Technical Report A

Number 200

Computer Laboratory

Type classes and overloading
resolution via order-sorted unification

Tobias Nipkow, Gregor Snelting

August 1990

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1990 Tobias Nipkow, Gregor Snelting

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Type Classes and Overloading Resolution
via Order-Sorted Unification*

Tobias Nipkow! Gregor Snelting?

University of Cambridge Technische Hochschule Darmstadt
Computer Laboratory Praktische Informatik

Pembroke Street Magdalenenstr. 11c

Cambridge CB2 3QG D-61 Darmstadt

England Fed. Rep. of Germany

Revised version, June 1991

Abstract

We present a type inference algorithm for a Haskell-like language based on order-sorted
unification. The language features polymorphism, overloading, type classes and multiple
inheritance. Class and instance declarations give rise to an order-sorted algebra of types.
Type inference essentially reduces to the Hindley/Milner algorithm where unification takes
place in this order-sorted algebra of types. The theory of order-sorted umification provides
simple sufficient conditions which ensure the existence of principal types. The semantics of
the language is given by a translation into ordinary A-calculus. We prove the correctness of
our type inference algorithm with respect to this semantics.

*To appear in Proceedings of the 1991 Conference on Functional Programming Languages and Computer
Axchitecture, Springer Verlag.

tE-mail: Tobias.Nipkow@cl.cam.ac.uk. Research supported by ESPRIT BRA 3245, Logical Frameworks.
'E-mail: snelting@pi.informatik.th-darmstadt.de.

1 Introduction

In a recent paper on order-sorted unification, Meseguer et al. [8] state

An application of order-sorted unification that seems to have escaped prior notice
is to polymorphism for typed functional languages, in the case where there are
subtypes as well as polymorphic type constructors.

In the spirit of this remark we show that for languages like Haskell [6] which feature polymor-
phism, type classes and overloading, order-sorted unification can indeed be the basis of a type
inference system which is much simpler than those which have been proposed previously.

The key idea of this paper is to introduce a three-level system of values, types and partially
ordered sorts that classify types. This is in contrast to many type systems used in the area
of term-rewriting, e.g. OBJ [4], where types' are partially ordered. Although we assume that
the quotation above was meant to apply to these two-level systems, Haskell’s combination of
polymorphism and type classes cries out for a three-level treatment with ordered sorts. Sorts
are useful even for Standard ML [9] where we find a distinction between general types and
equality types. This can be described by a signature with only two sorts, Eq and 2, where
Eq< Q.

Figure 1 defines the abstract syntax of our language Mini-Haskell which is the focus of
our investigations. Although it is not mandatory that the reader is familiar with either the
Haskell Report [6] or the paper by Wadler and Blott [14], that is where he should turn for
motivating examples. In addition to the well-known constructs of functional languages, Mini-
Haskell offers class and instance declarations. A class declaration is a named collection of
function declarations. The types of these functions depend on a parameter, the instance type.
Informally, a type belongs to some class vy if it provides the functions x; associated with 7.
This relationship is expressed formally in an instance declaration: it asserts that some type
constructor x returns a type of class v if the arguments to x are of class ¥y,...,79,, and it
defines the functions @; introduced in the class declaration for 4. As there can be multiple
instances of a class, there can be multiple definitions of the ;. This provides for a kind of
overloading where the type of each @; is an instance of the generic type as defined in the class
declaration. In addition, Mini-Haskell features multiple inheritance: a class ¥ may depend on
superclasses 71, ...,Yn, meaning that 4 inherits all functions of the ;. In accordance with the
Haskell report we require that all class and instance declarations must be top level; this avoids
some subtle problems with nested classes.

Mini-Haskell enforces a restriction also present in the Haskell Report: classes express prop-
erties of individual types, not relationships between types. The latter, more general interpre-
tation was introduced in [14], but we allow only type classes with one type parameter. Hence
the type variable a in the Haskell notation? (y1 a,...,9m a) => v aand (71 a1,...,n an)
=> y(xa1 ... a,), where x is an n-ary type constructor, can be dropped. Instead we write
Y <Y and X (V15005 Y)Y

For reasons of presentation, we have restricted the types of the functions z; to be of the
form VYa,.7;, rather than Va.,.o;, where o; could again be quantified. This eliminates a certain
amount of notational overhead, without being unreasonable: all of the examples in the Haskell
Report fit the simpler scheme. In addition, several other context conditions must be satisfied,
e.g. “No type constructor can be declared as an instance-of a particular class more than once
in the same scope”; these conditions are discussed later.

Ywhich are usually called sorts in that context, making the terminology somewhat confusing,

*Note that each argument of y is determined by a single class 7;, rather than some finite list of classes as in
Haskell. This is nonessential (see Section 5). We also assume that all a; are distinct. We believe that this was
the intention of the Haskell definers. It is not clear whether our ideas work without this linearity assumption.

