is called MTRANS3
Linkage to PTRANS3 is follevent
Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is : SOME WAITRESS GIVES A FOOD TO SOME
MONKEYS.
This is called ATRANSL1
Linkage to PTRANS3 is follevent
Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is : SOME MONKEYS INGEST A FOOD.
This is called INGEST7

Linkage to PTRANS3 is follevent

Certainty is 0.79199999

Interest is 0.19799999

A probable follevent inference is : SOME MONKEYS GIVE SOME MONEY TO A
RESTAURANT.
This is called ATRANS13
Linkage to PTRANS3 is follevent
Certainty is 0.79199999
Interest is 0.19799999

A probable follevent inference is : SOME MONKEYS MOVE FROM A RESTAURANT.
This is called PTRANS7

Linkage to PTRANS3 is follevent

Certainty is 0.79199999

Interest is 0.19799999

A certain precondition inference is : IF IT WAS THE MONKEYS WHICH MOVED TO A
RESTAURANT THEN THE MONKEYS WOULD HAVE SOME TFA.
This is called POSS13
Linkage to INGEST2 is precondition
Linking to 'assumptions' (IDENTITY1l)
Certainty is 0.99000000
Interest is 0.49500000

An alternative probable motivator inference is : IF IT WAS THE MONKEYS WHICH
MOVED TO A RESTAURANT THEN THE MONKEYS WOULD BE THIRSTY.
This is called THIRSTS
Linkage to INGEST2 is motivator
Linking to 'assumptions' (IDENTITYI11)
Certainty is 0.69299999
Interest is 0.39599999

178

A certain resultative inference is : IF IT WAS THE MONKEYS WHICH MOVED TO A
RESTAURANT THEN SOME TEA WOULD CEASE TO EXIST.
This is called EXIST4
Linkage to INGEST2 is resultative
This is update-of EXIST?2
Linking to 'assumptions' (IDENTITY1l)
Certainty is 0.99000000
Interest is 0.19799999

A probable resultative inference is : IF IT WAS THE MONKEYS WHICH MOVED TO A
RESTAURANT THEN THE MONKEYS WOULD BECOME SLAKED.
This is called THIRST7
Linkage to INGEST2 is resultative
This is update-of THIRST5
Linking to ‘assumptions' (IDENTITY1l)
Certainty is 0.59400000
Interest is 0.29700000

Pronoun resolution : IT WAS JILIL AND BILIL WHO MOVED TO A RESTAURANT.
This pronoun resolution has taken place because the
GROUP is more in focus than the monkeys: there was
no inference anywhere which really discriminated
between the two candidates.

*&*kkk* forgetting POSS14

kkkkkk forgetting POSS13

kkkkkk forgetting THIRST6

*kkkkk forgetting THIRSTS
and so on... the memory is compacted quite extensively
at this point. The output from compaction has also
been eliminated.

~e we wo we

~e we o

179

Pray continue:

JILL TOOK BILIL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS
TAIKING TO THEM,

[INow make inferences

Now try to produce inferences based on
((EVENT (ACTOR TRAMP1)
(ACT MTRANS)
(MOBJECT CONCEPTSL)
(FROMCP TRAMP1)
(TOCP DUMMY-UNKNOWNS4)
(TIME (NAMED TIMEPOINT86)
(COMPARISON
(BEFORE *NOW*))
(COMPARISON
(AFTER TIMEPOINT83)))))

The sentence is : A TRAMP STATED SOMETHING.
This is called MTRANSS

A certain resultative inference is : A TRAMP KNEN THAT THE TRAMP HAD STATED
SOMETHING.
This is called MIOCL3
Linkage to MTRANSS5 is resultative
Certainty is 0.94050000
Interest is 0,19799999

A certain implicit inference is : A TRAMP EXISTED.
This is called EXIST20
Linkage to MTRANS5 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain precondition inference is : THE ENTITIES,TO WHICH A TRAMP HAD SAID
SOMETHING,WERE NEAR THE TRAMP.
This is called 1LOC8
Linkage to MTRANS5 is precondition
Certainty is 0.89100000
Interest is 0.59400000

A certain implicit inference is : THE ENTITIES,TO WHICH A TRAMP HAD SAID
SOMETHING, EXTSTED.
' This is called EXIST14
Linkage to MTRANS5 is implicit

Certainty is 0.94050000

Interest is 0.98999999E-1

180

A probable precondition inference is : A TRAMP PONDERED,

This is called MIOCl5
This is a somewhat pompous way of saying that the
CONCEPTSL which the tramp MTRANSed were in the
tramp's mind - (INCP TRAMP1)
It is sometimes hard to find English words that
express what the CDform says. PONDER was the best
I could do for this.
Linkage to MTRANS5 is precondition
Certainty is 0.79199999
Interest is 0.39599999

.8 N Ne Ne we we

A probable motivation inference is : A TRAMP DESIRED THAT THE ENTITIES,TO
WHICH THE TRAMP HAD SAID SOMETHING,PONDER.
This is called GOAL19
Linkage to MTRANS5 is motivation
Certainty is 0.69299999
Interest is 0.89100000

A probable instrumental inference is : A TRAMP SPOKE.
This is called SPEAKL
Linkage to MTRANS5 is instrumental
Certainty is 0.69299999
Interest is 0.59400000
Created token: ATTEND1
Attachments: none
Asking the memory a question — answers are (ATTENDL NIL)
; Here, for the first time, a MBELIEVE test is being performed.
; The token created to represent the question is ATTEND1, and the
; matcher has found nothing like that in the memory: hence the NIL.
Now make inferences contingent upon ATTEND1
: Taking one branch from the test.....
The assumption is : THE ENTITIES,TO WHICH A TRAMP WAS SAYING
SOMETHING, LISTENED TO THE TRAMP.

A probable resultative inference is : IF THE ENTITIES,TO WHICH A TRAMP WAS

SAYING SOMETHING,LISTENED TO THE TRAMP THEN THOSE ENTITIES WOULD PONDER.
This is called MIOCL9

Linkage to MTRANS5 is resultative

Linking to 'assumptions' (ATTEND1)

Certainty is 0.79199999

Interest is 0.59400000

A certain resultative inference is : IF THE ENTITIES,WHICH HAD BEEN NEAR A
TRAMP, LISTENED TO THE TRAMP THEN THOSE ENTITIES WOUID KNOW THAT HE HAD
STATED SOMETHING.
This is called MIOC21

Linkage to MTRANS5 is resultative
Linking to 'assumptions' (ATTENDL)
Certainty is 0.89100000
Interest is 0.19799999
End of inferences based upon ATTENDL
The assumption is : THE ENTITIES,TO WHICH A TRAMP WAS SAYING
SOMETHING,LISTENED TO THE TRAMP.
Now make inferences contingent upon ATTEND2

: Now taking the other branch from the test.
The assumption is : THE ENTITIES,TO WHICH A TRAMP WAS SAYING

181

SOMETHING,DIDN'T LISTEN TO THE TRAMP.

Created token: MFEELL
Attachments: none

A possible normative inference is : IF THE ENTITIES,TO WHICH A TRAMP WAS
SAYING SOMETHING,DIDN'T LISTEN TO THE TRAMP THEN HE WOULD START TO BE ANGRY
WITH THOSE ENTITIES.
This is called MFEELL
Linkage to MTRANS5 is normative
Linking to 'assumptions' (ATTEND2)
Certainty is 0.39599999
Interest is 0.49500000

A probable normative inference is : IF THE ENTITIES,TO WHICH A TRAMP WAS

SAYING SOMETHING,DIDN'T LISTEN TO THE TRAMP THEN HE WOUILD STATE SOMETHING.
This is called MTIRANS7

Really, this means that he would repeat what he said earlier.

As noted in Chapter 3, the generator is not making use of the

inferencer, and so cannot decide to use the word "REPEAT".

Linkage to MTRANS5 is normative

Linking to 'assumptions' (ATTEND2)

Certainty is 0.59400000

Interest is 0.29700000

End of inferences based upon ATTEND2

The assumption is : THE ENTITIES,TO WHICH A TRAMP WAS SAYING

SOMETHING,DIDN'T LISTEN TO THE TRAMP.

~e we we

Now try to produce inferences based on
((STATE (STATENAME POSS)
(THING MONEY3)
(VAL HUMAN-BILL)
(TIME (NAMED TIMEPOINTS3)
(COMPARISON
(BEFORE *NOW*)))))

The sentence is : BILL HAD SOME MONEY.
This is called POSS15

A certain implicit inference is : SOME MONEY EXISTED.
This is called EXISTIL5
Linkage to POSS15 is implicit
Certainty is 0.98010000
Interest is 0.98999999E-1

A certain implicit inference is : BILL EXISTED.
This is called EXIST24
Linkage to POSS15 is implicit
Certainty is 0.98010000
Interest is 0.98999999E-1

182

A certain exclusion inference is : NOBODY,OTHER THAN BIIL,HAD SOME MONEY.
This is called POSS17

Linkage to POSS15 is exclusion

Certainty is 0.94050000

Interest is 0.19799999

A possible causative inference is : BILL TAKES SOME MONEY.
This is called ATRANS1S5

Linkage to POSSL5 is causative

Certainty is 0.39599999

Interest is 0.39599999

An alternative possible causative inference is : SOMEBODY,OTHER THAN
BILL,GIVES SOME MONEY TO BIILL.
This is called ATRANSL7
; This inference causes a lot of trouble later on, when we ask
; "What did she give him?".
Linkage to POSS15 is causative
Certainty is 0.39599999
Interest is 0.39599999

A possible enabledact inference is : BILL CAN GIVE SOME MONEY TO
SOMFBODY ,OTHER THAN BIIL.

This is called ATRANS19
Linkage to POSS15 is enabledact
Certainty is 0.29700000
Interest is 0.39599999

An alternative possible enabledact inference is : SOMEBODY,OTHER THAN
BIIL,CAN TAKE SOME MONEY FROM BILL.
This is called ATRANS21
Linkage to POSS15 is enabledact
Certainty is 0.19799999
Interest is 0.39599999

183

Now try to produce inferences based on
((CONJUNCT (FIRST (EVENT (ACTOR JILL)

(ACT ATRANS)

(OBJECT MONEY3)

(TO JILL)

(FROM DUMMY-MALEL)

(TIME (COMPARISON

(AFTER TIMEPOINT49))

(NAMED TIMEPOINT83)
(COMPARISON

(BEFORE *NOW*)))))

(SECOND (EVENT (ACTOR JILL)

(ACT ATRANS)

(OBJECT DUMMY-THINGI)
(FROM JILL)

(TO TRAMP1)

(TIME (COMPARISON

(AFTER TIMEPOINT49))
(NAMED TIMEPOINT86)
(COMPARISON

(BEFORE *NOW*))
(COMPARISON

(AFTER TIMEPOINT83)))))))

The sentence is : JILL TOOK SOME MONEY AND JILL GAVE SOMETHING TO A TRAMP.

This is called CONJUNCT3
A certain implicit inference is

Linkage to ATRANS23 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is
MONEY ,EXISTED.

Linkage to ATRANS23 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is
Linkage to ATRANS23 is implicit

Certainty is 0.94050000
Interest is 0.98999999E-1

A probable precondition inference

SOME MONEY ,WAS NEAR JIIL.

JILL EXISTED.
This is called EXIST5

THE MALE,FROM WHOM JILL HAD TAKEN SOME

This is called EXIST22

SOME MONEY EXISTHD.
This is galled EXIST29

is : THE MALE,FROM WHOM JILL HAD TAKEN

This is called ILOCLO

Linkage to ATRANS23 is precondition

Certainty is 0.79199999
Interest is 0.39599999

184

A certain precondition inference is : THE MALE,FROM WHOM JILL WAS TAKING
SOME MONEY ,HAD THE MONEY.
This is called POSS19
Linkage to ATRANS23 is precondition
Certainty is 0.89100000
Interest is 0.59400000

A certain resultative inference is : JILL ACQUIRED SOME MONEY.
This is called POSS21

Linkage to ATRANS23 is resultative

This is update-of POSS19

Certainty is 0.89100000

Interest is 0.79199999

A certain motivation inference is : JILL WANTED SOME MONEY.
This is called GOAL21l

Linkage to ATRANS23 is motivation

Certainty is 0.89100000

Interest is 0.89100000

Asking the memory a question - answers are (MIRANS9 NIL)

Now make inferences contingent upon MTRANS9

The assumption is : THE MALE,WHO HAD SOME MONEY ,GAVE JILL PERMISSION TO TAKE
THE MONEY.

