Technical Report R

Number 196

Computer Laboratory

The semantics of VHDL
with Val and Hol:
towards practical verification tools

John Peter Van Tassell

June 1990

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1990 John Peter Van Tassell

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

i

ABSTRACT

Van Tassel, John Peter. M.S., Department of Computer Science and Engineering, Wright
State University, 1989. The Semantics of VHDL with VAL and HOL: Towards Practical

Verification Tools.

The VHSIC Hardware Description Language (VHDL) is an emerging standard for the
design of Application Specific Integrated Circuits. We examine the semantics of the
language in the context of the VHDL Annotation Language (VAL) and the Higher Order
Logic (HOL) System with the purpose of proposing methods by which VHDL designs may
be converted into these two forms for further validation and verification. A translation
‘program that utilizes these methods is described, and several comprehensive VHDL design

examples are shown.

Contents

1 Introduction

1.1 Rationale e 1
12 Languages v v v vttt e e e e e e e e e 2

U L21 VHDL .. e e e L2
122 VAL e e e e e e e e e e 2

123 HOL e e e e e e e e e e e e 3

2 VHDL : 4
2.1 Background e e e e e e e e e e e e e e e .. 4
2.2 Simulation Cycle and Tlmmg Model e e e e e e .. 5
23 Statements. e e e e e e e e e e e e e e 6
2.3.1 Architectures e e e e e e e e e e e e e e e e e 6 .

2.3.2 Signal Assignments o e e 7

233 Conditionals e e 9

234 Processes and Blocks . . v v v i i i i e 12

2.4 Example e e e e e e e e e e 13
241 ONE............ e e e e e e e e e e e e 13

24.2 Inverter v v i i it it e e e e e e e e e 13

243 Registero i e e .. 15

244 Multiplexer e 15

24.5 ParityChecker i ittt 17

3 VAL : , 21
31 OVerVIEW. . . i i e e e e e e 1
3.2 Translation Methods, 21
3.2.1 Architectures e e 21

3.2.2 Signal Assignments 0L . 22

323 Conditionals e e e e e e 24

33 Example e e e e e e e e e e e e e e e e e e 24
331 Ome i 25

3.3.2 Inverter e e e e e e e e e e e w.. 25

3.33 Register e e e e 25

334 Multiplexer e .. 26

'3.3.5 Parity Checker 26

3.3.6 Simulation Results

iv

4 HOL

References

29
4.1 Overview. e e e e e e e e e e e e 29
42 Types e e e e e e e e oo . 29
43 Statements.o i .. e e e e e e e e e e 31
4.3.1 Architectures e e . 31
4.3.2 Signal Assignment 000 32
43.3 Conditionals e e e e e e e e 34
_ 434 ProcessesandBlocks o 0L, 35
44 SUMMATY .+ & v v v v e e v e e e et ot e ettt e e et e 35
5 Tamarack ; 37
051 Overview. v v i i e e e e e e e e e e e 37
5.2 Basic Definitions 0 ... e e e 37
5.2.1 Package TAMarack v vt m e e e e, 37
522 Powerand Groundt 43
523 Words . . v v vttt e e e e e e e e e e e e e e 44
5.3 Microcodeand ROM i ittt e 45
5.3.1 PackageMicroCodet enn.. 45
5.3.2 ArchitecturesROMand Decode v v ... © 48
5.4 Primitive System Components e e e e e ... 56
5.5 ALU e e e e e e e e e e e 56
5.6 Memory v v i it e 56
5.7 Major Subsystems e e e 63
6 Conclusions and Further Research - 74
76

! List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
212
2.13
- 2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32

2.33.

2.34
3.1

An example of the process statement 5
A simulationcycle e e e e e e 6
VHDL architecture skeleton and generated comment 7
Inertial delay signal assignment 8
Inertial delay with propagation time 8
Generated assertion for inertial delay v i ot .. 8
Signal assignment with transport delay e 9
Generated assertion for transport delay 9
General form of the if statement e e e e e e .. 9
Generated assertion for the if statement 10
General form of the casestatement - 10
Sample conditional signal assignment statement 10
Generated assertion for a conditional signal assignment 11
Sample guarded signal assignment A |
Sample guarded signal assignment e e e e 11
Sample loop statement L o oL oL 12
Generated assertion for sample loop statement 12
process statement and generated comment L. 12
block statement and generated comment e e e 13
Diagram of the parity checker e e e 14
Definitionof One i e, «. 14
Generated assertion forOne 14
Definition of Invertert 15
Generated assertion for Inverter 15
Definition of Register 15
Generated assertion for Register e 16
Definition of Multiplexer e e 16
Generated assertion for Multiplexer 16
Definition of high-level version of Parity Check e e e 17
Generated assertion for high-level version of Parity.Check 17 .
Prototypical entity declaration for ParityCheck 17
Definition of low-level version of Parity.Check 18
Generated assertion for low-level Parity Check 19
Simulation results for Parity Check. e e e e e e e e . 20
Inertialdelay e e e e e e e e e 22

vi

vii

32 Transportdelay e 23
3.3 Transport delay conditional sxgnal assignment (VHDL) 23
3.4 Transport delay conditional signal assignment (VAL) 23
3.5 Inertial delay conditional signal assignment (VAL) 23
3.6 Translation of if statement, 24
3.7 Sample loopstatement [P e 24
3.8 VAL translation of loop statement e e e 25
3.9 VAL translation of a guarded signal assignment 25
3.10 VAL versionof One i 25
3.11 VAL versionof Inverter. A
3.12 VAL version of Register. e e e e 26
3.13 VAL version of Multiplexer.« v v v v v v v v v v v e v v v .26
3.14 VAL version of high-level Parity Check 27
3.15 Simulation results for sometime version27
3.16 Simulation results for finally version 0 28
3.17 Simulation results for eventually version 28
4.1 HOL declarations for BIT.and BIT.VECTOR v v oo v30
4.2 Translation of a VHDL array type definition S 1 |
4.3 HOL translation of a VHDL record e e e e e e e 31
4.4 Translation of entity declaration e e e 32
4.5 HOL Specification of ’Stable v v v v v v v v e e e .. 32
4.6 HOL version of transport delay ce ... 33
4.7 HOL version of inertialdelay. e et e e e e 33
4.8 HOL version of conditional signal assignment. e e 34
4.9 HOL version of a guarded signal assignment 34
4.10 HOL translation of if statement e e 35
4.11 HOL version of a case statement 35
4.12 Extracted process and block definitions e e e e e e 36
5.1 Register-Transfer Level Architecture P 1.
5.2 Package declaration for Tamarack39
5.3 Package body for Tamarack e e e e e e e e e e 40
5.4 . HOL translations of the basic types e e e e e e e e e e e 40
5.5 Translation of basic procedures and functions e 41
5.6 Original HOL specifications [.. 42
5.7 VHDL behaviors for power and ground 43
5.8 HOL translations of PNRand GND 43
5.9 Original HOL versions of PARand GNDo o.... 44
5.10 VHDL architecture and derived HOL for BITS 44
5.11 HOL original for BITS 45
5.12 Package declaration for the microcode. e e e e e e e e e e 45
5.13 HOL translationof types e e 46
5.14 Procedure Cntls from package MicroCode e e 46

5.15 Function NextMpc from package MicroCode. e e e e e e e e 47

viii

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
- 5.26
- 5.27
5.28
529
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50

Translation of NextMpcand Cntls. e e e e e e e .. 49

Original HOL for microcode operations e e e e e - 50
VHDL architecture for the ROM e e e e .. 51
HOL translation of the ROM e e e e e e e e 52
Original HOL specification of the ROM S &
VHDL source for the decoder e e e e e 54
Derived HOL for the decoder e e e 55
Original HOL for the decoder e e e e e e e e e e e e 55
VHDL description of the basic gates e e e e 57
Translated HOL versions of the basicgates 58
Original HOL versions of the basicgates v ... 58
VHDL description of ADDERt i it 59
Derived HOL description of ADDER. PR 1
Original HOL description of ADDER v vt v v v v .. oo B9
VHDL description of the control checker e 60
Derived HOL description of the control checker 60
Original HOL description of the control checker [60
VHDL specifications of theregisters 61
Derived HOL specifications of the registers 62
Original HOL specifications for the registers 62
VHDL description of main memory 63
Derived HOL description of main memory e 64
Original HOL description of mainmemory 64
VHDL descriptionof the ALU 65
Derived HOL descriptionof the ALU 65
Original HOL description of the ALU U R 66
Declarations in ' VHDL description of the MPC unit 67
Main body of the VHDL description of the MPCunit 68
Derived HOL description of the MPC unit 68
Original HOL description of the MPCunit 69
VHDL description of the control unit e e e e 70
Derived HOL description of the control unit S (]
Original HOL description of the controlunit 71
VHDL description of the data path e e e e e e . 72

Derived HOL description of the datapath 73

Chapter 1

Introduction

1.1 Rationale

With the growing complexity of digital systems, it is becoming readily apparent that in
the near future the validation of their designs is not going to be feasible using current
tools. These methods have been based upon the simulation approach where it is even now
impossible to simulate a design over all inputs, and still maintain a rapid development
cycle. Rather, a “critical” subset of these inputs is fed into the simula.tion, but the
derivation of that subset can sometimes be problematic.

The advent of new CAD systems has made the job easier for the engineer by helping him
to establish a sound basis for the structural underpinnings of a given design. Examples of
these systems include standard cell libraries and artificial intelligence packages [25] that
point the designer in the right direction regarding the physical configuration of the device.
In doing so, however, companies have necessarily tended to develop proprietary products.
These then present a problem when designs for the same circuit from different vendors are
being compared by a central agency. Further, the validation of designs developed usmg
these tools is still encumbered by the problems of simulation.

To overcome the testability issues involved in current design validation practxces, a
different approach has emerged. It is one that seeks to reason about the structure of
hardware from a proof theoretic point of view. Ideally, the engineer would specify a -
design in some formal language, and then apply the principles of mathematical proof to it
to determine its validity with respect to the original specification. A potential drawback
to such a scheme is that the designer needs to be familiar with the principles of formal
proofs. Much of the process of formal verification is involved with the rewriting of terms
into a standard form, which can be accomplished in a very mechanical and automatic
fashion. ‘The designer would then be required to interface with the proof system only
at points where specific properties of his design are being examined. We believe that
the tools for such verifications already exist, and can be coupled with a newly developed
hardware description language to provide a prototyplcal environment for the development
of future hardware systems.

Before any work on actual verification of designs can begin, it is essential to under-
stand the semantics of the source language. The following chapters present methods to
translate from this language into more formal representations. Qur goal, therefore, is to
understand and formally specify the operational semantics of an important subset of a
current hardware description language We now introduce the languages that will be used
in the upcoming dlscussxons

2 ’ ‘ . ' . Chapter‘ 1. }Intxfoductior.l‘

1. 2 Languages

1. 2 1 VHDL

The VHSIC Hardware Description Language is an emerging standard in the design of Ap-
plication Specific Integrated Circuits (ASIC’s). The language originated with the U.S. Air.
Force as a way to provide a standard simulation environment for designs that it received

~ from its various contracting agencies. The original VHDL that appeared for this purpose = -

was Version 7.2 from Intermetrics. VHDL has since gone through the standardization

‘process of the IEEE, to emerge in its current form as IEEE Std-1076-1987. The version

of VHDL that is used in the discussions that follow is Intermetrics’ implementation of the
1076 standard. . :

VHDL is meant to encompass a wide range of designs; from the highest level of abstrac-
tion down to the most basic components of an integrated circuit. These in turn may be
implemented in different technologies (CMOS, NMOS, TTL, etc). Currently the only way
that a given architecture may be validated is through exhaustive testing, which because
of the complex nature of most commercial circuits, may not catch all bugs in the system.
We seek to not only solidify the foundations of the design process, but also to move toward
the formal verification of VHDL designs.

VHDL has a built in construct that allows the desxgner to insert logical assertions
about the state of the simulation into his design. With these assert statements, we
have a rudimentary system for specifying and checking on the operation of a particular

“component, but certain basic operations are not explicitly supported within them. These

will be demonstrated and examined in the context of a translation program in Chapter 2.

1.2.2 VAL

The VHDL Annotation Language (VAL) was developed at Stanford to address the limi-

tations of raw VHDL assertions, and does so without straying too far from their syntax.
By using the translation methods of Chapter 2, it is possible to output VAL statements
rather than pure VHDL. In doing so, we provide a more robust method of specifying

- the operation of a given design which can then be used within the context of traditional

validation methods.
VAL presents a first step in the process of moving from simulation to verification. It

- allows for a more precise specification of the internal relationships of various components

while remaining within the simulation environment of VHDL. These specifications are cer-
tainly not the formal statements acceptable to a theorem prover. They are encumbered
by VHDL-specific constructs which relate to the underlying simulation environment, and
are generally concerned with the timing model of the simulator. So, before a final trans-
formation into an appropriate formalism can be made, we need to specify what that model
is and how it operates. ’

1.2. Languages

1.2.3 HOL

- The Higher Order Logic (HOL) system developed by Dr. Michael Gordon at Cambridge
incorporates the functional language ML and a suite of predefined rules and tactics that
are used in the derivation of formal proofs. It is a general-purpose theorem-proving
environment allowing both forward and backward proofs, but has been used to verify
devices from multipliers to simple microprocessors. HOL also incorporates an extensive
sub—goal system to help break the proof down into more manageable pieces.

By refining the translation methods used to go from VHDL to VAL, we can provide a
way of translating much of VHDL into appropriate HOLstructures. We can then make
use of the sub—goal package previously mentioned, as well as the powerful rewriting tools
provided by the HOLsystem to automatically perform many of the early steps involved
in the verification of a given design (removal of universally and existentially quantified
" variables, normalization, etc.). HOL does, however, require a significant amount of user
interaction after these basic steps are completed, and while this limits HOL’s appeal,
recent research at Cambridge suggests further automation is possible; leading the way
towards formal verification of VHDL designs.

Chapter 2

VHDL

2.1 Background

The translator that is to be described was created by the author as a part of the 1988
U.S. Air Force Summer Graduate Student Research Program administered by Universal
Energy Systems. During the course of the research, it was determined that VHDL’s
assert statement would provide a good basis for the investigation of the semantics of
the language The methodologies developed could. then be used as a sta.rtmg point for
conversions into more formal languages. ’

The program consists of a translation grammar implemented in Prolog, and is based on

the BNF description of the language [23]. While the whole of VHDL is parsed, emphasis

is placed upon the semantics of certain key statements. The main assumption in the
development of the program was that the VHDL source had already been analyzed as
correct. The reason was that we did not want to implement a working compiler. Rather,
we wished to develop a prototype for an automated translation program of certain features,
and investigate its behavior. In that respect Prolog has proved to be an excellent tool for
the construction of the program.

The output of the translator is an assertion that is to be reinserted into the orxgmal :
VHDL architecture. In general, the output tends to be difficult to read for two reasons.
The first is that many conditional operations are expressed in terms of raw Boolean logic
instead of using the more understandable, but still Boolean if-then notation. The second
problem is that each expression is parenthesized to maintain the structure of the original.

- The obvious result is a lisp-like output stream that is not very legible.

