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Abstract

This dissertation is about the application of machine learning to robot control. A system
which has no initial model of the robot/world dynamics should be able to construct such a
model using data received through its sensors—an approach which is formalized here as the
SAB (State-Action-Behaviour) control cycle. A method of learning is presented in which
all the experiences in the lifetime of the robot are explicitly remembered. The experiences
are stored in a manner which permits fast recall of the closest previous experience to any
new situation, thus permitting very quick predictions of the effects of proposed actions
and, given a goal behaviour, permitting fast generation of a candidate action. The learning
can take place in high-dimensional non-linear control spaces with real-valued ranges of
variables. Furthermore, the method avoids a number of shortcomings of earlier learning
methods in which the controller can become trapped in inadequate performance which
does not improve. Also considered is how the system is made resistant to noisy inputs
and how it adapts to environmental changes. A well founded mechanism for choosing
actions is introduced which solves the experiment /perform dilemma for this domain with
adequate computational efficiency, and with fast convergence to the goal behaviour. The
dissertation explains in detail how the SAB control cycle can be integrated into both low
and high complexity tasks. The methods and algorithms are evaluated with numerous
experiments using both real and simulated robot domains. The final experiment also

illustrates how a compound learning task can be structured into a hierarchy of simple
learning tasks.
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Chapter 1

Introduction

The introduction starts with a simple ezample of a robot control problem. Moti-
vations for learning control are briefly reviewed, and there is a statement of those
areas of the subject addressed by this work. Finally, some guidance is given about
the structure of the rest of the dissertation.

This dissertation is about robots which can autonomously develop their own models of
the world. Figure 1.1 shows a robot looking at its hand. At all times the cohtroller must
choose joint torques to cause the perceived position of the hand to behave ina way which
helps achieve some task (such as moving towards the cross-hairs). Such a control problem
can be solved if the robot knows how the following are related:

o The perceived State: the location of the image of the hand, and also its perceived
speed and direction.

o The raw Action: the signals sent to the motors.

o The perceived Behaviour: the change in perceived position and velocity which then
occurs.

This relationship is the composition of many other relationships. How does the torque
at a joint depend on the signal to the joint? How does the torque affect the angular
acceleration of the joint in this particular configuration? How does the configuration
affect the perceived hand position?

This is an example of the central problem of low level robotics—the need! to compute
the relationship between a number of variables related to the robot’s state and §the environ-
ment. Such relations are termed world models. They include kinematic modeils, hand-eye
coordination models, dynamic models, and spatial models. The models are difficult to
obtain mathematically for reasons described later. A more appealing, and arguably more
practical way to obtain them is through learning.

1-1
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1.1 Learning Control: Motivations

A system which can improve itself is an aesthetically pleasing thing. A related motivation
for designing learning robots is to understand how learning occurs in biological organisms.
A successful automatic learning system might provide an indication as to how animals
and people learn. Robot learning seems a particularly good place to begin, bacause motor
learning is perhaps the most basic form of learning behaviour in organisms. It is not, how-
ever, guaranteed that engineering a solution provides a complete biological explanation.
An analogy is flight, in which the engineered solution differs markedly from the biological
solution.

However, the most important motivation is a practical one. Conventional control can-
not cope with the sorts of interesting, autonomous machines which would be substantially
different from present industrial machinery. The main reason is the difficulty of precoding
a sufficiently general world model to accurately take account of all eventu ities. The
world is complex—even analytic models for simple components such as the elationship
between joint angles, velocities, accelerations, and torques are very complex. |This is true
even when highly idealized and simplified component models are used.
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1.2 The SAB Learning System

This dissertation is about a pra.cticalA, efficient, fast and robust method to obtain robot
world models by learning. The use of the word “robot” is for conciseness: the work is
also applicable to other dynamic control problems which need multivariate models of the
world. The method is called the SAB Learning System. The acronym denotes the three
components of a dynamic world model: state, action and behaviour. The principal aims
of SAB learning are listed here:

¢ Practical. The work is strongly motivated by a desire to avoid the “Micro-world”
problem. It is concerned with learning in complex high-dimensional state and control
spaces with real-valued ranges of variables.

e Efficient. The time to update the world model with new knowledge and to use the
model that is learned is sufficiently fast that it can realistically occur as the robot
operates. This is attained by means of computationally efficient algorithms.

o Fast. The learning method is fast so that performance improves very quickly. This
is achieved partly by means of a powerful generalization, but primarily by using a
one-shot learning method: only one presentation of a piece of data is required for its
information to be stored. It is not the case that something must be seen a number of
times, each time perturbing the world model towards a representation which lessens
the error.

* Robust. The learning method can cope with disorder in the environment, both in
the form of noise, and in the form of either gradual change or sudden unpredictable
change. It is also robust with respect to internal parameters, which can be chosen
with minimal foreknowledge of the kind of relationship being learned. Finally, it is
a method which is hard to get “stuck”—it will not repeat the same error.

This investigation also explains and demonstrates how learning world models can be
sufficient to transform the design of robot controllers into simpler design problems. For
simple controllers such as trajectory followers, or pick and place, there is almost no addi-
tional effort. For compound tasks, the use of learned world models can keep the controller

design process at an entirely abstract level which renders the design problem easy for a
human, and perhaps even automatable.

1.3 This Dissertation

This dissertation begins with an introduction to the techniques and problems of robot
modelling and control, and then an introduction to both earlier and current work in the
field of learning control. It formalizes the behaviour of a learned model-based controller
and then discusses how world models might be represented. It then explajtns in detail

|
i
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why the chosen representation can be expected to meet the goals (in turn) of practicality,
efficiency, speed, and robustness. The last two features require special attention and are
dealt with in their own chapters.

By this time further issues have been uncovered, including the curse of dimensionality,
and the search for a useful diversity of experience. These problems are explained and
then dealt with using an algorithm called the SAB Action Chooser. Following this there
is discussion of how best to use the world model to accomplish tasks. |

After the main body of the dissertation, a variety of experiments are ¢onducted to
evaluate the method’s performance. These experiments include

e Learning hand-eye coordination of a real five-jointed arm.

¢ Learning a visually observed trajectory of a simulated torque-controlled arm under
a wide variety of conditions.

Learning movement control over a wide variety of trajectories for the same arm.

Learning to juggle.

Learning to volley a simulated ball into a simulated bucket.

Before the conclusion there is discussion of two additional investigations relating this
work to other work: a new method of implementing Albus’ CMAC and some/experiments
with “variable resolution dynamic programming”.

1-4



Chapter 2

What are Robotic Tasks?

This chapter serves as a simple introduction to some of the issues of robotic control.
It begins by introducing and giving ezamples from the disciplines of (i) robot mod-
elling, (ii) robot control and (iii) robot intelligence. It then discusses the problems
of conventional robot modelling and how they affect the higher levels of control.

2.1 Conventional Robot Control

This section provides a brief introduction to the tasks facing the designer of a robot
controller. I begin by listing the problems which need to be solved in increasing level of
abstractness.

2.1.1 Robot Modelling

Conventionally, modelling is achieved analytically. This is a successful and almost univer-
sally applied method in many branches of engineering. A set of primitive axioms which
model the behaviour of the primitive components of the physical world are combined using
mathematical analysis to model complex systems.

Perception. In order to achieve a task, it is often necessary for objects in the real
world to be observed, and from these observations to obtain their real world positions and
orientations. An example method of perception is vision, in which the mapping from the
image to the real world position and orientation is required.

Kinematics. It is usually necessary for a robot controller to obtain the positions and
orientations of particular links and joints in different frames of reference (such as the real
world). This computation takes as input (i) the fixed data about the robot, such as its
topology and link-lengths, and (ii) a vector q of current joint positions. A joint position is
typically either a joint angle if the joint is revolute (as are the joints in Figure 2.1) or else
a joint length if the joint is prismatic. The output of the computation is the location of

the links in world coordinates. Conversely, it is often necessary to take as input a target
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Position in some other coordinate frame (such as the real world), and to obkain a set of
joint positions which would produce this target position. The former compiuitation is of
the robot’s kinematics and the latter is of the robot’s inverse kinematics.

Dynamics. The robot’s dynamic behaviour is determined by the forces which are
acting upon it. Some of these forces, such as gravity, are out of its control. Other forces
(or torques) are supplied to the robot’s joints. The dynamics problem is to compute how
the behaviour is affected by the forces acting on the robot.

To formalize this problem, we use the notion of a system’s state. A state representation
is a collection of values which contains sufficient information to predict, in principle, the
future behaviour of the system, provided the future external and internal forces are also
known. A particularly convenient state representation for a robotic manipulator consists
of two vectors q and q which represent the current set of joint positions and their velocities.

The state change, the time derivative of the current state, is determined by|the internal
and external forces on the arm. Given a current state s = (4,9), the time derivative of
the position component of the state can be calculated from s trivially—it is the veloc-
ity component . The derivative of the velocity, the joint accelerations vector q, is the
behaviour, dependent on q, q and the joint torques T. This calculation is the dynamics
problem. The inverse dynamics problem is the converse. Given a current state (q,q) and
a target joint acceleration §, one must compute a set of joint torques, T, to: achieve the

target. 1



2.1.2 Robot Control

Trajectory Tracking. A trajectory is a temporal sequence of states

((qO,QO)v(qla QI)7(q2aQ2)7---) (21)

It can be tracked by a sequence of joint accelerations (o> 4y, bz, - - .) where

g = Hr A (2:2)
where h is the time step, typically between 1/50th and 1/1000th of a second. 1 /h is
known as the sampling frequency. The inverse dynamics model can be used to determine a
sequence of joint torque vectors (79, 71, T2 ...) which would cause these ideal accelerations.
This method implements open-loop control, and as a result the sequence of torque vectors
can be precomputed prior to trajectory execution. For closed-loop control the current state
is monitored, and the actual torque vector is modified according to the actual current state.

The advantage of closed-loop control is that, should the behaviour of the manipulator
differ from that predicted by the dynamic model, the tracking error can be compensated.
There are a variety of reasons that the predicted behaviour is likely to be inaccurate, and
these are discussed in Section 2.2.

The compensation can be a function of the error signal. The field of Control The-
ory [Burghes and Graham, 1980] provides a selection of schemes for generating this mod-
ification, and also provides the mathematical tools to analyse the stability of the modifi-
cation strategy. Three common examples are

¢ Proportional (positional) control which adds to the basic precomputed torque a
component which is proportional to the current position error, tending to cancel it
out.

¢ Derivative (velocity) control which adds a component proportional to the current
velocity error. For example, if the required state is stationary, then torques are
supplied in the opposite direction to current movement.

¢ Integral control in which the modification varies according to the recent local ac-
cumulation of errors.

Different controllers can be combined additively. An example is PD-control in which the
chosen torque, Tpow, is defined as

Tnow = Ti + Kp(qi - Q.now) + Kv(di - ‘inow) (23)

Such a use of a precomputed inverse model and feedback control is called feedforward
control. It requires the inverse dynamics model to precompute the necessary torques, as
well as general control-theoretic mathematical tools. In particular, the feedback matrices
such as K and K, in Equation 2.3 (called gains) can be determined analytically. They are
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chosen to provide a stable response in a short time. Generally, this mathematical analysis
requires the assumption of local linearity in the dynamic model.

Because the error is monitored and reduced, acceptable performance can occur even if
the model is only a simple approximation. The extreme case is where no inverse dynamics
are computed, and each joint torque is computed entirely according to the current position
and velocity errors. Each joint actuator is an independent servomechanism: a one-variable
control system which continually tries to track the input signal with its output signal by
means of linear feedback control. For speeds which are not low, this extreme approach
results in large trajectory tracking errors.

Another scheme is Computed Torque Control [Fu et al., 1987; An et al., 1988}, in
which modification can also be based directly on the inverse dynamics model. The ideal
acceleration to take us back to the trajectory is computed, and then the torques to achieve
this acceleration are computed using the inverse dynamics.

If (Qpows Gnow) is the current state, and we are meant to be at the ith state in the
trajectory, then we attempt to apply acceleration

(.inow = ql + Kp(qi - qnow) + KU(Q:’ - élnow) (24)

If the trajectory is controlled in this fashion by accelerations it is a linear system, defined
in Section 4.2. It can be shown that, provided the gains are not too high, this will converge
to an accurate tracking of the trajectory.

Computed torque control is computationally expensive because the inverse dynamics
must be computed in real time. The extent to which the model is correct affects the
accuracy and stability of the trajectory tracking. At some cost in accuracy a simpler
model of the robot dynamics could be used. An example would be a model which only
took gravitational forces into account.

In summary, trajectory tracking can be achieved by suitable use of the inverse dynamics
model. Three possible methods are

¢ Open-loop control, using precomputed inverse dynamics. This does not check for

€rTors.

¢ Closed-loop control using precomputed inverse dynamics and also modifications as a
function of the error signal. This requires extra mathematical models and analysis.

e Closed-loop control by dynamically computing the ideal current accelerations and
in turn the torques to achieve the accelerations.

Balancing. Typically, remaining in a static position is an easy application of closed
loop control, where the error signal is simply the difference between the current state (q, q)
and the ideal state (qigea;, 0). The state is always changed to lessen the error. However,
in some dynamic situations, no error-decreasing joint torques may be available. This can

occur if any of the joint actuators are insufficiently strong to provide the required torque.
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The Cart-Pole problem.
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In some systems there might even not be an actuator at the joint. In this case, a global

strategy for returning to the goal is required: local adjustments are insufficient. This
is a stability problem. Perfect knowledge of the kinematics and dynamics would not be
sufficient to solve this directly; some intelligence is also needed to develop a strategy for
stability.

The classic example is the pole balancing problem, described in [Michie and Chambers,
1968]. This is depicted in Figure 2.2. The cart can be moved left or right along a bounded
track. The base of the pole is fixed to the cart by a revolute joint with no a¢tuator. The
only control over the angle of the pole is thus indirect, by means of thrusts to the cart.
Balance has to be non-local: there are states in which to prevent eventual disaster, the
state vector must be moved further from the goal state.

2.1.3 Robot Intelligence

Obstacle Avoidance. To move the manipulator from one static configuration to another,
the controller can track a straight line, uniform speed trajectory through joint space.
However, during the transition the arm sweeps out a volume of space which must not
coincide with any obstacles. Obstacle avoidance involves finding a trajectory in which
none of the intermediate configurations cause a collision.

For obstacle avoidance, a specification of the shape of the robot is requined, which is
defined as a mapping from q, the joint angles, to the space of three-dimenstiona.l solids.
This spatial model is implemented by combining standard three-dimensiona,l!geometrica.l
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algorithms with the robot kinematics. A candidate trajectory can be tested by using the
spatial model to ensure that no q; in the trajectory maps to a solid which intersects with
any obstacle. One possible method of solution is to obtain trajectories using a generate-
and-test procedure. The search for a valid trajectory can be guided by an evaluation
function. This function scores different configurations badly for points near obstacles and
well for points far away. The trajectory search follows directions down the gradient of this
function.

Autonomy. A highly sophisticated robot controller would require abilities which are
at the moment only available to biological systems. These include planning, inter-agent
communication and failure management. Such abilities would require a knowledge of the
environment which might have to be obtained by learning. The study of these problems
are not restricted to robotics, but form much of the general field of Artificial Intelligence.

For example, [Firschein and others, 1986] considers the design of an autonomous robot
to assist in the building of a space station. The bandwidth for communication with the
robot would be low, unreliable, and with a time delay. As a result, it would not be practical
to have a human teleoperating each task, and yet a fixed program specification would not
cover the details of the wide range of tasks which the robot would be expected to achieve.
Instead, the robot would be given relatively abstract task specifications, and would be left
to compute locally the means to achieve them.

2.1.4 Discussion

These were examples of the tasks facing robotic designers. Others include Actuator Mod-
elling, Control Languages and Trajectory Planning and Optimization. The examples were
in a roughly increasing order of complexity, and generally the earlier tasks can be used
within the solution of later tasks.

2.2 Robot Control: Difficulties

The previous section considered some of the issues addressed by the designer of a robot
control system. Now let us explore the difficulties with these conventional solutions. The
discussion is split into two sections. The first discusses the problems of robotic mathe-

matical modelling and the second considers the effect that deficiencies in the models have
on robot control.

2.2.1 Mathematical Modelling of the Robot’s World—the Problems

1. The mathematical model is built from a set of axioms of the physical behaviour of
the world (such as Newton’s laws of motion). Some low level system components
are treated as being atomic, having the ideal properties required to fit these axioms.
As a result, the extent to which the model is correct depends on the extent to
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which the low level components do in fact match the requirements of the axioms.
For example, the joints in the arm may be modelled as two rigid links rotating
around a common frictionless axis. If in reality there is friction in the joint then
this mismatch between the idealized assumption and the world can lead to general
model inaccuracies. If instead the friction is modelled, it might be treated as growing
linearly with angular velocity. This too, is only an approximation, and the designer

must check experimentally that the inaccuracies are sufficiently small.

. The mathematical model describes the behaviour in terms of the explicit system
variables such as angles and velocities and also a large number of system parame-
ters. The system parameters include features like the mass and moments of inertia of
each link, link lengths, coefficients of friction, sensor locations, and the relationship
between actuator signals and the torques produced. The values of these parameters
cannot be obtained from the theory, and so must be measured. Many of these mea-
surements cannot be made directly and so have to be computed from observations
of other features of the system (these computations will in turn be based on mathe-
matical models, with the same set of problems). The accuracy of these parameters
affect the model accuracy, often critically.

. The short term dynamic changes in the system’s state are included in the dynamic
model. However, it is likely that there will be other changes in the system with time.
These include gradual changes in the performance of components due to wear and
tear (for example, the joint becomes less stiff). Gradual changes could theoretically
be incorporated, but in practice there are no techniques to model such wear. Other
changes are the result of unpredictable system perturbations (for example a camera
being jogged). These, again, are not possible to model. The system designer must
assume that small changes have little impact on the model accuracy, and must

regularly inspect the equipment to ensure that no significant changes have occurred.

. Generally, the differential equations resulting from the models are not analytically
soluble and so need to be approximated, or computed numerically, in which case
issues of numerical stability arise.

. The generation of mathematical models evidently requires a great deal of expertise.
The designer needs to apply knowledge about the axioms of the physical world be-
haviour. It is necessary to judge which aspects are important to model and which are
unlikely to affect accuracy. Then a large degree of mathematical dexterity is required
to combine the components of the model and solve the resulting equations. Some
aspects of this system might be automatable using algebraic manipulation software
such as REDUCE [Hearn, 1973], but generally it requires the time of expensive,
highly skilled experts.



6. The mathematical models require enormous computational power. This greatly
increases the expense of calculating real time dynamics and inverse dynamics for
tasks such as trajectory tracking. However, increasingly powerful computers will
eventually be able to deal with this problem even for complex dynamic systems.

2.2.2 Discussion of Robot Control

The argument in this section will be that the high level robotic problems are always one
of the following:

® Search problems. These are examples of more general problems, particularly those
from the fields of optimization and Artificial Intelligence (AI).

e Modelling problems. These are caused by inaccuracies in mathematical mod-
elling.

This argument is supported by considering some of the tasks discussed in the previous
section. Trajectory tracking is very poor if it is open-loop and the model is even marginally
inaccurate. If control is closed-loop then the error caused by an inaccurate model is
reduced, and typically consists of the actual state lagging behind, or never quite reaching,
the desired trajectory. A further problem for computed torque or feedforward control for
trajectory tracking is the enormous amount of computation required. However, other than
these modelling problems, there are few difficulties in designing a trajectory tracker.

Balancing can be achieved by trying to track the static trajectory. It is made harder
in the case where the system is in a state of serious imbalance: an attainable trajectory
back to safety must be deduced, and there is no entirely general way to obtain such a
trajectory analytically from the mathematical model. If the strategy is to be obtained
automatically, search techniques must be applied.

Obstacle avoidance relies on a spatial kinematic model. Given a goal and a set of
known obstacles then even if the model is entirely correct, it will not be able to prescribe
a suitable trajectory. The solution is a search problem in three-dimensional space.

Autonomy depends on an abstract representation of the world and upon many of the
general problem solving abilities proposed and investigated in a variety of fields in AL
Abstracting some aspects of the world, such as placing everything in a uniform coordinate
system, is a modelling problem. Other aspects of autonomy are from the AI domain.

This dissertation concentrates on a solution to modelling problems. When the designer
of the high level control is confronted with a search problem they have two alternatives

1. To perform the search and planning tasks manually, and encapsulate the knowledge
in a program.

2. To use the best automatic techniques from the optimization and Al fields.

2-8



The conclusion is that for many robotic design tasks, at least one of theself alternatives
will be entirely adequate. This is because the design tasks may be in doma.iins which are
restricted enough to allow such knowledge to be expressed, or for planning to take place
in realistic time. The majority of the dissertation will focus instead on how to reliably
and accurately learn models of the world.
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Chapter 3

Learning Robotic Tasks

This chapter surveys the related literature in learning control. It begins with early
work, and then introduces the important distinction between work which learns ac-
tion maps and work which learns world models. A particularly important aim of the
survey is to show that earlier work in the field can usually be regarded as learning
some relationship between state, action and behaviour. Other important issues in
learning control are also surveyed. Following that, some particularly relevant re-
cent work is summarized. At the end of the chapter is a description of how this
dissertation fits in with the issues discussed.

3.1 The Birth of Learning Control

The mechanical governor, invented by James Watt in 1788, is a device which regulates
the speed of a rotating shaft. If the rotation increases then a pair of balls move further
apart. This movement is transmitted mechanically to the engine producing the rotation,
and causes it to work less hard, for example by closing a gas flue. Conversely, if the
rotation is less than ideal, the balls are closer and this similarly causes the engine to
increase its output. It is an elegant system which controls itself automatically, by sensing
the performance and then making adjustments to bring the performance closer to ideal.
Such systems have been common in mechanical engineering for over a century. These are
called closed-loop control systems.

During this century, the use of analogue electronics has allowed a much more flexible
approach to such systems. Measurements of the performance can be encoded as electrical
signals instead of mechanical positions. From this, more sophisticated forms of closed-loop
control have been possible. More recently, the signals have been encoded and processed
digitally, allowing yet another increase in the flexibility and amount of the information
available.

The large amount of information which can now be obtained about a system leads to

the question of how it can best be used. One approach is to use it in the same manner as
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earlier generations of controllers. This provides robust but mundane control. An example
of this approach are servo-driven robotic manipulators. Each joint is moved by specifying
the desired position of the joint, and then this simple closed-loop control is used for each
joint independently to continually make adjustments until the position of each joint is as
required.

A more interesting possibility is to use more of the information received through the

sensors to autonomously improve performance by learning about the world. The benefits
are summarized here.

e Optimality. Control of complex systems such as manipulators can become quicker

and more accurate.

¢ Self Programming. Complex systems do not need to be analysed and modelled
by expensive human experts. Instead they can discover their own abilities.

¢ Model of Intelligence. A system which improves its own performance provides a,
possible model for the behaviour of biological systems.

e Disorder. A system which monitors its own performance might be able to cope
with a noisy, or non-stationary environment.

The difficulty is that there is a very large amount of information which can be used.
Many trade-offs are available between (i) the reliance on standard control techniques and
(ii) the intensive processing of dynamic information. One trade-off is to use the information
to automatically make adjustments to the controller at a high level. This is discussed in

the next subsection.

3.1.1 Adapting the Higher Levels of Controllers

The standard closed-loop controller makes adjustments at a low level. If a servo-controlled
arm tries to follow a trajectory it continually monitors the current error in the position
and velocity. In addition to this, adjustments can be made at a higher level of control.
Thus, after an attempted trajectory has been completed, the data collected can be used
to adjust, in advance, the torques which will be supplied to each joint at each time step
next time the trajectory is attempted. This idea is the basis of Adaptive Cantrol [Phan
et al., 1990].

A different example of the idea of making adjustments at higher levels of abstraction
is Task-Level Learning [Aboaf et al., 1989]. An example of this is throwing a ball at a
target. Conventional modelling and control are used to throw the ball, but when it fails
(due to modelling errors) an adjustment is made to how hard the ball is thrown. If it had
fallen short it is thrown harder next time, and if it had overshot it is thrown less hard.
The idea was applied successfully to a real bat and ball Jjuggler, the lower levels of which
had been built using mathematical models of the system components. With 1?0 task-level

3-2 i



learning the ball was usually dropped after only two or three hits. With task level learning
the time to failure was substantially increased to typically between eight and twenty hits.

3.1.2 The Basis of Learning Control

The basis for learning control was established during the 1960s and is consolidated in the
expository paper [Fu, 1970]. Here, I summarize the paper. Fu cites a variety of possibilities

for learning control.

¢ Classification from a teacher. The first possibility was to learn to classify states
according to which action should best be applied. This drew on the emerging field
of Pattern Classification [Duda and Hart, 1973]. If a sample of states with known
optimal actions are given, then a pattern classifier can be learned which, when given
a state not in the original sample, produces an action which, according to some
predefined criterion, best agrees with the sample points. Possible criteria included
the assumption that the optimal control actions were linearly separable, in which
case the learning controller tried to find a hyperplane to partition the state space in
a manner which agreed with the sample points. This method did not actually use
information from the environment to improve performance, but instead relied on a
teacher to tell it what was correct.

¢ Reinforcement learning. If, after each action is applied, part of the information
from the environment is a signal saying how ideal that action had been, then this
signal could be used to improve performance. This is reinforcement learning. In this
work the state space was partitioned into different regions. Within each region the
relative probabilities of attempting alternative actions were modified according to
the reinforcement signal. The use of a reinforcement signal increases the autonomy
of the learning, but is still a tricky requirement: many systems, while having a global
goal, find it hard specify local goals which would lead to the global performance.

* Stochastic automata. A stochastic automaton has a finite number of internal
states which are traversed between each control cycle. The input to the automaton
is one of a finite number of reinforcement signals from the world. The output of
the automaton is one of a finite number of actions it applies. The state transition
function is a stochastic matrix, which is modified by a scheme designed to increase
the probability of causing outputs which produce higher levels of reinforcement.

Fu’s overview also mentions some of the issues which, since the date of the paper, have
been further developed in the field. These include the problems of learning in a world
which can change unpredictably (a non-stationary environment), the problems of a slow
learning rate and the question of how learning controllers can be linked together. The
history of these and other issues are discussed in Section 3.3, but first I will explain how
different approaches to learning control developed from these seeds. T

|
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3.2 What Should be Learned?

There are two fundamentally different things that a learning control system can attempt
to acquire. One is the Action Map

State — Action (3.1)

and the other is the World Model, which in this disssertation is interpreted as being of
the form

State X Action — Behaviour (3.2)

which is often learned instead as the Inverse World Model
State x Behaviour — Action (3.3)

The inverse form of the world model is dangerous to learn as it may not be a function.
Given a current state and a desired behaviour, there might in some contexts be no actions
to achieve the behaviour, and in other contexts multiple actions. Successful learning of an
inverse world model requires extra domain knowledge that these problems will not occur.

During the remainder of this chapter, all the work will be surveyed using my interpre-
tation of learned mappings as being either action maps or world models that relate state,
action and behaviour. The next two subsections describe early examples of each of these.
Following that, subsection 3.2.3 contrasts the two approaches.

3.2.1 Michie and Chambers: BOXES

An early, and classic, example of action map learning is the BOXES pole-balancing sys-
tem [Michie and Chambers, 1968]. The system to be controlled is a pole balanced on a
cart. The cart can be thrust left or right at each control cycle, but these are the only
permitted actions. The state of the system (which consists of four values: the position
and velocity of the cart, and the angle and angular velocity of the pole) can be observed

at each control cycle. The goal is to prevent the pole from falling, and this is the only
specification which is given to the learning system.

The systems learns the action map:

:Xcart X Xca.rt X 0(;&1-; X éca.rtl — {Left, Right} (3.4)
State Action

The representation of the mapping is a four-dimensional array, indexed on the quantized
state variables. For example, all z coordinates of the cart between 35ins and 2lins to
the left of the cart are considered behaviourally equivalent. Five grades of z position are
distinguished. In total there are 225 entries in the array (these entries are the boxes after
which the system is named). The contents of the boxes affect what action is chosen should
the system’s state ever coincide with the box. It contains statistics of previous decisions
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made when the box was entered. These identify the mean survival time when the Left
action was taken and mean survival time when the Right action was taken. The decision
as to which direction to choose is biased according to which is expected to have longer
life. Thus as learning continues, decisions which lead to disaster are gradually eliminated
even if they do not lead to immediate disaster.

Y

This system thus displays the desirable property that a local reinforcement signal is
not required—all learning is done simply from the final outcome of the trial. The system
did indeed manage to learn to balance the pole within typically a thousand balancing
attempts. |

3.2.2 Raibert’s Parameterized Method

Raibert’s work [Raibert, 1978a; Raibert, 1978b] learned to control a real torque driven

robot manipulator. It learned the following inverse world model:

Joint Angles X Joint Velocities x Joint Acc’ng — Joint Torques (3.5)
~ ~ d N~ Y e
State Behaviour Action

This is again represented by a quantized multi-dimensional array. The state space is six-
dimensional with ten quantization levels and so there are 10 cells (hash coded to save
memory). Each cell corresponds to a simple local model of the behaviour of the robot. This
learning system uses domain knowledge about the form of equations of motion of a robot
arm. Such equations have parameters which vary throughout the state space but can be
assumed constant within each box. The values of these parameters can be estimated by, for
each cell, recording the real world experiences of the robot and then inverting the known
(linear) form of the local model to obtain the parameters. The method of estimating local
parameters provides a very accurate model with the disadvantage of needing to assume a
certain form for the dynamic equations of motion.

The learning system was given the task of following a prespecified trajectory. This it
did by using the learned model to precompute the necessary torques. During execution
of the trajectory, no feedback was used. Despite this open-loop control, the performance
was good and improved during learning (though it did not reach perfect behaviour). Con-
vergence took approximately 2000 trials.

Raibert carried out some further tests illustrating important features of learning con-
trol. Firstly he tested performance in an environment which changed unpredictably over
time. The experiment consisted of a period of normal learning after which, unknown to
the controller, the dynamic behaviour of the arm was changed by adding a weight to a
Joint. A second experiment similarly attached a spring to a joint. The arm adapted, but
slowly, to the changes.

His second extra experiment was to learn one trajectory and then try executing a
nearby trajectory. This was to see how successful the generalizing abilities of the learning

3-5



system were. The results showed that a trajectory was learned more quickly if a nearby
trajectory had been previously learned.

3.2.3 Learning Action Maps or World Models?

Subsequent investigations in learning control have differed as to which of these two ap-
proaches is adopted. This survey will distinguish clearly for each piece of work it examines
which kind of mapping is learned. This is because it has a large impact on the applicability,
expected performance and utility of the learning system concerned. There is a trade-off
between the usefulness of what is learned and the expected ease and speed of learning.

Learning action maps provides a more useful end-product because the learned con-
troller knows what to do at each state it is in. The disadvantage is that an action map
is generally hard to learn. It is not always clear whether current performance can be
improved, and if it can be, how to improve it. A very simple example of this is the two
armed bandit problem, described more fully later, which is a system with no state and
only two possible actions but for which an optimal solution is still not known.

Despite these serious difficulties, action map learning has been attempted with some
success [Michie and Chambers, 1968; Barto et al., 1983; Kaelbling, 1990b; Simons et al.,
1982; Gordon and Grefenstette, 1990]. As well as Michie and Chamber’s Pole Balancer,
[Barto et al., 1983] have implemented a learning controller which balances a pole con-
siderably more quickly with the same delayed reinforcement signal (remember, the pole
controller only gets told about its performance when the pole falls). The improvement is
by learning an immediate reinforcement signal. The reinforcement signal scores an action
decision as good if it moves the pole state into a superior state and bad if it moves it into
an inferior state. The relative qualities of states are estimated by a record of the expected
time to failure starting from each state. The precise definition of this value is hard to pin
down. It is trying to estimate the expected time to failure from the current state if the
optimal controller were used, but it is estimating this by means of the expected time to
failure if the current controller is used. Unfortunately this recursive definition could have
multiple solutions and so is not necessarily well-defined. In practice in this and other work
(e.g. [Jordan and J acobs, 1990]), this ambiguity does not seem to cause a problem.

A very recent investigation [Kaelbling, 1990a; Kaelbling, 1990b] thoroughly consoli-
dates work in this area as “Learning in Embedded Systems”.

Learning world models is much easier, because it is based on ob Jjective observations
about the world. If performance is inadequate then it is because the observed behaviour
differs from the predicted behaviour. In such a case it is clear how the world model
should be updated—it should reduce or eliminate the error. For this reason, model-based
learning control systems have been more popular [Raibert, 1978b; Miller, 1989; Mel, 1989;
Atkeson, 1989; Zrimec and Mowforth, 1990; Sutton, 1990]. There is a sacrifice/to be made
for the relative ease of learning: although the world may be modelled, it is notl necessarily
clear how to use this model. The investigations mentioned above deal with tﬁu's problem
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in a variety of ways.

e Weak AI or optimization. In [Christiansen et al., 1990] a controller learns how
a flat block behaves when the tray upon which it is lying is tilted by a robot. The
experiments involve a real, visually observed, robot. The world model learned is

Start pos’n and orientation x Tilt angles — End pos’n and onentaplon (3.6)

State Action Behaviour
The representation is by means of a quantized array. The robot is given a goal
position and orientation. The current position and orientation is observed. There is
generally not an action which could immediately produce the desired goal, and so
instead a standard search is carried out with reference to the learned world model
to find a sequence of actions to achieve the goal.

The tray tilting work explores further learning control issues discussed shortly.

Other examples of model-based learning which use search and optimzation are [Mel,
1989] which performs a best first search to produce an obstacle-avoiding positional
trajectory to reach visual goals and [Sutton, 1990] which uses dynamic programming
based on the learned model to plan simple maze paths to a goal.

¢ Perform a non-abstract task. Some robotic tasks are sufficiently concrete that
there is not much more to do than learn the world model. The prime example of this
is the trajectory tracking task studied by Raibert, and similar tasks are in [Atkeson,
1989; Atkeson and Reinkensmeyer, 1989; Miller et al., 1987).

¢ Use a model-based pre-programmed controller. This is a logical extension of
the previous approach. Given an abstract problem, design a model-based controller
to achieve the problem. Such model-based controllers can be simple and unsophis-
ticated. A recent example of this is the controller for a visual tracker designed
in [Miller, 1989), which is guided by a program that can be expressed as a short set
of decisions and feedback rules. The top-level programs are of a sufficiently simple
form that there may be some mechanism to generate them automatically.

e Learn an evaluation function. As well as learning the world model, an evaluation
function on world states can be learned. An evaluation function is a mapping of the
form

EF : State —» R (3.7

Conventionally, the lower EF(s), the better the state s. The world model in conjunc-
tion with the evaluation function can be used to choose actions. Given a current
state, the set of possible actions is consulted, and for each candidate action the
evaluation is computed of the predicted resultant state. The action is chosen which
minimizes the predicted evaluation. This is efficient provided the numbet of possible
actions is not large. ‘
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This method is used by [Connell and Utgoff, 1987] to balance a pole, though in
this case the world model is not learned, but estimated from the single previous
state transition. A mapping is learned from states to the expected time to disaster.
Learning evaluation functions has also been used in other domains such as puzzle
and game learning, where the world model is trivially available and does not need
to be learned [Samuel, 1967; Rendell, 1983].

3.3 The Important Issues for Learning Control

3.3.1 The Curse of Dimensionality

Realistic systems, whether they are learning action maps, or models of the world, should be
able to cope with domain dimensions between approximately zero and eighteen (eighteen,
because a direct drive six-jointed arm has twelve dimensions to its state space and six
dimensions to its action space). However, much work has been restricted to learning
task dimensions between zero and four. As we will see, many learning representations and
convergence times become exponentially worse with increasing dimensionality. Approaches
which denumerate all possible actions similarly blow up with increasing dimensionality of
the action space.

These problems are compounded when, as is usually the case, the variables of state
space and action space are continuous. For example, it is generally not known in advance
at which level it is safe to quantize, or whether the quantization levels should vary.

The problem of dimensionality has rarely been directly addressed in the learning control
literature. It is generally dealt with in one of the following ways.

¢ Assume the control spaces are small and denumerable. This is the assump-
tion of stochastic automata [Fu, 1970), and of systems which make brutal quantiza-
tions to state spaces [Michie and Chambers, 1968; Barto et al., 1983; Christiansen
et al., 1990], and commonly for reinforcement learning research [Kaelbling, 1990b;
Sutton, 1990]. Similarly action spaces are often small (for example the classic pole
balancer has only two actions). This is a reasonable approach for initial investiga-
tions of other aspects of learning control, but there is no doubt that it is useful, at
some point, to take these initial approaches up to bigger problems.

¢ Assume there is underlying, discoverable, structure in the problem. To
generalize in any way it is essential to have this assumption in some form. How-
ever, the strength of the assumption can vary very greatly. Parameterized map-
ping learners, which are described in Section 5.2, and which include polynomials
and neural nets, use a strong form of the assumption [Minsky and Papert, 1969;
Jordan and Jacobs, 1990). Unless chosen with foreknowledge of the structure of the
world model, there is no guarantee that any possible set of parameters could produce
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a mapping which would adequately model the data. Decision tree classifiers [Quin-
lan, 1983] make a weaker assumption—that the domain can be split up into a fairly
small number of large hyperrectangular regions in which the classification is con-
stant. This feature is common with the approach of [Salzberg, 1988] and [Aha et al.,
1990], which both learn using the nearest neighbour generalization, but which use
the assumption that classification regions can be characterized by a small number
of well chosen example points (ezemplars).

e Only learn about one task. Even if the state space is eight-dimensional, if only
one trajectory is required, then the behaviour of the world need onljr be learned
along one one-dimensional strand. This is the approach used by adaptive controllers
for robot arms [Phan et al., 1990; An et al., 1988). It was also used in [Miller et al.,
1987]. The dimensionality of the model is thus brought down to one.

e Only learn small sub-areas of the task. This is a natural extension of the
previous approach, which learns small regions of the domain, but not as small as
a one-dimensional strand. Even for an entirely repetitive task it is usually impor-
tant to know about behaviour which is close to the solution of a task, but which is
not actually in the solution of the task. This is in order to compensate for unpre-
dictable deviations. Thus the controller’s tactics in learning a task are to try to keep
the experiences clustered around a fairly low dimensional, task-specific, subspace.
In [Miller, 1989] this goal is stated. This idea is demonstrated in [Clocksin and
Moore, 1989), in which a hand-eye coordination relation is learned for a five- Jjointed

arm, but learning is biased to explore a two-dimensional subspace sufficient to reach
all observed positions.

3.3.2 Variable Resolution

The ability to concentrate on particularly important areas of the control space requires
a suitable choice of mapping representation. This aim is particularly important given
the conclusion of the previous subsection—that the only defence against the curse of
dimensionality without assuming extra domain knowledge is to concentrate on task-specific
sub-areas.

This issue is considered in [Simons et al., 1982] in which array boxes are recursively par-
titioned to increase resolution where necessary and also in the work of [Connell and Utgoff,
1987] which learned to balance a pole without needing to quantize the state variables.

3.3.3 Modularization

In almost all technological professions, large systems are broken down into smaller components—
typically in a hierarchy. It is desirable to achieve this with learning control systems. The
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result would be a group of simultaneous learning controllers, with some abstract controllers
making use of other concrete controllers. There are two issues here:

e How should the hierarchy be organized?.

e How could the organization be achieved automatically?

The first question has been mentioned in several places [Fu, 1970; Sutton, 1990}, but has
not been discussed in detail. The exception to this is the architecture proposed in [Albus,
1981]. The second problem is interesting but very difficult, and has not been addressed
for hierarchical structures with modules as complex as learning controllers.

3.3.4 Disorder in the Environment

The consequence of a disordered environment is that individual observations may not be
reliable. The following are reasons that an environment may be disordered.

* Noisy environment. What the controller perceives is randomly perturbed from
what actually happens. In this case the solution is to use local averaging of data,
the implementation of which depends entirely on how the mapping is represented.
Representations of mappings are discussed in Chapter 5.

¢ Non-deterministic environment. A simple approach to this problem would be
to treat the non-determinism as noise. For interesting forms of non-determinism
this is inadequate because the variation and probability distribution of the mapping
being learned can also be valuable information for the controller. The tray tilting
robot of [Christiansen et al., 1990] learns to use actions which have minimal non-
determinism in preference to unreliable actions. Non-determinism in the learning of
action maps is also considered by [Kaelbling, 1990b; Sutton, 1990).

» Non-stationary environment. This problem has been investigated by [Raibert,
1978b; Miller et al., 1987; Moore, 1990] for the case where the world which is being
modelled is perturbed, requiring a quantitative change in the control strategy. A
much harder problem is discussed in [Sutton, 1990), in which the control strategy can
undergo a qualitative change. Sutton’s DYNA-Q system is described in Section 3.4.

