Technical Report A

Number 21

Computer Laboratory

The correctness of a
precedence parsing algorithm in LCF

A. Cohn

April 1982

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 1982 A. Cohn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



THE CORRECTINESS OF A PRECEDENCE PARSING ALGORITHM IN LCF

A. Cohn
University of Cambridge, Computer Laboratory,
Corn Exchange Street, Cambridge CB2 3QG, England

April 1982

Abstract. This paper describes the proof in the LCF system
of a correctness property of a precedence parsing algorithm.
The work is an extension of a simpler parser and proof by
Cohn and Milner (Cohn & Milner 1982). Relevant aspects of
the LCF system are presented as needed. In this paper, we
emphasize (i) that although the current proof is much more
complex than the earlier one, many of the same metalanguage
strategies and aids developed for the first proof are used
in this proof, and (ii) that (in both cases) a general strat-—
egy for doing some limited forward search is incorporated
neatly into the overall goal-oriented proof framework

1. INTRODUCTION

In this paper we give an account of the proof in LCF of a
correctness property of a precedence parsing algorithm for a small ex-
pression language. The correctness of the algorithm is relative to a
particular 'unparsing' (parse tree flattening) function. The work is an
extension of a parser (for a language fully disambiguated by parentheses)
formulated and proved by R. Milner (Cohn & Milner 1982). Milner's work
was based in turn on a parser proved in the Boyer-Moore system by P. Gloess
(Gloess 1978). This paper is intended to be self-contained, although it
follows naturally from Milner's earlier parser proof. Relevant aspects of
the LCF system are explained as required, but readers unfamiliar with the
system may wish to refer to the system manual (Gordon et al.1979).

The points we emphasize here are (i) that although the current
proof is much lonéer and more complex than the earlier LCF parser proof
(about 150 times as long in the number of actual formal inferences), the
metalanguage strategies and aids used in the original problem form a
large part of what is needed for the current one, and (ii) that (in both
cases) a general strategy for doing some limited forward proof is incor-
porated neatly into the overall goal-oriented proof framework. More

generally, we emphasize the success of the LCF system in the expression




and solution of this rather complicated problem; in particular, (i) the
natural way in which the parsing algorithm and its correctness property
are expressed in LCF's extensible logic PPLAMBDA, and (ii) the power of
LCF's metalanguage, ML, in expressing proof generation strategies and in
extending the logic and implementing new rules of inference.

We describe the parser and unparser and the correctness prop-
erty in section 2. A sketch of the informal proof is given in section
3. Section 4 describes the formalisation of the problem in PPLAMBDA, and

the generation of the proof using ML strategies is presented in section 5.

2. THE PRECEDENCE PARSING ALGORITHM

2.1. The language and domains

Words (well-formed expressions), w, of our language are given

by
wit= I | IBwWRB | uw | bw

where I is an identifier, u and b are unary and binary operators respect-
ively, and LB and RB are constants standing for left and right brackets,
respectively. Brackets are optional; operators OP,0P,0P 5 ¢+ have

precedences which can be compared. We write
op, > op,, op; = op,

to indicate, in turn, that op, has greater or equal binding power

than op,- Precedences enable words to be interpreted unambiguously. (We

assume that operators with equal precedence are identical, for simplicity.)
To state the problem clearly, we specify the following domains

and abbreviations:

I ¢ IDEN tdentifiers

u € UNOP unary operators
b,bl,b2 € BINOP binary operators
op € OP = UNOP + BINOP operators

BRAC = {LB,RB} brackets

SYMB = IDEN + BRAC + UNOP + BINOP symbols

WORD = SYMB LIST words

t,ty»t, € PTREE = IDEN + (UNOP x| PTREE) + parse trees
(BINOP x PTREE x PTREE)




SYMB LIST is intended to be a recursively defined domain (we could also
write IDEN LIST, integer LIST, etc.). We assume LISTs have the usual
primitives: "." for the conétructor, "@" for concatenation, and '"mil" to
denote the empty LIST.

PTREE is also a recursively defined domain. We let

mkTIP : IDEN -> PTREE
mkUN : UNOP ~-> PTREE -> PTREE
mkBIN : BINOP ~> PTREE -> PTREE -> PTREE

be the functions which construct trees from their components.
Binary operators must be either left or right associative, so
that we can parse expressions such as "Il b 12 b I3". We introduce

predicates '"left" and "right" on binary operators, to determine associa-

tivity.

2.2 The parser and unparser

The parser works by mapping states to states. A state consists
in (i) the whole or remaining part of the input word (a list of symbols),
(ii) a stack (or list) of operators and brackets to be used later, and
(iii) a list of parse trees to be combined eventually into the final

parse tree.
ParserState = SYMB LIST x OP' LIST x PTREE LIST

where OP' = BRAC + OP. The function "parse'" has type:
ParserState -> PargerState.