The generated assertions could be used in the context of traditional circuit validation
in the following manner. If a given design is known to be correct, an assertion can be
generated to express its behavior. Then, when we design a new circuit that is supposed
to exhibit the same behavior, we can insert the assertion that describes the correct design .
into the entity declaration for the new one. When the new design is simulated, any
assertion violations that occur will point out areas where the new design has strayed from
the old, correct one. Further use of these assertions can be made by understanding and
specifying the underlying timing and simulation models used by VHDL. They also provide
a more concise spemﬁcatlon for the designer to work with when designing and debugging

a given desxgn

2.2.. Simulation Cycle and Timing Model | 5

C: process (a,b)
begin

end process C;

Figure 2.1: An example of the process statement

2.2 Simulation Cycle and Timing Model

In order to understand the way in which the assertions operate, it is essential to under-
stand the VHDL simulation cycle and timing model. The first concerns the sequence of
actions that result during the elaboration (execution) of a signal assignment. The sec-
ond deals with the timing relationships that VHDL implements to allow for the proper
synchronization of those assignments. :

VHDL is a discrete—event simulation language where concurrent statements are synchro-
nized by being either explicitly or implicitly surrounded by a process statement. The
statement can. be thought of as a non-terminating subprogram that sleeps until certain
conditions are met, executes once, and returns to the inactive state. An example of the
skeleton of the construct is provided in Figure 2.1. The execution of process C is governed
by the signals a and b which appear in its sensitivity list. An event on e1ther one causes

‘the process to become active [23].

Each signal assignment is an event, and is posted to an event queue for evaluation.
All signals that are on the queue and that are supposed to be executed at the current
time, make up an instance of the simulation cycle [23]. So, if we had events A, B and C
that were scheduled for elaboration at the current time, they would comprise a complete
simulation cycle. Any events that might result from their execution might also take part
in future cycles. Figure 2.2 demonstrates three signal assignments that take place in the
same cycle, and the simulation report that they generate (===-- indicates a constant
value). It must be noted that events do not occur in zero time. Even if there is no
explicitly specified propagation delay time associated with the event, there is an implicit
delta time in which it occurs. The +n in the figure indicate these deltas

It is best to think of the simulation cycle being a complete sequence of steps executed
by a finite state machine. The machine is governed by the advance of simulation time.
When we advance one time unit into the future, we have experienced one “tick” of the
overall simulation clock. ‘The event queue is subdivided into blocks of events that are -

~ scheduled to be elaborated at some specific moment during the total simulation. When

each tick of the simulation clock occurs, the block of the queue associated with that time
is dequeued and elaborated. Unless the circuit has reached a state of quiescence, each

‘block will generate more events. Each of those events is placed into the event queue

inside a block associated with the appropriate point in simulation time. A side effect of

‘the scheme is that new events overwrite any that might have been posted to a given block

during some previous tick of the simulation clock if that posting was for a later simulation

6 ' | » Chapter 2. VHDL

a <= transport TRUE after ins;
b <= transport a;
¢ <= transport b;

TIME |--=-==-cmmemmeee SIGNAL NAMES-----==-==cmcemm- |
| _
(Ns) | A B C
| aE
1 | TRUE = e==e= eeea-
+1 | ----- TRUE = ====-
I e TRUE

Figure 2.2: A simulation cycle

time. Such a scheme can prove confusing when first encountered, and points out one of
- the over-riding issues in the design of VHDL specifications; namely, that one must always
keep in mind the underlying simulation cycle.

In the description of the generated assertions that follows, we will make use of both
of these models. We want to sample the output of a waveform at the moment that it
receives a new value, namely when an event occurs on it. Further, when that instant
of time arrives, we want to be able to sample the values that the inputs had when the
assignment began, and be able to make some generalizations about the states of the
signals over the interval of time associated with the assignment.

2.3 Statements

The emphasis was on investigating the specification of VHDL in terms of its assert
statements, with the later design of carrying the techniques used towards a translation into
a theorem—provmg environment. The particular features of VHDL that were 1nvest1gated
in detail are enumerated in the sub-sections that follow. :
No attempt was made to distinguish between the concurrent and sequential aspects
of VHDL. Assertions are themselves structures that can be placed in an environment of
either parallel or sequential statements. Some of the more elaborate statements in the
language such as generics, and bus resolution functions were not covered when writing
the translator. These are important constructs, and translation schemes for some of them
will be proposed in subsequent chapters.

2.3.1 Architectures

The VHDL architecture is the basic building block for the translation, as all statements
- that we were interested in occurred within them. In the early stages of development,
they did nothing more than prov1de a VHDL comment about which block the upcoming

2.3. . Statements _ : Y ¢

architecture A of B is

Figure 2.3: VHDL architecture skeleton and generated comment

assertion pertained to. As an example, a simple architecture skeleton and its generated
comment are provided in Figure 2.3.

In the course of later development, it became necessary to simulate a rudimentary VHDL
design-library system, and the architecture name then also became the name of an output
file into which the assertion would be placed. The reason for doing so was to facilitate
the generation of assertions about architectures that are made up of many individual
components. So, if architecture A was composed of components B, C, and D, we would
make a composite assertion for the architecture by conjoining the generated assertions
for B, C, and D, and perform the appropriate variable substitutions. The new assertion
could then be reinserted into A. In so doing, we have preserved the hierarchical nature of
the original VHDL, while at the same time condensing the assertions of each individual
component into a single assert statement. This was an experiment in rewriting, and is
not necessary if the assertions for each of the low-level components are in place in their
corresponding architectures. The ability to consolidate expressions in this fashion will be
more relevant when trying to formally verify designs.

- There is a property of the port declarations used in the specification of entltles which
will have an impact on much of the discussions that follow. It is that ports declared
~ to be of mode out cannot be read by statements within the corresponding architecture
[23]. In order to get around the problem, we have made the generalization that all out
ports are in fact inout ones. While it might appear on the surface that no real change
has been made, each out port now represents a bus; thereby allowing for inappropriate
actions on those ports to be accidentally made. Further, if we have many levels of entities -
with such redeclarations within our design hierarchy, unforseen glitches might result from
compounding the problem. ' :

2.3.2 Signal Assignments

- There are two classes of signal assignments. One is associated with transport delay, the
‘other with inertial delay of assignments. In inertial delay, there is a constraint placed
on the inputs to the signal that they must be stable for a certain length of time. In
assignments such as the one in Figure 2.4 where there is implicit inertial propagation
delay time, INPUT must be stable for at least one delta time prior to the assignment to
OUTPUT. In general, however, statements characterized by Figure 2.5 require that INPUT

8 . o ' - Chapter 2. VHDL

OUTPUT <= INPUT;

| Figure 2.4: Inertial delay signal assignment

- QUTPUT <= INPUT after X;

: Figure 2.5: Inertial delay with propagation time

be stable for X time before the signal assignment takes place. The whole purpose of the
scheme is to prevent spurious spikes in the inputs to be carried over into the output.

- To model signal assignments with inertial delay, the translation program makes use of
~ both the ’Stable and the ’Delayed attributes of VHDL. ’Stable returns a Boolean value
based on the stability of the given signal. So, if we wanted to know if signal INPUT has had
an event in the last 4 nanoseconds, we test the value returned by INPUT’Stable(4ns).
S’Delayed(X) will return the value that S had X time ago. If no argument is given, then
the attribute returns the value the signal had one delta time ago. The translator, therefore,
understands that it needs to make the following sort of statement about inertial delay: “if
each one of the input signals has been stable X amount of time, then the output signal’s
value should be the same as the value of the input X time ago”. Using the example of -
‘inertial delay in Figure 2.5, the translator would output the assertion in Figure 2.6 (edited

for clarity). The NOT x or y scheme is equivalent to an if x then y construction.

We can simplify our assertion by changing over to transport delay. Here we have a type
of signal assignment where no stability constraints need be modeled, but we still require
the ’Delayed attribute. Transport delay is denoted by including the VHDL reserved
word transport as a part of the input waveform. We can modify the previous example
accordingly, and arrive at the signal assignment statement of Figure 2.7. The semantics -
of the statement are simply that “the output signal should always be equal to the value
that the input had at the time denoted by the propaga.tlon delay”. So, our assertion now
becomes that of Figure 2.8.

With both of these forms of signal asmgnrnent spemﬁed we are prepared to explore the
translation of other structures that make use of them. In later examples, we will assume
that both types of sxgnal a.ss1gnrnent will be translated into Boolean expressions such as
these.

ASSERT (NOT INPUT’Stable(X) or
(OUTPUT = INPUT’Delayed(X)));

Figure 2.6: Generated assertion for inertial delay

2.3. Statements : o ') , 9

OUTPUT <= transport INPUT after X;

Figure 2.7: Signal assignment with transport delay

ASSERT (OUTPUT = INPUT’Delayed(X));

: Figxire 2.8: Generated assertion for ti'a_.nsport delay

2.3.3 Conditionals

" There are a number of ways to express conditional operations in VHDL, not all of which
deal with “traditional” programming constructs. There is, of course, an if~then—else
statement, and the case construct. In addition to these, we have conditional and guarded
signal assignments as well as looping structures at our disposal.

The if-then—else statement in VHDL is the basis for most later translations of condi-
tionals that will be performed. The pattern is not quite the same as that used in signal
assignments. We still use primitive Boolean operators, but in order to mimic the implicit
structure of the conditional, we must provide a method that takes the general struc-
ture of the if statement in Figure 2.9, and comes up with the VHDL translation shown
in Figure 2.10. Note that each of the statements, is a conjunction of other sequential
statements.

The case statement is nothing more than a shorthand for the if statement. In VHDL,
it takes the form shown if Figure 2.11. The others clause is optional, but is provided
to demonstrate the full construct. The translation into an assertion is the same as for
the preceding if where others functions as an else, and X is equated with each of the
conditional,,. :

The conditional signal asmgnment statement is one with the basic structure of a case
statement. We do, however, have to deal with the extra problems associated with signal

if condition; then
statements; ;

elsif condition, then
- statementss ;

else
statementss;

end if;

- Figure 2.9: General form of the if statement

10 » - Chapter 2. VHDL

ASSERT ((condition; and statements;) OR
(not condition; AND
(condition, and statementsy) OR
(not conditiony AND
statementss)));

Figure 2.10: Generated assertion for the if statement

case X is
"when conditionaly => statements;;
when conditionaly => statements;;
when others => statements;

end cass;

Figure 2.11: General form of the case statement

activity. Specifically, if we have a conditional signal assignment such as the one in Fig-
ure 2.12, we are not only dealing with the implicit inertial delay of the assignment, but
at least 2 different delay times and conditions. With the simulation model of VHDL, the
assertion that we create should not necessarily be true at all deltas within the simulation,
but only after there has been an event on Output. The translator takes all but the final
constraint into account, and generates the assertion of Figure 2.13. '
The assertion would be evaluated at each delta if it is reinserted into the original design
in its current form, and so must have some mechanism imposed upon it to cause it to be
evaluated only when something happens to Output. The solution is to enclose it within a
process that is sensitive to the signal in question. The assertion is then evaluated at the
instant Output takes on a new value. The inability to put relevant guards directly into
the assertion is the first example of a severe limitation of the pure assert statement.
Guarded signal assignments are those that appear inside block statements, and make -
use of an implicit Boolean signal in VHDL called GUARD. Such a statement might look like
the one in Figure 2.14. The semantics of these statements are that if the implicit signal
GUARD has just become true, or if it currently is true and one of the inputs that it is made

Output <= Inputl after X when A and B else
Input2 after Y when C or D else
Input3;

Figure 2.12: Sample conditional signal assignment statement

2.3. Statements - 11

ASSERT (
((A and B and
(not Input’Stable(X) or Output = Input’Delayed(X))) OR
(not (A and B) and : ‘
* ¢((C or D) and

(not Input2’Stable(Y) or Dutput

(not (C or D) and
(not Input3’Stable or Qutput

Input2’Delayed(Y))) OR

Input3’Delayed)))))
)i '

Figure 2.13: Generated assertion for a conditional signal assignment

Output = gﬁarded transport Inputl after X;

Figure 2.14: Sample guarded signal assignment

up of changes, then the signal assignment is allowed to occur [23]. In terms of an assertion,
it becomes a matter of wrapping another condition around the assertion generated by the .
waveform alone. If the guarding statement was A and B, then the translator would give
the assertion found in Figure 2.15. Here, we have gone back to the not-or pattern to
represent if-then notions.

The only types of loops that have been addressed in the translation program are those
with explicit iteration schemes. So, a looping statement similar to that in Figure 2.16
would become the assertion of Figure 2.17. Note that no attempt is made to derive
loop invariants. Currently, the iteration schemes are restricted to those that make use of
simple Boolean tests rather than those that enumerate a discrete range. An extension to
encompass these should be made, and is quite simple. Had condition been the statement
I in J’High to J’Low, then it would have become (I >= J’High) and (I =< J’Low).

ASSERT (
(NOT
(GUARD AND
(NOT GUARD’Stable or
" (A’Event or B’Event))))
OR
(Output = Input’ Delayed(x))),

Figure 2.15: Sample gua.rdéd signal assignment

12 : ‘ ' ‘ | Chapter 2. VHDL

- while condition loop
statement; ;
statements ;

' statement, ;
end loop;

Figure 2.16: Sample loop statement

ASSERT (condition AND
(statement; AND
statement; AND ... AND
statement,));

Figure 2.17: Generated assertion for sample loop statement

2.3.4 Processes and Blocks"_

The process and block statements of VHDL provide a comment in much the same fashion
as the architecture statement. We use the comment as a guide to where the assertion
should be placed when we are done with the translation because an assertion about a
process or block has no meaning outside that construct. The only process statements
that have been addresses in the translation program are those that have sensitivity lists.
A sample process and its generated comment are given as Figure 2.18. <stmnts> denotes
the actual statements of the process. The same treatment is given to a sample block in
Figure 2.19. We hold onto the guard C and D for use in future guarded signal assignment
statements. _

We now have the basic tools and methods for translating VHDL descriptions into logical

P1: process (4,B)
begin
<stmnts>
end process P1;

D s = " - - - - - - ——— - . - - - - . e = = e -

Figure 2.18: Vprocess statement and generated comment

2.4. Example = S - S 13

Bi: block. (C and D)
begin
<stmnils> -
_ end block B1;

Figure 2.19: block statement and generated comment

statements about their operations. It will become evident in Section 2.4 for reasons other
than lack of legibility and awkward construction that these are not adequate to specify
assertions that accurately reflect the hardware for purposes of simulation. They would
be more useful in a translation to a more formal language that does not have constraints
imposed upon it by the VHDL simulation cycle. In order to make relevant assertions -
about the operation of a given design, a more powerful language is required. Therfore,
discussions of translation schemes for assert statements will exploit those already demon-
strated, but will be enhanced later through the use of VAL constructs.

24 Example

To fully demonstrate the content, form, and use of the derived assertions, the following
extended example is presented. It is based on a parity checker specified in [12] whose
formal definition is included as Appendix B. A simple diagram of the circuit is shown in
Figure 2.20. It is taken from [12]. A description of its components follows.