Type classes v

Type variables Oy
Type constructors
Types T=ay | x(T1,. .0y ™)
Type schemes 0=1|Voy.0
Identifiers x
Expressions e = 2
| (eo €1)
| Az.e
| letz =egine
Declarations d = classy <7v,...,Ym where &1 : Vor,.7y,..., ¢k : V.7
|

inst x : (71,...,70)y where z1 = e1,...,2p = €
Programs p = dy;...dye

Q is the universal type class

a means agq

int, float, char, list(a), pair(a, B), @ — B are type constructors®

Figure 1: Syntax of Mini-Haskell types and expressions

Wadler and Blott [14] present a type inference system for what appears to be a superset of
Mini-Haskell. The main difference is that in their syntax, class definitions are no longer present.
Instead, they introduce so-called predicated types, as well as inference rules for the introduction
and elimination of such types. The resulting inference system is rather complicated, and it is
not clear whether it leads to a terminating algorithm.

Upon analysis of their article, we detected that a much simpler inference system for Mini-
Haskell can be constructed, provided we replace ordinary unification in the Hindley-Milner
system with order-sorted unification. Therefore, we first recall basic facts about order-sorted
unification. We then present our type inference system, and provide some illuminating examples.
In addition, we discuss conditions which ensure the existence of principal types. Finally, we
define a translation from Mini-Haskell to Mini-ML [1] and show that the inferred types and the
semantics given by the translation fit together.

2 Order-sorted terms and order-sorted unification

An order-sorted signature is a triple (9, <,), where S is a set of sorts, < a partial order on S,
and ¥ a family {¥,, | w € §*,s € S} of not necessarily disjoint sets of operator symbols. We
assume that S and ¥ are ﬁmte For notational convenience, we often write f : (w)s instead of
[€ Zu,s; (w)s is called an arity* and f : (w)s a declaration. The signature (5,<,Y) is often
identified with X. An $-sorted variable set is a family V = {V, | s € S} of disjoint, nonempty
sets. For @ € V, we also write z : s or z,.

The set of order-sorted terms of sort s freely generated by V, Tx(V),, is the least set
satisfying

e ifax € Vyand s’ < s, then ¢ € Tx(V),

o if f€Tys, w=81..8,, 8 < s, and t; € Tx(V),, for all i = 1..n, then flt,. .., tp) €
Ts(V)s.

3Except for & — 3, the collection is arbitrary. Type constructors have global scope and are predefined.
“The term type and the notation w — s are reserved for the types in Mini-Haskell.

In contrast to sort-free terms and variables, order-sorted variables and terms always have a sort.
Terms must be sort-correct, that is, subterms of a compound term must be of an appropriate
sort as required by the arities of the term’s operator symbol. Note that an operator symbol may
have not just one arity (as in classical homogeneous or heterogeneous term algebras), but may
have several arities. As a consequence, each term may have several sorts, Tx(V) := U,es Ts(V)s
denotes the set of all order-sorted terms over X freely generated by V. The set of all ground
terms over ¥ is T := Tx({}).

A signature is called regular, if each term ¢t € Tx(V') has a least sort. It is decidable if a
signature is regular:

Theorem 2.1 (Smolka et al. [12, 15]) A signature (S5, <, %) is regular iff for every f € ¥ and
w € §* the set {s|Jw' > w. f: (w')s} either is empty or contains a least element.

As an example of a simple non-regular signature, consider ({so, 81, 82}, {81 < S0,82 < S0}, Lesy =
{a}, X¢s, = {a}): the constant a has two sorts which are incomparable, hence it does not have
a minimal sort.

A substitution 6 from a variable set Y into the term algebra Tx(V') is a mapping from Y
to Tx(V), which additionally satisfies 8(2) € Tx(V), if @ € V, (that is, substitutions must be
sort-correct). As usual, substitutions are extended canonically to Tx(V). We write § = {21 —
.oy @y By} I, for ¢,1 € Tx(V), there is a substitution 6 such that ¢ = 6(¢), t' is called
an instance of t. Similarly, a substitution 6’ is called an instance of a substitution 6 w.r.t. a set
of variables W, written 6 = 6’ [W], if there is a substitution v such that #'(z) = v(8(2)) for all
zeW.

A unifier of a set of equations T' is a substitution 8 such that 8(s) = 6(¢) for all equations
s="1inT. A set of unifiers U of T is called complete (and denoted by CSU), if for every unifier
0’ of T there exists @ € U such that 8’ is an instance of § w.r.t. the variables in I'. As usual, a
signature is called unitary (unifying) if for all equation sets I' there is a complete set of unifiers
containing at most one element; it is called finitary, if there is always a finite and complete
set of unifiers. For non-regular signatures, unification can be infinitary even if the signature is
finite [11]. But we have the following

Theorem 2.2 (Schmidt-SchauB [11]) In finite and regular signatures, finite sets of equations
have finite, complete, and effectively computable sets of unifiers.

Waldmann [15, Thm 9.5] provides a succinct characterization of unitary signatures. For our
purposes the following sufficient conditions are more interesting. Call a signature downward
complete if any two sorts have either no lower bound or an infimum, and coregular if for every
f and s the set

D(f,s)={w]|3s. f:(w)sd'As < s}
either is empty or has a greatest element. Smolka et al. [12] show
Theorem 2.3 FEvery finite, reqular, coregular, and downward complete signature is unitary.
From this theorem it is easy to derive the following specialization:
Corollary 2.4 Every finite, regular, and downward complete signature is unitary if it is
e injective: f:(w)s and f(w')s imply w = w', and

o subsort reflecting: f: (w')s’ and s’ < s imply f : (w)s for some w > w'.