The parser begins by examining the leading symbol of the
input word. A typical ParserState is written (w,o0s,rs) for the input
word, operator-bracket stack and result stack. The clauses defining the
parser (the function "parse") are given below. (We are not very formal
at this point; for example, "b.w'" (where "b" has type BINOP and "w" has
type SYMB LIST) is not really well-typed, but suggests coercing "b" to
have type SYMB. In section 4 we introduce the necessary injection and

projection functions.)




1. parse(nil, nil, rs) = (nil, nil, rs)
2. parse(nil, b.os, t2.t1.rs) =
parse(nil, os, (mkBIN b t; tz).rs)
3. parse(nil, u.os, t.rs) =-parse(nil, os, (mkUN u t).rs)
4, parse(b.w, nil, rs) = parse(w, b.nil, rs)
5. parse(l.w, os, rs) = parse(w, os, (mkTIP I).rs)
6. parse(u.w, os, rs) = parse(w, u.os, rs)
7. Zf u > op or u = op then v
parse(op.w, u.0s, t.rs) = parse(op.w, os, (mkUN u t).rs)
8. Zf b > op then
parse(b.w, op.os, rs) = parse(w, b.op.os, rs)
9. <Zf b, > b1 then
parse(bl.w, bz.os, tz.tl.rs)”=
parse(bl.w, os, (mkBIN b2 t1 t2).rs)
10. zf b, = bl then 1f left b, then
5+08, tz.tl.rs) =
parse (bl.w, os, (mkBIN b2 t1 t2
parse(bl.w, b2.os, rs) = parse(w, bl‘bZ'OS’ rs)

parse(bl.w, b

).rs) else

11. parse(b.w, LB.os, rs) = parse(w, b.LB.os, rs)

12. parse(LB.w, os, rs) parse(w, LB.os, Ts)

13. parse(RB.w, o0s, rs) clear(w, os, rs)
14. clear(w, u.os, t.rs) = clear(w, os, (mkUN u t).rs)
15. clear(w, b.os, tz.tl.rs) =

clear(w, os, (mkBIN b £y t2).rs)

16. clear(w, LB.os, rs) = parse(w, os, rs)

The function "clear'" has the same type as 'parse'; the two
are mutually recursive.

The workings of the parser are explained as follows:
2. and 3. 1If there is no more of the input word, the stacked-up tree
fragments are simply combined, using the operator stored at the front of
the operator list. 1. If there is no operator list, the parser terminates.
4. and 6. If the input word starts with a binary operator and the
operator list is empty, or 1if the leading symbol of the input is a unary
operator, the operator in question is stored on the operator stack.
3. If the leading symbol is an identifier, a corresponding one-tip tree
is constructed and placed on the result stack, to be incorporated in the

final parse tree later. 7 - 10. If the leading symbol of the input is an




operator, and the first element of the operator stack is too, then the
precedences of the two operators are compared. If the stacked operator
has the greater precedence (or if the operators are identical and left
associative), then the one (or two) most recent subtree(s) are combined
into a tree, with the top of the operator stack as its top node. Other-
wise, the leading symbol of the input is placed on the operator stack for
later use, and the analysis of the input continues. 11. and 12. If the
input starts with a left bracket, the bracket is placed on thé operator
stack; if a left bracket is uncovered on the operator stack, the leading
input symbol is simply stacked 'over' it. EE; If a right bracket is
uncovered on the input word, the function '"clear" is called. The clauses
defining it are 14. — 16. The function "clear" keeps building up tree
fragments until the corresponding left bracket is found on the operator
stack; then parsing begins again.

These clauses are sufficient to unambiguously parse any well-
formed word, and that is all that is required for what we prove.

The unparsing function flattens trees into words. Although
unparse is really a relation rather than a function (since there is a
whole class of flattening functions that would do) we arbitrarily choose
the unparsing function which adds the least number of brackets to the
word returned in order to be able to parse it again. (To show the
correctness of the parser on all inputs, we would have to show the ’
desired property of the parser for every unparsing function. We believe .
that the other proofs would be similar to the current ome but easier, as
the complexity of the proof arises mainly in those cases where precedence
is not disambiguated by brackets. The problem, in terms of LCF, is that
we do not know at present how to formulate a sentence in the logic which
expresses correctness for all unparsing functioms.)

