Technical Report VAN

Number 197

Computer Laboratory

The semantics and
implementation of aggregates

or

how to express concurrency
without destroying determinism

Thomas Clarke

July 1990

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1990 Thomas Clarke

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

The Semantics and Implementation of Aggregates
or
How to express concurrency without destroying determinism

Thomas Clarke*
University of Cambridge Computer Laboratory
E-mail: tjwcQ@uk.ac.cam.cl

July 24, 1990

Abstract

Keywords: aggregate, non-determinism, parallel functional pro-
gramming, single assignment language.

This paper investigates the relationship between declarative semantics
and concurrent computation. A fundamental programming construction,
the aggregate, is identified. Aggregates have a simple declarative semantics
yet cannot be written in pure functional languages. The addition of aggre-
gates to a functional language increases expressiveness without destroying
determinism or referential transparency. Specific aggregates can be used
to implement concurrent graph marking, time deterministic merge of lazy
lists, and write-once locations.

1 Introduction

One motivation for the study of functional languages is that they allow great freedom in
evaluation order, and so can express concurrency naturally. It is thus surprising to find,
on further study, that pure functional languages cannot express some types of concurrent
programs. Why do we have to resort to impure functions with operational semantics in
order to implement efficient concurrent programs? One answer might be: because the
program is indeterminate. However, many of the concurrent programs we wish to write
do have determinate solutions and still cannot be represented in functional languages.
For example the concurrent graph marking algorithm described on page 3 does not have
indeterminate semantics and yet cannot be written within a pure functional language.
The work described here arises from an analysis of this problem.

The main contribution of this paper is the identification of a class of computations,
called aggregates, which are globally determinate and yet have a concurrency which cannot
be adequately represented in functional languages. We will see how aggregates can be
implemented with optimal concurrency, and that a functional language augmented with
aggregates can express declaratively the concurrent graph marking algorithm.

*The author thanks Queens’ College, Cambridge, for a Research Fellowship which supported this work.

A, A A
ANoOAN AN
/ \ 1 23 4 4 21 3

4 2

Figure 1: Different aggregate evaluation trees

2 Concurrent evaluation of associative and commutative
operations

In imperative languages it is usual for concurrent processes to communicate through the
update of shared data structures. The communication can be represented by a set of calls
to constructor procedures, each of which performs some update to the shared structure.
Consistency is preserved by a set of interlocks between these constructors.

Is there any way to represent a similar style of global communication in a functional
language, without sacrificing the simple semantics and freedom from extraneous evaluation
order constraints which make functional programs so attractive?

Consider an associative commutative operator, for example plus. A concurrently spec-
ified collection of integers can be aggregated with such an operator to give a result which
is independent of the order in which elements are aggregated. Figure 1 illustrates this.
The commutativity and associativity of the operator ensures that any possible evaluation
tree with nodes representing operations, and one leaf for each element, will give the same
result.

This aggregate performs a type of global communication, by creating a single data
structure from concurrently evaluated expressions in such a way that no extra constraints
on evaluation order are introduced. In a functional language aggregates must be repre-
sented by a fixed tree of aggregate operations; the result of the root operation is the value
of the aggregate. This representation contains extra (operational) information beyond
that required to determine the aggregate value, since it specifies one particular evaluation
tree.

Within an aggregate calculation the implementation is free to choose dynamically the
tree which allows the most concurrency. The intermediate values of the computation
are then indeterminate. Nevertheless any strict aggregate operation has the same result
whichever evaluation tree is chosen, so that aggregates have a semantics identical to that
of the functional (fixed evaluation tree) operation.

The possibility of dynamically choosing evaluation trees makes aggregate computation
more efficient and more concurrent than its functional equivalent. The concurrency derives

from the freedom of evaluation order, because elements may be aggregated in whatever
order they are determined. In a multiprocessor, elements may be aggregated separately
on each processor, to reduce communication costs.

The histogram problem demonstrates the greater efficiency of aggregates. Suppose
you are given a tree of integers with n leaves and asked for a histogram recording the
number of instances of each integer in its leaves. The integers lie in the range [1-c]. A
naive functional solution to this problem, merging arrays implemented by binary trees,
will perform n merges of trees of size ¢ and so use O(cn) operations. A better functional
solution, using sparse arrays, could reduce this to O(nlog n) operations at the cost of a
higher management overhead.

The computation can instead be done with an array of sum aggregates, as will be
described in Section 6. The number of operations needed is exactly n. This is possible
because trivial additions, with 0 as one argument, need not be performed. The position
of the non-trivial operations depends on data, so a functional program with an evaluation
tree large enough to include all possible operations cannot avoid redundant computation.

We may incorporate an aggregate in a functional language as an abstract datatype with
an aggregating operation ¢, and pack and unpack functions. Every value of this datatype
can be thought of as a concurrently constructed multiset of elements, combined with ¢. A
functional program specifying a tree of ¢ operations to be evaluated program defines such
a multiset, and intermediate results of the combination can be protected from inspection
by the datatype, allowing the implementation to use the most efficient (non-deterministic)
evaluation strategy to find the result.

This abstract datatype protects a non-deterministic implementation from the view of
the outside world, but it is still semantically trivial. An intelligent compiler could make
use of the implementation without the programmer needing to know that this was being
done.

The aggregate encapsulates incremental data construction, so an interesting question
arises, Is it ever reasonable to obtain information from the value of the aggregate before
construction is complete? The order in which elements are added to the aggregate is not
defined, so it would appear that any such examination must result in an indeterminate
value. In fact this is not always the case, as we will see in the following example.

Consider a concurrent mark operation which constructs the set of nodes in a directed
graph (V, E) reachable from some root set of nodes B. The set of edges F defines a
function nezt: V' — p(V') which returns, for any node v, the nodes immediately reachable
from v. next can be extended to a function on subsets of V in the normal way:

next({r}) = nexit(z)
nezt(A U B) = next(A) U next(B)
The set of reachable nodes
M = RU nezt(R) U next’(R)... = nezt*(R)
can then be defined recursively as a smallest set satisfying:
M = R U close(M)

where close(M) = M U nezt(M).
This equation looks similar to that for a recursively defined lazy list, however M is a
set and the order in which elements of M are computed need not be fixed. We have here

3

Procedure mark_all(R)=

Begin)
Foreach x In V Do marked[x] := false;
Foreach x In R Do mark(x);

End

Procedure mark(v)=
Local c;
Begin
Begin.atomic_section
c:=marked{v];
marked[v] :=true;
End. atomic_section
If Not ¢ Then
Foreach x In next(v) Do mark(x);
End

Figure 2: Concurrent procedural mark algorithm

an aggregate in which the partially constructed aggregate value is used to direct further
construction. It could be solved iteratively using close:

M:=R
while M # close(M)
do M := close(M)

A more efficient implementation of this follows from the observation that, as in Dijkstra’s
least path algorithm,, nodes which already been marked do not need to be remarked:

M:=R
N := nezt(R)
while N # § do
begin
M :=MUN;
N := next(N)- M
end

This is equivalent to the procedural concurrent mark algorithm shown'in Figure 2, in
which Foreach is a parallel set mapping operation. When written procedurally care must
be taken to interlock the atomic section of code with a separate semaphore for each array
element, so allowing maximum concurrency.