2.41 ONE -

One is an entity whose sole purpose is to generate a constant high value. Note that it
could be omitted by declaring a signal at the outermost level initialized to a high value.
The VHDL description of the component is found in Figure 2.21. The assertion generated
by the translator is very simple (generated comments have been omitted in this and
subsequent assertions for brevity), and is shown in Figure 2.22.

2.4.2 Inverter

The component at the next level of complexity is Inverter. In VHDL it can be deséribéd
as shown in Figure 2.23. The corresponding assertion generated is found in Figure 2.24.

14

Chapter 2. VHDL

in

12

out

Figure 2.20: Diagram of the parity checker

entity One is
port (Out_1: inout bit);
end One; '

architecture Data_Flow of One is
begin
Out_1 <= transport ’1’; end Data_Flow;

Figure 2.21: Definition of One

ASSERT (Out_.1 = '1*);

- Figure 2.22: Generated assertion for One

2.4. Example o : 15

entity Inverter is
port (IN 1: in bit; OUT_1: inout bit);
end Inverter; .

architecture Data_Flow of Inverter is
begin '

OUT_1 <= transport not IN_1i;
end Data_Flow; -

Figure 2.23: 'Deﬁnitio‘n of Inverter

ASSERT (OUT_1 = not IN_1’Delayed(0fs));

'Figure 2.24: Generated assertion for Inverter

2.4.3 Register

The register uses unit-delay, and is unclocked. Its VHDL description is given in Fig-
ure 2.25. The assertion that it translates into is demonstrated in Figure 2.26.

2.4.4 Multiplexer

The most complex primitive unit in the design is a multiplexer. It is stated in Flgure 2.27.
The assertion then becomes the one in Figure 2.28.

entity Register is
port (In_1: in bit; Out_1: inout bit);
end Register;

architecture Data_Flow of Register is
" begin »
Out_1 <= transport In_1i after ins;
end Data_Flow;

Figure 2.25: Definition of Register

16 - o Chapter 2. VHDL

ASSERT (Out_1 = In_1’Delayed(ins));

Figure 2.26: Generated assertion for Register

entity Multiplexer is ‘
port (A_in, B_in, Selector: in bit;
Selected: inout bit);
end Multiplexer;

architecture Data_Flow of Multiplexer is
begin

Selected <= transport (A_in and Selector) or
(B.in and not Selector);

end Data_Flow;

Figure 2.27: Definition of Multiplexer

 ASSERT (Selected = _ :
((A_in’Delayed(0fs) and Selector’Delayed(0fs)) or

(B_in’Delayed(0fs) and not Selector’Delayed(0£fs))));

Figure 2.28: Generated assertion for Multiplexer

2.4. Example . , R ' ‘ 17

enﬁity Parity_Check is :
port (In_1i: in bit: Out_2: inout bit);
end Parity_Check; '

architecture Behavior of Multiplexer is

begin :

OQut_2 <= transport not Out_2 after ins when In_1 = ’1” else
Out_2 after 1ins; i

end Behavior;

Figure 2.29: Definition of high-level version of Parity Check

ASSERT ((((In_1 = ’1’) and (Out_2 = not Out_2’Delayed(ins))) OR
((not (In_1 = ’1’) and (Out_2 = Out_2’Delayed(ins))))));

Figure 2.30: Generated assertion for high-level version of Parity_Check

2.4.5 Parity Checker

The high-level specification of the behavior of the parity-checker is set forth in the com-
ponent in Figure 2.29. The high-level assertion then becomes that of Figure 2.30.

We now have a simple specification of the parity checker. If it is correct, then it can
serve as a basis for later designs of the same circuit. We could actually create a standard
interface for such designs by modifying the original entity declaration for the component,
and inserting the assert into it as in Figure 2.31.

If we now build the parity checker from the low-level components, we arrive at the
description in Figure 2.32. We shall assume that the entity declaration is the “standard”
one just created. By using out primitive library system to find the assertions for the
various components, and by performing a sequence of variable substitutions, we derive
the assertion about the low-level specification given in Figure 2.33.

entity Parity_Check is
port (In_1: in bit: Out_2: inout bit);
begin :
ASSERT ((((In.1 = ’1’) and (Out_2 = not Qut_2’Delayed(ins))) OR
((not (In_1 = ’1’) and (Out_2 = Out_2’Delayed(1ins))))));
end Parity_Check; . . .

Figure 2.31: Prototypical entity declaration for Parity_Check

18

Chapter 2. VHDL

use work.One; use work.Inverter; '
use work.Reg; use work.Multiplexer;

architecture Gate_Level of Parity_Check is

component ones ,
- port (Out_1i: out bit);
" end component; o

‘for all: ones use entity One(Data_Flow);

_ component invert ‘
port (In_1: in bit; Out_1: out bit);
end component;

for all: invert use entity Inverter(Data_Flow);

component mux ‘
port (A_in, B_in, Selector: in bit;
Selected: out bit);
end component;

for all: mux use entity Multiplexer(Data_Flow);

component regstr
port (In_1: in bit; Out_1: out bit);
end component;

for all: regstr use entity Reg(Data_Flow);.
signal L1, L2, L3, L4, L5: bit := 0’;

begin
onl: ones port map (L4);
inv: invert port map (L2,L1);
mul: mux port map (L1,L2,In_1,L3);
rel: regstr port map (Out_2,L2);
re2: regstr port map (L4,L5);
mu2: mux port map (L3,L4,L5,out_2);
end Gate_Level;

Figure 2.32: Definition of low-level version of Parity Check

2.4. Example = o | 19

ASSERT
((L4 = °1°) AND
(L1 = not L2’Delayed(0fs)) AND
(L3 = (L1’Delayed(0fs) and In_ 1’Delayed(0fs)) or
~ (L2’De1ay_ed(0fs) and not In_1’Delayed(0fs))) AND
. (L2 = Dut_2’Delayed(ins)) AND

(L5 = L4’Delayed(ins)) AND ‘
~(Out_2 = (L3’Delayed(0fs) and LS’Delayed(Ofs)) or
(L4’Delayed(0fs) and not L5’Delayed(0fs))));

Figure 2.33: Generated assertion for low-level Parity.Check

When the low-level architecture is simulated with the high-level assertion embedded in
it, we find that assertion violations are generated from it (Figure 2.34). Is such behavior
caused by bugs in the low-level description, or is it based on out not fully taking into
account the way in which the simulator works? The answer stems from the latter. The
assertion that is included as a part of the entity declaration is required to be true at all
deltas in the simulation. It is not so during initialization or “power—up” of the design, nor
is it so while an event on the inputs is being propagated through the system. In order to
represent the proper behavior, we would be forced to have the assertion inside a process
statement that was sensitive to changes in Out_2 and In_1. What we would really like to
say in the assertion is “when there is a change in the value of In_1 from low to high, then
Out_2 will have the inverse of its current value when all signals settle down. Otherwise,
it remains the same. Further, there should be no inadvertent glitches during the course

~of that propagation”. Such a statement is not feasible in the pure form of the assert -
statement, but can be expressed in VAL.

Chapter 2. VHDL

TIME |--s=ceccocacccccacanx SIGNAL NAMES--=====-=ccccccccaa- |
(Fs) | IN_1 " QUT.1
o: ’o’ - ’o)
+1 l S 0?
+2 | VHDSIM- W ASSERTV Assertion Vlolatlon after 0 fs-
| Assertion violation
' 31,)
1000000 | %VHDSIM-W-ASSERTV Assertion Violation after 1 ns
| Assertion violation
l)1:
+1 | 0’ : A
42 | %VHDSIM-W-ASSERTV Assertion Violation after 1 ns
| Assertion violation ‘
' ' } R E R
+3 | - 202
2000000 | '0°
3000000 | %VHDSIM-W-ASSERTV Assertion Violation after 3 ns
| Assertion violation
I)1’
: +2 | : 190
4000000 | %VHDSIM-W-ASSERTV Assertion Violation after 4 ns
| Assertion violation ’
| ’1 ’
- +3 | 10
5000000 | %VHDSIM-W-ASSERTV Assertion Violation after 5 ns
|

Assertion violation

Figure 2.34: Simulation results for Parity_Check

Chapter 3

VAL

3.1 Overview

The VHDL Annotation Language is an effort to loosen the restrictions imposed by the
strong typing of VHDL, and to provide for the specification of more complex timing rela-
 tionships. It is a pre-processor for VHDL, where provisions are made for the description of
the history of actions that were exhibited by the model. Further, the model of time may
be specified using different modalities. Because a signal may propagate over the course of
many deltas (Figure 2.2), a mechanism is also provided to make sure that assertions are
not checked until everything has settled down at the end of the simulation cycle.

To accurately describe the way in which components are actually simulated, VAL im-
plements a system that can be used to keep track of an entity’s past behavior. This
‘entity state [1] is helpful in the discussion of the structure of a given component. It will
not be relevant in the translation schemes below, as we are trying to create assertions
about the actions associated with the temporal properties of signal assignments, rather
than attempting to specify the state transitions of all the statements involved in a given
model. ' '

When dealing with assertions about the timing constraints imposed by signal assign-
ments, VAL utilizes three different modes to describe the model of time. The most general
is sometime which says that a given assertion about a signal must be true somewhere in
the current simulation cycle. The second level is implemented by finally. Here we specify
- that an assertion must be true at the end of the interval. Finally, the most restrictive
condition is reflected in the eventually constraint. It is stronger than finally in that once
an assertion becomes true, it cannot revert to a false value; and thus forbids oscillations
in the waveform. : '

3.2 Translation Methbds

Using VAL, we are dble, to make the generated assertions not only more readable, but
also more precise. We shall examine the different types of assertions generated in the -
previous chapter, and show their translation into VAL constructs.

3.2.1 Architectures

As in the previous chapter, these simply provide a comment about the block currently
being transformed. There is no need to attempt to consolidate the assertions about all

21

22 : s Chapter 3. VAL

--] when INPUT’Stable(X) then _
--1 assert eventually OUTPUT = INPUT;
--| end when;

Figure _3.1:' Inertial delay

the individual compenents as was done in pure VHDL. Since VAL is meant to enhance
~ the testability of a given design in a simulation environment, such a scheme would not
~ improve our ability to validate a design. We would only be duplicating work.

VAL’s superiority over raw VHDL assertions is demonstrated already at this outer level.
We previously had problems in dealing with out parameters (Section 2.3.1) in that they
were not able to be read within the current architecture. In VAL, a set of dummy signals
that get their values from the actual signals are used to alleviate the problem. When the
user writes an annotation about signal X of mode out, VAL replaces references to X by
those to the corresponding dummy. Note that these substitutions only take place in the
context of the annotation and do not affect the description of the entity or its elaboration
during simulation. VAL merely wraps a process around the annotation, and then plugs
the process into the simulation in much the same way that one attaches an oscilloscope
to a circuit to test it. ‘

3.2.2 Signal Assignments

'We have already derived the various statements necessary for the proper description of
signal assignments. In the case of inertial delay, we found that stability constraints needed
to be expressed for the inputs of the waveform in question. In order to accurately portray
~ the relationship, it was necessary to resort to an awkward Boolean construction. We can
use the when statement provided by VAL instead, and couple it to one of the special timing
modalities mentioned above. So, the inertial delay signal assignment expressed earlier

(Figure 2.5) could be transformed into the VAL statement in Figure 3.1. The eventually
form of the assertion is used because it provides the most robust fashion of describing
input—-output relationships. The =-| notation is the way in which VAL annotations are
set off in the VHDL model. The -- part denotes the rest of the current line as a comment,
and the | part tells us that it is a special, or formal [1] one. The VAL system, therefore,
does not have to be a part of a user’s VHDL environment for the model to be simulated.

In a like manner, transport delay may be expressed. It is not, however, necessary to
‘tesort to the when statement as no stability constraints are required. We can 31mply make
a VAL assertion about the waveform as demonstrated in Figure 3.2.

Conditional signal assignments present an even more straightforward mapping into VAL.
If we have the waveform in Figure 3.3 the translated annotation would become that of
- Figure 3.4. Had the assignment been one involving inertial delay instead, we could have
~ simply nested the when statements of inertial signal assignment within the arms of the
~ conditional signal assignment and arrived at the VAL statement in Figure 3.5.

23

3.2." Translation Method’sr

--| assert eventually OUTPUT = INPUT’Delayed(X)

Figure 3.2: Transport delay

Output <= transport In_1 when Condition; else
In_2 when Condition, else
Output; '

Figure 3.3: Transport delay conditional signal assignment (VHDL)

--| when Condition; then

--| assert eventually Output = In_1;

--| elsewhen Conditions then

--| assert eventually Output = In_2;

--| else : '

--1 assert eventually Output = QOutput;
. =-] end when; A

Figure 3.4: Transport delay conditional signal assignment (VAL)

--| when Condition; then

-=] when In_1’Stable then

-] assert eventually Output = In_1;
-=] end when; : :

--| elsewhen Condition, then

==} when In_2’Stable then

-=1 assert eventually Output = In_2;
-=] "end when; -

--] else

-=| when Output’Stable then

-- assert eventually Output = Qutput;
-=] end when;

--] end when;

Figure 3.5: Ineft_ia.l delay conditional signal assignment (VAL)

24 : ' ' _ Chapter 3. VAL

--| when Condition; then

-1 Statements,
--] elsewhen Condition, then
--1 Statements, :

-~| else Statements,
-=1 end when;

Figure 3.6: Translation of if statement

while condition loop
statements;

end loop

more statements;

Figure 3.7: Sample loop statement

3.2.3 Conditionals

The other major conditional constructs other than conditional signal assignments are
the if, case, and loop structures of VHDL. We have shown transformations of these
into assertions in the previous chapter. Now we shall show their conversmn into VAL
annotations. For the most part, the task will be simpler.

As mentioned previously, the if statement of VHDL has the form found in Flgure 2. 9
We can write the corresponding VAL by simply replacing if by when to derive the VAL

statement in Figure 3.6. The case statement is addressed in the same fashion with the -

proviso that the individual conditions are equated with the test expression.

The translation of loop statements presents us with again a simpler task than the
transformation into a plain VHDL assertion. once more, no attempt is made to derive
loop invariants. So, if a loop containing a particular iteration scheme was expressed as
in Figure 3.7, we could express it in terms of VAL using the when construction found in
‘Figure 3.8. condition is the transformation for iteration schemes discussed earlier.

VAL makes the translation of guarded signal assignments both easier to perform and
to understand. If we use the assignment from the previous chapter (Figure 2.14), we can
obtain the VAL when statements of Figure 3.9. :

3.3 Example

The example of the parity checker is now presented in a form where the derived assertions
are expressed in VAL. Throughout the course of the exposition, we will not re-state the

3.3. Example » o : . 25

--| when condition then
--| statements -
--| else

--] more statements
--] end when;

Figure 3.8: VAL translation of 1oop statement

==| when GUARD and (NOT GUARD’Stable or (A’Event or B’Event)) then
--| assert eventually Output = Input’Delayed(X); '
--| end when;

vFigure 3.9: VAL translation of a guarded signal assignment

original VHDL, but merely give the VAL assertions that are generated from them. The
reader is encouraged to refer to the originals.

