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An Architecture for Real-Time Multimedia Communication Systemst

Cosmos Nicolaou
February 8, 1990

Cambridge University, Computer Laboratory

ABSTRACT

An architecture for real-time multimedia communication systems is presented. A
multimedia communication system includes both the communication protocols used to
transport the real-time data and also the distributed computing system (DCS) within
which any applications using these protocols must execute. The architecture presented
attempts to integrate these communications protocols with the DCS in a smooth fashion
in order to ease the writing of multimedia applications. Two issues are identified as
being essential to the success of this integration: namely the synchronisation of related
real-time data streams, and the management of heterogeneous multimedia hardware.
The synchronisation problem is tackled by defining explicit synchronisation properties
at the presentation level and by providing control and synchronisation operations within
the DCS which operate in terms of these properties. The heterogeneity problems are
addressed by separating the data transport semantics (protocols themselves) from the
control semantics (protocol interfaces). The control semantics are implemented using a
distributed, typed interface, scheme within the DCS (i.e. above the presentation layer),
whilst the prolbcols themselves are implemented within the communication subsystem.
The interface between the DCS and communications subsystem is referred to as the
Orchestration interface and can be considered to lie in the presentation and session

layers.

A conforming prototype implementation is currently under construction.

t To appearin IEEE JSAC on Multimedia Communications. © IEEE 1990.




1. Introduction
A very brief survey of recent work in multimedia communication is presented.

+ Work on the real-time transport of voice and video over digital networks.[Ades1986, Lazar1985] Some
work has also been done on extending the OSI reference model to cope with multimedia

communication.[Lazar1986]

» Work on Multi-Service Networks (MSN) and their associated protocols which are designed with the
explicit goal of carrying multiple types of traffic, in particular voice and video, in addition to data. So-
called Asynchronous Transmission Networks (ATM)t are the prime candidates for the practical

implementation of such networks.

+ Multimedia document preparation, presentation and asynchronous (i.e. electronic mail) transport. The
media used have primarily been text, graphics, images and
voice.[Thomas 1985, Christodoulakis1986, Postel 1988, Naffah1986, Nicholson1985, Poggiol985]

- Control of PABX functions from a computer system. These systems allow application programs to be
written  which  control and  customise the behaviour of the PABX in

question.[Root1986, Herman1987, Redman1987)

- The integration of voice communication into a digital network and distributed computing system.
These systems allow for the implementation of software PABXs, voice editing and storage, and
multimedia (text and voice) document preparation, as well as the real-time transport of voice over a

digital network.[Want1988, Calnan1987, Swinehart1983, Swinehart1987]

- The integration of video into a digital network environment. Magnet in particular has concentrated on

the architecture of a high speed integrated local area network capable of transporting real-time voice

t ATM networks are commonly agreed to have three principal characteristics: a fixed cell size, asynchronous access and bounded
access time.
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and video, and on the design and implementation of a special purpose workstation to handle the
presentation of these media.[Lazar1987]

Given that the demands made on the DCS by voice are modest compared to those made by video
communication, it is not surprising that the greatest level of integration achieved in the above systems is in
the areas of voice communication over a digital network and on the control of intelligent PABXs. However
as network[Temple1984, Ross1986, Newman1988, Newman1989] and CPU capacity increases it is
becoming possible to handle video as effectively as voice. These higher capacity networks and CPUs will
be able to support multiple voice and video streams simultaneously, thus allowing for more complex
communication patterns than single media point-to-point (e.g. phone conversation) communication, as has
previously been the case. It will also no longer be necessary to build entire workstations specifically to
handle voice and video efficiently, thus leading to a desire for open systems. An open system is one which
can be incrementally extended by the addition of new functionality without disturbiﬂg the existing system

components.

To summarise, real-time voice and video will be able to coexist within the same system, and if past
experience with voice is an accurate guide then there will be a strong desire to integrate voice and video
communication into the DCS. The existence of multiple simultaneous data streams gives rise to the need
for some means of controlling and synchronising these multiple streams in order to bring about some
meaningful communication, whilst the drive towards open systems carries with it the requirement to
effectively manage beterogeneity. The architecture presented here directly addresses the issues of
synchronisation and heterogeneity.

The rest of this paper is structured as follows. A survey of the requirements of real-time multimedia
communication and of the distributed computing system is presented along with a discussion of the
interrelationships of these two sets of requirements. The issues of synchronisation and heterogeneity are
then discussed in detail, followed by a description the architecture itself and its relationship to the OSI

reference model.