Injectivity and subsort reflection imply coregularity, but not the other way around. Nevertheless
one can show that the two criteria are essentially equivalent [10].

For unitary signatures, order-sorted unification can be implemented in quasi-linear time [8].
For finitary signatures, order-sorted unification in general is NP-complete [11], but in most
cases can be implemented efficiently. We do not intend to present algorithms for order-sorted
unification; this has been done elsewhere {15, 8, 10]. We merely provide some examples which
will be used later. Consider the sort hierarchy®

Q
|
Eq
/N
Ord Num
\/ \
Real Fractional

/A / \

Integral RealFrac Floating

RealFloat

and the operator list with multiple declarations

list: (Q)Q

list: (Eq)Eq
list: (Ord)Ord
list: (Num)Num

Now we want to unify ag, =& list(yq). Since list(yq) has sort Q, we need a substitution 6
such that list(f(y)) has a sort < FEgq, by choosing a suitable arity for list. This process is
known as weakening®. Choose 6 = {y — zgq,¢g, — list(zg,)}, which is sort-correct (because
list : (Eq)Eq), and constitutes a complete (singleton) set of unifiers. But note what happens
if the declaration list : (Eq)Eq is removed from the signature: the above substitution is no
longer sort-correct, since list(zg,) has only sort . Instead, the weakening process must go
even further down in the sort hierarchy, and we obtain the complete 2-element set of unifiers
{{y — 2ord,® > 1ist(2074)},{¥ — ZNum,® = 1ist(2num)}}. Now let us unify 2orq =% Ynum-
We obtain the singleton CSU 8 = {&0rd — ZReals YNum — ZReqal}. If Ord and Num had no lower
bound, these terms would not unify, unless we added a new constant a of sort both Ord and
Num: the reader should convince herself that in this case the set {{& — list™(a),y > list"(a)} |
n € No} is a complete and minimal, yet infinite set of unifiers! This strange behaviour is due
to the fact that the signature is not regular: l¢st(a) does not have a minimal sort.

3 The type inference system

Our type inference system for Mini-Haskell replaces ordinary unification in the Hindley-Milner
system with order-sorted unification, where the signature of the order-sorted algebra of types
is constructed from the class and instance declarations. The inference system described below
is a simple extension of the system DM’ due to Clément et al. [1], which in turn is a variant
of the classical Damas-Milner system [3]. In fact, if we remove class and instance declarations

®Tt is not an accident that this sort hierarchy coincides with the Haskell numeric class hierarchy [6, p. 50].
5In our setting, strengthening would be more appropriate: the lower we are in the sort hierarchy, the more we
know.

Alz) = 1
TAUT iA,E%f— T:T
(A,)Fe:T— 7 (A, Fe T
APP (A,) F(eg 1) : 7'
(A+[z=>71],8)Fe: 7
ABS (A, 2)Fdze:T— 1
LET (A, Feo:r FV(r,A)={ay,...,ay} (A+[e—Vag.7],5)Fe 7
(A, X)Fletz =epine : 7’
CLASS (A, Z)Fclass ¥ < 71,...,7n Where &y : Vay.71,. .., 0% : Vo,
(At [ei— Vayr[i=1.k,24+{y<v;|j=1.n})
INST A(a;) = Va7 (A, X)) F e [x(a)/ay] i= 1.k
(A, X)Finst x : (Fn)y where 21 = e1,...,ar = e : (A, 2+ X : (Fn)7Y)
(A,'_l, 25_1) F di H (A,', Ei) i1=1.n (An, En) Fe:T
PROG (Ao, Xo) F dyj..sdpje T

Figure 2: Type inference rules

from our syntax, our system reduces to DM’: the order-sorted algebra of types is the trivial
one with only one sort 2, order-sorted unification reduces to classical Robinson unification, and
the inference rules simplify to the original DM’ rules. Overloading resolution is performed by
order-sorted unification alone. Since we have already seen that order-sorted signatures allow
multiple operator arities, and that the unification algorithm will select the right one(s) which
must be used in order to unify two terms, the reader might already get an idea of what we are
alming for.

As usual, inferences in our system depend on type assumptions. A type assumption is a
finite mapping from variables to types, just as in the ordinary Damas-Milner algorithm. The
only difference is that in our system every type variable has a sort; in case there are no class
declarations, all type variables have sort . In addition, our inferences depend on the signature
of an order-sorted algebra which can be seen as a compact representation of the class and
instance declarations found so far. If there are no class definitions, this signature contains only
declarations of the from x : (2")§ for all n-ary type constructors y. A class declaration will
add a new sort and subsort relations to the signature, an instance declaration will add a new
arity for the type constructor involved.

The following convention is used: @, denotes the list a.y,, ..., ., , with the understanding
that the a.,, are distinct type variables.