The function "unparse' takes as parameters (i) an operator
relative to which it unparses, and (ii) an indication of whether it is
unparsing a left, right or 'only' subtree. The precedence of the operator
determines whether brackets are needed to 'protect' the word returmed, and
the side-indicator is needed to place brackets appropriately in cases
where associativity is involved. We let the domain SIDE contain the

side—indicators "L, "R" and "N" for left, right and 'neither' subtrees,

1"

respectively. The type of "unparse' is thus:

unparse : OP -> SIDE -> PTREE -> SYMB LIST




It is defined by the three clauses below:

17. unparse op s (mkTIP I) = I.nil
18. unparse op s (mkUN u t) =
Zf op > u then LB.u.(unparse u N t) @ RB.nil else

u. (unparse u N t) @ nil

19. unparse op s (mkBIN b ty t2) =
let x = unparse b L t and y = unparse b R t2
in 2f op > b then LB.x. @ b.y @ RB.nil else
1f op = b and ((left op and s = R) or (right op and s = L)
then LB.x @ b.y @ RB.nil else
2f op = b and ((left op and s = L) or (right op and s = R))

then x @ b.y @ nil else x @ b.y @ nil

That is: 17. A one-tip tree is flattened into-'a one-identifier word.
18. A unary tree is unparsed recursively into the top operator symbol
followed by thé unparsed subtree, with brackets around the whole result-
ing word if the precedence of the 'passed down' bperator, op, is greater
than the precedence of the top node, u, of the tree. The subtree is
unparsed relative to that top node, and to the side-indicator ''N".

19. Binary parse trees are treated in a similar way, the top node, b,
appearing between the two unparsed subtrees. The left and right subtrees
are parsed relative to the side-indicators "L" and "R'", respectively.
Brackets are placed around the whole resulting word if required (as in the
unary case) to protect against the precedence of op (relative to b),

or if there is a case of equal precedence of op and b, and the side-
indicator is for a right subtree while the operator is left associative

(or vise versa). This is to cope with parse trees such as

where b is left associative; we wish to unparse this tree into:

Il.b.Iz.b.LB.I3.b.I4.RB @ nil

At the 'top level' we simply unparse words relative to some fixed unary




operator, and to the side-indicator 'N'".

3. THE STATEMENT AND PROOF OF THE CORRECTNESS PROPERIY

In this section we describe the correctness property of our

parsing algorithm, and we sketch the informal proof. (The reader should
bear in mind that although the property is rather complicated to state,
our main interest is not in the property itself, but in the structure of

the proof.)

3.1. The statement of correctness

The formula expressing the correctness property of the parser

relative to the unparser is something like this:

¥ tops. parse((ﬁnparse op s t)@ nil, nil, nil) =
(nil, nila- t.nil)

1" 1

That is, if we unparse a tree "t" (relative to an operator "op'" and a
side-indicator "s'") to get a word, and then parse that word in a state
in which the operator and result stacks are empty, we get back a state
comprising the empty input word, an empty stack of pending operators,
and a result list containing exactly the original tree "t",

We actually have to prove something more general (though this

is not quite it yet):

¥ t op s w os rs. parse((unparse op s t)@ w, os, rs) =
parse(w, os, t.rs)

That is, if "t" is unparsed, attached to an arbitrary word "w', and
parsed in an arbitrary state, the original tree "t" is put on the result
stack, and the word "w" is isolated.

However, we are dealing with domains (complete partial orders)
in which there is always an undefined element "1". (This is used for
representing non-terminating computations.) Our propertyis not true for
all trees, as trees may be infinite, or contain undefined parts. We
therefore introduce a predicate "WD [t]" of trees which characterises
finite, well-defined trees. (This treatment follows (Cohn % Milner 1982)
in which the same problem arises.) The properties we require of "WD"

are as follows, where the predicate "DEF" determines whether an element




of a domain is defined:

Zf DEF[t] does not hold then WD[t] does not hold
¥ I. WD[mkTIP I}

¥ u t. WD[mkUN u t] » WD[t]

¥ u t. WD[mkUN u t] > DEF [u]

¥ b tl tz.-WD[kaIN b t1 t2] > WD[tl]
¥b tl t2. WD [mkBIN b t1 t2] =] WD[tZ]
¥b t1 t2. WD [mkBIN b t1 t2] > DEF[b]

In addition, we require "op" and "s" to be defined, for our

property to be true. (Also, "L", "R" and "N" must be defined, and _

uopl > OPZ“ must be defined i? an only éf "op," and fop7" are as well.)
All of these conditions, however, "are still not enough to

make the conjecture true. It may still be the case that when "t" is

unparsed and attached to "w', operators in "w'" may take precedence and

cause a different reparsing than intended. In the end, three rather

elaborate relations between "op", "w', "os" and "s'" are found to be

sufficient. We introduce predicates "isumary" and "isbinary" to determine

whether operators are unary or binary. We let the functions "hd', "tl1l"

and "null", on lists respectively take the head and tail of a list, and

determine whether a list is empty.

