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Abstract

This report describes the derivation of a small and intuitive set of cate- -
gorical combinators for the Calculus of Constructions. The choice of an ap-
propriate categorical semantics is the crucial step. A modification of Ehrhard’s
higher-order closed summable fibrations, yielding so-called CC-categories, turns
out to be the appropriate underlying categorical structure. Standard tech-
niques can then be used to derive the combinators. The combinators can be
turned directly into the classifying category for the Calculus of Constructions.
This establishes a precise connection between the calculus, the combinators
and the CC-categories. '
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1 I'ntrOduction

Categorieal combinators are an equational presentation of a categorical structure.
They provide a variable-free presentation of type theories, therefore eliminating the

" need to take care of the names of bound variables and a-conversion. The general

framework is set by Burroni [Bur81] who shows how adjunctions and pullbacks can

“be characterized by an equational theory. Curien [CCMB8T) applies this framework

to obtam categorical combinators for the simply typed \- -calculus, using cartesian

-~ closed categories. The combinators are the basis for the construction of a categorical
. abstract machine that reduces them to their normal form. Coquand and Ehrhard
- [CES87] go one step further and derive categorical combinators for the polymorphlc.

A-calculus (PLC), using the PLC-categories [See87]. In my Diplomarbeit [R1t89] I
construct a categorical abstract machine for the PLC using these categorical com-

" binators. As a first step towards the development of a categorical abstract machine

for the Calculus of Constructions (CC for short), this report describes categoncal
combmators for the CC.

" The Calculus of Constructions, due to Coquand and Huet [CH88], adds depen-
dent types to the polymorphic A- calculus This yields a powerful type theory with

_dependent products and an impredicative universal quantification over propositions. -

The main application of the CC in computer science is the construction of theorem
provers that ‘allow the formulation of properties of programs and a proof that a

o program actually satisfies these properties. Examples of such theorem provers are

LEGO at Edinburgh [Tay89] and CAML at INRIA [INR89].

T-he most important step in the derivation of categorical combinators for the
CC is the choice of a suitable categorical semantics. A modification of Ehrhard’s -

~ higher-order closed summable fibrations [Ehr88a) is proposed in this report as the
‘adequate categorical structure. The modification consists in replacmg the fibrations
‘by indexed categories and Grothendieck’s constructionand requiring the strictness of

~ every categorical concept involved. A small and very intuitive set of combinators can .

then be directly deduced from the standard equational presentation of an indexed
category and adjunctions. Other categorical semantics yield either more complex

o combmators because of the intricate representation of pullbacks or no combinators.
E at all. ' T ~ L

. Section 2 presents the version of the CC used in this report and explains Why the -

use of de Bruijn-variables is adequate for the categoncal semantics. The category-

‘theoretic structure, the so-called CC-category, is defined in section 3, together with

a discussion of the criteria for choosing this categorical semantics.- The categorical |

~ combinators are derived in section 4 and it is shown that they can be converted o
- directly to the classifying category for the CC, although they are not strictly equiv-

alent to the CC in the type—theoretlc sense. The last sectlon contains conclus:ons -

s and ideas for further research
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2 The Calculus of Constructions

This section presents the version of the Calculus of Constructlons used in this report
and explains the ob_]ectlves for choosing this version.

2.1 The syntax of the calculus

The version of the Calculus of Constructions used here consists of the common
concepts presented in all versions [CH88] [HP89] [Str89] [Luo88] [Ehr88a). The ex-
pressions of the calculus are divided into two levels, which are called terms and types.
Following the terminology of [CH88], we have a special type Prop, which should be

“thought of as the type of all propositions in the higher order logic corresponding to
the Calculus of Constructions according to the propositions-as-types schema. The
principal components of our version are as follows:

- o dependent types

e dependent products, which are predicative quantifications over arbitrary types

e allquantifications, which are impredicative quantifications over propositions

e an explicit conversion operation concerning the transformation of a pfoposmon
p into a type, which should be regarded intuitively as the set of proofs of p.

The definition of well-formedness r requires additionally contexts i.e. lists of typ-
ing statements for variables. We add also a unit type and contextmorphisms, which
are lists of terms and characterize the transition from one context to another. Both
constructions are included because they are part of the categorical structure used
- for the interpretation of the Calculus of Constructions. So there are four kinds of
raw expressions, which are defined as follows:

Definition 1 (Raw expressions) The set of raw types E, of raw terms t, of
raw contexts I' and of raw contextmorphisms f are defined by the following BNF-
expressions, where T denotes an element of an infinite set of variables:

=[] | T,z: E)

= 1 {h0)

u= 1| Iz:E.E | Prop | Proof(t) |

z= ()| = | Az: Eit | App(E, E,1,1) | Vz: E.t

We identify terms which are equivalent under o-conversion ( the binding operations
being I, A and V. Moreover, it is assumed that the variable z in (T,z : E) is
distinct from all the variables occurring in T'. The length |T| of a context I' is
defined inductively as follows

i = o
[(T,z:E)| = [I+1
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The .lehgth o_fd contextmorphism is defined similarly:

{} =0
HfAtH = 1fl+1

In the second step, the following kinds of judgments are used in the type theory:

FT ctxt T isa valid context .
- I'=r - T’ and I" are equal contexts
'Ff:A f is a contextmorphism from I' to A

F'Ff=g:A fandg are equal contextmorphisms from I’ to A
' Atype . Ais a well-formed type in context T’ '
'FA=B A and B are equal types in context T -

PFt:A thastype Ain context T .

'Ft=s:A tand s are equal terms in context T

The rules for valid judgments must be defined in one huge inductive definition
because the mutual dependencies between types, terms and context do not allow
to define well-formed contexts, types and terms separately. However, one can split
the definition into several parts, namely the parts dealing with contexts, general °
rules concerning judgments, rules concerning the dependent product and the rules
for propositions. - : ' '

The first part of the rules is concerned with the formation of contexts:

Emp ty F [].ctxt

o ‘I‘I-Atype. s
- ant _ Intro F(T,z:A)ctxt (x ¢FV(I")‘): .

Next, the ru'le's'fo: the unit type and for variables are 'given:

Unit—type - ppyme

Unit - mérph P—H)—l

F(Iz:AT)ctxt
Tz: AT)Fa: A

Var
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The third part lists the usual rules for eQuaIity:

Cequ

Reﬂ‘_

Symm

Trans

Convl

Conv2

F(T,z: AT ctxt THA=B

(Tz: A T)=(T,z: B,T) ‘ _
FPectxt TFf:A Trt:A  TF Atype

I'sT TFf=f:A TFt=t:A TFA=4

T=I" TFf=g:A Thkt=s:A TFA=B

'=T Trg=f:A TFs=t:4 TFB=4
I=[" I'=I" TFf=g:A I"l-g-h A

T=17 TFf=h:A ,
TrHt=t:A4 rl—t'—t" A THFA=B TFB=C
TFt=t:4  ~ TFA=C

THf:A FA=A T+FA=B Trt:A

Pk f:A '+¢:B

ThHf=g:A A=A TFA=B Thrt—s:A o

TFf=g:& TFi=s:B

.The ‘fourth.v part deﬁﬁes the fﬁles for the dependént product: -

II — form:

- H_Equ. .

H_I?.t-ro-_ - THFQz:A%):Tlz: AB

D E—rule

II —elim -

o — elimequ..

ﬂ— rule

| n — rule

| :(I‘,:z: : A) F B type
“T'Fllz: A.Btype.

TFA=4A (D,z:A)FB=§
TFlz:AB=1z: AB
(Tyz:A)Ft:B

(T,z:A)Ft=t':B T+A=A

CTFXe:AT=Xa: A7 :1: AB |
Trt:Mz:AB Trs:A. (I‘:r: A)I—Btype o

'k App(A B,t,s): B[z « 3]

TraA-a Tht=t:Mz:AB (T,z: A)I—B B' Thks=s:4"

F F App(A B t S) = App(Al Bl’tl, I) Bl[x — S] =

(I‘x A)l-t B- If.l-s.A (T,z : A) + B type
- '+ App(A, B, z: At y8)=tlz — s]: Blz s]

Trt¢:Oz: AB (Fm A)F Btype A
TF Xz :AApp(A,B,t,z)=t:1lz: A B (wzrnqtﬂfree in t)
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The last part gives the rules for propositions:

| Proo F T octxt
. TF .P rop type
~ Proof T krpioi;(zotpyﬁe
lj’roPA—. equ I‘ F g:,cﬁ(:};)p’: ;::f(p’ )
‘V_'v—_ Intro (IFvazA)Lf :: lfrr:: o
Voo et b s
Y el (Tyz: A) l'-'p : Prop

I'F Proof(Vz : A.p) = Ilz : A.Proof(p)
This coxﬁpletes the definition of the Calculus of Constructions |

Remark The properties of weakening and substitution are given by the following
judgments, in which T' = J is an abbreviation for either F T ctxt, ' =I", T F
Atype,I‘l—A BFI—t AorI‘t-A-’s,I‘l-f ATFf=g:A. -

(T, F’)=>J I‘I—Atype»

. ,
Thin T AT S 7 (= ¢ FV(T) U FV(F ))

(To:AT)=>J TFi:A | o
Sub T Tz — ) F Iz — 1] (z free for t in I")
SUb"Equ Tri=t:A (Te:Al)=J (zfreefor}tin.l'")t

(I‘,I"[:ce—t])l-J[a: 4'—t] =J[:c «—t’]

The Judgments can be derived from the other ones by an mductlon over the deriva- »

- tions which is omitted here.