The first four rules in the type inference system in Figure 2 are of the form (A, X)) ke:o
and are almost identical to the DM’ rules. There are two differences: all inferences depend
on the signature X of the type algebra as well as the set of type assumptions A. Furthermore,
generic instantiation in rule TAUT must respect X. This is written ¢ >y 7, meaning that o
has the form V&, .70, there are 7; of sort v;, and 7 = mo[r1/qy,,...,Th/ay,]. In the rule LET
we use the notation F'V(7), which denotes the set of free type variables in 7; FV(r, A) denotes

FV(r) - FV(A).

If no class and instance declarations are present,
Yo = ({0}, {Q < Q}, {int : Q, float : Q, char : Q,list : (Q)Q, pair : (Q)Q, . — _: (QH)Q})
is the trivial order-sorted signature, and from the facts mentioned above it is clear that we have

Lemma 3.1 For a Mini-Haskell expression e without class and instance declarations, our sys-
tem and Damas-Milner compute the same type:

Aotpayre:m & (Ag,Zo)bFnse:T

where Ag is any initial set of type assumptions.

The rules CLASS and INST are of course at the heart of our inference system, although
they are remarkably simple. Both rules are of the form (A,X) F d: (4’,X’), thus declarations
do not have a type, but extend a given set of type assumptions and a given signature.

The declaration class v < 41,...,7, where @1 : Vo.71,...,2 : Vo .7 introduces a new
class vy, which should not have been declared before. This class is added to ¥ by extending the
ordering with v < «; for all super-classes ; of 4. For all overloaded identifiers @; introduced
in the construct, their generic type scheme Va.,.7;, where 7; should be well-formed w.r.t. ¥, is
added to the set of type assumptions A. As a consequence, the z; may be used, for example,
in subsequent let-definitions. But note that they cannot be applied to real data, unless an
instance of v is declared: by the definition of generic instantiation, the instance of o must
by a type of sort y. Without instance declarations for v, the only types of this sort are type
variables! It should be pointed out that because the context A associates at most one type with
any identifier, different declarations of the same identifier overwrite each other. In particular it
means that if there are two classes which share some of their method names «;, only those of
the latter class are visible — there is a limit to the amount of overloading that can be expressed.
This is in contrast to some object-oriented languages, but agrees with the Haskell definition
and in a canonical way resolves naming problems caused by multiple inheritance.

Typing inst x : (7,)y where ¢1 = e1,...,2 = e requires that the x; have some generic
type A(2;) = Va,.1;. Thus, no instance declaration is allowed without a corresponding class
declaration. In Section 6 a stronger context condition is imposed: the z; defined in an instance
must be exactly those declared in the enclosing class declaration for 4. The type constructor x
is declared to be in class v, provided its arguments are in classes 7y,...,7,. Hence the instance
declaration extends X with the declaration x : (7,)y. Note that w.r.t. the extended ¥ there
are now type terms of sort y¥ which are not type variables, hence the z; can now be applied to
values of type x. The e; need to have the type obtained by replacing the ., in their generic
type Vou,.7; by x(@,.). Note that our language does not have explicit recursion. If it did, the
e; could be referring to the very instances of the a; they define. In that case each e; would need
to be typed in the extended signature as well:

(4,4 x: ()1 b e milx(an,)/) 1)

Finally, the rule PROG simply states that the type of a program is the same as the type of
its constituting expression, provided this expression is typed in the extended signature and type
assumptions which have been produced by the declarations. Note that according to this rule a
function definition in an instance declaration cannot refer to functions from subsequent classes.
This is however allowed in Haskell and would require that all e; in all instance declarations are
typed in the final signature ¥,; for the sake of readability, we stick to the simpler system.

class Eq a where (==) :: a -> a -> bool
class Eq a => Num a where ..

instance Eq char where (==) = eqChar
instance Eq a => Eq [a] where

(1 == [] = true

[1 == x:xs = false

x:xs == [] = false

XiXs8 == y:ys (x==y) & (xs == ys)
[’a’,’b’,’c’] = [’d’,’e’,’f’]

Figure 3: An example program

4 Some examples

Figure 3 shows a small Haskell program (adapted from [14]) in concrete syntax. The translation
into Mini-Haskell is straightforward.

The type constants int : Q and char : Q are assumed to be predefined, as well as eqlnt
and eqChar, which have type int — int — bool resp. char — char — bool”. Upon anal-
ysis of the second instance declaration, the signature contains the sorts , Fq and Num,
where Num < Eq < Q, and char has the additional sort FEq. The type assumptions are just
[(==) = Yogg.ap; — agy — bool]. The second instance declaration causes a new arity of the
type constructor list to be added to the signature, namely list : (Eq)Eq.

Before we look at the type inference for the second instance declaration in detail, we trace the
simpler problem [’a’,’b’,’c’] == [’d’,’e’,’£’]. Since character literals have type char
in Haskell, both lists have type list(char). The order-sorted nature of the problem becomes
important only with the application of “==". According to TAUT, the type of “==" must be
an instance of apy; — agy — bool. According to APP, ag, must be unified with list(char).
Since the current signature contains the declarations char : Eq and list : (Eq)Eq, list(char) is
of sort Eq and the resulting CSU is the substitution {ag, — list(char)}. A similar unification is
needed for the second argument of “==", and we can infer that this particular use of “==" has
type list(char) — list(char) — bool. Note that the actual overloading resolution is performed
by the unification algorithm: the arities of type constructors used during unifications determine
the instance to be used. In our example the second instance of “==" is identified, since the
inferred instance of “=="’s generic type uses the arity of list which was introduced through the
second instance declaration. If the second instance declaration were missing, list(char) could
not have sort Eq, thus the above unification would fail and the last line would not be typable.