3.3.1 One

There are no conditions associated with the description of One. We therefore express the
relationship in terms of a simple VAL assertion (Figure 3.10).

3.3.2 Inverter

Figure 3.11 shows the VAL expression describing the action of Inverter. Like One, there
are no explicit conditions associated with its operation. So, we can again express the
relationship in terms of a simple VAL assertion.

3.3.3 Register

Reg1éter is also a simple component with no conditions on the input-output relatxonshlp
other than the propagation time. The VAL assertion that describes the entlty is given as
Figure 3.12. .

--| assert eventually out.1 = ’1’;

Figure 3.10: VAL version of One

26 : : o o Chapter 3. VAL

. =-| assert eventually out.l =.not in_1’Delayed(0fs));

Figure 3.11: VAL version of Inverter

--| assert eventually out_1l = in_1’Delayed(ins));

~ Figure 3..12: VAL version of Register -

'3.3.4 Multiplexer

- With the specification of Mult ipiexer, we see the use of the VAL when statement to state
the conditions under which a given assertion should be true. The actual VAL is shown in
Figure 3:13. '

- 3.3.5 Parity Checker

As noted previously, we shall not consolidate the assertions that specify the behavior of the
individual parts of a component. Therefore, we only give the VAL assertion for the high-
level version of Parity_Check. As can be seen in Figure 3.14, the VAL version is not only
more readable than its pure VHDL predecessor, but also states the timing relationships
more clearly. The assertion in its current form can be inserted into the entity declaration
for Parity_Check to create a much more precise version of the “standard” interface shown
in Section 2.4. ' ' ‘ o

3.3.6 Simulation Results

If we simulate the parity checker, and include the high-level VAL assertion about it in
- the entity declaration for the low-level specification, we can demonstrate the differences
between the three VAL timing notations. We begin with the losest restriction possible by
using the sometime construct. The simulation results are shown in Figure 3.15. We note

--| when selector’Delayed(0fs) then

--1 assert eventually selected = a_in’Delayed(O0fs);
--| elsewhen not selector’Delayed(0fs) then

--1 assert eventually selected = b_in’Delayed(0fs);
--| end when; :

Figure 3.13: VAL version of Multiplexer

3.3. Example ' ’ . 27

--| when In_1 = ’1’ then

--] assert eventually Out_2 = not Out_2’Delayed(ins);
<-| elsewhen not In_i = ’1’ then :

--] assert eventually Out_2 = Out_2’Delayed(ins);

--| end when;

‘Figure 3.14: VAL version of high-level Parity_Check

TIME |-===--===-c-cc=mnen SIGNAL NAMES-=-=======mnmnnmn |
(Fs) | IN_1 OUT_2
|
0| 0’
+1 | 102
+2 | 1y’
1000000 | 19
+1 | 0
+2 | 112
+3 | 10?
2000000 | 20’
3000000 | 11
T | ; Coaqo
4000000 | 11
+3 | 10?

Figure 3.15: Simulation results for sometime version

that no assertion v1ola.t10ns are triggered, as it is the case that the cond1t1ons spec1fied by
- our high-level are true at some delta within each simulation cycle. :

We now include the restriction that the conditions specified in the assertion must be met
at the end of each simulation cycle; namely, when Qut_2 has attained its final value and
settled down. The finally timing constraint is used to a.ccomplish the task, and picks up
the indeterminate behavior of the circuit during “power-up” (Figure 3.16). The problem
is caused by the ’Delayed(ins) attribute having defaulted to a low (’0’) value before
such time as it had any meaning.

We now place the most restrictive condition on the assertion by using the eventually
constraint. . The result is the. detection of the “glitch” in Out_2 during the period 1
nanosecond after the start of the simulation (Figure 3.17). The bug is caused by a race
condition present in the system when the first high value is input into it.

Chapter 3. VAL

TIME |===-===mm==m=mmomu- SIGNAL NAMES-=--============ |
(Fs) | IN.1 OUT.2
1 -
ol : '0? : ’0?
+1 | ‘ 107
+2 | 11

1 | /VHDSIM-W-ASSERTV Assertion Violation after 1 fs |
- | VAL violation (finally) '
1000000 :

| 149
+1 1 < ’0"
+2 | '
+3 | 0
2000000 | -0
3000000 | ’1?
+2 | 142
4000000 | ’1?
) +3 | 10

Figure 3.16: Simulation results for finally version

TIME |~==ceccccmcecccaa=- SIGNAL NAMES--------cccoccceoa-]
(Fs) | IN_1 oUT_2
0 :) o))‘o H
+1 I)o)
.'.2 l) 1)
1 | %VHDSIM-W-ASSERTV Assertion Violation after 1 fs
| VAL violation (eventually)
-1000000 | 'y
+1 | . . 0?
+2 l . 110
’ +3 l 10?
1000001 | %VHDSIM-W-ASSERTV Assertion Violation after 1000001 fs
| VAL violation (eventually)
2000000 | 0
3000000 | 'y
) | . 1y
4000000 | 119
+3 | ’0?

Figure 3.17: Simulation results for eventually version

Chapter 4

HOL

74.-1 - Overview |

The Higher-Order Logic system is a theorem-proving environment that is based on the
natural-deduction approach. The source language for the system is ML, and much of the
system is implemented in terms of it. HOL is still evolving, but the basic core has been
in use for a number of years. :

HOL incorporates a wealth of rules and tactics to ald in the proof process. The rules
are used for forward proof, and the tactics are used to go in the reverse direction. They
may be intermixed in any given proof. Tactics may be either user or system-defined, and
provide the most suitable tools for the verification of hardware, although forward methods
have been used.

In a translation from VHDL into HOL we will be using certain specific HOL constructs.
It is going to be possible to model more than just architectures, as HOL does not separate
the design into architectural components and functional components in the manner of
VHDL. Rather, it allows for both kinds of structures through the use of the built-in
function new_definition. _ :

The translation methods from VHDL into HOL will now be outlined. Their exposition
will, in general, follow the same pattern as that for pure VHDL assertions and VAL anno-
tations. It will, however, be necessary to give a thorough explanation of the typing issues
involved in these translations. Also, we will be making use of four HOL logical constructs.
Universal quantification (V) will be represented by !, and existential quantification (3)
by ?. Logical conjunction becomes /\, and disjunction is \/. HOL strings are enclosed

within a pair of backquotes (‘ ‘), whereas terms are offset by double quotes (") [13].

4.2 Types

The strong typing provided by both VHDL and HOL makes the process of transforming
the former into the latter easier, and allows for some generalizations to be made. The
most obvious. are for Booleans, strings, and natural numbers. For Boolean operations,
HOL provides the type :bool, which is analogous to BOGLEAN in VHDL. In a like manner,
HOL'’s :tok is VHDL’s STRING, and :num represents NATURAL. Each of these types may be
used in the translation of VHDL constants.

The above are all static typing issues, and are not particularly useful in describing dy-
namic systems such as those found in hardware. In order to make any headway in decipher-
~ ing the meanings of digital components, it is necessary to have a way of representing time.

29

30 | ' ‘ ‘ ' - Chapter 4. HOL

new_type_abbrev(‘BIT¢, “:bool");;
new_type_abbrev(‘BIT_SIG‘, ":time->BIT");;

. new_type_abbrev(‘BIT_VECTOR‘, ":num->BIT");;
néw_type,abbrev(‘BIT_VECTDR_SIG‘ , ":time->BIT_VECTOR");;

Figure 4.1: HOL declarations for BIT and BIT.VECTOR

The differences between HOL and VHDL are readily apparent on this issue. VHDL, being
a simulation language, has a notion of timing relationships built into the run-time system

_ that the user must be constantly aware of (Section 2.2). Conversely, HOL is a general theo-

rem proving environment, and therefore requires the user to supply a timing model. In or-

~der to accomplish this, we make use of a non-decreasing counter as a part of all types used

to describe components of the hardware. We are in effect, mimicking the VHDL notion of
time. It should, however, be noted the HOL does not have a true capability for represen-
tation of real numbers. So, we can run into problems when using the different intervals
available in VHDL (nanoseconds, femtoseconds, etc.). The difficulty can be overcome by
re-scaling all times to the smallest one used in the model in question. In general, time

is specified by the HOL definition new.type.abbrev (‘time‘, *:num"), which in turn

could be used to model a Boolean signal as new_type_abbrev (‘wire‘,":time->bool").
Since during the course of translation there will generally be a need to have both static
and dynamic structures, two translations of declared VHDL types will be made. The first
is the static translation (as in those for STRING and BOOLEAN just mentioned), the other
will take those just-abbreviated types, and define a signal abbreviation by mapping :time
onto them (Figure 4.1). . . v

There is a further limitation of the HOL system with regard to the translation of VHDL

~ descriptions, albeit a minor one. It is simply that there is no built in theory about

individual bits. We can reconcile VHDL to HOL by making all references to objects of
type BIT into those for the HOL type :bool, but an abbreviation for BIT can be defined .
to allow for a transparent translation. In doing so, each bit must be converted into its

- Boolean equivalent when encountered during the course of a translation. The predefined

type BIT_VECTOR can be represented in a similar fashion by the declaration of an array

~ of the newly specified type :BIT. These declarations are given in Figure 4.1.

The HOL declaration for BIT_VECTOR is a sample of the kind of declaration that is
required for all array types in VHDL. Specifically, a type was declared to map the natural
numbers to individual bits. When a array of signals is desired, :time is mapped onto the

- array typeitself. A general VHDL array declaration and its corresponding HOL translation

would then take the form of those in Figure 4.2 Note that the VHDL has an explicit range
constraint on the length of the array, while the HOL translation does not. Such a situation
can be problematic unless one includes specific range checking constraints in all operations
on variables of the type : ARRAY_TYPE and :ARRAY_TYPE_SIG.

Simple VHDL record types can be represented as n-tuples. A type definition for them
is made up of the types for each element used in the record declaration. Figure 4.3

- 4.3. Statements : - 31

type ARRAY_TYPE is array (0 to 31) of ELEMENT_TYPE;

new_type_abbrev(‘ARRAY_TYPE‘, ":num->ELEMENT_TYPE");;
new_type_abbrev(‘ARRAY_TYPE_SIG®, “:time->ARRAY_TYPE");;

Figure 4.2: Translation of a VHDL array type definition

type VHDL_record is record
~A: BOOLEAN;
B: BIT_VECTOR;
end record;
signal Q: VHDL_record;
signal C: BIT_VECTOR;

Q.A <= transport TRUE;
Q.B <= transport C after ims;

new_type_abbrev (‘VHDL_record‘, ":BOOLEAN_SIG # BIT_VECTOR_SIG");;
nevw_type._abbrev (‘VHDL_record._SIG‘, ":time->VHDL_record");;

? Q_A:BOOLEAN_SIG Q B:BIT_VECTOR_SIG.
Q = (Q.4,Q_B) /\
QLA t=T/\
QB t = C (t-1) /\
Qt=(Q.4At,Q_B t)

Figure 4.3: HOL translation of a VHDL record

demonstrates an assignment of values to a signal that was defined as a VHDL record.
‘The symbol # is used to represent a Cartesian product. The sema,ntlcs of the assignment
statement will be discussed in Section 4.3.2. »

4.3 Statements

4.3.1 Architectures

To represent the structure of hardware, HOL provides one mechanism for describing all
possibilities, while VHDL has three main ones. In VHDL, these classes are the proce-
dure, function, and architectural entity. In HOL, each of them is simply an instance of
new_definition. In a one-way translation from VHDL to HOL, therefore, we are not left
with much of a decision as to how to best represent the outermost VHDL construct in

32 ' o L Chapter 4. HOL

entity A is ' '
generic (G1, G2: NATURAL; G3: BIT),
port(P1,P2: BIT; P3: out NATURAL) H

‘end A

let A_DEF = new_definition
(ca°, - '
"A (G1:NATURAL,G2: NATURAL G3: BIT) ‘ .
(P1:BIT_SIG,P2:BIT_SIG,P3:NATURAL_SIG) = ...");;

“Figure 4.4: Translation of entity declaration

new_definition (
‘Stable‘,
“Stable (interval,t) 81g
tdelta. (((t-interval) =< delta) /\ (delta < t)) ==>
- (((sig delta):*) = ((sig (t-interval)):¥))");;

Figure 4.5: HOL Specification of ’Stable

question.
The derivation of the axguments for the HOL definition of a VHDL architecture comes

from the entity declaration. HOL, unlike VHDL does not make use of “direction” modes -
for its parameters. So, our translation does nothing more than pull off the name of the
entity and its various ports to make the translated HOL specification (Figure 4.4). Note
also that generics are treated in the same fashion, but non-signal declarations are used.
Generics are translated in this manner because they denote static objects, and therefore

. do not have a time parameter associated with them. The HOL type NATURAL results from
new_type_abbrev(‘NATURAL,":time->num"), and represents a signal over the natural
numbers.

4.3.2 Signal Assignment

The driving force behind a VHDL simulation is the signal assignment statement. As seen
in previous chapters, they can take several forms, and have different delays associated
with them. It will be of paramount importance to maintain the propagation scheme
imposed by the VHDL simulator in the translation process. In order to do so, we provide
a HOL definition of *Stable (Figure 4.5) adapted from [16]. ’Delayed is to be modeled
by explicitly stating the propagation time with each signal.

Armed with a definition of signal stability, we are now prepared to embark on the task
of specifying the various forms of signal assignment present in VHDL as HOL definitions.

4.3. Statements | 33

‘1t. OUTPUT t = INPUT (t-X)

Figure 4.6: HOL version of transport delay

1t. OUTPUT t = (Stable (X t) INPUT => INPUT (t-X) |
OUTPUT t)

Figure 4.7: HOL version of inertial delay

The first of these is the simplest flavor available in VHDL; namely, those assignments
incorporating transport delay. The statement shown in Figure 2.7 is translated into the
HOL term of Figure 4.6. Note that the HOL corresponds quite closely with the raw VHDL
assertion of Figure 2.8.

The next step in the specification of sxgnal a351gnments is to look at those that make
use of inertial delay. If we take the assignment of Figure 2.5 as a general example of the
statement, we must again make the same kind of statement about signal stability that
we did when constructing the VHDL assertion. In order to do so, the HOL definition of
- Stable must be used. The result is shown in Figure 4.7. Roughly translated into English,

the statement reads “at all times, if the signal INPUT has been stable since X, then the

signal OUTPUT reflects the value that INPUT had X time ago, otherwise it remains the

same”. We have just introduced the basic form of conditional expression used in HOL.

The symbol => is used to represent the if-then part of the operation, and | denotes an

alternative choice. We shall abstract away from the constraints imposed by the VHDL

simulator, and assume that all signals are stable at the current time t because no model
" of delta time exists. : :

We have also previously examined the conditional sxgnal assignment. We can generalize
the HOL conditional just used to encompass this particular VHDL structure. We shall use
the statement of Figure 2.12 as the basis for an example translation, and can easily derive
the HOL statement of Figure 4.8. If the assignment had been one associated with transport
delay, all that would have to be changed is the removal of the stability constraints from
-each branch of the conditional.