" The objective of this version of the Calculus of Constructions is to allow a neat
correspondence between the syntax and the categorical combinators. In section 4 it

- is shown that dependent products and allquantification are modelled quite differently. -

~ in the categorical combinators, because the first concept is a predicate quantifica-

- tion, whereas the second is an impredicative one. In order to achieve this neat

correspondence, a distinction between these two kinds of quantifications is also in-

troduced on the syntactic level. This distinction is not only necessary on the level ,

- of judgments, but also on the level of raw terms, because the correspondence be-
tween the calculus and the categorical combinators is based on the translation of

raw terms, as is demonstrated in section 4. Therefore, this version differs from the -

.versions of [CH88] and [Luo88], which identify these two notions on raw terms and

distinguish them only at the level of judgments. The same line of thought applies
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‘also to the exphcxt convers:on operatlon between proposmons and the type of thelrv »
proofs, which is not present in [CH88] and [HP89].. The translation of raw terms

‘into categorical combinators requires such an operation. Furthermore, the calculus

has not only the S-rule, but also the n-rule, because the equivalents of both rules in
- the categorical combinators are required for estabhshmg the correspondence of the
categorical cornbmators to the CC-category o

2. 2 de Bruun numbers

~ As in the case of the sunply typed A- calculus [Cur86] and in the second order A-
calculus [CE87] the relation between the syntax and the categorical combinators .

- is easier to establish if variables are replaced by de Bruijn numbers. This applies : " » :

also to the Calculus of Constructions, as section 4 shows. At the beginning of this
" subsection we define the raw expressions of the Calculus of Constructions in de

. Bruijn form and give a translation of the raw expressmns of the ordinary calculus
- into this one. Afterwards we glve an adapted version of the rules concernmg well-
. formedness. o :

The raw expressions are as follows:

:Deﬁnxtlon 2 (Raw types and terms, raw contexts) The set of raw types E,
.. the set of raw termst and the set of raw contexts T of the Calculus of Constructions
Cin de Bruzjn form are deﬁned by the fallowzng BNF-e:rp'resszons

g1, E)

{3 | {£,1} ,

1| IIE.E | Prop | Proof(t)
()InI/\EtIApp(EEtt)lVEt

B T
li

‘_Furthermon:, the length |F| ofa context I‘ is deﬁned mductwely as follows

m=0
ICB)] = Irj+1

The. length of a conteztmorphzsm is deﬁned szmzlarly

=0
KA = I7l+1

The translation of raw expressions of the calculus with variables in the calculus
‘with de Bruijn numbers is given next. It is only possible if raw expressions in
 ‘raw contexts are considered, because a variable z is translated to the number k
- indicating the position of the varlable in the context I'=(zp-1:An,... ,Zo : Ao).

o The defimtxon is as follows

Deﬁmtlon' 3 The transla.tlon db(T', E) of a raw expression E with variables to a raw v
ezpression in de Bruijn form with respect to a contextT' = (Tn—1 : An-1,...,Z0 : Ao)
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is defined by induction over the structure of the expression as follows:

db([) = [ » (D)
db((T,z: E)) = (db(l"),db(l",x : F)) .

db(T, {}) = {} {})

db(T, {f,t}) = {db(F ); db(F t)} {=-}

- db(T,1) = (1)

db(I',IIz : A.B) = Hdb(I‘ A). db((l" z: A),B)) _ (11)

db(T’,Prop) = Prop _ ~ (Prop)

db(T', Proof(t)) = Proof(db(T,t)) (Proof)

db({)) = () ~ | ()

db(T,zx) = k(0<k<n-1) (Var)

~db(T, Az : At) = Adb(T,A).db((T,z: A),1) : (A

db(T, App(A, B,s,t)) = App(db(T, A),db((T,z : A), B),db(T,s),db(T,1)) (App)

db([',Vz : A.t) = Vdb((T,A).db(T,z: A),t) '

The operations of weakening and substitution in de Bruijn form, which are to
be defined next, are more complex than those in the previous case and require extra
definitions, which must be given before the well-formed expressions can be defined.
The intended meaning of the weakening operation U is that if for types A and
~ Ao,..., Am-1 and contexts I' and IV with |[V| =4

_ (I, Ty + Atype
(T, Ametse ey Ajp) F Atype(0<]<m—1)

are va.hd judgments, then the Judgment
(T, A1,y Ao, UR(I)) F UT(A)

is valid. A similar claim applies for a term ¢ and a contextmorphlsm f instead of a
type A.

Definition 4 (Weakening) The weakening of pure types, terms and conterts is
given by the operation U™, which is defined as follows: '

(i) on contexts:

ur ()

=l
Ur((T, E)) = (U; _1(P) Ur(E)) (z>0)

Ur(r) = T  (i<0)

(ii) on contextmorphisms

P {foos- -, fo)

{UP(fia), -, U7 (fo)}

(iii) on types:

ur(1) = 1
Ur(IIA.B) = TIUT(A). U:+1(B)
Um(Prop) = Prop :
U (Proof(f)) = Proof(UM(t))

0

(¥)
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(iv) on terms:

ur®) =

E k<i

UP() = { kim ko
UM(AEY) = '/\U}n(E).UZ;I(t)
U?(APP(A’ Batas)) = App(U:-"(A), Um-l(B)v U:n(t)v U:n(s))
Ur(VA.L) = :

VUR(E).UZ (1)

In the sequel we will abbreviate Ul(e) by (e) 1.

The second definition concerns the substitution of a term s for the nth variable
in a term ¢, a type A or a context I',which is denoted by tln — s], A[n « s] and
I'[n « s] respectively. The precise definition is as follows: '

Definition 5 (Substitution)
(i) in contezts

[l < o]
(T, E)[n « ]
Iln « )

| |
(Tl =1 1], Efn —s)) (220)
r . : (n <0)

(i) in cqntgxtmbrphisms 7 ,
Uorre fodln = sl = {funln = ... foln )
(i) in types , | | ' |
Nnes] =1 - : :
(TA.B)[n < s] = IA[n « s].B[n+1 « 3]

Prop[n — s] = Prop
Proof(t)[n — s] = Proof(t[n )

o (iv). in terms | v |
| Ol s = 0

_ . k k<n

k[n —s] = { Ug(s) k=n

k=1 k>n
- (M)[n =] = X e s)tn+1— ) v
ApP(4, B s so)ln = o) = App(dln e o], Bln+1 = slyealn — shysfn - o))
(VAt)[n —s] = VA« sltn+1 « s

The adaptation of the rules describing well-formedness is given here only for
the rules involving weakening and substitution, because all other rules are merely
rewritten. However, the complete set of rules can be found in the appendix. The
adapted rules look as follows: A '



2; Variablerule = - o .
. v F (T, A, T") ctxt
AR

4. Rules for dependent product 7
([,A)Ft:B Trs:A (T,A)F Btype
' 'k (AAt)s=1t[0 — s]: B[0 — 5]
B o LFt:TAB) (T,A)F Btype
7 me I‘P—AA(U (t)O)_t 4B

B - rule’

The rules for weakening and substitution are as follows:

, Thin - (Fsr,).=‘> J TF Atype

» (F, A, Uilrll(r’)) = UIIF'H-].(J).; ..
Sub T,AT)=J TFt:A
w T = F I =4
’Sub—Equ (0,AT)=J Tri=t:A

T = BRI =g = I =71

.3 Th’e CC,—category ?

‘This section deals with the category-theoretic structures the so-called CC-categories,

that are the basis for the categorical combinators. The definition of a CC-category :
and a discussion of the connections to the syntax of the previous section are given
in the first part. The section is continued with a discussion of the objectives of
the definition of a CC-category. The last part contains the proof of the equivalence
. between Ehrhard s hlgher-order closed summable fibration and the CC-categorles

‘3. 1 Deﬁnltlon and connectlon to the syntax .

This subsectlon presents. the category-theoretlc structures that are used for the in-

N terpretation of the several syntactic structures of the Calculus of Construct:ons, o

~ namely dependent types, dependent products and propositions. - : _
' For the first syntactic concept, namely dependent types we con31der the fol]owmg
category—theoretlc structure: = : : ' '

e A category B thh a termlnal object []

. An mdexed category E B — Cat, where E' is a functor (and not, only a
. * pseudofunctor) and each fibre ET) has a termmal object 1 that is preservedf -
~ on the nose by e every functor f*:= E(f) ' =
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The connection to the syntax is as follows:

Category Syntax
object I of the base category B Context T :
terminal object [] in the base -~ | empty context
| morphism in the base | contextmorphism
object A in the fibre over T’ : term of type A in context T’ v
“pulling back” of a morphism g in E(T') | substitution of f in u (see below)
along f:I' = I, i.e. f*(p) - '

The formation of new contexts is captured by the followmg a,dJunctlon where Gr(E' ) _
denotes the Grothendieck’s constructlon of E: :

e The functor I' : B — Gr(E), given by - |
o= (@)
I'(f) = (f,ld)

has a right adjomt G: G'r(E) — B. The object G’(I‘ A) is abbrevxated IxA

- in the sequel. Furthermore (Fst,Snd): (I'xA,1) — (T', A) denotes the counit of
this adjunction. The natural isomorphism between Horng,( E)((— 1) = (-, A))
- and Homg(—, — x A) is denoted by (-, —) o :

The functor G' models the formatlon of new contexts from old ones, i.e. T x A

corresponds to the context (I', A).. This adjunction is also used for the modelling

of substitution. If 4 is a term of type A in context I' and p is a term of type B in
context (T, A), then the morphism (Id, u)*p : 1 — (Id, #)* B in E(T) corresponds to
the substitution of the variable with de Bruijn-number 0 in the term p by g. The
weakening operation, which is also necessary for the definition of substitution (cf.
~ section 2), is also modelled by the-adjunction I’  G’. More precisely, it corresponds
to the functor Fst}, : E(T') — E(T x A). S