rell(op,w,s) <ff either 1. null w
2. isbinary(hd w) and op > (hd w)
3. isbinary(hd w) and op = (hd w)
and either 1. s = N

2. s =1L
3. left op
4., hd w = RB
rel2(op,0s,s8) Zff eitther 1. null os
2. op > (hd os)
3. op = (hd os)
and either 1. s = N
2. s =R
3. right op

4. hd os = 1B

—

rel3(op,s) 1ff eithex. = N and isunary op

s
2. (s =L ors =R) and isbinary op
If relation "rell” holds of "(op,w, s)" it ensures that the leading
symbol of w (unless w is empty) is a binary operator whose precedence is

not greater than that of "op"; if it is equal in precedence we need the




extra insurance that either "op" is left associative, or that we are not
dealing with a right subtree of a binary tree. The relation "rel2", like-
wise, ensures that the leading symbol of the operator stack does not have
stronger precedence than "op'". The relation "rel3" is just a consistency
condition; if we are dealing with a binary tree, "op" should be a binary
operator, and not otherwise.

These relations are technical rather than deep, and are

sufficient to make the conjecture true. We prove:

¥ t op s wos rs. WD[t] and DEFlop] and DEF(s} and
rell(op,w,s) and rel2(op,o0s,s) and
rel3(op,s) >
parse((unparse op s t)@ w, os, rs) =
parse(w, os, t.rs)

To get the desired result, we choose a fixed unary operator which is

defined (called it "UO") and prove:

rell(U0, nil, N)
rel2(UO, nil, N)
rel3 (U0, N)

which implies that

¥ t. WD[t] > parse((unparse UO N t)@ nil, nil, nil) =
(nil, nil, t.nil)

3.2. The informal proof

In this section we sketch the informal proof of the correctness
property of the parser. An understanding of the structure of the proof
motivates the métalanguage strategies which generate the formal proof in
LCF.

The proof of the main theorem is by structural induction on
parse trees. We appeal to the following rule of induction (in which

hypotheses are written above the line and conclusion below) :




10

P[Ll}
¥ I. P[mkTIP I]
¥ u t. P[t] 2 P{mkUN u t]

¥b ] &y P[tl] and Pt,] > P[mkBIN b £ &)
¥ t, P[t]
"P[t]" means that the property "P" holds of tree "t'". '"1" is the unde-

fined tree. The rule states that if "P" holds in the basis cases (the
Undefined and Tip Cases), and if "P" is preserved when trees are built up
in the step cases (the Unary and Biﬁary Cases), then "pP" holds for all
trees "t".

We note that we must prove our property for all values of the
quantified variables so that the induction hypotheses can be instantiated
at a variety of instances, and also that the whole ‘implication must be -
proved by induction. (Thus, in order to invoke an induction hypothesis,
its antecedent must be satisfied first.)

The proof has four main cases raised by the induction on "t'".
Several of these have subcases based on the‘possible values if the side-

1" _1n

indicator "s', the ways in which the relations "rell" and "rel2" may

"

hold, the precedence of "op" relative to the top node of the parse tree

in question, and the associativity of "op Certain facts about lists,

precedences and the propositional calculus are used without mention in

the informal proof sketch (we formalise these in section 4).

To prove: ¥ t op s w os rs. WD[t] and DEF[op] and DEF[s] and
rell(op,w,s) and rel2(op,o0s,s) and
rel3(op,s) o
parse((unparse op s t)@ w, os, rs) =
parse(w, os, t.rs)

Undefined Case This is vacuously true, since WD[L] doesn't hold

Tip Case Assume: WD[t], DEF[op], DEF(s], rell(op,w,s),
rel2(op,0s,s), rel3(op,s)
Prove: parse((unparse op s (mkTIP I))@ w, os, rs) =
parse(w, os, (mkTIP I).rs)

This follows by using parser/unparser clauses 17 and 5 simply
as rewrite rules.