Our aim in using aggregates is for a recursive aggregate definition to have an imple-
mentation which is identical to the maximally concurrent procedural algorithm, whilst
preserving a simple denotational semantics. _

We may understand the semantics of set aggregate recursion by noticing that as the
algorithm progresses the set M is an increasing lower bound to the answer. The value of
M can be interpreted as a semantic approximation [M] to the real answer, with:

M'C M & [M']C[M]

4

The semantic order C, representing increasing knowledge about the value of M ,is identical
to set inclusion. Adding elements to an aggregate corresponds to knowing more about its
denotation, and the least solution of a recursive aggregate equation can be found by
iterating until the result is stable!,
Aggregate recursion differs from normal functional recursion. Consider a pure function
f defined by: :
f=hf

The denotation of f is:)
1= | Ir1(L)
20

so h is analogous to the function next. However we never work out [f] directly, since the
computation would in general not terminate, instead we compute f(n) for some fixed n,
working out only those values f(z) necessary to construct the answer.

Suppose now that f : A — B and A is finite. We wish to determine the entire function
f. This could be done by computing a data object f representing [f] from [h]. Let f be
of type Den = (A * B) Set, so that the [f] is specified by a set of of (argument, value)
pairs. The denotation h can be written as a function k : Den — Den. Then f can be
found from h by the iteration:

Input: h = [k} : Den — Den

fi=a:=h{
While a # § Do
begin
a:=(ha)- f;
f=fUa;
end

Output: f =[f]: Den

This is an operation similar to aggregate recursion, and it gives a programmer the chance
to inspect objects equivalent to denotations. This provides more information about f than
is available using functional recursion, in particular partial functions can be constructed
and inspected.

Aggregates are more flexible than this because tailor-made domains may be chosen
over which to do recursion. However this algorithm shares an implementation problem,
with aggregate recursions—it exhibits concurrency which cannot be expressed efficiently
in the A-calculus.

This motivates the study of aggregates not only for efficient implementations but also
to express new semantics. In the next sections we will see how both cases can be dealt with
uniformly by defining abstract datatypes which hide the effect of indeterminate evaluation
orders.

3 Aggregates

Simple Aggregates
Defn. 1 A simple aggregate over a type T is an encapsulated datatype T with operations:

!That is, if it exists. Section 4 will give conditions for least solutions to exist.

5

OTl:T’XT'—ﬂT’
tpe 2 T

inT/ T — T
outp : T — T

which satisfy the conditions:

Ve,yeT.zopy=yopa (commutativity)
Ve,y,2€ T'.zo(yor 2) = (zopy)oz (associativity)
VeeT ipopma=zx (identity)

outT: = 277;,1

The last requirement ensures that the map from 7" to " is bi jective and T can be identified
naturally with . We therefore say that a simple aggregate 7” is defined by a triple:

(Tyo:TXT > T,::T)

since from these T", outzs, ing can be inferred.

A value of an aggregate over T is a function of the non-empty multiset of its constituent
values in T, each introduced through ¢ngv and combined with or+. The function can be
extended by mapping @ onto ¢, so that any multiset of elements can be aggregated. This
uniformity will prove helpful when we consider aggregate implementation strategies in
Section 5. We will call the individual values which are aggregated to form a particular
aggregate value its elements: the elements of an aggregate value are the leaves of the tree
of o7 operations whose root returns the value.

Throughout this paper we will be concerned with aggregates T/ which are defined from
types T', with various permitted operations defined on 7" from corresponding operations
on IT'. We use the same symbol for an operation on T and T, giving the type as suffix
whenever confusion might arise. Similarly the suffixes on ings, outrs and ¢y will be
omitted when the type is clear from context.

In the case of simple aggregates the semantics of T” is identical to that of T, although
its implementation is different. In order to describe aggregate recursion we will define
a new type of aggregate: an encapsulated datatype 7" with semantics which is different
from its defining type 7.

Early Readable Aggregates

An FEarly Readable Aggregate (ERA) is an aggregate from values of which information can
be read before construction is completed. In order for this information not to contain
evaluation-order dependent non-determinism it is necessary to restrict this reading. Let
T’,o be the type and operation of a simple aggregate. Suppose there exists a partial
order < on 7" such that Vz,y € Tz < z ¢ y. With respect to this the aggregate value is
monotonic increasing as extra aggregate elements are included, so lower bounds may be
established for an aggregate value which is only approximately known. We then hope to
define a domain for 7" which includes values defined only by lower bounds.

Given two aggregates equipped with partial orders, S’ and 7’ we will wish, in order to
write recursions, to be able to define arbitrary terminating functions f : $' — T which
preserve <, so that

Vz,y € 5.2 <oy = f(z) < f(y).

ERA Hasse Diagrams
Aloc[Int] Abool
TL
True
0 1 2 3 101
False = _L
Ly B

Figure 3: ERA partial orders

We will represent this possibility as a constructor function 8 : (S —ps T)— (8 - T"):
"Where the type § — s T' contains all total functions § — T which preserve < as above.

This constructor could not be written as a high order function in a conventional func-
tional language since the set of all monotonic functions § — 7 cannot be represented
within a decidable type system. We will use it to introduce extra functions on ERAs such
as the array operations described in Section 6. In a proof system such as HOL ([Gor87])
the set of all monotonic functions § — T could be defined, and this constructor used to
introduce user-defined functions.

This is summarised by the following definition:

Defn. 2 Suppose the type T has a flat domain, and:

(T, ¢, ¢) defines a simple aggregate.
L: T X T — Bool is a partial order on 7.
Ve,yeT.(z < zoy).

The ERA defined by (T, 0,t, <) is an abstract datatype T' which has the operations
o7, L1, N, OutTr satisfying the conditions for a simple aggregate together with new op-
erations:

L T x T' — Bool

0:(8—=mMT)— (S'>1T)

satisfying:

a<b& (ina) < (inb)
a<b= (ina) <y (ind)op (in L)
outrio(f floing = f (o denotes composition)

<rv is thus defined to be a (deterministic) L-avoiding version of <. The full semantics
of ERAs will be studied in the next section where a complete set of axioms for an ERA

will be presented.
ERAs are not restricted to total orders because many useful instances of incremental

construction can only be represented by a partial order. One example of an ERA partial
order is the location order—which represents a write-once location. This contains elements

7

L), for an empty location, and T L, for an error. All other elements, representing different
values contained in the location, are greater than 1 L and less than Ty. The Hasse diagram
for this is shown in Figure 3. The simplest ERA order is the two element boolean order,
{true, false}, in which false < true. Although this is total sets can be represented by an
ERA over tuples of booleans with the product order, which is a partial order equivalent
to set inclusion.