The dependent products are modelled by the right adjoint I1 4 to the weakemng

= functor Fst%, plus Beck Chevalley condition, i.e. the requxrement that

f (4 (B)) =‘,Hf-(A')((f x 1d)*(B))
F(Cura(u)) "= Curgean (7 x 1d)"())

holds for every f : T — I, A’ € E(I"), B' € E(I" x A’").  In these equa- .
tions, Cur denotes the natural isomorphism between Homg(ry 4)(Fst}(B),C) and
Homg(ry(B,I14(C)). See next subsection for the reasons why the strict version
of the Beck-Chevalley-condition is used. This modelling of dependent products is
similar to that used for allquantification in the polymorphic A-calculus and the -
abstraction in the simply typed A-calculus, which are modelled as right adjoints to
the weakening functor in the PLC-category [See87] and cartesian closed categories
[L585] respectively. : :
Now we turn to propositions. There are three concepts to be con51dered Firstly,

~ the type Prop of all propositions, then the type of all proofs of a given proposition =



3.1 Definition and connection to the syntax » - 11

and at last the allquantlﬁcatxon Proposxtlons are modelled v1a a spec1al object 2
in the CC-category, i.e. we requ1re

- @ There exists an ob_]ect Qin E([])

Q corresponds to the type of all propositions that are well-formed in the empty
context. The type Prop in any context I' is then represented by the object ()* (),
where () denotes the unique morphism from I' to the terminal object []. T

For the modelling of the second concept, i.e. the type of all proofs of a proposi-
- tion, an extra operation converting a morphism of type Prop into an object in the -
appropriate fibre is necessary, because there is in general no morphism in a CC-
category that is also an object in any fibre. We consider at first the generic case,
i.e. the case of a single variable of type Prop. This case is captured by the following
addltlonal property of a CC-category

e There exists an object T in E([] x )

The type of all proofs of this proposition corresponds just to T'. In general the type
of all proofs of a proposition x corresponds to the obJect obtained by substltutmg
g in T, i.e. the object ((),,u) T.

The third concept, i.e. the impredicative allquantification, applies only to terms
of type Prop and yields a new proposition. Therefore it is not a special case of a
dependent product which is a predicative quantification. Hence we need an extra
operation in the CC-category to model it, i.e. we require the following:

‘e For every morphism g : 1 — (*(®) in E(T x A) there exists a morphlsm
Vie:1— ()*(2)in E(I") and the naturality condition

‘ V((hx Id) * u) = hxV(p)
| holds for every h:T - T.
At last we have to look at the proof of an allquantified proposition V. The coherence
~ condition in the Calculus of Constructions tells us that a proof of such a proposition

“is a function assigning to every term of type A a proof of x. Hence this condition "
relates predlcatlve and impredicative quantification. Its categorlcal version

TI(A, (), u)" (T)) = (0, Y()"(T)

s the last requirement for a CC- category _ -
If we put all parts of the definition together, we obtain the follovs ing deﬁmtlon
of a CC-category: .

Definition 6 Let B be a category with a termmal ob]ect [] and E : B°? — Cat an
- indezed category over B. E is a CC-category if it Qatzsﬁes » '

(i) For every object T of B there erists a terminal ob]ect 1 in the category E(F) ,
- which is preserved on the nose by every functor E(f) We write f* for E'(f) ‘
in the sequel ' :
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(n) a rzght ad]omt G’ to the functor I' : B Gr(E) where I’ is defined by

Iy = (T,1) (T €Obj(B))
I'(f) (f,1d) (fe Hom(F ),

~ and Gr(E) is the category obtamed by applyzng the Grothendzeck s construc-
tion to E. We abbreviate G'(T', A) to T' x A and G’(f,,u) to f x p later on,
Furthermore (Fst, Snd) (T x A 1) — (1" A) denotes the counit of this adjunc-

tion.

E (m) For every ab]ect T of B and A ofE(F), the functor '
| Foty (r) — E(T x A)

| 'has a right '-aa'joint

» ' _ HA E(I‘ X A) — E(I‘)

‘The natural isomorphism between HomE(pr)(FstA(B) C) and HomE(p)(B IL;(C))

is denoted by Cur. . ,

(w) The Beck- C’hevaﬂey-condztzon for the ad]unctzons FstA F HA is satzsﬁed in the
stract sense, i.e. the equations : _

f(Iu(BY)) = I, m((f < 14)7(B)
S Qo) = Curgan((S x 14)(0)

" hold for every f : I'— IV, A € E(I"), B € E(I" x A").

(v)- There ezzsts an ob]ect QO in the category E([ ]) and an ob]ect T in the category
CE([Tx ). |

(vz) For every ob]ect T in B, every ob]ect A in E(T) and every morphzsm u 1-9
in E(T' x A) there ezists a morphzsm V(u) : 1 — Q in E(T) such that the. . -

equations -

Wk x-ld)‘(#))':, row) o
L") = QY@ @)

~ are satisfied.

“ Remark The notation for the adjunction I’ F G’ is for three reasons similar to the
notation for products in cartesian closed categories, which correspond to a special
case of dependent types, namely multi- sorted algebraic theories. Firstly, a context
in the case of algebraic theories is simply a list of types (A1y+ .., A,) without any re-
_striction on the types because there are no dependencies between types. This list is

o represented by the cartesian product in the cartesian category. Therefore, the prod-

uct notation is chosen for the contexts in the Calculus of Constructions.. Secondly,

- substitution of a term for a variable is modelled by composing with the morphism

(ld, ) in the cartesian closed category and by applying the functor (Id, u)* in the = -
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~ CC-category. Thirdly, the counit of the adjunction I’ - G', a morphism which is
denoted by (Fst,Snd) : (I’ x A,1) — (T, A), plays a similar role as the projection
(w1, 72), which is the counit of the adjunction defining cartesian products. Both first
projections are used for modelhng weakening, more precisely the functor correspond-

ing to weakening is Fst* in the case of the Calculus of construction and Hom(7y,—)

in the case of algebraxc theories. . Also, the de Bruljn-varlable k is represented by
Fst* x Snd, where Fst* is an abbrevxatlon for FstoFsto...oFst, and by my 07 re-

k—tlmes
_spectively. However, the second pro_]ectlon shows the limits of this analogy. In the

cartesian category, it is a morphism from I' x A, i.e. from the the extended context
to the second component, whereas in the CC-category it is a morphism Snd:1 —» A4
in the fibre E(I' x A) from the terminal object to the second component in the fibre
over the extended context. The latter implies that it is not enough to define the fibre
over I' just to be the base category itself if a cartesian category should be turned
into a special case of a CC-category. The reason is that there is no right adJomt to
the functor I " in this case. :

3.2 Objevctives of the deﬁnit‘ion of a CC-category

" The CC-category is used in the next section for the derivation of categorical combi-
~nators. This yields two principles for the definition of a CC-category:

° _Turﬁ all 'canon'ical isomorphisms into identities whenever possible
e Use those constructions that allow the sunplest relatlon to the syntax

. The application of the ﬁrst prmcxple makes extra combmators and equations for
- the canonical isomorphisms superfluous, whereas the second one allows the relation -
between syntax, CC-category and categorical combinators to be as neat as possible.

The definition of a CC-category is a reformulation of Ehrhard’s higher-order
closed summable fibration [Ehr88a] These are defined using fibrations, whereas
the definition of a CC-category uses'indexed categories and the Grothendieck’s con-

: structlon instead. This has several advantages ‘

e all canonical lSOIIlOI'ph]SIIlS that are mvolved in the defimtlon of ﬁbratlons
become ldentltles ‘ ’

e Grothendleck s construction has an intuitive meamng ((I‘ , A) denotes the type E
Ain context I'), which is hidden in the fibration ‘

e no pu‘llbacks are necessary for the definition of a CC-category. They are im-
plicitly part of the definition of a fibration (cf. [Ehr88a, Prop. 2]).

Also the strict version of the Beck-Chevalley-condition is adopted because this elim-
inates further canonical lsomorphxsms All these advantages. lead to a much simpler -
system of combinators. '

Other approaches [HP89][Pit89] use so-called display maps. They CODS]deI‘ a
category B with ﬁmte products, where the fibre over an object T of B is given by
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a collection of distinguished objects in B/T, the display maps. For every object T’
in B the full subcategory B/T of display maps is denoted by E(I'). They are not
used here for two reasons. Firstly, the pullbacks involved yield quite complicated
combinators and secondly I do not know how to capture the distinct role of display
maps as certain morphisms in the base category. Streicher’s extension of contextual
categories [Str89] imposes a tree structure on the objects to capture the notion of
type-in-context. This leads to complex categorical combinators, whereas in the CC-
category terms-in-contexts are modelled by an adjunction that allows the derivation
of simple combinators in a standard way.

3.3 The equivalence of :E‘hrharc‘l’,s definition

The definition of a higher-order sumnmable fibration, which corresponds to a CC-
category, consists according to [Ehr88a] of three steps, namely the definition of a
D-category, a closed D-category and finally of a higher-order summable fibration.
We give for each step first the definition, adapted to the case of a split fibration,
and then the proof of the equivalence to the corresponding part to definition 6.

3.3.1 Split D-categ‘orieé |

Definition 7 (Split D-categoryb) A D-category (p: F — B, I,G) consists of
. tﬁ;o categériesf and B and aﬁbratfon p:F—-B
® an adjunctz'én pl,its qounit being an isomorphism
e an adjuncﬁon 141G |

A split D‘-ca.tégory is a D-categ(;ry where the ﬁbration p ts split.

The relation t.o definition 6 is as follows:

Lemma 1 For a category B with a termznal object [ ] the following are equivalent:
(i) (p f——) B,1,G) is a split D—category

(i) the indexed category E : B — Cat corresponding to the ﬁbmtzon p satisfies
clauses (z) and (it) of definition 6..

Proof We will only show that (i) implies the existence of a terminal object in each

category F(T') and that these termmal objects are preserved on the nose by every -
functor f*.

Let H : F - Gr(E) be the lsomorphxsm of categones induced by the spht

fibration p. It is shown in [Ehr88a, Prop 7] that w.lo.g. first I(T') is terminal in

p~Y(T'), second pI = Id and third the counit of the adjunction p 4 I is the identity.