11

Unary Case Assume: ¥ op s w os rs. WD[t] and DEF[op] and
{ DEF[s] and rell(op,w,s)
{ and rel2(op,o0s,s) and
Induction { rel3(op,s) =
Hypothesis { parse((unparse op s t)@ w, os, rs) =
f° parse(w, os, t.rs)

Assume also: WD[mkUN u t], DEF [op]), DEFI[s],
rell(op,w,s), rel2(op,os,s),
rel3(op,s)

Prove: parse((unparse op s (mkUN u t))@w, os, rs) =

parse(w, os, (mkUN u t).rs)
Cases
Three cases must be considered: where op > u, u = op and
u > op. In the first case, we rewrite (using clauses 18, 12
and 6) to change the left-hand-side to:

parse({unparse u N t)@ RB.w, u.LB.os, rs)

We could now apply (instantiate) the induction hypothesis Zf
we could satisfy its antecedent, namely:

WD[t] and DEF[u] and DEF[N] and
rell(u,.- RB.w, N) and rel2(u, u.LB.os, N) and
rel3(u, N) B

The conjuncts are argued separately. The second three are
really lemmas with slightly complicated proofs of their own;
we discuss these proofs later. WD[t] follows from the
property of WD that :

¥ t. WD[mkUN u t] > WD[t]

combined with the assumption that WD[mkUN u t]. We assumed

that DEF [N]. We infer DEF[u] from the fact that op > u.

Once the antecedent is thus established the appropriate
instance of the conclusion follows, reducing the left-hand-side
further, to

parse(RB.w, u.LB.os, t.rs)

and the rest follows, using clauses 13, 14 and 16 as rewrite
rules.
In the other two cases, where u > op and u = op,. a further

case argument is made based on the four ways in which
rell(op,w,s) can hold. (These arguments may be factored out

and also proved as lemmas.) One of the following must hold:

1. null w
2. isbinary(hd w) and op > (hd w)
3. isbinary(hd w) and op = (hd w) and

(s=Nor s =1L or left op)
4, hd w = RB

In each of the four subcases we use the (implicitly assumed)




12

transitivity of > =; the fourth subcase requires a use of the
induction hypothesis. The four cases, for both u > op and
u = ap, use clauses 3, 7, 13 and 14 to rewrite.

Binary Case: This case is similar to the preceding one, so
we give less detail.

Assume: ¥ op s w os rs. WD[ty] and DEF[op] and

{ DEF[s] and rell(op,w,0s)
Induection  { and rel2(op,0s,s) and
Hypothesis { rel3(op,s) >

{  parse((unparse op s tl)@w; os, rs) =

{ parse(w,os,t,.rs)

{ ¥ ops wos rs. WD{t,] and DEF[op] and

{ : DEF[s] and rell(op,w,os)
Induction { and rel2(op,o0s,s) and
Hypothesis { rel3(op,s) o '

{  parse((unparse op s t?)@w, 0s, rs) =

{ parse(w;os,tz.rs) )

Assume also: WD[mkBIN b t1 t»], DEF[opl],
DEF[s], rell(op,w,s),
rel2(op,0s,s), rel3(op,s)
Prove: parse((unparse op s (mkBIN b t; t7))@ w, os, rs) =
parse(w, os, (mkBIN b tj tj).rs) '

Again, there are three cases, depending on the relative
precedence of b and op.

Case op > b This case requires an instantiation of each of the
induction hypotheses. The arguments for satis-
fying the antecedents are as in the Unary Case.
(Clauses 19, 12, 11, 13, 15 and 16 are used as
rewrite rules.)

Case b > op This case is also easy; we do a case analysis on
the four ways in which rell(op,w,s) can hold,
followal by a similar case analysis for rel2.
(Clauses 19, 4, 8, 11, 2, 9, 13 and 15 are used.)

Case b = op This is the difficult case, as there is a conflict
of precedences; the outcome of parsing depends on
whether we are in a left or right subtree, and on
whether the operator "b" is left or right associa-
tive. Thus we do a further case analysis on
whether s is L, N or R; and on whether b is left
or right associative.

Subcase s = N This case is a priori impossible since we have
assumed that rel3 holds of op and s —— but b = op
implies that b and op are identical, so op is
also binary. This contradicts the assumption that
rel3 holds.




13

Subcases (left op and s = R), (right op and s = L)
In these cases we simply rewrite (using clauses
19, 12, 11, 13, 15 and 16) with an instantiation
of each of the induction hypotheses during the
rewriting.

Subcases (left op and s = L), (right op and s = R)

These two cases are messier because brackets are
not inserted to disambiguate; associativity
makes it clear how to parse. The two cases
require another case analysis based on the ways
in which rell(op,w,s) can hold, followed by a
similar case analysis on rel2. The rewritings
involve clauses 19, 4, 8, 11, 2, 9, 10, 13 and 15,
and (in both cases) an instantiation of each
induction hypothesis. Some of the cases are
argued by contradiction. For example, where

b = op and left op and s = L, if we consider the
ways in which rel2(op,o0s,s) might hold, it cannot
be that the third way applies -~ where op =

(hd os). If it did apply, we would have in
addition that s = N or S = R or else right op,
any of which contradict the assumptions of this
particular case.