The body of the second instance declaration translates into something like the following
Mini-Haskell definition:

(==) = fix(leql.Ax.)y. ‘
if(null x, null y, if(null y, false,
hd x == hd y & eql (t1 x) (t1 y))))

The lack of pattern matching and recursion forces us to use the fixpoint combinator £ix.
This simplifies the typing problem, since there is no recursive use of “==". To make this

"The standard Haskell prelude defines char to be an instance of Enum and int to be an instance of Num,
but for reasons of presentation we assume that all type constructors have default sort 2. Of course, our system
can handle the real situation as well.

example more interesting, we ignore the translation and type check the original code using
the modified INST rule shown in (1). We must infer that the definition of “==" has type
list(agq) — list(ag,) — bool, which is the specific instance of the generic type of “==" required
here. For the first three clauses this is immediate. Now consider the last one. From the use of
“” we can infer that @s and ys have type list(ag). A similar computation as above will then
determine that in the second recursive call “==" has type list(ag,) — list(ag,) — bool. For
the first recursive call, the situation is more tricky. Since we do not know anything about the
types of @ and y, their initial type is aq. Unification with the argument type of the generic
type of “==" will weaken this to a ;. Hence this use of “==" has type ag; — ag; — bool. As
this type contains free type variables not of sort £, we cannot resolve overloading and do not
know which instance of “==" to use for the comparison of list elements; this decision must be
postponed until runtime. But we can at least successfully type the definition, because we now
know that the arguments are lists with elements of sort Fq, and the result type is bool.

If we want to type [1,2,3]==[4,5,6], we have a different situation. In Haskell, integer
literals have any numeric type, and type inference will thus infer the type list(anyn) for both
lists. Since Num is a subsort of Eq, the unification of ag, with list(anumn) is possible, and
the expression can be typed. This mirrors the fact that a subclass inherits all functions of its
superclasses (thus “==" is automatically defined for integer literals). In the absence of the
second class declaration, there is no sort-correct unifier, and the expression is not typable.

Now consider the (illegal!) program

class v; .

class v ...

class 6; a where f :: a -> bool
class 6, a => 0y a where ...

instance v a => §; [a] where f = ..,
instance 7, a => §, [a] where ...

Ax.f [x]

Suppose int is a member of v;. Hence list(int) is a member of §; and hence of §;. According
to the type system, f is defined on objects of type list(int). But the program does not define
its value, since the only f that is defined requires its argument to be of type list(c,,)! This
incoherence is reflected in our system as follows. The expression Az.f[z] has to be typed in the
regular signature with sort ordering v < Q, 72 < @, 8, < §; and declarations list : (71)61 and
list : (y2)82, and under type assumption [f — Vas,.a5, — bool]. This leads to the unification
problem list(aq) =" 85, which has the two solutions {ag — a,, 85, — list(ay,)} and {ag —
Oy, 5 By + list(ay,)}. These two solutions are incomparable (because 1 and v, are), and there
is no solution subsuming both of them. Hence Az.f[z] has the two types oy, — bool and
a., — bool. This ambiguity is caused by the second instance declaration which also violates a
Haskell context condition [6, p. 27]. Thus the above incoherence reveals itself by the absence
of a principal type. The next section introduces restrictions similar to those in Haskell which
ensure the existence of principal types. As Section 6 shows, principal types help to ensure
semantic well-definedness.

5 Computing principal types

The type inference system gives rise to an algorithm, just by reading the rules backwards. In
fact, we have implemented our overloading resolution in Prolog. If an expression has several in-
comparable types, our Prolog program will compute them one by one upon backtracking. The
termination of this algorithm is obvious (provided unifications are finitary), since every rule

decomposes an abstract syntax tree into its components. Instead of guessing the required in-
stantiation in TAUT, it is inferred by order-sorted unification. This raises certain computability
questions.

Theorem 2.2 states that regularity implies finiteness and decidability of order-sorted unifi-
cation. Unfortunately, we have no guarantee that the signature built up during type inference
is regular. In fact, in many cases it will not be. However, by going to the powerset of sorts,
regularity can be achieved. Furthermore, we show that two semantically motivated context
conditions lead to unitary signatures, i.e. principal types exist.

The main idea for regularity is quite trivial: two classes 4, and v, can always be combined to
form a subclass v = 1Ay, of both of them which provides the union of the operations available
in each of them. In fact, this can already be done inside the language by writing

class v < 71,72 where ;

The idea of conjunctive sorts® can be integrated into the framework by defining a new set of
sorts 3, the set of all non-empty sets of incomparable class names, and imposing the following
ordering on them:

S1 =285 & Vsye 8y dsy € Sy, 81 < 89

This gives rise to a lower semi-lattice (5' yX), the free lower semi-lattice on the poset (5, <),
where S1 A Sy = §1 U Sy if §1 and S, are incomparable. In Haskell this extension is expressed
by multiple class assertions for type variables.