A certain normative inference is : IF THE MALE,WHO HAD SOME MONEY ,GAVE JILL
PERMISSION TO TAKE THE MONEY THEN THAT MALE WOULD LIKE JIIL.
This is called MFEEL3
Linkage to ATRANS23 is normative
Linking to 'assumptions' (MIRANS9)
Certainty is 0.89100000
Interest is 0.19799999
End of inferences based upon MTRANS9
The assumption is : THE MALE,WHO HAD SOME MONEY,GAVE JILL PERMISSION TO TAKE
THE MONEY, :
Now make inferences contingent upon MTRANSLO

The assumption is : THE MALE,WHO HAD SOME MONEY ,DIDN'T GIVE JILL PERMISSION
TO TAKE THE MONEY.

A probable resultative inference is : IF THE MALE,WHO HAD SOME MONEY,DIDN'T
GIVE JILL PERMISSION TO TAKE THE MONEY THEN JILL WOULD BE REMORSEFUL.,
This is called GUILTL
Linkage to ATRANS23 is resultative
Linking to 'assumptions' (MIRANSLO0)
Certainty is 0.59400000
Interest is 0.49500000

185

Asking the memory a question - answers are (MLOC23 (MIOC15))
; In this case, the memory has found something which could
: conceivably be an answer to the question - viz. MIOCL5
Now make inferences contingent upon MIOC23

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY ,THOUGHT
THAT SOMEBODY ,OTHER THAN THAT MALE,HAD TAKEN THE MONEY.

A probable normative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN
SOME MONEY ,THOUGHT THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT
THEN THAT MALE WOULD TELL THE POLICE THAT THAT PERSON TOOK IT.
This is called MTRANS1L
Linkage to ATRANS23 is normative
Linking to 'assumptions' (MLOC23 MTRANS1O0)
Certainty is 0.69299999
Interest is 0.59400000

A certain normative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN SOME
MONEY , THOUGHT THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT THEN
THAT MALE WOULD WANT IT.
This is called GOAL23
Linkage to ATRANS23 is normative
Linking to 'assumptions' (MIOC23 MTRANSL1O0)
Certainty is 0.89100000
Interest is 0.89100000
Asking the memory a question - answers are (MIOC25 (MILOCL5))
Now make inferences contingent upon MIOC25

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY,THOUGHT
THAT IT BE JILL WHO TOOK THE MONEY.

A probable resultative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN
SOME MONEY , THOUGHT THAT IT BE JILL WHO TOOK THE MONEY THEN THAT MALE WOULD
HOPE TO TAKE IT FROM JILL.
This is called MIOC27
Linkage to ATRANS23 is resultative
Linking to 'assumptions' (MLOC25 MLOC23 MIRANS10)
Certainty is 0.79199999
Interest is 0.89100000
End of inferences based upon MLOC25
The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY , THOUGHT
THAT IT BE JILL WHO TOOK THE MONEY.
Now make inferences contingent upon MILOC26

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY ,DIDN'T
THINK THAT IT BE JILL WHO TOOK THE MONEY.

A certain nomative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN SOME
MONEY ,DIDN'T THINK THAT IT BE JILL TOOK THE MONEY THEN THAT MALE WOULD START
TO DESIRE THAT HE KNOW.
This is called GOAL25
Linkage to ATRANS23 is normative
Linking to 'assumptions' (MLOC26 MIOC23 MTRANS10)
Certainty is 0.89100000
Interest is 0.69299999

186

End of inferences based upon MLOC26

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY,DIDN'T
THINK THAT IT BE JILL WHO TOOK THE MONEY,

End of inferences based upon MLOC23

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY , THOUGHT
THAT SOMEBODY,OTHER THAN THAT MALE,HAD TAKEN THE MONEY.

Now make inferences contingent upon MILOC24

The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY,DIDN'T
THINK THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT.

A probable resultative inference is : IF THE MALE,FROM WHOM JILL HAD TAKEN
SOME MONEY ,DIDN'T THINK THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN
IT THEN THAT MALE WOULD BE ANGRY BECAUSE HE WANTS IT.

This is called CAUSE9
Linkage to ATRANS23 is resultative
Linking to 'assumptions' (MLOC24 MTRANSLO)
Certainty is 0.69299999
Interest is 0.39599999
End of inferences based upon MILOC24
The assumption is : THE MALE,FROM WHOM JILL HAD TAKEN SOME MONEY,DIDN'T
THINK THAT THE PERSON WHO WAS TAKING THE MONEY HAD TAKEN IT.
End of inferences based upon MTRANS10
The assumption is : THE MALE,WHO HAD SOME MONEY ,DIDN'T GIVE JILL PERMISSION
TO TAKE THE MONEY.

A certain implicit inference is : A TRAMP EXISTED.
This is called EXIST31l
Linkage to ATRANS25 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is : JILL EXISTED.
This is called EXIST33
Linkage to ATRANS25 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is : THE THING WHICH JILL HAD GIVEN TO A TRAMP
EXISTED.
This is called EXIST35
Linkage to ATRANS25 is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A probable precondition inference is : JILL WAS NEAR A TRAMP.
This is called LOC12

Linkage to ATRANS25 is precondition

Certainty is 0.79199999

Interest is 0.39599999

A certain precondition inference is : JILL HAD THE THING WHICH JILL WAS
GIVING TO A TRAMP,
This is called P0OSS29
Linkage to ATRANS25 is precondition
Certainty is 0.89100000
Interest is 0.59400000

187

A certain resultative inference is : A TRAMP ACQUIRED THE THING WHICH JILL
WAS GIVING TO THE TRAMP.
This is called P0OSS31
Linkage to ATRANS25 is resultative
This is update-of POSS29
Certainty is 0.89100000
Interest is 0.79199999

A possible motivation inference is : JILL DIDN'T WANT THE THING,WHICH JILL
WAS GIVING TO A TRAMP.
This is called GOAL29
Linkage to ATRANS25 is motivation
Certainty is 0.19799999
Interest is 0.39599999

An alternative possible motivation inference is : JILL THOUGHT THAT A TRAMP
WANTED THE THING WHICH JILL WAS GIVING TO THE TRAMP.
This is called MIOC3l
Linkage to ATRANS25 is motivation
Certainty is 0.49500000
Interest is 0.39599999

An alternative possible motivation inference is : JILL DESIRED THAT A TRAMP
BEQCOME HAPPY.
This is called GOAL33

Linkage to ATRANS25 is motivation
Certainty is 0.49500000
Interest is 0.39599999
These possible-matches were deleted
(POSS25 . P0OSS19)
(POSS19 . POSS25)
(POSS27 . POSS19)
(POSS19 . POSS27)

*% %% %% Destroying: EXIST5

*% %% %% Destroying: EXIST6
a fair amount of compaction occurs here, but the trace
has been removed for space reasons. Then,

.
14
.
’

Pronoun resolved : IT WAS BILL, FROM WHOM JILL TOOK SOME MONEY.,
; and a lot more compaction occurs here

Pronoun resolved : IT WAS THE MONEY WHICH JILL GAVE TO A TRAMP.
; and here ...

Pronoun resolved : IT WAS JILL AND BILL TO WHOM A TRAMP SAID SOMETHING.
: and here.

188

Pray continue:
WHAT DID SHE GIVE HIM?

WO ME MO WO MO NE NS NG NG WE Ne %o

[INow make inferences

this may look like a trivial question.

not only does the text give the answer, but
the program has already demonstrated its
ability to resolve a pronoun which gave the
same answer. However,

there are several pronouns to be resolved
the tramp could be either male or female
there is another proposition which can be
confused with the one to which this question
refers, namely, the possible causative
inference suggesting how Bill got his money
in the first place.

Now try to produce inferences based on
((EVENT (ACTOR DUMMY-FEMALE1)

(ACT ATRANS)

(OBJECT ?DUMMY-THING4)
(FROM DUMMY-FEMALE1)
(TO DUMMY-MALE2)
(TIME (NAMED TIMEPOINT161)
(COMPARISON
(BEFORE *NOW*)))))

The sentence is : A FEMALE GAVE
This is called ATRANS31

A certain implicit inference is
SOMETHING, EXISTED.,

Linkage to ATRANS3l is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is
MALE, EXTSTED.

Linkage to ATRANS3l is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

A certain implicit inference is
MALE EXISTED.

Linkage to ATRANS3l is implicit
Certainty is 0.94050000
Interest is 0.98999999E-1

SOMETHING TO A MALE.

: THE MALE,WHO HAD RECEIVED

This is called EXIST7

THE FEMALE,WHO HAD GIVEN SOMETHING TO A

.

This is called EXIST34

THE THING WHICH A FEMALE HAD GIVEN TO A

This is called EXIST21

189

A probable precondition inference is : THE FEMALE,WHO HAD GIVEN SOMETHING TO
A MALE,WAS NEAR THAT MALE.
This is called IOC46
Linkage to ATRANS31 is precondition
Certainty is 0.79199999
Interest is 0.39599999

A certain precondition inference is : THE FEMALE,WHO WAS GIVING SOMETHING TO
A MALE,HAD THAT THING.
This is called POSS22
Linkage to ATRANS3l is precondition
Certainty is 0.89100000
Interest is 0.59400000

A certain resultative inference is : THE MALE,WHO WAS RECEIVING
SOMETHING,ACQUIRED THAT THING.

This is called POSS16
Linkage to ATRANS3l is resultative
This is update-of P0SS22
Certainty is 0.89100000
Interest is 0.79199999

A possible motivation inference is : THE FEMALE,WHO WAS GIVING SOMETHING TO
A MALE,DIDN'T WANT THAT THING.
This is called GOAL35
Linkage to ATRANS31 is motivation
Certainty is 0.19799999
Interest is 0.39599999

An alternative possible motivation inference is : THE FEMALE,WHO WAS GIVING
SOMETHING TO A MALE,THOUGHT THAT THAT MALE WANTED THAT THING.
This is called MIOC45
Linkage to ATRANS3l is motivation
Certainty is 0.49500000
Interest is 0.39599999

An alternative possible motivation inference is : THE FEMALE,WHO WAS GIVING
SOMETHING TO A MALE,DESIRED THAT THAT MALE BECOME HAPPY.
This is called GOAL39
Linkage to ATRANS31 is motivation
Certainty is 0.49500000
Interest is 0.39599999
Pronoun resolved : IT WAS JILL WHO GAVE SOMETHING TO A MALE.
the program does the easy bit first.
It determines that, no matter who was being
given and what was being given, Jill was the giver

A lot more compaction ensues, in which the token
?DUMMY-THING4 is resolved. Since the program
realises it is a question token, it saves the

; revelation until the end.

Answering question (1): JILL GAVE SOME MONEY TO A TRAMP.

Pray continue:

(Returning to Lisp...

® NE WS we W& we we “wo

190

Chapter 10: Some contemporary work

The principles on which AD-HAC is based have been described in the
preceding chapters. Many of these principles were derived from earlier
work, and that work has been discussed where appropriate: parts of chapters
2 and 3, and all of chapters 4 and 7, have described those earlier systems
which were influential in the design of AD-HAC; during its construction,
and the subsequent writing of this thesis, there has been other work which
addresses many of the same topics. In this chapter I discuss some of this
recent work, namely Marcus's PARSIFAL, Boguraev's system for the resolution
of linguistic amblgultles, and Small's work on Word Expert Parsing.
Particular emphasis is given to similarities and differences between their
approaches and mine.