3.3.5 State Identification

Both action maps and world models need to be able to detect the state of the system.
At this point it is worth recalling the definition of a system’s state. Imagine that we can
detect a certain amount of information about the current configuration of the system. If
this information, combined with any proposed sequence of actions is in principle sufficient

to determine future behaviour of the system, then the information is a reprebenta.tlon of
the system’s state.
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Most work in the field assumes the information provided to the system is sufficient
to determine state, thus requiring a certain (although small) amount of world knowledge
from the system designer. A partial solution to the case where the important aspects
of state are unknown is proposed in [Simons et al., 1982; Farmer and Sidorowich, 1988].
Another approach is suggested in [Vogel, 1989].

3.3.6 Experimenting

When the controller is learning, it needs to generate a diversity of experience. Methods
to achieve this fall into three categories.

o Use a teacher. The role of a teacher is not simply to tell the system what should
be done to perform the task, but can also be to guide the system to areas of the state
space which are judged to be profitable to explore. The most common form of teacher
has been a naive servo (linear feedback) controller [Atkeson and Reinkensmeyer,
1989; Miller, 1989; Miller et al., 1987] which directs the experience towards areas
of the state space which lie close to the solution. Extra domain knowledge of the

structure of the world model is required to provide such a teacher.

¢ Use randomness. This is the most common approach to gaining experience. Re-
cent examples of its use have been [Mel, 1989; Zrimec and Mowforth, 1990].

¢ Estimate the utility of information-gain. This has been recently investigated
thoroughly by [Kaelbling, 1990a; Kaelbling, 1990b]. This work uses a statistical
heuristic called Interval Estimation to choose actions which are likely to achieve re-
ward, but which avoid getting stuck on repeated application of a known mundane
action when there are superior actions with little experience available. The work
investigates (i) algorithms in which there is immediate reinforcement, and (i) de-
layed reinforcement (so that the choice of action is not only motivated by the next
state, but perhaps by many states in the future). It also copes well with very non-
deterministic environments. Choosing actions using heuristics which include the

benefits of information gain has also been investigated by [Christiansen et al., 1990;
Sutton, 1990].

3.3.7 Inductive Learning

The discussion, and literature reviewed in this section, has been considering the design
of a controller to perform well in its environment. There are other goals of learning, and
one important one is to ezplain the environment. It can be argued that umless this is
achieved, truly complex tasks will always require human intervention. Furthermore, it has
been argued by [Michie, 1989; Sammut and Michie, 1989] that learning systems will not
be accepted commercially unless their decisions can be understood by the human users.
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3.4 Learning Robot Control: Recent Work

3.4.1 Connell and Utgoff: Variable Resolution Pole Balancer

In [Connell and Utgoff, 1987] an evaluation function was learned for the classic pole bal-
ancing problem (described in Section 3.2.1). The evaluation function was

Cart-Pole state — Desirability (3.8)
(il
State

As mentioned in Section 3.2.3, an evaluation function in conjunction with a world
model can provide the same functionality as an action map, but in this e*periment no
world model was used. Instead the evaluation of the next state if the most krecent action
were repeated is obtained. This is obtained using the behaviour of the most Irecent action
in the previous state as a guide to how it would alter the current state. If the predicted
evaluation is a decline then the alternative action is automatically used without predicting
its consequences.

The evaluation function is represented by an explicit record of experienced states and
interpolated using Shepard’s method, described in Section 5.2. The evaluation function is
not updated using the relationship between subsequent states, but according to an ad-hoc
analysis of the 100 states prior to the collapse of the pole. However, with an appropriate
choice of parameters it does quickly learn to balance the pole.

3.4.2 Miller: Learning World Models using CMAC

Recent work by W. T. Miller and colleagues [Miller et al., 1987; Miller, 1989] has used
CMAC [Albus, 1975a; Albus, 1975b] to model the world. The model is then used in
conjunction with a teacher, in the form of a simple linear feedback controller, to improve
performance. Two investigations have been reported in the literature.

e Learning to track dynamic trajectories. This work learned the inverse world
model

Joint angles x Joint velocities X Joint Accelerations — Joint Torques (3.9)
N > : A

S?z;te Behaviour Action

for a simulated two-jointed robot arm. Goal trajectories were defined in joint space
coordinates. The main experiments used a repetitive trajectory, and were taught by
a fixed-gain controller. The results showed quick improvement on the performance
using the feedback controller alone. Experiments were also carried out with several
trajectories to be learned and with changes in the environment. CMAC’s behaviour
was discussed, in particular the problems of too small an underlying memory.

¢ Kinematic visual tracking of moving objects. A three-jointed robot arm held
a camera, pointing downwards at a conveyor belt. The work was motivated by the
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advantages of being able to use world models in the same coordinate system as
the task being learned. In this case the task coordinates were the visually sensed
position and orientation of a plastic disposable razor and the sensed joint angles of
the arm. The arm was controlled by requesting joint velocities which were obtained
by independent servo motors in each joint. Both the forward and inverse world
models were learned. The forward model was the relationship between the current
joint angles, the current observed position of the razor, the requested joint velocities
that were sent to the motors and the resulting change in the image position. The
image position value was obtained by image processing, and consisted of three values:
the z and y coordinates of the center of the razor’s image and its orientation. The
forward model was thus

Joint angles X Image position X Joint velocity — Image change (3.10)
State Action Behaviour

and the inverse model was

Joint angles X Image position X Image change — Joint velocity (3.11)
State Behaviour Action

The task was to keep the image of the razor fixed (which meant the arm had to move
to keep the camera still relative to the moving razor). Experience was again provided
by means of a teacher, a fairly complex position feedback controller. This required
a substantial amount of domain knowledge, because the feedback was in joint space,
whereas the tracking error was in image space. Two CMACSs were used, one for each
model. On each control cycle the forward model was used to predict where the razor
would appear on the next cycle, and from this the desired image-position change
was computed. The backward model was used to obtain a joint velocity to achieve
the desired image-position change, and the feedback control signal was added. The
results were again good, with a final average error of approximately a quarter of that
obtained with the feedback control alone. Learning typically took about ten trials,
with the razor being placed identically at the start of each trial. With random initial

razor configuration, learning was considerably slower and less accurate.

3.4.3 Mel’s MURPHY

This work [Mel, 1989; Mel, 1988) learned vision-based kinematic control of a real three-
jointed planar arm. An interesting feature of the investigation was an “ecological” ap-

proach, in which the visual observations were kept in the raw sensed form of a 64 X 64
binary array. The control was again based on a learned world model:

Joint angles — Raw Image (3.12)
Action Behaviour
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The world model was forward. As Mel explains, this is generally the only valid direction
in which to learn since the inverse model will usually not be a well-definable function.
While true of most domains of other workers, this is particularly true of the kinematics of
a redundant manipulator. A manipulator is redundant if there are multiple ways to move
the gripper to a desired position (or desired position and orientation). The world model
is learned by a period of random flailing of the arm. It is processed and represented by a
kd-tree algorithm which has the behaviour of a neural-net (Chapter 6 introduces, describes
and evaluates kd-trees).

After the world model is learned it is used to plan sequences of incremental joint
modifications to reach target positions while avoiding visually observed obstacles. Mel
stresses the importance of this planning taking place using the learned model rather than
requiring real execution. The plan is a modified best first search using a visual distance

heuristic. It is aided by a second learned world model—the inverse differential kinematics:

Joint angles x Hand position change — Joint angle change (3.13)
State Behaviour Action

This too is not a well-defined function, but Mel explains how to rectify this. The learning
is successful, but computationally expensive (though much of the expense seems likely to
be due to processing of the 64 x 64 images).

3.4.4 Atkeson’s Memory-based Control

This work [Atkeson and Reinkensmeyer, 1989; Atkeson, 1989] learns to control a simulated
dynamic robot arm to follow a trajectory and also learns corrections to a foot placement

model for a simulated hopping robot. For the first experiment the model learned is the
inverse world model

Joint angles x Joint velocities X Joint Accelerations — Joint Torques (3.14)
~ ~ / ~ s, sttt
State Behaviour Action

The representation is the explicit set of data points. A variety of generalizations are
tried:

1. Nearest neighbour.
2. Local regression.

3. Local fitting to a quadratic surface.

The task is specified by a trajectory of joint angles and the experience is gained by
means of a teacher—a linear PD-controller. The convergence is generally successful and

quick, though the simple nearest neighbour generalization sometimes gets into “stuck
states”, in which performance is not improved. The likely reason is that an incompletely
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learned inverse model can resuggest actions which are known to have failed. This problem
is discussed in Section 5.1.

The rate of learning and final accuracy is seen to improve with increasing complexity
of the method of generalization.

The foot placement task is learned as

Hopper state x Velocity next step — Foot placement (3.15)
State Behaviour Action

Instead of the learning the model directly, it is learned as an adjustment to a simple
analytic world model. This difference mapping can be expected to be smoother than the
direct model, and thus more easy to learn. Other aspects of the foot control are achieved
using non-learning methods. The results show a marked improvement over using the
simple world model, though stuck states are still a problem.

3.4.5 Zrimec and Mowforth’s Block Pusher

In [Zrimec and Mowforth, 1990] a real robot learns the effects on a block of pushing it with
the gripper of a robot. The block’s position on a horizontal surface is observed visually,
from above, before and after a smooth straight line robot movement. The world model
learned is

Relative pos’n & orientation of block x Relative movement of pusher

————

State Action (3.16)
— Change in relative pos’n & orientation

Behaviour

An interesting feature of this experiment is that there is no goal, simply an undi-
rected aim to obtain knowledge. The representation of the mapping is a decision tree,
which is able to produce a concise, human comprehensible, description of the mapping.
Experimentation is by means of random movements.

In the same investigation the following further issues are discussed:

1. How to decide which variables are dependent on which others.
2. How to quantize the range of continuous variables.

3. Possible methods for automating 1 and 2.

3.4.6 Sutton’s DYNA-Q Architecture

This work [Sutton, 1990] has only a rather small experiment, which leads to uncertainty
as to whether the approach can scale up. However, there is discussion of a number of
interesting and important issues for learning control. The DYNA framework assumes that

the specification of tasks is only via reward, or reinforcement, signals. This assumption
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makes the learning problem more difficult, because, for example it would forbid the use of
feedback controllers as teachers. However, if DYNA learning is achieved then the system
has a great deal of autonomy.

The system learns a world model, but also generates an evaluation function which
estimates the relative qualities of states. The evaluation function is computed from the
world model by dynamic programming [Burghes and Graham, 1980]. In practice, to avoid
periods of wasted time in which the robot is planning without gaining extra knowledge
for the world model, the dynamic programming occurs incrementally, in parallel with task
execution.

The example is a simple maze domain with 56 discrete states and 4 discrete actions.
The controller receives reinforcement of zero, except when it moves into a special goal
state. If it reaches the goal state it is reset to its starting state. Thus, the tactics for
maximum overall reward are to repeatedly trace the shortest path from start to goal, but
even these abstract tactics are not given to DYNA in advance. Learning, and optimal
behaviour, do indeed occur quickly after the first run.

Experimentation is random, but biased in favour of actions which are predicted to
produce improved reward. As time progresses, the level of randomness decreases.

To cope with a changing environment, in which the current best set of actions might
change, Sutton suggests adding an ezploration bonusto the reinforcement which encourages
rarely visited states to be occasionally visited in case there is possible improvement. This
is demonstrated with a maze in which wall sections occasionally appear or disappear.

3.5 This Investigation

Here, I briefly mention which aspects of the field described in this chapter are investigated
by this dissertation. I am concerned with making robot learning more practical, and so
world model learning is used in preference to action map learning. A very important topic
which is tackled is the curse of dimensionality, which has not been a specifically stated
goal for other pieces of work. Part of the approach to this is to use a learning method
with very variable resolution, and this has profound consequences for the representation
of the mapping. The initial representation examined, while ideal for variable resolution,
learning rate, and learning efficiency has poor noise tolerance and brittle performance in
a non-stationary environment. The method would have a serious weakness could it not
cope with these problems and so modifications are developed which do not lose its primary
advantages.

A second critical aspect for avoiding dimensionality problems and for increasing the
rate of learning is the nature of experimentation, and a method is developed which esti-
mates the utility of information gain.

In order to compensate for the relative weakness of the autonomy of a world model

learner (compared with an action map learner), the investigation also focuses on how
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complex tasks can be modularized into a hierarchy of learning tasks. It also learns as
abstract a model as it can by performing entirely in the perceived world.

3.5.1 Robustness

b
Another aim of this work is to have a robust learning method—one in which the sys-
tem does not get into a situation which does not achieve the goal and in which further
improvement does not occur. A learning system which is in such a situation is| called stuck.
Some identified features which might cause sticking are:

¢ Insufficiently general class of learnable models. (Discussed for parametric methods
in Section 5.2, and shown to be avoided in Section 5.3).

o Using only an inverse world model. (Discussed in Section 5.1).
o Failing to provide adequate experimentation. (Discussed in Chapter 8).

* Blame assignment errors in hierarchical learning systems. (Discussed in Chapter 9).

3.5.2 Issues not Addressed

Some important issues are not addressed by this investigation. In each case it is consid-
ered that the loss of the feature, while requiring more of the system designer, is also not
generally critical for the autonomy of the system. These issues are state identification,
learning a non-deterministic world model and providing an inductive (“simpIe”) explana-
tion of the world model. A further issue which is left to the system designer is scaling of
state variables (discussed in Section 5.1).
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Chapter 4

SAB Learning

This chapter introduces SAB Learning: the main idea which will be developed during
the course of this dissertation. The chapter begins with robot problems which have
no state, and introduces the concept of a Perception Function. It then extends this
to dynamic state and the Perceived State Transition Function. Finally the isequence
of actions taken by an SAB learner is described—the SAB Control Cycle.

4.1 AB Learning

Before considering full dynamic control of robots, we will examine the simpler problems
of perception and geometry. An example of such a problem is hand-eye coordination.

The end-point of the arm is readily identifiable by some image processing. For example,
one simple implementation is to subtract images of the arm obtained by moving only its
gripper, and to then perform trivial statistics on the thresholded image. This obtains the
perceived coordinates of the hand: the coordinates of the hand image.

The computer which receives these values can also send signals to the arm. These
consist of a number of values, one sent to each joint. Each specifies, in encoder units, the
angle (or, for a prismatic joint, the length) that the joint should take. When these signals
arrive the joint angles are automatically and slowly adjusted by independent servomech-
anisms until the specified values are all achieved. Thus, for hand-eye coordination, the
Action is the set of requested joint angles.

A typical hand-eye coordination task is to move the perceived hand positioh to a target
perceived position. This can be specified directly by showing the goal to the controller. It
is clear that to achieve the task the controller needs knowledge of the relationship between
the perceived image coordinates and the raw action signal it sends. It is interesting to note
that it does not necessarily need to know relationships between these and any absolute
“real world” coordinate system.

This is an example of the general problem where a controller needs a relationship
between the raw actions it is meant to supply and the perceived behaviour. #[n the cases
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1. Raeceive task specific goal behaviour bg,, from higher
level of control. |

2. Access the current world model to obtain a raw ac-i
tion a,;,, which is predicted to be likely to achieve

bgoal.
3. Apply action a.,,.

4. Observe actual behaviour b,.,.1.

5. Update the world model with the information that

8raw — Dactual-

Table 4.1: The AB Control Cycle

where there is domain knowledge that the relationship is a deterministic function from
actions to behaviours let us call such a relationship the Perception Function (PF):

PF : Action — Behaviour (4.1)

The arm position task is an example of a PF because we have the knowledge that
(i) given a set of joint angles the arm’s real world endpoint position is determined and
(ii) the cameras are fixed and so the perceived hand position on the camera is determined
by the real world hand position.

To learn the PF would mean that the learning controller would have no knowledge
about the relationship other than that it was a PF. A very general way of implementing
such a learning controller is the AB Control Cycle, shown in Table 4.1.

Because we are dealing with raw action signals and raw perception signals (after crude
image processing), the only substantial computation is in Steps 2 and 5. Requirements
analysis and design of this computation is the part of main work of this dissettation. But
before we consider this, in order to learn dynamic control, we must introduce the concept
of perceived state.

4.2 The Perceived State Transition Function

A dynamic system has a state. Conventionally, when mathematical analysis fis to be ap-
plied, the choice of the state representation is crucial to the tractability of the mathematics.
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The conventional form of the differential equation derived from mathematical analysis is
x = g(x,u) (4.2)

where x is the system’s state, and u is the control input to the system [Burghes and
Graham, 1980]. It is hoped that this equation will be simple, for example linear:

g(x,u) = Ax + Bu (4.3)

where A and B are constant matrices. The choice of state representation will strongly
influence the simplicity, and hence tractability, of Equation 4.2. Here, let us call a state
representation chosen to aid mathematical simplicity a dynamic-model state. The state is
usually observed indirectly, by taking a series of measurements of the system, for example
visual. Let us call the vector of these direct measurements the perceived ‘sta,te, p, of
the system (this is analogous to the definition of perceived behaviour in the previous
section). The perceived state is transformed to and from the dynamic-model state by
further mappings, the perception function PF and its inverse PF~1.

x = PF(p) and p = PF(x) (4.4)

The transformations PF and PF~! are often at least as complex to model as the dy-
namics themselves. For example, in the case of a robot arm observed visually, PF is
the composition of the inverse perspective transform and the inverse kinematics. The
mathematical analysis derives the change in the perceived state p by transforming it to
the dynamic-model state, then performing the dynamics model (Equation 4.2) and then
finally transforming back to perceived space:

OPF;
apj

p = J-1g(PF(p), u) where J;; = (4.5)

J is the Jacobian matrix of the perception function PF.

In this investigation, we are not using mathematical analysis to perform the modelling,
and so it is not necessary to perform these transformations explicitly, nor work out the
inverse Jacobian matrix of the kinematics (called the inverse differential kinematics), nor
indeed even necessary to invent a dynamic-model state representation. Instead, the per-
ceived state dynamics are denoted by one mapping, the perceived state transition function
(PSTF):

p = PSTF(p, u) (4.6)

The PSTF is a deterministic function from the perceived state and raw action applied to
the perceived behaviour.

PSTF : State x Action — Behaviour (4.7)

One common example of perceived behaviour is the change in perceived state, but in
Chapter 10 there are examples of other kinds of perceived behaviour.
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Figure 4.1

The “Mountain (Fa.r”: a
very simple dynamic sys-
tem.

There are computational advantages to using the PSTF, but the greatest benefit, which
will be described later, comes from the abstractness of perceived space, and the fact that
it is in perceived space that the task descriptions themselves are likely to occur.

4.3 The Mountain Car Example

This is a very simple example which will be used for illustration during subsequent chap-
ters. It is contrived so that the state space and control space are both one-dimensional.
An automatic car drives along a one-dimensjonal track over a mountainrange, as depicted
in Figure 4.1.

The controlling station can sense the horizontal distance s that the car is from the start
of the road. The controlling station can also send a signal » which specifies how far down
the car’s pedal should be pressed. Instantaneous changes to the pedal cause instantaneous
changes to the car’s speed. The speed depends on the pedal height, the gradient of the
mountain where the car is, and also the altitude. Since these latter two features only
depend on the car’s location, we can deduce that the speed depends indirect] only on the
pedal height and the distance along the road. The road is 1000 metres long and the pedal
height varies between 0 and 10 centimetres. In the simulations that follow, this world will
be used (none of this information is available to the controller):

o The height of the road (in metres) varies with distance in metres according to the

i
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function

h(s) = 1000P(s/1000) where P(z) = —8z(z> — 1.82z? + 0.95z — 0.16)  (4.8)

¢ The speed of the car along the road’s surface is increased by decreasing the pedal
height u. It is also increased by a downwards gradient or high altitude. The surface
speed in metres per minute is

/ dh
vsuxface(S, u) = Koy/1 - Iua - I(IE + Ksh (4.9)

where Ko = 140, K, = 10 and K5 = 0.05.

e The horizontal speed of the car depends on the surface speed and the current hill
gradient:
'vsurface(sa ’ll,)

vhoriz(sa u) = W

The horizontal speed varies between approximately —8m/min and 150m/min.

(4.10)

o The perceived state (distance travelled) is scaled uniformly in the range 0 to 10.
The perceived action (pedal height) and perceived behaviour (horizontal speed) are
similarly scaled. This arbitrary scaling exemplifies the fact that SAB learning need
have no notion of the meaning of these variables. Writing s, as the perceived state,
a, as the perceived action and b, as the perceived behaviour:

by = PSTH(s,, uy) = 10 22exie(105/ oo 100/ Grum) = b, 45

bma.x - bm.in

where dpay = 150m/min, byin = —8m/min, spay = 1000m and amay = 10cm.

The function PSTF(s,u) can be graphed. The behaviour (speed) is a function of two
variables: the state s (position) and the action u (pedal height). This is graphed in
Figure 4.2. In this diagram the brightness denotes the behaviour—the brighter the tone,
the closer the behaviour to the speed 5.7 units. This somewhat odd convention is adopted
because we will later be studying a task in which the closer the speed to 5.7 units, the
better. Thus, for example the graph shows that when s = 6.5 and u = 3 then the speed
produced is 5.7. The bands below the central white band show increasing speed due to the
pedal being closer to the floor. The bands above the white band show decreasing speed
caused by the pedal being further from the floor.

4.4 The SAB Control Cycle

We are now ready to propose an enlargement of the learning controller of Section 4.1 which
takes account of state. This is called the SAB control cycle, shown in Table 4.2.
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Action

Figure 4.2

The Perceived State Tran-
sition

Function of the Mountain
car. Brightness denotes the
difference in speed from the
goal speed of 5.7.

Observe current perceived state Scyrent-

Receive task specific goal behaviour by, from higher
level of control. The requested behaviour might de-
pend partially on scyrent.

Access the current world model to obtain a raw ac-
tion a,y which is predicted to be likely to achieve

bgoal acting in the current state.
Apply action a,,y.
Observe actual behaviour b,.iyal.

Update the world model with the information that

(Scurrenta a-raw) — bactual.

Table 4.2: The SAB Control Cycle
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It can now be seen that AB learning is a specific example of SAB learning in which the
observed behaviour depends entirely on the chosen action, and there is no state to take
into account.

Steps 3 and 6 are the crucial computations for the learning system. The performance
of the robotic system will depend on the following:

e Fast Learning. It is desirable to minimize the length of time that the robot is
training (that is, performing inadequately due to lack of knowledge). This is because
of the expense of wasted robot time, and the possible hazard (or more reasonably
the expense of precautions to avoid hazard) during this time of uncontrolled activity.
Another reason for requiring a high rate of learning is that if changes occur in
the environment, we wish the robot, through learning, to adapt to these changes
reasonably quickly.

e Cheap Learning. Step 3 needs to take place within the timescale of the robot’s
dynamics, which is assumed to be a fraction of a second. As can be seen in Step 6
of the control cycle defined above, model updating has also been placed within
the constraint in this investigation. There was an alternative to this decision: the
update data could simply have been recorded during the execution of a dynamic
task. Afterwards, when the robot was stable, the data would be used to update
the world model. This alternative has two disadvantages: (i) It impacts the Fast
Learning requirement during the initial trials, where we might have hoped to learn
rough models within the very first moments of execution and (ii) it assumes that
resting times will be available— in practice a large class of robotic tasks are under
constant execution. An example is a balancing task.

o Variable Resolution of Interest. The state, action and behaviour spaces are
multi-dimensional. This means that the number of significantly different states is
enormous, and the number of significantly different state-action pairs is a magnitude
greater still. A simple example would be a six-dimensional state space and a three-
dimensional action space. Each dimension contains a continuum of values, but let
us suppose, optimistically, that in each dimension only ten values are significantly
different: then there are 10° different state-action combinations. At, say, six obser-
vations a second it would still take over five years to try each significantly different
state-action pair even once. This illustrates an important restriction: we should
not try to learn everything. Instead we should try to learn well and accurately in
the regions of state-action space which are found useful for a task, and only learn a
rough general picture for other areas.

The initial questions include: How should the world model be represented? How should
generalization take place when asked to make predictions about things not experienced?

Can the learning be all of fast, cheap and general? In the next chapter we examine a
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simple powesfiul | n and in subsequent chapters we will consider {ts efficiency
and its ability to cdpe with disorder.
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Chapter 5

Nearest Neighbour: Quick, Cheap
Learning?

This chapter begins with a definition and description of the Nearest Neighbour gen-
eralization. Its history is also described. A survey of a wide variety of alternative
learning techniques is then provided, along with a comparison to nearest neighbour.
Later in the chapter the generality of nearest neighbour is formalized and proved,
the speed of learning is analysed, and finally a variety of further aspects of nearest
neighbour are discussed.

5.1 The Nearest Neighbour Generalization

The important components of a learning system are (i) an underlying representation of the
concept being learned, called the performance element, (ii) an updating function which
takes a new piece of data with which it updates the performance element and (iii) an
accessing function which interprets the performance element to provide predictions, most
importantly about data it has not seen.

The pieces of data which are presented are called, in this work, ezemplars. For SAB
learning they are triplets of data (s,a, b) where s € State is a perceived state, a € Action
is a raw action signal and b € Behaviour is a perceived behaviour. Each is a vector of
real numbers.

In the case of SAB learning there are actually two accessing functions which will prove
useful. These are called prediction and partial inversion.

1. Prediction: Given a value (s,a) € State x Action, what is PSTF(s,a)?

2. Partial Inversion: Given a value s € State and a target value b € Behaviour,
what value of a € Action (if any) will give PSTF(s,a) = b?

The accessing function must generalize. This is what distinguishes a learning system
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from a rote-memorizing system, which is not feasible in a high dimensional or continuous
control space because there is not enough time to have every possible experience even
once. The type of generalization depends on the learning application, and in particular
can vary in strength. A very strong generalization, for example, might be to pssume that
the underlying function being learned is linear. Then the generalization could consist of
linear regression from all the data received so far. A strong generalization ca,lrx learn very

quickly, but only provided that the underlying assumption is accurate: otherwise learning
will not occur.

The nearest neighbour lies at the other extreme: it is a very weak generalization, based
only on the assumption that the function is generally continuous (this is formalized later
in this chapter). For the nearest neighbour the performance element is very simple: it is
the explicit set of all the exemplars which have been received. In the following text this
set is called E. After n observations it has value

E= {(Sl’ aj, b1)1 (527 as, b2), ey (Sn, an, bn)} (5'1)

The update rule is also very simple: E := E U {(8n+1,8n+1, bpt1)}.

The access rule uses the nearest neighbour generalization: To predict PSTF(s, a), find
the (s;,a;, b;) € E for which (s;, a;) is closest to (s,a). The predicted behaviour is b;. The
notion of “closeness” is provided by the Euclidian distance metric, with the components
of s;, a; and b, all scaled uniformly from their maximum ranges to the range [0,1]. This
is discussed shortly.

Let us consider an example. Figure 5.1 shows the interpretation after just four exem-
plars have arrived. In this example all spaces are one-dimensional and

E = {(1,2,5),(2,2,7),(4,6,7),(7,4,5)}. (5.2)

The figure graphs “behaviour predicted” against “perceived state” on the horizontal
axis and “action” on the vertical axis. For example, all the points in the polygon surround-
ing the leftmost ‘5’ correspond to state-action pairs which will be predicted, according to
the nearest neighbour generalization, to result in behaviour 5.

Given s and a desired b, partial inversion could be accomplished by finding a (s;, a;, b;) €
E such that s = s; and b = b;. However, in general such an exemplar will not be available.
Instead, the exemplar with the nearest (s;,b;) to (s,b) can be expected to have a good
a;, provided that the predicted value of PSTF(s, a;) is b;. This proviso is important. Fig-
ure 5.2 provides an alternative view of the same exemplar set with “recommended action”
plotted against “perceived state” on the horizontal axis and “required behaviour” on the

vertical axis. First, let us consider an example where partial inversion is successful:

If the current state is 0 and we require behaviour 5 then the nearest neighbour
is the leftmost ‘2’ exemplar. This recommends action 2. Indeed, looking at the
earlier prediction figure, this is a sensible recommendation because it predicts
that applying action 2 in state 0 will give the desired behaviour 5.
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Figure 5.1

The nearest neighbpur gen-

eralization predicting be-

haviour as a fune¢tion of

state and action.

Figure 5.2

The nearest neighbpur gen-

eralization performing par-

tial inversion: the

recoms-

mended action is derived as

a function of state
sired behaviour.

and de-



Action

Figure 5.3

The nearest neighbour in-
terpretation of the Moun-
tain car PSTF after 100 ex-
periences. ‘

State

However partial inversion is not generally so successful:

If we were in state 2 and required behaviour 5 then again, examining the lower
diagram, we would be recommended action 2. But if we examine the prediction
we can see that we already know what happens if we apply action 2 in state
2: we get behaviour 7. Thus partial inversion used without prediction makes
a serious mistake: and worse, it won’t learn anything from the mistake, it will
simply re-record the exemplar (2,2,7).

The conclusion is that partial inversion, which is closely related to associative memory
lookup, is not necessarily valid for control choice using the nearest neighbour generalization
(further, it seems likely that the same problem would occur for other generalizations).
Chapter 8 will examine in depth how we should choose actions. ‘

Figure 5.3 shows the approximation to the Mountain car’s PSTF after approximately
100 experiences of the world. These are not random experiences—they wdre obtained
using the SAB action chooser of Chapter 8. The agreement between the funttion values
shown in this figure and the real PSTF depicted in Section 4.3 is generally gaod.
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5.1.1 The Euclidian Metric

The Euclidian metric, Ly, defines the distance between two k-dimensional vectors ¢y and
Co as

k
le1—c2|= JZ([CIL - [‘32];)2 (5.3)

i=1
where [c]; is the ith component of vector c. The choice of a Euclidian metric is natural,
because it allows a measure of closeness of states and actions which is ind ependent of
the direction of the axes. However, the choice of metric is not important providing the
neighbourhoods are of a reasonable shape. Other possibilities include thd L., metric

(maximum component difference) or L; metric (Manhattan distance).

The components of the vectors are scaled within their maximum ranges to provide equal
weighting. In robotics, the ranges of both sensors and actuators are generally explicitly
known to the system designer. If not they can be discovered. In the absence of further
information the decision to weight equally is arguably the most sensible. Empirical study
in Chapter 10 shows that performance is not sensitive to the weighting. the “fair”
ranges were not known it would be possible to discover them from the data by cross-
validation. This technique removes a small proportion (e.g. 10 %) of the exemplars and
then tests itself by predicting their values using nearest neighbour lookup on t}ﬁe remaining
exemplars. This is repeated for a variety of weight-sets, and the weight-set which results

in the highest prediction accuracy is selected for use.

5.1.2 History of the Nearest Neighbour

The use of nearest neighbour for pattern classification was noted by [Dudh and Hart,
1973] and [Friedman et al., 1977; Bentley, 1980]. That it can also be used for ﬁ)rediction of
real-valued functions has been noted by many investigators, for example [Clevkland, 1979;
Omohundro, 1987; Kibler et al., 1988; Farmer and Sidorowich, 1988]. It has generally been
passed over in favour of local regression (described in Section 5.2) which is asymptotically
more accurate, but less well suited to applications requiring high speed predj%:tions.

The nearest neighbour can be found by means of a kd-tree representation in O(log N)
time by an algorithm first proposed in [Friedman et al., 1977]. This is dchribed and
evaluated in detail later in this thesis.

The use of fast nearest neighbour search has been recommended by [Omohémdro, 1987]
in a survey of a great variety of methods for efficient implementation of learned mappings
and other learning behaviours. The O(log N ) performance predicted by both the above
references is somewhat optimistic in high dimensionality where, as has been jpointed out
by [Maclaren, 1989], the computational cost may be dominated by a very lange constant
term, exponential in the dimension. It is proved in [Preparata and Shamos| 1985] that
nearest neighbour searching can be no faster than O(log NV).
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Omohundro also suggests that associative nearest neighbour search can be obtained
by learning the function
In X Out — {True} | (5.4)

instead of }

In — Out (5.5)

In [Maclaren, 1989] it is shown how a kd-tree-based nearest neighbour search can still
be implemented in a non-Euclidian distance metric.

There have been a number of recent investigations which have actually used the nearest
neighbour. For learning text to phoneme classification it has been studied by [Stanfill and
Waltz, 1986], and for classifying ob jects according to shape it has been used byl [Gottschalk
et al., 1989]. For general classification it has been investigated by [Salzberg, 1988] and [Aha
et al., 1990]. For learning robot control, it has been used by [Atkeson and Reihkensmeyer,
1989; Atkeson, 1989] (described in Section 3.4) and also in the investigations described in
this thesis (see also [Clocksin and Moore, 1989; Moore, 1990]).

Salzberg extends nearest neighbour by trying to reduce the number of exemplars stored.
This is achieved by only storing exemplars which had been incorrectly predi¢ted prior to
observation. The advantages of reducing the number of exemplars are tje decreased
memory cost, search cost and also a more concise, and thus more “explana.tor‘y”, mapping
representation. The disadvantage is a reduction in classification accuracy. Salzberg also
adds to the classification regions caused by the nearest neighbour genera.ltzation with
hyper-rectangular classification regions. He also discusses an important feature of nearest
neighbour learning—it is one-shot: a concept can be learnt with only one presentation of
an item of data. |

The work of [Aha et al., 1990] also modifies the nearest neighbour generalization with a
similar feature to reduce the number of points stored. It also shows that for pa;,ttern classi-
fication with noisy exemplars this method can lead to poor predictions, and so supplements
the algorithm with a mechanism for detecting and removing noisy exemplars. The work
also proves the important result that all mappings with finitely bounded classification
regions are PAC-learnable under the nearest neighbour generalization. PAC:learnability
is introduced in [Valiant, 1984); see also Sections 5.4 and 5.3, which will make/use of some
of their results. ‘

5.2 Alternative Generalizations

I will now examine some alternative methods of generalizing from observed data in order
to learn a mapping In — Out. The set In is called the domain of the mapping and Out
is the range. This investigation is strongly biased by the requirements for a robot learning
system, discussed fully in Section 4.4: the learning should be fast, cheap and with the
ability to adapt to different resolutions of interest.
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The various representations originate from three families. Neural represeéntations are

inspired by the behaviour of the nervous systems of biological organisms.
representations have also been used. Finally, Algorithmic methods have d
mainstream computer science. These labels are arbitrary and several represent
be argued to lie in more than one field, but the distinctions are useful becausd
different motivations.

Statistical
volved from
ations could
} they reflect

discrete or symbolic inputs and outputs. For learning control we will generally be most

Another, orthogonal, distinction is whether the mapping uses real MuE, numeric-

interested in the former, but some representations described below can only u
symbolic variables. A learning system in which the output is symbolic is genen
to as a classifier.

In this section the following mapping learning methods will be considered:

o Array (Algorithmic)

¢ Global Polynomial Regression (Statistical)
e Local Regression (Statistical)

o Perceptron (Neural classifier)

e Multiple Layer Neural Network (Neural classifier)
e CMAC (Neural)

e BACON (Algorithmic)

¢ Decision Trees (Algorithmic classifier)

¢ @ Nearest Neighbours (Algorithmic)

¢ Shepard’s Interpolation (Algorithmic)

* Radial Basis Functions (Algorithmic)

e Genetic Classifiers (Algorithmic classifier)

At the end of the section there is a comparative summary.

5.2.1 The Multidimensional Array

Real valued components of the domain vectors are quantized to bounded range

discrete or
ally referred

of integers.

The cell (or box) corresponding to each region of the domain typically contains statistics
compiled from all the experiences in that region. In [Michie and Chambers 1968] each

cell contains the expected life-time and number of times each action was tri
ert, 1978] it contains the average parameters of the local simplified (assu
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state) arm dynamics. In [Christiansen et al., 1990] it contains the statistics of probability
distributions of state transitions.

The representation is computationally cheap because update is a simple array update
and access is a simple array access. This has the advantage of simplicity of im lementation
but has several problems. First is the enormous memory needed if the contrdl space is to
have more than five or so dimensions and the variables be quantized to more than ten or
so levels. Secondly there is the problem of generalization: if there are a very large number
of partitions then to learn the whole state space it is necessary to record at least one value
from each of these partitions. Finally, we have no ability to concentrate on interesting

areas of the control space, or ignore uninteresting areas.

5.2.2 Polynomial Regression

This is a parametric method for generalizing functions, which means that it starts with
an assumption that the function which we are approximating is a member of a family of
functions which can be characterised by a finite number of parameters. A simple example
of such a family of functions are the set of linear functions £ — R. Each function in this
family is of the form y(x) = mz + c and so can be characterized by two parameters m
and c. The generalization from the data is to find the member of the family which best
fits the data. The definition of “best fit” is typically the fit which minimizes the squares
of the errors at the exemplars. For simple families this definition of best fit can lead to
closed form solutions to obtain the best fit parameters from the data.

One such simple family is the polynomials of degree N for small N. A pplynomla.l of
degree N from R%¢ — R*r has

(5.6)

Hmmmpm(“+N)

kq

parameters, which grows very fast with N and k4. Would this be a suitable generaliz-
ing method? If the underlying function were a polynomial in the family then learning
would require P(N, k4, k,.) observations before the function were learned perfectly. If the
observations were noisy then the learning would still be robust, provided the number
of observations significantly exceeds the number of parameters in the polynomial. The
problems, however, are severe: for a robotic system the assumption that the underlying
function is a polynomial is certainly wrong and so we can only hope that the best fit is
good enough. This means large errors are likely in some areas of state space, and re-
peated data observations will not improve this. Furthermore, there is no opportunity to

vary resolutions of interest. Update and access involve large matrix multiplications and
inversions.



5.2.3 Local Regression

This is a method which explicitly remembers and uses all the data points which are
presented to it. Learning consists merely of recording a set of observedida,ta, points
{(z1,41),...(#n,¥n)}. The method is based on the idea that locally a smopth function
behaves like a low degree polynomial. Thus, to find the value of a point which has not
been experienced, the local function is approximated by using those data points which are
close to the query point. These local points have a low degree polynomial fitted to them.

This scheme has been suggested in a variety of ways by a number of researchers:

¢ Cleveland and Delvin’s locally weighted regression. It is suggested by [Cleve-
land, 1979; Cleveland and Delvin, 1988] who are particularly concerned with noisy
data points. Each explicitly stored data point is assumed to be of the form

i =g(z)+e (5.7)

where ¢; is the noise signal with mean zero and g is a smooth function. To evaluate
the smoothed value at ; the method uses the nearest Ny neighbours, which are then
fitted to a low degree (e.g. degree one) polynomial. There are extra mechanisms to
bias the contribution of nearby local points more strongly than further jones, and to

remove distortions caused by anomalous outlying data points.

¢ Grosse’s LOESS. A more recent extension of this is {Grosse, 1989] which is con-
cerned with making the calculation more computationally tractable, even in high
dimensions. However, the calculation is optimized for a fixed set of paints, and no
cheap way is suggested for adding individual new pieces of data.

® Omohundro’s “efficient neural net behaviour”. This is a slightly simpler
scheme, proposed in a major survey of computational techniques for ¢lassification
and regression [Omohundro, 1987]. For a k-dimensional domain, the & + 1 nearest
neighbours of a query point are obtained, and a linear model based on ‘these neigh-
bours is then used. The k + 1 nearest neighbours can be obtained fdirly quickly,
using a kd-tree, described in detail in Chapter 6.

¢ Other suggestions and applications Similar schemes are proposed by [Kibler et
al., 1988] and [Farmer and Sidorowich, 1988). Such local interpolation sthemes have
been used by [Clocksin and Moore, 1989] in learning manipulator penception and
kinematics and [Atkeson, 1989] in learning dynamic manipulator trajeétories. The
latter reference also provides a more thorough overview of further literature in the
field of local regression.

Possible advantages of this method are extreme accuracy with relatively few exemplars.
The problem is the expense of finding suitable local exemplars. It is clear that at least
k4+1 are needed, where k, is the dimensionality of the function domain. Unless the system
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is to be extremely vulnerable to noise, many more are required. It is also necessary to find
local points which surround the query point, otherwise the process is extrapolation instead
of interpolation, which can lead to large errors. The regression needs the exemplars to
be local before accurate interpolation is obtained. This produces a slower ijhitial rate of
learning than simple nearest neighbour.

Local interpolation is sufficiently expensive that our implementation for kinematics
experiments had to be performed off-line from the robot task execution, which prevents
learning occurring during activity. The work of [Atkeson, 1989] also performed interpo-
lation off-line. This work used a repetitive trajectory, meaning local data points were
accumulated around a one dimensional path through state space, which allows the local
interpolation to be particularly effective.