Po-ERAs

Suppose < is a partial order with a binary least upper bound operation:
lub(a,b) =z = (a<a)A(b<a)A(a<yAb<y=>2z<y)

Suppose also that < has a minimum element ¢. Then lub is associative, commutative and
respects < and we can define an ERA from (T, lub, ¢, <). These two conditions on the

order are together equivalent to the existence of a least upper bound to all finite sets.

Defn. 8 Let < be a partial order on type T with least upper bound, lub, on finite sets.
The ERA defined by (T, M(a, b). lub({a,b}), lub(®), <) is called @ po-ERA.

Po-ERAs have a mathematical structure similar to but not identical with semantic do-
mains. Recursion will be defined (for all ERAs) by using limits of ascending sequences
rather than least upper bounds. Even in po-ERAs the existence of a finite least upper
bound does not imply the existence of arbitrary least upper bounds.

4 Semantics

We have looked at an algorithm—graph marking—for which the solution is the least fixed
point of a recursive equation. Can we express such recursions uniformly using abstract
datatypes in such a way that the meaning of programs is well defined? We hope to
establish a framework within which the exact meaning of the graph marking algorithm,
as the solution to an equation, is clear. To do this we need to work out a semantics

~for early readable aggregates. The unusual semantics of ERAs stems from the partial
order, <, which makes precise the way in which construction of a multiset of elements is
incremental. This enables two new programming techniques.

Firstly a lower bound to an ERA’s value can be found before the value has been
constructed. The function which does this, <7+, is deterministic because it will only
terminate when it is sure of the answer: that is to say, as soon as the aggregate is greater
than the lower bound, or when the aggregate has finished evaluation. Secondly recursive
aggregate equations become meaningful. We will be able to define a new operator which
finds the least fixed point of a monotonic function [+ T" — T' with respect to the order
<.

Let us now define the semantics of ERA functions. For the remainder of this section
we will be working with a typed functional language £. Within £ we will consider an
ERA T’ defined by the tuple (T, o, «, <). Remember that T is a type in £, and:

o:TxT—-T
e:T
<:TxT — Bool

are functions within £ which we are given. The ERA 7" is an encapsulated datatype in £
equipped with corresponding functions {oz+, 171, <1+, 8, inqv, outp} € L. We are going to
define the set of values in 7”, and then give definitions of the ERA functions in terms of
these values. This is more convenient than a list of axioms defining the external behaviour
of the ERA functions. The world we are studying is illustrated in the diagram:

o e oT!
T: . ’"t'. Tt s 0:(S—pT)ms(S/=T")
< o e <

In this diagram # converts <-monotonic (terminating) functions of type § — T to equiv-
alent functions §' — T between any ERA type S’ and 7", where §' is an ERA over S.
The informal semantics given in the last section means that a value in 7" may be defined
only by a lower bound. For example 2 = a ¢ L defines a value z € 7" about which we only
~know that @ < 2. The values of the ERA datatype will reflect this by being either ap-
prozimate or precise. Approximate values are known to within a lower bound and precise
values are defined exactly. Intuitively, approximate values correspond to non-terminating
computations, values with an infinite number of elements, or with one or more elements
of the form 4n L. In contrast to non-terminating functions, ERA values which do not
terminate are still useful because they can be tested against lower bounds. The adjective
non-terminating will be used as a synonym for approximate and terminating for precise,
when describing an ERA value. ‘

When speaking of ERA values we will use the adjectives approximate, non-terminating
and precise, terminating as synonyms. :

The set of precise ERA values is isomorphic to T, and if ¢ € T we write the corre-
sponding precise value as a,. The approximate ERA values also include a set isomorphic
to T', but may also include extra limit points. We write z1 for an approximate ERA value
where either ¢ € T or = € Ty, is a limit point. Limit points will be defined below from
the order < in such a way that < extends consistently to the set T'U Tiim, which can be
thought of as the closure of T under limits of ascending sequences.

Thus we have defined 7" = (T, +) U(T U Ty, 1). The notations z1 and z, can be read
as ‘at least @’ and ‘precisely a’.

The set of axioms which define ERA functions are listed in Figure 4. The top group of
axioms restate the conditions on o, ¢, < comprising the definition of an ERA. Then o
is defined to give an approximate value if either of its arguments is approximate. The
next two groups define the interface between ERA values and the rest of £. An important
property of approximate values is that they can’t be read using out, and the definition of
<t+ says that if two ERA values are compared the comparison will terminate if one of the
arguments is precise and the other is either an incompatible lower bound or precise.

Note that the mapping of limit points under these axioms depends only on their place
in the order < since they cannot be read with out.

Soundness

These axioms define the behaviour of the ERA functions. However we do not yet know
whether we have introduced extra complexity into the semantics of £ by allowing the
construction of functions which are either not monotonic or not continuous.

o is associative, commutative,
t, is an identity for o. From ERA definition.
a, <rra,oz,

a, or b, = (aob),
a, o bT = (aob)T
at o bT = (aOb)T

ina = a, (a# 1)

in.L = 4

out a, = a

out at = 1

a, b, = agb

a, < by = true (a £b)

a; <70 by = false (b'< a)

z<my = 1 (2, not as above)
fray = (fa)t (f'=6(f))

f'a, = (fa).

Figure 4: Equations for ERAs

We can prove that this is not possible by defining a partial order C on 7" with respect
to which the functions in, out, o7, <1+, (8f) are monotonic. The order will correspond to
information about values in 7'; @ C b if and only if & is consistent with and at least as
informative as a:

alb&a; Cbt
alb&ar Ch,
a=b&a, Cb,

It is now straightforward to verify that each of the ERA functions is monotonic with
respect to this order on T” and the usual (flat) denotational order on 7. The functions
f 8" — T admitted by 6 are also monotonic with respect to the orders so defined on
§’ and T”, because of the condition that the domain of 8 contains only <-monotonic total
functions.

We will not specify a complete denotational semantics for L, although it can be seen
from this definition that C is similar to a semantic order on T". However the solution to
ERA recursive equations will be defined below using the limit of an <-increasing sequence,
without the need for a least upper bound on T, which need not exist. With this proviso
it is helpful to note that the element 11 € T” is a completely uninformative lower bound.
It is the minimum element in C and so might correspond to a L element of 7’ in some
denotational semantics.

Limit Points

Approximate ERA values may be defined by an infinite increasing sequence of values in
T. Operationally this represents a value 1 which satisfies a set of bounds in the order <.

10

We define the set of all infinite ascending sequences in T
T = {(a;);Vi.a; € T, a; < a;41}
Now for any (z;) € T®,a € T we use the natural definition of upper bounds of (z:):
a2 (z;) e Vjia2z;

Define two sequences in T to be equivalent if they have the same set of upper bounds
in T. If (z;) € T* we denote its equivalence class by [z;] and call the quotient set T};,,.
This quotient is the set of limit points constructed from <. For example the limit points
of the rationals are the irrational real numbers, and the integers have just one limit point,
(2], which represents unbounded sequences.