2. Real-Time Multimedia Communication Requirements

Real-time voice and video data streams are isochronous in nature, that is, they can be thought of as a stream
of finite sized samples which are generated, transmitted and received at fixed time intervals, imposing a set
of iming constraints which must never be exceeded. The delay between the generation of successive
samples at the stream’s source introduces a sampling delay; there is also a transmission delay which refers
to the delay between the generation of a sample and the presentation of the same sample at the stream’s
sink. It is important to realise that the transmission delay must be end-to-end, that is, this delay must be
measured from the point at which the sample is generated to the point at which it is presented to the user.
The transmission delay consists of the packetisation delay, the petwork transmission delay and the
presentation delay. The packetisation delay is the time taken to generate a sample and transfer it to the
network, the network transmission delay is the time taken to transmit the sample over the network, and the
presentation delay is the time spent buffering the sample before presenting it to the user. The packetisation
delay is probably dominant (in a Local Area Network environment) and the choice of sample size dictates
the magnitude of this delay, therefore the sample size must be chosen so as to give an acceptable
packetisation delay and also to give acceptable network utilisation. Therefore the sample size will also be

influenced by the protocol data unit size of the network protocol used to transport it.

If the source, network and sink ran completely synchronously, without errors, and introduced no queuing
delay then the source and sink would always remain in synchronisation and there would be no need for
buffering at the sink. Unfortunately there are statistical queuing delays introduced at the source and sink
and errors (i.e. lost or corfupted packets) introduced by the network. These delay variations are often
referred to as jitter and tbe sink must implement some buffering scheme to smooth out these delay
variations before presenting the samples to the next level up in the protocol stack. There is an additional
source of jitter which is due to-the clocks at the source and sink running at different rates; any buffering
scheme must take account of this clock variation. Samples arriving late, i.e. an excessive amount of jitter
(greater than the maximum allowable delay for the stream in question) are treated as network errors; a late
packet is about as useful as a lost packet. For this same reason there is no point in using acknowledgement
packets to detect lost packets at the source, since a retransmitted packet following a timeout oh an
acknowledgement will almost certainly arrive late and therefore is as good as lost! The contentious issue is

the error rate which can be tolerated before a noticeable degradation in quality occurs. For voice an error




rate of 1%, provided each error burst is shorter than 4ms is often quoted as acceptable, while for video the
acceptable error rate is entirely dependent on the codiﬁg and compression algorithms used. The Island
voice protocol[Ades1986] implements such a buffering scheme for a real-time voice stream; Magnet uses a

buffering scheme which is heavily influenced by the coding scheme used for video.[L.azar1987]

For any stream, with a given sample size and a bounded jitter value it is possible to implement a buffering
scheme which smooths out the jitter introduced by queuing delays. Given that ATM petworks have
bounded jitter characteristics the assumption that a bounded jitter parameter is available for a given data
path is a reasonable one. Detecting varying clock rates can also be implemented provided a reliable clock
is available against which to compare the rate of incoming packets. However it is unlikely that the clock

rates will vary by any noticeable amount given the extreme accuracy of modemn quartz oscillators.

The requirements for a given stream can be represented as set of properties usually referred to as a QOS
(Quality of Service) parameter. The QOS can be used to set up the buffering scheme as required for this
stream and also to distinguish the differing requirements of this real-time stream from the requirements of
other non real-time connections. This usually takes the form of prioritising packets for the real-time stream
in order to minimise queuing delays and therefore jitter, and also using a light weight protocol which does
not use acknowledgement and retransmission techniques. Great care must be taken in the implementation
of the communication subsystems in order to avoid inadvertently introducing jitter due to the subtle
interactions of buffer management, layering and scheduling operations. A strong case is made
in[Tennenhouse1989] for avoiding unnecessary multiplexing in a layered protocol stack since this can
introduce unacceptable amounts of jitter. The real-ime message facility m the DASH operating
system[Anderson1988] takes essentially this QOS approach to precisely tailor the behaviour of the

communications subsystem to the requirements of the user application.

The DCS at the source and sink of a real-time stream must be able to meet the delay and jitter demands
made of it, this implies that a real-time operating system and real-time run time system for applications

running over that operating system be used.




2.1 Interrelationship of DCS and Communications Subsystem

The partitioning of functionality between the DCS and communications subsystem must be such that the
communications subsystem has sufficient information on the applications communication requirements to
efficiently provide them. The application must have sufficient control over and information on the streams
provided to effectively control and manage their synchronisation. An elegant solution exists whereby the
communications subsystem is informed of the applications requirements via a QOS parameter, whose
properties indicate the nature and requirements of the real-time stream and also the details of when and bow
the synchronisation information required by the application is to be presented to it. The communication
subsystem is then able to implement fine level synchronisation using internal buffering and flow control
mechanisms, whilst at the same time supplying the application with the information it requires, (in the
format and at the time it is required) to implement synchronisation of both individual and separate but
related streams at the (probably coarser) granularity with which the controlling application is best able to

manage.