The three other systems described in this chapter are all English
analysers, and are all in some respect similar to AD-HAC. There has been
other work on inference, but none of which I am aware which bears any great
likeness to AD-HAC: therefore that work is not described here.

10.1) Marcus

PARSIFAL [Marcus 1980] is a syntactic parser which operates strictly
deterministically, in that it does not simulate a nondeterministic machine.
It does however have a limited look-ahead ability, using a buffer of fixed
length which may hold words or syntactic constituents, and this is the basis
of its similarity to AD-HAC, which works on a bounded number of partial
analyses.

The structures built by PARSIFAL are annotated surface structures with
traces 1ndlcat1ng the underlying positions of "shifted" NPs. One of the
claims made is that several currently proposed constraints of universal
grammar (Subjacency, the Specified Subject Constraint, and Ross's Complex NP
Constraint) closely resemble constraints forced on the grammar rules by the
structure of the parser; this structure is in turn motivated by the
"Determinism Hypothesis", which states that

There is enough information in the structure of natural language
in general, and English in particular, to allow left-to-right
deterministic parsing of those sentences which a native speaker
can analyze without conscious effort (p204)

The grammar rules used by PARSIFAL are constrained in several ways, both
by the structure of the parser and by the restricted set of actions
available for use in the rules. The parser has three basic data structures:
(1) A buffer of five cells, each cell being able to hold either a word or a
syntactic constituent. The prlmltlves for manipulating the buffer allow
the insertion and removal of items in particular cells, and shuffle the
cells along when items are inserted or removed in such a way that the
buffer remains compacted at all times.

(2) A stack of syntax nodes, of which the top node and the current cyclic
node only are accessible to grammar rules.

(3) A stack of offsets into the buffer, whose top item indicates the start
of a "window" of three cells in the buffer.

191

The grammar rules are able to inspect the two accesible syntax nodes in
the stack, and up to three contiguous buffer cells: they are able to push
nodes onto the stack from the buffer, pop nodes from the stack into the
buffer, insert specific words in the buffer, and attach a constituent held
in the buffer to one of the nodes on the stack. These last attachments,
however, cannot be broken once made: and this is one of the central
restrictions on the grammar which enforces its deterministic action.

Besides the grammar rules which manipulate the stack and the buffer for
the purpose of building syntactic structures, there are two other sorts of
rule: diagnostic rules, which handle local syntactic ambiguities; and
attention shifting rules which initiate the building of certain constituent
structures by moving the "window" of three cells across the buffer of five.

The diagnostic rules cope with situations where the same terminal
substring could be accounted for by two different derivations; they are
specially designed for situations in which more than one of the grammar
rules would apply and would build some structure. These diagnostic rules
are constrained, like the normal rules, to inspect only three cells in the
buffer and the two accessible nodes on the stack, and this constraint
appears to render the parser as a whole susceptible to "garden paths",
lending further credibility to the parser as a model of human syntactic
analysis.

The attention shifting rules are provided to enable the parser to build
complete nodes in the buffer for complex constituents which are reliably
signalled by a single word. Thus determiners, for instance, reliably signal
the beginning of noun phrases, and act as the signal for attention shifting
rules to come into play. These rules act by pushing a new wvalue onto the
stack of offsets - (3) above - which corresponds to the position in the
buffer of the word which caused the rule to fire. Subsequent rules will
then be able to access that buffer cell and the next two, until some rule
causes the offset stack to be reset.

Attention-shifting rules may in fact leave the window in the same place,
since the item which triggers a rule may already be at the start of the
buffer. Marcus notes that, in his grammar, there is never any need to have
more than two nested attention shifts which do move the window; and that
when there are two, neither of them needs to shift it by more than one
place. Therefore, he argues, the total size of the buffer need only be five
cells long: the grammar rules may inspect three cells at a time, and the
offset can be limited to two. He notes that

Furthermore, five happens to fall nicely within the range of

seven plus or minus two, thus leaving open the possibility that

the buffer might be equated with the psychologist's notion of

short term memory. (pl99) ‘
This observation is markedly similar to, though more cautious than, my
remark at the end of section 5.2.3, which is repeated here for reference.

The second difference [from a simplified model] has, I believe,
important implications concerning the relation between memory
and linguistic faculties. This is the observation that, despite
the apparently non-deterministic operation of the [AD-HAC]
analyser, the depth of its stack of theories need only be small;
the size of stack needed compares with the supposed size of
human short-term memory. Specifically, 1limiting the size of

192

this stack to seven theories, and simply discarding any theories
which fall off the end, actually improves the performance of the
analyser for complex sentences, even elaborately embedded ones.

It should be noted that PARSIFAL is intended only to produce syntactic
analyses; the annotated surface structures which it builds are supposed to
be amenable to semantic analysis. Marcus does point out that semantic
judgements are occasionally necessary in order to determine the correct
syntactic structure, and that these semantic judgements cannot be conducted
in a strictly deterministic fashion. This, I believe, leads to a serious
dilemma for the notion of deterministic parsing as a whole, as I argue
below. 1In passing, however, it is interesting to note that Marcus suggests
that a language analyser needs to incorporate both syntactic and semantic
biases, which must measure "degree of goodness” and must be susceptible to
comparison. AD-HAC's "preference" mechanism does precisely this.

The dilemma

Marcus asserts

(1) that syntactic processing is a real phenomenon in human language use,
because the availability of annotated surface structures facilitates
the later semantic analysis

(2) that syntactic processing may proceed strictly deterministically, and
in particular that syntactic structures once built cannot be deleted

(3) that certain semantic judgements are necessary in order to select
between competing hypothesised syntactic structures

(4) that these semantic judgements cannot be deterministic.

If (3) and (4) are true, then whatever mechanism performs the semantic
judgements must construct alternative semantic structures in order to make a
selection; (1) implies that the input to this mechanism takes the form of
annotated surface structures. Therefore, one might suppose that the
semantic component tries out the alternatives by completing the syntactic
characterisation in the various different ways: but (2) says that this is
not possible, because once a link has been created it cannot be destroyed.
On the other hand, if one supposes that the semantic component tries out the
alternatives in some different way, one must also assume that there is some
other mechanism available to the semantic component, which permits it to
proceed without the syntactic characterisation: which throws doubt on (1).

10.2) Boguraev

[Boguraev 1980] describes an English analyser whose principal aim is to
resolve the various forms of ambiguity which may exist in single sentences:
the program deals with lexical, structural and transformational ambiguities,
but does not yet handle referential ambiguity. The analyser constructs
dependency structures which show both the syntactic structure(s) of
plausible readings of a sentence, and the semantic relationships between
constituents and word senses. These dependency structures are then passed
to an English generator which produces "dynamic paraphrases" of each
plausible reading; part of the generation process - the production of a
sentence from a syntax net - is identical to that in AD-HAC.

The senses of words in Boguraev's system are represented in terms of a
set of primitives, a set which is a development of Wilks's primitive terms.
The analysis process uses an ATN to perform a syntactic analysis, with calls
to semantic routines at strategic points to ensure that the constituents

193

found by the ATN are semantically coherent: this approach considerably
reduces the nondeterminism inherent in the ATN model of syntactic analysis.

The system is equipped with a vocabulary of about four hundred words,
most of which have more than one sense, and many of which belong to more
than one part of speech. The grammar covers a fair range of English
constructions, and so sentences are easily constructed for which there are
several syntactically valid readings. Boguraev's system performs
impressively, giving for almost all sentences only that interpretation which
is right (in the sense of being the interpretation assigned by people); and
yet giving all plausible readings in the case of genuine ambiguity.

The semantic routines are called from within the ATN grammar whenever a
complete constituent has been found, for instance a clause or a noun phrase;
they have access to the ATN registers, and generally prune the 1list of
possible interpretations by using all the information available at the time
they are called. In many cases, it is not possible to select Jjust one
interpretation for a constituent, and so the set of possible readings is
passed up to the next level of computation; in particular, the noun phrase
specialist cannot usually select between different interpretations of a
noun, though it can prune the interpretations in cases where polysemous
adjectives and nouns interact. For example, given a noun phrase such as
"THE GREEN CROOK", where there are three senses of "“GREEN" and two of
"CROOK", the noun phrase semantic specialist can determine that the only
reasonable interpretations correspond to "THE NOVICE CRIMINAL" and "“THE
GREEN-COLOURED SHEEP-BEATER".

The largest part of the disambiguation process occurs in the clause-
level semantic specialist. This exploits both syntactic and semantic
information to select a contextual verb frame. These verb frames encode
both the meanings of senses of verbs (in terms of the Wilksian primitives),
and their expected syntactic framework; particular emphasis is placed on
handling prepositional phrases, whether optional or obligatory. AD-HAC's
verb definitions provide equivalent information in the verb definitions, by
defining "requests" which seek elements of the syntactic environment:
Boguraev contrasts this approach with the "passive" approach adopted in his
system; his contextual verb frames are static objects, which are
manipulated by a uniform process which inspects the surrounding syntactic
(and semantic) environment.

The treatment of adjectives in Boguraev's system is very similar to the
treatment of wverbs; abstract nouns also are handled in like manner. The
problems of interpreting abstract nouns and polysemous adjectives, it will
be recalled, are not handled in AD-HAC,

However, AD-HAC does score over Boguraev's system in certain respects.
Conjunctions, for example, are quite easily handled in the AD-HAC framework,
whereas they are not handled at all in Boguraev's system at present. For
the purposes of story understanding, this would not be too serious a
drawback, since simple stories can usually be rewritten in a way that avoids
the wuse of conjunctions. More seriously, Boguraev's treatment of tense is
woefully superficial: the dependency structures merely mark the tense used
in the English clause, without even attempting to derive the temporal
relationships between major clauses and embedded clauses in the same
sentence. The work on the inference component of AD-HAC has revealed that a
good representation of time is of critical importance; for these dependency
structures to be useful for inference would require that the inference

194

mechanism was able to construct for itself the time relationships between
the various clauses; but the mapping from tense to time is strongly
language dependent, and so should be performed by the analyser.

The use of semantic specialists to cut down the number of alternative
semantic structures passed up to higher levels has one fatal flaw: it is
too easy for the analyser to reject altogether a metaphor. Boguraev reports
that his current system rejects the sentence

"Ships proudly ploughing the sea are a magnificent sight".
The semantic specialists merrily throw away all the interpretations of
'ships being proud' and - 'ships ploughing' and 'the sea being ploughed',
telling the ATN grammar to find another syntactic analysis; the ATN cannot
do this, of course, but nor can it return to previously rejected hypotheses:
consequently the program fails to build any analysis of the sentence.

Problems like this are averted in AD-HAC, because alternative analyses
are carried along in parallel; if there is only one branch to be taken, it
is taken despite apparent semantic anomalies. Boguraev's system tries to
avoid parallelism, and consequently has too rigid a notion of failure.

10.3) Small

The Word Expert Parser (WEP) [Small, 1980] views individual words as
active agents which cooperate to determine the meaning of a sentence; each
word has a large number of senses, and the disambiguation of each word
contributes to the derivation of a meaning for a sentence.

The theory underlying the WEP is embodied in the formalisms in which
words are defined: these are the lexical Interaction Language and the Sense
Discrimination Ianguage. The definitions of words are expressed as
coroutines, which send messages to and fro, and gradually refine the
concepts to which the words refer.