' Therefore, we have H(I(T')) = (T, I'(T)), with I'(T) being a terminal object in E(T).
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Now we show f*(I'( I‘)) = I’(I") for every f I - T. The fol]owmg dlagram

commutes

PI

v and.therefore the diagram

(1)

1 (019)

(T, 1(T) (L2

(0

commutes, because ({),d) is cartesian over (). Therefore f*(I'(T)) = I'(I"), and we
can define the object 1 in E(T) to be I'(T). ' I

. O

_ Before a closed D- -category can be defined, some extra notation has to be introduced.

- The category of cartesian morphisms Cart is the subcategory of Gr(FE) consisting of - -

all objects of Gr(E) and morphisms of the form (f,!d). Let o denote the injection

functor Cart — Gr(E). 7z denotes the split fibration Gr(E) — B. We need

- furthermore the categories Gr(E o (mgv)”) and Gr(E o (Gv)°?). The objects of
- the first category are triples (T, A, B), where I' is an object of B and A and B are
objects of E(T'), and its morphisms are pairs (f, ) : (T, f*(4"), B) — (I, 4, B'),

‘where (f,p) : (T, B) = (I", B') is a morphism in Gr(E). The second category is the

- subcategory of Gr(E) of objects (I' x A, B) and morphisms of the form (f x Id, z) :-
(T x f*(A"),B) — (I" x A, B'). The definition of a closed D category is now as -
follows ‘using Gr(E) instead of F for simplicity: ' o - e

Deﬁmtlon 8 A splzt D-category (p: F—-B,I, G) is closed if the functor o
| (FSW) GT(E o (rE‘/)"” ) — GT(E ° (G’r)"”)
deﬁned by ' ‘

has a ﬁbred rzght ad]omt

xewﬂfAB)=wr*&Bﬂbn‘*',(_’ fo‘
S Ee = xR @
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 The link to definition 6 is provided by

‘Lemma 2 Let B a category with a terminal object [] andlet D = (p: F — B,I,G)
~ be a split D-category. Then D is closed iff the condztzons (i) and (zv) of deﬁmtzon 6

hold.

Proof Firstly, we spelll out the condition required in the deﬁmtldn of the fibred

~ adjunction (Fsty)* 4 II . Afterwards we prove the equlvalence between these re-

qulrements and the corresponding parts of definition 6.
It turns out that the definition of the fibred adjunction (Fst7) < IT amounts to

’requmng a functor U Gr(E o (Gy)°?) — Gr(E o (Tg7)°P) satisfying the equatlons

UT x A,B) = (T,A,T(A, B)) ~ )
U((f xid),p) = (f,Uw) 6 -
U=l = (£,1d) S

and to having the following bljectmn between hom—sets, which is natural in both

- arguments:

(T x f.(Af), Fst*(B)) (fx_ld;#l (I' x A, B')
(T, f(4), B) V=1 (v, 4, T (4, BY))
Now we prove the equivalence of the existence of such an ‘adjunction to clauses

(242) and (iv) of definition 6. Assume first, such an adjunction be given. Let T be
an object of B and A, B be objects of E(I‘) If we define

®

My(B) = U(A, B)
Da(p) = U(w)
Cura(p) = Cur(p)

then Il4 i is a functor because U (ld) = |d according to equatlon 7 and
I 0v) = U, o v) = Ulld, ) 0 U1, ») = (14, TLa() o )
The bijection 8 specializes to the followmg bijection -

FstA(B) 2 B
'M”’ TLy(B')

which is natural in B and B Therefore
- Let f I =TI bea morphism in B and A’ be an object of E(I'). We now
prove the Beck-Chevalley-condition. Equation 7 implies that Id is a morphlsm from

U(f- (A’) (f x Id)*(B")) to f U(A’,B') in E(T). Therefore

- (a(B)) = Tpeany((f x 1d)*(B))
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‘The equation o . 3 : v
F(Curar()) = Curgegan(( X 1) ()
follows from the naturality of the bljéctlon 8.

‘Next we prove the other direction, i.e. that conditions (iii) and (tv) of definition 3
imply the above requlrements for the fibred adjunctlon (Fsty)* 4 II. Define

U(P X A7 B) = (F,HA(B))
LU xd,p) == (f,Ie0an(p))
Cur(p) = Curg(p)

with (f,u) (T x f*(A), B) ‘(I" x A',B'). It is easy to see that the equations 5

until 7 are satisfied. The ad_]unctlon Fst} - H A shows that 8is a buect]on It follows
- furthermore that

(f, Cqu(y)) o'(ld, V) = (f, Cur,{(p 0 FSi'(V)) _
(id, Ta(v)) o (£, Cura(n) = (£, CUf(V o z))

Usmg the Beck- Chevalley-condltlon, we get

(id, Cur(u)) o (7, ld) = (f,f"(Cur(u))) = (,Cur((f x Id) (1))

This yields the natura.hty of the bl_]eCthl'l 8.

'3.3.3 Higher-order summable fibrations

Also for the definition of a higher-order summable fibration we need some extra
notation. Let I' be any object of B. dr denotes the discrete indexed category which
sends each object I of B on HomB(I" I'). The category Gr(dr o (G7)°”) has then

as obJects pairs
' (f F'xA’—rI"(I"’ A")

“where (I" A’) is an obJect of Gr(E) and f is a morphism in B, and as morphlsms |

pa.lrs
| (b x1d (h 'd)) (f, (T, B (A)) = (g, (T, 4Y)

where A x Id : I x h*(A') > T'x A'is a ‘morphism in B satlsfymg go (h x1d) =
‘ Snmlarly, the ob_]ects of Gr(dp o (mg7)°P) are pairs

(f:T">T, (F' A")

where (T",A’) is an ob_]ect of Gr(E) and fis a morphlsm in B and its morphlsms
are pairs :

(HMM(MWﬁmm*@WA%

where A : T — 1"' is-a morphlsm in B satlsfymg goh=f. We ha.ve then the
following definition:
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Definition 9 A4 higher-order summable ﬁbratlon is a split D-category (p : F —
B,I,G) which is closed and satisfies

(i) There exists an object Q of E([]) and an object T of E([] x Q). The fibration
dijxq is denoted d for short. ,

(1) There ezists a functor
V: Gr(do (G)7) = Gr(do (r£1)”)
which is cartesian from the split fibration
7rd,G : Gr(d o (Gv)P) - Cart
to the split ﬁbration |
| 75 : Gr(d o (t7)*) — Cart
(iii) The following diagram of functors is commutative:

Yon(T') x Cart

Gr(d o (G7)°) Gr(E o (Gy)*)
v I
Gr(do (mv)"”) Gr(E‘ o (x£7)°)

Yon(T) x Cart

where the morphism Yon(T) x Cart : Gr(d o (Gy)°?) — Gr(E o (G”y)"”) is
the unique morphism making the following diagram, where TE,c 15 the split
fibration Gr(Eo(Gy)*) — Cart and: the zncluszonfunctor Gr(Eo(Gy)°?) —

Gr(E),
Gr(d o (Gy)?)
T4o
Gr(E o (Gv)) Cart
[ L l Gy
Gr(E) 8

commute, the square being a pullback and the functor Yon(T') being defined by:
Y
(1,(@,4) (T x4, +(T)
(hy (k1)) Y°"‘T) (h x 1d,1d)
The functor Yon(T') x Cart : Gr(d o (r57)?) — Gr(E o (7gy)°) is defined

similarly.
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The relation to definition 6 is as follows:

Lemma 3 Let B be a category with a terminal object [ ] and let D = (p : F —
B,1,G) be a split D-category which is closed. D is a CC-category iff clauses (v) and
(vz) of definition 6 hold. ‘

Proof The equivalence between definition 9 (¢) and clause (v) of definition 6 is
obvious. The equivalence of definition 9(i¢) and definition 6(vs) is shown as follows:
The cartesianness of the functor (V) is equivalent to

V(AT 4) = (Y(),(T,A4)) (9)
(V(h x Id, (k,Id)) = (h,(h,Id)) (10)

This shows that the functor V can be defined using a function V', which is required
to satisfy

Vi(fo(hxWd)=V(f)oh
If we transpose f and V'(f) over the adjunction I’ 4 &', we get a function V",
assigning every morphism g : 1 — Q in E(T x A) a morphism V"(z) : 1 — Q in

E(T') and satisfying
VA((h x 1Y () = b (7" (1))

A routine calculation, which is omitted here, shows that the clause (i) of definition 9
is equivalent to

IL4(f*(T)) = V()(T).

: Transposing this equation over the adjunction I’ 4 G’ yields

(A, Q0 1)(T)) = (), Y ())(T)

This proves the remaining equivalence.

4 The combinators

We define in this section categorical combinators for the Calculus of Constructions - -
- and show how the calculus can be translated into.the combinators. We also show
the soundness of this translation and the equivalence of the CC and the equational
~theory of categorical combinators. In the last section it is proved that an xmt]al
CC-category.can be defined using the combinators. :

4.1 The equational presentation

In this subsection we define the equational theory of categorical combinators, which
is a generalized algebraic theory in the sense of Cartmell [Car86]. The generalization v
concerns the sorts of the theory. Whereas in a normal multi-sorted algebraic theory -
the sorts are constants and may be interpreted as sets, they may in a generalized _
algebraic theory depend on a variable of a certain sort. Before giving the equational
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theory of a CC- category in detall we describe 1ts structure. There are two kmds of
statements in the theory The first is

' T type
~ and indicates that T is a well-formed ‘type. The second kind of statement
feT.

where T is a well-formed type, mdlcates that f is a well-formed term The theory
contains also equations between well-formed terms of the same type. The type of
the terms and the conditions under which it can be deduced are omitted if they can
be derived from the terms.