3. Distributed Computing System Requirements

A typical DCS will provide a rich set of facilities for implementing distributed applications; including
remote procedure call, light-weight thread and synchronisation primitives, distributed naming, type checked
languages etc. If an effective level of integration is to be achieved these facilities must be applicable to the
multimedia communication subsystem. Therefore the interface provided by the communication subsystem
(i.e. the presentation and session level interfaces) must allow for the efficient implementation of these
facilities, in particular ﬁgﬁt weight threads and their associated synchronisation primitives must be

efficiently implemented.

If the DCS is to be used to implement control and synchronisation of real-time streams then it must have
sufficient information on which to base its decisions. In particular an application executing within the DCS
must have sufficient information to determine if related streams are synchronised, and if not, to take
corrective action. Ideally the making and acting on of these decisions should be completely integrated with
the run-time system. Also any control operations applied to the real-time streams must be synchronised to

them, implying that the streams must be structured so as to allow for this synchronisation.




A suitable set of control and synchronisation primitives need to be defined which do not introduce

unacceptable amounts of jitter, yet provide a concise and powerful programming abstraction.

4. Presentation Level Synchronisation

It is useful to examine the likely uses of synchronisation in order to more fully understand the nature of the

synchronisation decisions and the ensuing actions required.
4.1 Lip-sjnching

Lip-synching refers to the synchronisation of spoken voice with the movement of the speaker’s lips. This
synchronisation can be (as it is for film and domestic VCR recordings) achieved mechanically by recording
the voice and video on the same physical medium and then using truly concurrent and separate play back
equipment for voice and video. For real-time transmission completely synchronous channels may be used
for voice and video, as used for television broadcasts for instance. Neitber of these approaches is feasible
for computer communication over a digital network, since the network and DCS will inevitably introduce

some jitter.

It is possible to multiplex the voice and video samples over a single session layer association, however this
approach has several disadvantages. The primary disadvantage is that even though voice and video have
very different characteristics (and therefore QOS properties) they must be transmitted over the same lower
level association with a single QOS parameter. This multiplexing onto a single lower level association
leads to inefficiencies resulting from the inability to make use of stream specific information. In particular
the job of reducing jitter is very much harder for two independent streams multiplexed onto a single
association than if these streams were kept separate. A secondary problem is that the complexity of the
source and sink will be considerably increased if, as is highly likely, different, possibly variable bandwidth,
codings are used for the voice and video components of the same multiplexed stream. Finally, this scheme

dictates that the voice and video originate from a single point.

An alternative is to use separate session layer associations for the voice and video streams, this scheme
allows for separate voice and video sinks, but does require some means for maintaining the synchronisation

of these related streams. Given that bounded jitter is achievable it is possible 1o construct a buffering




scheme which maintains the sypchronisation of the individual streams over relatively short (minutes)
periods of time. It is then left to the application to ensure that these streams remain synchronised with
respect to each other over longer periods of time. Two pieces of information are required to implement this

synchronisation:
- The rate of change of the jitter per sample over the last n samples.
- The jitter for the current or most recent sample.

The first value enables the application to detect if the stream is losing synchronisation and to take
appropriate corrective action, the second provides some positive feedback enabling the application to
determine if its actions are having any effect. Corrective action can take the form of modifying the QOS
properties for the stream in question, requiring that the communication subsystem allow these properties to

be dynamically changed.

It is also possible to use this information to determine if the source and sink clocks are running at the same
rate. However a common clock, which is known to be correct, is required to determine that the source and

sink clocks are running at the correct, rather than the same, rate.
4.2 User Interface Management Systems and Positive Feedback

There is a strong drive within the User Interface Management System (UIMS) research community towards
more concurrent user interfaces and UIMSs which support this concurrency.[Lantz1987] This drive is
motivated by the general '.belief that concurrent input is a patural way for users to interact with
computers,[Buxton1986, Buxton1985, Hill1986] and by the desire to build direct manipulation interfaces as
described by Schneiderman.[Schneiderman1983] Direct manipulation interfaces are characterised by
concurrent input and the provision of timely positive feedback in response to user actions.
Hudson[Hudson1987] and Tanner[Tanner1987] explore in detail the demands made on a UIMS by this type
of user interface. An important requirement is that the feedback provided should appear instantaneous to
the user, thus imposing a maximum response time in the order of 10-40ms (human perception threshold

time).




A central aim of multimedia communication is to allow a single user to use a computer as a tool for
communication with several other, physically distant, users. This means that the next generadon of UIMS
which will implement user interfaces to such multimedia communication must extend their view of human
computer interaction beyond the current situation of a single user interacting with a single computer.
Therefore the UIMS must cope with multiple sources of human input and the very much larger class of
errors introduced by the presence of a network and distribution. These errors include communication errors
due to the petwork itself and partial system failures which occur when part, but not all, of the distributed

application managing the communication fails.