5.2.4 Perceptrons

This, and the following two mapping learners are popular connectionist methods which
have been used in successful learning control experiments. There is a very great literature
of alternative neural network architectures. It should be remembered that neural networks
are also used for purposes other than learning mappings such as dimension reduction,
associative memory and probability equalization.

Perceptrons were described extensively in the book [Minsky and Papert,1969]. They
provide a simple way of learning classification mappings from real valued wectors to a
finite set of symbolic values. It is an iterative learning method, in which internal weights
are adjusted to reduce classification errors for each new input. If the classification regions
are separable by a hyperplane then the mapping can be learned. Perceptroné can also be
used to learn linear real-valued functions. The linearity requirement renders perceptrons
unsuitable for general robot learning.

5.2.5 Multiple-layer Networks

These were popularized by [Rumelhart and McClelland, 1984]. They perform the same
function as perceptrons but can learn non-linear discriminations. Given a fixed number
of inputs and outputs there are a wide range of possible network configurations from
which to choose. A configuration consists of N nodes linked together by M connections.
Each connection (and occasionally nodes also) have a weight. Each node has a value
associated with it—its activation energy. When an input is presented to the net, a selected
subset of the nodes, called input nodes have their activation energies set accarding to the
input. Adjacent nodes are affected according to combinations of the activations of their
neighbours. According to these local rules the activation energies of all nodes change
until the activations of another distinguished set of nodes, the output nodes, have been
evaluated. This is the output of the system. During learning, when the wrobg output is
produced from the given input the weights can be adjusted to reduce the errior on future
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similar presentations. One popular algorithm to do this is back propagation which can be
shown to provide a local best fit of the weights to the data. “Best” is used here in the
sense of minimizing the least squares prediction error [Angus, 1989).

Neural nets are another example of a parametric method (the parameters are the
connection strengths) and so, like low degree polynomials, suffer from the danger that given
the net configuration no solution could possibly represent the mapping. The update and
access of neural nets is cheap—in each case it is no worse than proportional td the number
of weights. As well as needing to hope the best fit is good enough, the disadvantages
include slow learning times. Slow learning occurs because a piece of data may have to be
presented many times to direct the weights to a set of values which accurately predicts
the data. There are also reported cases of the weight adjusting method becoming stuck.

5.2.6 CMAC

The Cerebellar Model Articulation Controller [Albus, 1975a; Albus, 1975b; Albus, 1981]
learns real-valued mappings. Its functionality is similar to a multi-dimensional array, but
with the following advantages:

e Updates are distributed over a neighbourhood to provide a generalization.

o Array cells are hashed to reduce storage requirements.

CMAC relies on the assumption that behaviours within a neighbourhood will tend to
be similar, that is that the function is smooth. This is a far less restrictive assumption
than that used for the parametric methods.

The functional behaviour of CMAC is similar to that obtained by radial bagis functions,
described below. In Section 11.1 of this dissertation the similarity is explain¢ed and there
is a detailed description of how CMAC’s behaviour can be efficiently captured using an
algorithmic method similar to that used in this thesis.

5.2.7 BACON

BACON is a method in which the space of simple algebraic formulae is searched in order
to find the algebraic formulae which best fits the data [Langley et al., 1983]. This uses a
heuristic search, in which small sub-formulae which display some regularity m some con-
texts, are combined until larger regularities are discovered. This has been very successful
in learning some elementary laws of Physics and Chemistry.

It is necessary that there exists a simple formula to model the data. For gur purposes
this seems unlikely. The behaviour of real robotic systems is complex, and much com-
plexity is derived from components which are far from mathematically ideal. Even the
linear analytic models with a great deal of assumed simplicity have a complex }closed form,
indicating that it would be difficult for a BACON-like search to find the correct formula.
Another problem for our purposes is that it is non-incremental: there is no clear way

5-11



of modifying the current theory as extra pieces of information arrive. However, for any
non-incremental scheme, an incremental version is possible: simply remember all the data
explicitly and have a continually running background process which processes all data so
far. When it finishes executing it replaces the current performance element with the new
one it has discovered and immediately starts executing again on the old data i*md the new

data which arrived during the previous execution. |
i
|
|
|

5.2.8 Decision Trees

These are classifiers, which learn functions from multi-dimensional numeric or binary do-
mains to symbolic classifications. A well known example is [Quinlan, 1983}, The input
domain is recursively partitioned. At each level the partition is binary, and splits the
domain into the two subspaces in as informative a manner as possible. For example, a
function of two binary variables, in which the result was greatly correlated with the first,
and not correlated with the second, would be split in the first variable. Tﬁe partition-
ing algorithm is formalized using the theory of information content. The m#tion behind
decision trees is that they tend to find regular patterns in data. The clas&iﬁcation Te-
gions correspond to rectangular hyperregions of the domain space. In their simplest form
decision trees are not incremental, but recent work by [Utgoff, 1989] rectifies this.

The CART (Classification and Regression Trees) system [Breiman et al,, 1984] per-
forms a similar function to both Local Regression and Decision Trees.

5.2.9 (@ Nearest Neighbours

An extension to using the value associated with the nearest neighbour is to process the
values associated with some small number of the nearest neighbours. Its advantage is
protection against noisy data. This has been suggested in a wide variety of places, for
example [Duda and Hart, 1973). The most common suggestions are

o Take a vote among the values of the @) nearest neighbours, and use the most common.
This is only appropriate for symbolic valued mappings.

¢ To use the median value of the neighbours. This is particularly appropriate for

discrete-numeric values. It protects against occasional wildly inaccurate exemplars.

¢ To use the mean value of the neighbours. This is appropriate for numeric domains
and provides some degree of protection against low-amplitude noise.

In each case, the learning rate is slowed somewhat in comparison to the rate of single
nearest neighbour, because predictions continue to be influenced by non-local exemplars

for a long time. The search for the ) nearest neighbours also takes significantly longer
than for the single nearest neighbour.
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5.2.10 Shepard’s Interpolation

This method, described among others in a survey paper [Franke, 1982], recqrds all data
points explicitly, and when a query point is supplied, a weighted average of all the stored
points is returned as the interpolated value. The contributions to the average are weighted
so that stored points close to the query point make more of a contribution than those far
from it. A typical weighting function is to have the weight of a stored point inversely
proportional to the distance between the stored point and the query point. This method
is depicted in Figure 5.4 in which three data points {(z1, 1), (%2, ¥2), (3, y3)} are stored,
and Shepard’s Interpolation (SI) for all other z coordinates gives ‘

3
_E(x — ;) 'y
yshep(z) = '=;

Z(a: -z)!

i=1
For comparison, the interpolation produced by the nearest neighbour is also given.
Shepard’s interpolation was used in [Connell and Utgoff, 1987] to learn an evaluation
function for the pole balancing problem. The method has the problem of pensive ac-
cess, because the contribution of every exemplar yet experienced needs to be included.
Another disadvantage is that it does not generalize effectively at a large distarice from any
exemplars. Instead the interpolation tends to the average of all observed points.
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5.2.11 Radial Basis Functions

A similar proposal to Shepard’s interpolation is the use of radial basis functions, also
described and evaluated in [Franke, 1982]. In this case contributions from all the ex-
emplars are added together, instead of being averaged. Given a set of exdmplars E =
{(z1,%1),...(zN,yn)} the prediction is defined as

N
y,bf(:v) = ZA,G(I T —T; ') (5.9)

i=1

The values {Ay,..., AN} are weights which are computed from the exemplar set E. A
typical choice of the function G is the normal curve G(z) = exp(—2z2/¢?) for scfme constant
c. The values of the A;’s are chosen to minimize some measure of error. ’Dhis measure
is typically the combination of the sum squared errors at the known exemplars and the
“unsmoothness” of the resulting function (defined as the mean square second derivative of
Yrbt) [Poggio and Girosi, 1989]. The computation of the A; values makes update expensive,
increasing linearly with the number of exemplars. In [Poggio and Girosi, 1989] a neural
net based method is designed which has interpolative behaviour approximating that of
Radial Basis Functions while only requiring a fixed amount of computation.

5.2.12 Genetic Classifiers

Genetic Algorithms [Holland et al., 1987] are a recent optimization method in which spaces
can be searched in a novel fashion which has been demonstrated to be particularly robust
against capture by local minima. The search is most commonly in the space of fixed length
strings of bits, but other syntactic domains can be used. The method keepsi a fixed size
population of partial solutions which are crossed over and mutated on the Ha.sis of their
performance. This is analogous to some theories of biological evolution of genomes.

Among the many things which can be optimized are populations of classifiers. A
classifier system is a set of rules which between them process an input vector to produce
an output vector. The thing which is optimized is the accuracy of the set of rules. The
optimization method consists of computing which rules should have credit for| good classi-
fications and which should be blamed for bad classifications. This computa,tlo is achieved
by Holland’s bucket brigade algorithm, described in the same paper. Individual rules tend
to survive and be crossed-over if they are associated with successful predictians.

The power of genetic algorithm based optimization has been observed for a variety
of domains (for example [Whitley, 1989; Gordon and Grefenstette, 1990]) but is not well
understood. The vocabulary of the classifiers themselves is restrictive and more suited to
discrete multi-input domains.
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5.2.13 Summary

The mapping learning methods are shown in Table 5.1, whick provides a rather terse

description of the important features. The table is not meant to constitute
judgement about the methods.
of each method was judged to suit the aims described earlier in this disse
important detail is that the “Accuracy” field describes the expected accurad
that the function which we are attempting to learn is indeed learnable by

under consideration.

Instead it provides a guide to how well

an absolute
pach feature
rtation. An
Ly, assuming
the method

Accu- | Learning | Gener- | Variable | Noise | Update | Access Memory
racy Rate ality Resol’n | Resist. Cost, Cost Use
Array Fair Bad Good Bad Fair VG VG VB
Global Regr'n Good Good Bad Bad VG Poor Poor Good
Local Regr’n Good VG VG Good Bad Good VB Poor
Perceptron Good Fair VB Bad VG Good | Good Good
Neural Net Good Bad Poor Poor VG Fair Fajr Good
CMAC Fair Fair Good Poor Fair Poor Poor Fair
BACON vG Fair Bad Fair Good Bad Good Poor
Dec’n Tree Good Good Fair VG Poor Poor Good Poor
Q Nearest N’b’r | Fair Fair Good Good Fair Good Bad Poor
Shepard Interp | Good Good Fair Poor Fair Good Vli} Poor
Radial Basis Good Good Fair Fair Fair Good VB Poor
Genetic Class’r Fai_r_ _Poor ___Fair Poor Good Pom:_ Fair Fair
Iﬁearwt N’b’r Fair I Good—I——VG | VG Poor ] Good | Pogr Poor

Table 5.1: Brief summary of a variety of generalizations discussed in the text.

Nearest neighbour is comparatively simple, and this is what permits real time access.
Despite its simplicity it was selected as a robust learning method which best meets the
goals for SAB learning. This decision is further justified in Sections 5.3—5.5 in which
some remaining problems with nearest neighbour are also discussed.

5.3 The Class of Learnable Functions

Nearest neighbour is very general. It makes only a weak assumption about t}‘he mapping
being learned. This can be described informally as the assumption that it |is generally

continuous. Here are examples of functions which will be seen to be nearest-neighbour

learnable:

1. A continuous function over a closed interval.

2. A function with one or more asymptotes.
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3. A piecewise uniformly continuous function with finite discontinuity.

In this section it is proved that nearest neighbour can achieve this, usmg the style of
proof of [Aha et al., 1990]. Let the mapping to be learned be f : [0, 1F - R I shall define
a broad class of function which includes all three given above. It will include functions
which are generally continuous and generally smooth, but not entirely so. The rest of this
section uses elementary, but somewhat detailed, mathematics and may be omitted if the
reader is prepared to simply accept these claims of generality. It should also be noted
that this discussion, for simplicity, will assume that exemplars and query poin‘ts are drawn
from a uniform probability distribution. In fact, the results will still hold for any other
distribution.

5.3.1 Generally Continuous Functions

Given a function f : [0,1]* — R, and a value ¢ > 0, define the continvous domain
D, C |o, 1]’c as the set of points in [0, 1]’c which are greater than or equal to distance ¢
from any discontinuity of the function f. Notice that from this definition the function f
is continuous over all closed connected regions of D,. Define f to be generally continuous

(GC) if

1.
Ase—0then |D.|—1 (5.10)

where | D | is the volume of the set D, (more formally, | D, |= [p, 1dz).

2. The partition of [0, 1]k induced by the discontinuities contains a finite number of
disjoint regions.

Informally, a function is generally continuous if the portion of space “close” to a disconti-
nuity diminishes to zero as the notion of “closeness” tends to zero. It can be shown that
the three classes of function mentioned above are all generally continuous.

The set of GC functions is very large, and safely includes all analytic funcdtions which
have been used to model robot perspective, kinematics or dynamics, both quantitatively
and qualitatively. It is not easy to imagine functions which are not GC, but one example
is

if 2 is rational

= 5.11
f(2) { 1 if z is irrational ( )

5.3.2 Nearest Neighbour can Learn Generally Continuous Functions

Any piecewise continuous mapping which satisfies the definition of GC can almost all,
almost surely, be learned by nearest neighbour to any required accuracy. Thls statement
can also be formalized in the manner of Valiant’s work:
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Imagine we perform nearest neighbour by drawing N random exemplars, Then
for any probability a > 0 and any proportion 8 > 0 and any accuracy § > 0
we can find an N such that:

With probability greater than (1 — )
For all points z in the domain except a proportion 8

The nearest neighbour prediction of f(z) differs from the
value of f(z) by less than 6.

This is proved using a result called the coverage lemma which we do not prove here.
The coverage lemma is stated as follows [Aha et al., 1990]:

The Coverage Lemma. For any € > 0, a > 0 and 7 > 0, if you draw

N(e,v,0) = <[\/I;/e]k/7) X log ([\/E/e] k/a) (5.12)

k-dimensional exemplars from any fixed probability distribution, then with
probability greater than (1 — a) all but proportion less than v of the domain
will lie within distance € of an exemplar.

A proof of the coverage lemma for k = 2 is given in [Aha et al., 1990]. The learnability
of nearest neighbour can now be proved. We need to achieve accuracy 6 on all but a
proportion 3 of the domain. To achieve this we will begin by fixing €; > 0 tocreate some
continuous domain D, (later on we will find a suitable value of €; for our purposes). D,
is a set of one or more disjoint regions, none of which have discontinuities within the region
or at the edge of the region. It is a standard result of mathematical analysis [Burkhill,
1978] that a function which is continuous within such a closed interval R is uniformly
continuous within R:

V>0 3r>0:

(Vz,z’€R |z—-2'|<T = | f(z) - f(z') | < 6) (5.13)

So for each region R in D, , let Tg be the value necessary to ensure that any points within
distance g of each other differ in function value by at most §. We can choose a non zero
value of € which is less than 7 for all regions (it is guaranteed non-zero because there are
only a finite number of regions). We can also ensure that € < ¢;. Thus if any two points
of R are within distance € then their values differ by less than .

For each region R let I, be an internal connected region: the set of points in R which
are not within distance ¢; of the edge of R.

I, ={z€R:Vs'€[0,1]",| 2~ o' |[< & > 2’ € R} (5.14)

Figure 5.5 provides an illustration. The domain has two discontinuities: one is along a

horizontal line and the other is at a single point. There are two disjoint R regions (sets

5-17



Figure 5.5

Discontimity 3, A two-dimensional

domain

with two discontinuities:
one is along a herizontal

is at a

regions
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line and the other
single point. The B
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of points further than €; from a discontinuity) and thus two disjoint I, regions: each a

subset of an R region.
From the definition of I, if z € I, then, for 2’ within distance ¢ of z, z

must be in

the same region R (because it is closer than ¢ which has been defined to be less than €),

and so | f(z) - f(2') |< 6.
We would like to take enough exemplars that we can ensure that all poinl
within distance ¢ of an exemplar, which would mean that for any point in

s in D, lie

y internal

connected region I, , the nearest neighbour would have a value which differed y less than

6. Unfortunately, for any number of exemplars it is not guaranteed that

points lie

within distance € of an exemplar. However, by the coverage lemma we can|ensure that
with probability 1 — a, for all but proportion 4 = %-,B, all points will lie within distance e.

Now a suitable value of €; can be chosen. It should be chosen to be small enough that
all but proportion %ﬁ of points lie within an internal connected region I, (the gray areas

on the diagram). We are guaranteed that such an ¢; exists because

lim |I€1 |=611i£‘io lD2€1 |= 1

€ —0

(5.15)

The necessary value of ¢; is thus determined by 8 and the value of ¢ is determined by ¢

and #. This is adequate to complete the proof, because now, with probabilit

y 1—aq, all

but proportion %,B of points within internal connected regions are predicted to accuracy
better than @ by nearest neighbour. Furthermore, all but proportion %,[3 of all points in

[0, 1]" are in internal connected regions and so in total all but proportion 3 aré
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accurate.

5.4 The Accuracy of Learning

The previous section proved that a very wide range of functions could bt learned to
arbitrary tolerance with nearest neighbour. But a question which is crucial for practical
use is how many exemplars are required to achieve the tolerance? Conversely, how does the
error decrease as the number of exemplars increases? The number of exemplars required
to learn, with probability (1—«), all but proportion 8 of the domain to accuraty 6 depends
directly on the values of o, 8 and 8 and indirectly on the function f itself. Iﬁ, for a given
function this dependency is exponential in any of é, % or 5- then it can be argued that
the function is not practically learnable [Valiant, 1984]. In Appendix B, in a proof slightly
modified from those in [Kibler et al., 1988] and [Omohundro, 1987], it is shown why, for
uniformly continuous functions, the number required is polynomial in all three values.

Appendix B shows that the number of exemplars n(e, 3, §) required is

n= (2 [%.I k) X log (—1- [Q_\/_ﬂ k) . (5.16)
Bl 4 al 6

Thus when learning uniformly continuous functions the number of k-dimen#iona,l exem-

plars required is better than (k + 1)-nomial in %, linear in % and sublinear in L.
Appendix B also outlines why most other generally continuous functions should be
expected to be learnable in polynomial time. However, even if the learning rate is poly-
nomial, it can still be asked if after a practical amount of time the generalization will
be to sufficient accuracy. The above analysis is worst case, and trying some numbers in
Equation 5.16 indicates how pessimistic this worst case analysis is. Let us consider an
example. The function f is three-dimensional and continuous with a maximum slope G
of 1. We wish to learn the function over [0, 1]>. We are satisfied if, with probability 95%,
over proportion 95% of the unit cube, nearest neighbour achieves an accuracy of % Equa-
tion 5.16 tells us that the number of exemplars needed is no more than 72326. It should be
immediately clear that this bound, although valid, is not close to the actual number one
would expect to be needed. This feeling is supported by empirical evidence. The graphs

in Figures 5.6 and 5.7 indicate that for one example of such a function,

f(z,9,7) = S2(T2) S‘:f}';’) sin(r2) (5.17)
the number of exemplars needed to achieve much better worst case accuraicy over the
whole domain is much less. These empirical tests were carried out for a variety of sizes
of randomly generated exemplar sets. For each size, forty independent trials were run.
Each trial estimated the average and worst case error by the average and worst case of
10,000 random nearest neighbour queries respectively. For a target accuracy of 4 = 0.1

the required number of exemplars is, in 95% of cases, less than 200 exemplars. Even this
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figure is grimmer than necessary, because we will be particularly interested in the ezxpected
error. In this case the empirical results indicate that only 10 exemplars are needed to
bring the expected error to less than 0.1. Can formal analysis provide some measure of
the expected error?

The answer is that it can, by estimating the expected distance to a nearest neighbour
after n exemplars have been received. The following paragraphs review how this value is
derived in terms of n and k, the dimensionality of the relation, under the assumption that
the exemplars are distributed uniformly.

Imagine that we are looking for the nearest neighbour of a point at the centre of a k-
dimensional sphere of radius 1 which contains n uniformly distributed random exemplars.
We wish to evaluate E™F, the expected distance of the centre to the nearest neighbour.
Write @Q™*(z) as the probability that all of the exemplars are further than distance z from
the center of the sphere. The exemplars’ locations are distributed independently, so

Q™*(z) = (Prob(Any one given exemplar is further than z))" (5.18)

Because the distribution is uniform, the chance that one exemplar is further than z is the

proportion of the sphere which is not in the smaller sphere radius z. This proportion is
1¥ — 2%, Thus Q™F = (1 — k)",
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Let P™* be the probability distribution function
Pnk(z) = Prob(Given n k-dimensional exemplars, dist. of nearest < )
1 - Qmk(z) (5.19)
1—(1-2%"

To derive the expected value of the nearest distance we need the probabj

function
n,k

n dP - n—1
Pk (z) = T = nkzF~1(1 - zF)

The expected distance is

1 1
E™k — / zp™*(2)dz = nk/ 2k(1 - 2*)"de
b 0

After performing this definite integration the result is

nlk™
TEFDEk+D) - (nk+ 1)

Let us assume that this estimate holds throughout the space [0, 1]", rather

En,k

lity density

center of a sphere. This approximation becomes more accurate when thete are more

exemplars in the interval, because the probability of edge-effects is then reduy
assume the function is uniformly continuous. The expected error in predicti

of f(z) depends on how far away the nearest exemplar is to z and on the

(5.20)
(5.21)
(5.22)
than at the
ced. Let us
g the value
agnitude of

the slope G, around point z. If we write E;;fd(z) for the expected predictio \ error at z,
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then we have E;,’i’d(x) = Gz E™*. The expected error if we make a prediction
point chosen uniformly in the space [0, 1]F is

A(n, k) = /[0,1]* ERk (2)do = /[0,11" GoE"kdz = E™FG g

Where Gayy is the average slope over the function. Assuming an average
Figure 5.8 graphs the expected error based on this analysis.

It is clear that the error decreases, with a particularly fast initial impr
is also clear that large values of k have a devastating effect on performance.
n(%,k) as the n required to achieve A(n,k) = 6, then n is exponential in k,
fixed k£ can be shown to be polynomial in %

1 k+1
n> (m) = A(n,k) <@

The low learning rate with large k£ would be a disaster if we were intendi

e
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of a random

(5.23)

slope of 1,

bpvement. It

If we write
but for any

(5.24)

ng to try to

learn everything. As noted earlier, we are assuming the data is received u
accessed uniformly. If the function f were k-dimensional, but the data were

iformly and
obtained

from a subspace S of dimension kg then it is clear we are really learning a function

fs: [0, l]kdi**tl'i‘b — R. The subspace need not be a linear projection for this to femain true.
It is by using this that SAB-learning will attempt to dodge the curse of di ensionality,
because in practice SAB-learning will never be trying to learn the entire space uniformly,

simply because there is never enough time to do so. Instead, it will tend to re
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a low dimensional subspace of the control space. This low dimensional subspace might be
0,1,2 or 3 dimensional, but as we shall see later it need not generally be greater. Evidence
for this, and examples of tasks where each of these underlying dimensionalities occur, will
appear in Chapter 10. 1

With k& = 3 or less, the accuracy is seen, both in the analysis and in the empirical
experiment, to be adequate. The asymptotic convergence is slower than most of the
other methods suggested in Section 5.2, but the other methods achieve greater speed by
placing restrictions on the class of learnable functions which are far stronger than those for
nearest-neighbour learnability. Furthermore, although they out-perform asymptotically,
the merits of initial learning speed are still open to debate.

5.5 Nearest Neighbour: Discussion

Section 5.2 discussed some candidate generalizations which were considered as an alterna-
tive to nearest neighbour. This section describes in more detail why nearest neighbour was
chosen, bearing in mind the performance criteria for SAB learning given in Section 4.4.
Sections 5.3 and 5.4 discussed the generality and asymptotic learning speed of nearest
neighbour. Here we will see that nearest neighbour indeed has further desirable features
although it is not perfect. The acceptable imperfections will be identified. It will be the

work of the two chapters following this one to overcome the other imperfections.

5.5.1 Initial Learning Speed

We shall see here that nearest neighbour is extremely quick at obtaining an initial rough
model of important areas of the domain. There are three reasons:

1. For initial SAB-learning all that is needed is rough, qualitative control—very in-
formally enough knowledge that the system’s behaviour can be sent jn the right
direction instead of in the wrong direction. This means that the accuracy we need
to attain rough control is perhaps a half or third of the maximum deviation over the
function.

2. For a robot learning system the initial learning will all, necessarily, take place in a
small region of the state space, although a large region of the action spaice might be
explored. This is because there will not be time, in the first few moments of learning
to travel very far from the start state. So, if we can consider the state effectively
constant at the start of learning, then instead of learning on a

[Dim(State) + Dim(Action)] (5.25)
-dimensional domain we are learning on a
[Dim(Action)] (5.26)
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-dimensional domain.

3. The rate of learning is relatively much higher at the start of learning than at any
other point, especially for high dimensionality.

An example is the control of the two-jointed arm considered in Section 10.2. The
control space is six-dimensional, but as learning begins, the state is roughly constant.
This leaves a two-dimensional action space over which the exemplars can vary, so the
learning rate for k = 2 applies. Imagine the expected slope is 1, and we require an initial
accuracy of 30%. Considering Equation 5.23, the number of exemplars needed is n where

nl2"
3>
2+1)(2x24+1)---(2n+1)

which is satisfied by n = 8. The results chapter will detail how good the initial learning

0 (5.27)

was for an empirical investigation of this system.
The initial learning is very fast because the learning is one-shot. This is in contrast to
a connectionist or regression method in which several (and in some cases very, very many)

pieces of data are needed before any meaningful predictions can be made.

5.5.2 Variable Resolution

The nearest neighbour generalization can vary its resolutions of interest very well. This
means that areas of the control space which are especially important to a itask can be
learned to high accuracy, and uninteresting areas to low accuracy. It has already been
described in several different contexts why this is so desirable:

¢ (Mentioned in Section 3.3) A robot will wish to concentrate on particular tasks,
instead of learning generally.

¢ (Mentioned in Section 5.2) There is not enough time to visit each general area of
the control space even once.

® (Mentioned in the previous section) The number of exempl:' nceded to reach a
fixed accuracy is exponential in the underlying dimensionality, Kdistrib, | Of the data
points.

o (Will be discussed in Section 6.5) The computational cost of nearest neighbour is
too high if we search in a uniform distribution of data.

The importance of varying resolutions was noted by [Simons et al., 1982], This work
used a multi-dimensional array as the performance element, but to adapt resolutions it
recursively broke selected boxes of the array into higher resolution sub-arrays.

Of all the generalizing methods discussed in Section 5.2, nearest neighbour is the best
at varying its resolution of interest, and this comes for free. No extra implementation
effort is required.
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Local regression and radial basis functions also vary their resolutions, but because
much more local data than just one neighbour is needed, the “rate of increasing locality”
is very much reduced.

5.5.3 Simplicity

|
I
|
One advantage of a learning method being conceptually simple is that we can have confi-
dence in its being robust. Its behaviour can be understood by its users. Nearest neighbour
is a particularly simple method. It is intuitively clear how it works, and it has been demon-

strated here to be sufficiently simple to be amenable to analysis in only a dozen or so pages.
Here I will detail both advantages of simplicity.

e Robustness. A learning system initially can be expected to make errors, but if
it continues to make the same error then, informally, one could claim that it is not
learning. This can happen to some parametric methods. A common reason would be
that the class of functions being parameterized did not include the actual function
being learned. For some iterative methods, such as back—propagationrl[Rumelha.rt
and McClelland, 1984], a second reason is that the iteration can get stuck in a local
minimum. For nearest neighbour learning of any generally continuous function, this
cannot happen because the representation is derived directly, instead of indirectly
through iteration. Depending on the implementation of local regressibn, this can
also make some very large prediction errors in regions of large curvature, especially

if the local distribution of points is not dense or if it accidently extrapalates.

¢ Understandability. There are many occasions when one needs to know why a
learning method made a particular prediction, particularly if there has been a signif-
icant error. Nearest neighbour can provide a fairly direct, understandable answer:

Sorry. You see, in this very similar previous situation that decision seemed
to work, so I thought it probably would here too. I'll know better nezxt time.

Other methods based on statistical or connectionist models can only give a far less
direct explanation:

Sorry. You see, this is the algorithm and this is the data received so far,

and so the execution resulted in this decision.

This comparison is somewhat unfair as some work is now being done to allow con-
nectionist networks to explain their behaviour [Diederich, 1990].

In [Michie, 1989] it is argued that until learning systems can explain their decisions
clearly they are unlikely to be accepted into commercial use. It should also beé noted that
the nearest neighbour explanation is inferior to that from a decision tree or from BACON,

which can both give particularly succinct accounts of their current theory of the world.
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5.5.4 Computational Resource Costs

There is a significant fear that demands on the computer will increase linearly with n,
the number of exemplars. The resources which might be badly affected are (i) time to
update, (ii) time to access and (iii) memory requirements. Before discussiné these cases
it is worth considering just how large n will become. It is constrained by the length of
time in which the robot learns. For example an extreme learning task might last three
days with five SA B-cycles per second, in which case n would be 1,296, 000 exemplars. But
it is questionable whether would there be much point in continuing learning when 7 is
in the millions. Each exemplar has, on average, only a one in a million chance of being
accessed, and so there will not be much payoff from continued learning. Ttlljs is borne
out by Figure 5.9, which graphs the expected increase in accuracy obtained by doubling
the current number of exemplars. It shows, for example, that if we have 100,000 three-
dimensional exemplars from a function with average gradient 1, then taking a further
100,000 will decrease the expected error by approximately 0.01. For larger dimensionality
there is a higher payoff in increasing the number of exemplars, but given the enormous
time to double the number of exemplars, it will rarely seem worth it. However, instead of
discontinuing learning, it is preferable to add new exemplars and delete old dnes. This is
also important to cope with a changing environment, and the topic is fully discussed in

Section 7.3.

Thus, for these two reasons, we will not hold more than the order of a quarter of
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a million exemplars in store. We can now make an estimate of the amount of memory
which will be required. Assuming two bytes per field in the state, action and behaviour
vectors, and assuming a twelve-dimensional state space, six-dimensional control space
and six-dimensional behaviour space, with an overhead of another 30 bytes per exemplar
(Chapter 7 will explain overhead requirements), the memory requirement to store % million

t the virtual
memory of modest computers in 1990, and is already within the on-board memory of
powerful machines. It must, however, be mentioned that most parametric methods require

exemplars would be 19% megabytes. This is an amount of memory well withi

a magnitude less memory. Multi-dimensional arrays require a magnitude moye.

There is also the question of the time for update and access. Chapten 6 describes
an implementation to make this sufficiently small. For low degree parametric methods,
update and access are also cheap, but nearest neighbour is faster than the other suggested
methods.

5.5.5 Disorder

I have not as yet mentioned a major advantage of parametric methods: they do not learn
noise. Imagine we receive exemplars of the form

(c,- + bc; — f(c,-) + 5b,‘) (5.28)

where éc; and 6b; are noise signals distributed independently of : with mean zero. Para-
metric methods will, if they converge, converge to generalizations which give the correct,
noise-free prediction. Nearest neighbour will do very badly: it will learn the noisy values
exactly as they occur. Radial basis functions and a suitable implementation of local regres-
sion will cope, but they will need to include a large number of exemplars. In particular,
local regression with only a few noisy exemplars is likely to have severe errors.

Chapter 7 explains how nearest neighbour is modified to average out noise, in a similar
manner to Shepard’s regression, but optimized for access efficiency. In doing so, it will be
necessary to put an upper bound on the accuracy to which the function can be learned
around discontinuities.

This investigation assumes that there is no information in the noise, or in the distri-
bution of the noise: we simply want to get rid of it. This assumption is a consequence
of the earlier assumption that the Perceived State Transition Function is deterministic.
Some work has been done by [Christiansen et al., 1990] on a robotic tray tilting system in
which the observed world is non-deterministic and in which the distributions of observed
behaviours need to be learned.

5.5.6 Knowing what one Knows

The nearest neighbour estimate can provide a measure of how accurate a given prediction
is expected to be. This estimate is a function of the actual distance to the nearest neigh-

bour. As we will discover later, this knowledge is important for deciding intelligently when
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experimentation is desirable. Knowledge of knowledge can also be obtained directly from
an array representation, and somewhat less directly from the other non-parametric meth-
ods reviewed earlier. It cannot be obtained from a parametric representation|, although it
is possible that the system could attempt to learn knowledge of knowledge ekplicitly.
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Chapter 6

Kd-trees for Cheap Learning

This chapter gives a specification of the nearest neighbour algorithm. It
both an informal and formal introduction to the kd-tree data structure.

Iso gives
en there

is an ezplicit, detailed account of how the nearest neighbour search algorithm is

implemented efficiently, which is followed by an empirical investigation i

o the al-

gorithm’s performance. Finally, there is discussion of some other algorithms related

to the nearest neighbour search.

6.1 Nearest Neighbour Specification

Given two multi-dimensional spaces Domain = R®*4 and Range = R*", let jan ezemplar
be a member of Domain x Range and let an ezemplar-set be a finite set of exemplars.

Given an exemplar-set, E, and a target domain vector, d, then a nearest néd
is any. exemplar (d’,r’) € E such that None-nearer(E,d,d’). Notice that

tghbour of d

there might

be more than one suitable exemplar. This ambiguity captures the requirement that any

nearest neighbour is adequate. None-nearer is defined thus:

(6.2)

None-nearer(E,d,d") & V(@A",r")€E |d-d'|<|d-d"] (6.1)
In Equation 6.1 the distance metric is Euclidean, though any other Ly-norm could have
been used.
i=ky
|ld-d'|= Z(d,- - d’;)?
=1

where d; is the ith component of vector d.

In the following sections I describe some algorithms to realize this abstract specification
with the additional informal requirement that the computation time should be relatively

short.




Algorithm: Nearest Neighbour by Scanning.
Data Structures:
domain-vector A vector of k4 floating point numbers.
range-vector A vector of k, floating point numbers.
exemplar A pair: (domain-vector, range-vector)
Input: exlist, of type list of exemplar
dom, of type domain-vector
Output: nearest, of type exemplar
Preconditions: exlist is not empty
Postconditions:  if nearest represents the exemplar (d’,r’),
and exlist represents the exemplar set E,
and dom represents the vector d,
then (d’,r’) € E and None-nearen(E,d,d’).
Code:
1. nearest-dist := infinity
2. nearest := undefined
3. for ex := each exemplar in exlist
3.1 dist := distance between dom and the domain of ex
3.2 if dist < nearest-dist then
3.2.1 nearest-dist := dist
3.2.2 nearest := ex

Table 6.1: Finding Nearest Neighbour by scanning a list.

6.2 Naive Nearest Neighbour

This operation could be achieved by representing the exemplar-set as a list of exemplars.
In Table 6.1, I give the trivial nearest neighbour algorithm which scans the entire list.
This algorithm has time complexity O(N) where N is the size of E. By structuring the
exemplar-set more intelligently, it is possible to avoid making a distance computation for

every member.

6.3 Introduction to kd-trees

A kd-tree is a data structure for storing a finite set of points from a k-dimensional space.
It was examined in detail by J. Bentley [Bentley, 1980; Friedman et al., 1977]. Recently, S.
Omohundro has recommended it in a survey of possible techniques to increase the speed
of neural network learning [Omohundro, 1987].

A kd-tree is a binary tree. The contents of each node are depicted in Table 6.2. Here
I provide an informal description of the structure and meaning of the tree, and in the
following subsection I give a formal definition of the invariants and semantics.
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Field Name: | Field Type Description

dom-elt domain-vector | A point from k4-d space

range-elt range-vector A point from k,-d space

split integer The splitting dimension :
left kd-tree A kd-tree representing those poi;nts

to the left of the splitting plane
right kd-tree A kd-tree representing those points
to the right of the splitting plane

Table 6.2: The fields of a kd-tree node

The exemplar-set E is represented by the set of nodes in the kd-tree, each node rep-
resenting one exemplar. The dom-elt field represents the domain-vector of the exemplar
and the range-elt field represents the range-vector. The dom-elt component is the index
for the node. It splits the space into two subspaces according to the splitting hyperplane
of the node. All the points in the “left” subspace are represented by the left subtree, and
the points in the “right” subspace by the right subtree. The splitting hyperplane is a
plane which passes through dom-elt and which is perpendicular to the direction specified
by the split field. Let ¢ be the value of the split field. Then a point is to the left of
dom-elt if and only if its ith component is less than the ith component of dom-elt. The
complimentary definition holds for the right field. If a node has no childrén, then the
splitting hyperplane is not required.

Figure 6.1 demonstrates a kd-tree representation of the four dom-elt points (2,5),
(3,8), (6,3) and (8,9). The root node, with dom-elt (2, 5) splits the plane in the y-axis
into two subspaces. The point (3,8) lies in the lower subspace, that is {(z,9) | y < 5},
and so is in the left subtree. Figure 6.2 shows how the nodes partition the plane.

6.3.1 Formal Specification of a kd-tree

The reader who is content with the informal description above can omit this section. I
define a mapping

exset-rep : kd-tree — exemplar-set (6.3)

which maps the tree to the exemplar-set it represents:

ezset-rep(empty) = ¢
exset-rep(< d, r, —, empty, empty >) {(d,r)}
ezset-rep(< d, r, split, treejep, tree gy >) =

ezset-rep(treere) U {(d, r)} U ezset-rep(tree,;ghs)

(6.4)

The invariant is that subtrees only ever contain dom-elts which are on the correct side
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Figure 6.1

A 2d-tree of four dlements.
The splitting planes are not
indicated. The [2,5] node
splits along the y = 5 plane
and the [3,8] node splits
along the x = 3 plane.

Figure 6.2

How the tree of Figure 6.1
splits up the x,y plane.




Algorithm: Constructing a kd-tree

Input: exset, of type exemplar-set

Output: kd, of type kdtree

Pre: None

Post: exset = exset-rep(kd) A Is-legal-kdtree(kd)

Code:

1. If exset is empty then return the empty kdtree

2. Call pivot-choosing procedure, which returns two values:
ex := a member of exset
split := the splitting dimension

3. d := domain vector of ex

4. exset’ := exset with ex removed

5. r := range vector of ex

6. exsetleft := {(d’,r) € exset’ | d'split < dsplit}

7. exsetright := {(d’,r') € exset’ | d'split > dsplit}

8. kdleft := recursively construct kd-tree from exsetleft

9. kdright := recursively construct kd-tree from exsetright

10. kd := < d,r,split, kdleft, kdright > ‘

Proof: By induction on the length of exset and the definitions

of exset-rep and Is-legal-kdtree.

Table 6.3: Constructing a kd-tree from a set of exemplars.

of all their ancestors’ splitting planes.

Is-legal-kdtree(empty).
Is-legal-kdtree(< d, r, —, empty, empty >).
Is-legal-kdtree(< d, r, split, treep, treepign; >) <

Y(d',r’) € exset-rep(treejs) d'split < dgplit
V(d',r’) € exset-rep(tree ign;) d'split > dsplitA
Is-legal-kdtree(treeop) A
Is-legal-kdtree(tree ;ghs)

6.3.2 Constructing a kd-tree

(6.5)

Given an exemplar-set E, a kd-tree can be constructed by the algorithm in Table 6.3.
The pivot-choosing procedure of Step 2 inspects the set and chooses a “good” domain

vector from this set to use as the tree’s root.

The discussion of how su¢h a root is

chosen is deferred to Section 6.7. Whichever exemplar is chosen as root will not affect
the correctness of the kd-tree, though the tree’s maximum depth and the shape of the
hyperregions will be affected.
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Figure 6.3

The black dot is the dot
DR m which owns the leaf node
X containing the tanget (the

cross). Any nearer neigh-
bour must lie inside this cir-
o cle.

6.4 Nearest Neighbour Search

In this section, I describe the nearest neighbour algorithm which operates on kd-trees. I
begin with an informal description and worked example, and then give the precise algo-
rithm.

A first approximation is initially found at the leaf node which contains the target point.
In Figure 6.3 the target point is marked X and the leaf node of the region containing the
target is coloured black. As is exemplified in this case, this first approximation is not
necessarily the nearest neighbour, but at least we know any potential nearér neighbour
must lie closer, and so must lie within the circle centred on X and passing through the
leaf node. We now back up to the parent of the current node. In Figure 6.4 this parent
is the black node. We compute whether it is possible for a closer solution to that so far
found to exist in this parent’s other child. Here it is not possible, because the circle does
not intersect with the (shaded) space occupied by the parent’s other child. If no closer
neighbour can exist in the other child, the algorithm can immediately move fup a further
level, else it must recursively explore the other child. In this example, the next parent
which is checked will need to be explored, because the area it covers (i.e. everywhere north
of the central horizontal line) does intersect with the best circle so far.