We have the following rules concernmg types:

(%) b5 type
I',T" € Obj

(Hom) Hom(T', T") type
BRI T'eObj
FD) FHT) type |
T € Obj A, A’ € Fib(T)
(Fun) Funr(4, A') type

ElementsT', A .- of type Obj and f,g--- of type Hom(l‘, I'") correspond to objects
and morphisms of the base category B respectively, whereas elements A, B - - - of type
Fib(T') and p,v--- of type Fun(T') denote objects and morphisms in the category
E'(I‘ ) respectlvely The following notations are used in the sequel: '

[T = fEHom(I‘,F’)
) 'bA = AeFib(I)
P'bp:A— A = p€Funr(4,4)

The signature of the equational theory is given by the following BNF -expre_ssibnsﬁ

= [iTx4 |

0101 £f | Fst | (fy)

Ll fxalma 0T -
= O 1M | pgp| fxp]Snd| Cur(Ap) | App(4,A4) | V(A,n)

T O~ H
]

We have the usual axioms fer equaliﬁy, saying that equality is an equivalence rbe]atjo'n
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(Reﬂ)

| (Symm)

(Trans) -

*)
@

(Cur)
)

(conv)

. Next we give the rules and eqﬁati_ons, for the‘indéﬁked category‘ E : B — Cat.

T=T f=f A=A p=p
T=I" f=f A=4& u=p
I'=sT fif=f A=A J=up
T=TI '=T" f=f ff'='f”' :

T =1 TF=7

A_:AI AI=AII. » ﬂ=#l ”I=ﬁ”
A —_ All 'v u = u” '

'=I" A=A

I’'xA=T"x A"
f=f A=4&

fxA=fxA"
A=A B=p

(4 B)=1(A,5)

f=f g=g

ﬂg=fw'
f=F p=y

(frm) = (", 1)
p=ps p=yp

mp=uip

f=F p=u

L frp=fry

=y A=A

Cur(A,p) = Cur(A, iy .
A=A a=y |

VA=A )

f:T-A A=A T=I

oA

‘Tbu:A—=B TbA=A TbB=5B

TTbp:A - B

21

~ and that one can substitute equals for equals in every expression. They are zis follows:
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Firstly, we say that B is a category with a terminal object:

| T € Obj

(¢d — base) %%9_—%—
‘. f:T T o R
(; —base) 7y T i

@ 0 =]

(M 0 =)

(idL) fid = f

(idR) ~  Idif = f

(;—assoc) (fighih = filg;h)
Secondly, we express that for every object I' in the base category B there is a category
ET): . '
. . 'bA
(1d=1i) T3 a54

F'bp:A—-A Tbv:A - A

G ~fib) 'buv:A— A"
- (idL) mwld = p
(:dR) idip = p

A (w5 v)

| ' Thirdly, we have the following rules and equations concerning the functor (.)*, which
is represented by the operator * in the equational theory:

(;—assoc) (A;sp);v

o f:T =T I'p A
(*,— Ob]) ‘ T [>f*AI
: fiT=>T T'bu:A— A
(o morph) TR Feui e Ao [ A

ldxA = A -

dxp = p

f*ld = Id.
f*(wv) = (fxp)(f*v)
(fig)*xA = fx(gxA)
(fig)xp = fx(g*p)

After the equational theory of indexed categories we give the rules and equations
for the terminal object 1 in each category E(T'), which is preserved on the nose by -
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every functor E(f):

o) T51
I'bA
0 TruasT
() = d:1->1
w() = 0
f*1 =1

Remark The equation
*(0=0
can be derived using the other rules and was therefore omitted above:

#()=F*0sld=7+0:0=0

The next part of the equational theory of CC-categories is concerned with the
‘adjunction I’ 4 G’'. The presentation is obtained usmg a general schema which is
expressed in the following lemma:

Lemma 4 Given the following data
e two small categories C and D and a functor F:C - D
e a function G assigning to every object of D an object of C

®a funciion A sending each morphism f: FA —- U inC to a morphism A(f) :
A — GU in D.

o for every object U of D d morphism e(U) : FGU — U

If the equations

(B)  eU)oF(A(f)) = f
(nat)  A(f)og = A(foF(g))
(n) O AU) = Mdeu

hold for all objects U of D and all morphisms f : FA — U,g:B— A, then the.
function G can be extended to a functor G : D — C, being a right adjoint to F.
Furthermore, the bijection between the hom-sets of the adjunction is given by the
function A, and ¢ is the counit of the adjunction.

Proof Define the effect of G on a morphism g : U — V by

Glg) = Alg 0 (V)

.and the inverse of A by
AT (R) :=€¢U)o F(h) (h: A — GU)
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An easy calculatlon shows that G is a functor and tha.t A and A are inverse to
each other and that the b13ect10n between the hom-sets

f:FA-SU
A(f): A—»GU

is natural in both A and U. Therefore F 4 G, and ¢ is the counit of this adJunc‘uon | v

0

Th]S lemma is now applied to the adJunctlon I' 4 G of deﬁmtlon 6 to get its

equational presentation. We do not introduce a separate notation for the subcat-
egory Gr(E), but we use instead the corresponding expressions in terms of the
indexed category E This yields the followmg presentatlon

- : T'bA
'—
(@ =ob) T57cony .
| CfiToD T'bA Tbp:lofsA

- T (WIS XA
' rsA |
(Fst) Fst:TxA—-T
T'bA |
(Snd) I‘xAl>Snd T=Fstvd
C(Fst)  (fu)iFst = f
(Snd) (f,u)*Snd = u
(nat) Filo,m) = (f;g, f*ﬂ)
(n) ~ (Fst,Snd) = Id |

- Remark The correspondence between the rules and equations given above and the
R general settmg as descnbed in Lemma 4 is as follows o

.o G'(T',A) corresponds to T x A.
. The bijection A of the hom—sets corresponds to the operator ()

"o The counit €, which is a morphism (T x 4, 1) (F,A), is represented by the -
morphisms Fst and Snd. v S ‘ ‘

e The equatlon (8) corresponds to the equations Fst and Snd because the equa-
- tion (B) looks in this situation as follows: ’

(Fst, Snd) o ((f, u),1d) = ( f,.ld)_t -
which is equivalent to |

~(Fsto (£, ), (£, ) (Snd) = (Fim)
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o The equations nat and (n) correspond directly to the same equations in lemma 4.

- We use later on the abbreviation f x p also for the term (Fst f,Snd; Fst * u) of the ;
equational theory. o

' The next part of the equa.tlona.l theory concerns the adJunctlons Fst} -I I'_[A of
definition 6. Lemma 4 yields the following equatlons and rules: ” ,

(1) TbA TxAbB
o I‘1>II(AB)

IbA TxAbu:FstxCoB
I' b Cur(A4,p) : C - 1I(4A, B)

-(A“) I'bA TxAbBB .
PP I'x A & App(4, B) : Fst*II(AB)—rB

(Cur)

(8)  (Fstx Cur(A,)); App(A, B)

= u
(nat) 7 Cv;Cur(A4, ) = Cur(4, (Fst*u) )
(m Cur(A',App(A,B)) = Id"

The Beck-Chevalley condition yields directly the following eQuations: '

(Cur) f*Cur(A,p) = Cur(f*A,(fxId)*p)
(@) f+I(A,B) = I(f*A,(f x ld)« B)

" F inally, the clauses (v) and (vz) of definition 6 lead dlrectly to the followmg
- additional rules and equations: :

© e
TxAb 11 -{)xQ
(V) »F:V(A,_;Ij):l—)()*ﬂ

T MTxasT

(v-fun) V(hx A, (k y ld)y*p) = h+V(A,p)
(Coh) (A, (D, ) *T) = (), V(4,p)) *

This completes the equatxonal theory of a CC-category

Remark  Because the categoncal combinators should be as close as possible to the
CC-category, allquantification and dependent products are modelled by different
combinators, as in the CC-category (cf. section 3). This distinction is therefore also
- introduced in the Calculus of Constructions (cf. section 2). For the same reason,
an operation converting a proposition into a type is introduced in’the theory of -
combinators. It corresponds to the substitution of the term y in the object T in the
CC—category :
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4 2 The translatmn of the Calculus of Constructlons

This section defines an interpretation of the type theory of section 2 in the equatlonal
presentation outlined in the previous section. This interpretation is given by a
translation of raw types, terms and contexts of the type theory in the corresponding

: categoncal combmators

Definition 10 ('h‘anslation into categorical combinators) The translation of
raw types, terms and contexzts into categorical combinators is given by the followzng

o functzon [, where Fst™ is an abbre'vzatzon for Fst; Fst; - Fst:

o
n—times

(i) oﬁ contezts B ;
| m =0

I, 4)] = [T]x[4]
: {ii) on. coﬁtextmorphisms

101 = (
1A01 = (LI

(iz'z')’ on'types‘ | | -
m=1

' ‘[[HA.B]]’ ([ A], [B])

~ [Prop] = (}+Q

[Proof()] = ((),[eD)*T

(iv) on terms - L
=0
- In] Fst™ * Snd
o [AAA] 'Cur([[t]])
[Arp(4,B,t,5)] = (id,[s]) » * (Fst Htl] APP(HA]] IIBI]))
VA = VLR |

o " The translation shows how neat the c’orrespondence between the Calculus of
- Constructions and the categoxfica,l combinators is. The raw terms of the calculus
can be translated dlrectly into raw combinators. In order to establish the soundness -

~ of the translation it is therefore enough to show that. every judgment in the calculus
~ . can be made also using the combinators obtained by translating the terms. If the

categorical semantics of the CC is given directly by a translation of terms and types
into morphlsms and ob]ects of a CC- category, the deﬁmtlon is more complezx [Str89]
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A partial translation has to be defined, and it has to be proved that this translation
is defined on well-formed terms and types and respects the judgments.