If a direct manipulation user interface is to be implemented then feedback must be provided not only in

response to the local users actions, but also in response to remote users actions and in response to errors.

The error feedback generated must reflect the error in some meaningful fashion to the user, thus avoiding
!

the situation where a user is left to stumble across the error in the normal course of his or her

communication.

As a simple example consider the situation where a user is running the X window system. This user has a
terminal connection to a remote machine, if the remote machine crashes no feedback is given, rather the
user is left to determipe that the remote machine crashed based on it’s lack of response. This is largely a
result of the fact that the communications protocol used does not generate any indication that it is having
difficulty communicating with the remote machine. This may pot in itself seem a great hardship for the
user, however if more complex con'fexeucing applications which support communication with multiple

users using multiple media are to be built, then the provision of positive feedback becomes essential.

It is useful to think of these errors as synchronisation points, since every time such an error occurs
synchronisation is lost and some action must be taken to resynchronise or to abandon communication in
some graceful manoer. It is also useful to consider all exceptional, though not necessarily erroneous, events
as syochronisation points. For instance opening or closing a real-time connection may generate
synchronisation events when the first and last (respectively) samples are received. This allows for related
streams to be synchronised with respect to each other whenever such a synchronisation point is reached. In
the lip-synching example the controlling application may wish to wait until both streams reach their last

sample synchronisation point before tidying up the screen display. Similarly if one of the streams stops due
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to some ermror then the application may wish to stop the related stream and display some meaningful
message, or take some action to re-start the stream. These synchronisation points essentially define the
points at which the controlling application should consider taking some action, i.e. they are events and

actions which warrant some form of response.
4.3 A Synchronisation Scheme

This section presents a scheme for implementing the three types of essential synchronisation which have
been identified by the previous examples. The first, referred to as isochronous synchronisation is concerned
with maintaining the real-time synchronisation of relﬁted streams. The second and third deal with
synchronisation after some error and after some well defined point has been reached; both of these can be
considered as exceptional and as warranting some form of feedback. Note that the loss of isochronous

synchronisation is itself an exceptional event requiring some resynchronisation action.

Real-time multimedia streams are considered as having a two-level structure. At the lowest level such a
stream is considered to be an ordered sequence of variable, but finite, size samples which are expected to be
generated, transmitted and presented at fixed time intervals, i.e. they are isochronous. These samples are
referred to as physical synchronisation frames (PSF). At the next level the stream is structured as an
ordered sequence of logical synchronisation frames (LSF), each of which consists of a number of physical
synchronisation frames. PSFs are intended as the unit of synchronisation within the communications
subsystem, whereas LSFs are the unit of synchronisation for the controlling application. It is possible to
have a one-to-one relationship between PSF and LSF; the level of indirection provided by this two level
structure allows the application to specify the synchronisation granularity which it can best handle. The
actual values used will be highly specific to the application, DCS, communications subsystem and network
being used, with the restriction that the source and sink within the communication subsystem use the same
PSF. Ideally the LSF should be a QOS property, thus allowing the application to specify the unit of

synchronisation it requires in a convenient manner.

Figure 1 illustrates how this synchronisation scheme would work for a video stream which the application
wishes to control at a video frame by video frame level, whilst the video stream is implemented using a
protocol which transmits four samples per frame. The upward arrows indicate synchronisation points at

both levels in the stream, though only the synchronisation points occurring at LSF boundaries are




communicated to the controlling application.

A A
Video Frame n Video Frame n+1 Logical Synchronisation

Frames

[ 3
Physical Synchronisation
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— e e . 4m e e e e e e M e N em e e s W W e e = e e

Figure 1. Two-Level Synchronisation

Given this synchronisation scheme, it is then necessary to define how the synchronisation points are
indicated to the controlling application, how operations on these streams are synchronised with respect to
these streams, and how synchronisation information gathered by the communications subsystem is

presented to the controlling application.

The mechanism used to indicate synchronisation points represents an asynchronous flow of information
upwards from the communication subsystem to the application, the mechanism chosen must be sufficiently
efficient so as not to deter application writers from using it. There are two primary candidates for this
asynchronous communication, namely upcalls and event queues: tbe upcall mechanism is to be preferred

since it can be easily used to implement an event queue system, whilst the converse is not true.

Each stream will have an associated set of stream specific operations. These operations must be
synchronised with respect to the streams to which they apply, this synchronisation is defined in terms of the
streams LSFs. In particular operations only take effect at LSF boundaries, and may be delayed up to some
maximum pumber of such boundaries. These operations are implicitly timed, that is if an operation doesn’t
take effect within the stated number of LSFs then the communications subsystem must report a timeout
error. The benefit of specifying this synchronisation relationship is that both the application writer and the
stream implementor have a precise synchronisation model within which to work, thus eliminating potential

confusion.
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The following figure shows how a *‘stop’’ operation would be synchronised with respect to the video
stream used in the previous figure. The completion of the operation can be indicated in either of two ways:
the operation in question is blocked until completion, alternatively the operation may return immediately
(i.e. is not blocked) and an explicit synchronisation event will be generated on its completion. Both
blocking and non-blocking modes are illustrated below.