Conjunctive sorts alone do not guarantee regularity. It is also necessary to realize that the
behaviour of type constructors on y1Av; is determined by their behaviour on 4; and ;. More
precisely, we can add a closure condition to signatures:

X:(Tm)y x:(8a)é
Xt (YnAp)YAE

which tells us that type constructors are homomorphisms w.r.t. conjunction. Again, there is a
corresponding construction inside the language. Given

(2)

inst x : (71)y where z = ¢;
inst x : (61)6 where 2’ = ¢/;

we can add inst x : (71A6,)yAS where ;.

Conjunctive sorts together with the homomorphism condition (2) guarantee regularity: ei-
ther the set defined in Theorem 2.1 is empty, or its least element is the conjunction of all its
elements.

For reasons of space we do not present the type inference rules in terms of conjunctive sorts.
Instead we assume that the user or the system provide the required additional class and instance
declarations shown above,

Regularity alone does not ensure the existence of principal types, as we have seen in the last
example of the previous section. According to Theorem 2.2, it at least guarantees finite complete
sets of types, a familiar picture for languages with classes and inheritance [16]. The ambiguity
in that example is ruled out by subsort reflection as defined in Section 2. It follows from
Corollary 2.4 that the extended system with conjunctive sorts has principal types if injectivity
and subsort reflection are enforced. In Haskell this is indeed the case. Section 4.3.2 of the Haskell
Report states that “A type may not be declared as an instance of a particular class more than
once in the same scope”, which is equivalent to injectivity. The same section, at the bottom
of page 27, introduces a context condition which amounts to the following: if 4q,...,7, are

8By analogy with conjunctive types, first explored by Coppo et al. [2].

10

the immediate super-classes of 6, a declaration inst x : (8,)é must be preceded by declarations
inst x : (v4)7i such that §; is a subclass of 7;: foralli=1...mand j =1...n. Any signature
built up from such a sequence of declarations is easily seen to be subsort reflecting. It follows
that imposing these two conditions on Mini-Haskell guarantees the existence of principal types.
However, we will see in Section 6 that principal types do not preclude semantic ambiguity.

6 Translation

So far nothing has been said about the semantics of our language. This will be given by
a translation into a well-understood sub-language consisting just of identifiers, abstraction,
application and let — essentially Mini-ML [1]. Type classes and instances are eliminated in
favour of so called (method) dictionaries which contain all the functions associated with a class.
The scheme presented below generalizes ideas from [14], and the reader should comsult this
article for intuition and examples.

The formal definition of the translation in terms of inference rules is given in Figure 4. For
an expression e, the judgement (A4, %) F e : 7~ €’ should be pronounced “in the context (A4, %)
e has type 7 and translates to e’”. Declarations produce a let-expression without body, which
introduces dictionaries and access functions. Thus, in the notation (4,X) F d: (4, %) ~ d',
d’ is of the form let z1 = ey, ...,2; = e;.

The effect of the translation can best be explained in terms of types. In the following we
use the phrase “ML-type” to distinguish the translated types from the original ones which may
contain sorted type variables. Below we show how the declaration of a class 7 gives rise to an
ML-type y(«) of y-dictionaries, where a is the instance type. Assuming y(a) we define

ML(Vay,.1) = Yapyi(er) = -+ = ye(ar) = rlar/oy, . .oy on /oy,]

which translates order-sorted types to ML-types: type restrictions are turned into additional
dictionary arguments. This means that the translation of a function definition has to pro-
vide abstractions for these new arguments and the application has to provide corresponding
dictionary arguments.

The target language has the following special features: it contains all n-ary product types
Q% %y, with values (ay,...,a,) and projection functions 7% : @y %+ - -+, — o;. In addition
to ordinary identifiers () the translation introduces a., (parameter representing y-dictionaries),
¥y (7-dictionary for type x), and 75 (function extracting the y-dictionary from a §-dictionary).

We go through the rules one by one.

Conceptually, a class declaration class 7 < 71,...,7, where 21 : Va,.7,..., 2% : Yo7
introduces a new dictionary of ML-type

1(@) = mila/ay]* - x milo/ o]« ya(a) - -k () (3)

The type parameter o stands for the type of the instance. The first k& components of y(a) are
the functions added in the declaration of class v. The next n components are the dictionaries
for all immediate super-classes of 4. Note that () is the empty product type.

Instead of defining this ML-type explicitly, the translation just defines the relevant access
functions: @; accesses the i-th component and hence the instance of function z;; 7Yj., accesses the
super-dictionary corresponding to the super-class 7v;, i.e. Viy takes a v d1ct1onary and returns
a 7; dictionary.

An instance declaration inst x : (7,)y where z1 = e1,..., 2 = € introduces 7, of ML-type

Vo yi(ar) =« = ya(an) = 7(x(@w)).