Table 6.4 describes my actual implementation of the nearest neighbour algorithm. It
is called with four parameters: the kd-tree, the target domain vector, a representation
of a hyperrectangle in Domain, and a value indicating the maximum distance from the
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Figure 6.4

ﬁ_\ The black dot is the parent

X of the closest found so far.
In this case the black dot’s
other child (shaded grey)
need not be searchied.

target which is worth searching. The search will only take place within those portions of
the kd-tree which lie both in the hyperrectangle, and within the maximum distance to the
target. The caller of the routine will generally specify the infinite hyperrectangle which
covers the whole of Domain, and the infinite maximum distance.

Before discussing its execution, I will explain how the operations on the hyperrectangles
can be implemented. A hyperrectangle is represented by two arrays: one of its minimum
coordinates, the other of its maximum coordinates. To cut the hyperrectangle, so that one
of its edges is moved closer to its centre, the appropriate array component i$ altered. To
check to see if a hyperrectangle hr intersects with a hypersphere radius » centered at point
t, we find the point p in hr which is closest to t. Write A7™® as the minium extreme
of hr in the sth dimension and Ar™** as the maximum extreme. p;, the ith component of
this closest point is computed thus:

hri®inif t; < iR
pi=14 t if AR < ¢ < hrmax (6.6)
hePin  if ¢; > hyimax

The objects intersect only if the distance between p and t is less than or equal to r.

The search is depth first, and uses the heuristic of searching first the child node which
contains the target. Step 1 deals with the trivial empty tree case, and Steps 2 and 3
assign two important local variables. Step 4 cuts the current hyperrectangle into the
two hyperrectangles covering the space occupied by the child nodes. Steps 5+7 determine
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Algorithm:

Nearest Neighbour in a kd-tree

Input: kd, of type kdtree
target, of type domain vector
hr, of type hyperrectangle
max-dist-sqd, of type float
Output: nearest, of type exemplar
dist-sqd, of type float
Pre: Is-legal-kdtree(kd)
Post: Informally, the postcondition is that nearest is a nearest exemplar
to target which also lies both within the hyperrectangle hn
and within distance /max-dist-sqd of target. /dist-sqd|is
the distance of this nearest point.
If there is no such point then dist-sqd contains infinity.
Code:
1. if kd is empty then set dist-sqd to infinity and exit.
2. s := split field of kd
3. pivot := dome-elt field of kd
4. Cut hr into two sub-hyperrectangles left-hr and right-hr.
The cut plane is through pivot and perpendicular to the s dimension.
5. target-in-left := targetg < pivotg
6. if target-in-left then
6.1 nearer-kd := left field of kd and nearer-hr := left-hr
6.2 further-kd := right field of kd and further-hr := right-hr
7. if not target-in-left then
7.1 nearer-kd := right field of kd and nearer-hr := right-hr
7.2 further-kd := left field of kd and further-hr := leftihr
8. Recursively call Nearest Neighbour with parameters
(nearer-kd,target, nearer-hr,max-dist-sqd), storing the results
in nearest and dist-sqd
9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
10. A nearer point could only lie in further-kd if there were some
part of further-hr within distance v/max-dist-sqd of target.
if this is the case then
10.1 if (pivot — target)? < dist-sqd then
10.1.1 nearest := (pivot,range-elt field of kd)
10.1.2 dist-sqd := (pivot — target)?
10.1.3 max-dist-sqd := dist-sqd
10.2 Recursively call Nearest Neighbour with parameters
(further-kd,target, further-hr,max-dist-sqd),
storing the results in temp-nearest and temp-dist-sqd
10.3 If temp-dist-sqd < dist-sqd then
10.3.1 nearest := temp-nearest and dist-sqd := temp-dist-sqd
Proof: Outlined in text ‘

Table 6.4: The Nearest Neighbour Algorithm




which child contains the target. After Step 8, when this initial child is searched, it may
be possible to prove that there cannot be any closer point in the hyperrectangle of the
further child. In particular, the point at the current node must be out of range. The test
is made in Steps 9 and 10. Step 9 restricts the maximum radius in which | ny possible
closer point could lie, and then the test in Step 10 checks whether there is any|space in the
hyperrectangle of the further child which lies within this radius. If it is not possible then
no further search is necessary. If it is possible, then Step 10.1 checks if the poiljit associated
with the current node of the tree is closer than the closest yet. Then, in Stjep 10.2, the
further child is recursively searched. The maximum distance worth exam#ning in this
further search is the distance to the closest point yet discovered. |

The proof that this will find the nearest neighbour within the constraints is by induction
on the size of the kd-tree. If the cutoff were not made in Step 10, then the pr&aof would be
straightforward: the point returned is the closest out of (i) the closest point in the nearer
child, (ii) the point at the current node and (iii) the closest point in the further child. If
the cutoff were made in Step 10, then the point returned is the closest point in the nearest
child, and we can show that neither the current point, nor any point in the further child
can possibly be closer.

Many local optimizations are possible which while not altering the asymptotic perfor-
mance of the algorithm will multiply the speed by a constant factor. In particular, it is
in practice possible to hold almost all of the search state globally, instead of passing it as

recursive parameters.

6.5 Theoretical Behaviour

Given a kd-tree with N nodes, how many nodes need to be inspected in order to find the
proven nearest neighbour using the algorithm in Section 6.4?. It is clear at once that on
average, at least O(log V) inspections are necessary, because any nearest neighbour search
requires traversal to at least one leaf of the tree. It is also clear that no more than N
nodes are searched: the algorithm visits each node at most once.

Figure 6.5 graphically shows why we might expect considerably fewer than N nodes
to be visited: the shaded areas correspond to areas of the kd-tree which were cut off.

The important values are (i) the worst case number of inspections and (ii) the expected
number of inspections. It is actually easy to construct worst case distrib tions of the
points which will force nearly all the nodes to be inspected. In Figure 6.6, thd tree is two-
dimensional, and the points are scattered along the circumference of a circle. If we request
the nearest neighbour with the target close to the centre of the circle, it will therefore
be necessary for each rectangle, and hence each leaf, to be inspected (this is in order to
ensure that there is no point lying inside the circle in any rectangle).

Calculation of the expected number of inspections is difficult, because thejanalysis de-
pends critically on the expected distribution of the points in the kd-tree, and the expected
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Figure 6.5

Generally during a nearest
neighbour search olly a few
leaf nodes need top be in-
spected.

Figure 6.6

A bad distribution which
forces almost all nodes to

be inspected.
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distribution of the target points presented to the nearest neighbour algorithm.

The analysis is performed in [Friedman et al., 1977]. This paper considers the expected
number of hyperrectangles corresponding to leaf nodes which will provably need to be
searched. Such hyperrectangles intersect the volume enclosed by a hypersphjere centered
on the query point whose surface passes through the nearest neighbour. Fo ‘ example, in
Figure 6.5 the hypersphere (in this case a circle) is shown, and the number 011 intersecting
hyperrectangles is two. |

The paper shows that the expected number of intersecting hyperrectangles is inde-
pendent of N, the number of exemplars. The asymptotic search time is thus logarithmic
because the time to descend from the root of the tree to the leaves is logarithmic (in a
balanced tree), and then an expected constant amount of backtracking is required.

However, this reasoning was based on the assumption that the hyperrectangles in the
tree tend to be hypercubic in shape. Empirical evidence in my investigatiods has shown
that this is not generally the case for their tree building strategy. This is discussed and
demonstrated in Section 6.7.

A second danger is that the cost, while independent of N, is exponentially dependent
on k, the dimensionality of the domain vectors!.

Thus theoretical analysis provides some insight into the cost, but here, ¢mpirical in-
vestigation will be used to examine the expense of nearest neighbour in practice.

6.6 Empirical Behaviour

In this section I investigate the empirical behaviour of the nearest neighbour searching
algorithm. We expect that the number of nodes inspected in the tree varies according to
the following properties of the tree:

e N, the size of the tree.

® kdom , the dimensionality of the domain vectors in the tree. This value is the k in
kd-tree.

® dgistrib , the distribution of the domain vectors. This can be quantified as the “true”
dimensionality of the vectors. For example, if the vectors had three components,
but all lay on the surface of a sphere, then the underlying dimensionality would
be 2. In general, discovery of the underlying dimensionality of a given sample of
points is extremely difficult, but for these tests it is a stra,ightforwaqd matter to
generate such points. To make a kd-tree with underlying dimensionplity dgistrib,
I use randomly generated kgom-dimensional domain vectors which lie pn a dgstrip-
dimensional hyperelliptical surface. The random vector generation algorithm is as
follows: Generate dgjserit, random angles 8; € [0,27) where 0 < i < dgisttib. Then let

1This was pointed ount to the author by N. Maclaren.
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the jth component of the vector be H:::g‘l sin(f; + #;;). The phase angles ¢;; are
defined as ¢;; = %—7&' if the jth bit of the binary representation of i is 1 and is zero
otherwise. \

® diarget , the probability distribution from which the search target vector will be
selected. I shall assume that this distribution is the same as that which determines
the domain vectors. This is indeed what will happen when the kd-tree is used for
learning control.

|
|
In the following sections I investigate how performance depends on each o{ these prop-
erties. ;
i
|
|

6.6.1 Performance against Tree Size

Figures 6.7 and 6.8 graph the number of nodes inspected against the number of nodes
in the entire kd-tree. Each value was derived by generating a random kd-trée, and then
requesting 500 random nearest neighbour searches on the kd-tree. The ave age number
of inspected nodes was recorded. A node was counted as being inspected if the distance
between it and the target was computed. Figure 6.7 was obtained from a 4d-tree with
an distribution distribution dgierit, = 3. Figure 6.8 used an 8d-tree with a; underlying
distribution dgieernp, = 8. |

It is immediately clear that after a certain point, the expense of a nearest neighbour
search has no detectable increase with the size of the tree. This agrees with the proposed
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model of search cost—logarithmic with a large additive constant term.
6.6.2 Performance against the “k” in kd-tree
Figure 6.9 graphs the number of nodes inspected against kgom, the number of components
in the kd-tree’s domain vectors for a 10,000 node tree. The underlying dimensionality was

also kdom. The number of inspections per search rises very quickly, possibly exponentially,
with Kgom. This behaviour, the massive increase in cost with dimension, i$ familiar in

computational geometry.

6.6.3 Performance against the Distribution Dimensionality

This experiment confirms that it is dgjstrp, the distribution dimension from which the

points were selected, rather than kgeym which critically affects the search P

erformance.

The trials for Figure 6.10 used a 10,000 node kd-tree with domain dimensi¢n of 14, for
various values of dgistrib- The important observation is that for 14d-trees, the performance

does improve greatly if the underlying distribution-dimension is relatively low.
Figure 6.11 shows that for a fixed (4-d) underlying dimensionality, the search «
not seem to increase any worse than linearly with kgom.
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6.6.4 When the Target is not Chosen from the kd-tree’s Distribution

In this experiment the points were distributed on a three dimensional elliptical surface
in ten-dimensional space. The target vector was, however, chosen at random| from a ten-
dimensional distribution. The kd-tree contained 10,000 points. The averagf number of
inspections over 50 searches was found to be 8,396. This compares with anothet experiment
in which both points and target were distributed in ten dimensions and the average number
of inspections was only 248. The reason for the appalling performance was :j;mpliﬁed in

Figure 6.6: if the target is very far from its nearest neighbour then very many leaf nodes
must be checked.

6.6.5 Conclusion

The speed of the search (measured as the number of distance computa.tioils required)
seems to vary ... %

o ...only marginally with tree size. If the tree is sufficiently large with reLpect to the
number of dimensions, it is essentially constant.

e ...very quickly with the dimensionality of the distribution of the datapoints, dgietrib-

e ...linearly with the number of components in the kd-tree’s domain (kapm), given a
fixed distribution dimension (daistrib)-
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There is also evidence to suggest that unless the target vector is drawn from the same
distribution as the kd-tree points, performance can be greatly worsened.

These results support the belief that real time searching for nearest neighbours is
practical in a robotic system where we can expect the underlying djmensio#a.]jty of the
data points to be low, roughly less than 10. This need not mean that the vectors in the
input space should have less than ten components. For data points obtained from robotic
systems it will not be easy to decide what the underlying dimensionality }s. However
Chapter 10 will show that the data does tend to lie within a number of low |dimensional

subspaces. *

6.7 Further kd-tree Operations

In this section I discuss some other operations on kd-trees which are required for use in
the SAB learning system. These include incrementally adding a point to a kd-tree, range
searching, and selecting a pivot point.

6.7.1 Range Searching a kd-tree

range-search : exemplar-set Xx Domain x ® — exemplar-set

The abstract range search operation on an exemplar-set finds all exemplars whose

domain vectors are within a given distance of a target point:

range-search(E,d,r) = {(d,r)e E|(d~d')? < r?}

This is implemented by a modified nearest neighbour search. The modifications are
that (i) the initial distance is not reduced as closer points are discovered and (ii) all
discovered points within the distance are returned, not just the nearest. The complexity

of this operation is shown, in [Preparata and Shamos, 1985], to still be logarithmic in N
(the size of E) for a fixed range size.

6.7.2 Choosing a Pivot from an Exemplar Set

The tree building algorithm of Section 6.3 requires that a pivot and a splitting plane
be selected from which to build the root of a kd-tree. It is desirable for thé tree to be
reasonably balanced, and also for the shapes of the hyperregions corresponding to leaf

nodes to be fairly equally proportioned. The first criterion is important because a badly
unbalanced tree would perhaps have O(N) accessing behaviour instead of O(log N). The
second criterion is in order to maximize cutoff opportunities for the nearest neighbour
search. This is difficult to formalize, but can be motivated by an illustration. In Figure 6.12
is a perfectly balanced kd-tree in which the leaf regions are very non-square. | Figure 6.13
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A 2d tree balanced using
the ‘median of the most
spread dimension’ pivoting
strategy.

Figure 6.13

A 2d tree balanced using
the ‘closest to the ¢entre of
the widest dimension’ piv-
oting strategy.

illustrates a kd-tree representing the same set of points, but which promoteg squareness

at the expense of some balance.




One pivoting strategy which would lead to a perfectly balanced tree, and which is
suggested in [Omohundro, 1987}, is to pick the splitting dimension as that with maximum
variance, and let the pivot be the point with the median split component, This will,
it is hoped, tend to promote square regions because having split in one difhension, the
next level in the tree is unlikely to find that the same dimension has maximum spread,
and so will choose a different dimension. For uniform distributions this tends to perform
reasonably well, but for badly skewed distributions the hyperregions tend to take long thin
shapes. This is exemplified in Figure 6.12 which has been balanced using this standard
median pivot choice.

To avoid this bad case, I choose a pivot which splits the exemplar set in the middle of
the range of the most spread dimension. As can be seen in Figure 6.13, this tends to favour
squarer regions at the expense of a slight imbalance in the kd-tree. This means that large
empty areas of space are filled with only a few hyperrectangles which are themselves large.
Thus, the number of leaf nodes which need to be inspected in case they contain a nearer
neighbour is smaller than for the original case, which had many small thin hyperrectangles.

My pivot choice algorithm is to firstly choose the splitting dimension as the longest
dimension of the current hyperrectangle, and then choose the pivot as the point closest to
the middle of the hyperrectangle along this dimension. Occasionally, this pivot may even
be an extreme point along its dimension, leading to an entirely unbalanced node. This is
worth it, because it creates a large empty leaf node. It is possible but extremely unlikely
that the points could be distributed in such a way as to cause the tree to have one empty
child at every level. This would be unacceptable, and so above a certain depth threshold,
the pivots are chosen using the standard median technique.

Selecting the median as the split and selecting the closest to the centre of the range
are both O(N) operations, and so either way a tree rebalance is O(N log N).

6.7.3 Incrementally Adding a Point to a kd-tree

Firstly, the leaf node which contains the new point is computed. The hyperrectangle corre-
sponding to this leaf is also obtained. See Section 6.4 for hyperrectangle implementation.
When the leaf node is found it may either be (i) empty, in which case it is simply replaced
by a new singleton node, or (ii) it contains a singleton node. In case (ii) the singleton
node must be given a child, and so its previously irrelevant split field must be defined.
The split field should be chosen to preserve the squareness of the new subhyperrectangles.
A simple heuristic is used. The split dimension is chosen as the dimension in which the
hyperrectangle is longest. This heuristic is motivated by the same requirement as for tree
balancing—that the regions should be as square as possible, even if this means some loss
of balance.

This splitting choice is just a heuristic, and there is no guarantee that a series of points
added in this way will preserve the balance of the kd-tree, nor that the hyperrectangles
will be well shaped for nearest neighbour search. Thus, on occasion (such Ts when the
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depth exceeds a small multiple of the best possible depth) the tree is rebuilt.
addition costs O(log NV).

6.7.4 (@ Nearest Neighbours

Incremental

This uses a modified version of the nearest neighbour search. Instead of only searching

within a sphere whose radius is the closest distance yet found, the search is wif

hin a sphere

whose radius is the Qth closest yet found. Until Q points have been found, this distance

is infinity.

6.7.5 Deleting a Point from a kd-tree

If the point is at a leaf, this is straightforward. Otherwise, it is difficult,
structure of both trees below this node are pivoted around the point we wis

because the
to remove.

One solution would be to rebuild the tree below the deleted point, but on dccasion this
would be very expensive. My solution is to mark the point as deleted with an extra field in

the kd-tree node, and to ignore deletion nodes in nearest neighbour and similar searches.

When the tree is next rebuilt, all deletion nodes are removed.
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Chapter 7

SAB-trees: Coping with Disorder

The nearest neighbour (see Chapter 5) has been selected for learning world mod-
els which relate “state”, “action” and “behaviour” (see Chapter {). The previous
chapter ezplained in detail how the nearest neighbour can be found efficiently. This
chapter explains how the standard nearest neighbour algorithm is tailored to the needs
of this investigation. It begins by explaining how kd-trees are used. It then shows
how resistance to noise is implemented in a way which means that each adcess still
only requires a single nearest neighbour search. After that, the problem of adapting
to a changing world model is addressed. The next section ezplains the detailed imple-
mentation and asymptotic efficiency of these operations. The final section describes
garbage collection of the kd-tree, to remove old, inaccurate, ezemplars. |

7.1 SAB Relations, and their Representation

The Perceived State Transition Function has this form:

PSTF : State x Action — Behaviour (7.1)

All experiences are stored explicitly in a kd-tree. The choice of which components of
the PSTF form the tree’s domain (i.e. index), and which form the range is influenced
by the fields which need a nearest neighbour search. Chapter 5 described how both
Dynamics Prediction, searching on State x Action, and Partial Inversion, gearching on
State x Behaviour, would be useful.

The two different indexing requirements could be satisfied by various means. One
method would be to index the kd-tree on all three components. During the search, when
a split is found in a dimension which is not being used as an index, then both subtrees
are searched. This is slower than if the search had been on a tree only index}éd with the
relevant components, but it is nevertheless faster than a complete linear seardh.

The solution to multiple indexes which I use is simpler. There are two -trees, one

indexed by State x Action and the other by State x Behaviour. This uses more memory
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but is faster, because nearest neighbour search takes place in a lower dimension. The extra
memory is significantly less than twice as much, because the second tree can have pointers
to the vectors of the first tree, rather than its own copy of each s, b and a vector.

7.2 Resisting Noise

i
Each exemplar is obtained by observing a state, applying an action and then observing
the behaviour. The assumption that the sensor readings are sufficient to détermine the
state implies that if the system is ever in the same perceived state again and the same raw
action is applied then the same behaviour will be observed. More simply we assume that
the PSTF is a deterministic function. A problem is that non-deterministic random noise
is likely to corrupt any observations or raw action signals. This means that on different
occasions, the same state-action pair may produce different behaviour.
Let ¢ € State x Action be a state-action pair which the controller believes it has
experienced. In fact this belief could be wrong for two reasons:

1. The state observation could have an error.

2. The action signal which the controller requested could have been corrupted before
it arrived at the actuator.

Imagine that the actual state action pair had been c + 8c. Let b be the behaviour
which then occurred. Due to noisy sensors the controller observes behaviour b 4+ 6b. Then
the world model is updated with the observation that ¢ — b + 6b when in fact the truth
is that

PSTF(c+ 6c)=b (7.2)
By the Taylor expansion

OPSTF;

PSTF(c + 8¢) = PSTF(c) + J6c + O(6%) where J;; = B,
J

(7.3)

where J is the Jacobian matrix of the PSTF at c. If | §b | and | ¢ | are sufficiently small
the O(é?) term can be discarded. Thus the controller has wrongly recorded

¢ — PSTF(c) + J6c + 6b (7.4)
error
The solution to the problem is to use the local average value for prediction. If we make
a series of N observations at what the controller believes to be constant state-action ¢ and
then average the results we can hope to reduce the error. Let the ith observation have
errors §b; and c;. Then the average estimate for PSTF(c) is

1 N
5 (b + 8by). (7.5)

=1
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(PSTF(c) + Jbec; + 6b;). (7.6)

= PSTF(c) ‘+ J ( ¥ Z&c,) 7 Z&b (7.7)

=1 =1
If the é6b;s and éc;s are both d*a.wn from random distributions with means m; and
m,. then as N increases the value cdnverges to

PSTF(c) + Jm. + my. (7.8)

If these means are zero then the estimate converges to the correct value|as required.
What would it imply if the error
this in the Mountain Car domain would be where the pedal on average was pushed 10mm
further down than the controller requested. As a result, the speed obtained bfy requesting

stributions did not have zero mean? An example of

a pedal of 80mm for example would |be predicted wrongly as that obtained erm an actual
pedal value of 7T0mm. But is this
fact that we are trying to learn the relationship between what we request and what we
perceive rather than what the actu

rong? In fact it is not, because of the fundamenta.l

control was and what the actual result was. Another
illustration is for supposed regular errors in perception. If a vision controlled arm regularly
thinks things on the retina are an inch to the left of where they “should” be (for example
due to the camera having been set up slightly askew) and then is shown a goal position
to move to, it will then try to move the “wrong” image of the hand to the “wrong” image
of the goal and will thus succeed. There will only be a problem if the task is specified in
a different coordinate system to the state description. In this case a regular/error would
necessarily fool any controller using any form of sensory feedback. This seems reasonable:
a person performing a reaching task should still manage it wearing distorting glasses, but
would find it very hard to cope if the goal’s apparent position were distorted but the hand
not. ‘

The mean errors are zero and so the averaging estimate converges in the presence of
noise to the correct value. The rate of convergence as learning progresses will depend on
the amount of noise (the variance of the noise distributions) and the number of experiences
of the state-action in question. The| important state-actions which are frequently needed
will converge more quickly than those which are rarely used (and these arersta,te-actlon
pairs for which less accuracy is likely to be needed).

I will now describe in more detail how local averaging is used in this SAB implementa-
tion. It takes place over all points within a certain distance Drange (the range distance) of
the query point. This speeds the convergence because there are more data points to exam-
ine. Using spatially local points for averaging is analogous to a common image processing
operation, in which image noise is removed by replacing all pixels by the lo#:al weighted
average of pixel values. The disadvantage is the need to choose the range distance Drange.
Too small a distance will provide little averaging of the noisy values. Too larde a distance
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will smooth too harshly and genuine details in the underlying function will be lost. The
system designer must choose the range distance based on the expected noise and expected
smoothness of the function. In the experimental studies this has not been a difficult choice

is possible that the range width could be obtained automatically by more

and the behaviour has not been sensitive to variation in the range width. If necessary, it
phisticated

statistical analysis or a cross-validation technique. ?
The weight function gives more weight to points which lie close to the guery point.

The smoothed prediction from a set of exemplars i
|

E = {(s1,a1,b1),...,(sn,an,bn)} | (7.9)
is N
Z(weight(dist,-) X b;)
evalp(s,a) = ezl (7.10)

N
E weight( dist;)

i=1

where dist; =| (s;,a;) —(s,a) | and the weight strength decreases to zero beyond the range
distance Drange according to the bisquare function

2] .
weight(d) _ { [1 (d/Drange) ] 1: Z < Dra.nge (7.11)
0 ifd> Dra.nge

It is graphed in Figure 7.1.

In Section 7.4 I explain how evalp(s,a) is computed with adequate efficiency. At this
point I note simply that to avoid having to perform this local averaging every time a query
occurs, the smoothed value at each exemplar is actually stored with the exemplar as a

fourth component b™°oth;

E= {(s,-,a,-, b;, b',smooth) : b,'smOOth = evalE(s;,a,-)} (7.12)

When a prediction is required for a point which has not yet been experienced, the smoothed
prediction is not computed. Instead the bs™°°th component of the nearest neighbour
is used. As well as reducing computation this has an important property for sparsely
populated regions. The prediction will be more useful than the “zero” prediction provided
by evalp when there are no exemplars within the range distance. The b*™°°*" component
of an exemplar is initially computed when the exemplar is added to the SAB-tree. It is
updated only when necessary to preserve the invariant b;®meoth — evalg (s, a;).

This method has been introduced to reduce the effects of noisy exemplars. It is not
intended to, nor ezpected to, provide extra interpolative accuracy. Here is an illustrative
example. Suppose S is a zero-dimensional space, A is one-dimensional and B is one-
dimensional and suppose that we have observed the noisy exemplars which re the solid
dots in Figure 7.2. The white dots are the smoothed value at each point. The line shows
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the function produced by using the smoothed nearest neighbour. Figure 7.3 shows what
happens if too small a value of Drang is used (equivalent to not using smo;:;hing), and

Figure 7.4 shows what happens if too large a value is used. Visually, the smoothing appears
adequate for values of Drange between 5% and 40% of the diagram width.

Finally, Figures 7.5 and 7.6 show the Mountain Car PSTF respectively not using and
using a smoothing kernel in the presence of simulated noise.

Before concluding this section it is worth noting another interpretation of the evalp
smoothing operation. It is an example of Shepards Interpolation [Franke, 1982]. Our
analogous operation, averaging, is performed locally. We have a tighter restriction on the
shape of the smoothing function than would a user of Shepard’s Ini:erpola,tiontl we require
it reach zero within a relatively short range of the query point: Shepard’s interpolation
weight functions are usually non-zero over the entire domain.

7.3 Adapting to a Changing Environment ‘

i
As well as disorder in the form of noise there is another problem that a learning controller
should be able to cope with: an environment that changes unpredictably with time. Here
are some examples of how this might come about:

1. Gradual Change. A new robot arm is put to work on a job. As time passes the
stiff joints become less stiff due to wear, and so gradually over the first| week of use
the joint friction is reduced, changing the system dynamics.
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Figure 7.3: As Figure 7.2 except that
Drange is 2% of the diagram width.

Figure 7.4:

As Figure 7.2 except that
Drange is 60% of the diagram width.




Figure 7.5

The mountain car PSTF
(see Section 4.3). Noise of
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Figure 7.6
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2. Sudden Change. A vision-controlled robot is picking ob jects from a conveyor belt.
After several months of operation the camera is jogged and instantly all observations
are perceived to be two inches to left of their original locations.

An important feature of these changes is that they occur unpredictably.; They could
not in principle have been modelled, nor could their occurrence have even beeﬂ announced.

Adjusting to this sort of event is an important problem for any learnjnig controller,
but for the nearest-neighbour learning described so far, it is particularly serious. The old,
wrong exemplars will never disappear. During a gradual change, the old exemplars will
initially be more useful than no knowledge at all, because their prediction will be close
to correct though not perfect. But after a time it would have been better to be able to
ignore the old exemplars. After a sudden change the old exemplars will all be misleading
in the region of control space in which the change has occurred.

One possible solution would be to try to spot when a change had occurred by moni-
toring the recent history of errors. When this exceeded a threshold the controller would
experience enforced amnesia, forgetting everything, and then begin relearning. This ex-
treme approach would have two disadvantages. After a fairly small change (or a short
period of a gradual change) the old, slightly wrong knowledge that the controller has is
still more useful than no knowledge at all. Furthermore we should hope to be able to use
the imperfect model to help guide the search for new, accurate knowledge. The second
reason that it would be unfortunate to throw away all the knowledge is that there might
be cases where the change only badly affects particular regions of the control space.

Instead, we are able to detect when it would be useful to throw away old knowledge,
and when it is still useful to retain it. This is by comparing suspect old exemplars with
their local neighbours. Because of the b*™°°th modification to SAB-trees, this.can be done
reasonably cheaply.

Whenever a new point is added, all its local neighbours (within the range width, D

range;

of Section 7.2) are inspected. An exemplar is deemed undesirable if. ..

* ...it disagrees with the local consensus of the value of the behaviour in its neighbour-
hood. For suspect exemplar (s;,a;, b;, b;™°°*}) this can be detected by noticing a
large difference between b; and b;"™°°*h. The test is whether | b; — b;™%th | 5 A ;4
where Ag)q is the tolerable difference threshold.

e ...and it is relatively old. This is detected by storing the date of birth of each
exemplar, and counting an exemplar as old if it is older than the mean age of the
local exemplars.

Old, inaccurate points are simply deleted from the SA B-tree.
Examples of adapting to change for a noisy, one-dimensional mapping can be seen in
Figure 7.7.
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Figure 7.7

One-dimensional SA4 B-tree,
attempting to leain a sine

wave from noisy exemplars,
shown as white dots. Black
dots are the smodgthed in-

terpretation. Top left: Af-
ter 8 random exemplars.
Top right: After §0. Bot-
tom Left: The underlying
function is changed. Bot-
tom right: After further 50
exemplars.

7.3.1 Discussion

Empirically, this adaptation mechanism is seen to work sufficiently well (c.f. Chapter 10).
However, several improvements are possible, based on more detailed statistical analysis
of the local points, for example by comparing the variance of the behaviours of (i) all
local exemplars and (ii) recent local exemplars. This would help in the case where the
exemplars are noisy, and the old exemplars’ inaccuracies are not because of environmental
changes. It is not clear that the avoidance of these occasional unjust exemplar removals

is sufficient justification for the extra computation and hand-crafted statistical thresholds
which would be required.

|
|
1
|
|
|
|

7.4 Updating the Relation |

i
This section details the computation and the cost of the smoothing and adapting opera-
tions of the previous sections. They are implemented using the algorithms fescribed in
Chapter 6. The reader who is content to simply understand the behaviour without reading
about the details may omit the rest of this chapter with no impact on later sections.

7.4.1 Duplicate Points ‘

An additional, rather uninteresting, optimization occurs in the case when a miw exemplar
(Sn+1,8n+1,brny1) is to be stored, but it is noticed that there is already %n exemplar
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(si,ai, b;) in the set E which is close enough in all three components to be considered
identical. An example of where this might happen is when a robot arm is being successfully
held stationary by SAB control. In this case the new point is not added, but the mass
field of the exemplar (s;,a;,b;) is increased by one. The mass field is a small integer
associated with each exemplar, which is initially one when a new exemplar is \dded to the
tree. The mass field is necessary to preserve the definition of the evalp, operation, which
now takes the mass of the exemplars into account in the local averaging operation (as in
Equation 7.14 below). When an exemplar’s mass is increased its date of birth!is set to the
current date (it is born again).

The obvious motivation for this optimization is that there is some saving in memory
for very little extra work (provided that the memory for all the exemplars not duplicated
exceeds the extra memory to include a mass field in each exemplar). However the main
reason is that duplicate points stored in a kd-tree hinder nearest neighbour search which
would inevitably have to search all of them if it would need to search one.

The mass feature is not included to alter the meaning of the exemplar set representation—
it is a modification to the representation which preserves meaning.

7.4.2 SAB-tree Representation: Details

An SAB-tree has two roots: an SA-tree root and an SB-tree root. The former is a kd-
tree indexed on the (s,a) components, and the latter indexed on the (s, b) components.
All the data is held in the nodes of the SA-tree, while the nodes of the SB-tree are
simply pointers to SA-tree nodes which contain the same exemplar information. The
difference between these kd-trees is that the hyperplanes splitting up the SA-tree space are
in State x Action space, while the hyperplanes for the SB-tree are in State X Behaviour
space. Thus, nearest neighbour (and related) searches can take place in either the (s,a)
or (s, b) components by using the appropriate root. In either case the result is an SA-tree
node.

Each node of the SA-tree contains the data shown in Table 7.1. The set of nodes

are subject to the following invariants, which are maintained whenever a new exemplar is
added:

Wi= 3 (weight(| (si,a:) — (sj,a;) |) X M;) (7.13)
ielocals(i)

> (weight(| (si,a:) — (s5,a5) |) X M; X b;)
b,smoot.h — jelocals(i)

7 (7.14)

where j € locals(i) is true if | (s;,8;) — (sj,8;) | < Drange and the function weight : ® — R
is defined in Section 7.2.
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S A vector of k, floating point numbers

a; A vector of k, floating point numbers

b; A vector of k; floating point numbers

b;m°°th | A vector of k, floating point numbers

TPrth | An integer: The number of exemplars which had been
stored in the tree before this one was added

M; A short integer: the mass of this exemplar

W; A floating point number: the denominator of the local

average calculation of b;*™°°t" discussed below

Table 7.1: The fields of a SA-tree node

Operation Action Order of Cgst
find-locals Find all local exemplars in

range of smoothing kernel. ksa(Slog N)
maintain-bsmooth Evaluate bn+13m°°th. ksaS

Update b;*™°°*" components

of locals. ksaS
remove-bad Check for elderly and

inaccurate locals. koS

Delete bad points. (see text)
insert-new Find insertion tree nodes. (Esa + ksp)log N

Table 7.2: When a new exemplar is added

7.4.3 Update

All the computation is performed when a point is added to the SAB-tree instead of when
the SAB-tree is queried to make a prediction. This is useful because there will be a
maximum of one update per control cycle, whereas there may be many predictipns required
in order to assess different possible actions. Table 7.2 illustrates the sequence of operations
when a new point (8p41,8n41, bpy1) is added. In this table, N is the number of exemplars
in the SAB-tree and § is the number of exemplars found to lie within the smoothing range
of (Sp41,8n41). ksa = ks + kg and kg, = k, + k.

The find-locals operation makes a range search (also described in Section 6.7) of
the SAB-tree in the (s,a) components, finding all exemplars within distance Dyange of
(Sn+1,8@n+1). Assume that S are found. It is hard to predict in advance how the expected

value of § will depend on the dimensionality of the data and the size of the SAB-tree, and
so this will be left to empirical observation.

maintain-bsmooth evaluates the bs™°°th of the new exemplar and simultaneously
updates the locals. The smoothed values of the locals could be readjusted naively by

7-11



recursively recomputing the smoothed values for each local. This would involve a range
search for each of the S locals, which would be expensive. Instead, the W; field can be
used to reduce the computation to 2k, arithmetic operations for each local.

Let [b,-sm°°th] od be the smoothed value of the ith local exemplar before the new
exemplar, (Sp+4+1,8n+1,Ppt1), is added. Let [b,'sm°°th] ow be the smoothed value after.
Finally, let AW = weight(| (s;,a;) — (Sn+1,8n+1) |)- Then from Equation 7.14

Y. (weight(| (si,a:) — (sj,a;) |) x M; x b;)

.smooth —_ jElOCGlS(i)
[bz ]Ol 4= W (7.15)
and
AW X bupi+ 3 (weight(| (si,a:) — (s5,85) ) X M x by)
_smooth _ j€locals(i)
[bymooth] = AT (7.16)

.smooth :
_ AW xbu + [bemeot] Wi (7.17)
AW + W,
When [b,-’m°°th] e has been updated, W; is then updated to W; + AW. The algorithm
to simultaneously update locals and find b, 11°™°°" is given in Table 7.3.

The remove-bad operation searches those local points which are older than the mean
age and finds any which are deemed inaccurate by the measure of Section 7.3. These
are deleted from the SAB-tree, which is achieved by simply marking the exemplar to be
ignored in all future searches. Section 7.5 details how these dead nodes are occasionally
garbage collected. When a point is deleted, all of its local neighbours must change their
b*™°°th components to take account of the deletion. The local neighbours of the exemplar
to be deleted are found by a range search, and their b;"™°h and w; components are
updated accordingly (by an algorithm analogous to the maintain-bsmooth algorithm).

The insert-new operation finds the correct node in each of the SA-tree and the SB-
tree in which to store the new exemplar, using the incremental insertion operation from
Section 6.7. During the search for the correct node it might find a near identical node, in
which case it is not stored explicitly but instead implicitly, by increasing the mass of the
near identical node.

7.5 SAB-tree Garbage Collection

The world model represented by a SAB-tree is updated and accessed during task execu-
tion. The local updates have the ideal abstract properties which allow us to consider the
behaviour of the S4B-tree as a simple set of exemplars which can be accessed by nearest
neighbour. When the task is not executing, there may be some desirable alterations which
could be made to the SAB-tree. These are not intended to alter the meaning of it in any

way, but to improve the expected access time for future nearest neighbour searches.
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Algorithm: Maintaining b;**°*** components
Input: Sn+1, the new state vector
a,4+1, the new action vector
bp+1, the new behaviour vector
locals, the set of local vectors
Output: bpy1™°° the new smoothed vector
Wy41 the new denominator value
Changed: The b;*™°°th and W; components of each exemplar ia locals
Preconditions: Invariants of Equations 7.14 and 7.13
Postconditions: b, ™" W, ., and the b;*™°2 component andlj:’; com-
ponent of each exemplar in locals is updated to maintain the
invariant upon the addition of the new exemplar.
Code:
1. weighted-sum := 0
2. Wppr =0
3. for each exemplar (s, a;, b;, b™°°R M; W;) € locals
3.1 AW := weight(] (8n+1,8n41) — (8i,a:) |)
3.2 b.smooth = [bimo‘;h] X Wi+ bn+1 x AW
' i+t AW
3.3 W, :=W; + AW
34 weighted-sum := weighted-sum + AW x M; x b;
3.5 Wt = n+1 + AW x M;
4. b1 0 = weLght:c-ll-sum
Table 7.3: Algorithm: The maintain-bsmooth operation. This evaluates the new

smoothed behaviour component and adjusts the local smoothed components.
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One exemplar set can be represented by many different SA B-trees, and some SA B-trees

are more efficient than others. The tree that has been built incrementally majy not be the

most efficient for the following reasons:

|

1. Poor Structure. As discussed in Section 6.7, the shape of the hypetregions in a

kd-tree can affect the nearest neighbour search. These can only be chosen well if
the tree is built with knowledge of all the data which it is to contain: this is clearly
not possible if points are added incrementally, when the kd-tree’s stru¢ture will be

determined entirely according to the order in which the points arrived. |

2. Imbalance. A robotic system is likely to spend periods of time in very iimila.r areas

of the state space. This can mean very uniform data arriving which c
imbalance.

uses serious

3. Dead Points. Points are marked as dead when they are old and inacqurate. From

then on they remain in the tree, wasting memory and occasionally incr
time. This is particularly serious after a sudden change which results in
of the SAB-tree being killed.

asing search
large regions

The garbage collection operation happens when the robotic system is not in use. It
flattens the S4 B-tree into a list of exemplars, removes the dead points and then rebuilds the
SAB-tree using the balance-inducing and hyperrectangle-choosing algorithm of Section 6.7.

The theoretical cost is
O((ks + ko + k3)(Np + Nlog N))

where N is the number of live points and Np the number of dead points.
amusing analogy between this garbage collection and human sleep; one pu

(7.18)

There is an
rpose of the

latter is believed to be the removal of extraneous links between memories ar knowledge

acquired during the day.
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Chapter 8

SAB Control

A computationally cheap method for learning world models has been proposed and
developed in Chapters 5—7. This chapter shows how to use the world models to make

control decisions using a probabilistic heuristic. It then analyses and illustrates the
method.

8.1 Making a Control Decision

It is now time to review the control cycle first introduced in Section 4.4. This cycle
controlled a dynamic task while maintaining and improving its SAB world model. Since
then, Chapter 5 explained how and why the nearest neighbour generalization is to be used
to represent the model. Chapters 6 and 7 showed to to update and access this world model,
in the possible presence of disorder. The emphasis was on performing these operations
efficiently. This chapter addresses the question of how the world model should be used.
It will consider a general method to implement Step 3 of the SAB control cycle, repeated
here for convenience in Table 8.1.

To motivate this section, I provide an illustration from the simple Mountain Car do-
main of Section 4.3. In this example, the state is the distance from the start, the action
is the distance that the pedal is pressed and the behaviour is the perceived horizontal
velocity. Imagine that learning has just begun, and the task is to guide the mountain car
from state s = 0.5km to state s = 9.5km at a constant velocity b = 5.6 units. An error
of £0.2 units is considered acceptable. So far, there have been four SAB learning cycles
which have produced these four exemplars:

E = {(0.5,4.8 - 5.7),(1.8,6.0 — 6.3),(2.7,7.5 — 5.1),(1.3,9.0 — 3.5)} (8.1)

The situation is depicted in Figure 8.1, with the exemplars positioned in State x Action
space. The polygons separate the various nearest neighbour regions. The vertical line
denotes the current state Scyrrent = 3.4.