The order < on T extends naturally to Tj;,,. Let U (z) be the set of upper bounds in

Tofz €Ty, Ya€eT, z,y € Tim:

alz&VueU(z)alu
e<y e U(@)2U(y)

Aggregates with an infinite number of elements

Limit points in 7" are necessary to represent aggregates with an infinite number of ele-
ments. Let

a=ag:ay:...
be an infinite lazy list of type T”. The values (¢;):

cg= L
cit=ap: L
cz=ag:ay il

are an ascending sequence in the semantic domain of £, so their images under the function
collect, see below, which aggregates a list of type T', must converge to the image of their
limit: collect(a).

fun collect [I =,
| collect (h::t)= (in h) o collect t;

Therefore this is always an approximate value, even if @ is bounded by one of its elements.
If a; = in(i), in the aggregate defined by < on the integers, collect(a) = wy, where
w = [4] is the infinite (and only) limit point in this aggregate. However if a; = in 0,
collect(a) = O, not 0,. This non-terminating value reflects the fact that evaluation of
an infinite lazy list will never be complete.

Modelling ERAs with lazy lists

Values in T’ may be be identified with equivalence classes of <-increasing lazy lists of
values in 7. ERA functions can then be defined with the help of a non-deterministic
choice operator as functions on these lazy lists.

This is an operational definition of ERAs which is similar to the way in which Burton
defines his improving values in [Bur89]. Burton’s improving values are defined by an ab-
stract datatype with two associative, commutative operations, which he calls spec.maz and

11

minimum. These have a semantics which allows speculative minimax searching. Burton’s
improving value semantics is similar to ERA semantics on po-ERAs with total orders.
Then Burton’s spec_maz operation is identical to o, and minimum is a L-avoiding mini-
mum operation which terminates more often than the equivalent function using <:

Minzy=ifz <y then z else y

Burton represents values in 7" by equivalence classes of possibly infinite, strictly in-
creasing, lists of values in T, with the interpretation that each element represents a lower
bound of the T value, and the proviso that no element of a list may be L, although the
tail of the list may be L. There dre a number of different cases to consider:

o A finite list:
ap i ay ... tay (6 < aigy)

This is equivalent to the precise value a,..
o A list which does not terminate:
apnari...an il (6 < aiy)
This is equivalent to the approximate value Qnt.

e An infinite list:
I=aonayiay... (a;<aip)

This is equivalent to an approximate limit value [a;]..

In [Bur89] Burton characterises limit values according to least uppér bounds. The (unique
in a total order) case in which no upper bound exists he calls 0o, otherwise he assumes
that there is a least upper bound a and calls the resulting value a — €.

This simple semantics is not used here, because it does not represent the general case
in which least upper bounds may not exist in 7. Even with a restriction to total orders
for < least upper bounds may not exist. A counterexample can be found in the rational

numbers with the usual order. Then the increasing sequence (z;) where:
1

Ty = 3

=07’

'

has an irrational limit, which in the real number system is e. It has no least upper bound
in the rationals,

It is more satisfactory to leave limit values defined by equivalence classes of lists which
have the same set of upper bounds, as we have done above in the definition of Tiim- A
limit value whose set of upper bounds has a least element a is then equivalent to Burton’s
a-—e

In our semantics the natural extension of < from T to T};,», together with the equations
in Figure 4, defines the semantics of limit elements z1. We can see from this that the
problem of limit ERA values is only a technical one, because the finite semantics extends
uniquely to limits,

The difference between ERAs and improving values reflects a difference in application.
Burton is concerned with control of speculative evaluation, and we are concerned with
specification of concurrent evaluation. There is considerable overlap, and it is possible to

12

add an operator like minimum to ERAs, in order to control nested speculative evaluation.
Equally it would be possible to extend Burton’s datatype to partial orders, replacing
maximum and minimum by least upper bound and greatest lower bound, Then it is
possible that concurrent ERA recursion, described in the next section, could be used with

improving values.

ERA Recursion

The graph marking problem requires the use of an ERA value which is the least fixed
point of an equation: :
a:T' =fa
where f/: T/ — T,

We can now give this equation a precise meaning by using the representation of 7"
values as increasing lists of T values. A function f': T' — T" is of the form:

F=2z.cop (6fz)

and may be represented by an equivalent function of type List[T] — List[T), which
merges together, using an elementwise ¢ operation, two lazy lists, one representing ¢ and
one representing f mapped over the argument list. The solution to the recursive equation
can be represented by the recursively defined list:

I'=truncate ((1:: f1) o c)

.where truncate ends the list when a repeated element indicates that the fixed point has
been found:

truncate (@2 b:iz) =if a = b then a:: [] else a :: truncate (bue)

For example if ¢ = ¢ the elements of the list are the <-ascending sequence:

“7f1',f2“""

If f*o = fr+1,, the list is finite, and in f™¢ is the least solution to the equation ¢ = f/ a.
Otherwise the list represents a limit point (in fi.).

This solution to an ERA value recursion is thus a value vy Where v is the least (with
respect to <) fixed point of f/ over the set T'U T};,». The solution will be an approximate
value whenever the equivalent lazy list does not terminate. This may be because c is
approximate, either through being an infinite or a non-terminating list, or because the
sequence of T values found by the iteration is strictly increasing.

We thus have three distinct ways of constructing a non-terminating ERA value:

e One of its elements is (in .L).
e It has an infinite number of elements.
e It is a non-terminating ERA recursion.

These are all accommodated within a semantic model which has only two types of
values: approximate and precise. These values have meanings which are transparent
and easy to reason about when writing programs, and limit values do not present extra
complication because they are defined by the extension of < to limits and the equations
in Figure 4.

13

ERAs on non-flat domains

When an ERA is over a type T which is not flat the definition of semantics is more
complicated. In a po-ERA it is no longer certain that the usual ¢ operation:

¢ =A(a,b). if a < b then b else a

will form an operator which is associative. Consider a set of lazy lists of integers, with the
lexicographic ordering <.

(2=0)o(TLl))o(l,L)=(2::0)

whereas
2:0)o(Iul)o(lul)=1

because one of the <; comparisons will not terminate. A lazier implementation of ¢ would
restore associativity:

fun (h:it)o(h!,::t!) =
if h = h' then (h::(t o t’)
else if h > h’ then (h::t)
else (h'::t');

A more serious problem is that in ERAs over non-flat type the ERA functions <71, out
may not be monotonic. We will therefore not define ERA operations over non-flat types
except for the particularly simple case of product types. ERAs can be constructed over
product types, each component of which defines an ERA, in two different ways. Consider
ERAs §',T' over types §,T. H the product is coalesced, so that its components cannot
independently be non-terminating, the product (partial) order on S x T will define an
ERA (8 x T')' in which non-termination is a global property. Alternatively the tuple of
ERA types, §' x T, is a product in which each component separately is either precise or
approximate. In both cases the algorithm of the next section will enable highly concurrent
ERA operations, and in particular recursion, over products.