11

TAUT Az) = Va—%.f .
(AN)Fa:r[n/oy,. ..,T/ay] ~ (2 dictg(T,71) ... dicts (7, 7k))
APP (A, D)Fe:T—or'~ey (AN ke T~ €]
(A,) F (eo €1) : 7'~ (eg €})
ABS (A+[e— 1], 2)Fe:T ~ ¢
(A, D) FAze: 7 = 7~ da.e
LET (A, X)Feg:T~ ey FV(r,A) = {a_%}, (A+ [z HV_aTk.,T],E), Fey:7' ~ €}
(A, X)Fleta =e iney : 7 ~ let & = Aoy, .ep in €}
(A, 2)F class ¥ < 71,...,7n where @1 : Vo7, .., & : Voo .75
CLASS (A+[zi— Vo, |i=1.Ek,24+{y<7;|7=1.n})
~ letzy = 7rf+", cey B = 7r,’c°+”, Y1y = Wﬁi{‘, oy Yry = WIIC“IZ
supers(7) = {7',..-,7"} _
INST A(z;) = Vay.7 (A,) F e m[x(aq,)/ay] ~ € i=1.k
(A5)F instx : (507 where o1 = o1, .4 = &% - (A, ¥ x - (77)
~ let v, = Aary,. (el ..., e,
(7L casts(am,71) - castn(an,,72)),
(7% castz(ay;,77) ... casts(ay,,17)))
PROG (A1, 51) Fd; i (A4;,5) ~ dg i=1.n (A, Zp)Fe:T~ e
(Ao, Xo) F dy;...;dpje: T~ dl in...in d], in €

Figure 4: Translation of expressions

Given the required dictionaries for the arguments @, of x, 7, produces a dictionary of ML-
type 7(x(@r)). The A-bound variables @, represent the argument dictionaries. In case x is a
constant like int or char, 7, is a dictionary of ML-type ¥(x).

The first k£ components of the result type v(x(@,)) are the translated expressions defining
the methods 3 to ;. Since e; has type 7i[x(@5,)/,], the expression e} depends on n dic-
tionaries of ML-type v;(a;), 7 = l..n. By some mechanism that is explained in connection
with the translation of identifiers, this implies that e} contains free variables @, waiting to be
instantiated with dictionaries.

The last s components are the dictionaries of the immediate super-classes of ~:

supers(7) = {7 |7 <7A Bb.v <6<}

At this point we assume that the current expression is in the scope of x instance declarations
for all 4! to 4® (context condition 3 below). Hence the dictionary generators 7§; have been
defined. However, they may not expect dictionaries for the classes 7, but for some super-classes
thereof. Therefore the relevant super-dictionaries need to be extracted from the @: if v <z 7/,
casty(ay,7’) expands into an expression which does just that by inserting the appropriate
sequence of coercers which have been defined by the translation of the class declarations for all

12

the classes between v and 4’.

n o Oy ify=4+
cast);;(a,y,')’) = { (7(; castg(a,y,ﬁ)) if’)’ S 6 A 7' € superz(ﬁ)

If there is more than one path from 7 to 4/ w.r.t. <y, casty chooses an arbitrary fixed one.

Notice that the positional scheme used for arranging the methods and the super-dictionaries
in a dictionary requires some fixed ordering on both the z; and the v;, e.g. lexicographic.
Otherwise it is not clear in which order the @; and v; appear: the signature ¥ does not record
this information.

The translation of an identifier in rule TAUT is determined by its use. If has type
Va7, its definition has translated into an function of ML-type ML(Var,,.7) which requires
k dictionaries. Exactly which dictionaries are passed with this call to @ is determined by the
;. Expanding dicts(7,v) produces the code representing the dictionary of ML-type y(7) as
defined in (3).

dictg(ay,v) = castg(ay,y)
dicts(x(71,.-+,7a),7) = 7x (dicts(m1,m)) -.. (dicts(7a,7n)) Where X € Try..1 e

It is a homomorphism which maps type constructors to their corresponding dictionary genera-
tors declared in the translation of the respective instance declarations. Type variables map to
dictionary variables (with suitable coercers inserted by cast). In case « is a subexpression of eg
in LET or of some e; in INST, these type variables are A-abstracted later on. Otherwise the
represent a semantic ambiguity as in Example 6.1 below.

The rules APP and ABS do not need any explanation. Note that A-bound identifiers cannot
be polymorphic. Thus for such identifiers £ = 0 in TAUT, and the identifier translates into
itself.

The correctness of our translation depends on a number of context conditions:

1. No type constructor can be declared as an instance of a particular class more than once
in the same scope. This is ruled out in Haskell as well [6, p. 29].

2. Each instance declaration lists exactly those z; that the corresponding class declaration
listed (and in the same order, which is simply a technical device). This means that opera-
tions of super-classes cannot be redefined in subclasses. A more sophisticated translation
scheme can easily avoid this restriction.

3. Every instance declaration inst x : (7;)y, where superg(y) = {¥%,...,9°} at that point,
has to be nested inside instance declarations inst y : (7;)7¢ for all ¢ = 1..s. In particular
Fn <x v, must hold. It can be shown that this is equivalent to the context condition in
Section 4.3.2 of the Haskell Report and implies subsort reflection and hence the existence
of principal types.