The translation explains also why de Bruijn-variables are used in the definition
of the Calculus of Constructions (cf. section 2). The reason is the clause concerning
variables. The categorical combinator corresponding to a variable is the projection
from the context, in which the variable is declared, to its type. This is exactly

~captured by the de Bruijn-number and therefore it is not necessary to introduce a
translation of terms-in-contexts, as it would be required if normal vanables were
used.

4.3 Soundness

The soundness of the above translation can now be stated and proved in a fairly
standard way. :

Theorem 1 (Soundness) For every judgment in the calculus there ezxists a corre-
 sponding judgment in the equational theory of combznators, more precisely:

- (Contexts) - T F implies [T'] € Obj

(Types) I' - A type implies [T] b [A]

(Terms) L'Et: A implies [T] b [t]: 1 — [A]

(Eq-Contexts) T =T implies [T'] = [I'] € Obj

(Eq-Types) T+ A= B implies [I'] b [A] = [[B] :

(Eq-Terms)  Tkt=s:A implies [I] & [¢] = [[s]: 1 — [[A]

Proof The proof of the theorem proceeds by induction over the derivation of the
judgements in the type theory and depends crucially on the fact that weakening
and substitution, which are meta-operations in the type theory, are translated into
. certain categorical combinators in the equational theory. This is expressed in the
following two lemmata. Their proofs are routine inductions over the derivation of
the judgments and are therefore omitted here.

L'e_mma 5 Weakening corresponds to the application of the combinator

St :=Fst™ xldx--- xId.
(A A A

i—times

More precisely, if we define S™(T') as an abbreviation for

se() =
SP(I'x A) = Spy(I)x SP(4) (i20)
~ S"I' = T - (1<),

then for a given context (T',I") F ctxt_with‘l‘l'"’l = i, [(T,I")] € Obj and types
~ Am-a, ..., Ao satisfying ' ‘

_ (F>Am—la---7Aj+1) F Aj type [I(FaAm-la--'vAj-H)]] > [[AJ]] (m -1252 0)
- we have withA:=_(I‘,Am;1,...,A0,F') »
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) 1A1= [0 % [AnaaD x  x [Ao] Sp(IC]).

(T, I') F A type and [(I,I")] b [[A]] 1mphes

@) AT b spx [A] = [UPACAT

(0, f: E and [f]: [(T, )] — [E] 1mphes '

O qur(nn = s 11 181 TET.

(O, Ft:Aand [(T,I)] b [ : 1 — [IA]] implies

' (iV) [A] b S7 «[t] = [Ur@)]: 1 — [[U”‘(A)ﬂ

- (T, I") = F and H(F 1"')]] [[EI] implies -

O pa)= $p(ren

(vi) (I‘ I')Ff=g:Fand (/1= [[g]] I, F')]]—-*[[E]] 1mphes
711 = Spilol: [A] - [E] |

(T, 1) FA=Band [T, ™Ml l> [IA]] = [[B]] implie_s»

i) 1a] BSP Al =57+ (5]

(T, Fs=t:4 and I(r,rmi b [Ip]] [vl:1 - [[A]] 1mphes .

'(Vii_i) [A] &5 +[<] = 7 1]

‘ The next lemma is concerned w:th substltutlon, Wthh is also modelled by an
' operator in the equational theory.

' Lemma 6 Substitution of a term s for the de Bruijn- variable n corresponds to the
applzcatzon of the combinator

SunlD) = nsmz_'&,_@;

n—times

E More‘precisely, if we deﬁne Sun([[.é]])_(l") as an abbreviatz'onbfor' i

| Su([sI)] = 0 -~ |
Sun([s])(T x E) = Sun_l(I‘)xSun([[s]])*E (n>0)
" Su([sI)(T) = T <)

then fora given context (1" AT f— ctxt wzth IT'| = n, [[(I‘ A F')]] € Obj anda term

| s satisfying 'k s : A and [T'] & [[s] : 1 — [A], we have with A := (T, I"[n « s])
0 [AT= [T x Sun(IDAD) |

(T, A I") f:Eand 0A: I, Ar ]] — [E] 1rnphes -

O Su @ A = e < i1 18] - [E]

(iii) (T, 4,1") b B type and (T, 4,1)] b [B] implies
S [A] b SUn(,[[é’]]) * [IB]] = [B[n (__ S]] ‘ o
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(1v) - (TA I") Ft: B‘and [[(P A, I‘")]]> l>[It]] 1— [[B]] 1‘mpbhesvi "
R bSun([[s]]) 1] = [[t[n<—.s]]] 1—»[[B[n<——s]]] ,
| ) F(T,A,T) = E and [(T,[")] = [E] implies
" [A] = Sua([sI)([ET) o |
e OADFT=g:Eand [7]=[d]: II(I‘AF’)]]—>[[E1] implies
- Sua([s]); [f] = Sun([[sll) lol: [A]—[ED |
kvii) | (T,A,T"YF B=C and [[(T, A, ;I b [[B]] [c1 1mp11es
[ATF Sua([s]) » [B] = SulsD <[]

(DA, T E t =u:B and (T, A, B [ = [[u]] 1 — [[B]] 1mphes
[A] & Sua([ls]) * [[i]] Suna([[s]) * [[u]l SRR |

o (viil)

The’key parts of the proof of the theorem are the steps concérmng B, 7] and . -

the coherence rule. These parts are considered below, whereas all other parts are )
omitted here for brevity. The rules in braces like {} are rules of the equational
o theory, whereas rules of the type theory are denoted by braces hl\e 0

: - (B- rule) The mductlon hypothesxs yields:

[[P]]x[[A]]_ b [[t]]:ll—;[[B]];
[r] & [A] -
IixAl s Bl
_ ~:-|II‘]] > [[s]]l—-»[[A]]
Rule {Cur} yields: - | o , :
| B 1Y l>Cl"([[A]] [[t]]) 1= I([Al, [IB]D |
' Usmg rules {App} {()} one obtains - | o
| Il (1d, [s]) * (Fst*CUV(ﬂAII [D); APP([[AB [[B]])) 1= (ld, [sI) = [B]
N Usmg rule {ﬂ} and lettmg o ' | 1 . | ‘
 ui= [App(4, B,AAL3)] = (!i—ﬂs]l) « (Fst x Cur([AL [11); App(IAT, [B))

,ooe'gets - ‘ R _ P
 [T1 5w =(1d,[s]) = [e] : 1 = (1d, [s])) = [ B]

" Lemma 6 yielos now thé claim.

(r] - rule) The mductlon hypothesxs ylelds

I b [ 1 - TI([A], I[BI])
[[FI] (4] & HB]l
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~ Lemma 5 and rule {App}, {Cur} and (Fst} lmply then: |
e (d, Snd) * Cur([[A], Fst * Fst « [[t]],App([[A]} [B]): 1 —»II([[A]} DR
Applying the rule {Cur} and letting | |
u = [MA. App(A B,UX(®),0)] = (Id, Snd)*Cur([[A]] Fst*Fst*[It]],App([[4]] [[B]])), |
one obtains ‘ |
ﬂm>u-u«MMwd&axwﬁwwwawmAwmﬂumm>HMMHBM
A routine calculation yields then

| Ir] > v = [1]; Cur([[A]l,App([IAI] 1B])) H([[A]] [B])
and after an apphcatlon of the {5}- rule
IT] b u = [¢] : TI([ AL, IIB]])
v - elzm) The induction hypothes1s yields:
o CITIx[AD S [l 1 ) 0
Rule {V} yields then
o ' [FlIVpl:1—= () *Q

Rule {coh} shows the claim.

4.4 Equlvalence between CC and the combmators

The equ1valence between categorical combinatoers and the CC is based on a transla—
tion from the combinators to expressions of the CC, which is defined first. We show
afterwards that it respects the judgments and establish the equivalence. '
 However, the translation from combinators into expressions of the ca]culus is
not as simple as the translation in the other direction. The reason is the following.
Every combinator that is obtained as a translation of a well-formed term in the CC
corresponds to a global section in a fibre, i.e. satisfies ' b v : 1 — A for some I’ and
A. Therefore, a combinator p satisfying I' b u : A — B is translated as 1f it were
- the combmator :

I‘ b. Cur(A Snd;Fst* u):1 — H(A Fst* B)

This has two consequences. First, (—)¢ is not the exact inverse of [[ ] on terms ‘

- However, ([t])° yields an equnalent term #’ that satisfies App(1,(B) 1,t',()) = t,

~ and [[(g)] is isomorphic to 4 if I' > p : 1 — C. Second, the translation (—)C .
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~ cannot be defined as a total function on raw c_ombinators because the type A in .
- (#)° = AA.t cannot be deduced from p. Therefore we have to use a translation that
depends also on A. The translation of compos1tlon in the fibre and of application
makes eventually the use of Streicher’s methods inevitable. . The definition of the
function ()° is therefore given by inference rules, meamng that (—)¢ of the conclusion
‘is defined with the given value iff the expresswns in the premlses are defined and
o have the requxred properties. -

- Deﬁnltlon 11 (Inverse translatlon) T he partzal tmnslatzon functzon ()¢ is de-
fined by induction over the structure of the raw combinator as follows, where e[0 & 1]

is-an abbrematzon denoting the e:rchange of the vamables 0 and1 ine:

1. on contezts

O =17

(x) (T)° F (T, A)° type
o (Tx Ay = (1) (T, 4)))

2 -oﬁ_contextmorphisms N

| F (D) ctxt
W o=
o : F (T)° ctxt
| ('d_) (T,1d) ={ITT-1,...,0}
(TR, (A F (D) ctxt
) (A)FTg)e: (B (T,f)° = {fu-1,.-., fo}

(T, f39)° = (A, 9)°[i = fi]

F (T x A) ctxt
(T'x A, Fst)c = {Il"l, ,1}

o DR (DI = {far o fo}
({==) (A F (A, A, p) : TIL. (A, Al — £]) 1 R
_ (P, {f’ ﬂ})c = {(F7f)cv_App(15.((r, A)c[l — f,])T,(F, ],#)C’ 1)} .
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3.‘ oh lypes
R (D) ctxt
D rrr=t