Conclusions

Recursion on ERAs could be implemented functionally by constructing a truncated, re-
cursively defined, lazy list, but this does not represent the concurrency which derives from
the commutativity and associativity of the ERA ¢ operator. We can now reexamine the
naive graph reachability defining equation:

M = RU close(M)

The set of graph nodes V can be made into a po-ERA by set inclusion, with M o M' =
M U M’. The recursion can then be expressed as a po-ERA recursive equation. In order
to get the optimal semantics for this recursion it is necessary to treat each element of the
set independently. We can now understand this more clearly—it corresponds to a mutual
recursion over a product of boolean po-ERAs, each of which can be updated separately. In
Section 6 below a functional program using arrays of boolean aggregates will be given for
this equation which, when implemented with the algorithm for ERA recursion described
in the next section, provides an optimal solution to the graph reachability problem.

14

5 Implementation

An Aggregate T” over type T may be implemented by storing an intermediate result,
initialised to ¢, of type T, and performing an in-place update to add each element as
it becomes known. In a multiprocessor a separate intermediate result can be kept for
each processor with the final result constructed by aggregating intermediate results across
processors: this ensures that sequential updates do not limit global concurrency.

This implementation requires that all intermediate o operations in a computation be
replaced by an equivalent set of in-place updates. We will assume that a compiler can
make this transformation, and also implement ‘update permit’ reference counts (one for
each separately updatable intermediate result) so that the aggregate can be read as soon
as all threads of computation which combine to form the aggregate value have terminated,

The compiler is free to define intermediate result locations at compile time or dynam-
ically (e.g. one per processor involved in the aggregate computation), and must ensure
that appropriate counts are kept,. Typically each processor will have its own private result
which is locally updated. The global result is got by combining each local result when the
computation has finished. Intermediate results can be combined in an arbitrary tree of ¢
operations, so in a mesh connected multiprocessor this may be arranged to make best use
of communication topology.

The complexity of simple aggregate implementation depends on the degree of dynamic
process scheduling in the computation, and the extent to which optimally concurrent
evaluation is required. Identifying aggregates in a program puts the management of this
where it can best be decided—with the compiler and run-time system.

ERAs

The implementation of a simple aggregate does not raise issues of lazy evaluation since the
result is always strict on (all) aggregate elements, The implementation of ERAs is more
complicated. Two feasible strategies for ERA value computation are parallel order and
suspensive. The two strategies have widely differing consequences for implementation.

The semantics we have given for ERAs is L-avoiding. This requires all elements of the
ERA be evaluated fairly in parallel, otherwise evaluation of an element which turned out
to be L could block discovery of the ERA’s lower bound.

In parallel order evaluation these concurrent evaluations are started when the ERA is
specified and never stopped. Parallel order is the parallel equivalent of applicative order
and specifies that functions and arguments are evaluated in parallel. It is the natural
evaluation strategy for highly concurrent systems since it maximises potential algorithmic
concurrency. Unfortunately it means that an ERA element of in L, while not necessarily
stopping a result from emerging, will have a permanent impact on future CPU resources.

In suspensive evaluation the fair parallel computations which have been started may be
suspended as soon as they are known not to be necessary. This is ‘lazy’ in the sense that
some unnecessary work is not done. However in general the parallel evaluation of ERA
elements (even with suspensive evaluation) means that work is done speculatively which
may turn out not to have been necessary. Suspensive strategy means that the minimum
speculative evaluation necessary to preserve L-avoiding semantics is done.

We will first define suspensive evaluation of single ERAs. At any time the evaluation
of an ERA may be active (with each unfinished element scheduled fairly in parallel) or
suspended, with each unfinished element suspended. During evaluation the value v of an

15

ERA T’ is represented by a current lower bound (clb) of type T'. As elements are evaluated
the clb is updated appropriately. For each element a:

cb:=clboa.

If v is an argument of out evaluation will continue until v is known precisely. This will
require all elements of the ERA to be fully evaluated. If the ERA order has a maximum
element m, and cl/b = m, then v € {my, m,}. A different out function can be defined using
<o

newout ¢ = if (in m) <7+ = then m else out x
If this function is used suspensive evaluation of <7, defined below, will result in evaluation
similar to a parallel or. As soon as one ERA element equal to m is found all other
evaluation is suspended.

In general when the ERA is the argument of <v evaluation may be suspended before a
maximum clb is reached. Suppose z,y are values in 7’. From the ERA defining equations
in Figure 4 the necessary and sufficient conditions for y <7+ y to terminate are:

Condition a<pb
z = a, and a < clb(y) true
y=b, and b < clb(x) false
z=a,and y=band agb | false

These cases follow from the 1 avoiding semantics of <. Thus if elb(z) < clb(y) and
z finishes a result will be returned, if c/b(y) < elb(z) the termination of y will return a
result, and if 2 and y are incomparable both must finish before a result can be determined.
Therefore in suspensive evaluation of y <7 y the currently greater clb (if there is one)
may be suspended.

Suspensive evaluation for ERAs over non-flat domains is similar, only now the update
of a clb may not terminate immediately. The associativity of ¢ ensures that the clb is
independent of the order in which elements are used to update the elb. Product ERAs
have a particularly simple implementation because each component of the elb can be
updated separately as the corresponding elements finish.

Monotonic functions between ERAs lead to new conditions for ERA element evalua-
tion. If any element of an ERA value ¢ is a monotonic function of another ERA value b
we say that a depends on b, and that b is an ERA-element of a. Active evaluation of any
ERA value must entail active evaluation of all its ERA-elements. Whenever clbs of these
ERA-elements are updated the clb of the dependent ERA is also updated.

The algorithm will be given here in a form useful only for po-ERAs, since the algorithm
for general ERAs is more complicated. In an ERA which is not a po-ERA, whenever a clb
is updated, elements derived from the old ¢ib value must be removed from clbs as elements
derived from the updated clb are added.

Algorithm 1 Let
a; = (z'n kjl) Q... (z'n kjn,-) < (f,yl(nj+1)aq(j.nj+l)) ¢ ...0 (f]l"m.jaq(j,mj))

be a possibly recursive set of equations defining ERA values ay,...,ay, with a; € T}
The numbers nj, m; define the number of elements of form kj; and ERA-elements in the
equation for a;. Each q(j,1) indicates which ERA value is the argument of the function
i Tq'(j,'-) — T!=0;f;. for some f; : T —p T.

16

V i (ej =y Aji= [1,my])
while 3 5. 4; # 0 do

begin
choose j,i € A; such that if i< nj, ki # L
Aj = A; ~ {i}

if (¢ > n;) then
@ i=¢j o (fiicj)
else
zi=c;o ky
endif
if # # ¢; then
cji=a; V k. if g(k,l)=j then Ay := AU {l}
endif
return ¢;
end

The choice of j,i in the algorithm must be fair, so no possible choice is unchosen Jor more
than a finite time. Choices may be made in parallel, as long as the clb updates are atomic.