Blocking ' Non Blocking
Stop Video Stopped Stop Video Stopped
' A tA A
! ) ! i
i ! !
A - \f
A 4
Video Frame n Video Frame n

Figure 2. Blocking and Non-Blocking Control Operations

The synchronisation information gathered by the communication subsystem needs to be made available to

the controlling application in two distinct situations.
« At regular intervals to monitor the current state.
. At irregular intervals, usvally in response to some other synchronisation event.

The first situation can be dealt with by defining these regular intervals as synchronisation points and
passing the data as arguments to an upcalled procedure. The second situation is best catered for by a

procedural interface, since the application may wish to access this information from within an active upcall.
4.4 Synchronisation Summary and Complete Example

We now have a two-level synchronisation scheme with upcalls occurring at synchronisation points in the
upper of the two levels. A procedural interface is provided for setting and modifying QOS properties and
for obtaining synchronisation information (this information can also be obtained by an upcall).

-12 -




Consider a video editor which allows the user to play back stored video in real-time as well fast and slow
rates, and also provides a cut-and-paste facility for editing voice and video segments. In order to
implement cut-and-paste some means of delimiting the segment to be cut and a means of indicating the
location to paste to are required. A reasonable approach is to accompany the play back of video with some
kind of ‘‘time line’’ or ‘‘scroll bar’’ as a visible cue on the current position in the video segment. This
time-line needs to be updated in time with the associated video. The QOS properties can be used to define
an isochronous upcall at some rate, this upcall can monitor the synchronisation of the stream being played
and update the time line. If the stream is found to be losing synchronisation then this upcall can take
corrective action; this may involve modifying the QOS properties or providing some feedback to the user
(e.g. making the time-line flash). If the video is played back at a different rate, then since the
synchronisation points are defined in LSFs, the upcall will be called at the new rate, and the time-line will
be automatically updated at the new rate. If an error occurs on the play back stream then a separate upcall
will be made which can stop the time-line and inform the user of the error. The following section suggests
how this scheme can be integrated into the DCS.

4.5 Integrating Stream Synchronisation into the DCS

Concurrent activities typically require synchronisation points, each such point is represented as a
synchronisation variable. Such a variable, if set, indicates that the synchronisation point has been reached,
if unset then this point has not been reached. Synchronisation variables (SV) are stream specific and are
represented as a triple (stream, synchronisation point, value). Three primitives are defined which operate
on these variables.

» WaitForSV( SVexpr, TimeOut ) wait for the expression to become true.
» SignalSV( SV ) set the synchronisation variable specified.
» TestSV( SV ) retumn the value of the synchronisation variable specified.

SV is a single synchronisation variable, SVexpr is an expression involving any number of SVs separated

by one of the following operands:

-13-




+ SVAND boolean and of the operand SVs.
» SVOR boolean inclusive or of the operand SVs.

The WaitForSV will return an indication of which SVs were set and thus caused it to return, a timeout
can also be specified which if exceeded will cause WaitForSV to retum with a timeout indication.
WaitForSV will typically be called by controlling threads within the application, whilst Signalsv will

be called from within an upcalled procedure. If an event queue model is implemented, then the central loop

waiting on the queue will call SignalSV in response to receiving the associated events.

The DCS may provide some automatic means of generating a large amount of the interface code required to
implement this scheme based on information given in the specification of a stream (see below). The design
of the run-time system must be such so as not to introduce unacceptable amounts of jitter, therefore the
run-time scheduler may wish to base its scheduling decisions on the QOS properties wl;ose synchronisation

variables are being signalled; the scheduling of upcalls should be similarly influenced.

5. Managing Heterogeneity

4

The desire for open systems carries with it a requirement to effectively manage heterogeneity. This
problem is particularly acute for multimedia systems in which there may exist many different pieces of
hardware capable of performing the same function. The application writer needs to access the functionality
provided by the hardware without being overly burdened with the details and differences of the particular
pieces of hardware being used. For instance a program to manage a voice conversation using a specially
built digital pbone should not peed to be modified to work with a software phone implemented using a

microphone and speaker.

The approach taken treats any piece of hardware or software which can generate real-time multimedia
streams as a device. Each such device has a strongly typed interface and an associated implementation.
There is no checking to ensure that the interface and implementation are consistent with respect to each
other. The interfaces are written in a Device Specification Language (DSL), in which an interface has two
components: a stream component which specifies the real-time streams and an operations component which

specifies the operations on these streams. The stream components represent the protocols which this device
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can use, whilst the operations component represents the control interface to the device and its streams.