1. | Observe current perceived state scyrrent

2. | Receive task specific goal behaviour bgoal from higher level of control
The requested behaviour might depend partially on scyrrent. ~

3. | Access the current world model to obtain a raw ac-
tien a,,, which is predicted to be likely to achieve
bgoal acting in the current state.

4. | Apply action araw.
5. | Obwerve actual behaviour byggyal-

6. | Update the world model with the information that {8current, araw) —
bactual-

Table 8.1: The SAB Control Cycle

Figure 8.1

State x Action space with
the regions denoting the be-
haviour predicted: by the
nearest neighbour.  The
brighter the regipn, the
closer it is to the god be-
haviour of 5.6. Now we
want to find z to give
(34,z — 5.6).

Action
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At this point the controller must decide what to do. If it chooses a low-valued action
then the state-action pair it applies will be in the lower bright region, which is predicted to
be very good, with behaviour 5.7. But in many ways, an action near the most recent action
(which produced behaviour 5.1) has a prediction which looks more reliable because it is
closer. As a result, despite the predicted behaviour being inferior, it might be preferable
(we will see later that this is what partial inversion would recommend). But then, perhaps
it would be a mistake to try the same action again: if the controller never tries anything
new, how can it hope to improve?

8.1.1 The Utility of Information

There are two opposing aims in making a control choice. These are

1. Perform. We wish to perform as well as possible given the knowledge contained in -
the performance element.

2. Experiment. In order to perform better in future, it is worth trying actions with
no guaranteed success, but with the chance of a valuable discovery.

Aim 1 represents doing the best for the system immediately and Aim 2 represents an
investment in the future. This is the same decision as that of a corporate director deciding
whether to pay the shareholders a dividend, or provide extra finances for the company’s
R & D division. The system must take into account the utility of information.

Given a SAB-tree representation of the PSTF, the perform mode of operation can be
easily achieved by partial inversion. There might be some experience in the SAB-tree in
which an action applied in a state close to the current state had produced behaviour close
to that of the goal. If this is so, then partial inversion will obtain this action. If such pre-
vious experience is not available, partial inversion may suggest something sensible, but for
reasons described in Section 5.1 is not reliable. Figure 8.2 shows the action recommended
by partial inversion for the exemplar set of Equation 8.1.

It is immediately clear that it is not desirable for the learning controller to either
perform only Aim 1 or Aim 2. If it only ever tried what it knew best there would be no
diversity of experience and learning would not occur. If it only ever experimented there
would be a large body of knowledge, but no improvement in performance.

8.1.2 Random Experimentation

One approach to this dilemma is to have two modes of operation. The first is experimental,
where actions are chosen randomly with no reference to previous experience. The second
is demonstration-mode in which no chances are taken, and the best known action is always
used. These modes are altered by an intelligent supervisor which can judge when further
experimentation is needed and when it is positively unwelcome. An effective example of
these two modes of operation is Mel’s MURPHY [Mel, 1989]. This learns the inverse
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Behaviour

Figure 8.2

Exemplars in

1.8,6.0->6.3

SR S State x Behaviour space.
Sy » The regions denote the ac-
' tion recommended by par-
tial inversion. The shad-
ing denotes the desirability
of various behaviours. Par-
: o tial inversion to obtain be-
haviour 5.6 finds the near-
' est neighbour to the cross,
and thus recommends ac-
tion 7.5.

State

differential kinematics by firstly “flailing” the arm in front of its camera and then making
plans based on the results of the observations.

Instead of requiring an intelligent supervisor to decide when it has finished learning,
the controller can occasionally test itself.

Let us call this method ‘R’-control (Random decisions). The mountain car learning
task was run with alternate trials of perform and experiment. On every odd numbered
trial, the controller simply chose random actions. On every even numbered trial, the
controller, on each occasion, chose the best known action. The choice was by means of
partial inversion.

The learning curve for this scheme is shown in Figure 8.3. The learning run was
was repeated forty times. Each learning run started with no world knowledge, and then
performed eighty trials. Each trial was an attempt at the mountain car task. The car was
started at state 0.5km and actions were executed until the state was greater than 9.5km.
An action was successful if it resulted in a speed between 5.4 units and 5.8 units. The
correct trajectory is obtained by the set of actions which keep the state in the white zone
of the diagram. On each odd trial, random actions were taken, and on each even trial the
best known actions were taken. For each even trial, the number of unsuccessful action
choices was recorded. For each odd, random, trial the results were discarded. For the nth
trial, the graph shows the mean number of errors for the forty occasions of trial n. The
vertical bars display sample standard deviations (for explanation of the confidence-level
key, see Appendix A).
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This graph indicates that the ‘R’-controller does indeed learn, but that even after
eighty trials the performance tends to be poor. The learning rate is slow because, for each
area of the state space, the controller must wait until the random experiments happen to
obtain a correct action. Some experiments at some states might be lucky early, others
very unlucky, perhaps for all eighty trials. The slow learning is directly related to the
large amount of useless data collected. Figure 8.4 shows the distribution of exemplars in
the SAB-tree after one such run of eighty trials, and it can be seen to be almost uniform.
As I explained in Chapter 5, a uniform distribution of exemplars can lead to a very slow
rate of learning. Recalling from Chapter 5 how badly the nearest neighbour generalization
performs in uniform distributions, it is perhaps surprising that learning occurs at all. The
reason it does occur is that the mountain car uses only a two-dimensional control space.
It seems unlikely, in a control space of higher dimension, that the method would learn to
a tolerance as accurate as this within an attainable number of trials.

8.1.3 Local Random Experimentation

An improvement is the ‘L’-controller. This makes local random perturbations of the best
known action instead of choosing entirely random actions. The first action, in the first
trial, is chosen entirely at random, because with no experience there can be no best known
action. Figure 8.5 shows the performance, with identical experimental conditions to those
of the ‘R’-controller. Its learning is superior, and occasionally it achieves perfect behaviour
within eighty trials. There is still great deviation in learning speeds. The speed depends
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on the very first randomly chosen action. If it happens to be very wrong, then it will take
many trials until it is adjusted enough to be right. If it is lucky with the first random

guess, then learning will proceed much more quickly.

There is also another danger with ‘L’-control which was escaped here: that it might
fall into a local minimum at some area of the state space. This would occur if the best
known action is better than its surrounding actions, without being globally best. In a
slightly more complex domain, such local minima are possible. A controller which has a

danger of never escaping local minima is not robust.

A combination of ‘R’-control and ‘L’-control could be designed which, when experi-
menting, would occasionally choose locally and occasionally globally. This is similar to
the solution which simulated annealing uses to avoid local minima in its hill climbing. The

learning behaviour is likely to lie between that of ‘R’ and ‘L’-control, with the danger of

local minima removed.

8.1.4 Sceptical Experimentation

The control schemes mentioned up to now have the problem that learning does not oc-
cur during a trial. During odd-numbered trials there are occasions when the ‘R’ or ‘L’-
controller should know what should be done next but wastefully ignores it, instead trying
some different random action. Conversely, on some even trials there are occasions when the
controller should know that the action suggested by partial inversion is not good enough.

Figure 8.4

The distribution of exem-
plars in State X Action
space after lea.rni#g using
the ‘R’-controller. ‘

On such occasions, to repeat the same action is to repeat a known error.
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Instead, because the exemplar set can be used for prediction as well as for partial
inversion, a candidate action can be checked before its application. Thus the use of two
modes of operation can be dispensed with, and instead the best known action can, on all
occasions be considered, but only as a candidate action. Such a sceptical controller only
then experiments when the candidate action is predicted to be unsuccessful. Figures 8.6
and 8.7 shows the results of two sceptical controllers. ‘SR’-control uses the best known
action when it predicts success, and chooses a random experiment otherwise. ‘§L’ is similar
except that it perturbs the best action when experimenting.

These methods perform better than ‘R’-control and ‘L’-control respectively. ‘SL’-
control achieved perfect performance within eighty trials on almost half of the learning

runs. This success motivates an attempt to try to squeeze further information out of the
exemplar set.

8.1.5 SAB Action Chooser

The new scheme will again be content if the predicted behaviour of the candidate action is
successful. However, if not it will choose an alternative action with more care. Instead of
choosing the first random action which it generates, it generates several random actions,
and in turn uses its world model to predict the result of using them. How should it rank
different candidate actions?

One idea is to choose the action with the best predicted behaviour. Upon inspection,
this loses its appeal. If nothing has worked well in the controller’s experience, Fhen despite
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its inadequacy, the action with the best predicted behaviour is likely to be close to or
at the initial candidate action obtained from partial inversion. Thus the controller will
consistently choose something which it knows will perform mundanely in preference to
actions which it, less reliably, predicts to be worse. ‘
Fortunately, the reliability of predictions can also be estimated thanks tojy the explicit
exemplar set representation. The closer the nearest neighbour which has heen used to
make the prediction, the more reliable it is. A desirable qualitative rankingth candidate

. . 1
actions is: |

1. (Best) The candidate action is predicted to be successful, and is relia,bLL.
2. The candidate action is predicted to be successful, but the prediction is unreliable.

3. The candidate action is not predicted to be successful, but this prediction is not
reliable.

4. (Worst) The candidate action is reliably predicted to be unsuccessful.

I will now introduce a quantitative heuristic which achieves this qualitative ranking.
First, it should be made clear what constitutes successful behaviour. The SAB cycle
definition states that the higher level controller specifies a target behaviour bgg,. If
success is ever to be attainable, some small deviation from this goal must be deemed
acceptable. Depending on the task, different accuracies might be adequate. Furthermore,
different components of the goal behaviour may be needed to different accuracy. To specify
this, the controller also supplies a Dim(Behaviour)-dimensional tolerance vector, 7. It is
not necessary for the tolerance to be varied during learning—if high accuracy is required a
high tolerance can be specified right from the start. Behaviour b achieves behaviour bgoal
to tolerance T iff

Vi [bgoa.l],' —-T1:<b; < [bgoa.l]i + T; (8.2)

where b; is the ith component of vector b.

The ranking heuristic can be achieved quantitatively by some elementary decision
analysis. Actions are ranked by their estimated probability of success. ‘

To make this estimate, we have at our disposal the nearest neighbour in E t¢ (Scurrent, a)-
Call this exemplar (Spear; @nears Pnear, b;‘;‘;“h). We model the unknown behaviour at the
point (Scurrent,@) as a random variable influenced by this nearest neighbour. Call this
random variable B. It varies over the space of real-valued Dim(Behaviour)-dimensional
vectors. The expected behaviour is b®@%°*", The reliability of the expected behaviour is
high if the exemplar is close, and it is low if the exemplar is distant. This is modelled
by setting the standard deviation of the variable to be proportional to the distance to
(Snear) @near). Call the constant of proportionality C'. There is no other useful information
which can be obtained from the nearest neighbour, and so to fully specify the random

variable, this heuristic will assume it is distributed normally with independent vector
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components. We are now in a position to quantify the probability of success|
consider the chance that the ith component is successful. This probability is

succ(a’ Scurrent [ sOﬂl],’ Tiy E)

which we will define as the probability that applying action a in the current
will cause the ith component of the resulting behaviour to be successful. Wi

Let us first
denoted by

(8.3)

iting the ith

component of the resulting behaviour as B;, then “ith component success” mieans that B;

is within tolerance, or symbolically:

[bgoal]; — Ti < B; < [bgoall; + Ti (8.4)

The probability of success will be computed solely in terms of the exemplar set E. To
summarize, we have defined

gucc(aa scurrent’ [bsoal]t ’ T‘l ’ E)
(8.5)
= PPOb([bgoal],- ~T; < B; < [bgoal],- 4+ 7; I Scurrent, @, E)
The probability is computed with respect to the nearest neighbour of (8current, a). Call this
neighbour (8near, Anear; Pnears bXE°™). Then, as described above, we assume| the random

near

(Snear; Bnear) — (Scurrent, @) |. Thus the probability that [bgoall; — Ti < B; <

variable B; is distributed with expectation [b“m°°th

], and standard deviation o = C |

[bgoal],' + T

is the area under the appropriately transformed normal distribution curve in Figure 8.8,

and can be computed as

P:ucc(a’ Scurrent [bsolﬂ]i’ Tis E)

. oth th
= erf ([b‘“l]" + T% [b:‘l::' ].) — erf ([bsoal]; ﬁ[ﬂ’:’.’f
Where 0 = C | (snur, aneu') - (scumm,a) I, and (sneua 8near; bnear, bmo';h ig

) (8.6)

the nearest

neighbour to (Scurrent,a) in the state and action components. The erf function is defined

by

1 z 2
erf(z) = ——= / et 8.7
(2) e (8.7)
We have computed the chance that the ith component is successful, Pi,... Now, under
the independence, assumption we can calculate the actual probability of success:
Dim(B)
Psucc(a, Scurrent, bgou.la T, E) = H Hucc(a’ Scurrent, [bgoa.l],'y Tiy E) (8-8)
i=1

To illustrate the use of the heuristic, imagine that State, Action and Behaviour are

all 1-d spaces, and that we are in state Scyprene = 3.3 and the desired bgoal is
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Figure 8.8

T
— The Pyye. estimate. The
probability of success is the
area of the shaded region.
]
Bnear  Bgoal

Behaviour Prob. Density

further that the only previous experience is that when s; = 3 and a; = 7 then by = 10.
The use of the heuristic, with a tolerance of 0.5, is demonstrated in Figure 8.9. It compares
three possible actions and chooses one which is fairly near to 7, so that the behaviour will
be fairly near to 10 (and thus might be close to the goal, 11), but not so near to 7 that
the behaviour will surely be extremely close to 10.

We are now also able to inspect how the heuristic behaves for the control choice problem
posed earlier in this section by Figure 8.1. The graph in Figure 8.10 sh
probability of success varies with different candidate actions. The constant C is again

chosen as 1. It shows that an action very close to the partial-inversion-recommended
action is favoured (ayaw = 7.5). This is reasonable, because the state is fai ly different
from any state yet experienced, and so by repeating the same action, there is not a loss of
diversity of experience. To show what would happen if the state were similar, I move the
current state shown in the original example of Figure 8.1 back so it is very close to the
exemplar (2.7,7.5 — 5.1). I make the current state 2.9. The graph of the ne probability
of success, in Figure 8.11, indicates that the candidate action of 7.5 is now regarded very
poorly. This is because it is so close to an earlier experience which did not|achieve the
required behaviour.

This new, probabilistic, control choice algorithm is summarized in Table 8.2. In future
it will be called the SA B action chooser. Before performing empirical tests, let us consider
some of its expected benefits.

e As we shall see later, the heuristic is not sensitive to the choice of C (lthe propor-
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Choosing an actiq

m which

a=7 Prob = 0.06
Exemplar Close

6 7 8 9 10 11 12 13 14

a=6 Prob =0.17
Exemplar Fairly Close/\-\

6 7 8 9 10 11 2 13 14

a=2 Prob = 0.05
Exemplar Far
6 7 8 9 10 n 12 13 14

02 _
0.18 _
0.16 _ * *
0.14 _ . y
0.12 _ o .
0.1 _
0.08 | K

0.06 _ o

0.04 f -

0.02

Prob(succ)

T T T T T T T
01 2 3 456 7 8910

Candidate Action

8-12

is likely to cause behaviour
in the range 10.5to 11.5.
Top: Action very|close to
earlier exemplar in which
behaviour was 10.| Middle:

Bot-
differ-

Action fairly close.
tom: Action ver
ent.

Figure 8.14

|
The probability of success
heuristic judging the candi-
date actions for the situa-
tion depicted in Figure 8.1.
The heuristic has| discon-
tinuities between | nearest
For
example, the state-action
pair (3.4,9.6) has a differ-
ent nearest neighbour than
(3.4,9.2), resulti
very different estimate.

neighbour regions

in a




Algorithm:

SAB action chooser

Input: Scurrent, @ Dim(State)-dimensional vector of real numbérs
bgoal, a Dim(Behaviour)-dimensional vector of real numbers
E, of type exemplar-set
7, a Dim(Behaviour)-dimensional vector of real numbers
number-cands, of type integer

Output: 8raw, a Dim(Action)-dimensional vector of real numbers
probsucc, of type real

Pre: E#¢

Post: probsucc = Pyycc(araw, Scurrent, Pgoal, T, E)
There is also the informal requirement that the probability of
success be relatively high.

Code:

1. (Spi» Araw bpi, [bpilimootn) := a nearest neighbour
t0 (Scurrent bgoal) in (state,behaviour) space

2. (Snear; 8nears Prear, b:lx“h := a nearest neighbour
t0 (Scurrent, @raw) in (state,action) space

3. probsuce := Puycc(8raw, Scurrent Pgoal, 7, E)

4. If bEmeoth jg guccessful with tolerance
7 then return a;,y and probsucc

5. fori := 1 until number-cands do

5.1 a; := randomly generated action

5.2 P; = succ(ai, Scurrent bgoa.l, T, E)

5.3 If p; > probsucc then

5.3.1 probsucc := p;

5.3.2 Braw (= &

6. return a,,w and probsucc

Table 8.2: The SAB action chooser algorithm

8-13




02 _
0.18 |
0.16 _ * y

0.14 _ .

0.12 | Rl

0.1 | .
0.08 _ ~

0.06 |

0.04 d//
0.02 | .
0 .

Prob(succ)

'...’c

T T T T T T T T
01 2 3 456 7 8 910

Candidate Action

Figure 8.1

The probability of success
heuristic judging the candi-
date actions for an altered
version of the situation de-
picted in Figure 8.1. The
alteration is that the cur-
rent state is 2.9 instead of
3.4.

tionality constant between nearest neighbour distance and standard deviation). The
ranking between good and bad candidate actions is changed very little as C varies.

Initially it is likely that for many states the only previous experience will be negative.

Then this heuristic favours those actions which are as far away as possible from any

yet applied. This is because the probability of success for actions which are close to
a previous unsatisfactory behaviour is extremely low, while actions far away have a
probability of success which is merely low. Thus a wide variety of actions will be

generated until some relatively promising ones are discovered.

If the promising actions were misleading, for example in a local minimu , then upon

repeated trials, the heuristic would eventually once again favour further points. This
is because the vicinity will gather many exemplars, and so any candidate action in
the vicinity will be close to a promising, but unsuccessful, action. Because it is
close, the reliability of the prediction will outweigh the favourable closeness to the

goal behaviour.

The partial inversion action can also be included among the candidate actions. If it is
ranked as best, despite not having been predicted as successful, this merely indicates
that the pessimistic prediction was unreliable. There is no danger of styck states: if
wrong, then next time we will know reliably that it is unsuccessful, meaning a very

low estimated probability of success.
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o The candidate actions need not be generated from a uniform distribution, provided
that all actions have a finite probability of being generated. A non-uniform distri-
bution, biased in favour of the actions close to the partial-inversion-recommended
action, may in some circumstances be advantageous. This is analysed in the Sec-
tion 8.2.

o If the task is in any way repetitive then the system will eventually return to the
same neighbourhood of state space, and require the same goal behavrour. Let us
assume that on the original occasion the action chooser had been successful. On
the new occasion none of this computation is needed. Partial inversion immediately
provides the action, which is then validated by a nearest neighbour prediction. So,

for a repetitive task, the computational burden decreases as the behaviour improves.

e If there is known noise in the function, then even with the assumptjon that the
bff;‘:fth component is an accurate value of the expected behaviour, there is still
some variation to be anticipated if the same state-action pair were to be repeated.

This could be included in the Py, heuristic by defining the standard deviation as

K+C l (snear’ anea.r) - (scurrenta a) I (89)

where K is the estimated standard deviation of noise. In this investigation this
possibility has not been implemented because an explicit record of local variance is
not stored.

The empirical trial of the mountain car task using the SAB action chopser, ‘SAB’-
control, was performed in the manner of the earlier trials. The results are given in Fig-
ure 8.12. On each cycle, the number of candidate actions was five. They were chosen
randomly from a uniform distribution over the space of actions.

In all forty learning runs, this controller achieved perfect behaviour before the 80th
trial. This is evidence of the power which can be obtained from the nearest neighbour
generalization. Once again, there is initially wide variation in the performance, between
trials 1-20. Figure 8.13 shows the distribution of exemplars after learning with ‘SAB’-
control. They are clustered around the solution. It is expected that this effect would be
more pronounced and more important in a higher dimensional control space.

I have defined a measure for scoring candidate actions, but have not provided a method
for obtaining that which has the highest score. This would require a search of all possible
actions, which for a realistic space of possible actions (we are assuming a continuum of
vectors), real time response does not permit. Instead, the favourite of a sample of randomly
generated actions is used. A large sample can be expected to provide an action close to
that which would be recommended by exhaustive search, but with the pena}lty of more
computation per action. An important question is how does performance vary as the
number of candidates used varies, and also as their distribution varies. This is difficult to
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analyse formally and so will be discussed later on the basis of empirical observations from
the results chapter. Here we will be content to make a few informal observations.

Firstly, consider the case where the action is only ever chosen from a small number
of candidates. Provided at least one candidate action is generated from ai distribution
which has non-zero density over the entire action space, then if one perfor s a series of
trials all with the same Scurrent and bgoal, then (subject to bgoal being attainable) aay
will eventually converge to a value which achieves the tolerance. Informally the proof,
which requires general continuity, would be similar to that in Section 5.5, which assumes
exemplars are drawn uniformly and randomly. Instead, the exemplar generation is biased
so that, in the absence of success, they are positioned far apart from one another. This will
not increase the time until the whole action space is covered with exemplars to distance
¢ =| 7| /G, and so the time needed is, if anything less than that for a uniform distribution.

Secondly, in the limit we would not expect the learning performance to incjtease greatly
with a large increase in the number of candidates. Consider using the best| of a million
candidate actions. This is likely to be very close to the best possible action to maximize
the heuristic. But this heuristic is itself only an approximation, and a small change in,
for example, the C parameter, or the assumed normal distribution, would change the best
recommended action by more than one part in a million. The use of the heuristic is to
choose actions significantly better than randomly. It is not expected to prescﬁ‘ibe success.

At first it seems too good to be true that there exists an optimization procedure
which is guaranteed to avoid local minima. The reason is that unlike most optimization
procedures, this is using unbounded storage, and is thus modelling the whole function,
rather than merely keeping a record of the local search state.

The previous few paragraphs have considered the case of repetitive occasions in which
the same state and required behaviour occur. When we apply an action @nd discover
it was unsuccessful we cannot immediately find out what would have happened had we
tried something else—the state, scyrrent, of 2 dynamic manipulator cannot be expected to
remain constant. The failure or success of the control choice of the previous time step
may no longer be relevant. It is a result of the explicit storage of the exemplars that the
performance can nevertheless be expected to improve, because information from all those
occasions in the learning history which are currently relevant will still be available.

8.2 Control Decision Analysis

In this section I perform some elementary analysis to show, subject to some constraints
on the continuity and slope of the PSTF, that the SAB action chooser metthd optimizes
the chosen action very quickly. I will make some simplifying assumptions, then model
the optimizing behaviour. I will then discuss the relationship between the analysis of the
simplified system and the expected performance of the real action chooser.

The simplifications are
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1

1. Assume the set of actions and the set of behaviours are both one-dime*lsiona.l.

2. Assume that on each cycle we have the same state, and require the same behaviour.

3. Assume we only have a small memory: we recall only the most promis ng exemplar
to date.

4. Assume we manage to choose a candidate action with the highest heufistic proba-
bility of success.

It will become apparent that given the pessimistic assumption 3, the optimistic as-
sumption 4 is easy to satisfy.

The SAB action chooser is now posed as an optimization method, and we can analyse
how quickly this optimization converges. The exemplar set E contains only the exemplar
(scumnt,a;,b;,b;‘m”‘h) which has had the most successful behaviour to date. We can
dispense with the 5;"™°°*® component because, if there is only one exemplar, b;5@°°th = p,.
Given a candidate action we can use the probability of success estimate of Section 8.1.

Psucc(aa Scurrent bgoal’ T, {(35, ai, bi)})

b b

= erf (—%;5&1) —erf ('—_-%-;—b-ﬂ) (8.10)

where z =|a—a; |

seen. If b; had been successful, then the maximum probability of success occurs with this
distance set to zero and thus with a repetition of the previous action a;. Mo rigorously,

as ¢ — 0, then Pyyoc — erf(oo) — erf(—o00) = 1 - 0.

In this equation, z is the distance of the candidate action from the beSE action yet

If b; is not successful then the probability of success of repeating a; is zero. 4‘01‘ example,
if b; > bgoal + T, then Pyycc — erf(oo) — erf(co) as £ — 0. Thus !

=02 Poyec =0 | (8.11)

For a distance greater than zero, the probability of success estimate will be ositive, but
as the distance gets very large, then the probability of success will again tend to zero
because as & — 00, Pyycc — erf(0) — erf(0). Thus |
|

2 =00 = Payec =0 (8.12)

The Py estimate is a smooth function of z, and s0 there must be an intermediate
optimum distance. Writing e; = b; — bg,a as the behaviour error of the current exemplar,
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then the optimum occurs when

aPS\lCC - 0

0 e+ T € —~T _
= Bg[erf( o )—-erf( Ca )]—0

A (SC;;TT) P [_(ei(;r)?l * (62:;;) P [" (e,-c;ry] =0
> I (2

(8.13)

So the ideal distance, or step size, at which to try the next action can be computed.

This recommended step size is a function of the current error in observed behaviour, and

of the tolerance. If the error is large with respect to the toleré.nce, then

ln(ei+r)=ln(1+ 2r )z 2T z2_1'

€ —T & —T & —T €

Thus, using Equation 8.13, the ideal distance is

en 2 et V2 e

cV2r  C

(8.14)

(8.15)

Thus, if the current error is large compared with the tolerance, the ideal optimization
step is proportional to the current error. At each cycle there will be two possible actions

to try next, one distance z to the left of a; and one distance z to the right.
action tried is selected at random. If there is improvement then the current

updated, else it remains the same. If either a; — z or a; + z leads to improv

The actual
st action is

behaviour

then within an expected two time steps, improved behaviour will be obtained.
If neither a; — z or a; + z give an improvement then either (i) the algorithm has used
too large a step size or (ii) the algorithm is in a local minimum. This simplified SAB

action chooser would then never progress. We will discuss later the behavio
algorithm in this circumstance.
If, however, progress is made, how quick is it? It would be useful to derive {

of the real

he expected

increase in accuracy per step. Unfortunately, to obtain this, a further assumption is

needed, that the PSTF has locally a strictly positive (or strictly negative) slo
below by Gmin > 0 and above by Gpax > 0.

Va1 > aa (a1 — az)Gmin < b] - bg < (a1 - ag)GmX

pe, bounded

(8.16)

where b; = PSTF(a;) and b; = PSTF(az). Assume without loss of generality that b;,

the behaviour of the most promising exemplar, is less than bgoal. Then, u
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|

chosen action that gives improved behaviour. Using the approximation of E

the above problems occur, the addition of the computed step length to a; will result in a
uation 8.15,

we have

V2

aiy1 = a; + ? | e | (8.17)
But by the assumption of bounded slope, we can deduce that
bi + (@41 — @;)Gnmin < bit1 < bj + (@41 — @;)Gmax ‘ (8.18)
where b;4; = PSTF(a;41). Therefore, from Equation 8.17, \
) ) |
b; + Gmin'\é,_— lei|< bigyr < b; + Gmaxl/é—"' | e | } (8.19)
i

We are interested in €;41 = b;41 — bgoal, the error of the next time step. It is not known
whether it will be positive or negative, but in either case its magnitude is bounded above.
In the first case, where b;4; < bgoal,

V2 V2

2 |
| €i41 | = bgoal — bit1 < bgoal — b; — Gmin'a._(bgoal -b)=(1- GminF) | %i | (8.20)
|

In the second case, where b;4; > bgoal,

V2 vZ_ .
| €i+1 |= bH-l - bgoal < bi - bgoal + Gma.x_c,"'(bgoal - bt) = (Gmax? - 1) Ilei | (8-21)

In either case | €;41 |<| Ke; | where K = ma,x{Gm%z -1,1- Gmin# . The error
| €41 | is a constant factor less than | e; |, provided that both (Gm# 1) < 1 and

1- Gmmﬁg) < 1. This implies that C must be greater than Guax/v2. This, in turn
agrees with the informal statement of the previous section that the value of C should reflect
the expected slope of the function. If C is suitable then the error decreases e ponentially
with the number of steps of optimization.

In summary, if the function is well behaved in the region of interest, then if the initial
error is large with respect to the tolerance, then each time progress is made

| i1 [< K |ei ] (8.22)

where K is defined above in terms of the function’s slope and the system parameter C. If
the choice whether to increase or decrease the current best known action is maﬁe randomly
then progress can be expected once every two time steps. Thus after a number of time
steps logarithmic in eo/T (the ratio between the initjal error and the required error) the
behaviour is expected to be successful.

Now let us consider what would happen to the algorithm if it does remember and reuse
all its experience. It will be shown that the optimization can still achieve an exponential

decrease in the error, even when the forgetful method would have stopped improving.
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The best of these four actions will be attempted. Candidates 2 or 3 are chosen if the P,ycc
estimate suspects that there is some successful behaviour between a; and either afy or aj,
respectively. Thus, if the step size had been too big, the step size would be reduced to half
its previous value. If the resulting behaviour looked promising, search wmﬂd continue,
either as in the original linear search, or if step lengths were continually o ‘ restimated,
then as a binary chop. In either case the error is reduced by a constant multiplicative
factor at each step. 1

Candidates 1 or 4 are chosen if the behaviour at a; is so unpromising that isiis preferable
to be a large distance from the inferior af; or as2 to remaining in the presence of a;. This
can be viewed as an escape from a local minima.

Thus, for one dimension, the behaviour of this optimization technique is robust: it does
not get stuck in local minima, but when the function is well behaved, the number of bits of
accuracy increases linearly. The actual error thus decreases exponentially. Unfortunately,
this has assumed a dimensionality of only 1 and has used the simplification that the
chosen action is always the most promising according to the Py estimate. I shall now
give informal explanations as to why the desirable behaviour can be expected to scale up.

e Many Dimensions. The action space is not as large as the control space, but it can
be expected to be up to six-dimensional for a fully orientable robot arm, With more
than one dimension there is a continuum of candidate actions at the ideal distance,
instead of merely the two in the previous analysis. However, if the function is well
behaved in the sense of Equation 8.16 then half the candidate actions can be expected
to improve behaviour and half to degrade it. The expected number of actions needed
to improve behaviour is still only two. For a high dimensional space of behaviours

the expected decrease in error is, however, less than for one dimension.

e Maximizing the P, estimate is too expensive. This analysis has assumed
that of those points which maximize the Py estimate, one was chosen as the next
action. In practice, this can only be approximated. The approximation consists
of the best of a number of randomly chosen actions. The distribution is biased in
favour of actions which have the computed ideal distance. Thus it can bé hoped that
the best action approximates one of the actions with a relatively high probability of
success and so in turn it can be hoped that the local search may still be linear in
the number of bits of accuracy—this hope will be tested in the results ¢hapter.

The reasoning of this section has lead to the following heuristic for choosing candidate
actions. Some are generated locally, and some globally. The global actions are generated
from a uniform distribution over the whole action space. Equation 8.15 indicated that a
good place to look for candidates was within a distance proportional to the current error.
There are two system parameters for the random candidate generator: F,c, the probabil-
ity of choosing a candidate action from the local distribution, and Cloc, the| constant of

proportionality used when an action is generated locally.
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8.3 Learning One’s Own Strength

The SAB action chooser does not get stuck in local minima, and thus, on repeated occa-
sions, will eventually search the entire action space to any granularity until ti)e behaviour
is found. In some respects this is an advantage, but there is also a significa. 1t drawback.
If the behaviour is not attainable then an enormous variety of actions will beTtried unnec-
essarily. Each time one of these hopeless attempts is made, it is not gua,ra.njeed that the
behaviour which is produced is as close to the goal as it can get. This is precisely because
the SAB action chooser is avoiding local minima. |

This section does not offer a general solution to this difficult problem. Instead it is
suggested that for many tasks one of the two following proposals can be used.

e Extra domain knowledge. The designer can use their own knowledge of the
system to ensure that all behaviours which will be requested are indeed attainable.

o Heuristic estimate of attainability. The controller can estimate from the world
model whether it believes the proposed behaviour is possible.

One primitive mechanism for achieving the second solution is considered in Appendix C.
If the behaviours have a direction then given a requested behaviour direction and a be-
haviour magnitude, the heuristic computes an estimated probability that the magnitude
can be achieved. The higher level controller can use the heuristic to decide whether to
request the behaviour.

This is related to a difficult problem of statistical decision theory: the “two armed
bandit”, reviewed in [Kaelbling, 1990a). If one is told one may have a large number
of goes on a two armed bandit in which each arm pays out with different probability,
what should be done to maximize the expected payoff? Continue pulling the arm which
first pays out? Perform three hundred trials of each and then always pull the one which
performs best? The current consideration is similar. At what point should the [SA4 B-control
choice mechanism resign itself to never being able to supply the requested behaviour, and
instead always supply the best known? If it resigns too early then it might mjss trying an
action which would have actually achieved the behaviour. Thus learning will have become
“stuck” at an error. If it resigns too late then during the search the experiméntal actions
are likely to degrade task performance far more severely than if the best known action
were used.

Kaelbling, in [Kaelbling, 1990b], deals with this problem for the extreme case in which
the controller has no world model at all, and is instead trying to maximize a payoff
signal. Her work suggests some algorithms which are effective for worlds specified by
binary-valued input vectors, and which empirically tend to find high payoff#. Although
the learning algorithms are computationally expensive and the assumption ﬂs of a small
finite space of actions, it would certainly be interesting to apply similar techniques to this
problem.
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Chapter 9

Learning to Perform a Task

This chapter discusses a scheme by which SAB world models and the SAB action
chooser can be integrated into a variety of tasks. A naive control method called
“ice puck control” is introduced. It is then ezplained (i) how low level tasks can

be controlled directly by the SAB action chooser and (ii) how some medium level
tasks can be indirectly controlled using “ice puck control” and then (iii) how a large
compound task can be modularized into a hierarchy of learning subtasks.

9.1 Where do Goal Behaviours come from?

dynamics of a possibly changing world. They have also shown how to use this model: when
a goal behaviour is required, a raw action signal is obtained which will either achieve the

The previous chapters have introduced a robust and efficient method to qui;Fy learn the
behaviour or else gain useful information.

Let us reconsider Step 2 in the original learning controller scheme, sh | n again in
Table 9.1. There is no general way to achieve this step because there is no generic task.
In this chapter I will propose that for many of the common tasks which we might expect
a robot to perform, the generation of goal behaviours is easy.

The specification of robotic tasks is similar to the specification of software systems. It
occurs, at least initially, in an abstract and rather informal form, perhaps as a piece of
text, or simply an idea. The design of a method to execute the task is again similar to the
design of a program: it is broken up into smaller subcomponents, with correspondingly
less abstraction. Different programs often share some features, such as graphical data
display, and similarly many robot tasks have common subcomponents. Some of these were

mentjoned in Chapter 2. They include components such as sensing, trajectory following,
and holding still. At the lower levels, the design of software and robot task desjgn differ: at
an intermediate level of abstraction, the human programmer can write down the program,
and then the compiler converts these intermediate notations to the entirely concrete form
of executable machine code. The designer of a robotic system has to go down to the
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1. | Ohbserve current perceived state 8cyrrent

2. | Receive task specific goal behaviour bg,, from highen
level of control. The requested behaviour might de-
pend partially on scyrrent-

3. | Access the current world model to obtain a raw action araw which is
predicted to be likely to achieve bgoal acting in the current state.

4. | Apply action araw.

5. | Obeerve actual behaviour b,y
6. | Update the world model with the information that (8current; raw) —
bactual:

Table 9.1: The SAB Control Cycle

concrete level manually. This work has been investigating the possibility of automating
the very bottom level, world modelling, but I wish to show here that it can make higher
levels easier as well. To motivate this, I will describe how to connect the |SAB control
cycle to various tasks. I will demonstrate that many aspects of an abstract task definition
can remain abstract.

The chapter will begin with a diversion—the control of an extremely elernenta.ry dy-
namic system.

9.2 Controlling an Ice Puck is Easy

The argument that is it easy to control an ice puck makes a substantial jump in the train
of thought of the dissertation. The reason for the effort expended here will bedome clear in
the next section, which will coalesce the ideas of SAB control choice, and ice puck control.

9.2.1 An Idealized Ice puck

1

\
Figure 9.1 shows an ice puck: a small one kilogram mass sitting on a frictionless surface.
It has two forces acting on it, F; and Fz, F} shown acting horizontally and F3 vertically

on the diagram. Because it is idealized, its equations of motion are very simple:

al(t)

az(t)

RA(t)/M
F(t)/M

(9.1)
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Figure 9.1
|
™ D g The ice puck world. The
- ice - puck moves across an ide-
’ alized frictionless| surface,

controlled by two jorthogo-

\ 4

2 nal force vectors.

where M = 1, a; is the horizontal acceleration and a, is the vertical acceleration. Ac-
celerations and forces are thus equivalent, so ice puck control is merely the application
of accelerations. Let us write the state of the ice puck as s(t) = (81(t), v1(t), 82(t), v2(2)),
where s; is the distance from the origin in the ith direction, and v; is the ith component
of velocity.

From the definitions of position, velocity and acceleration, it is simple to write down
the behaviour of the puck at any future time as a function of all the future accelerations.
We can do this for each component independently.

w(T) = wi(0)+ /O " syt

(9.2)
T
si(T) = si(0)+ /O vi(t)dt

The ice puck is controlled at discrete time steps of length h. During each time step a
constant acceleration is supplied. Write s;[n] as the position at the start of the nth time

step, v;[n] as the velocity, and a;[n] as the acceleration applied during the nth time step.

Then
v%[n] = vn—1]4 hailn - 1]

et (9.3)
= w0l + 4 aj]

7=0
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and "
sln] = 3,-[n—1]+/0 (viln ~ 1] + agln — 1) dt

= si[n~ 1]+ hvi[n — 1] + Lh%q;[n — 1]

n—1
= s[0]+h), (ve [7] + %ha;[j]) (9.4)

=0
n-1 J-1

= s[0]+hY (m [0]+ A ailk] + %haib'])
j=0 k=0

n-1
= 5i[0] + nho;[0] + A2 (n—j - %)afLi]

=0
After n steps of constant acceleration a, the state of the ith variable is

vi[n] = u{0]+ nha
(9.5)
siln] = s[0] 4+ nhv;[0] + Fan?h?

It is thus not difficult to predict future behaviour of the idealized ice puck. It is also
elementary algebra to control the ice puck in order to make it reach a goal position and
goal velocity at a goal time step, t,. Call this combination of ob Jectives a puck goal. All
that is necessary is, for each direction of the puck world, to invent a trajectory which will
achieve the appropriate component of the puck goal.

One such simple trajectory is bang-bang control, shown in Figure 9.2. It consists of
applying a constant acceleration a for N time steps and then acceleration —¢ for g~ N
time steps. There are two values to choose, and two constraints to meet: the values of
3i[tg] and v;[t;]. Thus the values can be derived by elementary algebra. Interested readers
may inspect the results at the end of this section.

Instead of generating the trajectory and then tracking it, the controller computes the
initial recommended acceleration, applies it, and then discards it. On the next time step
it implements the same procedure. This is possible, because the trajectory is cheap to
compute: one square root and approximately ten multiplications are required per puck
component. In this manner the trajectory can be automatically adjusted to fake account
of earlier tracking errors. ‘

There are many other ways of choosing accelerations. For example, one could find
accelerations a and S, such that applying a for time %tg followed by 8 for time %tg achieves
the desired state. The bang-bang method has two particularly desirable properties.

e The maximum magnitude of any acceleration on the trajectory is as low as possible.
For example, imagine that there was a constraint that no component of|the acceler-
ation applied to the puck could have magnitude greater than Apay. If the controller
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receives a puck goal, and the bang-bang computation produces an accele}a,tion which
|

is too large, then no other trajectory would have managed either. |

¢ The controller dynamically recomputes the trajectory at each time st p, and this
computation is affordable. If the computed acceleration is applied acc rately then
the next dynamically computed trajectory will match the first. This property does

not generally hold for other kinds of trajectory.

There is also a potential disadvantage. The sudden switch in requested fccelera,tions

would, in a non-ideal world, be hard to achieve and difficult to control. In pr

robot trajectory generators are designed to produce paths which in terms of
smooth to five levels of differentiation.

ctice, many
position are

The conclusion of this section is that given a goal state and time, it is easy to achieve

the goal for an idealized ice puck. In Sections 9.3 and 9.4 I explain why the

SAB model

of the world permits other dynamic systems to be controlled in the same manner.