This algorithm defines the implementation of recursive systems of ERA values in which
the iterative update of clbs implements the recursion. In a recursive system we would like
to know that this iteration is well behaved, so that if a least fixed point for a recursion
exists the iteration will find it whatever order is chosen for clb updates.

Theorem 1 Let a; be as defined above for j € [1,J). Then a solution for a; erists and
“the least such solution will be found by Algorithm 1.

The result covers non-terminating ERA recursions whose value is a limit element at
(¢ € Tyimm). In this case the algorithm will not terminate, resulting in 1 as required for
out at. However the algorithm will find within finite time any lower bound for at,s0 <7
operations will terminate correctly.

The proof of this will be sketched here. It rests on the inductive hypothesis that
after n updates the set of clbs is less than or equal to the desired least fixed point,
P. After any one more update it is then easy to prove that this condition still holds.
Certainly it holds at the beginning so the clbs are bounded from above by P. Equally if
the algorithm terminates the termination condition means that the found clbs satisfy the
ERA defining equations. Finally increasing ¢lb values form an ascending sequence which
cannot be stationary for more than a finite number of consecutive elements before the
algorithm terminates, Therefore either the fixed point is a limit value, in which case the
non-termination of the algorithm is expected, or the algorithm must terminate.

The comparison of clb values before and after every update requires that these be of a
type that admits equality, however this is not strictly necessary. All that is required is to
be able to tell, given z,y € T, whether z 0 y = 2. For the write-once location ERA this
depends only on whether or not y = ¢, so write-once locations of functions can be used in
an ERA recursion even though the functions themselves cannot be compared.

Threaded Aggregates

One class of simple aggregates exists for which the most efficient implementation is par-
ticularly interesting. In procedural languages global resource allocation is a frequently

17

encountered concurrent operation. A typical example of this is in the distribution of
unique and contiguous tags to each distinct node of a data structure. In declarative lan-
guages this might be modelled by a cons_withmerged_tags function which takes two
tagged structures and returns a copy of each with tags relabelled.

If we now define an abstract datatype Tag with a set of operations which hide the
indeterminacy introduced by different tag labellings the function cons.with merged_tags
becomes both commutative and associative: it therefore makes an aggregate, If this
function were defined as an aggregate in the first place it might be possible to use an
implementation as efficient as the global procedure tag_allocate which has a persistent
local variable and returns the next tag every time it is called:

current_tag.value = ref O;

fun tag.allocate()=

let val x = ! current_tag_value
in

(current_tag.value := x+1; x)
end;

You may now be wondering what might be the purpose of this, since we have converted
an inefficient but manifestly concurrent declarative algorithm into an explicitly sequenced
(and therefore less concurrent) implementation, For evaluation on one processor this al-
gorithm is much more efficient than the corresponding merge algorithm. It is not difficult
to modify the algorithm so that no sequential bottlenecks exist by a process called com-
bination. The idea is that if two simultaneous tag requests have to be processed they are
combined into a single request and forwarded for further processing. This allows a tree
of processing agents to distribute tags uniquely without any sequential bottlenecks. This
operation has been found by designers of concurrent hardware to be so important that it
is implemented directly in special combining networks, for example in IBM’s RP3 [AH88].

The principle which this illustrates is that there are determinate operations whose
essentially associative character allows highly concurrent execution even while the most
efficient implementation of the operation is both sequential and apparently indeterminate.

We will call this type of computation a threaded aggregate. Threaded aggregates are
a way of implementing operations such as cons_with.merged_tags. These operations
are associative and commutative outside an encapsulated datatype, and therefore define
aggregates. Further investigation of threaded aggregates is beyond the scope of this paper.

.6 Examples

Array aggregates

An array aggregate could in principle be implemented as a pure functional array of aggre-
gates, with the usual logn overhead whenever an element is added. An implementation
which uses in-place update of each aggregate does not have this overhead, and may be
specified in a program by using an abstract datatype array[T'] with functions:

inject: Int — T' — array[T"]

project: Int — array[T'] — T'

Oq 1 array[T'] X array[T'] — array[T’]
collect-indices : array[T'] — List[Int]

18

The operation o, is the array aggregate ¢ operation, which combines elements with the
same index using o from T’, Collect.indices returns a list sorted by index, of all indices
for which the value of the component is not ¢71.

Inject may be implemented by adding its second argument to the aggregate indexed by
its first argument, using in-place update as described above. All other aggregates in the
array are unaffected by operation. Arbitrary-sized sparse arrays are used in this definition
although in a practical implementation fixed size arrays might be used. If a fixed size
array aggregate has an out-of-bounds index any resulting error indication must be well
behaved: a set of all offending indices must be returned rather than the first bad index to
be written.

The type of an array of aggregates has a natural interpretation as the product of its
base types. It is sufficient for the arrays presented here not to distinguish between an
array all of whose elements are L, and L. Note however that an empty array, all of whose
elements are ¢7v, is distinct from this.

Because of this structure the evaluation of an array aggregate can treat each component
separately and lazily not evaluate components which are not demanded. This leads to a
better implementation (remember all ERA elements are evaluated fairly in parallel so lazy’
evaluation does not alter semantics) in which the function project n a demands evaluation
first of all indices ¢ of elements inject i b and only then for s = n demands evaluation of
b. However this is only optimal if indices n are guaranteed to terminate., Otherwise the
inject L ¢ would cause non-termination of the aggregate when it need not. The cost of
deciding which elements to evaluate in an array is avoided if parallel order evaluation is
used.

Graph Reachability problem

Using an array of boolean aggregates the graph reachability algorithm can be defined as
a function reachable from:

fun mapa £ [] = inject 0 ¢
| f (h:: t)= (f h) o, (mapa f t);

fun list.to.array = mapa (fn n=> inject n true);

(* next is a list of (vertex, vertex list) pairs which represents the
arcs of a graph.
T is a list of nodes.
function returns a list representing all nodes
reachable from r *)

fun reachable.from next r=

let
fun add.vertices m (v,1) = mapa 1 (fn n => inject n (project v m));
val m = (list.to.array r) o, (mapa (add.vertices m) next)

in collect.indices m

end

19

The histogram problem

Using an array of (Int, +, 0) aggregates it is possible to write an efficient solution to the
histogram problem mentioned in Section 2.

datatype tree = node of Tree * Tree
| leaf of Int;

fun histogram (leaf n) = inject n (ing,, 1)
histogram (node ti t2)= t1 ¢, t2;

fun column n hist = out,, (project n hist);

The difference between this and a solution of the problem without aggregates is only
one of implementation—the aggregate acts as an annotation which the compiler can use
to optimise implementation. In this case all inject operations within recursive calls of hés-
togram can be turned into in-place updates of a result value (or values on a multiprocessor
as we saw on page 15). The ¢, operations within recursive calls of histogram have no
associated run-time cost,.