The interaction between interfaces is based on the client/server model. A server exports the interfaces it
supports and a client must import a previously exported interface in order to use it. An interface is location
specific, thus an instance of a server at a given location exports an interface and a client attempts to import
an interface exported by a particular location. In a multimedia system which is used to implement user
communication, location transparency is of little use, since a person, unlike a replicated software server,
cannot be in two places at once. Therefore import requests may specify a particular location, usually this
will be the current location of the user(s). Note that if location transparency is required a logical location
such as “‘network’’ may be specified. This scheme requires the existence of a run-time binder to manage
the export and import of interfaces, this binder is called the DSL Tradert. A server exports its interface to
the DSL Trader and a client imports an interface from the Trader, in this way the Trader is solely
responsible for matching imports with exports. The Trader is at liberty to use any algorithm it choses to
match import and export requests, and it is the properties of the algorithm chosen which allow for the
effective management of heterogeneity in this architecture. The two essential components of the algorithm

used are described below:

. A given interface may have multiple implementations, the Trader choses the implementation exported

by the location specified in the import request.

« If an exact interface match cannot be found, the Trader searchs its export database for different, but
functionally equivalent, interfaces exported by the location specified in the import request.

The first component allows different hardware and software to provide the same functionality without the
importer being aware of these differences. The second component uses a set of rules to identify
functionally equivalent interfaces and to match an impest to a functionally equivalent export if no exact

match exists. The rules for functional equivalence are described in detail in the section on "Functional

+ The term trader is taken from the ANSA[ANSA 1989] project’s terminology, and refers to an extended name server which manages
typed interfaces rather than uninterpreted strings.
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Equivalence”. A simple example will illustrate the usefulbess of this algorithm. Consider the situation
where a given location exports a video phone interface, this location clearly has the capability for point-to-
point voice and video connection. If an import request is made on this location for a simple point-to-point
phone conversation then the import should succeed since the location in question supports a superset of the

required functionality.

Finally, DSL provides a mechanism for aggregating interfaces to build compound devices. This facility is
providing to allow the re-use of existing interfaces and implementations in order to provide a much shorter

developmeht time for new and experimental applications.

The following sections examine the interface structure, functional equivalence and aggregation mechanisms

in greater detail.
5.1 DSL Streams: Plugs and Sockets

A DSL stream as specified in an interface is a stream end point, i.e. it can be the source or sink of a stream.
For this reason the DSL stream component consists of plugs (stream sources) and sockets (stream sinks). A
plug must be connected to a socket in order to create a stream over which data can flow. A plug or socket is

named and a name can be used once within the same interface. Each plug or socket is typed by a stream

type. A stream type consists of a stream type name and the following properties:
+ QOS properties supported, including the format of the stream synchronisation information.

« The synchronisation points supported, this will be a list of upcails and their associated arguments which
can be registered with this stream. Each such point will have a synchronisation variable associated with

it.

Stream type checking is based solely on the name given to the stream type. Therefore for a stream to be
successfully created the plug and socket must be of the same stream type, that is the stream types they
specify must have the same name. The following diagram shows a stream of type **VideoStream’’, created
from a plug and socket of the same stream type; the plug is called ‘*Camera’” and the socket *‘Display”.
The stream, plug and socket types are given within their representative shapes, with their names appearing

below the shapes.
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DSL Plug DSL Socket

*“VideoStream”’ *‘*VideoStream’’ “VideoStream '

Camera Display

Figure 3. Video Stream

If the stream types of the plug and socket do not match it may be possible to use a translator interface, this
is simply an interface with a socket of the same stream type as the original plug and a plug of the same
stream type as the original socket. Translators are found by interrogating the DSL Trader. Figure 4 shows
an audio stream created using a translator. In this case the end point plug is of type *‘Audio A-Law’’ whilst
the end point socket is of type ‘‘Audio Mu-Law’’; the translator has a socket of type ‘‘Audio A-Law’’
which is directly connected to a plug of type ‘‘Audio Mu-Law’’.

DSL Plug , DSL Translator DSL Socket
‘‘Audi “Audi ‘*Audio ‘*Audio s
Auq.»‘l‘(-’Law’ ’ A A?Law’ ’ Mu-Law”’ Mu-Law
--— - -—
Microphone Converter Speaker

Figure 4. Translated Audio Stream
5.2 DSL Operations

The operations component contains all the operations available for controlling the streams supported by this
interface as well as a small set of management operations supported by all interfaces. Each operation is
named, and a name can only occur once in the same interface. The management operations are present to
provide a uniform means of managing stream connections across all devices, this includes the establishment

of connections and access and manipulation of the QOS properties. The remaining operations are entirely
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interface specific, an operation takes a set of arguments and returns a set of results.