The representation into which sentences are parsed by WEP has the
primitives of CD as its basis, and so WEP may be viewed as a conceptual
parser. In WEP however, the representation is really in terms of a much
wider range of concepts, arranged in a tangled hierarchy: a concept like
CEWALK-DOG is a specialisation of CEWAIK, which is in turn a specialised
CEPTRANS. Small justifies the use of such specialised concepts in two ways:

1) Instead of representing once in the memory that walking a dog
consists of two associated walking actions, and that a walking
action consists of moving ones legs in such and such a manner,
this information must [in CD] be copied for each representation of
the complex action. Each time a oconceptual parser reads a
sentence about walking, it must construct a relation on changing
location, moving body parts, and so forth. (p77)

2) The conceptual notion at the heart of the action described in the
example sentence ["Rick walked his dog"] is that of walking a dog.
Most people know certain things about this conceptual action,
including that (a) the dog often wears a collar, (b) a person
holds a leash attached to this collar, and (¢) the dog and the
person have one particular interest of the dog in mind during the
walk. Just as certain inferences derive directly from the
primitive ACTs of conceptual dependency, so can inferences be
drawn from more specific higher-level actions that compactly

195

represent more complex or refined conceptual notions. (p78-79)
This approach to the representation of meaning parallels developments of CD
carried out in recent years by the Yale A.I. group; their CD
representations now may make direct reference to the names of scripts, and
give the bindings of certain script variables in the same way that the
primitive-based representations give bindings for the conceptual cases of
primitive ACTs.

The WEP is intended to function in conjunction with a memory/inference
mechanism, and the nature of the expected interactions is one of the most
elegant features of the WEP model. The projected interactions are requests
to the inferencer to select the most appropriate of a number of views of a
concept: the inferencer is expected to reply with the conceptually closest
view, and its reply assists the process of sense discrimination. For
example, when the parser sees the word "THROW" used as a verb, it initiates
a sequence of actions which pick up the direct object of the verb; it then
asks the inference mechanism whether this object is most naturally viewed
as:

CEANYTHING

CEMEAL

CEGARBAGE

CEABSOBJ

CESMALL-PHYSOBJ

CEPERSON

CECONTEST

CEPARTY

(These concepts have usually mnemonic names; CEABSOBJ is "abstract object")
The inference mechanism selects the closest concept, and this selection is
then used to guide the discrimination of the sense of THROW.

Though the necessary inferential activities have not been programmed, the
parser's dependence on the view mechanism is one of the most striking and
elegant features of the WEP model; the ability to incorporate Jjudgements
like this in the parser seems to stem directly from the hierarchical nature
of the concepts used to represent meaning, and consequently it is difficult
to see how such a mechanism could be retro-fitted into AD-HAC's analyser.
Furthermore, there are other mechanisms in WEP, for instance the ability to
search the discourse context and the permanent real-world memory, which give
it some very useful abilities; again, it is hard to envisage modifications
of AD-HAC along these lines.

Word Expert Parsing requires the construction of an expert for each word.
These experts are 1in general extremely complex objects: they comprise a
number of coroutine entry points; each coroutine is a network containing
test and action nodes, somewhat reminiscent of AD-HAC's inference nets.
When a sentence is analysed, the experts for the words in the sentence are
invoked. The processing that takes place is then entirely in the hands of
these experts: they send messages to one another, posting restart demons to
await the answers to questions, and also posting timeout demons to handle
cases where no answer to a question is forthcoming from another expert;
these two kinds of demons allow control within an expert to switch to other
coroutine entry points within the same network, or to other points in the
same coroutine. The coroutines model a distributed processing scheme, which
is deterministic, but is certainly not left-to-right.

196

Experts, as mentioned, are very complex. This complexity is necessary to
permit the discrimination of the many senses of words; the 24 senses
available for the word THROW, for instance, are listed below.

CEILTHROW ; a "concept" for the lexical item "THROW"

CEORGANISATION-THROW

CEPERSON~-THROW

CEHORSE-THROW

CEMACHINE-THROW

CETHRON-GARBAGE-OBJECT

CETHROW-SMALL-PHYSOBJ

CE£LOSE-PURPOSELY

CETHRON-PARTY

CEHORSE-THROW

CEHORSE-THROW-SHOE

CE£HORSE-THRON-RIDER

CELETHROWIN ; a "concept" for "THROW IN"

CELL THROWOUT ; a "concept" for "THROW OUT"

CEDISCHARGE-INTENSELY

CETHROW-AWAY—-GARBAGE

CE£ THROW-OUT-OF-COURT

CEREMOVE-FROM-LOCATION

CETHROW-OBJ-TO-LOC

CEINTERJECT

CEENGAGE-MACHINE

C£INCLUDE-IN-DEAL

CEGIVE-TO-CHARITY

CEGIVE-UP
When a representation is built by WEP, more than one of these concepts will
be wused to describe the throwing activity described by the sentence, and so
these 24 senses are not mutually exclusive. Indeed, some of them - those
starting with CELE - are concepts which relate simply to surface lexical
items, and are not of the same type as the others.

Because each expert is so complex, there are only a few which have been
implemented: including experts for some inflectional morphemes and one for
a full stop, there are only 40 experts, giving a vocabulary of maybe 35
actual words. One of the problems with the word expert approach is that
each expert must be constructed from scratch (and may involve modification
of existing experts), there being no mechanism to capture generalisations
easily. There seems to be no notion even of nouns, adjectives and verbs,
except implicitly in the signals sent between experts for these words and
others.

Even given the basic premiss underlying WEP, that words are highly
idiosyncratic in their interactions with other words, this lack of
generalisation seems unreasonable, simply because these basic syntactic
notions provide an elementary and intuitively correct level of description
of language. The WEP approach is yet young; perhaps these and other
generalisations will eventually find a place in the overall model.

197

Chapter 1l: Conclusions

In the preceding pages, I have described the principles on which AD-HAC
is based, and related it to previous and contemporary work in natural
language processing. It is appropriate here to consider the successes and
failures of the AD-HAC system: its successes illustrate the feasibility of
the general approach adopted, and raise a number of interesting theoretical
issues; and while some of its failures may be dismissed as mere faults of
implementation, others raise more serious questions about some of the
fundamental assumptions on which the system is based, and so point out
possible directions for future research.

11.1) The separation of analysis and inference

One of the simplifying assumptions in AD-HAC is that language analysis
can be largely separated from inference and memory. This is a common
partitioning of the overall problem of language comprehension, which is
adopted because analysis and inference/memory are both hideously complex
activities: in order to conduct any effective research into these areas, it
is necessary (as a first approximation, at least) to study each one in
relative isolation.

It has been arqued [Dedong, 1979] that this separation is false: that
memory and inference are inextricably bound up with language analysis.
There can be little doubt that this is correct, and that no computer program
will be able to understand properly unless it allows for complex interplay
between the various processes and structures. However, DeJong makes these
observations in introducing FRUMP, a program which does integrate its
analysis with its memory processes, and which is consequently forced simply
to ignore much of the text it reads: because the analysis process is so
strongly geared towards finding text to support its conjectures, it cannot
do anything at all with ‘"extraneous" material. This is not a realistic
approach to language comprehension either. Research is clearly needed to
find a satisfactory way in which the major components of the system can
interact, and one approach to this is to find what sort of information would
have to be communicated between the components for satisfactory processing.
This is most easily done by pretending that the problem is decomposable, and
this is the reason for AD-HAC's separation of analyser and inferencer.

11.2) The analyser

11.2.1) Summary of analysis

The analyser is interesting for several reasons. It clearly exploits the
syntactic regularities of English, but at no point does it build a syntactic
structure: the organisation of its syntactic and semantic processes
integrates conceptual structure building with syntactic recognition. The
clause-level request macros make it wvery easy to analyse standard
constructions, and provide easily-overridden defaults for such things as the
interpretation of tensing patterns.

Four features of the analyser have proved particularly valuable:
(1) the use of a purely syntactic ATN to locate constituent phrases means
that part-of-speech ambiguity is usually eliminated by syntactic context
alone, and means also that most function words do not need to bear requests;

198

(2) the embedding of the request mechanism into a preference-directed
nondeterministic framework alleviates many of the problems of control which
afflicted Riesbeck's system, and simplifies the handling of ambiguity in all
its forms;

(3) the identification and cyclic application of five distinct classes of
requests, corresponding to five kinds of activity within the parser, further
simplifies the control of the analysis process, especially when the
idiosyncracies of particular words (for example, conjunctions) necessitate
operations on the existing requests.

(4) the addition of a KEEP predicate to requests removes the need for
complex interactions among requests, and makes it possible to treat the main
predicate strictly as a predicate, and the actions strictly as actions.

11.2.2) Problems for further research in analysis

There are some fairly minor problems with the analyser. As noted in
section 5.4, the analyser does not handle reflexive pronouns, participial
premodifiers, abstract nouns, or "how" questions; these are areas to which
I believe BAD-HAC could be extended without radical alteration. Similarly,
the analyser's treatment of adjectives is inflexible and simple-minded, and
further work is needed on this.

The language understood by the analyser is in some cases restricted
because the representation language provides no suitable constructs: for
this reason, the analyser cannot handle disjunction, nor can it handle
adverbial modifications. The omission of disjunction was an oversight, and
the extension of the analyser to cope with disjunction, especially in
questions, should prove interesting. Adverbs are an extremely fruitful area
for further research: the meaning of adverbs is very hard to determine, and
decisions on how adverbs are to be represented must precede decisions on how
an analyser is to cope with them.

The possibility that 'CONCEPTS' might need modification was also
overlooked when the representation language was developed, and this
surprising omission leaves the analyser with no way to represent the notions
of
"prediction", which should be "(CONCEPTS (TIME))"

"lies", which should be, say, "(CONCEPTS (VERITY ...))"

"a story about Fred", perhaps "(CONCEPTS (ABOUT FRED))"

Note that "ABOUT" and "VERITY" - special purpose roles for just these
situations - would need to be treated in a special manner by the inferencer:
(VERITY FALSE) would have to specify conceptualisations which were not
believed, while (ABOUT FRED) would restrict the concepts to match
conceptualisations in which FRED played a role. These are not really
problematic for the analyser; rather, the representation language lacks
certain facilities.

There are however two serious problems with the analyser, problems which
perhaps indicate that the wvery structure of the analyser is at fault.
Firstly, as discussed in 5.4, the analyser suffers from the garden-path
syndrome when presented with sentences like

"The horse raced past the barn fell"

"The boat floated down the river sank"

"The cars made in Japan are small"
The first two of these sentences are genuine garden paths; the third is
not. Thus, insofar as AD-HAC's analyser does make predictions about garden
paths, these predictions are incorrect.

199

Secondly, though the use of a purely syntactic ATN to locate constituent
phrases has many advantages as illustrated above, the wvalidity of
constituent-level analysis is thrown into doubt by a phenomenon exemplified
by the phrase

"the man in the corner's wife" (Example from Henry Thompson)
AD-HAC gives this a bizarre interpretation: the corner is endowed with a
wife, and the man is understood to be in her (whatever that means).

This phrase violates two of the assumptions on which AD-HAC is based:
that phrases of the form "nounl's noun2" represent some (loosely possessive)
relation between "nounl" and "noun2"; and that phrases of the fomm
"noun-phrase prep-phrase" have "noun-phrase" as their head. This latter
assumption is particularly central in AD-HAC, because the request mechanism
applies feature tests to the first noun phrase in order to apply its
preferences; if the real head of a phrase of the above form has critically
different features, this test would lead the analyser astray: if the phrase
were embedded in a complex syntactic environment, this misquided test might
render the parser unable to derive any analysis at all.

Nor is it the case that the features of the first head noun and the real
head noun must be similar, since examples where the features are critically
different can be easily constructed: eg.

"I twisted the man in the corner's arm"

Notwithstanding the problems mentioned above, the analyser used in AD-HAC
has proved effective, versatile, and easily extensible. 1Its present
vocabulary is of the order of 350 words (listed in appendix B), and
continues to grow. Perhaps the most unexpected attribute of the analyser is
that it has provided endless innocent enjoyment.

11.3) The interface between analyser and inferencer

The traffic between the analyser and the inferencer is, at present, one
way only. The analysis of a sentence cannot exploit extra-sentential
context, even at the level of preferring certain senses of individual words.
In fact, the analyser's use of features in its preference tests constitutes
its only inferential ability; and this is an extremely primitive form of
inference.