The use of aggregates as implementation hints contrasts with the previous example,
where the aggregate expresses different semantics.

Expressing Side Effects

Exceptions can be added to a pure language by extending all functions to operate on a
direct sum of thejr normal type and an exception type. Exception values can then be prop-
agated unchanged through outer functions until intercepted by a special exception handler.
In impure functional languages, like ML [Mil84], exceptions can have an operational se-
mantics, in which a defined evaluation order is used to ensure that only one exception (the
first to be evaluated), is returned as the result of an exceptional computation.

Williams and Wimmers [WW88] have proposed a language FL in which arbitrary side-
effects are incorporated in a functional program by pairing every language value with a
history which is updated by functions which have side effects. The consequent plethora of
histories is resolved by defining a particular but fixed order in which history updates are
threaded together, so that the effect is the same as an operational semantics with a depth-
first call tree evaluation order. This behaves like an operational semantics, with side effects
turned into explicit data value updates. The title of [WW88] is “Sacrificing simplicity for
convenience: where do you draw the line?”, a question which we will now try to answer. If
an applicative evaluation order is used to define a depth-first call-tree traversal by which
side effects are sequenced the order in which side-effects happen is at best unrelated to
the declarative program semantics, and at worst obscure. In a lazy language any feasible
order in which side effects could be sequenced would be more obscure, since evaluation
order is less easy to predict from the static structure of the program. On the other hand
the inspection of ‘side-effects’ which are produced during evaluation of an expression but
which have no dependency on a sequential order is much safer. Exceptions, as they are
commonly used, are an example of this because only one exception is likely to occur in
a calculation. The condition that side-effects be order independent is exactly that they
form an aggregate, and this is where we propose the line should be drawn.

20

Aggregates can be propagated through a functional language, carrying the most general
sort of order-independent side-effect, by pairing all language values with an aggregate value
and redefining (overloading) all functions to propagate the aggregate component whilst
acting normally on the value component. Propagation is exactly by strict dependence,
so the aggregate part of an evaluated expression is the aggregate of all side effects raised
during its evaluation,

Overloading can be implemented as syntactic device, however it allows ‘constructor-
functions’ to be be written which have the effect of adding an element to the aggregate
component of an expression. The aggregate can be picked up by an outer function which
acts as an aggregate handler, like an exception handler, One difference from exceptions is
that the normal value of a program is not automatically thrown away when an aggregate
element is constructed, so side-effects can be handled together with normal values.

Suppose that the domain of a lazy functional language is of the form:

D=B®(D- D),

where B is a set of flat constants, In alazy language tuples, conditionals, data constructors
can all be implemented using functions. For simplicity suppose this to be the case. The
overloaded domain, D’ can be written:

D'=(A®B)& (D' " D'),)

where A is an aggregate datatype. Functions are redefined so as to propagate aggregate

components from an applied function to its result, so that the aggregate component of an

evaluated expression is the aggregate of the aggregate components of all functions applied

in its evaluation. This can be represented by a new operator apply’ which handles the

aggregate components of an expression and replaces normal application in all expresions.
Let 7, and 7y be projections of D’ onto aggregate and domain components, so:

D =rn,D' & mqaD’.
The definition of the new apply’ is given below:

apply ,(<fa5 fd)ig) = (fa °7ra(fd g)y fdg»

As a result of this overloading the aggregate component of an expression is the aggregate
of the aggregate components of all subexpressions on which the expression is strictly
dependent: |
To = O{may; Mgy = L = myz = 1}

Overloading a language with an ERA is particularly useful, because this allows side-
effects to be obtained from an evaluating expression before it terminates. The restriction
to order-independent side-effects is in practice very important. In a lazy language it may
not be easy to work out whether a particular subexpression will be evaluated, but this
fact is of more significance to a programmer than some arbitrary side-effect combination
order. Therefore aggregate side-effects are less likely to cause obscure program errors than
more general side-effects. In a concurrent program aggregate side-effects are appropriate
because they do not put unnecessary constraints on evaluation order.

One use of ERA overloading is motivated by the use of streams to manage 1/0, and
uses information about program data dependence explicitly. A number of writers have pro-
posed using angelic merge of concurrently evaluated lazy lists to allow concurrent stream

21

processing functions to communicate. The unconstrained use of a non-deterministic merge
for this purpose has been advocated by Henderson [DHT82]. Other writers, notably Stoye
[Sto85] and Augustsson [Aug89), study non-deterministic primitives which are packaged
in a form which is referentially transparent. By using ERAs it is possible to move yet
further from impure semantics and construct a pseudo-time deterministic merge which
is both referentially transparent and deterministic. This does not take into account the
different evaluation times of functions, which would necessarily? be non-deterministic. In-
stead every lazy list element to be merged has a pseudo-time, determined explicitly by the
program. By coding pseudo-times as elements of a po-ERA ordered by time, the pseudo-
time of an expression can be made dependent on the pseudo-times of subexpressions it is
strict on, so that pseudo-times are always causal. Then a pseudo-time deterministic merge
may be written using < which merges lists from interacting functions in an order which
avoids blocking.

The use of pseudo-time deterministic merge separates ‘real’ non-determinism, resulting
from unknown function evaluation time, from uses of non-deterministic merge which are
implicitly determinate because the merged functions sequence each other. This does not
replace real non-determinism, however it does allow a wide class of interactive algorithms
to be expressed in a completely determinate language. A full discussion of pseudo-time
deterministic merge can be found in [C1a90].

Single Assignment Programs

It is possible to convert single assignment language programs, such as functional pro-
grams using I-structures [ANP87], into equivalent determinate aggregate programs. An
I-structure is an array of locations with an operational semantics defined by operations
create_l, read_I and writeL I-structures are created empty and can then have values writ-
ten into each of their locations only once. A multiple write of a location results in a global
program error. Reads of single locations return the corresponding values as soon as the
location has been written: if a location is never written the value of reading it is L.

I-structures can be represented as ERAs by using a modified product of location orders
in which there is only one global error element, so that the T, elements for each location
are coalesced in the product. The ERA ¢ operation reflects the semantics of multiple
writes:

¢

zolr=ua

zoy=Tr (z,y7# LL)
zo T =T

Each I-structure write_I'is represented by a single ERA element of the form inject n (inz).
and create_I by the empty array. The I-structure operational semantics is then equivalent
to a declarative semantics with I-structure aggregate side-effects. I-structure read_l opera-
tions can be represented by project functions from the aggregate, and a functional program
using I-structure reads and writes can be represented by a recursively defined I-structure
aggregate. These semantics are not identical to those of a program with I-structures, be-
cause in order to preserve determinacy in the presence of program errors it is not possible
to print any value dependent on an I-structure location until all Istructure computation
has finished, and it is known that there is no global error. Otherwise an indeterminate

?Unless some form of timed simulation were used to introduce deterministic evaluation time information,
for example Friedman’s engines, [HF84).