The final type of signal a.smgnment statement that we have examined has been the
guarded signal assignment statement. It uses the implicit VHDL signal GUARD to govern
the way that it is executed. Since GUARD is nothing more than another condition to be
evaluated before the signal assignment takes place, we can re-write the operation in much

~ - the same fashion as in Figure 2.15. The only extra change that will have to be made is

the expansion of GUARD into the actual condition that it represents. Also, since we have
declared that all signals are stable at the current time, we have no need for the calls to
’Event. So, the statement of Figure 2.14 would be translated into the HOL condition of
‘Figure 4.9.

- 84 ' Chapter 4. HOL

1t. Uutput:t = (A /\ B) I\ Stable (X t) Inputl =>
o Inputl (t-X) |-
(C \/ D) /\ Stable (Y t) Input2 =>

Input2 (t-Y) |
Input3 t)

F igure 4.8: HOL _vérsion of conditional signal assignment

- 4t. Output t = ((A /\ B) => Input (t-X) |
Output t '

| Figure 4.9: HOL version of a guarded sigﬁal assignment

A previously untranslated structure within the context of signal assignments has been

~ the bus resolution function. Its purpose is to guarantee that an output signal with multiple

inputs functions properly. These functions can be used to implement operations such as
wired-and’s or those that guarantee that only one signal at a time will be trying to
drive a bus [23]. HOL, because it is a language not given to simulation, does not have a

- corresponding structure. If there is a signal that has more than one driver (such as a bus),
- the user is required to specify a predicate whose.output guarantees the property desired.

In a translation environment, we would recognize those signals that were dependent upon
a resolution signal, and make all assignments to them as if there was no function involved.
A note would be generated to the user that a resolved signal was being used, and that the
way in which it is resolved may or may not have to be further specified. It may appear
as if the issue of translation of the actual function is being avoided, but it is one rooted
in the way each language is used. In VHDL, the simulator must be told how to deal
with every situation, while in HOL, a resolution function is an entity outside the scope of
specification of the physical hardware. :

‘In the case of the signal assignments for records shown in Figure 4.3, it is necessary
to specify each part of the record structure through existential quantification. It is then
possible to operate on the individual parts of the record, and then re-assemble them when
all operations are completed. The solution is an awkward one, but it provides the most
generality in accessing the various components of the structure.

4.3.3 Conditionals

With a construct that represents conditional operations, the task of translating the con-
ditional structures of VHDL becomes much the same as it was for VAL. We simply map
the structure of the VHDL version onto that of the HOL one. So, in the case of the if
statement of Figure 2.9, the resulting HOL would be expressed by the conditional shown

4.4. Summary , . ' - 35

condition; => statements; |
conditiony => statements; |
statementss

Figure 4.10: HOL translation of if statement

x
x

conditionaly) => statements; |
conditionalg) => gtatementsy |
- statementss

Figure 4.11: HOL version of a case statement

in Figure 4.10. The HOL conditional looks more like the VHDL case statement than the
if. The relationship can be readily exploited, and if we use the statement of Figure 2.11
as an example, the result is the HOL conditional of Figure 4.11.

4.3.4 Processes and Blocks

- The model of the VHDL process and block that we shall use is that of Section 2.3.4. From
the point of view of the VHDL translation, these provided a comment about where the
generated assertion was to be placed. In HOL, they take on a meaning similar to that of
the entity declaration of Section 4.3.1. We separate them from the current architecture,
and make a new definition from them. We then insert a call to that definition into the
parent, and conjoin it with the rest of the statements. In the case of blocks, we hold
onto the guard (if present) for later insertion into any translations for guarded signal
assignments (Figure 4.9). So, if we were currently involved in translating the architecture
Dummy, and encountered the process of Figure 2.18 and the block of Figure 2.19, we would
arrive at the HOL translation seen in Figure 4.12. <other.vars> 31mply is where other
variables present in the definition of Dummy would be placed.

4.4 Sﬁmmary

We have certainly not specified the translation of the whole of VHDL. Emphasis has been
placed on the statements originally encountered by the program described in Chapter 2. -
In the process of describing the HOL versions these constructs, we have approximated the
formal specification of the operational semantics for many common VHDL statements.
With the development of a better model of VHDL’s timing model, these will become fully
specified. To illustrate the potential of the translation methods just proposed, we will
present in the next chapter a large-scale example of a circuit previously verified in HOL.

36

- Chapter 4. HOL

PROC_P1_DEF = new_definition (
" ¢PROC_P1¢, . ; |
. "PROC_P1(A,B,<other_vars>) = <stmnts>");;

BLK_B1_DEF = new_definition (
‘BLK_B1°, |
"BLK_B1(C,D, <other_vars>) = <stmnts>"):;

Dummy_DEF = new_definition (
‘Du.mmy‘ , :
"Dummy (A,B,C,D,<other.vars>) =
eeo IN -
"PROC_P1(A,B,C,D, <other_vars>) /\
BLK_B1(C,D,A,B,<other_vars>) /\

RO

Figure 4.12: Extracted process and block definitions

C,hvap'tetf 5

‘Tamarack

5.1 Overview |

To demonstrate the viability of the translation of VHDL designs into HOL speciﬁcatvions,‘

the following extended example is presented. The design is for the Tamarack micropro-

cessor, and is based on the descriptions of it that appear in [10], [17], and [21]. We will
give the VHDL description of each unit that makes up the chip, and then transform those
. descriptions into HOL via the translation methods of Chapter 4. The results of each
translation are then compared to the most recent HOL irnplementation found in [18].

The computer is described as an n-bit system in HOL, but was fabricated as an 8-
bit implementation. Memory was implemented as a 32-word x 8-bit RAM. The VHDL
version that is presented will follow the more abstract original representation through the
use of generics. We can then remain flexible in the implementation that is chosen.

The computer consists of two basic units. The first is a control unit which includes .
a microcoded ROM, a decoder for it, and next address logic. The second is the data
path, and is made up of a memory address register, main memory, program counter,
accumulator, instruction register, and an ALU with an associated buffer and register.
The register-transfer level system diagram is provided as Figure 5.1, and is taken from
[21].

5.2 Basic Definitions

We begin with the underlying types and functions used in the representation of Tamarack.
These are described in VHDL through the use of a package and three architectures. The
VHDL source for each of them will examined in the sub-sections that follow.

5.2.1 Package Tamarack

The package declaration of Figure 5.2 defines all the types, functions, and procedures that
will be used in the VHDL model, except for those that are specific to the specification
of the microcode. The subtype TSI is used to give a tristate meaning to the natural
numbers. A value of —1 on the part of any object declared to be of type TSI means
that a high-impedance condition is being represented. We want to be able to have a
system bus in the Tamarack that is of type TSI as well. In order to do so, it will be
necessary to provide a resolution function for that bus. The subtype BUSTYPE is used for
the purpose, and has been tied to the resolution function RESOLVED. The type MEMTYPE

37

Chapter 5. Tamarack

wmar MAR
-I address bits I
_wmem
MEM
Tmem
wpc .
PC
- Ipc
| , wacc
ROM |~ Decoder T ACC
- }
— | test acc |
I . ' ' wir '
_ IR
| rir T
MpcUnit ’ | opcode bits |
N | — =8 | ARG
I . I
: alu0
ALU
-alul
T
rbuf . BUF

- Figure 5.1: Register-Transfer Level Architecture

5.2. Basic Definitions ‘ : ‘ . | : - 39

package Tamarack is

subtype TSI is INTEGER range -1 to INTEGER’high;
type INP_VECT is array (INTEGER range <>) of TSI;

function RESOLVED (INPT: INP_VECT) return TSI;
subtype BUSTYPE is RESOLVED TSI;

type MEMTYPE is array (INTEGER ranger <>) of TSI;

function INCn (N, A: in TSI) return TSI;
function ADDn (N: NATURAL; A, B: in TSI) return TSI;
function SUBn (N: NATURAL; A, B: in TSI) return TSI;
function Bits (N, M: NATURAL; W: in TSI) return TSI;
procedure TNZ (signal INPT: in TSI; ,

signal FLAG: out BOOLEAN);
procedure HWC (constant C: in Natural;

signal OUTP: out TSI);

end Tamarack;

Figure 5.2: Package declaration for Tamarack

describes the configuration of main memory. The function and procedures listed in the
package declaration are defined in the body of the package (Figure 5.3).

The HOL type abbreviations for the three primary types are given in Figure 5.4. Here
- two definitions of TSI are shown. The first is for static objects that have no impact on the
timing relationships within the system. The second is for objects that are signals. TSI is
expressed in terms of :num rather than regular integers. HOL’s underlying language, ML,
does allow operations on negative numbers, but it is not possible to define an abbrevia-
" tion for items of type :int. In any event, the negative case will be needed in only a few
instances, and can be either ignored or expressed in a different manner. Since BUSTYPE is
associated exclusively with signals, it is mapped directly into TSI_SIG. When the trans-
lation is made, note is taken that all signals of type BUSTYPE are resolved. Entities that
make use of these signals will have to be treated specially when they are converted to
HOL by generating a note to the user. MEMTYPE and MEMTYPE_SIG are derived in the same
fashion as TSI and TSI_SIG. It is unknown at the current stage of translation whether

both will be needed, so the translations are made. Only MEMTYPE_SIG will eventually be

used.

Using the function and procedure definitions in the body of the package, we can make
the translations into HOL found in Figure 5.5. RESOLVED is the resolution function for
signals of type BUSTYPE. It simply goes through each of the signals that are trying to- drive
the bus, and assigns the last one that was not in a high-impedance state to the variable

40

 Chapter 5. ‘Tamarack

package body Tamarack is
function RESOLVED (INPT: INP_VECT) return TSI is
. variable RESOLVED. VALUE TSI;
begin
for I in INPT’range loop
if INPT(I) /= -1 then
RESOLVED_VALUE :=INPT(I);
end if;
end loop;
return RESOLVED_VALUE;
end RESOLVED;

function INCn (N, A: in TSI) return TSI is
begin return ((A + 1) mod (2 ** N)); end INCn;

function ADDn (N: NATURAL} A, B: in TSI) return TSI is
begin return ((A + B) mod (2 ** N)); end ADDn;

function SUBn (N: NATURAL; A, B: in TSI) return TSI is
begin return ((A - B) mod (2 ** N)); end SUBn;

function Bits (N, M: NATURAL; W: in TSI) return TSI is
begin return ((W / (2 ** N)) mod (2 ** M)); end Bits;

procedure TNZ (signal INPT: in TSI;
: signal FLAG: out BOOLEAN) is
begin FLAG <= not (INPT = 0); end TNZ;

procedure HWC (constant C: in Natural;
. -signal OUTP: out TSI) is
begin OUTP <= C; end HWC;

end Tamarack; '

Figure 5.3: Package body for Tamarack

new_type_abbrev(‘TSI¢, ":num");;
new_type_abbrev(‘TSI_SIG, ":time->TSI");;
new_type_abbrev(‘BUSTYPE¢, ":TSI_SIG");;
new_type_abbrev(‘MEMTYPE®, ":num->TSI");;
new_type_abbrev(‘MEMTYPE_SIG*, ":time->MEMTYPE");;

Figure 5.4: HOL translations of the basic types

5.2. Basic Definitions | | 41

let INCn = new_definition (
‘INCn®, i
YINCn(N:TSI,A:TSI) = ((A + 1) MOD (2 EXP N))");;

let ADDn = new_definition (
¢ADDn°‘, . s
“ADDn(N:num,A:TSI,B:TSI)

((A + B) MOD (2 EXP N))");;

let SUBn = new_definition (
¢SUBn°‘,
"SUBn(N:num,A:TSI,B:TSI)

((A - B) MOD (2 EXP N))™);;

let Bits = new_definition (

‘Bits‘, . ’
"Bits(N:num,M:num,W:TSI) .
((W Div (2 EXP N)) MoD (2 EXP M))");;

let TNZ = new_definition (
“TNZ¢,
"TNZ(INPT:TSI_SIG,FLAG:wire) =
1t. FLAG t = “(INPT t = 0)");;

let HWC = new_definition (
‘HHC‘, ‘ .
"HWC(C:num,O0UTP:TSI_SIG) = !t. OUTP t = C");;

Figure 5.5: Translation of basic procedures and functions

RESOLVED_VALUE. There should only be one of these, and we will define an architecture to
ensure that the bus exhibits this property. Since RESOLVED is a resolution function, note
will be made of what type it is tied to, but it will not be converted. The other functions
make use of modulus arithmetic to operate on an arbitrary “word” of length n that is
passed into them. INCn is used to increment the given word by one, ADDn adds two such
words together, and SUBn subtracts them. Bits is used to extract a sub-field of bits from
a word. TNZ tests a given signal against zero, and HWC changes an arbitrary constant into
a signal. '

The original HOL specifications for the primitives are shown in Figure 5.6, and are
taken from [18]. They do not make use of many of the typing abbreviations made for
the VHDL version. The derived HOL is not inconsistent with the original because the
HOL typechecker maps variables to types based on the operations performed on them
[13]. Other differences result from the discrepancies between the names used for type
abbreviations. ‘ ' ’

42

Chapter 5. Tamarack

new_type.
new_type.
new_type.
new_type.

let INCn

¢INCn*®

"INCn

let SUBn

‘SUBn‘¢

“SUBn

let ADDn

‘ADDn‘¢

“ADDn

- let Bits
‘Bits*

“"Bits

let TNZ =
‘TNZ¢,

"TNZ (in:bus »flag: wire) = !t. flag t = ~(in t= 0)"),,

let HWC = new_ deflnltlon
(*HWC*,

abbrev (‘time‘, ":num");;

abbrev (‘wire‘, ":time->bool");;
abbrev (‘bus‘, ":time->num");;
abbrev (‘mem‘, ":time->num->num");;

= new_definition (

na-=(a+1) MOD (2 EXP n)");;

= new_definition (

n (a,b) = (a - b) MOD (2 EXP n)");;
= new_definition (
; (a,b)‘= (a + b) MOD (2 EXP n)");;
= new_definition (

(n,m) w = ((w Div (2 EXP n)) MOD (2 EXP m))");;

new_definition (

"HWC ¢ (b:bus) = !t. bt = c"),,

Figure 5.6: Original HOL specifications.

5.2. Basic Definitions - | 43

“entity PWR is
port (OUTPUT: out BOOLEAN) ;
end PWR;

architecture BEHAVIOR of PWR. 1s
begin ‘

OUTPUT <= transport TRUE;
end BEHAVIOR; '

entity GND is
port (OUTPUT: out BOOLEAN),
end GND;

" architecture BEHAVIOR of GND is.
begin _
OUTPUT <= transport FALSE;
end BEHAVIOR;

Figure 5.7: 'VHDL behaviors for power and ground

let PWR = new_definition (
‘PWR¢, , ‘
"PWR(OUTPUT :BOOLEAN_SIG)

1t. QUTPUT t = T");;

let GND =vnew_definition (
‘GND¢, .
"GND(OUTPUT :BOOLEAN_SIG)

't. OUTPUT t = F");;

Figure 5.8: HOL translations of PWR and GND*

5.2.2 Power and Ground

To model power and ground for the system, two archltectures will be provided. For the
former, TRUE is mapped to the output at all times, while the latter puts out FALSE. These
can be described by the VHDL architectures of Flgute 5.7.