One of the consequences of this lack of feedback from the inferencer is
that the analyser cannot find probable referents for pronouns. This in turn
means that it cannot use knowledge of the pronoun's referent even for its
feature-preference tests. This is an unsatisfactory state of affairs, but
is compounded because the analyser should not enforce its expectations on
the inferencer, in case metaphor is inwvolved.

Out of context, the word "THEM" in "HE ATE THEM" might be presumed to
refer to some objects with the feature 'SOLID' (which encompasses BEAST and
PLANT, as shown in the section 2.3.6); but if the analyser were to note
that the feature SOLID was expected, and push this feature on the pronominal
token to assist the inferencer in finding the referent, the effects would be
unfortunate in:

"Fred regretted his earlier words. He ate them."
A forced example, no doubt, but comprehensible; an analyser should not
enforce its expectations on an inference mechanism. Clearly, for this
example, the analyser would need to know the referent of the pronoun, and
this is beyond AD-HAC's abilities.

200

' The analyser yields, in addition to the conceptual structure it has
built, a few 1lists of interesting items: pronouns, definite references,
indefinite references, "proper name" tokens, and "query" tokens. These are
collected by the analyser as it proceeds through its various paths of
analysis, and the set finally produced corresponds to the set used in the
conceptual structure. This mechanism could probably be extended to permit
the analyser to specify the features it expected for pronouns, thereby
giving the inferencer information available during analysis, but not
enforcing the analyser's assumptions. Similarly, the problem of reflexive
pronouns and pronominal coreference constraints might be tackled in this
fashion.

In AD-HAC, however, the representation of features is distinct from the
representation of other conceptual information; and this discrimination is
an obstacle to the implementation of such a scheme. In retrospect, it seems
that the representation of all kinds of information should be as uniform as
possible; the use of property lists of Lisp atoms to store crucial
information about tokens now seems indefensible when all other information
is stored in a different manner.

Features remain a useful device, though their implementation should be
reorganised. However, the use of features is a long way from adequate for
representing the meaning of nouns: the use of "functions" attached to
nouns, and associated with inference networks which can be activated in
appropriate contexts, permits much more knowledge about objects to be
deployed; still there are desirable forms of knowledge which are
unavailable to the inferencer.

In particular, the inferencer needs the equivalent of a thesaurus. To
some extent, the feature-prototype dummy tokens (DUMMY-HUMAN, DUMMY-SOLID,
etc.) perform this function; so does the superprimitive classification
described in sections 2.3.4 and 8.3.2. Neither of these mechanisms permits
the inferencer to realise that "nuts" may refer to "peanuts", however,
because the classifications represented by the feature set and the
superprimitives are too coarse-grained. The answer to the problem
categorically does not 1lie in introducing more features; some
representation of the meanings of nouns, similar to that developed by Wilks,
could perhaps perform the required functions. The representation of the
meanings of nouns is an urgent topic for future investigation.

11.4) The inferencer

11.4.1) Summary of inference

AD-HAC's inferences are for the most part organised around the conceptual
primitives, and specify low-level preconditions, results, motivations and so
on; the inferencer adopts a unified approach to the problems of pronoun
resolution and question answering, and the low-level inferences alone
usually prove sufficient for this task.

The inference process is directed by a set of networks which produce the
actual inferences and which can interrogate the existing context. The
low-level primitive-oriented networks can also invoke higher-level networks
which are associated with the 'functions' of objects; these higher networks
encode script-like knowledge. The 1low- and high-level networks play
different roles in the system, but are expressed in the same form: AD-HAC
successfully integrates high-level situation-specific knowledge with

201

low-level primitive-oriented knowledge.

This is achieved by casting the inference processes in the form of
discrimination networks, where some of the nodes in the net perform tests,
and scme execute actions. The actions performed involve the construction of
conceptual patterns using elements of existing conceptualisations in
prespecified templates, thus producing inferences. The inferences fall into
natural classes, and these classes provide an interesting and simple
relationship between the inferences made from affirmative and negative
sentences.

The inferences produced are equipped with extensive cross-references,
which are exploited to compact the memory by merging similar inferences
drawn from disparate sources: this compaction process has as a natural side
effect the identification of pronoun referents and of the answers to
WH-questions, leading to a unified approach to these two tasks.

Early consideration of the 1likely problems of inference led to the
adoption of a modified form of Conceptual Dependency as the representation
language. The most significant modification of CD has been the use of
focus-paths to subordinate one conceptualisation to another. This device
enables all information to be represented in a perspicuous and perfectly
uniform fashion. The introduction of superprimitives also permits the
specification of whole classes of closely related messages, overcoming an
awkward aspect of primitive-based representation schemes.

11.4.2) Problems for further research in inference

The inferencer is equipped with several inference nets, but there remains
further work to be done. There remain several of the conceptual primitives
for which inference networks have not yet been written; and only a very
small number of script-like networks exist at present. It remains to be
seen whether any problems arise in attempting to encode plan-like knowledge
in the form of inference networks, as there currently are no networks of
this sort. It should be noted, however, that some provision has been made
for the incorporation of plans, in the form of the defined inference types
"motivation" and "plannedact".

Amongst the conceptual primitives for which no inference network exists
is QUANTIFY: consequently, the inferencer does nothing very useful with
universal quantifiers, and cannot draw the obvious conclusions from
syllogisms. It appears, however, that creating an inference network for
QUANTIFY would be only a small step towards extending the inferencer to
handle syllogisms. One approach towards handling the larger problem is to
create inference networks dynamically: for a statement such as

"ALL FAT PHOPLE ARE HAPPY"
an inference net could be constructed, on the spot, to perform the necessary
tests and make the appropriate inferences. There is no conceptual problem
there, but a fair degree of modification to the existing program would be
required in order to implement this approach.

Some of the apparent problems of inference are really problems of
representation. One of these problems is the representation of different
types of causality: the present program merely uses CAUSE to relate an
ANTECEDENT and a RESULT; but it appears that there are many different types
of causality, and it further seems that the existing classification of
inference types corresponds closely to the perceived types of causal

202

relationship. It would therefore be useful to incorporate this
classification into the representation language itself.

Another problem is that, in some places, the representation language
enforces too high a degree of precision in expression. An example of this
occurs in the inferences drawn by AD-HAC from an MTRANS between two
different people: one "precondition" inference states that the two people
concerned must be close to one another. The existence of telephones, of
course, gives the lie to this supposed "precondition". It may be noted that
the terminology used by Meehan's TALE-SPIN refers not to proximity, but to
"D-LINK", which subsumes the various ways of establishing communication
(including closeness). However, D-LINK is then definable simply - and only
- in terms of enabling communication: and so stating that a precondition of
an event is some state which enables that event; and this looks vacuous.

There are several other areas where the representation language is
inadequate: the representation of distances and of durations has not been
worked out. The fundamental difficulty is that precise measures exist for
both; precise measures are seldom needed; yet sometimes only precise
measures will suffice. How a system can coordinate its use of fuzzy and
precise measures, and how it can determine which is appropriate for a given
situation, are areas where further work must be done.

There is one problem with the inferencer itself which suggests that
pronouns and WH-questions cannot be treated in identical fashion: when a
speaker asks a question, it is permissible to question his presuppositions;
when he uses a pronoun (in the context of a declarative sentence), there is
some guarantee that a referent for that pronoun can be found. In AD-HAC,
however, there is no provision for challenging presuppositions; and
consequently, AD-HAC gives an answer to the final question in

JILL AND BILL WENT TO THE ZOO.

THEY GAVE THE MONKEYS SOME PEANUTS, WHICH THEY ATE.

THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.

JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS
TALKING TO THEM.

WHO TAIKED TO THE MONKEYS?
(I am indebted to Bruce Croft for bringing this idiocy to light.)

11.5) Summary

AD-HAC tackles the problems of language processing from several fronts.
The analysis of sentences is accomplished in an active fashion, using
requests embedded in a nondeterministic preference-directed framework, using
an ATN to locate and characterise low-level syntactic constituents. The
inferential processing is then directed by a set of networks, keyed both on
the conceptual primitives of the underlying representation language, and on
tokens designating classes of real-world entities. The formulation of
inference processes in this fashion brings many benefits, but especially
provides a unified approach to the use of situation-specific, script-like,
knowledge and mundane knowledge of the effects and preconditions of
elementary actions. The production of inferences, and the subsequent
compaction of the set of inferences drawn, provides a sound basis for the
identification of pronoun referents and for the answering of questions about
the texts.

Many problems have appeared in the course of this research. AD-HAC

203

continues to provide a large-scale model in which research into these topics
can be conducted.

204

Bppendix A: the roles associated with CD primitives

This appendix shows the roles associated with individual ACT primitives,
and also those associated with unusual states, that is, those which do not
fit into the THING and VAL pattern.

The notation used here is as follows: the ACT or STATE primitive is
underlined, and is followed by the roles it can take. Where a role is
optional, it will be preceded by "OPT:"; where several roles may occur, but
are mutually exclusive, they will be separated with "/".

ATRANS
ACTOR
OBJECT
TO
FROM
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

PTRANS
ACTOR
OBJECT
FROM
70
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

MTRANS
ACTOR
MOBJECT
FROM/FROMCP/FROMLIM
TO/TOCP/TOLTM
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

PROPEL
ACTOR
OBJECT
FROM
TO
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

205

INGEST
ACTOR
OBJECT
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

ATTEND
ACTOR
OBJECT
TO
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

MBUIID
ACTOR
MOBJECT
FROM1
FROM2
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

SPEAK
ACTOR
SOUND
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

MFEEL
ACTOR
FMOTION
TO
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

GRASP
ACTOR
OBJECT
TRUTH/ABILITY
TIME

OPT: INST

OPT: MANNER

206

MOVE

§|8 gg

OPT:
OPT':

ACT?
OPT:

OPT':
OPT:

ACTOR

OBJECT
TRUTH/ABILITY
TIME

¢ INST
¢ MANNER

ACTOR

OBJECT
TRUTH/ABILITY
TIME

INST

MANNER

ACTOR

OBJECT
TRUTH/ABILITY
TIME

INST

MANNER

EXPEL

OPT:
OPT:

MIOC

OPT:

GOAL

ACTOR

OBJECT
TRUTH/ABILITY
TIME

INST

MANNER

THING
VAL

¢ SPATREL

TRUTH

MOBJECT
IN/INLTM/INCP
CERTAINTY
TRUTH

TIME

WANTER
QGOALSTATE
TRUTH
TIME

207

FAMILY
THING
VAL
RELATTON
TRUTH
TIME

EXIST
THING
TIME
TRUTH

IDENTITY
THING
VAL

CAUSE

ANTECEDENT

RESULT

TRUTH/ABILITY /UNKNOWN
OPT: TIME

CONJUNCT
FIRST
SHCOND
TRUTH/ABILITY/UNKNOWN

All states other than those listed above take
THING
VAL

TIME
TRUTH

208

Appendix B: The analyser's vocabulary

69 Adjectives

ANCIENT ANGRY ANNOYED ANXTOUS APPREHENSIVE
BIG BLOATED BLUE BRAINY BROKEN
BROWN CALM CAREFREE CLEVER CROSS
DAMAGED DEAD DRUNK ENORMOUS FEARFUL
FOOLISH FURIOUS GREEN GUILTY HAPPY
HEALTHY HEAVY HUNGRY IMPENITENT IMPOLITE
KAPUT LACKADAISICAL LARGE LIGHT LITTLE
LIVID IONG MORONIC OBDURATE OFFHAND
OLD PARALYTIC PECKISH PENITENT POLITE
RAVENOUS RED REMORSEFUL RUDE RUINED
SAD SHORT SICK SILLY SMALL
SMART SOBER STUPID THICK THIRSTY
TINY TIPSY TRANQUIL UNWELL WELL
WHOLE WORRIED YELLOW YOUNG