The proof, as indicated, depends on several lemmas which allow us to use
the induction hypotheses (by satisfying their antecedents); these must be
proved as well. A typical lemma states that if rell holds originally, it

holds for one of the subsequent instances of the induction hypothesis:

To prove: ¥ op w s b. rell(op,w,s) and b = op and right op
‘ and s = R >
rell(b,w,R)

This lemma would be used in the Binary Case, in the Subcase in which b = op,
and so on. There is a lemma for each instance regired of each induction
hypothesis, but all the proofs are similar. We sketch this one as an

example. (There are about thirty in all.)

Assume: rell(op,w,s), b = op, right op, s =R
Prove: rell(b,w,R)

As usual, we perform a case analysis on the ways in which rell
could hold. Where null w holds, rell(b,w,R) holds in the same
way. Where isbinary(hd w) and op > (hd w), we know that b

and op must be identical, so isbinary b holds, and b > (hd w)
by transitivity; thus rell(b,w,R) also holds in the second way.
In the third case, where isbinary(hd w) and op = (hd w) and

(s =Nors =1Lor left op), we argue by contradiction: we




14

have assumed s = R and that right op holds in this case. Thus
rell(op,w,s) cannot hold in the third way. Where (hd w) = RB,
rell(b,w,R) holds for that reason.

(About eight further lemmas can factor out the case arguments on rell, rel2.)
What is important to observe about the main proof and the proof of the
lemma is that most of the steps are a matter of routinely rewriting or
'unfolding' according to the clauses which define "parse'" and "unparse"
(and facts about lists, precedences and the propositional calculus). Appli-
cation of the induction hypotheses involves inétantiation of their bound
variables and satisfaction of their antecedents before the hypotheses can
be used as rewrite rules. The proofs involve the usual steps of proving a
universally quantified statement by proving the statement for arbitrary
values; and of proving an implication by assuming the antecedent, proving
the consequent, and later discharging the antecedent. There are several
varieties of case arguments in the proof. A few of these lead to proofs
by contradiction. .

In the next two sections we go on to show how this problem
can be stated formally in PPLAMBDA, and to show how the structure of the
proof is reflected in MLvstrategies which generate the whole formal proof

for us.

4. THE FORMALISATION

In this section we show how the parser and its statement of

correctness are represented formally in LCF. This involves constructing
a hierarchy of theories (extensions of the basic logic PPLAMBDA) to
express the problem. The two main difficulties in the formalisation are
(i) dealing neatly with the undefized cases which arise when all types
correspond to domains, and (ii) expressing relations in PPLAMBDA.

LCF consists of the logic PPLAMBDA coupled with a general-
purpose programming language, ML, through which logical objects are

manipulated. The terms t, = and t2 of the logic, are given by

where ¢ is a set of basic constants and x is a variable. A term can also
be an application of one term to another, a lambda abstraction or an
ordered pair. Basic constants include the truth values "UU", "TT" and "FF",

for L, true and false, respectively, the function "DEF" to test definedness,




15

and several others. (The unusual notation, as for lambda expressions, is
for the sake of machine printing.) Each term has a type which corresponds
to a domain, such as the type "tr" of truth values. An expression "t:*"

"#" as in "TT: tr". (Type variables

means that the object "t" has type
are *, **  etc.)
The formulae of PPLAMBDA are as in the predicate calculus. A

formula w, w, or w, can be

1
wi:i= tautology | t, == t2 | £, << t2 | Wy & Wy |
Wy IMP Wy | Ix.w
where x is a variable. That is, a formula can be one of several standard
tautologies, an equivalence or inequivalence of terms (in the sense of the
domain ordering), an implication or a universal quantification.

The logic may be extended by the use of metalanguage functions
which add new types, constants and axioms to PPLAMBDA to form new logical
theories. Theories can be built up hierarchically so that the types, etc.,
of one theory are accessible within descendent theories.

To express the parsing algorithm in PPLAMBDA we must be able
to talk about parse trees and several kinds of lists. We choose to work
with general theories of lists and trees -- useful in other proofs -- of
which parse trees and our various lists are special instances. For types
*, %% kkx  ye view (*,** ***)TREE and * LIST as ternary and unary type
operators, respectively, which map triples of types, or types, into new
types. For certain recursively defined types such as these, once we
specify the 'shape' of the domain being defined, the construction of the
corresponding PPLAMBDA theory is a standard matter. This process has been
mechanised by R. Milner as an ML procedure; it is described in the
appendix of (Cohn & Milner 1982). For example, the shape of the domain
(%, %% ***)TREE is:

* 4 (** X (*,**,***)TREE) + (*** X (*,**,***)TREE %
(*,** *%x*)TREE)

Given this, the ML procedure can declare new constants, such as

mkUN: ** > (*,**,***)TREE -> (*,**,***)TREE




16

and the other various constructor functions for trees; and it can intro-
duce new axioms defining these new constants in terms of primitive

PPLAMBDA constants. In addition, the procedure can produce an ML function
implementing the appropriate rule of structural induction for trees. The
treatment of lists is similar. The ML procedure can define the construct-
or function "CONS: * =-> * LIST ~> * LIST", the constant "NIL: * LIST", and
the list induction rule. (We can also add the constants "HD: * LIST -> *"
‘and "TL: * LIST -> * LIST" and "NULL: * LIST -> tr" for hd, tl and null, and

" PP:* - * : -> ,»* " i
and "A L8kt ve GE20 some 5785 Le 0E.322809,5055600¢a5802Li00:) (a1 culus,

precedences and symbols.

The theory of propositional calculus required must include the
constants "AND", "OR" and "NOT" which appear, for example, in the defin-
itions of the relations rell, rel2 and rel3. We build a theory containing

the constants

OR: tr -> tr =-> tr
AND: tr -> tr -> tr
NOT: tr -> tr

and axioms including

|- !'p:tr. p OR TT == TT

|- fﬁ:tr. P AND TT ==

|- NCT TT == FF

[- !p: tr. !q:tr. p AND q == TT IMP p == TIT
TT IMP q == TT

|- !p: tr. lq:tr. p AND q =

The éymbol "|-" before a formula marks a theorem or axiom; this is dis-
cussed again later. ‘

We next construct a theory of orderings to express the order-
ing of operator precedences. This theory is a descendent of the theory of
propositional calculus, so we can use the constants and axioms of the

latter. We introduce a new type "'rank'", and new constants:

=: rank -> rank -> tr

>: rank -> rank -> tr




17
Ranks are governed by a set of axioms which includes:

|- !r:rank. r > UU == UU

|- 'rirank. UU > r == UU

|- ‘rj:rank. lr,irank. r} = ry == TT IMP rp = 1,

|- irj:rank. lr,:rank. ‘r3:rank. r] = ry) == TT & r, > ry == TT
MP r, > Ty

|- lr;:rank. ‘r,:rank. DEF ry == TT & DEF r, == TT IMP

(rl > r2) OR (rl = rz) OR (r2 > rl) == TT

it
T
3

(We note that > and = are strict function, undefined on undefined argu-
ments.) '

We need also a domain of symbols, for the sort of symbols
which make up words for our parser. The theory of symbols is a descendent
of both list theory and ordering theory. It includes the new types
"IDEN", "UNOP'", "BINOP" and ''BRAC" with the following type abbreviations:

OP = UNOP + BINOP
SYMB = IDEN + BRAC + OP
OP' = BRAC + OP

The new constants of the theory include

LB: BRAC

RB: BRAC

isRB: SYMB -> tr
left: BINOP -> tr
Prec: OP -> rank
BPrec: BINOP -> rank
UPrec: UNOP -> rank

where the function "isRB" determines whether a symbol is "RB"; "left"
determines whether a binary operator is left associative; and the latter
three functions return the precedence of an operator, a binary operator
and a unary operator respectively. It is also convenient to have

functions which do injections and projections for us:

PUTUW: UNOP -> SYMB LIST -> SYMB LIST
PUTUO: UNOP -> OP' LIST -> OP' LIST
PUTBO: BINOP -> OP' LIST -> OP' LIST
PUTBW: BINOP -> SYMB LIST -> SYMB LIST.
PUTBRO: BRAC -> OP' LIST -> OP' LIST




18

These respectively place a unary operator on the symbol list, a -unary
operator on the operator list, a binary operator on the operator list, a
binary operator onto a word, and a bracket on an operator list. We also

add some more constants

GETOW: SYMB LIST -> OP

destBINQOP: OP -> BINOP

mkBINOP: BINOP -> OP

mkUNCP: UNQP ~> OP

OPisUNOP: QP -> tr

isBINOP: SYMB -> tr
which, in turn, remove a symbol from a word and consider it as an oper-
ator; consider an operator as a binary operator (if possible); the
reverse; the same, for a unary operator; determine whether an operator is
unary; and determine whether a symbol is binary. (These roughly correspond
to "isunary" and "isbinary" in the informal presentation.)

All of these new constants (and more, which we need not men-
tion here) are defineéd by axioms in terms of basic PPLAMBDA constants for
injection and projection in sum domains.