The HOL translations of these are very straightforward. The entity declarations provide
the parameters for each instance of new_definition, and the architectures are used to
derive the waveform representation. The results are shown in Figure 5.8, and differ from
those originally given by Joyce (Figure 5.9) [18] in a superficial way.

44 SR - o _ Chapter 5. Tamarack

let PWR = new._definition (.
‘PWR*, ' o :
"PWR(w:wire) = !t. w t = T");;

let GND = new_definition (
‘GND¢, :
"GND(w:wire) = !t. w t = F");;

Figure 5.9: Original HOL versions of PR and GND

entity BITS is
generic (N, M: NATURAL); :
port (INP: in TSI; OUTP: out TSI);
end BITS;

- architecture BEHAVIOR of BITS is
begin - o ‘
OUTP . <= transport work.Tamarack.Bits (N, M, INP);
end BEHAVIOR;

let BITS = new_definition (
‘BITS®,
"BITS(N:NATURAL ,M:NATURAL,
‘INP:TSI_SIG,OUTP:TSI_SIG) =
1t, OUTP t = Bits (N,M,INP t)*);;

- Figure 5.10: VHDL architecture and derived HOL for BITS

5.2.3 \Kﬁards

It will be necessary to examine subsections of some of the “words” used in the Tamarack.
A function that does the extraction was defined earlier. It will now be incorporated into
an architecture for use in the actual implementation. The original VHDL and the derived
HOL are included in Figure 5.10. Joyce’s HOL is given in Figure 5.11. The differences in
grouping of the parameters are stylistic in nature.

5.3. Microcode and ROM - , 45

let BITS = new_definition
(*BITS®,
"BITS (n,m) (in:bus,out:bus) =
tt. out t = Bits (n,m) (in t)");;

Figure 5.11: HOL original for BITS

use work.Tamarack.all;
package MicroCode is

" type Cntl_type is array (0 to 12) of BOOLEAN;
type Tst_type is array (0 to 1) of BOOLEAN;

type Field_type is record :
Tst_field: Tst_type;
Adr_field: TSI;
end record;

type McodeType is record -
: Cntl_word: Cntl_type;
Fields: Field_type;
end record;

procedure‘ NextMpc (TOK: in STRING; ADDR: in TSI;
RESULT: out Field_type);
procedure Cntls (Toki, Tok2: in STRING;
RESULT: out Cntl_type);

end MicroCode;

Figure 5.12: ’Pa.‘ckage declaration for the microcode -

5.3 Microcode and ROM

5.3.1 Package MicroCode

The package declaration that holds the definitions of the microcode types is found in
Figure 5.12, and the procedures used to implement it are are given in Figure 5.14 and
Figure 5.15. The microcode is modeled by a record of two types. Cntl_word represents
the 13-bit control word that is the output of the decoder. Fields is employed to hold both
the test bits and next address information that are also output by the decoder. Procedures

46

Chapter 5 Tamarack

new_type_abbrev
new_type_abbrev
new_type_abbrev
new_type_abbrev

(‘Cntl_type‘,
(‘Tst_type‘,":
(‘Field._type,
(“McodeType*,

":num~->bool");;

num->bool");;
":Tst_type # TSI");;
":Cntl_type # Field_type");;

new_type_abbrev (‘McodeType_SIG‘, ":time -> McodeType");;

- Figure 5.13: HOL translation of types

procedure Cntls (Tok1, Tok2: in STRING;
. RESULT: out Cntl_type) is

begin B
RESULT(0) := (Tok2 = "wmem");
RESULT(1) := (Tokl = "rmem");
RESULT(2) := (Tok2 = "Hmar");
RESULT(3) := (Tok2 = "wpc");
-RESULT(4) := (Tokl = "rpc");
RESULT(5) := (Tok2 = '"wacc");
RESULT(6) := (Tokl = "racc");
RESULT(7) := (Tok2 = "wir");
RESULT(8) := (Tokl = "rir");
RESULT(9) := (Tok2 = "warg");
RESULT(10) := (Tok2 = "sub");
RESULT(11) := (Tok2 = "inc");
RESULT(12) := (Tokl = "rbuf");

end Cntls;

- Figure 5.14: Procedure Cntls from package MicroCode

5.3. Microcode and ROM

47

procedure NextMpc (TOK: in STRING; ADDR: in TSI;
' RESULT: Field_type) is
begin
if TOK = "jop" then
RESULT.Tst_field(0) := TRUE;
RESULT.Tst_field(1) := FALSE;
RESULT.Adr_field := ADDR;
elsif TOK = "jnz" then .
RESULT.Tst_field(0) := FALSE;
RESULT.Tst_field(1) := TRUE;
‘ RESULT.Adr_field := ADDR;
elsif TOK = "jmp" then
 RESULT.Tst_field(0) := TRUE;
RESULT.Tst_field(1) := TRUE;
RESULT.Adr_field := ADDR;
else '
RESULT.Tst_field(0) := FALSE;
RESULT.Tst_field(1l) := FALSE;
TESULT .AAr_%ield := ADDR;
end if;
end NextMpc;

~ Figure 5.15: Function NextMpc from package MicroCode

48 . Chapter 5. Tamarack

are used to implement the operations that assign values to these fields. The only difference
between the original (Figure 5.16) and derived (Figure 5.17) HOL specifications is in the -
explicit enumeration of the array slots in each word, as well as the necessity of using extra
existential variables to denote record subfields. ' -

 5.3.2 Architectures ROM and Decode

ROM (Figure 5.18) is used to describe the behavior of the device. A physical representation
could be expressed in terms of a two dimensional array, but is unnecessary at the current
level of abstraction. The differences in the derived (Figure 5.19) and original (Figure 5.20)
HOL are minor and center around the use of VHDL procedures to model the operations
Cntls and NextMpc as well as the mappirig of processes to separate definitions. -
The decoder (Figure 5.21) is the interface between ROM and the data path of the
system. It simply breaks MIW into its components and assigns them to the appropriate
output signals. The original HOL description (Figure 5.22) did it in one step, but in the
derived version (Figure 5.23), the various parts of the record must be itemized before
assignment takes place. ‘ '

.49

' 5.3.

Microcode and ROM

let Cntls = new_definition (
‘Cntls®,
"Cntls(Tok1:STRING,Tok2: STRING RESULT:Cntl type)

(RESULT O = (Tok2 = ‘wmem‘)) /\
(RESULT 1 = (Tokl = ‘rmem®)) /\
(RESULT 2 = (Tok2 = ‘wmar‘)) /\
(RESULT 3 = (Tok2 = ‘wpc®)) /\
(RESULT 4 = (Toki = ‘rpc)) /\
(RESULT 5 = (Tok2 = ‘wacc)) /\
(RESULT 6 = (Tokl = ‘racc®)) /\
(RESULT 7 = (Tok2 = ‘wir®)) /\
(RESULT 8 = (Tokl = ‘rir‘)) /\
(RESULT 9 = (Tok2 = ‘warg‘)) /\
(RESULT 10 = (Tok2 = ‘sub‘)) /\
(RESULT 11 = (Tok2 = ‘inc‘)) /\

(RESULT 12 = (Tokl = ‘rbuf))");;
let: NextMpc = new_definition (
‘NextMpc®,
- "NextMpc(TOK:STRING,ADDR:TSI,RESULT:Field type)
? RESULT._Tst_field:Tst_type RESULT_Adr_field:TSI.
((TDK = ‘jop*) => ((RESULT.Tst.field 0 = T) /\
(RESULT.Tst_field 1 = F) /\
(RESULT._Adr_field = ADDR) /\
(RESULT = (RESULT._Tst_field,
RESULT_Adr_field))) |

((RESULT_Tst_field 0 = F) /\
(RESULT_Tst_field 1 = F) /\
(RESULT_Adr_field = ADDR) /\
(RESULT = (RESULT.Tst_field,

RESULT_Adr_field))))");;

Figure 5.16: Translation of NextMpc and Cntls

50

Chapter 5. Tamarack

let Cntls = new_definition (

‘Cntls®,

"Cntls (toki,tok2) =
‘wmem‘),
‘rmem‘),
‘wmar‘),
‘VPC‘),
‘rpc?),
‘wacc‘),
‘racc‘),
‘wir‘),
‘rir‘),
‘warg’),
‘sub‘),
¢inc‘),
‘rbuf‘))™");;

((tok2
(tok1
(tok2
(tok2
(tokl
(tok2
(toki
(tok2
(tok1
(tok2
(tok2
(tok2
(tok1

let NextMpc = new_definition (
‘NextMpc®

Y"NextMpc
(tok
(tok
(tok

’

(tok,addr:num) =

‘J'0p‘)
‘jnz‘)
‘jmp‘)

=> ((T,F),addr) |

=> ((F,T),addr) |

=> ((T,T),addr) |
((F,F),addr)");;

Figure 5.17: Original HOL for microcode operations

5.3.

Micr‘bcode. and ROM -

51

use work.Tamarack.all;
use work.MicroCode.all;

entlty ROM is
port (ADDR: in TSI; DATA: out HcodeType),
end ROM; : -

architecture BEHAVIOR of ROM is
variable Actual_ ROM McodeType;
begin
process (ADDR)
begin
if ADDR = O then
Cntls("rpc","wmar",Actual_ ROM Cntl word)
NextMpc("ine",0, Actual ROM.Fields); .
elsif ADDR = i then
Cntls("rmem","wlr",Actual_ROM.Cntl_word);
NextMpc("inc",0,Actual _ROM.Fields);
elsif ADDR = 2 then
Cntls("rir","wmar",Actual_ROM.Cntl_word);
NextMpc("jop",0,Actual _ROM.Fields);

elsif ADDR = 14 then
Cntls("rbuf","wacc",Actual_RDM.Cntl_word);
NextMpc("jmp",10,Actual _ROM.Fields);
else L '
Cntls("none","none" ,Actual_ROM.Cntl_word);
NextMpc("jmp",10,Actual. ROM Fields);
' end if;
DATA <= transport Actual_ROM;
end process; .
end BEHAVIOR;

Figure 5.18: VHDL architecture for the ROM -

52

. Chapter 5. Tamarack

let ROM = new_definition (

‘ROM®, v
“"ROM(ADDR:TSI;DATA:McodeType) =
? Actual_ROM_Cntl_word:Cntl_type
Actual ROM_Fields:Field_type.
PROC_ROM (ADDR,DATA,ACTUAL_ROM_Cntl_word,
Actual _ROM_Fields)");; '

let PROC_ROM = new_definition (
‘PROC_ROM®, ' .
Y"PROC_ROM (ADDR:TSI,}..,Acual_ROH_Fields:Field_type) =
((ADDR = 0) => ,) '
(Cntls(‘rpct, ‘wmar‘,Actual _ROM_Cntl_word) /\
NextMpc(‘inc,0,Actual ROM_Fields)) |
(ADDR = 1) =>
(Cntls(‘rmem®, ‘wir‘,Actual_ROM_Cntl_word) /\
NextMpc(‘inc‘,0,Actual_ROM_Fields)) |
(ADDR = 2) => ' 7
(Cntls(‘rir®,‘wmar®,Actual _ROM_Cntl_word) /\
NextMpc(‘jop‘,0,Actual _ROM_Fields)) I

(ADDR = 14) => :
(Cntls(‘rbuf’, ‘wacc‘,Actual _ROM_Cntl_word) /\
NextMpc(‘jmp*,10,Actual _ROM_Fields)) I

. (Cntls(‘none‘, ‘none‘,Actual _ROM_Cntl_word) /\
NextMpc(‘jmp‘,0,Actual_ROM_Fields))) /\
(DATA = (Actual_ROM_Cntl_word,Actual_ROM_Fields))");;

| Figure 5.19: HOL translation of the ROM

v5.3-. .Microcode and ROM

53

let Microcode
‘Microcode®,
"Microcode n =

((n=0) =>
(n=1) =
(n=2) =
%

(n=3) =

% -
(n=4) =
% v

. (n=5) =

oo
(n=6) =
% .
n=7) =
%

(n=8) =

%

(n=9) =
9% .

(n = 10) =
(n=11) =>
(n = 12) =>
(n = 13) =
(n = 14) =>

new_definition (

(Cntls (‘rpct,‘wmar‘),
(Cntls (‘rmem®,‘wir*‘),
(Cntls (‘rir‘¢,‘wmar‘),
JZR
(Cntls (‘none‘,‘none‘),
JMP
(Cntls (‘rir‘,‘wpc‘),
v ADD
(Cntls (‘racc*,‘warg‘),
SUB
(Cntls (‘racc®,‘warg‘),
: LD
(Cntls (‘rmem¢,‘wacc‘),
ST

~(Cntls (‘racc‘,‘wmem‘),

" NOP -
(Cntls. (‘none‘, ‘none‘),
NOP
(Cntls (‘rpc‘,‘inc’),

‘(Cntls (‘rbuf‘,‘wpc‘),

(Cntls (‘rmem‘,‘add‘),
(Cntls (‘rmem‘,‘sub‘),
(Cntls (‘rbuff,‘wacc*),
(Cntls (‘none‘,‘none‘),

NextMpc (‘inc‘,O)) |
NextMpc (“inc¢,0)) |
NextMpe (‘jop‘,0)) |

%

NextMpc (‘jnz‘,10))
NextMpc (‘jmp*,0)) |
NextMpc (‘jmp®,12)) |

NextMpc (‘jmp‘,13)):|

NextMpc (‘jmp¢,10)) |

NextMpc (jmp*,10)) |

NextMpc (‘inc,0)) |

h
NextMpc (‘inc¢,0)) |
NextMpc (‘jmp¢,0)) |
NextMpc (‘jmp¢,14)) |
NextMpc (‘inc‘,0)) |
NextMpc (‘jmp®,10)) |
NextMpc (‘jmp‘,0)))™);;

Figure 5.20: Original HOL specification of the ROM

54

Chapter 5. Tamarack

use wérk.TamaraCk.all;
use work.MicroCode.all;

entity Decoder is

port (MIW: in McodeType; -
WMEM, RMEM, WMAR, WPC, RPC
WIR, RIR, WARG, ALUO, ALUi, RBUF, TESTO,
TEST1: out BOOLEAN; ADDR: out TSI);

" end Decoder; ' .

begin
WMEM
RMEM
WMAR

WPC .

- RPC
WACC

- RACC

. WIR
RIR
WARG
ALUO
ALU1
RBUF

TESTO <=
TEST1 <=

ADDR <= transport MIW.Fields.Adr_field;

transport
transport
transport
transport
transport
transport
transport

- transport

transport
transport
transport
transport
transport

transport MIW.Fields.Tst_field(0);
transport MIW.Fields.Tst_field(1);

end BEHAVIOR;

'~ architecture BEHAVIOR of

MIN.
MIN.
MIW.
MIN.
MIN.

MIW

MIW

MIW

Decoder is

Cntl;word(O);
Cntl_word(1);

Cntl_word(2);ll

Cntl_word(3);
Cntl_word(4);

.Cntl_word(5);
MIW.
MIW.
MIW.
.Cntl_word(9);
MIW.

Cntl_word(6);
Cntl_word(7);
Cntl_word(8);

Cntl_word(10);

.Cntl_word(11);
MIW.