9.2.2 Generating the Bang-Bang Trajectory

All control variables are treated independently. Let the current position and
(80, %0), and the goal be (sy,v,) after t, time steps. This analysis finds the
and 3 such that when acceleration a is performed for N time steps and acceld
N — 1, time steps, the goal state will be obtained. These values will be chose;
and S close in magnitude while ensuring that N is integral.
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First we find X, possibly non-integral, and v, such that accelerating with v for X
seconds and then accelerating with —v for (¢, — X )h seconds will achieve the goal. Such
values would satisfy the two equations

v, = wo+ hy(2X —1,) (9.6)
1
s = 8o+ huoty + 5h27(—t3 +4Xt, — 2X?) (9.7)
Thus, v in terms of X is, from Equation 9.6, v = (v, — v)/(h(2X — t,)). |Substituting
into Equation 9.7 gives
1
@X—%mrqrwmm=Em%—mmﬁ+uﬂwzﬁ) (9.8)
This quadratic equation is solved by
R, 1 2 24 2
X=t,— 3% ﬁ\/4R — 4Rht, + 2h2t, (9.9)
where hoct
R=2a" %0~ 2% (9.10)

Vg — Vo

N is then chosen as the closest integer to X, and then the accelerations

« and § are

computed to solve the goal position, time and velocity. The solution for e, which is then

used as the recommended acceleration, is:

- 2(sg — o) _ vty + N)+ (¢, — N)
h®Nt, hNt,

9.3 Low Abstraction Tasks

A “low abstraction task” is defined here to be a task which has been specified
detail that the controller is able to compute the goal behaviour directly fn
description. This level is the bottom level that the system designer must cons
a considerable improvement on the conventional bottom level of abstraction.

9.3.1 Achieving a Fixed Behaviour

The Mountain Car domain provided an example of this kind of task in Chap
the goal was to comtinue moving at a constant velocity. The domain was co
that the velocity was the behaviour being modelled. There is no difficulty
the SAB action cheoser into such a task. At each control cycle, the requeste
remains fixed. This continues until some higher level of control, perhaps a hum
is satisfied. The success of the task can be judged as either the sum of the dev
the goal behaviour, or the number of cycles which were in error.
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9.3.2 Following a Perceived Trajectory

For a dynamic system, in which the Perceived State Transition Function is bpmg learned,
the behaviour vectors are perceived accelerations. The task can be controllefd as if accel-
erations were being applied directly to the perceived state. In fact they wﬂl be applied
indirectly, by requesting the SAB action chooser to try to achieve them. ;

The trajectory task can thus pretend that it is an ice puck controlle#. Put more
formally, it can imagine it is an entirely linear and decoupled system. On each cycle, and
for each perceived position component, it considers the current position an velocity. It
also considers the desired position and velocity specified by the trajectory for the next
time step. Can this one-time-step puck goal be achieved? If there is a solution to the
one-step puck goal, then the component of the goal acceleration has been obtained. It
might, however, not be possible because the current velocity might not allow positions to
be matched on the next cycle if velocities are also to be matched. In that case the puck
goal of two steps in the future is used. The required acceleration is then handed to the
SAB action chooser.

If the current position and velocity were to mismatch badly with those idesired then
the requested accelerations would be unattainably large. The action chooser would on
repetitions of the same situation try a wide variety of actions. This is because all previ-
ous occurrences would have failed, and thus the highest probability of success would be
achieved by trying something as different as possible. The large variety of low probability
actions might degrade performance, and could not be expected to bring the state any
closer to the trajectory. In this case it might be preferable that the SAB action chooser
always produced accelerations as close as it could to those requested. Emplrlcally, this
problem was not observed in the experiments detailed in Chapter 10. Howewer, if it were
likely to be a problem it could be avoided by use of domain knowledge to specify limits
on accelerations. A request would then never be made to the S4B action chooser for any
larger acceleration. Alternatively, the maximum accelerations could be estimated by a
heuristic such as that described in Appendix C.

9.4 Middle Abstraction Tasks

Some middle abstraction tasks can be immediately transformed into low a,bstrPction tasks.
These include the “hold still” task, the “move here” task and, at a slightly Iriore abstract
level, the “move here quickly” task.

9.4.1 Hold Still

This can be implemented as a request to follow the stationary trajectory. The position

at which to remain can be specified as the position when the “hold still” task was first
activated.
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9.4.2 Move Here

In the “move here” task, the position, velocity and time to achieve the goal are specified.
This is then an ice puck goal of Section 9.2. The correct accelerations ca,x# be derived
accordingly. ;

9.4.3 Move Here Quickly

Commonly, one does not wish to specify the time the robot should take to get to a
particular configuration, but instead would prefer it to arrive reasonably quickly. This
could be done by simply guessing a time or having a default time for movements, but this
could lead to inefficiencies, either because the robot will have moved unneces arily slowly,
or because it tried to achieve too fast a trajectory and overshot the target, because of
inadequate deceleration. A naive controller which consistently made this mistake could
oscillate unstably if it persisted in trying to get to the goal at a speed which exceeded the
capabilities of the actuators.

Instead, the controller uses its knowledge about its strength. The algorithm performs
a binary chop to find a suitable movement time. When a movement time is co sidered, the
ice puck controller is consulted to determine the accelerations which would be necessary
to achieve the movement time. Then the SAB world model is consulted to determine
the probability that the necessary accelerations can be attained. The shortest time with
a sufficiently high probability of success is used. This decision could be formalized if it
were provided with (i) the expected cost of trying a trajectory which is not attainable and
(ii) the expected payoff from using short times.

Experiments with such a controller are documented in Section 10.4. The advantage of
the autonomous time choice controller is that it has some abstractness: the detail of how
long the movement should take is computed automatically. Its performance on repeated
trials can be expected to find a trajectory which is not unacceptably slow. However, it
would certainly be unlikely to find the theoretically optimal trajectory. If such a tra jectory
were required then a more computationally expensive controller would be necessary.

9.5 Compound Tasks

Many interesting tasks have several components. In this section I discuss, by means of an
example, how SA B learning is integrated with multiple-component tasks. Th example is
volleying a ball. The physical situation is depicted in Figure 9.3.

The ball on the right of the diagram is fired towards the two- jointed arm ng the left of
the diagram. The arm must hit the ball so that it lands in the bucket. The arm and ball

are both acting under gravity. The controller can sense the following data (in perceived
coordinates):

e The position and velocity of the hand.
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Figure 9.3

The volley task: |physical
situation.

_/

o The position and velocity of the ball on the following occasions: (i) whfn it is fired,
(ii) when it is hit and (iii) when it lands.

\
e The position of the bucket. |

The control consists of the torques sent to the shoulder and elbow joint of the arm.
The bat is fixed at right-angles to the forearm. The details of the simulatio parameters
are given in the results chapter.

One approach to using SAB learning to control this task would be to s cify it as a
nine-dimensional state space. The state vector has four components for the arm state,
four components for the ball state and one component for the position of the bucket. The
action is the two-component vector of the joint torques supplied, and the behaviour is the
change in arm state and in ball state. }

The PSTF of such a system would have the strange property that four components
of the state, namely those of the ball state, are almost never affected by the action. If
the SAB-controller were given the goal system-state of “anywhere” for the arm and “at
rest, y = 0, x = bucket position” for the ball, then generally there would b absolutely
no action which could achieve it and very occasionally all actions would achieve it. Thus
local control, specified by local goal behaviours, to send the ball to the bucket would
be entirely useless. Instead, there would have to be some global level to the controller,
much as was used for ice puck goals, to derive the final ball position. Such global level
could, for example, search a large number of time steps ahead to find if any of the actions
currently available could, with adequate subsequent actions, achieve the final goal. A
more computationally tractable alternative would be a dynamic programmi g approach.
In principle, if the PSTF is learned to sufficient accuracy, then the controller \will succeed
at the task. A large amount of data would be needed because the controller would not
know in advance which parts of the control space would be important. In the absence
of other domain knowledge, no data would be useful until the goal had been|achieved at
least once—for the volley problem this would almost certainly take a very lo
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VOLLEY

|_ PREDICT | [ RETURN | [ STRIKE |

Figure 9.4
/ \ The volley task| decom-
ball PUCKGOAL hit posed into a small hierarchy
of subtasks.

The problem with the formulation as a nine-dimensional state space system was that

the structure inherent in the problem was flattened away. It is clear that a human given the
volley task would make some abstract, symbolic organization of the task into components.
In particular they would notice that the final behaviour of the ball depends on whether it
contacts the bat, and that if it does contact the bat, the bat’s behaviour at the time will
affect the ball’s subsequent behaviour. |

If a robot is to achieve the task, it would be an interesting exercise to let it t y to deduce
this relationship from the observed data. Some recent work by [Sammut and Michie,
1989] investigates discovering such qualitative descriptions of dynamic systems from raw
behavioural data. However, for a large class of cases, such as this volley example, domain

knowledge such as this is easy for a human designer to express. It is similarly easy to give
an abstract, qualitative description of how to perform the entire task.

Predict where the ball will be when it comes into convenient hitting range.
Make sure the hand is in the same position at the same time, and moving at
such a speed as to cause the ball to land in the bucket. After the ball and bat
have collided, move the arm to a waiting position.

This abstract volley task can be separated into three slightly less abstract subtasks,
indicated in Figure 9.4. Predict estimates the ball’s behaviour. Strike brinisi the bat to
contact the ball at a controlled position and speed. Return holds the bat ste y after the
strike.
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The Predict task models the perceived behaviour of the ball prior to being hit. This
model is learned by a SAB-tree, which estimates the time until the ball arrives within
range of the arm and the state of the ball at this point. The ball is defined to be in range
of the arm when it reaches a distance of 1.5m from the shoulder (the stretchéd arm is 2m

long). The SAB-tree is a mapping

Ba.ll:tart X () — Ballhit )iTimehitJ
A B

which is updated once every trial. There is no control over this aspect T)f the ball’s
behaviour so Action, the space of control actions, is empty.

The Return task simply computes a perceived acceleration to thrust the endpoint
towards the stationary waiting position. This is an instantiation of the “hold still” task
described in the previous section. The torques to achieve this acceleration are computed
and executed by the low level Acc task, which is a SAB action chooser.

The Strike task controls the ball indirectly by means of a collision between the ball
and the bat. It requires a model of the real world:

Ball at Hit X Bat position and directioq X

Bat sgeed —_—
A
X coordinate of Landed Ball (9.12)
B
This too can be learned using a SAB-tree. From trial to trial, the Strike task attempts
to always position the bat to contact the oncoming ball at the bat’s centre, and to have

it moving in the same relative direction at impact. The speed of the bat at impact is
varied. This speed affects the landing position of the ball, and so can be used to indirectly
control the landing position. At the trial start the SAB action chooser is given Scyrrent a8
the estimated ball state when it arrives in range and the bat position and direction during
impact. The search produces a recommended speed for the bat during impadt.

It should be noted that this SAB-tree, like the others, is simply a set of objective
observations about the world, and its own accuracy does not depend on the performance
of the subtasks which are being learned. There is no blame or credit assignment problem.
For example, suppose that we believed that hitting speed $; at position P; would ensure
that the ball landed at Xy, but due to a low level error the ball was volleyed with the
correct speed S, but at the wrong position P;. The ball then lands at X;. The speed 5
will not now be wrongly associated with landing at X,: the SAB-tree will smnply contain
an observation that hitting with speed Sy at the wrong position, P;, results ina landing
at X2, and will contain no explicit prediction as to what would happen were the ball hit
at the correct position.
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The PuckGoal task guides the initial perceived state to the target impact state. This
is ice puck control, again dealt with in the previous section.

9.5.1 Discussion

The volley example has demonstrated the general principle that an appareﬁtly complex
dynamic control problem can be broken down using naive, qualitative rea#oning. The
resulting plan uses middle abstraction SA B-tasks which can be automated. The interesting
observation is that whenever a quantitative relationship is required, SAB-learning can be
used, and if necessary, the control choice mechanism can be used to invert and explore
these other world models.

The state for the lowest-level model, the arm’s Perceived State Transition Function,
is the raw action for the higher level Strike model. This is an entirely natural way
to decompose a hierarchical task. An abstract task decides it needs a certain action
performed which is delegated to a lower level task. For the lower task, this then becomes
the goal state. A particularly pleasing feature of a hierarchy of SAB-learners is that they
can usefully learn simultaneously, without there being any danger of a credit assignment
problem.

9.6 The Benefits of Learning

This chapter has shown how a variety of complexities of robot task can be interfaced with
SAB-learning. It has discussed the fact that the SAB action chooser cannot be used for
all aspects of task achievement, but instead some other means must be used to obtain
the abstract plans for achieving abstract tasks. However, there are some benefits of SAB
learning, derived from the raised level of abstraction below which task automation can
take place. There are several ways this is achieved:

e It is unnecessary to work in any coordinate system other than that which the robot
perceives. Thus, for example, the output of a planner to move a h:@nd towards
an observed goal is simply to thrust the observed hand position in the observed
direction.

e If it is suspected that the environment has some noise, then it may be unnecessary
to take it into account in the generation of the plan. Noise tolerance tan be dealt
with at the modelling level.

* An environment which might change, either gradually or suddenly, is| again dealt
with at the modelling level. This is provided that there is no qua,litaljtive change,
such as part of the robot arm actually disintegrating, in which case a new abstract
strategy might be needed.
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o If the raw actions can supply sufficiently powerful actions (for example, large enough
torques), then the middle levels of control—trajectory following or atomic movements—
can be controlled with trivial “ice puck” control.

e World models can be used at multiple locations in the subtask hieraﬁchy. Even if
these world models depend upon each other, learning can take place simultaneously
with no danger of errors made by one level resulting in other levels learning incorrect
models.

There are, however, some extra requirements on the designer.

e It is necessary to know, for each world model, that it can be usefully learned as a
deterministic, generally continuous function. This does not eliminate noisy functions,
but it makes the assumption that the noise distribution is useless and is to be
removed.

e It is necessary to supply, along with each requested behaviour, a tolerance of accept-
able behaviour. However, no difficulty is foreseen should it be requirdd that these
values are generated automatically. Chapter 10 demonstrates that within a wide
range, performance is not sensitive to these values.

e In the current implementation, for each SAB-tree, it is necessary to provide a small
set of parameters. These consists of the constant C' used by the Psilcc estimate,
(from Section 8.1) the expected noise level (specified indirectly by the prmse search
width value of Section 7.2), the number of candidate actions to be considered should
the partial inversion action be inadequate, and the spread of values within each
dimension of the state, action and behaviour spaces (see Section 5.1). %Empirica,lly,
we will see that the performance is not sensitive to these parameter chdices, nor are
they difficult to estimate. It would also be possible to estimate them frbm the data.

o The current implementation also requires that the SA4 B-tree be occasioﬂa.lly garbage
collected (see Section 7.5). The plan must set aside computation time for this pur-
pose. This could also be automated by performing the garbage collection incremen-
tally, or as a background process.

The design and analysis of plans to achieve high level robotic tasks are generally not
complex. They are significantly easier than the design and analysis of software systems.
Thus, we may hope that robot control based on learned world models makes tobot system
design a cheap and easy process.

A more interesting alternative is that the planning can be automated. Many researchers
have investigated the use of planning for robot tasks. An ob Jection to some of this research
has been the micro-world problem—that the investigations factored out too much disorder
from the environment in order to be able to work at a logical, abstract, level instead of a
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numeric, concrete level. But it is apparent that, with a learning modelling system at the
low levels of the task structure, such disorder can be factored out. ‘

Thus, by learning the world models we have automated the low level part of robot
planning. An analogy with biological systems would be to suggest that the SAB models
are the equivalent of the low level, subconscious processes of the motor control system,

while the task planning is equivalent to a higher level process.
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Chapter 10

Experimental Results

This chapter describes the methods, results and conclusions for a variety of learning
control experiments. These consist of: learning a hand-eye coordination; learning to
follow a perceived trajectory of a simulated torque-controlled arm; learning movement
control for non-repetitive tasks; learning to keep a ball bouncing; and learning the
volley task described in Section 9.5.

10.1 AB Learning

This section details the results of an experiment performed early on during the research
described in this dissertation. As a result, many features of the SAB learning system
described in this dissertation are missing. However, it is an interesting experiment worth
examining because it works with a real robot instead of a simulation and it uses a fairly
high dimensional mapping. It is also described in [Clocksin and Moore, 1989].

The experiment learns the combined perspective transformation and the kinematics
of a five-jointed robot arm. The robot (an RTX arm manufactured by UMI Inc.) is
driven by specifying joint positions, which are then attained by independently driven,
servo-controlled actuators. The experimental set-up is shown in Figure 10.1. A camera is
pointed at the robot which holds a small pen light in its gripper. The camera is connected
to a frame-grabber in which the image is thresholded, distinguishing the bright spot. Some
image processing obtained the location of the centre of the bright spot as image = and y
coordinates. It was not necessary for the image processing to be sophisticated and so the
simple implementation took less than quarter of a second, running on an IBM PC.

The world was learned as a SAB-tree:

{} xJoint Positions — Image Position x Comfort (10.1)
—_— 3 — ,
State Action Behaviour

The State component was empty because the configuration of the system [prior to re-

questing a set of joint positions had no effect on the configuration afterwards. The joint
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positions were a vector of five values: shoulder height, shoulder angle, elbow angle, wrist
pitch and wrist yaw. Wrist roll was held constant, because some roll configurations ob-
scured the light from the camera. The image position were z and y values| specified in
pixels. The comfort value was a measure, depending on the configuration of the joints.
The closer each joiat position was to the centre of its range, the more “comfortable” the
joint position. The ranges of all variables were explicitly known. The comfort value was
used to choose between alternative joint angle configurations which achieved the same
image position. The best possible comfort value would be zero.

The use of “comfort” was a primitive example of task dimension reductioP, described
also in the experiments of Section 10.4. i

In this experiment the SAB-tree did no smoothing or adaptation to environmental
changes. The SAB action chooser was also in a more primitive form, described below.

To test the system a simple game was played in which the robot started with an empty
SAB-tree. On each trial a random image location was chosen and the system recorded the
number of movements which need to be made before the observed image location agreed

used. Else, a small random perturbation was applied to the recommended
The result was inspected and stored in the SAB-tree. If it had improved u

10-2




wn 8
<
E 7
g ¢ Figure 10.
B 5
b= Number of m
< 4] umber of extra arm move-
S 3. ments required to find the
E 2 ] goal image position. The
g1 ] ’ statistics are averages of
- .
A | L1 ! | buckets of five trials.

0 20 40 60 80

Trial Number

dicted behaviour it was repeated, else a different random perturbation was selected. This
process was repeated until the goal location was obtained. This technique is similar to the
Hooke and Jeeves multivariate optimization method [Murray, 1972].

Figure 10.2 shows the performance of the robot for the first eighty such trials, measured
as the number of perturbations above the initial movement required to reach eath randomly
generated target position. The whole experiment, including the rather slow movements of
the robot and the image processing, took only 18 minutes.

10.1.1 Local Interpolation

This experiment also used local regression to improve the nearest neighbour generalization.

The regression was used in the Behaviour — Action direction of the mapping, by means
of the nearest 5 neighbours which surrounded the goal behaviour. It w recognised
that this was generally too expensive to be able to perform on-line, anticippting future
application of SAB-trees to dynamic tasks. To solve this, the interpolation w. performed
off-line in what were termed “dreaming” periods.

During a “dreaming” period, the software links to the robot and sensors are cut, and
replaced by links to the local regresser. The controller continues to learn as if the task were
still happening for real, but instead of gaining observations from the real world it gains
them from the regresser. The regressed observations are added to the SAB-t ee, but are
tagged as approximations. Once real world learning is switched on again, the controller

ensures it verifies any tagged point prior to its use.
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Figure 10.3 shows how the performance improved when a dreaming period took place
just after the fortieth trial.

The next experiment was to learn to move in sequence through 100 points uniformly
spaced on an ellipse specified on the image. First, the robot practised moving to each
point in turn for a total of ten minutes. Figure 10.4 shows the results of a “test” given
after the practice session: moving as close as it can (according to the SAB-t ee) to each
point. The target sequence of points is between the two white bands shown on the image.

Figure 10.5 shows how it performed on the test with a dreaming period after 10 minutes
of practice, but before it verified the memory values regressed during this time. Figure 10.6
shows the results after a further fifteen minutes of practice. The times for these results
are relatively short in a field where learning can often take hours or even da;

In the subsequent experiments of this chapter, dynamic control is learned. The RTX
robot cannot be controlled in a realistic dynamic fashion and it was therefore necessary
to abandon the use of a real robot in favour of simulation.

10.2 SAB Learning—The Two Joint Arm

This section provides a very detailed investigation of one application of SAB learning. It
is applied to a simulation of the two-jointed dynamic manipulator depicted in Figure 10.7.
The arm has the following features:
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Figure 10.4

The ellipse tracing
test immediately after
10 minutes of practice.
The bright spots are the
positions to which the
light was moved. The
image of the arm can be

seen in the background.

Figure 10.5

The ellipse tracing test
after 10 minutes of prac-
tice, followed by a pe-
riod of dreaming but no

verification.

Figure 10.6

The ellipse tracing
test after 10 minutes of
practice, followed by a
dreaming period and fol-
lowed in turn by 15 min-
utes of verification and

practice.



Figure 10.7

)
< $ 0 A two-jointed dynamic ma-
6 nipulator acting| under
«_1 gravity.

mg
mg

* Geometry. The arm is constrained so that it may never straighten; the elbow
angle, 6y, is always between 0 and 180 degrees. The hand may not move outside the
frame of the diagram in Figure 10.7.

¢ Perception. The perception is visual. The simulation can, at each time step,
view the z-coordinate and y-coordinate positions of the hand. It can also sense the
velocity of the hand in both the z and y directions. Because there are only two joints,
and because of the constraint that the elbow may not straighten, this is sufficient to
define the current perceived state.

e Dynamics. It is controlled by two motors: Motor 1 at the shoulder and Motor 2
at the elbow. These each provide a torque. At each time step the torques may be
changed.

In this domain the Perceived State consists of the observed position and velocity
of the hand. The two-dimensional Action is the pair of applied joint torques and the
two-dimensional Behaviour is the perceived acceleration of the hand’s position. This is
not observed directly, but is estimated as

b; = 1’+—Ih'—" (10.2)

where v; is the perceived velocity on the ith time step, and h is the length of & time step.
The two-jointed manipulator was chosen because (i) it has a six-dimensignal control

space, which is of non-trivial size (ii) the equations of motion of an idealized two-jointed
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SAB-Tree SAB-Control Simulation
Parameters Parameters Parameters
Statemax0 1 | Tolerance 0.10 | Max-torque 6
Statemax1 1 | Num-cands 10 | Time-step 0.02
Statemax2 10 | Prob-const 1 | Noise-level 0.002
Statemax3 10 | Locality 0.67
Actionmax0 6 | Local-const 1
Actionmax1 6 | Delta-old 0.05
Bhvmax0 100
Bhvmax1 100
StateminO -1
Bhvmini1 -100
Search-width 0.02
Table 10.1: Arm experimental system parameters
manipulator are well known, and cheap to compute and (iii) manipulators are a|particularly
useful piece of robot technology. The dynamic equations of motion are from [Fu et al.,
1987].

10.2.1 Experimental environment

The simulation and SA B-learning were performed in an environment in whicﬂ the system
parameters were all adjustable for experimentation purposes. They are listed in Table 10.1.

StatemaxO ... Bhvminl are the sixteen values required to scale the vectors in the
SAB-tree. The need to know the maximum ranges of State, Action and Behaviour
components was discussed in Section 5.1. All vectors in the tree are scaled #o the range
[0,1]. State variables 0 and 1 are the z and y positions respectively. These posit}ion maxima
were easy to estimate, because the hand may not move outside the coordjndl(tes [-1, 1]2.
The range of observed speeds (state components 2 and 3) were less obvious but were
estimated as 10ms™' from observations of the simulation. The action ranges were again
known explicitly, as part of the definition: they are the maximum permissible torques.
The behaviour ranges were estimated from observation. The Search-width parameter is
the range width Dy apge of the smoothing kernel discussed in Section 7.2. |

The SAB-control parameters were discussed in Chapter 8. Tolerance is t#le deviation
in the behaviour which is deemed acceptable when the SAB-controller is rkquested to
generate an action araw to achieve a goal behaviour bgoal. It is scaled to the irange [0,1].
Num-cands (see Section 8.1) is the number of candidate actions considered when the value
recommeded by partial inversion is predicted as inadequate. Locality and Local-const
are the Poc and Cioc parameters of Section 8.2, which bias the generation of candidate
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Start State: < 0.00, 0.00, 0.00, 0.00 >

Minimal behaviour: <-10.00,-10.00 >
Maximal behaviour: < 10.00, 10.00 >
(Empty tree. Random actionm.)
Action: < -4.15, 0.37 >
Predicted Behaviour: < NULL VECTOR >
Actual Behaviour: <-13.39,-37.33 >

Table 10.2: Repetitive Control: The first cycle

actions. Prob-const (again, see Section 8.1) is the scaling factor C used in the probability
of success estimate, Pyycc. Its value reflects the expected slope of the function being
learned, but its accuracy is not expected to be important. Delta-old is the Aold parameter
used in the detection of old, inaccurate, exemplars (see Section 7.3).

The simulation parameters Max-torque and Time-step are self explanatory. The
arm is given simulated noise defined by the Noise-level parameter. At each stage, the
requested torques are corrupted before being applied. The corruption is uni

rm in each
action component, up to a maximum value of Max-torque X Noise-level.

10.2.2 Convergence of Actions

The first experiment examines how the SAB action chooser performs on repeated occa-
sions of the same state and requested behaviour. In this experiment, the state is reset
after every control cycle. This hypothetical situation was discussed in Sectio 8.2, but is
unrealistic—normally in subsequent experiments the state, and often the goal behaviour,
would vary between cycles. Here, the start state is position and velocity both zero—the
hand stationary in the center of the display. The goal behaviour is zero acceler tion, which
can be achieved by action (0.98,0.25). The action is non-zero because the torques have to
counteract gravity.

Tables 10.2-10.5 consist of SAB action chooser debug output. This shows in extreme
detail, the behaviour of the algorithm. Table 10.2 shows the performance pn the very
first cycle. Here, there is no previous experience whatsoever in the SA4B-t , and so a
uniformly distributed random action is chosen. The minimal and maximal behaviours
mentioned in the table are those generated by the default Tolerance parameter setting
of 0.10 (see above for a description of Tolerance).

Table 10.3 shows the performance on the second control cycle. There is one exemplar in
the SAB-tree, obtained from the first cycle. This is, of course, the exemplar suggested by
partial inversion. It is not suitable, because is does not achieve the Tolerance. Instead,
ten candidate actions are generated (ten, because the Num-cands parameter is set to
10 by default). These all predict the same behaviour because they all have the same
nearest neighbour. The estimated probabilities of success vary because the reliability of
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Start State: < 0.00, 0.00, 0.00, 0.00 >

Minimal behaviour: <-10.00,-10.00 >

Maximal behaviour: <10.00,10.00 >

Partial Invert Action: <-4.15, 0.37 >

Nearest BSmooth: <-13.39,-37.33 > at distance 0.000. Psucc = 0

Cand 0: <~6.00,-6.00 > BSmooth: <-13.39,-37.33 > at distance 0.553. Psucc = 0.00910982 |(Best yet)
Cand 1: < 6.00,-6.00 > BSmooth: <-13.39,-37.33 > at distance 0.999. Psucc = 0.00306144

Cand 2: <-6.00, 6.00 > BSmooth: <-13.39,-37.33 > at distance 0.493. Psucc = 0.0110691 (Best yet)
Cand 3: < 6.00, 6.00 > BSmooth: <-13.39,-37.33 > at distance 0.967. Psucc = 0.00325637

Cand 4: < 1.63,-2.01 > BSmooth: <-13.39,-37.33 > at distance 0.521. Psucc = 0.0100832

Cand 5: < 0.56, 2.34 > BSmooth: <~13.39,-37.33 > at distance 0.426. Psucc = 0.0140408 Best yet)
Cand 6: < 4.76,-0.07 > BSmooth: <-13.39,-37.33 > at distance 0.744. Psucc = 0.00534009

Cand 7: <-5.60, 0.06 > BSmooth: <-13.39,-37.33 > at distance 0.124. Psucc = 0.0185096 (Best yet)
Cand 8: <-3.34, 3.13 > BSmooth: <-13.39,-37.33 > at distance 0.239. Psucc = 0.0277313 (Best yet)
Cand 9: < 2.49, 1.73 > BSmooth: <-13.39,-37.33 > at distance 0.565. Psucc = 0.0087751

Probability of Success is 0.0277

Action: <-3.34, 3.13 >
Predicted Behaviour: <-13.39,-37.33 >
Actual Behaviour: <-84.87, 4.54 >

Table 10.3: Repetitive Control: The second cycle

the nearest neighbour prediction varies with distance. Notice that the first foﬁr candidate
actions are the extreme actions. For this controller they are always gener#ed because
they might be needed for the estimation of strength (see Appendix C). The quoted nearest
neighbour distances are in the uniformly scaled SAB-tree units. The best candidate action
is, unfortunately, not good enough, and the actual behaviour is further from goal than the
original. ?

The third cycle is displayed in Table 10.4. There are now two exempl#rs, but the
original was more promising. As a result it is again returned by partial inversion, but is
again, of course, deemed inadequate. Ten further candidate actions are again generated.
This time there is variety in the nearest neighbour prediction. Not surprising}y, the most
promising candidate has the original exemplar as its nearest neighbour. T]iljs time the
choice is lucky, and achieves a good behaviour, though it still does not meet tl*e tolerance.

The action discovered by cycle 3 remained the most promising for the next ? cycles. On
trial 10 it was replaced by action (—1.01,0.35), which produced behaviour (—6. bS —13.71).
This was in turn replaced by a slightly closer action on cycle 15. On trial 19 an action
was discoved which produced behaviour (—6.23,2.40)—within the tolerance. | ' Cycle 20 is
displayed in Table 10.5. All subsequent cycles used the same action. The small mismatch
between the predicted and actual behaviour was due to the simulated noise. If there had
been no noise the prediction would have been entirely accurate, because the state and
action were the same as before.

The whole experiment was repeated for thirty runs. The graph in Figure|10.8 shows,
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Start State: <
Minimal behaviour:
Maximal behaviour:
Partial Invert Action:
Nearest BSmooth:
Cand 0: <-6.00,-6.00
Cand 1: <€ 6.00,-6.00
Cand 2: <-6.00, 6.00
Cand 3: < 6.00, 6.00
Cand 4: <-~1.40, 0.57
Cand 5: <-2.79, 3.08
Cand 6: <-0.33, 1.07
Cand 7: <-3.23, 3.54
Cand 8: <-4.00, 2.94
Cand 9: <-5.75, 4.13
Probability of Success

N W= WO oo
Y ¥V V V¥V V V V V VYV

Action: <~1.40, 0.57 >

Goal Behaviour:

Predicted Behaviour: <~13.39,-37.33 >
Actual Behaviour: <-13.02,-13.96 >

Start State: <
Minimal behkaviour:
Maximal behaviour:
Partial Invert Action:
Nearest BSmooth:

Partial Inversion action is tolerable.

Probability of Success
Action: <

Predicted Behaviour: <~6.23, 2.40 >
Actual Behaviour: <-6.13, 2.08 >

Table 10.5: Repetitive Control: The twentieth cycle

0.00, 0.00, 0.00, 0.00 >

<-10.00,-10.00 >

<10.00,10.00 >

<-4.15, 0.37 >

€~13.39,-37.33 > at distance 0.000. Psucc = 0
BSmooth: <-13.39,-37.33 > at distance 0.563. Psucc = 0.00910982|(Best yot)
BSmooth: <-13.39,-37.33 > at distance 0.999. Psucc = 0.00306144
BSmooth: <-84.87, 4.54 > at distance 0.326. Psucc = 0.00553616
BSmooth: <-84.87, 4.54 > at distance 0.815. Psucc = 0.00364744
BSmooth: <-13.39,-37.33 > at distance 0.230. Psucc = 0.028409 (Hest yot)
BSmooth: <-84.87, 4.54 > at distance 0.046. Psucc = O

BSmooth: <-84.87, 4.54 > at distance 0.304. Psucc = 0.00495881
BSmooth: <-84.87, 4.54 > at distance 0.035. Psucc = O

BSmooth: <-84.87, 4.54 > at distance 0.057. Psucc = 0

BSmooth: <-84.87, 4.54 > at distance 0.218. Psucc = 0.00162928
is 0.0284

[Lo,01]

Table 10.4: Repetitive Control: The third cycle

0.00, 0.00, 0.00, 0.00>
<-10.00,-10.00 >

<10.00,10.00 >

< 0.90, 0.47 >

<-6.23, 2.40 > at distance 0.000. Psucc = 1

is  1.0000
0.90, 0.47 >
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for each cycle number 7, the proportion of occasions for which the tolerance not had been
achieved by cycle n. Thus, for example, the value is 1 for cycle number 1, because on
every run, the action was unsuccessful on trial 1. By cycle 13, 50% of runs had succeeded.
This is encouraging, because it agrees with the prediction of Section 8.2, that the correct
behaviour is converged to rapidly using the SAB action chooser, even wit only a few
candidate actions. The tolerance was, however, quite large, meaning that approximately
1% of possible behaviours would succeed. How does the time to achieve goal behaviour
increase as the tolerance becomes more strict?

A second experiment was performed in which the tolerance was only 0.004, a 25-fold
decrease over the previous experiment. The experimental conditions were identical, except
that the Noise-level parameter was set to zero. This was because the tolerance would
not have been possible (except occasionally by luck) with the noise level of the previous
experiment. The behaviour is shown in Figure 10.9, and it can be seen to be np more than
a small factor worse than the previous experiment. The median number of aycles before
achieving tolerance 0.004 was 35.

Further experiments were performed with varying tolerance levels. The results are
tabulated in Table 10.6 and plotted in Figure 10.10.
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Figure 10.9

Proportion of runs of the
repetitive control experi-
ment which met tolerance
against cycle number. The
tolerance was 0.4%.

Tolerance | Median time to success

0.2
0.1
0.04
0.02
0.01
0.004
0.002
0.0004
0.0001

6
13
15
25
24
35
40
48
58

Table 10.6: Time to achieve tolerance for the simple “holding still” task.
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10.3 Trajectory Tracking Experiments

The trajectory following task is a realistic robot control problem, which will be used to
empirically explore the detailed behaviour of the SAB control cycle. I will begin this
section by describing the experiment in detail, and will then explore the effects of varying
the following features:

o Number of candidate actions.

¢ Tolerance level supplied to the SAB action chooser.

Locality Cjoc, and smoothness estimate C.

Weighting of variables in the SA4 B-tree.

World noise.

¢ Environmental changes.

10.3.1 The Trajectory Tracking Task

The experiment can be viewed at the trial level, the learning run level and the ezperiment
level.
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Figure 10.11

rection. It starts fro
rightmost point. Here,

. ing trial.

¢ Trajectory Tracking Trial. The arm must follow a perceived circle

tory in an anticlockwifle di-

The simulated arm must
follow the circular trajec-

the
it is

shown during the end of an
initial, unsuccessful, learn-

a specified

speed. The circle is shown in Figure 10.11. The goal speed takes fifty simulated

time steps to travel around the circle. The abstract level controller uses the ice

puck trajectory tracking mechanism of Section 9.3. The hand is initialized at the

right-most point of the circle. Then on each cycle, the goal behaviour is the ice puck

acceleration required to stay as close to the current trajectory as possible. One trial

consists of one attempt to follow the circle.

o Trajectory Tracking Learning Run. A run consists of thirty-two trials. Before

the initial trial, the SA B-tree is empty—the controller begins with no

orld knowl-

edge. Between trials the world knowledge is maintained, and so if learning occurs,

performance should tend to improve during a learning run.

¢ Trajectory Tracking Experiment. The experiment consists of execu

ting a num-

ber of independent learning runs. The purpose of running a number of times is to
obtain more reliable statistics about the learning performance. There are typically

20 runs in each experiment.

10.3.2 Format of Results

The results for the first experiment are shown in Figure 10.12. However, before they can

be discussed it is necessary to explain how they were obtained and what infor
are intended to convey.

The Mean Tolerance graph plots the behaviour of the SAB action cho
trial number. The tolerance error is the amount by which the actual behaviour
the tolerance band defined by the task. Each trial has a mean tolerance erra
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each learning run a graph of mean tolerance error against trial number can be obtained.
The graph in the figure shows the average of 23 such graphs, obtained from 23 learning
runs. The vertical bars display the standard deviations of the statistics. Natice that an
experiment in which the mean tolerance error is low is not necessarily performing the task
well—it is simply achieving the tolerance. If a large tolerance were specified then it would
be easy to achieve a zero mean tolerance error. The axis is labelled as a percentage of the
maximum possible tolerance error.

The Mean Position graph plots the average position error against trial number. At

each time step the position error is computed as the Fuclidian distance between where the
hand is, and where it should be. The average error for each trial is recorde(eiT The graph
is constructed as the average of the 23 observations for each trial. This is a,imore direct
measure of the performance of the task—it would only ever be zero if the trajectory were
followed precisely. It is labelled as a percentage of the maximum possible pasition error,
which would occur if the desired position were in the bottom right of the dis lay and the
hand were in the top left.

A learning system which learned to perform 98% of the trajectory perfec*ly, but con-
sistently failed badly at the remaining 2% would be judged well by the M#an Position
estimate. For some uses of trajectory tracking however, such performance vould be in-
adequate. This undesirable behaviour would be detected by the Worst Position graph
which plots the average of the worst position errors which occur on each trial. The worst
position error of a trial is the furthest Euclidian distance which the hand reaches from the
desired point on the trajectory. ;

The graphics on the right of the diagram display six examples of theitra,jectories
followed by the arm during learning. These are all taken from the same randomly chosen
experiment. The edge of the gray disc indicates the desired trajectory. The graphics
display the performance on the 1st, 2nd, 4th, 8th, 16th and 32nd trial. They are shown
in order to provide a more intuitive feel of the performance of the arm, in thfs absence of
an actual animation of its behaviour. They cannot be used reliably to compbre between
different experiments because (i) they are only random examples, and so #na.y not be
typical of the performance of the experiment, particularly when there is hjéh deviation
between runs and (ii) they are only shown with limited resolution, and so apparently
circular motion on the diagram might still contain tracking errors. A particular kind of
undetectable error would be the case where the hand lags behind the desired position.

The small table of data in the bottom right hand corner gives the following information:

e The experiment name, “BASIC”, named as such because it is this basic experiment

to which others will be compared.

e The number of runs in the experiment. The mean behaviours displayed by the
graphs on the right become more reliable as indicators of the true mean behaviours,

the greater the number of runs. For 23, the mean behaviour is, with confidence
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|

95%, estimated to lie within 0.5 sample standard deviations of the samﬁ)le mean (as
mentioned earlier the standard deviations are represented by the vertldal bars—see

Appendix A for further details). ;

1

o The tolerance level used by the SAB action chooser. The units are as a proportion
of the estimated minimal and maximal ranges of behaviour. A high value is easier

to achieve, but may lead to reduced task performance.

® The Learned By statistic. This figure is a score which will be used to quantitatively
compare different experiments. It is the number of the final trial upon which the
mean tolerance error exceeds a small fixed threshold (4%). This threshold is indi-
cated near the bottom of the y-axis of the Mean Tolerance graph. The| Learned By
statistic will be used to compare the performance of the SAB action hooser with
different parameter sets. ‘

e The Final Position Error statistic. This is another score, used to ql!ia,ntita,tively
compare the overall task performance of different experiments. It cofglsists of the
mean position error during the last six trials of each run: it is thus the mean of the
final six values of the Position Error graph.

Neither the Learned By statistic, nor the Final Position Error statistic are|particularly

useful in isolation, but they will prove useful as comparators between experiments.

10.3.3 Discussion of the BASIC experiment results

In this experiment all the learning parameters were the default values given in $ection 10.2.
The results demonstrate that SAB learning does indeed learn to control this task. By the
standards set above it took only eight trials to, on average, achieve adequate performance,
and after sixteen trials the tolerance error was always almost zero, 1nd1ca,t1n that on all
trials, the tolerance was almost always achieved.