() ECOAr (AFE@Arame (Cfrs(fonaf)
D I A=A

o OFF(C A tpe  (Cx AFF(TxABY) tpe

N (8| (2258 (W) S

R

D ([] X .Q,vT)‘°= Proof(0)”

- 4. on terms | |
R (D) F (T, A) type
e (FaA,())C=A(I‘7A)C'() B

: \ L)+ (T, A) ty
() T ATar =T, ,«f)i

(T)F (I‘ A,,u)” H(I" A)‘:( ,B)°

(T,BY) T
¢ e (OFF(CBY) (T BE(T,CH)T e
T A EvFE = X AFAp((T, B T, (T, OF) (T B, T,
o AR(((T AR (T BT, (@401, 0)

. CFF P (A (10 = {fonsenr fo}
() _(AFF (A AN IAAFRABY)T
o A ) = (A, A ) = ]

(D) - (T, A type

- --__(s )

(I‘ X A,1,5nd) = X1.1 7
T Ty F (T,A)F type -~ |
 (Cur) —(LXB)F (T xBFstxA,p): n((r A))T,Ug((r C))

T (LA, Qur(B, p))e = ME, AP M(T,B)) 7.
| [App(((F,A)?);T » UB((T, C)“) ((T x B,Fst+ A, p)° ) T ,0)][0 i 1]
R (T)e - (T, A) type (rxA)ct—(rxA B)° type
- (App) (T x A, Fst=1I(4, B), App(A, B)) = N((T, II(4, B) SRR
S ';App(((F H(A B))°)T ((I‘ B) ) T,O 1)

S E (F X B) F (T x B 1 p)c Hl Prop
) (BLV(B, ) = ALY((T,B)) T.
O eelPen T B0 < 1)
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Although the definition of the translation ()¢ is complex, the usual technique of
showing the preservation of judgments by ()¢ applies here as well, namely induction
over the derivation using appropriate lemmata for weakening and substitution.

- Theorem 2 The inverse translation respects the Judgments, more precisely:

(Contexts) B I € Ob;j imﬁlieé F (T)° ctxt

(Contexztmorphisms) - f:T — A implies (T)° F (T, f)° : (A)e
- (Types) ' I' b A implies (T)°F (T, A)° type -~ -~ : '
(Terms) . I bp:A— B implies (T)° F (T, A, p)°: TI(T, A)¥.((T,B)) 1
 (Eq-Contexts) - I'=T implies (T')* = (I'")° '
(Eg-Conteztmorphisms) f = f : T — A implies () (T, f)e= (T, f)°
(Eq-Types) o I' > A= A" implies (T)° + (T, A)° = (T, A')°

| (Eq-Terms) : F'bpu=y':A— B implies .
Fr () F (T, A, p)° = (T, A, p')° : II(T, A)>.((T, B)Y*) T

Proof The theorem is shown by an induction over the derivation of judgments. As

~ in the case of the translation [[-]), we need two lemmata concerning weakening and

~ substitution. Their proofs are omitted because they are a routine induction over the
structure of the derivation. ' :

Lemma 7 (Weakening) The translation ()° respects weakening, i.e. for every ob-
Ject I' x T € Obj satisfying F (T x I")¢ ctxt, IT'| = i and types A,_y,..., Ag s.t.
X Apyx-o-xAjp1 B A; and (T X Ay X -+ X Ajp) F (DX Ay X -+- X
- Ajy1, A;j)° type, we have with A ;= TX Apy X---x Ao xI" and T'| =i, PxIY| = k:

1. on contezts :
F (A)e = Ur((T x I)°)
2. on contextrﬂorphisms o

(A UP((T X T, £)) = (A, 575 f)F -

3. on types
(A)FUR((T x I, A)°) = (A, S » A)°

4. on terms , ' ' ‘
(A)*FUP((T' x IV, B, p)°) = (A, S * B, ST * p)*

Lemma 8 (Substitution) The translation (—)¢ respects substitution, i.e. given an
object T’ x I € Obj such that |T'| = n, F (' x I")° ctxt and @ morphism u satisfying

@@L (T, A0 T
we have with A =T x Su(u)(I"), s = (I,1, )%, k= [T x I|
() F(A) = (D), (T, A)%, (I"))[n « o]
(i) (AP F (T xAXT,f)[n — s] = (A, Sua(u); )°
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(i) (A)F (Tx Ax I, B)fn « ] = (A, Sun(p) * B)®

(iv) AR xAXTI,B,v)n « s] = (A,Sun(p) * B, Sun(u) * v)°

The key cases of the proof of the theorem are (), (n) and (coh). They are verified
here, whereas all other cases are omitted. ' -

(B — rule) The premise for this rule is
’'xAbp:Fst«xC — B
Therefore, the induction hypothesis and the weakening lemma 7 imply that

(DFF (T AFtype |
(T'x A E (T x A,Fst+C,p)° : TI((T,C)°) 1 .((T, B)) 1

The definition of ()¢ implies now

(Tx A)° F (Tx A, Fst«C, Fst«Cur(A, u); App(4, B))° : (T, C)) 1 .((T, B)*) T

- Fromnow on we omit quite a few typing statements and write ts for App(4, B, ¢, s)
because this makes the following calculations much easier to read. The defini-
tion of ()¢ yields now '

(T'x A F (T,FstC,Fst Cur(u); App)° =

M(C)) 1-((App)°) T - {((Fst x Cur(u))) T -0}
A(C)) 1. AUG(TI(A).(B)").(0 - 2) -

M@ 1.00@ )W T e 1wy T 0}

A(C)) T -AUF(TI(A)".(B)?)-(0 - 2) - { AUS((A)°)-[U3(()) - 11}
= MOEH T T \

= (0 |

‘Note the use of the g- rule in the last step although only the - rule has been
verified. ’ : :

—
—

(n — rule) The prémises of the 5-rule are simply |
'bA TI'xAb ‘B
The inducﬁion hypdthesis implies therefore
(O F (A type (T x AFF (B) type

- (using the obvious abbreviations). Rule (App) and (Cur) of definition 11 show
now that ’ '
(T)° F (Cur(App))© : II(TTA.B)°.((ILA.B)*) 1
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" The definition of O° yields now

o+

I

(Cur(App))° = -
= MTABFAA) T(App) 1 00 1)

MIIA.B)* . A((A)°) 1 [A(TA.B)) T .(0- 2) 0][0H1]
MIIA.BYA(A)F[1-0] |
A(ILA.B".0

-(cohv— rule) The inductieh,hypothesis applied to the preiniées establishes: '

| Therefore, (T, (()

(T x A)“' - (p)c Prop ‘
( 1)) * T)° is deﬁned This 1mp11es

OF R (T (0, Y(A, ) T =
Proof(0)[0 «— V(A)° (u)c] ,
= Proof(V(A)?, (1))
H(A)°.Proof(()°)
= ((A, () ) * TY)"

]

F mally we can prove that the translatlons ¢ and [[]] are inv erse to ‘each other in the

- sense discussed above.

' Theorem 3 The translations ()¢ and [[]} are related as follows

(1)

W~

"

o)

(- ]])° is an equwalcnaz on expressions.

on éont'ezts: (IrPhe=r zfl— T ctxt

on conteztmorphisms: T' F ([[f]])c = iff‘ Ff:A
on types: I'F ([T],[A])°= A if T F A type

on terms: T+ App(1, (4) 1, ([T1, [, IED)*, 0) = ¢ 2fI‘ r t:A

The map [[(—)] is an isomorphism for all cpm-bmators that are transla-
tions of raw expressions in the CC, i.e. '

1. on contexts: [(T)] =T ifT € Obj
on contestmorphisms: T' & [(T, f)] = f sz‘ l— f F — A
on types: T b [(T,A)¥]=AifT B A '

on terms: T b [[(T, A,y)]] Cur(A, Snd; Fst*p) H(A Fst*B) sz =T |
A—B (zsomorphzc to p in case A = 1}

2
4.
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Proof The proof proceeds by induction over the derivati(_)n of judgments.

(i) The verification of most cases involves only routine calculations and is
therefore omitted. The more interesting cases are now verified:

(Var) The weakening lemma yields | 4 |
(I, A,T)], 1, [T = u'”(,\l 1) = AL (|r'|+ 1)
An apphcatlon of the (ﬂ) rule shows now -
D+ App(1, U!f 1(4),1,0) = I
(-1 ntro) Let u be an abbrev1at10n for "

App(1, (B)T (r, A]] 1 [[t]])° 0)

Because of the soundness of both translatlons we know that ([T, ], 1, [rAA])e

is defined. The definition of the translations shows now

(ITD)* +  App(1,(IIA.B) 1, ([T], 1, [AA])e, 1)
7 = X([TLIAD
TH )At -

(Il - Elim) Again, the soundness of the trans]_atidn shows easily that
([[Fﬂa 1, [App(4, B’ t,s))°

is defined. The typing information in the terms is Qmitted in the sequel
because it makes the proof much harder to read and can be added easily.
Furthermore we write ts instead of App(A B,t,s). The definition of the
translations yields now - : '

(rp= = (IrD,1 [[tSB)° () =
o ([T 1, (10, 1) * (Fst * el App)* - ()