Cntl_word(12);

, WACC, RACC,

Figure 5.21: VHDL source for the decoder

5.3. Microcode and ROM

55

let Decoder = new_definition (
‘Decoder‘,
"Decoder (MIW:McodeType, .. .,ADDR:TSI SIG)
1t. ? Cntl_word Fields.
' - MIW = (Cntl_word,Fields) /\
? Tst_field Adr_field.
Fields = (Tst_field,Adr f1e1d) /\
WMEM t = Cntl_word O /\

ADDR t = Adr_field");;

Figure 5.22: Derived HOL for the decoder

let Decoder = new_definition (

‘Decoder’, -

"Decoder (.
miw:time->"miw_ty,test0,testl,addr,
Wmem,rmem,wmar »WPC,TPC,Wace, race, wir,rir,

 warg,alu0,alul,rbuf) =
1t. .

((vmem t,rmem t,wmar t,wpc t,rpc t,wacc t,
-racc t,wir t,rir t,warg t,alu0 t,alul t,
rbuf t),

((testO t,testl t),addr t)) =

miv t");;

Figure 5.23: Original HOL for the decoder

56 : : : - : . : . Chapter 5. Tamaraek

5.4 PfirhitﬁiVe’_Sy'ste.m _Comp.onents

' The gates used in the system are trivial translations of the VHDL originalé of Fig‘ure.5.24. |

The operations and and or get mapped to /\ and \/ respectively to provide the operations
required for ANDGATE and ORGATE. MUX is a simple example of conditional signal assignment.

| ‘The derived versions in Figure 5.25 are identical to the original HOL specifications of
Figure 5.26. The translations of ADDER (Figures 5.27, 5.28, and 5.29) and CheckCntls, -
“which defines the mutual exclusion fllIlCth[l for the bus, (Flgures 5.30, 5. 31 and 5. 32) are

performed in a similar fashion.

DEL is a simple umt—delay reglster Its translatlon is conducted in the same manner as
the basic gates, and is identical to the original HOL specification. REG is more complex,

and makes use of the guarded signal assignment to express the same relationship as Joyce’s

description. The use of the signal kind bus will be discussed in Section 5.6.

5.5 ALU

The ALU (Figure 5.39) makes use of the functions Incn, Addn, and Subn defined in the
package Tamarack. Through use of the conditional signal assignment, the input conditions
can be tested, and generate a high-impedance (—1) value when invalid control signals are
received. Because of the use of this condition, we are forced to describe the operation
in a special manner. An existentially quantified variable, high_impedance, is used to
represent the value. All that has been done is to remove the explicit reference to —1,
- and replace it with an abstract one. While the arms of the conditional statement appear

different in the derived (Figure 5.40) and original (Figure 5.41) HOL, they express the
same relationship. . .

5.6 Mémory

'With main memory (Figure 5.36), a heretofore untranslated structure is encountered. It
is the declaration of a port of type bus. The declaration is significant from the standpoint
of simulation in that it is used to delimit a signal that is disconnected from its driver when

“ the implicit VHDL signal GUARD becomes false [23]. Because memory is expressed as a two—
dimensional array, the fetch and store operations are specified in the signal assignment
statement itself. In terms of HOL, the bus declaration is used to convert the guarded
signal assignment statement into a conditional one if it is not already in that form, and
to assign the output to itself as the “else” branch. When translated (Figure 5.37), the
relationships are more simply stated than in the original (Fxgure 5.38), where the external
-functxon Update is used for accessmg memory.

5.6 Memor.y

57

use work.Tamarack.all;

entity ANDGATE is -
port (A, B: in BOOLEAN; OUTP: out BOOLEAN);

end ANDGATE;

- architecture BEHAVIOR of ANDGATE is

begin .
OUTP <= transport A and B;
end BEHAVIOR;

uée work.Tamarack.all}

entity ORGATE is
port (A, B: in BOOLEAN; OUTP: out BDOLEAN);

end ORGATE;

architecture BEHAVIOR of ORGATE is
begin

OUTP <= transport A or B;
end BEHAVIOR;

use work.Tamarack.a11§
entity MUX is

port (CNTL: in BOOLEAN; A, B: in TSI;
OUTP: out TSI);

- end MUX;

architecture BEHAVIOR of MUX is
begin :

OUTP <= transport B when CNTL else A;
end BEHAVIOR;

Figure 5.24: VHDL description of the basic gates

58 | - ' Chapter 5. ‘Tamarack

let ANDGATE = new_definition (
¢ ANDGATE®,
"ANDGATE (A :BOCLEAN_SIG,B:BOOLEAN_SIG,OUTP:BOOLEAN_SIG) =
't. OUTP t = At \/ B t");;

let ORGATE = new_definition (
"*ORGATE‘, CE
"ORGATE(A:BOOLEAN_SIG,B:BOOLEAN_SIG,0UTP:BOOLEAN_SIG) =
'1t. OUTP t = At \/ B t");;

let MUX = new_definition (
‘MUX¢, ' .
"MUX(CNTL:BOOLEAN‘SIG,A:TSI_SIG,B:TSI_SIG,OUTP:TSI_SIG) =
1t. OUTP t = (CNTL t => B t | 4 t)");; :

~ Figure 5.25: Translated HOL versions of the basic gates

let AND = new_definition
(AND¢, < .
"AND (a:wire,b:wire,out:wire) = !t. out t = a t /\ b t");;

let OR = new_definition
(‘O0R¢, N
"OR (a:wire,b:wire,out:wire) = !t out t =at \/ b t");;

let MUX = new_definition
(‘HUX‘,
“MUX (cntl:wire,a:bus,b:bus,out:bus) =
't.out t = (cntl t =>b t | a t");;

Figure 5.26: Original HOL versions of the basic gates

5.6. Memory

59

use work.Tamarack.all;

entity ADDER is

generic (N: NATURAL);
~ port (A, B: in TSI; OUTP: out TSI);
end ADDER;

architecture BEHAVIOR of ADDER is
‘begin
QUTP <= transport Addn (N, A, B);

end BEHAVIOR;

Figure 5.27: VHDL description of ADDER

lot ADDER = new_definition (
¢ADDER¢,
“ADDER (N:NATURAL,...,OUTP:TSI_SIG) =
QUTP t = Addn (N,A t,B t)");;

Figure 5.28: Derived HOL description of ADDER

let ADDER = new_definition
(¢ADDER®,
“"ADDER n (a:bus,b:bus,out:bus) =
!t. out 1 = ADDn'n (a t,b t)");;

Figure 5.29: Original HOL description of ADDER

60 v - Chapter 5. Tamarack

_ uée work.Tamarack.all;

entity CheckCntls is
port (RMEM, RPC, RACC, RIR, RBUF: in BOOLEAN;
P: out BOOLEAN);
end CheckCntls;

architecture BEHAVIOR of CheckCntls is
begin’

P <= transport not (RPC or RACC or RIR or RBUF) when RMEM else
not (RACC or RIR or RBUF) when RPC else
not(RIR or RBUF) when RACC else

- not RBUF when RIR else
- TRUE;

end BEHAVIOR;

Figure 5.30: VHDL description of the coﬁtrol checker

let CheckCntls = new.definition (
‘CheckCntls‘, v
“"CheckCntls (RMEM:BOOLEAN_SIG,...,P:BOOLEAN_SIG) =
t.
= (RMEM t => “(RPC t \/ RACC t \/ RIR t \/ RBUF t) |

RPC t => “(RACC t \/ RIR t \/ RBUF t) |
RACC t => “(RIR t \/ RBUF ¢) |
RIR't => "RBUF t | T");;

Figure 5.31: Derived HOL description of the control checker.

let CheckCntls = new_definition

(‘CheckCntls®,

"ChackCntls (rmem,rpc,racc,rir,rbuf,P) =

ft.
Pts= .

((rmem t) => (“(rpc t \/ racc t \/ rir t \/ rbuf t)) |
((xpc t) => (“(racc t \/ rir ¢t \/ rbuf t)) |
((race t) => (“(rir t \/ rbuf t)) |
((rir t) => (“(rbuf t)) | TOIN™);;

7 Figufe 5.32: Original HOL description of the control checker

61

_ 5.6." Memory

use wdrk.Tamarack.all;

entity DEL is

port (INP: in TSI; OUTP out TSI),
end DEL;

architecture BEHAVIOR of DEL is

- begin

OUTP <= transport INP after ins;
end BEHAVIOR; '

use work.Tamarack.all}
entity REG is

port (W, R: in BOOLEAN; INPT: in TSI;
BUSS: out BUSTYPE bus; OUTP: inout TSI; P: in BOOLEAN);

~end REG;

architecture BEHAVIOR of REG is
signal GUARD: BOOLEAN := FALSE;

begin
B: block (P and R)
. begin
OUTP <= transport INPT after 1 ns when W else
OUTP;

BUSS <= guarded transport OUTP;
end block B;
end BEHAVIOR;

Figure 5.33: VHDL specifications of the registers

62 ’ : ‘ ' . Chapter 5. Tamarack

" let DEL = new_definition (
¢DEL* _

“DEL (INP:TSI_SIG,0UTP:TSI_SIG) =

1t. OUTP t = INP (t - 1)");;

let REG = new_definition (
‘REG‘ .
"REG (W:BOOLEAN_SIG,...,P:BOOLEAN_SIG) =
1t. OUTP t = (W t => INPT (t - 1) | OUTP t) /\
BUSS t = (Pt /\ Rt =>OUTP t | BUSS t)");;

Figure 5.34: Derived HOL specifications of the registers

let DEL = new_definition
(‘DEL¢, | . |
"DEL (in:bus,out:bus) = !t. out (t+1) = in t");;

let REG = new-definition
(‘REG" . . T
"REG ((w:wi:e,r:wire,in:bus,bus:bus,out:bus)v,P)
1t. : ’ :
((out (t+1) = (w t => in t | out t)) /\
(Pt==>rt==>(bus t = out t)))");;

Figure 5.35: Original HOL specifications for the registers

5.7. Major Subsystems 63

use work.Tamarack.all;

entity MEM is-
port (W,R: in BDOLEAN
ADDR: in TSI;
BUSS: inout BUSTYPE bus,
P: in BOOLEAN
'MEMORY: inout MEMTYPE);
end HEH;

’archltecture BEHAVIOR of MEM is
begin
B: block (P and R)
begin
MEMORY(ADDR) <= transport BUSS after ins when W else
MEMORY (ADDR) ;
BUSS <= guarded transport MEMDRY(ADDR)
end block B;
end BEHAVIOR;

Figure 5.36: VHDL description of main memory

5.7 Major Subsystems

With the specification of the logic for the microcode program counter (MPC), the first use
of external architectural components is encountered. The declarations for them are shown -
in Figure 5.42, but will be omitted from later architectures. The instantiations of HWC are
concurrent procedure calls, and do not need to be labeled. In HOL, the components are
instantiated in the derived version exactly as those in Joyce’s original. Internally declared
signals are represented as existentially quantified variables. The control unit, data path,
and implementation are treated in a like manner, and are unchanged in translated form
from the ongmal specifications.

64 ‘ Chapter 5. Tamarack

let MEM = new_definition :(
‘MEM‘, .
“"MEM(W:BOOEAN_SIG,R:BOOLEAN_SIG,ADDR:TSI_SIG,
BUSS:BUSTYPE_SIG,P:BOOLEAN_SIG,
MEMORY :MEMTYPE_SIG) =
't. (MEMORY t (ADDR) = (W t => BUSS (t-1) |
MEMORY t (ADDR)) /\
~BUSS t = ((P t /\ R t) => MEMORY t (ADDR) |
BUSS t))");;

Figure 5.37: Derived HOL description of main memory

let Update = new_definition
(‘Update®, v . ,
"Update (s:#->**,x,y) = \x. (x=x) =}y — (s X)");;"

let: MEM = new_definition
(‘MEM®, '
“"MEM n ((w:wire,r:wire,addr:bus,bus:bus),(P,mem:mem)) =
1t. .
(mem (t+1) = (v t => Update (mem t,addr t,bus t) |
' . mem t)) /\ -
(Pts==>rt==>(bus t = mem t (addr t)))");;

Figure 5.38: Original HOL description of main memory

5.7. Major Subsystems . ‘ - 65

use work.Tamarack.all;

entity ALU is
generic (N: NATURAL);
port. (FO, Fi: in BOOLEAN;
" A: in TSI;
B: in BUSTYPE;
OUTP: out TSI);
end ALU;

architecture BEHAVIOR of ALU is
begin
OUTP <= transport o '
Incn (N, B) when ((not FO) and F1) else

~ Addn (N, A, B) when (not FO and not F1) else
Subn (N, A, B) when (FO and (not F1)) else
. -1;
end BEHAVIOR;

Figure 5.39: VHDL description of the ALU

let ALU = new_definition (
¢ALUC,
"ALU(N:NATURAL,FO:BODLEAN_SIG,FI:BOULEAN;SIG,
' A:TSI_SIG,B:BUSTYPE_SIG,O0UTP:TSI_SIG) =
1t. ? high_impedance.
OQUTP t = : -
(("FO t /\ F1 t) => Incn (N,B t) |
("FO t /\ "F1 t) => Addn (N,A t,B t) |
(FO t /\ “F1 ¢t) => Subn (N,A t,B t) |
high_impedance)");;

Figure 5.40: Derived HOL deécription of the ALU

66

Chapter 5. Tamarack

let ALU = new_definition

(fALUC,
YALU n (fO:wire,fil:wire,a:bus,b:bus,out:bus) =
It.
™.
out t =
(((£0 t,£1 t) = (T,T)) => w |
((£f0 t,f1 t) = (F,T)) => INCann (b t) |

((f0 t,f1 t)

(F,F)) => ADDn n (a t,b t) |
' SUBh n (a t,b t))");;

Figure 5.41: Original HOL description of the ALU

~ 5.7. Major Subsystéms

67

entity MpcUnit is S
port (TESTO, TEST1, ZEROFLAG: in BOOLEAN;
OPCODE, ADDR in TSI; MPC: inout TSI);

ehd Mchnlt,

architecture BEHAVIOR of MpcUnit is
component MUX

port (CNTL: in BOOLEAN; A, B: in TSI; OUTP: out TSI);

end component;
for. all MUX use entlty work. HUX(BEHAVIOR),

component ANDGATE
port (A, B: in BOOLEAN; OUTP: out BOOLEAN);
end component;
for all: ANDGATE use entlty work . ANDGATE (BEHAVIOR) ;

component ORGATE

port (A, B: in BOOLEAN; OUTP: out BOOLEAN);
end component;
for all: ORGATE use entity work.ORGATE(BEHAVIOR);

component DEL

port (INP: in TSI; QUTP: out BUSTYPE);
end component;
for all: DEL use entity work.DEL(BEHAVIOR) ;

component ADDER _
generic (N: NATURAL);
port (A, B: in TSI; OUTP: out TSI);
end component; -
for all: ADDER use entity work.ADDER(BEHAVIOR);

signal ZERO, ONE, THREE: TSI;
signal Wi, W2: BOOLEAN;
signal B1, B2, B3, B4, BS5: TSI;

Figure 5.42: Declarations in VHDL description of the MPC unit

68

Chapter 5. Tamarack

begin

andi:

orl:

Muxi:
Mux2:
Mux3:

Mux4:
‘addi:

delt:
end BEHAVIOR;

DEL port map (BS, MPC);

ANDGATE port map (TEST1, ZEROFLAG, W1);
ORGATE port map (TESTO, W1, W2);

MUX port map (TEST1, OPCODE, ADDR, B1);
MUX port map (W2, MPC, Bi, B2);
HWC(0,ZERO) ;

HWC(3,THREE) ;

MUX port map (TESTi, THREE, ZERO, B3);
HWC(1,0NE);

MUX port map (W2, ONE, B3, B4);

ADDER generic map (4)

' port map (B2, B4, BS);

Figure 5.43: Main body of the VHDL description of the MPC unit

let MpcUnit = new_definition (
‘MpcUnit®,
"MpcUnit (TESTO:BOOLEAN_SIG,TEST1:BOOLEAN_SIG,

? ZERO ONE THREE W1 W2 Bi B2 B3 B4 BS.