7 Conjunctions

AFTER AND BECAUSE BEFORE UNTIL WHEN WHY

89 Common nouns

AIR ALCOHOL BANANA BED BILL
BISCUIT BOOK BOY BROTHER BUILDING
BUS CAN CAR CAT CHIID
COFFEE COMPUTER CROOK CROWN CUP
DALE DAUGHTER DESK DOCTOR DOG
DUCK ELEPHANT FATHER FOOD FOOT
GIRL GRANDMOTHER GRASS HAIR HAMMER
HAND HANDLE HEAD HILL HOME
HUSBAND JOHN KEY TLORRY MAN
MIIK MILKMAN MONEY MONKEY MOTHER
NOTICE NUT OFFICE PAIL PAPER
PARK PEANUT PIE PLANE PLUG
PROGRAM RESTAURANT RIVER ROAD ROOM
SHELF SIGN SISTER SKIN SMOKE
SON STORY TAXT TEA TELESCOPE
TERMINAL TOOTH TOP TOY TRAMP
TREE TRUCK VINEGAR WATER WELL
WIFE WINDOW WOMAN Z0O

27 Proper names

ARTHUR BEN BILL BRAN BRIAN
CAROLINE DALE DAVID ELAINE ERICA
FRED GHORGE JACK JANE JILL
JOHN KAREN KEVIN MARTIEL MARTYN
MARY PAUL RICHARD RYTLILAN SPUD
STEVE SUSAN

209

21 Prepositions

AGAINST
DOWN
NEAR
ouT
WITH

111 Verbs
ADMIT

BE

BLUSH
CHASE
CRY
DISPLEASE
EAT

FAST
FORGET
HASSLE
HOLD
KIss
LISTEN
MEMORISE
POUR
RFALISE
REPAIR
SEE

START
TAKE
THREATEN
UNDERSTAND
YAWN

8 Determiners

A AN
11 Quantifiers
ALL

IO0TS

SOME

18 Pronouns

ALONG
FOR
OF
OVER

ADVISE
BEAT
BREAK
COME
DECIDE
DISTIL
ENJOY
FEED
FRIGHTEN
HATE
HURT
KNOW
ILOOK
MEND
PREVENT
RECALL
RIDE
SEND
STEAL
TALK
THROW
WALK

SOME

ANY
MANY

AT
FROM
OFF

APOLOGISE
BECOME
BRING
COMPLAIN
DENY

DO
EXHALE
FEEL
GET
HAVE
INJURE
LAUGH
LOVE
OWN
PULL
RECEIVE
ROB
SING
STOP
TELL
TICKLE
WANT

THAT THE

AWAY
IN
ON
UNDER

ARRIVE
BEGIN
CARESS
CONVINCE
DEPRESS
DRINK
EXPECT
FETCH
GILVE
HEAR
KICK
LEAVE
MAKE
PERSUADE
PUSH
REFUSE
RUN
SMOKE
STRIKE
THANK
TRAVEL
WATCH

THESE THIS

EVERY
NONE

BY
INTO
ONTO

ASK
BELONG
CATCH
CRASH
DIE
DROP
FALL
FLOAT

HIT
KILL
LIE
MEET
PLACATE
READ
REMEMBER
SAY
SPIT
SWERVE
THINK
TUMBLE

THOSE

FEWN
SEVERAL

HE HER HIM HIS I IT ITS ME MY OUR SHE THEIR THEM THEY US WE YOU YOUR

7 relative pronouns and WH-prohouns

THAT WHERE WHICH WHO WHOM WHAT WHOSE

8 quantified pronouns

ANYBODY ANYTHING ANTWHERE ANYONE NOBODY NOTHING NOWHERE NO-ONE

Various modals, such as CAN, WILL, WON'T

210

Appendix C: Pronoun reference, definite reference and question answering
This appendix shows the pronoun-reference processes deciding on the answer
to the question "What did she give him". The story was processed in nommal
fashion up until the final sentence was to be read; the function MAIN was
left, some debugging switches thrown, and the program restarted. We pick up
from that point:

*(MAIN I)

The story so far:

BIIL AND JILL WENT TO THE ZOO.

THEY GAVE THE MONKEYS SOME PEANUTS,WHICH THEY ATE.

THEY WENT TO THE RESTAURANT AND DRANK SOME TEA.

JILL TOOK BILL'S MONEY FROM HIM AND GAVE IT TO THE TRAMP WHO WAS TALKING TO
THEM.

Pray continue:

WHAT DID SHE GIVE THE TRAMP?

[]

DUMMY-FEMALEl = JILL, score= 0.99832566 (0.027421660) ==>>> 0.99841497
.. (TRAMP2=TRAMP1 (0.99245914,0.60000000)==>>> 0.99810944

. . (?DUMMY~-THING4=MONEY3 (0.99303074,0.20796244)==>>> 0.99542490

. . (TIMEPOINT70=TIMEPOINT133 (0.65464701,0.45000000)==>>> 0.85327867
.. (TIMESPAN2=TIMESPAN78 (0.78554802,0.15)==>>> 0.83693064

. . (TIMESPAN52=TIMESPAN79 (0.78554319,0.15)==>>> 0.83692686

.. (TIMESPAN77=TIMESPAN44 (0.78506829,0.15)==>>> 0.83655533

. . (TIMESPAN5=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533

. . (TIMESPAN9=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533

.. (TIMESPAN30=TIMESPAN79 (0.77018507,0.15)==>>> 0.82488764

.. (TIMESPAN78=TIMESPAN2 (0.78554802,0.00047972798)==>>> 0.78573165
.. (TIMESPAN79=TIMESPAN52 (0.78554319,0.00047490000)==>>> 0.78572498
. . (TIMESPAN44=TIMESPAN77 (0.78506829,0.0)=>>> 0.78506829

. . (TIMEPOINT133=TIMEPOINT70 (0.65464701,0.24355421)=>>> 0.77468403
.. (TIMESPAN59=TIMESPAN81 (0.57188409,0.15)===>>> 0.66485139

. . (TIMESPAN82=TIMESPAN73 (0.54585102,0.15)==>>> 0.64318828

.. (TIMESPANSO=TIMESPAN45 (0.54553377,0.15)==>>> 0.64292331

. . (TIMESPAN45=TIMESPAN80 (0.54553377,0.15)==>>> 0.64292331

. . (TIMESPANS1=TIMESPAN59 (0.57188409,0.026033066)==>>> 0.58914601

. . (TIMESPAN73=TIMESPAN81 (0.54585102,0.0)==>>> 0.54585102

. . (TIMESPAN49=TIMEPOINT133 (0.41109279,0.15)==>>> 0.52850321

.. (TIMESPAN47=TIMEPOINT133 (0.41109279,0.15)==>>> 0.52850321

. . (TIMEPOINT88=TIMEPOINT133 (-0.18150000,0.15)==>>> ~-0.030665142

. . (TIMESPAN35=TIMESPAN79 (-0.64350000,0.15)==>>> -0.45005814

. . (TIMESPAN1 3=TIMESPAN79 (-0.64350000,0.15)==>>> -0.45005814

Do you want to see why? *Y

The effect of these debugging switches is to make the program
dump out some information just before replacing a pronominal
token with its referent. The information is shown above, but
is rather meaningless at the moment. Basically, each specification
is inspected, to see what possible identifications are suggested,
and the certainty ratings of the associated propositions are
; taken into account. Iet's see more...
GET-RESOLUTIONS for DUMMY-FEMALEL
; the program is deciding to identify DUMMY-FEMALEL (= "SHE") with
; something
Potential resolution: TRAMPL
; TRAMP1 might be the answer ... (Tramps are not always male)

8 we we w8 we w9 wO

211

Estimated agreement: 0.97090400
; TRAMPl scores 0.971 approx, because

Derived from: ((0.78506829 ; there is some agreement between
(EXIST34 ; this proposition
EXIST31 ; and this proposition. The specifications

((DUMMY-FEMALE1 . TRAMP1) ; have two links
(TIMESPAN78 . TIMESPAN44))))

(0.54585102 ;there is some agreement between
(POSS22 : these two as well
POSS31

((DUMMY~FEMALEL . TRAMPL)
(?DUMMY~-THING4 . MONEY3)
(TIMESPANSL . TIMESPAN73))))
(0.41109279 ; and between these two
(MLOC45
MLOC15
((GOAL37 . CONCEPTS1)
(DUMMY~-FEMALEL . TRAMPL)
(TIMEPOINT133 . TIMESPAN47)))))
the numbers associated with each pair of propositions take
into account both the certainty ratings, and the number of other
identifications that would be needed for the propositions to be
identical. These numbers are then combined, using AGREE, to give
an overall measure of the evidence for the identity of these
two tokens.

e we Ne we we we

Potential resolution: JILL
; BAnother possibility, but this one has far more evidence, all
; positive, and so the overall measure is higher.
Estimated agreement: 0.99832566
Derived from: ((0.78554802
(EXIST34
EXIST23
((DUMMY-FEMALEl . JILL)
(TIMESPAN78 . TIMESPAN2))))
(0.57188409
(POSS22
POSS29
((DUMMY-FEMALEL . JILL)
(?2DUMMY-THING4 . MONEY3)
(TIMESPAN8S81 . TIMESPANS9))))
(0.54553377
(LOC46
10C12
((TRAMP2 . TRAMP1)
(DUMMY-FEMALEL . JILL)
(TIMESPANSO . TIMESPAN45))))
(0.46642835
(ATRANS31
ATRANS25
((TRAMP2 . TRAMP1)
(DUMMY-FEMALE1 . JILL)
(?DUMMY-THING4 . MONEY3)
(TIMEPOINT133 . TIMEPOINT70))))
(0.41109279
(MLOC45
MIOC39

212

((GOAL37 . CONCEPTS1)
(DUMMY-FEMALEY . JILL)
(TIMEPOINT133 . TIMESPAN49))))

(0.19607823
(GOAL39

GOAL33

((TIMESPANS5 . TIMESPAN76)
(TRAMP2 ., TRAMP1)

(JOYll . JOY9)
(DUMMY-FEMALE]L . JILL)
(TIMEPOINT133 . TIMEPOINT70))))
(0.079075995
(GOAL35

GOAL29

((TIMESPAN83 . TIMESPAN74)
(?DUMMY-THING4 . MONEY3)
(DUMMY-FEMALEL . JILL)

(POSS37 . POSS33)
(TIMEPOINT133 . TIMEPOINT70)))))

: so JILL is a better candidate than TRAMPL
Do you want a full dump? (Y/N)
*N ; don't waste paper
suggestlng JILL (absolute 0.99832566 , relative 0.027421660)

the second number is the difference between this selected
candidate and its closest competitor.

All this was done before, and the result of AGREEing these two
nunbers gave the JILL=SHE resolution a higher total score than
and other identification.

Now we go back, and actually replace all occurrences of
DUMMY-FEMALEL with JILL - and print out a resolution of the
pronoun.

NS WE MO NS NS NS WP WO WO we W

Pronoun resolved : IT WAS JILL WHO GAVE SOMETHING TO A TRAMP.
; now the process repeats. This time, these two spans are the
; most closely linked. Iets see why.

TIMESPAN78 = TIMESPAN2, score= 1.0 (0.15) ==>>> 1.0

. . (TIMESPAN2=TIMESPAN78 (1.0,0.15)=>>> 1.0

. . (TRAMP2=TRAMP1 (0.99736807,0.60000000)=>>> 0.99934136

.« (?2DUMMY-THING4=MONEY3 (0.99769238,0.21262408)=>>> 0.99850102

. . (TIMEPOINT70=TIMEPOINT133 (0.77531331,0.45000000)==>>> 0.90838572

. « (TIMEPOINT133=TIMEPOINT70 (0.77531331,0.18925307)=>>> 0.84114483

. . (TIMESPAN52=TIMESPAN79 (0.78554319,0.15)==>>> 0.83692686

. . (TIMESPAN77=TIMESPAN44 (0.78506829,0.15)==>>> 0.83655533

. . (TIMESPAN44=TIMESPAN77 (0.78506829,0.15)=>>> 0.83655533

. . (TIMESPANS=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533

. . (TIMESPAN9=TIMESPAN79 (0.78506829,0.15)===>>> 0.83655533

.. (TIMESPAN81=TIMESPAN59 (0.77147954,0.15)=>>> 0.82590430

.. (TIMESPAN59=TIMESPANS8L (0.77147954,0.15)=>>> 0.82590430

. . (TIMESPAN30=TIMESPAN79 (0.77018507,0.15)=>>> 0.82488764

.. (TIMESPAN8(O=TIMESPAN45 (0.74400002,0.15)===>>> 0.80424614

. . (TIMESPAN45=TIMESPAN8O (0.74400002,0.15)=>>> 0.80424614

. . (TIMESPAN79=TIMESPAN52 (0.78554319,0.00047490000)===>>> 0.78572498

P e e T e N

213

; the first number glven is the overall measure, as described above.