Sample interfaces for simple camera and display devices are given below. The syntax used is only intended
to give a general view of the structure of an interface; it is in no way fully defined or finalised. For

simplicity the following examples do not demonstrate the synchronisation of related streams.

Video: STREAMTYPE WITH QOS [ xres, yres: INTEGER ],
SYNCHRONISATION POINTS { Suspended, Resumed, Stopped, Error };

INTERFACE CameraDev =
Camera: STREAMPLUG OF STREAMTYPE Video;

MANAGEMENT OPERATION ConnectTo [ address: ProtocolAddress,
xres, yres: INTEGER ] RETURNS [ BOOLEAN ];

OPERATION Start [] RETURNS [];
OPERATION Suspend [] RETURNS []; -- temporarily pause video
OPERATION Resume [] RETURNS []; —-- resume video
OPERATION Stop [ blocking: BOOLEAN ] RETURNS [];
END
INTERFACE DisplayDev =

Display: STREAMSOCKET OF SREARMTYPE Video;

MANAGEMENT OPERATION ListenTo [ address: ProtocolAddress,
xres, yres: INTEGER ] RETURNS [ BOOLEAN ];

OPERATION DisplayOn [ xpos, ypos: INTEGER ] RETURNS [];
OPERATION DisplayOff [] RETURNS [];

END

Figure 5. Simple Camera and Display Interfaces

The synchronisation points defined for the video stream will be generated in response to the corresponding
CameraDev operations, or error; the Stop operation takes a flag stating whether blocking or non-
blocking synchronisation is required. The physical camera device may have pause and stop controls which

can also generate these synchronisation points.
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The set of management operations shown in the examples is not complete; work is underway to determine a
full set of such operations and to automate their use to the greatest degree possible. This automation may
take the form of a set of library procedures. The provider of an interface implementation must implement
the management operations along with all the other operations defined in the interface, again a library of

common implementations will ease this task.

The following pseudocode illustrates how the above interfaces could be used to realise a unidirectional

video stream between two specified locations.
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The above example gives a general feel of the style of programming required to drive DSL devices, more
practical work is required to fully implement this programming model. The mechanism used to listen for
user input depends on tbe input/output system being used; the essential point is that the uniform
synchronisation mechanism allows the programmer to treat the video stream as structured, without regard
to how this structure is imposed. Note that the user who. has access to the camera is not necessarily the

same user who has access to the controlling application’s input. In this example the user receiving the

First import the two interfaces

cameraHandle := IMPORT CameraDev AT locationX
displayBandle := IMPORT DisplayDev AT location¥

Connect is a library procedure which in turn invokes the
management operations provided by the devices

Connect ( cameraHandle, displayHandle, xres, yres )
Now the devices are ready for use

cameraHandle.Start ()
displayHandle.On( 0, 0 )

Fork a thread to wait for user input, when input is received
call cameraHandle.Stop (), Suspend() or Resume () as required

Loop
wait for synchronisation points to be reached,
WaitForSV( Suspended SVOR Stopped, ForEver )
if( TestSVC( Stopped ) )
BREAK;
else
WaitForSv{( Resumed, ForEver )

EndLoop

displayHandle.Oﬁf()
cameraHandle.Stop( TRUE )

Figure 6. Use of Camera and Display Devices
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video stream (i.e. the display end) can have access to this input and thus suspend, resume or stop the video

stream, as a result both users have access to the same control interface.

5.3 Functional Equivalence

Functional equivalence is essentially the same as the notion of conformance as used in the Emerald

system,[Black1986] with a simple extension to deal with the streams component of a DSL interface.

Conformance is preferred to inheritance as used in the Smalltalk system since it expresses a relationship

between interfaces, whilst inheritance is a relationship between implementations. Informally the rules for

functional equivalence in DSL are as follows:

An interface S is functionally equivalent to an interface T (written S < T) if and only if the following

conditions hold.

iii.

iv.

S provides at least the plugs and sockets of T (S may have more).
For each plug or socket in T, the corresponding plug or socket in S is of the same stream type.
S provides at least the operations of T (S may have more).

For each operation in T, the corresponding operation in S has the same number of arguments and the

same number of results.

The types of the arguments of T's operations conform to the types of the arguments of the
corresponding operation in S (i.e. the arguments must conform in the opposite direction to the

interfaces)t

If these conditions are met then an import request for interface T can be satisfied with an export of interface

S.