The task was also learned accurately. In the later tnals, the position Was typically
at worst no more than 0.5% away from the desired distance. Good posxtloﬁa.l tracking
was obtained early on—after only the 4 trials the average position error was only 2%. The
sample standard deviations after the first 10 trials are low, reflecting the con%dence that
the learning runs were not simply lucky. ‘

Figures 10.13-10.16 show the distribution of exemplars in the SA B-tree aft r a learning
run. Some components, particularly the position and velocity components aFe clustered
around the important areas of state space. This is a desirable result, demonbtra,tmg the
variable resolution available from nearest neighbour learning. 1

Each trial took only 20 seconds to simulate, learn and display graphically. F‘he param-

learning system defaults. The exception to this were the state, action and behaviour mini-
mum and maximum ranges which were estimated as what seemed reasonable #fter playing

eter values used in this experiment were not chosen with great care—they Wire the SAB
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Mean Tolerance
50 _.
25 .
0 +
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Mean Position
15 .
10 .
5 |
0 .
0 10 20 30
Worst Position
15 .
10 . BASIC
z ) 23 Runs Toler 10%
0 10 20 30 Leamed by 8 | End Posn 0.41%

Figure 10.12

Experimental method described in the text. All parameters

were default.

with the simulation for a short time. It is nevertheless important to determine
whether the system is brittle as the values change. It would also be interest

the performance improves with other parameters. Such experiments are doc

the following subsections.
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Figure 10.13: The distribution of exem-
plars in “position” space after a learning
run of the BASIC Experiment.

Figure 10.14: The distribution Iexem—
plars in “velocity” space after a learning
run of the BASIC Experiment.
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Figure 10.15: The distribution of exem-
plars in “action® space after a learning
run of the BASIC Experiment.
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Mean Tolerance

50
25
0 j »
0 10 20 30 |4 8 Figure 10.1r7
15 Mean Position Experimental met[hod de-

scribed in | the

32

text. All paramettrs were

; default with the exception
0 10 20 30 !
of the Tolerance parame-
15 Worst Position ter, which had value 50%.
10 TOL.50 3
1l

z | HHIN”“H“HI 21 Runs Toler 50%

0 1'0 2‘0 30 Leamed by 3 | End Posn 2.84%

10.3.4 Tolerance

Making the Tolerance parameter larger makes it easier to learn, but means that the
accelerations (behaviour) which are supplied might be further from those r:[lommended
by ice puck control. An extreme example of this is the TOL.50, experiment displayed
in Figure 10.17 in which any behaviour within half the maximum range of behaviours to
the goal was considered acceptable. Unsurprisingly this learns to achieve the requested
tolerance very quickly, but the performance is poor. The final mean posit‘ron error of
2.84% corresponds to an average 8cm deviation from the trajectory. There is very little
diversity in the actions—in practice the same action is repeated many times foﬁ many parts
of the state space. This results in the smooth, but wrong, curves of the top half of the
trajectory. Very little changes between trials 4-32 because there is no need to refine the
behaviour. The results for a variety of experiments with other tolerances are summarized
in Table 10.7. Each experiment had identical parameters to the BASIC experlqtent except
for the Tolerance. ‘

The pattern is clear that with decreasing tolerance size the time to lea‘n increases
and the final performance accuracy improves. The final experiment, with |a tolerance
of 0.2% was too accurate to be achieved in only thirty-two trials. It is possible that
because of the simulated noise it would never have been achieved. Howeve , there is a
large range of Tolerance values for which the learning is both fast and a,ccuj#a,te, and so

it has, fortunately, proved not to be a critical parameter. It is notable that ité ideal value
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Tolerance Learned By | End Position Err
50% 3 2.84%
30% 5 2.17%
20% 6 0.73%
10% (BASIC) 8 0.41%
4% 21 0.35%
2% 25 0.33%
0.2% Didn’t Learn 0.64%

Table 10.7: Trajectory tracking: Performance variation with Tolerance

Mean Tolerance
50
|
25 |
L = . , .
0 10 20 30

2

Mean Position

0

15

10 Wm

10 20 30
‘Worst Position

NCANDS4

21 Runs

Toler 10%

Didn’tLearn |End Posn 11.37%

10.3.5 Number of Candidates
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Figure 10.18

Experimental method de-
scribed in the
text. All parameters were
default with the exception
of the Num-cands parame-
ter, which had value 4.

depends on the abstract task being performed. Many tasks do not require high accuracy
in their trajectory tracking, and so tolerances as large as 50%, with their impressive rate
of learning, might be desirable.

At each control cycle, in the absence of a known best action, a number of candidate actions
are considered. The BASIC experiment used 10 candidates. At least four ¢
extreme actions are always considered. Figure 10.18 shows the result when these are the
only candidates considered. The performance is consistently bad, indicating that the task
cannot be achieved by extreme actions alone.

idates, the
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0 Figure 10.19
0 10 20 30
15 Mean Position Experimental method de-
10 scribed in the
) z text. All parameters were

default with the exception
0 10 20 30

of the Num-cands parame-
Worst Position

15 ter, which had value 5.
10 NCANDS5
‘5) 21 Runs Toler 10%

0 10 20 30 Leamed by 14 | End Posn 0.64%

Figure 10.19 displays an experiment with five candidate actions. The performance
is considerably improved, but learning is still much slower than that of the BASIC ex-
periment. The final position error is also inferior. This experiment is equivalent to a
combination of ‘SR’- and ‘SL’-control discussed in Section 8.1 in which in the absence of
known success a random action is taken.

The other extreme is shown in Figure 10.20 in which 100 candidate actions are con-
sidered on each cycle. The learning speed is faster than for the BASIC experiment. After
four experiments, when the tolerance is achieved, no further performance improvement
takes place because the SAB action chooser needs not experiment any further. The real
time to run the 100-candidate experiment was about five times greater at the start than
the BASIC experiment, but the total time was approximately the same. This is because
once success has been achieved, the hundred candidates do not need to be generated—the
partial inversion action is always suitable.

Table 10.8 displays the performance of experiments with various values of the Num-cands
parameter.

The importance of having more than a small number of candidates is demonstrated
more clearly when the experiments are conducted with a very small value of Tolerance.
Table 10.9 displays the performance of the system when the Tolerance is 0.2%. The 50
candidates experiment achieved the best final position error seen so far. This is because
of the combination of aiming for behaviour very close to that desired by the ice puck
controller and having sufficiently many candidates that this accuracy is achieved within
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o Figure 10.20
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0 10 20 30 default with the exception

: of the Num-cands parame-
15 Worst Position ter, which had value 100.

10 NCANDS100
: 20 Runs Toler 10%

0 10 20 30 Leamedby 5 | End Posn 0.38%

Num-cands | Learned By | End Position Err
4 Didn’t Learn 11.37%
5 14 0.64%
6 13 0.45%
10 (BASIC) 8 0.41%
50 6 0.39%
100 5 0.38%
200 4 0.41%

Table 10.8: Trajectory tracking: Performance variation with number of candidate actions
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Num-cands | Learned By | End Position Err
5 Didn’t Learn 1.43%

10 (BASIC) | Didn’t Learn 0.64%
50 24 0.17%

Table 10.9: Trajectory tracking: Performance variation with Num-cands with a very small
Tolerance value (0.2%).

Locality Learned By | End Position Err
0 29 0.93%
0.67 (BASIC) 8 0.41%
1 9 0.39%

Table 10.10: Trajectory tracking: Performance variation with Locality
the space of 32 trials.

10.3.6 Other SAB action chooser Parameters

The Locality (HPoc) and Local-const (Cioc) parameters influence the generation of can-
didate actions. As discussed in Section 8.2, a candidate is chosen local to the best known
action with probability Locality. If it is generated locally, then it is generated within a
sphere which has radius proportional to the error of the current best known behaviour.
The constant of proportionality is Local-const. The experiment with Locality of zero
(in which candidates are always entirely random) is shown in Figure 10.21. The learning
rate is significantly slower than that of BASIC. With Locality set to one the experimental
results were almost identical to BASIC. These results are summarized in Table 10.10. The
possible advantage of choosing a Locality less than one is not demonstrated here. This
is the fear that only using local improvements might lead to local minima in the control
choice.

The behaviour with the Local-const appears in Table 10.11. A low value of 0.1 slows
down the learning because the local changes made are too small—the P, heuristic would
score candidates higher which were further away, but with such a low Local-const such
candidates are rarely generated. Values of Local-const between 0.5 and 3 do not greatly
differ from the performance of the BASIC experiment.

The Prob-const parameter, C, alters how the P, heuristic judges the unreliability
of nearest neighbours of differing distance. A low Prob-const causes the heuristic to score
candidate actions as low if they are at a significant distance from the nearest exemplar. A
high Prob-const treats the nearest neighbour estimate as reliable even if it hs at a large
distance. The results of a very low value (0.01) are shown in Figure 10.22. They are very
bad! This is because nothing of any significant distance from the best known Ttion is ever
tried, and as a result the same action is repeatedly used throughout the entire learning
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Mean Tolerance | 1
50
25
0 .
0 20 30 Figure 10.21
15 Mean Position Experimental method de-
10 scribed in the
s text. All parameters were
0 , . ‘ .
0 20 30 default with the e?xceptlon
» of the Locality parameter,
15 Worst Position which had value 0.
10 LOCALITYO
: 21 Runs Toler 10%
1'0 20 30 | Leamedby29 |EndPosn 0.93%
Local-const | Learned By | End Position Err
0.1 18 0.67%
0.5 6 0.35%
2 (BASIC) 8 0.41%
3 15 0.45%

Table 10.11: Trajectory tracking: Performance variation with Local-c
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15 Mean Position Experimental method de-
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: ' " default with the exception
0 10 20 30

of the Prob-const h)a.rame-

15 Worst Position ter, which had value 0.01.
10 PCON0.01
z 20 Runs Toler 10%

0 10 20 30 | DidntLeam |EndPom2055%

Prob-const | Learned By | End Position Err
0.01 Didn’t Learn 20.55%
0.1 9 0.38%
1 (BASIC) 8 0.41%
2 9 0.49%
5 15 0.8%
10 Didn’t Learn 1.88%

Table 10.12: Trajectory tracking: Performance variation with Prob-c%mst

run. A very high value (10), displayed in Figure 10.23, does improve, but take§ longer than
BASIC. The results of other values, tabulated in Table 10.12, indicate that berforma.nce
is not altered greatly for values between 0.1 and 5.

10.3.7 SAB-tree parameters

The SAB-tree parameters are the relative weights given to the components (pf the state,
action and behaviour vectors. In the BASIC experiment they were chosen ro:hghly based
on the observation of the maximum values of each aspect of behaviour. Four experiments
were performed with different weight values. The weightings and results are tabulated in
Table 10.13. For example, the WEIGHT.ALPHA experiment was told that t | maximum
possible perceived x-coordinate of the hand was 3m (BASIC had been told carrectly that
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0 10 20 30

Experiment Maximum Components Learned | End Position
State Action Behaviour By Err
BASIC (1,1,10,10) { (6,6) | (100,100) 8 0.41
WEIGHT.ALPHA | (3,1,30,10) | (6,6) | (300,100) 6 0.59
WEIGHT.BETA | (3,3,30,30) [ (6,6) | (100,100) 13 0.44
WEIGHT.GAMMA | (1,1,10,10) | (6,6) (300,300) 7 1.74
WEIGHT.DELTA | (3,3,10,10) | (6,6) | (100,100) 7 0.37

Table 10.13: Trajectory tracking: Performance variation with a variety of weight sets

it was 1m). It was told that the maximum x-direction speed was three times greater than
that of BASIC and it was similarly told that the maximum x-direction behaviour (i.e.
acceleration) was three times greater than that of BASIC. As a result the nearest neighbour
prediction was more sensitive to the y-direction. This is illustrated in Figure 10.24, in
which the position components of the vectors stored in the SAB-tree are displayed.

The altered weighting can be seen to not have a great effect on perforﬂlance. The
reduced performance in the WEIGHT.GAMMA experiment is because the T‘blerance is
obtained from the scaled space of Behaviours. Thus, a tolerance of 10% when the maximal
behaviour is 300 is equivalent to a tolerance of 30% when the maximal behaviour is 100.

The weights of the actions were not altered for any of the experiments. This is because
their alteration would have also altered the strength of the arm. :

The other SAB-tree parameter is the range width Drange- This pa,ra,metjer is called
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ment.

Table 10.14:

Search-width | Learned By | End Position Err
0.002 9 0.49%
0.02 (BASIC) 8 0.41%
0.06 11 0.44%
0.12 12 0.48%
0.2 Didn’t Learn 0.6%

Figure 10.2h

The distribution qf exem-
plars in “position” Fpace af-
ter a learning run of the
WEIGHT.ALPHA| Experi-

Trajectory tracking: Performance variation with Search-ﬁidth

Search-width. The simulated noise is significant but not very large compared with the
goal tolerance in the BASIC experiment and so a smoothing kernel of a lower width than
the default can be expected to suffice. However, it is interesting to consider the result of

increasing the smoothing kernel.

The results are shown in Table 10.14. They indicate that even with a larg
kernel, performance is not badly affected. However, the largest kernel, with wid

e smoothing
Ith 0.2 of the

scaled SAB-tree width never learns, despite achieving a fairly good final error position.

This is because the very strong smoothing makes a constant regular error (similar to
smudging an image). As a result the behaviour predictions have a regular constant error.

In this case the error is fortunately not large enough to significantly impair the position.
The experiment with a search width of 0.2 took approximately 10 times longer than

the BASIC experiment. This is because of the large range search required for pach update
of the SAB-tree.
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15 Mean Position SAB-tree is only updated
10 after each trial instead of
5 during each trial. Note the
0

o 10 20 30 appalling behaviour in trial

one—no knowledge of the
Worst Position

15 world is available for the
10 STORE.AFTER entire trial.
: 21 Runs Toler 10%

0 10 20 30 Leamned by 9 | End Posn 0.40%

10.3.8 Learning only after Execution

In this experiment I consider the performance if the computation involved with storing
new exemplars is taken out of the SAB control cycle, and is performed off-line. Trajectory
tracking falls into the class of task in which there are natural periods in which extra
processing can take place—namely before each trial occurs. This experiment uses this
period of time to update the SAB-tree with all the data observed in the previous trial.
Thus learning does not occur during each individual task execution. The results are in
Figure 10.25. Performance is reduced, compared with the performance of the BASIC
experiment, but not very badly. This result might be useful if the expense of updating
the SAB-tree were too large to perform within the timescale of the robot’s dynamics.

10.3.9 Approximating the Nearest Neighbour

The nearest neighbour search described in Chapter 6 performs a branch and bound search
of the kd-tree. An objection to this is that although computation is expected to be fairly
cheap (Olog V), it is not guaranteed. A partial remedy, suggested in [Omohundro, 1987]
is to perform normal nearest neighbour search, but after a fixed number, Max-ninsp, of
nodes have been inspected, to halt the search with the nearest neighbour found to date.
This method was tested for Max-ninsp values of 1, 2 and 5. When Max-ninsp = 1
the search consists simply of finding the leaf node containing the query point. The results
are given in Table 10.15. They show that learning does still occur well, with only slight
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Max-ninsp | Learned By | End Position Err
1 13 0.52%
2 11 0.55%
5 10 0.50%

oo (BASIC) 8 0.41%

Table 10.15: Trajectory tracking: Performance variation with Max-ninsp

Search || Final Position Error

Width j| Noisy Very Noisy
0.2% 1.45% 6.0%
2% 1.22% 6.7%
6% 0.93% 5.52%
12% | 0.76% 3.12%

Table 10.16: Trajectory tracking in a noisy environment: Performance variation with
Search-width

degradation against the BASIC experiment.

The real time to perform the experiments was not noticeably less than for experiments
involving normal nearest neighbour search. A disadvantage of approximating the nearest
neighbour is the increased difficulty of analysis of the learning method and some danger
of erroneous predictions becoming stuck.

10.3.10 Noise Tolerance

In this section the amount of noise in the environment is increased. We then inspect the
extent to which the smoothing of Section 7.2 can help improve the performance. The noise
in the BASIC experiment was produced by corrupting the requested torques by a random
amount up to 0.2% of the maximum torque values. This can be observed to produce
unpredictable behaviour corruptions of up to 1%. This default noise level is not severe,
and does not impact greatly on the performance of the system. In eight experiments with
much greater noise the smoothing kernel width was varied to discover how much effect it
had on combating noise. The performance could never be expected to reach that of the
noise free system, because the unpredictable noise was always being added. The controller
has a similar problem to a person trying to do neat handwriting on a bumpy train journey.

The noisy environment had the action corrupted by up to 5% and the ve}kry noisy en-
vironment by up to 20%. The results are in Table 10.16. None of the above L:xperiments
achieved a “Learned By” value. This is predictable because the environment is so noisy.
There is a noticeable improvement in the final position error as the search width is in-
creased, but it is not sufficient to be classed as achieving the task well. Figure 10.26 shows

the performance in the very noisy environment with a low search width, and Figure 10.27
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shows performance with a large search width. The final animations were taken without
noise. This helps indicate how accurate a model of the noiseless world the system has
after 30 noisy trials.

10.3.11 Non-stationary Environment

Recalling Section 7.3, the SAB learning controller should be able to adapt tcp changes in
the environment by noticing that old points are inaccurate and deleting thefj(n. Here, we
test this behaviour. The standard BASIC experiment is used, except that unk?}nown to the
controller, just before trial 11, the arm’s dynamics are changed severely. Tﬂe motor for

the elbow starts producing 11 times the requested torque. The results of Figures 10.28
and 10.29 show the effect on performance. The animations correspond to different trial
numbers from the earlier figures. Trial ten, which is the last trial before thh change, is
shown first. A selection of subsequent trials are also shown, and indicate the behaviour
after the change, both in the long and short terms. Figure 10.28 shows the effect with
change adaptation switched off—points are never thrown away no matter how old or
inaccurate they are. Thus, after trial 10, mistakes can be seen to be made fof the rest of
the run. With adaptation switched on (Figure 10.29), using a Search-widt parameter
of 6%, adjustment performance can be seen to be superior, with an eventual return to
acceptable performance. The return to improved performance is, however, not as fast as
was the original learning which started from no experience. It is likely that there are two

compounded reasons for this.
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1. The environmental change is very large, meaning that the new PSTF is, to a large
extent, an entirely different function.

2. The learning controller is not warned that a change has occurred, and sp must have
time to observe this.

From these results it could be argued that the simpler scheme of forgetting everything
after a period of increased average prediction error would be preferable. The objection to
this is that real environmental changes are likely to (i) be much less severe a,nd (ii) have
an affect only in a limited portion of the state space, meaning a loss of valuabie data, if all
information is remowed.

10.3.12 Performance of the kd-tree

The real-time performance of these learning trials was observed to be good: typically 20
seconds to simulate, learn and display. This gives indirect evidence that nearest neigh-
bour search is performing as desired. To test this more directly the search déorithm was
monitored for how many Euclidean distance measurements were taken. The#e measure-
ments are the dominant cost in nearest neighbour search—we can be sure tha.# the cost of
reaching the leaf node in the tree is loga,fithnlic (since the tree is balanced w‘henever the
depth exceeds a small constant times the logarithm of the number of nodes 1P the tree).
Furthermore, reaching the leaf is cheap because Euclidian distance calculatijpns are not
required. The details of the nearest neighbour search algorithm are given in S}sction 6.4.

10-31 '



Mean Tolerance

S50
25
0
0 10 20 30
15 Mean Position
10 |
s |
0 |
0 10 20 30
‘Worst Position
15
10 | ENONST.SW1
: ) 15 Runs Toler 10%
0 10 20 30 Didn’t Leam | End Posn 1.17%
Mean Tolerance
50
25
0
0 10 20 30 112 14
15 Mean Position
10
5
0 .
0 10 20 30
Worst Position
15
10 ENONST.SW30
s
10 Toler 10%
0 }!ﬁ Runs er
0 10 20 30 Learned by 29 | End Posn 0.90%

10-32

Figure 10.2%8

A non-stationary ienviron-
ment. The arm c#ynamjcs
change on trial 10 to pro-
duce 1.5 times th‘P torque
that they used to. ;This ex-
periment has a very small
search width, meaﬂing very
few old inaccurate exem-
plars are killed.

Figure 10.29

A non-stationary pnviron-
ment. The arm db'na.mics
change on trial IOi to pro-
duce 1.5 times th+ torque
that they used to. ij‘his ex-
periment has a re#sonable
search width (6%), mean-
ing that some oldi inaccu-
rate exemplars are %killed.
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is remarkable: although the cost increases initially with tree size, it actually \decreases as
the tree gets larger! The typical number of distance calculations in the final trials is 6.
This is bizarre, but can be explained by the improving behaviour of the arm as learn-
ing progresses. The BASIC experiment achieved tolerable behaviour by, on verage, the
ninth trial. At this point, when partial inversion is used to obtain a candidate action,
the requested behaviour and state are very close to the (correct) state-behaviour pair ex-
perienced on the preceding, also successful trial. Thus there is often a very nearly exact

match for the nearest neighbour search to find, which usually means very
backtracking is required.

The graph of the cost of search against tree size is shown in Figure 10.30. The result
ittle search

To test this theory, we view the corresponding graph (Figure 10.31) for an experiment
in which satisfactory performance was never attained. Here we use an experiment with a
large amount of simulated noise. In this case it can be seen that the typical number of
distance calculations is 15.

The conclusion is that, as hoped, there is empirical evidence that the nearest neigh-
bour computation can be performed in real time because the distribution of xemplars is

conducive to nearest neighbour search, and can actually improve the speed as the task is
learned more accurately.
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10.4 Further Arm Experiments

These experiments are concerned with how the arm would perform if it were given a more
complex task than tracking a prespecified trajectory. Many robot tasks, such as “pick
and place” require that the robot move to a variety of positions, and it is int
important to see how performance is affected as the task demands that incre
of the control space are learned.

The experiments also demonstrate the use of ice puck control, described i
In these experiments trajectories are generated dynamically and autonomously. Fig-
ure 10.32 shows an example of a movement task, including the (stationar ) start and
goal states. The goal is to make the movement in 25 time steps. Figure 10.33 shows the
ice puck trajectory generated to achieve this puck goal. Because puck trajectories are
so cheap to compute they are recalculated every control cycle instead of be ng tracked.
Figure 10.34 shows the trajectory recomputed after three very unskilled action choices had
taken the hand far from the original trajectory.

section 9.2.

Figures 10.35—10.38 demonstrate by means of animations how performance improves
upon repetitive attempts at the movement task. It is seen to achieve the puck goal on only
the third attempt, and after ten attempts the hand deviates very little from {the straight
line trajectory computed for the first step. This is indicated in Figure 10.39 which shows

the ice puck trajectory generated three steps into a later trial. It matches alrhost exactly
the initial generated trajectory of Figure 10.33.
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Figure 10.33: The ice puck trajectory to Figure 10.34: The ice puck trajectory to
the goal state in 25 time steps, beginning the goal state in 22 time steps, beginning
at the exploration start state at the state which the arm has artived in

after three, very unskilled, time steps.
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Figure 10.35: Animation of the first ex-
plore attempt. The goal time was 40 time
steps, but this took much longer to even
reach the target’s neighbourhood.

Figure 10.36:
plore attempt

Animation of the|3rd ex-

Figure 10.37: Animation of the 6th ex-
plore attempt
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The ice puck trajectory
to the goal stat¢ in 22
time steps, beginning at the
state which the
. arrived in after three well

m has

executed time steps. No-
tice that is nearly identi-
cal to the trajectory of Fig-

ure 10.33.

A more quantitative indication of the performance of the movement task is gained
in Figure 10.40 which graphs the mean tolerance error for a number of movement task
runs and Figure 10.41 which graphs the final position error. The final position error is a
representative statistic of how well the task was performed. The puck goal was to achieve
the position in forty time steps. The error after forty time steps was used as the statistic,
but the trial was allowed to continue to try getting closer to the puck goal for a further
period of time on the early occasions in which the hand did not achieve 3% ppsition error

or less within forty steps. The system parameters were all default.

10.4.1 Higher Dimensional Tasks

The previous movement task, once learned, was no harder than the traject ry tracking
task, because each subsequent trial would require the same journey through state space.
The task requires a one-dimensional strand through state space and so let|us call it a
one-dimensional task. To test how the performance would degrade with i creasing di-
mensionality I devised some two, three, four and five-dimensional tasks. In each case the
task generates a random start position and a random end position, each distributed uni-
formly within certain subspaces of the arm’s reaching domain. Varying selections for the
start and end distributions produce different dimensionality tasks. They are depicted in
Figures 10.42—10.45.

An interesting thing to examine is the distribution of exemplars after the|tasks of in-
creasing dimensionality. Figures 10.46—10.49 show a snapshot of the position components
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Figure 10.4p
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Figure 10.4
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Figure 10.42: 2-d exploration. The
arm always starts in the same state, but
the goal is chosen uniformly randomly
from a 1-d set of states.

Figure 10.43: 38-d exploration. The

arm always starts in the same state, but

the goal is chosen uniformly randomly

from a 2-d set of states.

. Start Range
ﬁ End Range

Start Range
End Range

Figure 10.44: 4-d exploration. The
arm starts randomly, from a 1-d set of
states. The goal is chosen uniformly ran-
domly from a 2-d set of states.
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Figure 10.45: 5-d exploration|
arm starts randomly, from a 2-d
states. The goal is chosen uniform]
domly from a 2-d set of states.
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Explore Dimension | Learned By | End Position (%)
1 8.3 0.11
2 9.3 0.2
3 124 0.36
4 20.9 0.5
5 26.9 0.39
5 (decomp.) 24.8 0.29

Table 10.17: Exploration performance summarized

of the exemplars in the SAB-tree after twenty random trials. They give an indication of
how the dimensionality, and hence the amount that needs to be learned, increases. For

example, the trajectories in the two-dimensional diagram all have similar speeds about
half way through, which helps nearest neighbour to generalize better than in the three-
dimensional tasks, in which the speed of the hand midway through trials |varies more

greatly.

The tolerance error graphs for these tasks are shown in Figures 10.50—10.53 and the
final position error graphs in Figures 10.54—10.57. The graph data in summarized in
Table 10.17, in which the “Learned by” statistic in the number of trials until the mean
tolerance error was permanently less than 10ms~2, which corresponds to 0.3%of the Tange
of possible tolerance errors.

The table indicates that learning is impaired by tasks of higher dimensionality. How-
ever, the nearest neighbour generalization is in this case sufficiently powe
formance, in each case, does eventually reach an adequate level. This beh
guaranteed in general, and so one solution might be, when a high dimensional task is
required, to use an abstract controller which breaks it up into low dimensional tasks. This
is exemplified by the five-dimensional decomposed task. Instead of moving from a random

start position to a random end position in forty time steps, the controller uses two tasks:

1. In twenty time steps, take the hand from the random start position to near a sta-
tionary state at the centre of the space.

2. Then, in a further twenty time steps move to the random goal position.

The task description, exemplar distribution, tolerance graph and position graph are shown
in Figures 10.58—10.61. The summary statistics are included in Table 10.1
that both learning speed and accuracy improve as a result. It is conjectuged that for
even higher dimensional tasks in higher dimensional state spaces this kind

. It is seen
dimension

reduction at the control level will rather than merely improving performance, be essential
for a reasonable learning rate.
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Figure 10.47: 3-d exploration.
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Figure 10.48: 4-d exploration. Distri-
bution of position components of exem-
plars in the SAB-tree after 20 trials.
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through path.

Figure 10.59: 5-d decomposed explo-
ration. Distribution of position lcompo-
nents of exemplars in the SAB-tree after
20 trials.
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10.4.2 Autonomous Time Choice

In the experiments of the previous section the goal was a specified position in forty time
steps. Here, we make the task more abstract and simply specify the goal position and
leave it up to the world model-based controller to arrive at the goal in a reaspnable time,
which varies according to how far apart the start and end states are, and| where they
are situated. The abstract controller here is used as an indication of the kihd of simple
mechanism which can be used, based on learned world models, to increase thed abstraction
of the task. It is not to be considered as a serious attempt at a robust optimal controller.

The decision of how many time steps are required is achieved by means of [the strength
estimation mechanism of Section 8.3. The controller is told the start and end states for

the task, and then performs a binary search of possible times to goal. For each possible
time to goal it estimates if it has the strength to achieve the time to goal, using an ice
puck trajectory. It does this by generating the ice puck trajectory, and then using the
strength mechanism to decide if

1. With probability greater than Py, (specified by system parameter presig, and given
value 0.2), twice the required acceleration at the start state can be obtained.

2. With probability greater than Py, twice the required acceleration half way through
the trajectory can be obtained.

3. With probability greater than P, twice the required deceleration at the end of the

trajectory can be obtained.

This is only a heuristic, and is certainly not likely to be near optimal control. Twice the
required acceleration is used in the strength estimation to provide a degree of robustness.
The results for autonomous time choice are shown in Tables 10.18 and |10.19. The
times to achieve the goal are all, on average, quicker than forty steps used in the previous
task. Learning is slower in all cases because (i) the increased average speed means an
increased diversity of the accelerations requested of the SAB action chooser and (ii) some
extra variation is introduced in the tasks in the initial stages before accurate estimates of
strength become available. By the standard of the “Learned by” criterion,
does not learn within 150 trials, although the 5-d decomposed task does. The decomposed
task is necessarily slower, because the indirect route to the goal is often less efficient.

10.4.3 Disordered Environment

The autonomous-time-choosing 5-d trial was run in a noisy environment. The noise level
was sufficient to randomly corrupt the acceleration by typically up to 5ms=2 which is 1.5%
of the range of accelerations. Whilst subjected to this uncontrolled noise, both tolerance
error and final position error are seen to improve with trial number in Figures 10.62
and 10.63.
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Explore Dimension | Learned By | End Position (%)
1 18.6 0.36
2 31 0.43
3 43.5 0.46
4 87.9 0.44
5 Didn’t Learn 0.5
5 (decomp.) 64.1 0.57
Table 10.18: Autonomous time-choice exploration performance summarized
Explore Dimension | Mean time steps to goal
1 24
2 22
3 24
4 29
5 28
5 (decomp.) 36
Table 10.19: Autonomous time-choice: mean time per trial
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Figure 10.62: 5-d exploration in a noisy Figure 10.63: 5-d exploration in a noisy
environment. The mean Tolerance er- environment. The mean final position er-
ror. ror, expressed as a percentage.
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position for the remaining 110 trials. Figures 10.64 and 10.65 show the results.

The final experiment was adaptation to a changing environment for the 5-d putonomous-
time-choosing task. For this experiment the Search-width parameter was tripled. It can
be seen in Figures 10.66 and 10.67 that neither improvement nor reduction in performance
occurred, except to a small extent for the Tolerance error, which tended to increase slightly
for approximately thirty trials after the change. The reason for the lack of 1 ge effect is
likely to be because the distribution of exemplars was so wide (due to the tagk’s high di-
mensionality, compounded by variations due to autonomous time choice) that misleading

exemplars were not noticeably inaccurate, and were possibly more use than nolinformation
at all.

10.5 Juggling a Ball

This simulated experiment is motivated by a similar (but real) experiment by [Aboaf et al.,
1989] A visually observed ball is bounced on a two-dimensional surface (see Figure 10.68).
The flat surface can be moved upwards at a specified speed and angle. The following
information is observed once every bounce:
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non-stationary emvironment. The mean stationary environment. The m final
Tolexance error. Dynamics change on position error, expressed as a percentage.
trial 40. Dynamics change on trial 40.
o The z coordinate of the ball, ;,p, when the ball reaches the top of the bounce.

¢ The y coordinate of the ball, y;op, when the ball reaches the top of the bounce.

¢ The horizontal speed of the ball, uop, when the ball reaches the top of|the bounce.

The vertical speed is zero at the top of a bounce. The three values (2q4p, Ytops Utop)

constitute the perceived state of the system.
The ball is controlled by the surface. The surface is always reset to the

ame height

before the ball reaches the top of the bounce. Then, a short period of tine, tgo, after
the ball reaches the top of its trajectory, the surface centre starts to move upwards with
constant speed vgo,. The bat is also placed at angle 6, to the horizontal. Thus the three

variables tg,, vgo and 0o affect the behaviour of the surface and constitute the action used

to control the ball. The permissible values of the state and action components are shown

in Table 10.20. If any state variable exceeds its range the ball is deemed to h
The following PSTF was learned:

gxtop, Ytop» utop)l X gtgo, Vgo, 030)1 - Szltop, yltop, ultopz

St;te Ac?ion Beha‘riour

where (2't0p, ¥'tops W'top) is the perceived state of the subsequent bounce.
The abstract controller was based on the notion of an ideal state: Tiop

ve crashed.

(103)

=0, Ytop =

1,up = 0. On each control cycle the controller attempts to apply an attion which
at least halves the current error of each state variable. The error of a sthte variable
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(Xtop’,Ytop’,Utop’)
(Xtop,Ytop,Utop)

Figure 10.68

A single ball bounce. The

surface was mov

wards, and was at

angle.

—15 < wp < 15
05 < Yop < 2
-1 < upp < 1

0 < 1% < 05

~05 < v, < 05

02 < 8, < 02

Table 10.20: Ball bouncing: permissible state and action values.
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is its absolute difference from its ideal value. For example, if the current state were
Ttop = 1, Ytop = 0.8, Utop = —0.2 then the SAB action chooser would be requésted to find
an action to produce a next state for which

0.5 < Twp < 0.5
09 < gop < 1.1 (10.4)
-0.1 S utop S 0.1

This abstract contreller is more robust than one which aims precisely for the i
the ball is in danger of crashing it is of primary importance to prevent its
worse and only of secondary importance to try to send it immediately to th
It should be noted that this abstract controller is not trivial in design, an

ate getting
ideal state.
it required
some of the human designer’s qualitative domain knowledge.

10.5.1 Results

The graph of Figure 10.69 shows the number of bounces against trial numbe
lated world has 2% noise in each variable and all the S4B system parameters

The graph shows that for the first 13 trials the number of bounces before
usually between three and thirty. Trial 14 was successful for over 200 bounc , but there
was an eventual serious mistake. Trial 15 was halted after four hours of simulation had
produced over 15,000 successful bounces. Figure 10.70 shows the behaviour of the Tiop

. The simu-
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and yop components of state. They varied greatly until trial 15, when they were kept
safely within 5% of the centre of their ranges.

Further experiments were performed with 5% noise in the perceived st
tions. Figures 10.71 and 10.72 show performance respectively without and
smoothing mechanism. In the second case the range width Drange was 5% of the width of
the SAB tree domain. The results provide evidence that smoothing the observations im-
proves performance. It should be noted that despite the inferior results of the unsmoothed
experiment, its juggling behaviour was still good, with several trials of more than 1000
bounces. The smoothed experiment was run three other times, on each occpsion halted
after 10,000 bounces. The successful trial numbers were respectively 16, 20 and 20. A
smoothing kernel of twice the width (10% of the domain width) was also tried. It was
halted after 5,000 bounces on trial 21. The large smoothing width caused an pproximate
five-fold decrease in computation speed.

Graphs 10.73 and 10.74 show the performance in a changing environment. The ball’s
coefficient of elasticity increases during trials (it starts at 0.8 and increases to 1 asymp-
totically). In Figure 10.73 the initial change is sufficiently quick that by trial 70 the c.o.e.
is very close to 1, and so no further apparent change occurs. Only after changes have
become negligible is there a trial that avoided disaster, indicating that the adaptation
mechanism was not able to help during the environmental change. In Figure 10.74 the
changes are significant until approximately trial 180. There were no disast
before the experiment was halted on trial 220.
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10.6 The Volley Task

Figure 10.756

An early volley pttempt.

d from

the right towards the arm.

state of

the ball the controller erro-

will ar-

rive at the grey circle. The

the bat

and flies up vertigally be-
fore falling to eart}.

The volley task was described in Section 9.5. It is an example of a compound task which

has several learning components and is considerably larger and more complex

than typical

learning control tasks described in the literature. However, it is simulated. There is

significant simulated noise to capture the same sort of disorder that a real

experiment

would have. The task is decomposed into a hierarchy of learning controllers which involve

three SAB-trees which learn and control the following:
o The perceived state transition function of the arm.
o The dynamics of the bat/ball collision.
o The behaviour of the ball (used for prediction only).

The new SAB-trees have default parameters except for the scaling of the ¢

romponents.

The components were not difficult to scale—they are all either speeds and positions in the

simulated world, and so used the same scaling as that used for the arm.
The simulated ball has noise in its dynamics: enough to vary the arrival
up to approximately 3% of the length of the arm.

Figures 10.75 and 10.76 show the behaviour of the arm during an early a
respectively.

position by

nd late trial

Figure 10.77 graphs the performance of a relatively easy task, where the br.\.l is always
8

fired from the same position and velocity and the bucket always remains in the
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Figure 10.7
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A successful vollegy. As

well as modelling
arm, the controller|

its own
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rectly predicted where the

ball will be when

it is in

range and found a correct
speed with which tp hit the

ball back to the bu

Figure 10.7

A histogram of

cket.

distance

from bucket agai

st trial

number. The successful
volleys, which lapded in

the bucket, are shown in
white. During these trials

the bucket was fi
the ball always fin

the same speed an

tion.

ked and
ed with
d direc-

After five trials a suitable hitting speed is discovered, and a value close to this speed is

used for subsequent trials.
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Figure 10.7

as A histogram of |distance
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dom speed but congstant di-

rection.

Figure 10.78 displays the results of the considerably harder task in which the ball is
fired at a random speed for each trial, and the bucket is placed in a random position. It
requires approximately twenty trials before the behaviour can be said to be irly skilled.

Figure 10.79 shows the behaviour when the bucket is placed randomly and the ball
is fired with a random speed and direction. There is an improvement in bdhaviour but
the probability of failure is still roughly 20% even after over 100 trials. This is because
even then there is still a fair probability that the starting state of the ball i sufficiently
far from any previous experience that the behaviour predicted by the nearest neighbour
is inadequate.

Thus learning behaviour is demonstrated for a complex robotic system. The learning
was efficient—approximately 30 seconds per volley attempt initially, rising o 3 minutes
per attempt when the SAB-trees were large enough to cause substantial virtiual memory
swapping on the computer. The final size of the PSTF SA B-tree was approximately 50,000

exemplars.

10.7 Experimental Results: Conclusions

The experimental results have generally confirmed the goals of this investigation. The
learning rate was very fast—only a small number of trials of any experiment were required.
Indeed, the testing was (by the standards of much previous research for which learning
speed was not top priority) somewhat severe in that an experiment was usually classed as
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Figure 10.7

A histogram of

number. Before e

the bucket was pl
random position.
was always fired

rection.

unsuccessul if learning had not occurred within a few dozen trials. It was also d
that the rate of learning is not badly affected by increased accuracy requirem
“hold still” task of Section 10.2 the time to achieve any given tolerance was see
only logarithmically with the reciprocal of the tolerance.

The learning was also computationally efficient, even with kd-trees of u
exemplars. This was particularly noticeable for the hand-eye experiment i
real time to learn, including waiting for arm movements and image processi

distance
from bucket against trial
pch trial

ed at a
he ball
ith ran-

dom speed and random di-

pmonstrated

ents. In the

n to increase

p to 10,000

n which the
ng was only

in the order of thirty minutes. Learning did become noticeably slower w

en kd-trees

were several tens of thousands of exemplars large. This is conjectured to be bdcause of the
extravagant use of memory in the current implementation of the SA B-trees, which requires

256 bytes per exemplar, causing a 20,000 node tree to use 4 mageabytes of
causes substantial virtual memory swapping. Use of very large range search

store which
widths also

slowed computation. This is because SAB-tree update then involved accessing p significant

fraction of all exemplars.

The learning was robust. It was demonstrated that all system paramet

rs could be

varied considerably without significant detrimental effect on performance. Futhermore, no
experiment became “stuck”. The smoothing mechanism was demonstrated to elp combat

noise in the arm experiments and the juggle experiments.
The change adaptation mechanism was also shown to have some benefici

the trajectory tracking and juggling tasks, but for the high dimensional aj

results were disappointing. A worthwhile area for further study would be
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the pruning of old inaccurate exemplars by more sophisticated (and probably off-line)
statistical analysis.

Finally, a significantly complex task—volleying—was controlled successfully by a hier-
archy of SAB learners. Learning took place simultaneously at different layerp of abstrac-
tion, demonstrating how learning world models can be of considerable help dven for high
level robotic tasks.
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Chapter 11

Some Extensions

This chapter reviews some extra topics which were researched during the course of
the dissertation, but which are not central to its main ideas. In Section 11.1 Albus’
CMAC is discussed in further detail, in particular its relationship to ezemplar-based
methods. In Section 11.2 the use of Dynamic Programming in conjunction with
SAB-learning is examined and extended.

11.1 Albus’ CMAC and kd-trees

The Cerebellar Model Articulation Controller (CMAC) is a connectionist model, devised
by J. S. Albus in the early 1970s, for learning smooth, continuous, non-linear mappings [Al-
bus, 1975a; Albus, 1975b; Albus, 1981]. It is specifically useful where a high degree of
global generalization is positively not wanted, but local generalization to take advantage
of the assumed smoothness is welcome. In the next section I will summarize its imple-
mentation and behaviour. Although the implementation is connectionist, I then propose
an alternative kd-tree implementation with exactly the same behaviour, called “Symbolic
CMAC”. I conclude by comparing the behaviour of CMAC with that of the nearest neigh-
bour generalization.