. « (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)==>>> 0.67658250
. . (TIMESPANS2=TIMESPAN73 (0.54585102,0.15)==>>> 0.64318828
.. (TIMESPAN73=TIMESPANS2 (0.54585102,0.15)==>>> 0.64318828
« « (TIMEPOINT88=TIMEPOINT133 (-0.21780000,0.15)==>>> -0.065655049
.. (TIMESPAN35=TIMESPAN79 (-0.64350000,0.15)=>>> -0.45005814
. . (TIMESPAN1 3=TIMESPAN79 (-0.64350000,0.15)=>>> -0.45005814
Do you want to see why? *Y

GET-RESOLUTIONS for TIMESPAN78

Potential resolution: TIMESPAN2

Estimated agreement: 1.0

Derived from: ((1.0 (EXIST34 EXIST23 ((TIMESPAN78 . TIMESPAN2)))))
; aha! this is one of the similar propositions which suggested that
; JILL = DUMMY-FEMALEl. Note that the specifications have changed -
; a side effect of resolving the pronoun.

Do you want a full dump? (Y/N)
*N

suggesting TIMESPAN2 (absolute 1.0 , relative 0.15)

; when there is no competltlon, or the only competitor is a lot

; worse than the selected pairing, a maximum "difference" of 0.15
; is used.

; No messages are produced for this identification; it would be hard
; to express anyway: "JILL EXISTED AT THE TIME SHE EXISTED"?

; Repeat the process...

TRAMP2 = TRAMPLl, score= 0.99736807 (0.60000000) ==>>> 0.99934136

.. (PDUMMY-THING4=MONEY3 (0.99769238,0.21262408)==>>> 0.99850102

.. (TIMEPOINT70=TIMEPOINT133 (0.77531331,0.45000000)==>>> 0.90838572

. . (TIMEPOINTI 33=TIMEPOINT70 (0.77531331,0.18925307)==>>> 0.84114483

. . (TIMESPAN52=TIMESPAN79 (0.78554319,0.15)=>>> 0.83692686

.. (TIMESPAN77=TIMESPAN44 (0.78506829,0.15)=>>> 0.83655533

. . (TIMESPAN44=TIMESPAN77 (0.78506829,0.15)==>>> 0.83655533

. . (TIMESPAN5=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533

.. (TIMESPAN9=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533

. « (TIMESPAN81=TIMESPAN59 .77147954,0.15)=>>> 0.82590430

. « (TIMESPAN59=TIMESPAN81 .77147954,0.15)==>>> 0.82590430

.« (TIMESPAN30=TIMESPAN79 .77018507,0.15)==>>> 0.82488764

0
0
0
.. (TIMESPAN8O=TIMESPAN45 (0.74400002,0.15)==>>> 0.80424614
.. (TIMESPAN45=TIMESPAN80O (0.74400002,0.15)==>>> 0.80424614

0

(

0

0

~ S~

.. (TIMESPAN79=TIMESPAN52 (0.78554319,0.00047490000)=>>> 0.78572498
. . (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)==>>> 0.67658250
.. (TIMESPAN82=TIMESPAN73 (0.54585102,0.15)===>>> 0.64318828
.. (TIMESPAN73=TIMESPAN82 (0.54585102,0.15)==>>> 0.64318828
.« (TIMEPOINT88=TIMEPOINT133 (-0.21780000,0.15)===>>> —-0.065655049
. . (TIMESPAN35=TIMESPAN79 (-0.64350000,0.15)=>>> -0.45005814
.. (TIMESPAN13=TIMESPAN79 (-0.64350000,0.15)=>>> -0.45005814
Do you want to see why? *Y

GET-RESOLUTIONS for TRAMP2
; there is only one possible resolution, and there is very good
; evidence for it. So identify these two.
Potential resolution: TRAMPL
Estimated agreement: 0.99736807
Derived from: ((0.78506829
(EXIST7

214

EXIST31
((TRAMP2 . TRAMP1)
(TIMESPAN77 . TIMESPAN44))))
(0.74400002
(LOC46 1OCl2 ((TRAMP2 . TRAMPL)
(TIMESPANSO . TIMESPAN45))))
(0.59518442
(ATRANS31
ATRANS25
((TRAMP2 . TRAMP1)
(?DUMMY-THING4 . MONEY3)
(TIMEPOINT133 . TIMEPOINT70))))
(0.54585102
(POSS16
POSS31
((TRAMP2 . TRAMP1)
(?DUMMY-THING4 . MONEY3)
(TIMESPAN82 . TIMESPAN73)))))

Do you want a full dump? (Y/N)
*N

suggesting TRAMP1 (absolute 0.99736807 , relative 0.60000000)

; This is a definite reference which is being linked to a preexisting
; token! let's say what we're doing...
Definite reference: A TRAMP IS A TRAMP.
: oh dear, that isn't very helpful. Never mind, we know what it means.
; and so on, and on, until everything is compacted again.
TIMESPAN77 = TIMESPAN44, score= 0.99994234 (0.15) ==>>> 0.99995739
. (TIMESPAN44=TIMESPAN77 (0.99994234,0.15)==>>> 0.99995739
. (?DUMMY-THING4=MONEY3 (0.99947983, 0 21441153)==>>> 0.99966347
. (TIMESPAN80O=TIMESPAN45 (O. 99844804 0.15)==>>> 0.99885267
..(TIMESPAN45=TTMESPAN80 (0.99844804,0.15)=>>> 0.99885267
« . (TIMEPOINT70=TIMEPOINT133 (0.89231626,0.45000000)===>>> 0.95774222
. . (TIMEPOINT133=TIMEPOINT70 (0.89231626,0.30625603)==>>> 0.94132862
. . (TIMESPANS 2=TIMESPAN79 (0.78554319,0.15)==>>> 0.83692686
.. (TIMESPAN5=TIMESPAN79 (0.78506829,0.15)=>>> 0.83655533
.. (TIMESPAN9=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533
.. (TIMESPAN81=TIMESPAN59 (0.77147954,0.15)==>>> 0.82590430
.« (TIMESPAN59=TIMESPAN81 (0.77147954,0.15)==>>> 0.82590430
.. (TIMESPAN30=TIMESPAN79 (0.77018507,0.15)==>>> 0.82488764
.. (TIMESPAN82=TIMESPAN73 (0.74344774,0.15)=>>> 0.80380921
.. (TIMESPAN73=TIMESPAN82 (0.74344774,0.15)==>>> 0.80380921
.. (TIMESPAN79=TIMESPAN52 (0.78554319,0.00047490000)===>>> 0.78572498
. . (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)==>>> 0.67658250
.« (TIMEPOINT88=TIMEPOINT133 (-0. 21780000 0.15)=>>> -0.065655049
.. (TIMESPAN35=TIMESPAN79 (-0.64350000,0. 15)———>>> -0.45005814
.. (TIMESPAN1 3=TIMESPAN79 (-0.64350000,0.15)=>>> -0.45005814
Do you want to see why? *Y

—~ e N~ o~

GET-RESOILUTIONS for TIMESPAN77

Potential resolution: TIMESPAN44

Estimated agreement: 0.99994234

Derived from: ((0.99994234 (EXIST7 EXIST31l ((TIMESPAN77 . TIMESPAN44)))))

215

Do you want a full dump? (Y/N)
*N

= suggesting TIMESPAN44 (absolute 0.99994234 , relative 0.15)
?DUMMY~-THING4 = MONEY3, score= 0.99947983 (0.21441153) ==>>> 0.99966347
. . (TIMESPAN8O=TIMESPAN45 (0.99844804,0.15)===>>> 0.99885267
.. (TIMESPAN45=TIMESPAN80 (0.99844804,0.15)=>>> 0.99885267
.. (TIMEPOINT70=TIMEPOINT133 (0.89231626,0.45000000)==>>> 0.95774222
.. (TIMEPOINT133=TIMEPOINT70 (0.89231626,0.30625603)=>>> 0.94132862
.. (TIMESPAN52=TIMESPAN79 (0.78554319,0.15)==>>> 0.83692686
.. (TIMESPAN5=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533
.. (TIMESPAN9=TIMESPAN79 (0.78506829,0.15)==>>> 0.83655533
.. (TIMESPAN81=TIMESPAN59 (0.77147954,0.15)===>>> 0.82590430
. . (TIMESPAN59=TIMESPANSL (0.77147954,0.15)==>>> 0.82590430
.. (TIMESPAN30=TIMESPAN79 (0.77018507,0.15)==>>> 0.82488764
.. (TIMESPAN82=TIMESPAN73 (0.74344774,0.15)=>>> 0.80380921
.. (TIMESPAN73=TIMESPAN82 (0.74344774,0.15)==>>> 0.80380921
.. (TIMESPAN79=TIMESPAN52 (0.78554319,0.00047490000)===>>> 0.78572498
. . (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)=>>> 0.67658250
.« (TIMEPOINT88=TIMEPOINT133 (-0.21780000,0.15)=>>> -0.065655049
. . (TIMESPAN35=TIMESPAN79 (-0.64350000,0.15)==>>> -0.45005814
.« (TIMESPAN1 3=TIMESPAN79 (-0.64350000,0.15)==>>> -0.45005814
Do you want to see why? *Y

GET-RESOLUTIONS for ?DUMMY-THING4
Potential resolution: MONKEYS1
Estimated agreement: 0.78506829
Derived from: ((0.78506829
(EXIST21
EXIST11
((2DUMMY-THING4 . MONKEYS1)
(TIMESPAN79 . TIMESPAN5)))))

Potential resolution: PEANUTS3
Estimated agreement: 0.78506829
Derived from: ((0.78506829
(EXI8T21
EXIST9
((?7DUMMY-THING4 . PEANUTS3)
(TIMESPAN79 . TIMESPAN9)))))

Potential resolution: TEAL
Estimated agreement: 0.77018507
Derived from: ((0.77018507
(EXIST21
EXIST2
((?DUMMY-THING4 . TEAL)
(TIMESPAN79 . TIMESPAN30)))))

Potential resolution: MONEY3
Estimated agreement: 0.99947983
Derived from: ((0.79516474
(ATRANS31
ATRANS25
((?DUMMY-THING4 . MONEY3)
(TIMEPOINT133 . TIMEPOINT70))))
(0.78554319

216

(EXIST21
EXIST35
((?DUMMY-THING4 . MONEY3)
- (TIMESPAN79 . TIMESPAN52))))
(0.77147954
(POSS22
(POSS29 POSS18)
((?DUMMY-THING4 . MONEY3)
(TIMESPAN81 . TIMESPAN59))))
(0.74344774
(POSS16
POSS31
((?DUMMY-THING4 . MONEY3)
(TIMESPANS82 . TIMESPAN73)))))