+ Conformance as applicd to the data types of the arguments is identical to that used in Emerald.
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5.4 Aggregation

Tbe aggregation facility allows compound interfaces to be constructed from existing interfaces, a
compound interface consists of a set of sub-interfaces plus a streams and operations component. The
functional equivalence rules given above apply to simple interfaces, i.e. interfaces which do not contain any
sub-interfaces. The rules for functional equivalence can be extended to cope with compound interfaces as

follows.
A compound interface S is functionally equivalent to an compound interface T if:

i. The streams and operations component of S are functionally equivalent to the streams and operations

component of T, as given above.

ii. For each sub-interface in T there is a corresponding sub-interface in S which is functionally

equivalent to the sub-interface in T.

iii. Apply rules i) and ii) recursively for all the sub-interfaces in T and corresponding sub-interface is S.

6. The Architecture

This section places the previous discussions on synchronisation and managing heterogeneity into a uniform
architectural model, thus providing a consistent and precise design framework within which the system

designer and application writer can work.

A layered approach is taken to decomposing this architecture into its functional components, three such

layers exist as shown in figure 7.
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Applications Layer

Orchestration Layer

Multimedia Mechanism Layer

Figure 7. Architectural Layers

The multimedia mechanism (MMM) layer includes the generation, transport and presentation of real-time
multimedia streams. The transport function has previously been referred to as the communications
subsystem. The interface to this transport component is specified by the management operations in a DSL
interface. The generation component deals with the geperation of stream samples, ite. physical .
synchronisation frames, whilst the presentation component accepts PSFs and presents them to the user. The
generation and presentation components present two interfaces, one to the transport function and one to the
Orchestration layer. The interface to the transport function is in terms of PSFs and is provided for
efficiency reasons, in particular to minimise jitter. The use of this ‘‘sideways”’ interface must be under the
control of the Orchestration layer, thus preserving the layering of control functions whilst allowing for the
sideways movement of data. The interface to the Orchestration layer is specified in terms of LSFs. All of
the MMM interfaces are specified using DSL, with some components of the interface being implemented
by the transport function and other components by the generation and presentation components. Figure 8
shows the MMM structure in more detail. Note that the horizontal arrows indicate data flow, whilst the

vertical arrows indicate data and control flow.
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Orchestration Layer

T T |

= T ==

Generation Function Presentation Function Transport Function

Figure 8. Detailed Multimedia Mechanism Structure

The Orchestration layer performs the two distinct functions of interfacing the application to the MMM and
of implementing the heterogeneity management mechanism. The first function requires the implementation
of the synchronisation scheme presented above whilst the second requires the implementation of DSL and
the DSL Trader. DSL is the glue that binds the functional components of the architecture together, that is,

it is used to specify all the interfaces present in the system.

Finally, the application layer, previously referred to as the Distributed Computing System, contains the
controlling application. It can now be seen that the Orchestration layer provides the integration between the

DCS and communications subsystem. This is illustrated in figure 9 .

Distributed Computing System

Orchestration Layer

Communications Subsystem

Figure 9. Orchestration Layer Integration

Figure 10 shows the relationship between this multimedia architecture and the OSI Reference Model.
There are two main differences between the two, firstly the multimedia architecture layers control interfaces
whilst the OSI Reference Model layers control and data interfaces. Also, the two take a radically different

approach to managing heterogeneity, the OSI Reference Model assumes that interworking is managed at




»

the lower levels of the model and that the higher levels need not be aware of any lower level differences,
whereas the multimedia architecture provides explicit architectural support for managing heterogeneity and

this management is based on out-of-band control techniques.

Application Layer Application Layer
Presentation Layer
Orchestration Layer
Session Layer
Transport Layer
Multimedia Network Layer
Mechanism Layer
Data Link Layer
Physical Layer

Figure 10. Multimedia Architecture and OSI Reference Model Relationship

7. Work Plan

Work is currently in progress to implement this multimedia architecture. This work includes extending a
prototype multi-service protocol suite (the MSNL protocol suite)[McAuley1989] to implement the QOS,
synchronisation data gathering and notification functions described above. This will then be integrated into
a prototype DCS, namely the ANSA[ANSA1989] testbench; this system provides light-weight threads,
RPC and distributed naming over a variety of operating systems. Both MSNL and the ANSA testbench run
over the UNIX™ operating system. MSNL runs over both Ethernet and the Cambridge Fast Ring local area
networks. Some applications will be built to test the utility of this architecture, these could include a simple

video phone and associated call management, simple voice and video recording and playback.
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8. Summary

The issues involved in providing real-time multimedia communication have been discussed in detail.
Extensions to existing communications subsystems and distributed computing systems have been suggested
which will enable them to better meet the requirements of multimedia communication. In particular
solutions to the problems of synchronisation and heterogeneity have been described in detail. These
solutions have been incorporated into an architecture which provides a set of design rules and guidelines
within which both the system implementor and application writer can work. The interfaces specified by the
architecture are all described using an interface specification language (DSL).
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