11.1.1 CMAC Summary

CMAC implements a mapping from a quantized k,-dimensional space S to a real-valued
kp-dimensional space P. When an input vector is presented either for access or update it
is preprocessed to obtain a number of indices into a large array of weights. These indices
are chosen in a manner (detailed in [Albus, 1975a]) which causes vectors close to each
other in S-space to have a large proportion of shared indices. The notion of closeness is
defined by a metric dist: S x S — R.

The closer two vectors are, the more indices they share. Conversely, beyond a certain

distance they share no common indices. Let us call the set of indices associated with an
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input vector X the neighbourhood of X. The indices address array entries which contain
k,-dimensional weights.

When CMAC is being accessed these weights are all added to produce the predicted
vector from P-space. Write Wi (4) as the weight corresponding to the index i at learning
iteration N. Let nhood(X) denote the set of indices associated with input vector X. The
value predicted for input X on the Nth iteration is

In(X)= >,  Wn(). (11.1)
ienhood(X)

When CMAC is updated the update increment is distributed evenly among all the
indices in the neighbourhood. If on the Nth learning iteration we wish to increment the
predicted value at Xy by the value 65, the weights are adjusted thus:

Wn(i) + #6n  if i € nhood(X
Wh(i) = N(i.) T HiE " (Xn) (11.2)
Wy (%) otherwise.
Where C =| nhood(Xn) |. There seems no reason to vary the number of indices in

different neighbourhoods, and so generally C is a system constant independent of the
neighbourhood. Conventionally the initial value of all weights is zero so In(X) = 0 for all
X.

When the learning data is presented as a set of (Xu, Py) pairs, the increment on
the Nth iteration is obtained by first finding the current predicted value In(Xn), then
evaluating the error Py — In(Xn) and incrementing CMAC at Xy by this error. An
alternative increment, used by [Miller et al., 1987; Miller, 1989), is the error multiplied by
a training factor §.

11.1.2 CMAUC Discussion

The weight array is multi-dimensional, and so will be very large if k, is larger than 3 or
4 and the components of the input vectors are quantized to more than 10 or so levels.
This problem can be solved for CMAC by hashing the weight indices down to a much
smaller array. Thus each cell in the smaller array will correspond to a very large number
of cells in the original weight array. The hash collisions have been observed empirically
not to cause great inaccuracy. This can be explained by distribution of increments over
a neighbourhood: if a proportion of the distributed weights are corrupted, their expected
summed error is small compared with the summed values of the valid weights.

CMAC has been used in recent work [Miller et al., 1987] and has performed fairly
accurately. This work needed only to learn a one-dimensional “strand” of the inverse
dynamics of a robotic manipulator along a repetitive joint space trajectory. The con-
centration of data around this strand helped minimize hash-collision problems, providing
good performance even with surprisingly small hashed-arrays of only 2000 elements.
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A further advantage of CMAC is that it can learn when it is not provided with explicit
(input, output) (11.3)

pairs, but simply rough
(input, direction of prediction error) (11.4)

observations. This can be used to learn mappings such as evaluation functions in which
an explicit evaluation of a state can rarely be obtained even after observation, but an in-
dication of whether the current value is too optimistic or pessimistic is generally available.

CMAC’s problems include the need to quantize, the need to keep neighbourhoods
small (for efficient update and access), the inaccuracies caused by hash collisions and the
difficulty of a formal proof of convergence.

11.1.3 Symbolic CMAC

An explicit geometric representation of the data passed to CMAC can have exactly the
same prediction as CMAC itself. I call this new representation “Symbolic CMAC”.
The representation is the explicit set of all the ( input vector , increment ) pairs we
have experienced:
E = {(Xo,0),(X1,61)...(XN-1,6N-1)}. (11.5)

To predict, the following calculation is used. Jn(X) denotes the prediction at vector X
after N observations.

> .| h00d(X5) N nhood(X) |

In(X) = i [ nhood(X;) |

(11.6)
(X:,6:)eE

This prediction can be computed naively by initializing the result as 0 and then for i
between 0 and N — 1:

1. Enumerate all the indices in nhood(X;).
2. Enumerate all the indices in nhood(X).

3. Count the number of duplicate indices.

. < number of duplicates
4. Add to the result: §; number in nhood(X;)"

The proof that Jy = Iy is by induction on N.
This rather inefficient implementation can be improved by working out the size of the

intersections of neighbourhoods indirectly instead of in this explicit manner. In [Albus,
1975a] the neighbourhoods are designed to

1. Have the property that any two close input vectors will have a large intersection of
neighbourhoods, and further vectors will share correspondingly less.
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2. Contain a sufficiently small number of indices for acceptable performance.

CMAGQC’s closeness measure is an approximation to Hamming distance. To facilitate
computation the symbolic method will use instead the L., metric. That is

distf( X,Y)=max | X; - Y; | . (11.7)
)

We can now define the neighbourhood of X as those indices within a fixed distance d of X
(this is exactly what the CMAC method of choosing indices does in the one-dimensional
case, and what it approximates in higher dimensions). The size of a neighbourhood is
(2d)*:.

nhood(X) = {Z : dis{( X, Z) < d} (11.8)
The size of the intersection of two neighbourhoods of X and Y can now be computed. If
dist(X,Y) > 2d it is zero. Otherwise it is the volume of a ks;-dimensional cuboid. The
length of the ¢th dimension of this cuboid is the distance of overlap in the ith dimension
which can be shown to be 2d— | X; — Y; |. The volume of the cuboid is thus

ks—1

IT @d-1X;-Y; 1) (11.9)

3=0

Thus, for this metric, the prediction is

IN(X) = > 6; scale(X, X;) (11.10)
X; ¢ dist(X,X)<2d
where 1
scale(X,Y) = [ (1 - |X Y |) (11.11)
j=0

Only those vectors lying within distance 2d from the input vector are inspected. If the
vectors are stored in a balanced kd-tree, the expected cost of obtaining these vectors is
O(ks(log N +5)) where N is the total number of vectors, S is the number of vectors which
do lie within range and k, is the dimensionality of S space.

The L., metric was used simply because the neighbourhood intersection computation
is easy. The L, (Euclidian) or L; (Hamming) metrics might have been preferred. The
Ly computation is the intersection of two hyperspheres, which is straightforward (and
because the intersection size is simply a function of the distance between the two points it
can be precomputed in a one-dimensional look up table). The L; calculation should also
not be computationally expensive, but I have not attempted the unpleasant geometry to
calculate the intersection.

11.1.4 Symbolic CMAC: Discussion

In this section I will mention some of the advantages of symbolic CMAC, but the main
point of interest is not to suggest an alternative implementation, but the link between the

apparently unrelated connectionist and geometric representations.

11-4



The advantages are:

e It is unnecessary to choose quantization levels for the components of the input vec-
tors. This is an advantage (i) in terms of accuracy and (ii) because it is not necessary

to decide in advance which ranges of the vectors need highest resolution.

o The neighbourhoods can be large without a dramatic increase in computational
cost: for example they can consist of all points which have all components within
30% of the full range of input vector values. For the original CMAC this would
mean an exponential increase in the number of indices in the neighbourhood for
each new dimension. To avoid this, CMAC must use a fixed neighbourhood which
only approximates the generalization that would be obtained from the Hamming
distance metric.

e There are no inaccuracies induced by hashing collisions. This will be most impor-
tant when the dimensionality is sufficiently high that each cell of CMAC’s hash
array would correspond to many weights and an adequate function approximation
is desired over more than a small strand of the space. Without hash collisions the
predicted function looks smooth, which may be of use if a gradient estimate is de-
sired.

The disadvantages are:

e The memory size is not fixed. It is argued in Section 5.5 that this is acceptable
because there will not be time for the memory to get large beyond current physical
storage. However, the fixed memory requirement of CMAC, even if large, is more
appealing.

e The time for access might be worse. The time to store a new observation in the sym-
bolic CMAC is trivial, but accessing involves a range search. The cost of this search
depends critically on the distribution of the data and the size of the neighbourhood.
It is certainly bounded above by NV, the number of observations, but in general can
be expected to be very much cheaper. The author has not undertaken a detailed
empirical comparison. The cost of Symbolic CMAC is expected to be similar to that
of SAB learning, which in Section 10 is demonstrated as adequate.

e The original CMAC was partially motivated as an attempt to model the behaviour
of the human cerebellum. It is clear that Symbolic CMAC is a large step away from
the biological model, despite having the same behaviour.

11.1.5 Comparing CMAC with SAB Learning

The intended use of CMAC is the same as that of the nearest neighbour generalization:

non-parametric prediction from data. It has been effectively demonstrated, particularly
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by [Miller et al., 1987]. It is shown here to be equivalent to a geometric representation,
with an prediction obtained from basis functions. The basis function is scale(X,Y) used in
Equation 11.10, and now it becomes apparent that the choice of local weighting as being
the volume of the intersection of two neighbourhoods is only one of a range of possibilities.

The disadvantages over the nearest neighbour are that its behaviour is very sensitive
to the size and shape of the neighbourhood and that unlike the nearest neighbour there
is no reasonable prediction far from any experience (CMAC will predict 0; nearest neigh-
bour will provide at least a rough estimate). In a high dimensional space in which the
data is necessarily sparse this is a serious problem except in familiar subregions. Nearest
neighbour also provides an estimate of how reliable its prediction is, as the distance of the
nearest neighbour.

Both CMAC and nearest neighbour have the problem of determining the scaling for
the variables. The solutions proposed for nearest neighbour based on statistical analysis
of the data could be applied equally well to CMAC.

CMAC and Symbolic CMAC are both resistant to a noisy and slowly changing envi-
ronment. Naive nearest neighbour performs badly with such data, but the modifications
used for SAB learning solve these problems. The most important advantage of CMAC
and Symbolic CMAC is that they can still learn when trained not on input—output pairs
but values indicating the direction of the error of the current prediction.

11.2 Reinforcement Learning using Dynamic Programming

Here we are concerned with a dynamic system which has a continuum of actions and a
continuous two-dimensional state space. The task is of the class which needs a non-local
control strategy, and so learning the world model is not the only problem.

The main thesis of this work has been that with abstractions provided by world models,
other aspects of the controller may be preprogrammed with ease, and need not be learned.
In this section, however, I discuss a simple investigation which considers one way of further
increasing the controller’s autonomy. The method is based on dynamic programming (DP)
which is, for example, described in [Burghes and Graham, 1980)]. Dynamic programming
has recently been popularized as a method to be used in conjunction with reinforcement
learning by [Sutton, 1990]. Figure 11.1 shows a simple dynamic system.

A puck is sliding on a bumpy surface. It can thrust left or right with a maximum
thrust of one Newton in either direction. However, because of gravity, the actual horizontal
acceleration varies. In fact, in the puck position shown, the maximum right thrust is not
strong enough to accelerate up the slope. This is made more clear in Figure 11.2. It
is a state space diagram. The puck’s state has two components (its perceived position
and velocity) and thus can be represented by a two-component vector. In the figure the
horizontal axis corresponds to puck position and the vertical axis corresponds to puck
speed. To explain further, the west of the diagram are states in which the puck is to
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Figure 11.1

A frictionless puck acted on
Thrust by gravity and a
thruster. The target posi-
tion is shown by the cross
hairs.

the left, east denotes “puck on right”, north denotes “puck moving rightwards” and south
denotes “puck moving leftwards”. The cross-hairs show the goal state, which is stationary,
three quarters of the way up the hill (that is, state 2 = 10m, v = Oms™!, where z denotes
position and v denotes velocity).

The arrows show the next state of the puck if it were to thrust rightwards with the
maximum legal force of one Newton. Notice that at the centre of state space then even
when giving this maximum thrust the steep slope causes the puck to gain negative velocity
and slide left. Does this mean that if the puck is stationary at z = 0 that it is impossible
to get to the goal state?

If the world model is known then the answer can be obtained by searching breadth first
through all sequences of actions applied starting at the initial state. The more computa-
tionally tractable procedure of Dynamic Programming can be used to provide the same
information. The dynamic programming algorithm is shown in Table 11.1.

To perform DP with a continuum of state and action variables it is necessary to
partition both the state space and the action space into a finite number of possibilities.
In this puck example the partitioning is achieved by quantizing the actions to 15 different
levels and by quantizing each state variable to 64 levels, producing 4096 discrete states.

Dynamic programming is then performed, using, as the state transition function the
analytic world simulation model. The results are portrayed graphically in Figure 11.3.
They indicate that it is possible to reach the goal state by moving left initially and then
accelerating to the right to gain sufficient speed to reach far enough up the hill before
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Algorithm: Dynamic Programming
Input: Finite set of states S = {sy,...,3,}
Finite set of actions A = {a;,...,a,}
State Transition Function f: S X A — S
Set of goal states U C S
Output: A set of triples O = {(s;, ai, E(s;))}
where O C S x A x Integers
Pre U#¢
Post: The output triples have the following property. (s;,a;, E(s;)) € O if
and only if E(s;) is the minimum number of time steps needed to get
to any goal state starting from s; and a; is an optimal action which
can be taken in state s; to achieve this.
Code:
1. n:=0
2. Oo := {(3i,—,0): f(si,a;) €U
3. whilen=0o0r O, # 0,
3.1 n:=n-+1
3.2 O, :=0,1U
{(si, @i, m) : (f(si,a),aj, E;) € Op_y for some aj, E;.}
4. O := Oy

Table 11.1: The Dynamic Programming Algorithm
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gravity brings the puck to a halt.

We are interested in what can be done if there is no predefined analytic world model to
consult. Consider the case where the only experience of the world had been gained from
the two trajectories shown in Figure 11.4, which consist of a total of 33 experiences (this
was obtained by running two puck trials in which, on each control cycle, the puck chose a
random thrust in the range -1 to 1 Newton).

A SAB world model model was learned from these experiences:

Puck Position and Speed x Puck Thrust — Puck Acceleration (11.12)
State Action Behaviour

Dynamic Programming was then performed using only this learned world model. The
results are shown in Figure 11.5. The strategy obtained looks encouragingly similar to
the optimal strategy obtained by DP with the analytic model, although there are errors,
particularly in the right hand half of the state space (for example the bottom right hand
corner). In fact there is also a region of critical error among the states leading up to the
goal. Figure 11.6 shows the results of running using actions recommended by this DP’s
action map. Unfortunately the misplaced discontinuity leads to a missing of the target.
This is not very disheartening because it was based on absolutely no experience near
the goal state. Having had this failed attempt more information near the goal has been
obtained. When this extra information is added to the SAB-tree, and DP is applied again
with the updated world model, a superior controller is obtained (shown in Figure 11.7,

11-9



Velocity

Figure 11.4

Some random experiences
in the Puck’s state space.

-5

-20 -10 0 10 20
Position

though the difference is unfortunately hard to detect visually) which is now sufficient to
achieve the goal on the next attempt (see Figure 11.8).

It has thus been shown that the world models obtained from SAB-learning can be used
instead of an analytic model to autonomously compute non-local control. However, DP
works by quantizing and enumerating the state and action spaces which is exactly what
the SAB world model learner has been designed to avoid. Thus it seems a shame that the
world model learner can survive high dimensions but the controller which uses it cannot.
Even with the fairly trivial Puck example, DP is rather computationally expensive (five
minutes processing on a UNIX workstation using the SAB-learned world model).

11.2.1 Variable Resolution Dynamic Programming

Instead of enumerating the state and action spaces, let us follow the same approach that
was used for SAB-learning. Here, an experimental method is described which performs
computation only within those areas of state and action space which have actually been
experienced.

First, let us consider in depth the assumptions that DP makes in order to estimate the
minimum time to goal. We shall denote this estimation by Eitg.

1. Eug(s1) < Eug(s2)+1if the world model predicts that for some action it is possible
to get from state s; to state s; in one time step.

2. Ettg(Goa.l State) =0
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Figure 11.5: Dynamic programming us- Figure 11.6: Trajectory produced by us-
ing a world model obtained from SAB ing the results of Figure 11.5.
learning.

Figure 11.7: Dynamic programming us-
ing a learned world model updated with
the experience of Figure 11.6.

Figure 11.8: Trajectory produced by us-
ing the results of Figure 11.7.
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3. The estimated time to goal (Eitg) for all states in the same quantization cell is the
same.

The first and second assumptions are logically valid, and the third assumption is necessary
in order to supply DP with a finite number of states. This is not necessarily accurate, but
accuracy can be gained by increasing the number of quantization levels, and hence the
number of distinguishable states. It is based on the assumption that E:g is smooth and
will thus not vary significantly within each quantization cell.

The smoothness assumption is not necessarily true (for example, there is a discontinuity
in Figure 11.3), but away from discontinuities provides an excellent estimate of the optimal
action.

To perform the equivalent of DP without needing to look at states other than those
that we have experienced, let us make an alternative smoothness assumption:

3a. Eiz has maximum slope A. For any two states s; and s;
| Bug(s1) — Eveg(s2) |< A 81— 55 | (11.13)

The new DP algorithm evaluates states by finding the most pessimistic Eyg which
agrees with the world observations and which fits the constraints 1, 2, and 3a above.

Why is the most pessimistic value within the constraints used? The advantage is that it
is the most clearly defined interpretation. A moment’s reflection shows that the optimistic
evaluation within constraints would be useless: it would simply be that Eyg(s) = 0 for all
states. There is also a computational advantage in being pessimistic—the Eyg estimate
can then be computed for each state that has been experienced with reference only to
other states which have been experienced.

The only states which have their Eyg’s recorded are the goal state(s) and all states
which have been experienced. The latter are recorded in a SAB-tree.

Initially, before any experience, the estimated time of the goal state (8goal) is zero, and
by (3a) we know that for any other state s,

I ‘EttS(s) - ‘Etts(sSO&]) IS A I 8 — Sgoal | (1114)
Thus, because we use the most pessimistic estimate, and putting Eyg(Sgoal) = 0, we derive
Euig(s) = A | s — sgoat | (11.15)

This produces Figure 11.9. The apparent quantization is due to the primitive 2-d
graph drawing software. There is no quantization for the actual algorithm. Here, A is
chosen as 6.4 time steps per metre, which corresponds to gradient 500 in uniformly scaled
SAB-tree units. The start state (z = Om,v = Oms™1) has Ey g = 64 time steps.

I shall now describe the operation of finding the most pessimistic Eyg that satisfies
constraints (1), (2) and (3a). We are given a known goal state Sgoal and a set of observations

{s0 = s0'y..., 8, = 8,} (11.16)
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The operation is achieved by two algorithms. The first, Evaluate, finds the value of any
state, given the known values of a set of other states, by means of constraint (3a). The
second algorithm computes the E, for all experienced states sg,so, ..., Sn,S,'. It uses
the Evaluate algorithm and constraints (1) and (2). The reader who is interested in the
behaviour of these algorithms, but not their implementation, should skip to Section 11.2.4.

11.2.2 The “Evaluate” Algorithm

This takes, as input, the query state s and a set of known evaluations

ES = {(30,E0)7- --’(sk,Ek)} (11'17)

Let us call such a set an evaluation set.

The simplest algorithm to estimate Eyg(s) would look at each member of ES in turn.
Constraint (3a) tells us that for each member (s;, E;) € ES, Eyg(s) < Ei+ A |s—s;|. In
particular we know that Eig(s) is no greater than this expression for the value of i which
minimizes E; + A | s —s; |. To be pessimistic, it must be assumed that Ey,(s) equals this
minimum value.

The algorithm of finding the minimum value by scanning the whole evaluation set
would be valid, but slow. A superior algorithm has been developed which searches the
evaluation set as a kd-tree in a similar manner to that of a nearest neighbour search.
Search states are often reached at which the lowest value of E; + A | 8 — 8; | yet found is
sufficiently low that other hyperrectangles in the tree need not be searched. This occurs
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when the distance d of the hyperrectangle to the query point is sufficiently great, that the
lowest possible expression of any point in it (which is 0 + Ad) is greater than the best
yet found, and so search cutoff may occur. With a large value of A almost all the tree is
cut away. The value of A in chosen as large anyway, in order to increase the chance the
constraint (3a) is valid.

11.2.3 Evaluating all Experienced Points

Here I explain how to fill the set of all observed states with their correct Eyg values, given
a set of observed state transitions

{s0 = s0'y-- -, 80 — 8n'} (11.18)

It starts with an estimate of the Ey’s of all states based solely on the distance to the
goal state. It then iteratively reduces this estimate using (1) and (3a) while ensuring the
estimate never becomes more optimistic than is necessary to satisfy the constraints.

An evaluation set called ES is constructed.

ES = {(s0, Fo), (30', Eo’), - - -, (8n, En), (sx', Ex)} (11.19)
It is initialized by
Ei=A| sgoa1 — 3 | E/=A|s-3s/| for every i. (11.20)
Then the following two steps are performed

1. For each ¢, E; := min( E;, 1+ E;’). This is necessary to ensure constraint (1) is
upheld. A state cannot have an evaluation more than one greater than a known
successor state.

2. All the E;s and E;s are all recalculated using the Evaluate algorithm applied to
the evaluation set ES. This is necessary because the previous operation might have
made some previously poor states into good states. Other states which are close to
these improved states should themselves be given superior evaluations to maintain
constraint (3a).

The two operations above are repeated in turn until there are no further changes to ES.
Although not proved here, it is believed that, as is the case with the standard Dynamic
Programming algorithm, this termination only occurs when all constraints are satisfied,
and that the resulting evaluation is the most pessimistic.

11.2.4 Algorithm Behaviour

To illustrate this procedure, let us consider the results of incorporating a small number

of transitions. The trajectory and the resulting pessimistic evaluation function are shown
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in Figure 11.10. Notice that the evaluation has improved for the states early on which
subsequently followed an improving trajectory but did not change for the part of the
trajectory which became worse.

After further experiences, some random and some using the evaluation function (un-
successfully), the experiences and evaluation function looked as in Figure 11.11. It can be
seen to resemble the evaluation function obtained by normal dynamic programming. This
is further confirmed by inspection of Figure 11.12 which shows the action map derived
from the evaluation function. However, it can also be seen that unless a particularly lucky
random experiment takes place, no trial starting at the state space centre will succeed.
Following the arrows in Figure 11.12 it can be seen that it will first travel down and to the
left through state space, then up, on the left side until it swings rightwards moving along
the top. However it comes down too early, meaning it slows down too soon and doesn’t
make it up the hill. Thus it gets close, but not close enough. This can be seen to have
happened already several times in Figure 11.11. This performance is good, considerably
better than with the naive local controller, but not quite good enough.

Rather than wait for a lucky random experiment to occur, I gave the controller a hint
by starting the puck in a very good state, which was still scored badly by this evaluation
function. This is the state of moving rightwards at great speed at z = 0. It is good because
the hill can be used to decelerate in time to reach the goal. The interesting question was
whether the controller would generalize from this extra success.

The trial was carried out, causing the evaluation function shown in Figure 11.13. This
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new evaluation function is good enough to aid the control of the puck from the centre of
state space, as shown in Figure 11.14. This is encouraging because some useful experience
in one area of the state space has aided entirely different areas—a very non-local effect.

11.2.5 Discussion

The initial Variable Resolution Dynamic Programming implementation has demonstrated
that it is possible to learn to control dynamic systems using non-local strategies. Its
advantages are:

¢ Variable resolution. It can adjust to resolutions of interest and is non-parametric.

These two important features have been discussed earlier in this dissertation (see
Section 5.2).

¢ Inexpensive computation. The cost of updating the evaluation function is low.
It happens once at the end of each trial, though there would be nothing to prevent it
from occurring incrementally, in parallel with the trials. The typical update cost is
Nlog N in the number of experiences because the number of dynamic programming
iterations is usually only one unless a great “discovery” is made which leads to re-
evaluation of non-local parts of the state space. This is a considerable improvement
on high dimensional Dynamic Programming,.
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¢ Learning rate. The rate of learning is high compared with non-DP methods be-
cause the one-shot property of SAB learning is retained.

However, the initial implementation still has some serious problems.

e Serious discontinuities seem likely in many evaluation functions. The smoothness
assumption (3a) is invalid. Empirical evidence is needed to determine how seriously
this undermines performance.

¢ Gaining useful experience. The problem of gaining experience is more difficult
than it was for the SAB action chooser because those areas of the state space in which
it is important to experiment may themselves be very hard to reach. Furthermore, in

a dynamic system such as this, random actions usually result in very quick disaster.

e Not proven. The only domain in which it has been attempted is a two-dimensional
state space in which quantization of variables is actually adequate. A more complex
test is required.

It is not clear that it is important to learn non-local or optimal controllers. The
example task here could have been controlled by a slightly more complex local controller
which used the tactics

1. Get to a stationary state at the bottom of the valley.
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2. Move to z = —18m.

3. Accelerate towards the goal.

Such a controller is slightly more work on the part of the system designer, but is not
difficult to achieve. It seems likely that to solve the non-local control autonomously it
might be more profitable to automate the acquisition of qualitative plans such as that

above, rather than to compute them at a low level as we have been doing in this section.
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Chapter 12

Conclusion

The conclusion takes the form of a summary of the work of the dissertation, then
a description of its important contributions, and finally a discussion of possible

extensions.

12.1 Summary

The principal theme of this dissertation has been that realistic robot learning can occur if
the things which we choose to learn are models of the world, and that this is particularly
useful if the learning is practical, efficient, fast and robust. The supplementary theme has
been that learned world models are sufficient to make the rest of robot control considerably
easier.

A robot task is controlled by the SAB control cycle, reproduced for a final time in the
left of Figure 12.1. World models are learned by explicitly storing every experience as a
triplet of data: the perceived state in which the experience occurred, the raw action which
was then applied, and the resulting perceived behaviour.

By generalizing to new experiences using the closest known experience, it has been
explained and demonstrated that learning happens quickly.

Part of the dissertation has dealt with the data structures and algorithms necessary to
ensure robust nearest neighbour performance. These have included mechanisms for fast
access and update, and robustness to disorder. The dissertation also provides a theoretical
analysis of what can be learned, and how quickly, by the nearest neighbour method. The
resulting data structure is the SAB-tree: a modified, data-sharing, pair of kd-trees.

The SAB action chooser performs more slowly during early learning, when it knows
that it does not know how to achieve requested behaviours. In such cases it can choose the
most promising and informative out of a variety of candidate actions, by means of the P,y
probability of success heuristic, which is defined in terms of the partially learned forward
(State x Action — Behaviour) world model. The first candidate action considered
by the SAB action chooser is always the one recommended by partial inversion. This is
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The structure of SAB-learning.
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obtained by nearest neighbour search of the inverse (State x Behaviour — Action), and
possibly faulty, model. This is checked by passing it through the forward model, and if
adequate the partial inversion action is used. As more is learned, access becomes faster
because the partial inversion estimate is usually known to be suitable, and thus almost
no action choosing computation is required. The system becomes increasingly reactive as
task performance improves.

An important feature of this work is the attempt to escape the curse of dimensionality.
This can only be done in one of two ways.

1. Assume there exists extra structure in the problem and then find the best fit of the
data to the structure. This is effective if it is known that any new problem will have
a solution in the required structure. Otherwise learning can get stuck.

2. Deliberately restrict learning to particular low dimensional subsets of the data which
are sufficient to solve the task. This approach was adopted.

The dissertation then describes how

o The part of robot control which is conventionally regarded as the bottom level—
the modelling of the robot/world dynamics—can be achieved automatically by SAB
learning. Furthermore the models can be learned for any perceived variables suffi-
cient to determine the state, action and behaviour of the robot.

e Middle abstraction levels such as stability and trajectory tracking can be dealt with
in a unified manner—ice puck control. These are tasks in which the behaviour
required can be obtained very easily from the current perceived state and current
perceived goal.

e Complex tasks, for which local perception-based control strategies do not exist,
can be broken up into a hierarchy of simpler SAB controllers at varying levels of
abstraction. This is demonstrated for the difficult control task of volleying a ball
into a bucket with a dynamic robot arm. At this stage the structuring needs to be
performed by some expert, presumably human. In order to be able to classify the
controller as truly autonomous, it would have to be able to devise the structuring
strategy itself. At this stage the lack of full autonomy is a compromise, justified
by the observation that a large proportion of the effort in robotic control using
conventional methods is not in inventing abstract strategies, but in modelling the
world.
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12.2 Contributions

12.2.1 Design and Detailed Investigation of the SAB Control Cycle

This work has integrated perception, kinematic and dynamic learning, and posed them as
one problem: the relationship between raw perceptions of state, action and behaviour. It
was shown that much of the previous model-learning work in the field can be cast in the
same format. The SAB control cycle was introduced, and its use was demonstrated by a
range of detailed empirical experiments.

12.2.2 Using Nearest Neighbour to Learn World Models

The nearest neighbour method had been used for classification for some years. Its use
to learn mappings had been suggested, but generally passed over in favour of asymptoti-
cally more accurate, though slower and less general, local regression methods. [Clocksin
and Moore, 1989] is the first published work known to the author which actually uses
the nearest neighbour method to learn a robot world model. Other independent inves-
tigations [Mel, 1989; Atkeson and Reinkensmeyer, 1989] have successfully used nearest
neighbour within robot learning investigations, though in each case with a different end
in sight.

This work has enhanced the kd-tree based nearest neighbour method for the purposes
of SAB learning. In particular it has

e Modified it to simultaneously learn the valid “safe” forward model State X Action —
Behaviour, and the useful (but not necessarily valid) inverse model State x Behaviour —
Action. The forward model allows the correct model of the world to be learned with-
out the danger of “sticking” or ambiguity dangers which the inverse model can cause.
However, when the inverse model is valid it can be consulted for fast performance.

¢ The simple form of nearest neighbour is in danger of performing poorly in a noisy
or non-stationary environment. This work therefore augments the method to cope
with these situations in a robust fashion which is also optimized for efficiency. The
extra cost is borne entirely at world model update time, which is argued to be less
critical than at world model access time because (i) accesses are more common than
updates, and (ii) if absolutely necessary the world model could be updated off-line
(as the STORE.AFTER experiment demonstrated in Section 10.3).

* The kd-tree based nearest neighbour algorithm was tested under a variety of condi-
tions.

12.2.3 SAB Action Chooser

I have implemented a probabilistic mechanism which solves the perform /experiment dilemma,
by using knowledge about its own knowledge to decide whether experimentation is nec-
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essary, and if so what a good experiment would be. I have shown how the process of
repeated experimentation can be viewed as an optimization process which will not get
stuck in local minima. In the neighbourhood of the optimal action, the error decreases
exponentially with subsequent choices (the number of bits of accuracy increases linearly).
The SAB action chooser also biases the dense, high accuracy, learning to take place only
in restricted subregions of the control space, which is essential for learning to take place
in high dimensionality.

12.2.4 Integration of SAB Control with Compound Controllers

I developed a technique for hierarchical learning to take place at multiple levels of abstrac-
tion which, unlike earlier proposals, does not suffer from the danger of being stuck due
to the credit or blame assignment problem. This danger is avoided because the system
learns, at all levels, only ob jective observations about the world, rather than action maps.

12.2.5 Incidental Contributions

o Based on empirical tests, I have improved the kd-tree building algorithm in order to
increase nearest neighbour search speed, at the expense of some tree balance.

e I have provided a survey of recent work in learning robot control.

o I have extended the proofs of PAC-learnability produced by [Aha et al., 1990; Kibler
et al., 1988] for nearest neighbour based classification, to the learnability of generally
continuous functions.

¢ I have identified and proved the potentially useful relationship between Albus’s
CMAC [Albus, 1975a; Albus, 1975b] and a kd-tree-based representation—“Symbolic
CMAC”.

I have made some initial demonstrations of how world model learning can also help
autonomously learn non-local control strategies. This has been by means of dynamic
programming, supplemented by a learned SAB world model, and by means of an
experimental variable resolution version of dynamic programming.

12.3 Future Work and Extensions

The following areas were identified as important issues in Chapter 3, which surveyed the
learning control field. Can this work be extended to encompass them?

12.3.1 State Identification

This work has assumed that it was an easy job for the system designer to specify which
sensor inputs were sufficient to determine the system state. If this were not the case,
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then what could be done? One possibility would be to let the robot use the values of
all conceivable sensors and previous action signals—and perhaps their time derivatives as
well. Tt is likely that all the information would be sufficient to determine state, but there
would be a great deal of redundancy which would slow down all algorithms which were
time dependent on state vector length, and also impair the nearest neighbour algorithm.

Solutions to this have been proposed:

e In [Vogel, 1989], potential state signals which have no effect on behaviour are de-
tected.

o In [Aha et al., 1990}, state components are weighted, and weights of “poorly pre-
dicting” components are gradually reduced to zero.

o In [Simons et al., 1982], the most recent sensor readings are initially considered
sufficient state representations, but in the presence of apparent non-determinism

increasingly older sensor readings and action choices are used to augment the state.

12.3.2 Non-determinism

A new mapping must be learned in place of State x Action — Behaviour. This is
State x Action x Behaviour — [0, 1] (12.1)

This is the relationship between the state, the action applied and the probability distri-
bution of the behaviour.

The probability density can be estimated using an exemplar set E in a variety of
ways [Omohundro, 1987]. The SA B action chooser is already designed to choose the action
with the highest probability of success, but in its current implementation the uncertainty
is only in terms of lack of information. The estimate could be supplemented with an
additional term indicating the estimated inherent uncertainty in applying an action.

12.3.3 Induction

The SAB learning method could not be called inductive. The representation of the world
model is not an attempted explanation of the data, instead it is the data.

This non-inductive representation is used precisely to avoid making extra assumptions
about the data, which could lead to stuck learning were they incorrect.

Nonetheless, once the data were gathered it would be interesting, and possibly useful
for more abstract aspects of control, to try to explain it. There are numerous inductive
learning systems, including decision trees and genetic classifier systems, but a particularly
suitable method might be Aha’s instance-based learning [Aha et al., 1990; Kibler et al.,

1988], which obtains a simple explanation in the form of a small number of exemplars
under the nearest neighbour generalization.
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12.3.4 Further Work on Autonomous Non-local Control

It is intended that variable resolution dynamic programming, as described in Section 11.2,
be investigated further. If successful it might help take the automation of system design
even further up the hierarchy of abstractions. For example, the acquisition of techniques
such as ice puck control, might be automated.

12.3.5 Fast Local Regression

Some of the early work of this investigation used regression based on a selection of local
exemplars instead of nearest neighbour prediction. This was abandoned because

o Nearest neighbour gave good performance accuracy for a considerably simpler algo-
rithm.

o Local regression was very hard to implement with adequate real time performance
(for reasons described in Section 5.2).

e Local regression was much less noise-tolerant.

However, with increasing computational power it might be easier to use local regression
instead of, or in conjunction with, nearest neighbour, particularly to help guide the SAB
action choosing search.

Further interesting and important extensions include additional empirical tests with
real, dynamic robots, and also the intriguing question of how to learn “safely”—in en-

vironments where certain sorts of poor performance, even once, would be unacceptably
expensive.

12.4 Concluding Remarks

Robotics is a young and promising discipline but it is generally agreed that robots would
benefit considerably from more autonomy than that of present industrial machines. It is
also well known that models of the behaviour of the robot can considerably simplify robot
control. Here we have seen that a robot can learn surprisingly quickly and easily from its
environment by simply recording everything that it observes. It is this central idea which
has motivated the development of the SA B learning system, and it is to this idea that the
success of these initial demonstrations must be attributed.

It is hoped that some of the ideas of this dissertation might prove useful in practical
systems. It is an exciting thought that the acquisition of world models might be a realistic
next step in robot automation.
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Appendix A

Format of Graphs

Figure A.1 shows an example of the graph notation used in this dissertation. The
graph was obtained from running, in this case, forty experiments (hence the “N = 40”
on the key). For each z-coordinate on the graph, there were thus forty statistics. The y
coordinate corresponding to each z-coordinate is the mean of these forty statistics. In order
to represent the spread of the data, the standard deviation of each set of statistics is shown.
The length of each bar above the mean point is the standard deviation. Occasionally some
standard deviation bars are so large that they do not fit entirely on the graph and are
thus clipped.

The standard deviations have a second use. Along with knowledge of the number
of statistics, they can indicate the confidence that the mean of the sample is the true
mean of the population. For N observations, the probability that the mean lies within
1.96/v/N sample standard deviations of the mean is approximately 95% [Hoel, 1971].
This is because the sample mean p, of a reasonably large set of observations behaves like
a normally distributed variable with mean y, and variance 02/N where o2 is the sample
variance. The number of observations for this to be generally accurate has been observed
as approximately thirty.

For example, if the mean value is 10, the sample standard deviation 5 and the sample
size 40, there is a 95% probability that the true mean of the population is between

5
104 —— (A.1)

The proportional length of the confidence interval is shown to the left of the key.
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Appendix B

Nearest Neighbour Polynomially

Learns Continuous Functions

Looking back at the proof of nearest neighbour learnability given in Section 5.3, the number
of exemplars required for the coverage lemma depends directly on €, ¥ and a where in
turn v depends on § and ¢ depends on B and . We know that if we find an n such that
(i) » > N(e,7, ) as defined in Equation 5.12, (ii) v < 14 and (iii) that | I, [> 1 - 38,
then (with probability 1 — a) we will have achieved tolerance 8.

Here we begin by showing, for the case of a uniformly continuous function, that the
dependence of € on # is linear. This is because a uniformly continuous function has the
property (see [Burkhill, 1978]) that

IGeR:
k (B.1)
Vz,2' €[0,1]" | f(z) - f(a')|< G |z -4']|.
Thus if we choose € = §/G we know that for any domain points z,z’
ol
|z -2’ |< e (B.2)

= | f(e)-f(@)|<G|lz-2'|<Ge=14

as required. Using this ¢, the number of exemplars N(e,v,a) = N(6/G, B/2,a) which is

n= (2 [%} k) x log (-1- [M-I k) (B.3)
Bl 6 al 6 ) )

Thus when learning uniformly continuous functions the number of k-dimensional exem-
plars required is better than (k + 1)-nomial in }, linear in Zlf and sublinear in 1.
It can also be shown that for bounded-slope functions with discontinuities caused by
finite region boundaries, the dependence of € on 8 and 6 is polynomial (proved for a strongly
related case in [Aha et al., 1990]). Furthermore, it is conjectured that for asymptotes
for which the gradient increases polynomially with the reciprocal of the distance to the

discontinuity, that the dependence is again polynomial.
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Appendix C

Estimating whether a Directed
Behaviour is Attainable

The heuristic described in this appendix was used in the “autonomous time-choice” ex-
periments in Section 10.4. The occasional need for such a heuristic was discussed in
Section 8.3. An estimate is required of the probability that a behaviour is attainable at
the current state. The task controller can use this probability to decide if it is sufficiently
unlikely that it it not worth requesting of the SAB action chooser.

This probability is a heuristic estimate. With the same motivation as has the Piuce
estimate (Sections 8.1 and 8.2), it is chosen to be robust and computationally cheap. It
assumes the goal behaviour has a direction. This is equivalent to defining a behaviour
origin op. The concept of a behaviour having a direction is generally acceptable—for
example the behaviour of a dynamic manipulator is an acceleration vector which has a
clearly defined origin and direction. Thus, let us define the magnitude and direction of a

goal vector by

bgoal — OB

—_— 1
Moo (C.1)

It then estimates the global probability, that there exists any action which can achieve a

Mgoal =' bgoa.l — OB | and dgoal =

behaviour whose component, in the requested direction, has at least the requested mag-
nitude.

This global probability is computed using the following approximation:

: : ; There exists an extreme action
There exists an action which

can attain the goal magnitude | which can attain at least the (C.2)

in the goal direction goal magnitude in the goal di-

rection

where an extreme action is an action such that each component is either the minimum
or maximum of the permitted values. If the two events of Equation C.2 are consid-
ered equivalent then their probabilities are the same. The number of extreme actions is
gDim(Action) po; each of these, the probability of achieving a behaviour component at
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least as large as that requested can be computed using the probability of success heuristic
which was used in Section 8.1.

(dsoal‘b;?:rom) — Mgoa.l
C l (scurrent, aq) - (snear, aneu') '

Prob(B.dgoa > Mgoa l Scurrent 0q, E) = erf( ) (C.3)
where a, is the gth extreme action and where (Snears nears bnen,b;‘;‘:f"h) is the nearest
neighbour to (Scurrent; @) in the exemplar set E.

The probability that all of these actions are unable to achieve a large enough component
is no more than the probability that the most promising cannot achieve the magnitude
(from Prob(A N B) < Prob(A4)). So if the probability of success of the most promising
action is less than some resignation probability, P,.s, then this estimate recommends that
the SAB action chooser resign itself to using the best known action.

The computational expense of this scheme is not great for a low dimensional action
space (Dim(Action) < 4). For a higher dimensional space it might be necessary to
perform a hill-climbing search among extreme actions to find an approximation to the
most promising extreme action.
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