Do you want a full dump? (Y/N)
*N

suggesting MONEY3 (absolute 0.99947983 , relative 0.21441153)
TIMESPAN79 = TIMESPAN52, score= 0.99999941 (0.15) ==>>> 0.99999957
.. (TIMESPAN52=TIMESPAN79 (0.99999941,0.15)==>>> 0.99999957
.« (TIMEPOINT70=TIMEPOINT133 (0.99997481,0.45000000)=>>> 0.99999044
.« (TIMEPOINT133=TIMEPOINT70 (0.99997481,0.41391458)===>>> 0.99998956
.« (TIMESPAN81=TIMESPAN59 (0.99961704,0.15)==>>> 0.99971693
.. (TIMESPAN59=TIMESPAN8L (0.99961704,0.15)==>>> 0.99971693
.. (TIMESPANS8O=TIMESPAN45 (0.99844804,0.15)==>>> 0.99885267
.. (TIMESPAN45=TIMESPANBO (0.99844804,0.15)==>>> 0.99885267
. . (TIMESPAN82=TIMESPAN73 (0.99337692,0.15)==>>> 0.99510045
.. (TIMESPAN73=TIMESPAN82 (0.99337692,0.15)==>>> 0.99510045
.. (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)==>>> 0.67658250
. . (TIMEPOINT88=TIMEPOINT133 (-0. 21780000 0.15)=>>> -0.065655049
Do you want to see why? *N
TIMEPOINT70 = TIMEPOINT133, score= 0.99997481 (0.45000000) ==>>> 0.99999044
« » (TIMEPOINT133=TIMEPOINT70 (0.99997481,0.41391458)==>>> 0.99998956
. . (TIMESPAN81=TIMESPAN59 (0.99961704,0.15)=>>> 0.99971693
.. (TIMESPAN59=TIMESPAN81 (0.99961704,0.15)=>>> 0.99971693
. (TIMESPAN8O=TIMESPAN45 (0.99844804,0.15)==>>> 0.99885267
. . (TIMESPAN45=TIMESPANSO (0.99844804,0.15)===>>> 0.99885267
.. (TIMESPAN82=TIMESPAN73 (0.99337692,0.15)=>>> 0.99510045
.. (TIMESPAN73=TIMESPAN82 (0.99337692,0.15)=>>> 0.99510045
. . (TIMESPAN49=TIMEPOINT133 (0.58606023,0.15)==>>> 0.67658250
. . (TIMEPOINT88=TIMEPOINT133 (-0. 21780000 0.15)=>>> -0.065655049
Do you want to see why? *N
TIMESPAN8]1 = TIMESPAN59, score= 0.99961704 (0.15) ==>>> 0.99971693
..(TIMESPAN59=ITMESPAN81 (0.99961704,0.15)==>>> 0.99971693
.+ (TIMESPANBO=TIMESPAN45 (0.99844804,0.15)===>>> 0.99885267
. . (TIMESPAN45=TIMESPAN80 (0.99844804,0.15)=>>> 0.99885267
. . (TIMESPAN82=TIMESPAN73 (0.99337692,0.15)==>>> 0.99510045
.. (TIMESPAN73=TIMESPAN82 (0.99337692,0.15)=>>> 0.99510045
.« (TIMESPAN49=TIMEPOINT70 (0.58606023,0.15)==>>> 0.67658250
.« (TIMEPOINT88=TIMESPAN81 (-0. 61050000 0.15)==>>> -0.42186748
Do you want to see why? *N
TIMESPANBO = TIMESPAN45, score= 0.99844804 (0.15) ==>>> 0.99885267
. . (TIMESPAN45=TIMESPAN80O (0.99844804,0.15)==>>> 0.99885267
. . (TIMESPAN49=TIMEPOINT70 (0.58606023,0.15)==>>> 0.67658250
. (TIMEPOINT88=TIMESPAN59 (-0.64670567,0.15)==>>> -0.45278307
Do you want to see why? *N
TIMESPAN49 = TIMEPOINT70, score= 0.58606023 (0.15) ———>>> 0.67658250

217

. . (TIMEPOINT88=TIMESPAN59 (-0.64670567,0.15)==>>> -0.45278307

Do you want to see why? *N

TIMEPOINT88 = TIMESPAN59, score= -0.64670567 (0.15) ==>>> -0.45278307
Do you want to see why? *Y

GET-RESOLUTIONS for TIMEPOINTSS8
Potential resolution: TIMESPAN59
Estimated agreement: -0.64670567
Derived from: ((-0.64670567
(POSS18
POSS22
((DUMMY-HUMAN1 . JILL)
(TIMEPOINTS88 . TIMESPAN59)))))

Do you want a full dump? (Y/N)
*N

suggesting TIMESPAN59 (absolute -0.64670567 , relative 0.15)

Answering question (1): JILL GAVE SOME MONEY TO A TRAMP.
Pray continue:
(Returning to Lisp...

218

References

[Abe, 19801

Abe M.

"A Japanese sentence generator"

Computer ILaboratory, University of Cambridge, 1980 (Unpublished Diploma
dissertation)

[Bobrow and Raphael, 1974]

Bobrow,D.G. and Raphael,B.

"New programming languages for artificial intelligence research"
Computing Surveys 6, 1974, 153-174

[Bobrow and Winograd, 1977]

Bobrow,D.G. and Winograd,T.

"An overview of KRL, a knowledge representation language"
Journal of Cognitive Science 1, 1977, 3-46

[Bobrow et al, 19771

Bobrow,D.G. ,Winograd,T., and the KRL Research Group.

"Experience with KRL-0: one cycle of a knowledge representation language"
Proc. Fifth International Joint Conference on Artificial Intelligence,
1977, 213-222

[Boguraev, 19791

Boguraev,B.K.

"Automatic resolution of linguistic ambiguities"

Computer Laboratory, University of Cambridge, 1979, TR 11 (PhD thesis)

[Carroll, 19791

Carroll ,J.M.

"Names and naming: an interdisciplinary review"

IBM Thomas J. Watson Research Centre, Yorktown Heights, Report RC7370, 1979

[Charniak, 1972]

Charniak,E.

"Towards a model of children's story comprehension"

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
1972, AI TR-266

[Chomsky, 1965]

Chomsky, N.

Aspects of the theory of syntax
Cambridge, Mass.: M.I.T, 1965

[Culicover, 1976]

Culicover,P.W.

"A constraint on coreferentiality"
Foundations of Language 14, 1976, 109-118

[Cullingford, 1978]

Cullingford,R.E.

"Script application: computer understanding of newspaper stories"
Department of Computer Science, Yale University, 1978, research report 1le,
(PhD thesis)

219

[DeJong, 19791

Dedong ,G.M.

"Skimming newspaper stories by computer"

Department of Computer Science, Yale University, 1979, Research report 104,
(PhD thesis)

[Doran, 1965]

Doran,J.

"An approach to automatic problem-solving”
Machine Intelligence 1, 1965, 105-123

[Goldman, 1974]

Goldman ,N.M.

"Computer generation of natural language from a deep conceptual base"
Computer Science Department, Stanford University, 1974, STAN-CS-74-461 and
AIM-247

[Hayesl, 1977]

Hayes,Patrick J.

"In defence of logic"

Proc. Fifth International Joint Conference on Artificial Intelligence,
1977, 559-565

[Hayes2, 19771

Hayes,Philip J.

"Some association-based techniques for lexical disambiguation by machine"
Department of Computer Science, Rochester University, 1977, TR 25

[Herskovits, 19731

Herskovits,A.

"The generation of French from a semantic representation”
Computer Science Department, Stanford University, 1973, AIM-212

[Ray, 1964]

Kay,M.

"A parser for categorial grammars"

Santa Monica, Calif.: The Rand Corporation, 1964, RM-4293-PR

[Kay, 1973]

Kay,M.

"The MIND system"

Natural ILanguage Processing (ed. Rustin), New York: Algorithmics Press

[Kuno and Oettinger, 1962]

Kuno,S. and Oettinger,A.G.

"A multiple-path syntactic analyser"

Information processing 62: Proceedings of IFIP Congress 62 (ed. Popplewell),
Amsterdam: North-Holland, 1963

[Iehnert, 1978]

Iehnert,W.G.

The process of question answering

Hillsdale, N.J.: ILawrence Erlbaum Associates, 1978

220

[Marcus, 19801

Marcus M.

A theory of syntactic recognition for natural language
Cambridge,Mass.: M.I.T., 1980

[McDonald, 19771

McDonald,D.

"Language generation: the linguistics component"

Proc. Fifth International Joint Conference on Artificial Intelligence, pl42

[Meechan, 1976]

Meehan,J.

"The metanovel: writing stories by computer"

Department of Computer Science, Yale University, 1976, research report no 74

[Rieger, 1974]

Rieger,C.J.

"Conceptual memory: a theory and computer program for processing the
meaning content of natural language utterances"

Computer Science Department, Stanford University, 1974, CS419 and AIM233,
(PhD thesis)

[Rieger, 1975]

Rieger,C.J.

"Conceptual overlays: a mechanism for the interpretation of sentence
meaning in context”

Proc. Fourth International Joint Conference on Artificial Intelligence,
143-150

[Riesbeck, 1974]

Riesbeck,C.

"Computational understanding: analysis of sentences and context"

Computer Science Department, Stanford University, 1974, STAN-CS-74-437 (PhD
thesis)

[Schank, 1972]

Schank,R.C.

"Conceptual dependency: a theory of natural language understanding”
Cognitive Psychology 3, 1972, 552-631

[Schank, 1973]

Schank,R.C.

"Identification of conceptualisations underlying natural language"

Computer models of thought and language (eds. Schank and Colby), San
Francisco: Freeman, 1973

[Schank, 1975]

Schank,R.C. (editor)

Conceptual information processing
Amsterdam:North-Holland, 1975

[Schank et al, 1975]

Schank,R.C. and the Yale A.I. Project

"SAM - a story understander"

Department of Computer Science, Yale University, 1975, Technical report 43

221

[Schank and Abelson, 1977]

Schank ,R.C. and Abelson,R.P.

Scripts plans goals and understanding
Hillsdale,N.J.:Lawrence Erlbaum Associates, 1977

[Schmidt et al, 1978]

Schmidt ,C.F., Sridharan,N.S. and Goodson,J.L.

"The plan recognition problem: an intersection of psychology and artificial
intelligence"

Artificial Intelligence 11, 45-83

[Small, 1980]

Small,S.

"Word expert parsing: a theory of distributed word-based natural language
understanding”

Department of Computer Science, University of Maryland, 1980, TR-954 (PhD
thesis)

[Sussman and Winograd, 19711

Sussman,G.J. and Winograd,T.
Micro-planner reference manual.

MIT, A.I. Iaboratory, 1971, AI memo 203.

[Wilensky, 19771

Wilensky,R.

"PAM - a program that infers intentions"

Proc. Fifth International Joint Conference on Artificial Intelligence,
1977, pl5

[Wilks, 1973]

Wilks,Y.A.

"an artificial intelligence approach to machine translation"
Computer models of thought and language (eds. Schank and Colby),
San Francisco: Freeman, 1973

[Wilks, 1975al

Wilks,Y.A.

"A preferential, pattern-seeking, semantics for natural language inference"
Artificial Intelligence 6, 1975, 53-74

[Wilks, 1975bl

Wilks,Y.A.

"An intelligent analyzer and understander of English"
Communications of the ACM vol. 18 no. 5, 1975, 264-274

[Wilks, 19771

Wilks,Y.A.

"Good and bad arguments about semantic primitives"

Department of Artificial Intelligence, University of Edinburgh, 1977,
Research report 42

[wilks, 19781

Wilks,Y.A.

"Making preferences more active"
Artificial Intelligence 11, 1978, 197-223

222

[Wilson, 1975]

Wilson,D.S.

Presuppositions and non-truth-conditional semantics
New York: Academic Press, 1975

[Winograd, 1971]

Winograd,T.

Understanding natural language
Edinburgh University Press, 1971

[Woods, 19701

Woods ,W.A.

"Transition network grammars for natural language analysis”
Communications of the ACM vol. 10 no. 13, 591-606, 1970

[Woods, 1972]

Woods ,W.A.

The lunar sciences natural language information system
Cambridge, Mass.: Bolt, Beranek and Newman, 1972

[Woods, 19771
Woods ,W.A.
"Shortfall and density scoring strategies for speech understanding control"

Proc. Fifth International Joint Conference on Artificial Intelligence,
1977, 18-26

223