'MUX(W2,MPC,B1,B2) - /\
HWC(0,ZERO) /\
HWC(3,THREE) - . /\
MUX(TEST1,THREE,ZERO,B3) /\
HWC(1,0NE) N
MUX(W2,0NE,B3,B4) = = /\
ADDER(4,B2,B4,BS5) R AN

ZEROFLAG:BOOLEAN_SIG,0PCODE:TSI_SIG,
ADDR:TSI_SIG,MPC:TSI_SIG) =

ANDGATE(TEST1,ZEROFLAG,W1) /\
ORGATE(TESTO,W1,W2) = /\
MUX(TEST1,0PCODE,ADDR,B1) /\

DEL(BS,MPC)");;

Figure 5.44: Derived HOL description of the MPC unit

5.7. Major Subsystems

69.

- let MpcUnit = new_definition (
‘Mchnit‘,
"MpcUnit (test0,testl,zeroflag,opcode,addr,mpc)
7wl w2 zero one three bl b2 b3 b4 bS.
AND (testi,zeroflag,wi) /\
OR (testO,wi,w2) /\
MUX (testl,opcode,addr,bi) /\
MUX (w2,mpc,b1,b2) /\
HWC 0 zero /\
HWC 3 three /\
MUX (testl,three,zero,b3) /\
HWC 1 one /\
MUX (w2,o0ne,b3,b4) /\
ADDER 4 (b2,b4,b5) /\
DEL (b5,mpc)™);;

Figure 5.45: Original HOL description of the MPC unit

70

Chapter 5. Tamarack

use work.Tamarack.all;

use work.Microcode.all;

entity CntlUnit is ¢
port (ZEROFLAG: in BOOLEAN; OPCODE: in TSI;
WMEM, RMEM, WMAR,-WPC, RPC; WACC, RACC,
WIR, RIR, WARG, ALUO, ALU1, RBUF: out BOOLEAN;
MPC: inout TSI);
end CntlUnit;

architecture BEHAVIOR of CntlUnit is
< component declarations>

signal MIW: McodeType;
signal TESTO, TEST1: BOOLEAN;
signal ADDR: TSI;

begin

romP: ROM port map (MPC, MIW);

decP: Decoder port map (MIW, WMEM, RMEM, WMAR, WPC,
RPC, WACC, RACC, WIR, RIR, WARG,
ALUO, ALU1, RBUF, TESTO, TEST1,
ADDR) ;

mpcP: Mchnlt port map (TESTO, TEST1i, ZEROFLAG,

OPCODE, ADDR, MPC);

end BEHAVIOR;

Figure 5.46: VHDL description of the control unit

let CntlUnit = new_definition (
‘CntlUnit‘,
"CntlUnit (ZEROFLAG:BOOLEAN_SIG,O0PCODE:TSI_SIG,
. WMEM:BOOLEAN_SIG,...,MPC:TSI_SIG) =
? MIW TESTO TEST1 ADDR.

ROM (MPC,MIW) /\

Decoder (HIH,HMEM,RMEM,HHAR,HPC,RPC,WACC,RACC,
WIR,RIR,WARG,ALUO,ALU1,RPC,
TESTO,TEST1,ADDR) /\

MpcUnit (TESTO,TEST1,ZEROFLAG,OPCODE, ADDF. MPC)");;

Figure 5.47: Derived HOL description of the control unit.

5.7. Major Subsystems

71

let CntlUnit = new_definition (.
‘CntlUnit‘, ' ‘
"CntlUnit (
(zeroflag,opcode,
 Wmem,Trmem,wmar,wpc,IpPC,Wacc,racc,
wir,rir,warg,alu0,alul,rbuf),
mpc) =
?miw test0 testl addr.
ROM Microcode (mpc,miw) /\ -
Decoder (
miw,test0,testl,addr,
wmem,Tmem,wmar ,wpc,Ipc,wacc,racc,
wir,rir,warg,alu0,alul,rbuf) /\
Mchnit (test0,testl,zeroflag,opcode,addr,mpc)");;

Figure 5.48: Original HOL description of the control unit

.72

~ Chapter 5. Tamarack

use work.Tamarack.all;
entity DataPath is
generic (N: NATURAL);

port

end DataPath;

architecture BEHAVIOR of DataPath is
<component declarations>

signal P, POWR, GRND: BOOLEAN; signal BUSS: BUSTYPE bus,
signal ADDR: NATURAL; signal ALU: TSI; :

begln

chkP:
memP:
marP:
biti:

pc.P:
‘accP:

ir_P:
bit2:

argP:
aluP:

bufP:
pwri:

gndi:
end BEHAVIOR;

(WMEM, RMEM, HHAR WPC, RPC, WACC, RACC

WIR, RIR, WARG, ALUO, ALUi, RBUF: in BOOLEAN;
ZEROFLAG: out BOOLEAN; OPCODE: out TSI;

MEMORY: inout MEMTYPE;

MAR, PC, ACC, IR, ARG, BUF: inout TSI);

CheckCntls port map (RMEM,RPC,RACC,RIR,RBUF,P);'
MEM port map (WMEM,RMEM,ADDR,BUSS,P,MEMORY);
REG port map (WMAR,GRND,BUSS,BUSS,MAR,P);
BITS generic map (O,N)

port map (MAR,ADDR);
REG port map (WPC,RPC,BUSS,BUSS,PC,P);
REG port map (WACC,RACC,BUSS,BUSS,ACC,P);
TNZ(ACC,ZEROFLAG) ;
REG port map (WIR, RIR BUSS, BUSS IR,P);
BITS generic map (N,3)

port map (IR,0PCODE);
REG port map (WARG,GRND,BUSS,BUSS, ARG »P);
A_L_U generic map (N+3)

port map (ALUO,ALU1,ARG,BUSS, ALU)
REG port map (POWR,RBUF,ALU,BUSS,BUF,P);
PWR port map (POWR);
GND port map (GRND);

- Figure 5.49: VHDL description of the data path .

5.7. Major Subsystems

73

let DataPath = new_definition (
‘DataPath®,
“DataPath(WMEM:BOOLEAN_SIG,...,BUF:TSI_SIG) =
7 P POWR GRND BUSS ADDR ALU. '
- CheckCntls(RMEM,RPC,RACC,RIR,RBUF,P) /\

GND(GRND)");;

Figure 5.50: Derived HOL description of the data path

‘Chapter 6

C“onclusi»ons'al_id Further Research'

In the course of the description of three translation schemes, the operational semantics
of a subset of VHDL have been specified. The significance of the effort lies in the fact
that no such description has previously been made available. Certainly, the information
in (23] is helpful in the understanding of the language and has been used to implement
it, but in order to do any meaningful work on the verification of VHDL designs, a more
formal representation is needed. ‘

The translation methods are also relevant outside the context of the formal specification
of a hardware description language. It is wasteful of both time and energy to attempt to
formally verify a first design for a system. Some simulation should be done to determine
if it appears to exhibit the desired behavior. After the basic functionality of the circuit
has been determined with some certainty, formal verification is attempted. By using both
simulation and verification, the best of both worlds can then be obtained. Simulation can
be used to give basic results early in the design cycle, and formal verification can be done
on a mature design to ensure correctness. VHDL coupled with VAL accomphshes the first
objective, and HOL the second.

To accomplish the specification of the entire language, a formal definition of the VHDL
simulation environment should be made. HOL presents a suitable basis, and the theory
that results could be used in conjunction with another theory encompassing VHDL types
to aid in the development of better methodologies for the transformation of VHDL de-
scriptions into HOL specifications. Further, the work would be relevant to the designers of
VHDL systems, in that they would then have “the” definition of what a simulator should
do. Because of the commercial availability of only one complete simulator at the present
time, the problem of diverging language implementations has yet to be encountered, but
will surface in the near future as more vendors begin to market VHDL tool sets.

The translated VAL versions of VHDL specifications were constructed in a mechanical
fashion, and allowed for the examination through simulation of the underlying timing
model used by the language. The information is useful in the overall understanding
of VHDL, and can be incorporated into a more concrete definition of the simulation
environment. The goal would be to have VAL timing annotations embedded into the
various components that make up any future VHDL test suite. New 31mula.tors could
then be evaluated more quickly and thoroughly.

In the translation of VHDL descriptions into HOL specifications, several problems were
encountered. Some were trivial, others were of greater significance; and most of them
dealt with the representation of complex types. The multiple uses of new_type_abbrev
did not actually create any new types, but simply established a shorthand notation to
describe the signals and variables used in a given system. Records presented a unique

74

problem in that the whole structure of the type had to be re-iterated during the course of
a definition. Also, the representation of any numerical value other than those associated

with the natural numbers proved to be difficult in some cases or impossible in others (i.e.

reals). These issues would have to be addressed in the definitional theories just mentloned

through the specification of new types.
The Tamarack example demonstrated that a non—trlvml VHDL design could be con-
verted into HOL. The methods used were for the most part mechanical, but in many cases

the simplicity of the original HOL specification was lost. The problems resulted from the

use of complex structures such as arrays and records as well as unrepresentable values
(=1). The last of these introduced non-mechanical methods into the translation scheme
by forcing the use of existentially quantified variables to specify them. The refinement of
the way in which the conversions are effected is therefore essential to the future of the
verification of VHDL designs.. To accomplish the task, more examples of real systems need
to be examined in the same fashion as the Tamarack, and the lessons learned from them
included in the development of subsequent algorithms. ‘

More can also be learned by further refinement of the Tamarack into a true reﬂectlon of
the actual chip. Transport delay, while simple to use, may not express more complex rela-
tionships where inertial delay may be more appropriate. Further, the timing specifications
currently center around one nanosecond-delay registers, and a more precise specification
of the timing behavior of the various components is needed. The result could again be
converted into HOL, and proved to be a special case of the more general design.

References

[1] Larry M. Augustin, Benoit A.rGennabrt, Youm Huh, David C. Luckham, and Alec C.
Stanculescu. An Overview of VAL. Technical Report CSL-TR-88-367, Stanford
University, Stanford, California, October 1988.

[2] Harry G. Barrow. VERIFY: A Program for Proving Correctness of Digital Hardware
Designs. Artificial Intelligence, 24:437-491, 1934.

[3] G. Birtwistle and P. A. Subrahmanyam. VLSI Specification, Verification, and Syn-
thesis. Academic Press, New York, 1987.

[4] Graham Birtwistle, Jeff Joyce, Breen Liblong, Tom Melham, and Rick Schediwy.
- Specification and VLSI Design. In Formal Aspects of VLSI Design, pages 83-97.
Elsevier Publishers (North-Holland), 1986. '

[5] D. Borrione. From HDL Descriptions to Guaranteed Correct Circuit Design. North-
Holland, Amsterdam, 1987.

[6] Albert Camilleri. Executing Behavioral Definitions in Higher-Order Logic. Technical
Report No. 140, University of Cambridge Computer Laboratory, 1988.

[7] Albert Camilleri, Mike Gordon, and Tom Melham. Hardware Verification using
Higher-Order Logic. In D. Borrione, editor, From HDL Descriptions to Guaran-
teed Correct Circuit Designs, pages 43-67. Elsevier Science Publishers B. V. (North-
Holland), 1987.

[8] Avra Cohn. A Proof of Correctness of the VIPER Microprocessor: The First Level.
In VLSI Specification, Verification, and Synthesis. Kluwer Academic Publishers,
Boston, 1988. .

[9] W. J. Cullyer. VIPER - Correspondence Between the Specification and the “Major
State Machine”. Technical Report 86004, Royal Signals and Radar Establishment,
Malvern, Worchestershire, England, January, 1986.

[10] Mike Gordon. Proving a Computer Correct. Technical Report 42, Cambridge Uni-
versity Computer Laboratory, 1983. '

[11] Mike‘ Gordon. Why Higher Order Logic is a Good Formalism for Specifying and Ver-
llfgélfilg Hardware. In Formal Aspects of VLSI Design. Elsevier Scientific Publishers,

[12] Mike Gordon. A Proof Generating System for Higher-Order Logic. Technical Report
103, University of Cambridge Computer Laboratory, 1987. ,

[13] Mik7e Gordon. The HOL Manual. Computer Laboratory, Cambridge University,
1987. . .

76

77

~ [14] C. A. R. Hoare. An Axiomatic Basis for Computer Prdgramming. Commaunications
"~ of the ACM, 12(10):576-583, 1969. S S 5

[15] Jeffery Joyce. Using Higher-Order Logic to .Spec.ify' Coniputer Hardware and Archi-
tecture. In Proceedings of the IFIP TC10- Working Conference on Design- Methodol-
ogy in VLSI and Computer Architecture, Amsterdam, 1988. North-Holland.

[16] Jeffery J. Joyce. Tamarck Microprocéssdr Proof. Example‘pfovided with the HOL
~ system, 1985. . S) o :

[17]‘ Jeffery J. Joyce. Formal Verification and Implementation of a Microprocessor.
In VLSI Specification, Verification, and Synthesis. Kluwer Academic Publishers,
Boston, 1988.. e ,

[18] Jéffery J. Joyce. Tamarck Microprocessor Proof. Example provided with the HOL
system, 1988.

[19] Jeffery J. Joyce. Formal Specification and Verification of Synthesized MOS Struc-
tures. To appear in the proceedings of VLSI-89 (Munich), July 1989.

[20] G. Milne and P. A. Subrahmanyam. Formal Aspects of VLSI Design. Academic
Press, New York, 1987. ' ‘

[21] Gebrge Milne. Hardware Verification in Higher-Order Logic. Unpublished n'otes,‘
1989. _ _

- [22] Paul Naish and Peter Bishop. Designing ASICS. Ellis Horwood, Ltd., Chichestrer,
: 1988.

[23] Institute of Electrical and Electronics Engiﬁeers. IEEE Standard VHDL Language
Reference Manual. IEEE Press, New York, 1988.

[24] Larry Paulson. A Higher Order Implementation of Rewriting. In Science of Com-
puter Programming, volume 3, pages 119-149. North-Holland, 1983.

[25] Robin L. Steele. An Expert System Application in Semicustom VLSI Design. NCR.
Journal, 1(1), 1987. : _