If these conditions are violated, the translated expression may not be well-formed. Hence the
original expression has no semantic meaning. But even if an expression conforms to the context
conditions, can be typed and translated, it may still be regarded as ambiguous:

Example 6.1 Let ¥ = ({Q, Eq},{Eq < Q},{list : (Q)Q,list : (Eq)Eq}) and A = {[] —
Va.list(a), (==) = Yagg.aps — agg — bool}, and e =[] == []. Because the element type of
[is undetermined, it is not clear which F¢-dictionary should be passed to ==, and hence e is
ambiguous. Nevertheless, we have (A,X)F e :bool ~ (==) ag, [] [] where the free variable
o, signifies an undetermined dictionary.

13

Haskell deals with this problem by inferring the type Eq a => bool for e, concluding that
e is ambiguous because the class assumption Eq a contains a type variable a not present in the
type bool [6, p. 30].

In our approach the ambiguity reveals itself by looking at the translation which contains
the free variable ag, not present in bool.

The final theorem shows that the inferred types and the semantics given by the translation fit
together. Let ML(A) = {&¢ — ML(0)| A(z) = o}

Theorem 6.2 Let all types in the range of A be closed. If (A,X)Fnse: T~ e and FV(7) =
FV(e') = FV(e) = {ay,...,ay,}, then ML(A) Fpar Aoy, .e! « ML(Va,.7).

Roughly speaking, this says that the if e has type 7, the translation e’ of e has the translated
type ML(r). The implication is trivial if FV (1) # FV(e') — FV(e). This is precisely the case
if ¢’ contains a free dictionary variable a., not free in 7, which in turn corresponds exactly to
the Haskell ambiguity definition quoted in Example 6.1 above. Hence we know that the type
of unambiguous expressions matches their semantics.

7 Conclusion

We have presented a type inference system and algorithm for a Haskell-like language, which is
based on order-sorted unification. In contrast to the type system of Wadler and Blott [14] and a
similar system by Kaes [7]%, our system is the first one to utilize full order-sorted unification. It
grew out of efforts to integrate polymorphism into a generic theorem prover [10] which required
more control over the instantiation of type variables than is available in ML. A weaker form of
order-sorted unification is also used in the concept of context relations [18] which is a generic
and incremental type inference mechanism and can be used for the resolution of user-defined
overloading as for example in ADA [5]. But context relations do not allow user-defined classes:
the signature must be fixed at language definition time.

Acknowledgements The first author would like to thank Uwe Waldmann for e-mail consulta-
tions and Eugenio Moggi and Larry Paulson for detailed comments. The second author would
like to thank Stefan Kaes for stimulating discussions. We are grateful to Mark Lillibridge and
Stephen Blott who pointed out some subtle errors in a previous version of this paper.

References

[1] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn., A simple applicative language:
Mini-ML. In Proc. ACM Conf. Lisp and Functional Programming, pages 13-27, 1986.

[2] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and A-calculus
semantics. In R. Hindley and J. Seldin, editors, To H.B. Curry: FEssays on Combinatory
Logic, Lambda Calculus and Formalisms. Academic Press, 1980.

[3] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 9th
ACM Symp. Principles of Programming Languages, pages 207-212, 1982,

[4] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In Proc.
12th ACM Symp. Principles of Programming Languages, pages 52-66, 1985,

?Kaes’ language does not have explicit type classes; such classes arise only implicitly.

14

[6] F. Grosch and G. Snelting. Inference-based overloading resolution for ADA. In Proc.
2nd Conf. Programming Language Implementation and Logic Programming, pages 30-44.
LNCS 456, 1990.

[6] P. Hudak and P. Wadler. Report on the programming language Haskell. Version 1.0, April
1990.

[7] S. Kaes. Parametric overloading in polymorphic programming languages. In Proc. 2nd
European Symposium on Programming, pages 131-144. LNCS 300, 1988.

(8] J. Meseguer, J. Goguen, and G. Smolka. Order-sorted unification. J. Symbolic Computa-
tion, 8:383-413, 1989.

(9] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[10] T. Nipkow. Higher-order unification, polymorphism, and subsorts. In Proc. 2nd Int.
Workshop Conditional and Typed Rewriting Systems. LNCS 777, 1991,

[11] M. Schmidt-SchauBl. A many-sorted calculus with polymorphic functions based on res-
olution and paramodulation. In Proc. 9th Int. Joint Conf. Artificial Intelligence, pages
1162-1168, 1985.

[12] G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational computation.
In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
Volume 2, pages 297-367. Academic Press, 1989.

[13] G. Snelting. The calculus of context relations. Acta Informatica, 1991. To appear.

[14] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th
ACM Symp. Principles of Programming Languages, pages 60-76, 1989.

[15] U. Waldmann. Unification in order-sorted signatures. Technical Report 298, Fachbereich
Informatik, Universitdt Dortmund, 1989.

[16] M. Wand. Type inference for record concatenation and multiple inheritance. In Proc. 4th
IEEE Symp. Logic in Computer Science, pages 92-97, 1989,

15