22

result could be printed. This does not reduce program concurrency because within an
ERA recursion values defined only by lower bounds on the ERA order can be used freely.

7 Conclusions

We have investigated programming with aggregates, concurrently specified collections of
elements which have the property that the meaning of the collection is independent of the
order in which the collection is specified. The central thesis of this paper is that aggregates
underlie many different types of useful concurrency. There is nothing intrinsically non-
declarative about the efficient implementation of aggregate values, which can be written
as trees of commutative associative operators. However pure functional languages do
not adequately express aggregates and so language extensions are necessary to do this.
Thus the notion of aggregates unifies a wide class of functional language implementation
techniques and semantic extensions,

A characteristic of all aggregates is the hiding of evaluation-order indeterminacy: we
have seen how the requirements for optimal concurrency, together with the existence of
an associative commutative operation, must always give rise to this. But different fypes
of aggregate result in different programming techniques.

Single threaded aggregates correspond to server processes in a message passing system
where the meaning of the replies is independent of the order in which requests are pro-
cessed. The indeterminate values are the local state of the server and the replies. All of
these are encapsulated so that the indeterminacy cannot be seen by the rest of the system.

ERAs correspond to the imperative use of incrementally constructed shared data struc-
tures. Subsequent construction may be influenced by the current value of the shared
structure, which during construction has an indeterminate value. This structure is en-
" capsulated with operations which have necessarily determinate results. ERAs can also be
used to do recursion on user-defined semantic domains. This may, but does not necessar-
ily, involve speculative evaluation. The graph marking example performs a determinate
set of calculations, without speculative evaluation, in an indeterminate order.

Finally aggregates may be used to handle side-effects in a clean way. Side-effects
contained in an aggregate have no dependence on evaluation (or any other) sequence,
and so are less obscure than other types of side-effect. One example of this is a pseudo-
time deterministic merge. This can be implemented with ERAs and used to distinguish
between time deterministic and evaluation time deterministic uses of angelic merge in
systems which implement message passing operating systems with concurrent streams. -
The former is deterministic whereas the latter is non-deterministic, with correspondingly
greater semantic complexity.

The different types of aggregate which we have reviewed are classified as a family
tree in Figure 5. Many different functional language extensions have been proposed as
single solutions of particular problems. Some of these have a place within the family of
aggregates, others do not,

Recent work from Hughes [HO90] has proposed the use of a non-deterministic, encap-
sulated, set construction which has semantics intermediate in complexity between that
of this work and that of unrestricted non-determinism. This seems interesting, however
the proofs which Hughes has made of program correctness, demonstrating the tractability
of his semantics, are for programs which can be rewritten without any non-determinism.
For example Burton in [Bur89] has given an outline proof of the correctness of a parallel

23

(simple

aggregates
threaded
aggregates
(
(Parallel or
aggregates 4 incrementally
Po-ERAs | constructed sets
ERAs < pseudo-time
stamps
write-once
locations
\ lexceptions

Figure 5: Aggregate family tree

least-cost search algorithm written using his improving values. Hughes’ work has extra
semantic complexity, it has yet to be shown that this cost results in greater expressiveness.

In this paper we have identified a unifying principles in the declarative treatment of
the indeterminacy introduced by concurrent computation. The abstract datatypes we
have defined are therefore more general than those used by other writers concerned with
specific languages extensions. It is not known whether there is a small set of primitive
abstract aggregate constructors sufficient to generate all useful aggregates, Without this
an aggregate library must be assembled on an ad-hoc basis, with a burden of verification
whenever a new aggregates is introduced. Other writers have demonstrated good ways
of introducing specific aggregates as functional language extensions. The work of Burton
[Bur89] is particularly relevant. His improving values are very similar to a po-ERA on
total orders. Burton’s work could be generalised to partial orders with least upper bounds
without any alteration.

Further work is motivated by these results. The area between aggregates and Burton’s
improving values seems particularly fruitful, and more work here might lead to a clearer
picture of the relationship between single assignment languages and pure functions, and a
simpler way of introducing ERA recursion.

Threaded aggregates and pseudo-time merge aggregates represent some of the styles
of computation used in object-oriented languages, so further study of these may lead to a
better understanding of the differences between declarative and object-oriented programs.
It has already been shown that object type-inheritance [CW85] can be represented within
polymorphic functional type systems.

Finally it would be interesting to find a theoretical computational model which makes
explicit use of aggregates, since they underlie much concurrent computation. The work
of Moggi [Mog88] on a categorical semantics of computation based on monads may be
relevant here.

24

References

[AHSS]
[ANP87]

[Aug89]

[Bur89)]

[Cla90]
[CW8s5]
[DHT82]
[Gor87]
[HF84]

[HO90]

[Mil84]
[Mog88]

[Sto85]

[WWsg]

G. S. Almasi and 8. L. Harvey. RP3. In Design and Application of Parallel
Digital Processors, April 1988.

Arvind, Rishiyur §. Nikhil, and Keshav K. Pingali. I-structures: Data structures
for parallel computing. Computation Structures Group Memo 269, M.I.T., 1987.

Lennart Augustsson. Functional non-deterministic programming, or, how
to make your own oracle. Draft paper, Programming Methodology Group,
Chalmers University of Technology, 1989. '

F. Warren Burton. Indeterminate behaviour with determinate semantics in par-
allel programs. Technical Report CSS/LCCR TR 98-03, Simon Fraser University,

1989.

Thomas Clarke. In preparation. Technical report, University of Cambridge
Computer Laboratory, 1990.

Luca Cardelli and Peter Wegner, On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4), December 1985,

J. Darlington, P. Henderson, and D. A. Turner, editors. Purely Functional Op-
erating Systems, pages 177—189. Cambridge University Press, 1982,

Mike Gordon. A proof generating system for higher-order logic. Technical Report
103, Cambridge University Computer Laboratory, 1987.

Christopher T. Haynes and Daniel P. Friedman. Engines build process abstrac-
tions. In LISP and Functional Programming, Pages 18-24. ACM, 1984,

John Hughes and John O’Donnell. Expressing and reasoning about non-
deterministic functional programs. Draft paper, Dept. of Computer Science,
University of Glasgow, 1990.

R. Milner. A proposal for standard ML. In 1 984 ACM Symposium on LISP and
Functional Programming, pages 184-197, 1984.

Eugenio Moggi. Computational lambda-calculus and monads, Technical report,’
Dept. of Comp. Sci., University of Edinburgh, October 1988.

William Stoye. The implementation of functjonal languages using custom hard-
ware, Technical Report 81, University of Cambridge Computer Laboratory,
December 1985.

John H. Williams and Edward L. Wimmers. Sacrificing simplicity for conve-
nience: Where do you draw the line. In Proc., Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages 169-179,
ACM, 1988.

25