- Lemﬂm. ° ([[r X A]]a 1,Fst % [[t]],.App)‘ [0 — (HF]]’ 1, [[sll)c : ()] ) ()
' AAMO0- 1)) T-{US((IT], 1, [t])9) - 0} [0 = s]]- )
AN0 - U3(s)) - {((ITT, 1, [¢])?) 10} - ()
A0-(s) ) -{(ITD, 1, [eD)e- O3 |

s

W 00ng

- (i) . Similarly we vérify only the cases ), (Cuf) and (App). In all these
- cases the soundness of the translations shows that [(T, A, )] is defined. We

simplify the notation i in the mterest of readability in the same way as above -

Then we have
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) :
| (@, A,#,V)]]—'
(T, 4,2)%) T -{(T, A, )¢ ) T-0}]
Cur({ld, (Id, Snd) * (Fst * Fst x Cur(Snd; Fst p) App))
(Fst * Fst * Cur(Snd; Fst v); App)) :
Cur((ld, (ld Snd) * (Fst % Cur(Snd; Fst * Fst * p); App))
© (Fst * Cur(Snd Fst * Fst x v); App)) 7 :
@] Cur({id, Snd; Fst * ) * (Snd Fst * Fst * v)
Cur(Snd; Fst % ; Fstxv) ' :
- Cur(Snd; Fst x (g;v))

=
v

iz

(Cur).

o
v

H(F A Cl"( ))°]] = ,

AT x B, Fst+ A yONIE OII[O “ 1]

Cur(Cur((Fst x Id x 1d) * (Id, Snd) * (Fst * Fst x Cur(Snd Fst* u); App)))
vCur(Cur(((Fst; Fst,Snd), Fst * Snd) * (Id, Snd) * (Fst * Snd; Fst * Fst * p)))
Cur(Cur(Fst + Snd; (Fst x Id) % u)) Lo
Cur(Snd Fst * Cur(p))

o~
=

(App) We need the naturahty condition
(nat) App(Fst * A (Fst X Id) * B) = (Fst X ld) * App(A B)_ -
for the combmator App in the calculation. '

I'sxA b _[[(I‘x A, Fst«TI(A, B), App)] = [0 1)11
S o ’Cuy((ld Fst * Snd) * (Fst*Snd App))
= Cur(Snd; (Id, Fst » Snd) * App) _
2% Cur(Snd; (1d, Fst * Snd) « (Fst; Fst, Snd) * App)
‘= Cur(Snd; Fst x (Id, Snd) + App)
2% Cur(Snd; Fst x (1d, Snd) « (Fs; Fst, Snd) *APP)’ |
= Cur(Snd; Fst x App)

S =

This equivalence is now reformulated in categorical terms via the notion of a
classifying category [Pit88]. The technical problems caused by the additional mor-
phisms in the fibre will then disappear. The general setting is as follows, We
CODSldeI‘ a- type theory T a category TCat of categor:es WJth such a structure :
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and structure-preserving morphisms that we can define the notion of a T-model
in a category D € Obj(TCat) and the notion of a homomorphism between two
models of T in D. Given any other category C € Obj(TCat), then a functor

- F € Hompcat(C, D) sends a T-model in C to T-models in D, and similarly a natural
transformation between two such functors induces a homomorphism between the
models. In that way we can define for every model M of T in'C an evaluation func-
tor evy : Hompeat(C, D) — Mod(T, D). A classifying category C € Obj(TCat) is
a category with the property that there exists a T-model M in C (called the generic -
model) such that the functor evys is an equivalence of categories. As an exam-
ple, the classifying category of the simply typed A-calculus over a set I of ground
types is the free cartesian closed category over I and the generic model is the stan-
dard interpretation of the A-calculus in a cartesian closed category. .In the case of
the CC, the categorical structure is the category CCecat of all CC-categories and
structure-preserving morphisms between them. The classifying category is given in
the following theorem: ‘ ' " :

Théorem 4 LetC be the indexed category E : B‘;”':-—+ Cat defined as follows:

. Objects of the base categqry B are equivalence classes of coiﬁb'ihdtors I’ satis-
fying T' € Obj modulo the derivable equality. '

. Morphisms from T to A in B are eQu'ivalené classes of combinators f st
f:T — A is a valid judgment in the equational theory modulo derivable
equality. o : '

o The identity is the identity combinator, dnd_comﬁosition in B is given by the
composition operator on the combinators. o L '

o Objects of the fibre E(T) are equivaleﬁo&classes of combinators satisfying T bA
modulo derivable equality. S

® Morphisms from A to B in E(T) are equivalence classes of cqmb.inators satis-

 fyingT b p: A — B modulo derivable equality .

_ o I_dentz’tz’és and composition in the fibres are given by the corresponding combi-
" nators. e . h e »
o The functor E(f), with f:T=A a'm.orph.z'sm in B is given by the operation _

- on the combinators, ie. - . . o ——_—
CE(f)(4) = fxA
E(f)(p) = f*p
- Then C is the classifying category.of the CC, and [-1 is the generic model.
~ Proof The proof is a reformulation of previous results, namely.of the soundness

and equivalence theorems in this section. The soundness theorem 1 shows that [-]
is a model, and lemma 4 is the key to prove that C is a CC-category. Given any
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functor F € Homcccat(C D), the correspondlng CC-model in D is given by F([-D,
and vice versa, given any CC-model M’ in D, the corresponding functor is given
by M’'(—)°. The soundness theorem 2 shows that M’(—)¢ is well-defined and the
equivalence theorem 3 shows that this defines an equivalence of categories. The
key point in the last statement is that combinators like App, Id and () in the fibre
- that distorted the equivalence of the type theories are morphisms that have to exist
because of the structure of a CC-category. Therefore, once a functor is required to
preserve the structure of a CC- category, theses morphisms have to be preserved as

well.
O

5 Conclusions and further work

The derivation of the categorical combinators shows how important a careful choice
of the categorical semantics is. The simplicity of the combinators depends on the
categorical structure having as few natural isomorphisms as possible and on the
use of Grothendieck’s construction instead of fibrations. Because of the equivalence
of the CC-category with higher-order closed summable fibrations (see section 3.3),
the w-set model of the latter category [Ehr88b] is also a model of the former. The
categorical semantics has also influenced the version of the CC used here. The CC
contains a unit type corresponding to the terminal object in the fibre. This type is
required for the adjunction modelling context extension, i.e. the adjunction I' 4 G'.
However, this unit type does not change the power of the CC.

The combinators are simple and fit neatly within the usual connections between
type theory and category theory. They can be turned easily into the classifying
category of the CC, and the standard translation of the CC into the combinators
is the generic model. This precise correspondence is not affected by the fact that

- the CC and the combinators are not strictly equivalent as type theories. The non-

strictness is caused by extra combinators that do not correspond to expressions in
the CC, and these are only necessary for the representation of categorlcal structures
like identities and morphisms to the terminal object in the fibre.

The combinators were developed as the first stage in the construction of a cat-.
egorical abstract machine for the CC. The next stage is the derivation of reduction
rules for the combinators. Ordered categories seem to be the appropriate framework,
where intuitively @ > b is valid for two morphisms @ and b iff @ can be reduced by
the categorical equivalent of B-reduction to b. It would also be nice to prove strong
- normalization and confluence for the combinators by categorical method and not by
a transfer of the corresponding results from the CC. These properties are important
for the syntax as well as for-the implementation, and the construction process of a
categorical machine implies that they should be proved using the combinators and
- not the syntax. A categorical version of logical relations, referred to.as the glueing
constructions in [CPQO], might be useful as an adequate categorical method.
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_-»A\-'.”»The Rulés in de Bruij-n‘ form -

This appendlx contains the complete set of the rules for well- formed types, terms
and contexts of the Calculus of Constructlons in de Brm_]n-form o

1. Formatlon of contexts

Empfy '

F [} ctxt
' vV,I‘i—Atyvper
Cont — Intro FT, A) cixt A
, 2 Unit type and variables .
Unit—type  TE T e
Unit — morph .
TP TR
. ) ’
Var F (I‘ A I‘ ) ctxt

(F A, I-v) }__ IF’I . IF'H‘I(A)
3.‘ Rules for Equality: | .
 F@AT)ctxt THA=B

Ceau (I,A,T") = (T, B,I") L | |
Refl FTetxt THf=f:A Tri=t:A4 TFAtype
"% TT=T TTFf:A T TFi:A  TFA=A
Svimm '=I" Trf=g:A Trt=s:A TF+A=B8
y T'=T TFg=f:A TFs=t:4 TFB=4
_ I'sI'" I"=I" Trf=g:A Trkg= hiA
Trans '\ —— @ ——TF7shA
- TFt=t:A Tr¢=t":A TFA=B TFB=C
T TFt=t:A4 T TFA=C
Convi LFS:A FA=A" THA=B TFkit:4
omvt T I‘i—f AT TF&:B
. : o ,
 Com? .vI"I-f .g:A A=A THA=B Thtes: A

'I’i-f.g Al C I‘f—t—sB
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4. Rules for the dependent product
(T,A) F B type

IT - form - ['FIAB type
‘TFA=A (T,AFB=B
- Equ TFIAB=TADB
" I — Intro (FA)Ft B

TFQAY:TAB |
fore A Ft=t:B TrFA=A"
rue TFXAt=XA7:1AB
THt:TAB Trs:A- (I‘A)I—B
'+ App(A,B,t,s): B[0 « s]
TFA=A Trt=t:TAB (ILAFB=B Thrks=s:A
I‘I-'App(A B,t,s) = App(A', B',t,s") : B'[} « s] '
(T,A)Ft:B TFs:A (I",A)I-Btype
Pk App(A, B, A.t,s) = t[0 — s]: B[0 « ]

THt:TA.B  (T,A)F Btype
PI-AAApp(AB(t)TO)—t TAB

II — elim

II- elifnequ-'

.,B — rule

n — rule

5. Rules for propositions:

F T ctxt

| Propl T'+ Prop type
| P;opf r.ktpioi; (';;otzfpe‘
Prop — equ TF ll;:;cﬁ(;)p’: :rr::f(?') _
R 1
| ‘V _ equ (L A?fFFiji =P;’c;§’ P :PPl:eﬁ =
C(T,A)Fp:Prop

V- ehm . TF Proof(‘v’A.p) = HA.P!OOf(P)‘ ,
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