Finally, we construct the theory of parsing, in which we define
the parser and unparser, state the correctness property, and perform the
proof. This theory is a descendent of the theory of symbols and trees,

and hence indirectly of propositional calculus, orderings and lists. The

hierarchy of theories can thus be drawn as follows:

Propositional Calculus Lists Trees
Orderings & Symbols
: arsing

The parser theory includes the type abbreviation

ParserState = SYMB LIST x OP' LIST x PTREE LIST

where  "PTFEE" abbreviates '"¢DEN,UNOP,BINOP)TREE'". The new constants of
the theory include the following (in terms of a new type, ""SIDE"):

WD: PTREE -> tr
L: SIDE
R: SIDE
N: SIDE




19

isleft: SIDE =-> tr
isright: SIDE =-> tr
isneither: SIDE -> tr

The first four constants are as in the informal presentation. " The latter

three are functions to determine whether a side-indicator is '"'L", "R" or

"N'", respectively. Simple axioms are given again for these constants.
The functions which comprise the parser are declared as new

constants as well:

parse: ParserState =-> ParserState
clear: ParserState -> ParserState
unparse: OP -> SIDE -> PTREE -> SYMB LIST

The clauses of the parser and unparser and unparser are easily stated now
as new axioms, using the various new constants. For example, clauses 6

and 9 are:

6. 'u:UNOP. !w:SYMB LIST. !os:OP' LIST. !rs:PTREE LIST.
parse(PUTUW u w, os, rs) ==
parse(w, PUTUO u os, rs)

9. 'b2:BINOP. 'w:SYMB LIST. !os:0P' LIST. 't2:PTREE. 'tl:PTREE.
'rs:PTREE LIST.
BPrec b2 > Prec(GETOW w) == TT IMP
parse(w, PUTBO b2 os, CONS t2(CONS tl rs)) ==
parse(w, os, CONS(mkBIN b2 tl t2)rs)

The conditional, in the informal version of clause 9, becomes an implica-
tion in the above formal version. (The 'destructive' form, using "GETOW",
turns out to be more convenient in the proof.) The remition of the other
clauses is similar.

The expression of the relations "rell', "rel2" and '"rel3" is
fortunately easy, although PPLAMBDA does not admit relational constants.

Because the relations are purely propositional, the formula
rell(op,w,s) Zff ... or ... or ... or ...

can be expressed as a disjunction of truth-valued PPLAMBDA terms.. For

example, the axiom defining "rell" is:




20

|- 'op:OP. !w: SYMB LIST. !s:SIDE. rell(op,w,s) ==
"(NULL w) OR
(isBINOP(HD w) AND (Prec op) > (Prec(GETOW w))) OR
(isBINOP (HD w) AND (Prec op) = (Prec(GETOW w)) AND
((isneither s) OR (isleft s) OR (left(destBINOP op)))) OR
(isRB(HD w))

The other relations are treated similarly. We can then write
"rell(op,w,s) == TT" where earlier we said "rell(op,w,s) holds", and then
use the axiom to expand the expression only when necessary in the proof
(e.g. in the case arguments based on the ways in which "rell(op,w,s)" can
hold). We note that this treatment is not possible for relations in gen-
eral. To summarise, we have now constructed a hierarchy of theories
in which new types, constants and axioms are added_;o PPLAMBDA to allow

a natural expression of the parsef and its properties. The theories of
trees and lists are standard theories, and may be constructed automatically
by an ML procedure by R. Milner. The ﬁroof of thé correctness property

is performed within the theory of the parser, from which the other theories

are accessible. In .the next section, we describe the generation of the

formal proof.

5. THE PROOF IN LCF

5.1. Proof generation in LCF

In this section we describe the machine proof of the correctness
property of our parser, and the proofs of the main lemmas. The relevant
LCF concepts are explained concurrently.

The two parts of the LCF system, ML and PPLAMBDA, are
connected by the type and abstract type facilities of ML. The logic
PPLAMBDA is represented in the metalanguage by the ML types term and form
for logical terms and formulae. A theorem (tZm) is an abstract type in
ML whose only accessible constructors are the rules of inference of
PPLAMBDA. (This ensures that false theorems cannot be constructed.)
Rules of inference are represented as ML procedures which return theorems
as results. A theorem dependent on a set of assumptions, A, and with

conclusion "w" is written "A |- w'". Particular assumptions (or hypotheses)

it

".," so that a theorem asserting ''w

are occasionally represented as

", |- w''. This notation is used

with two assumptions may be written
where the assumptions are clear from the context.

LCF can accomodate both forward proof (successive application




21

of rules of inference to build chains of theorems) and goal-oriented
proof. The latter method comsists in setting out a goal to be achieved
and applying to it tactics to generate both subgoals and a means of
mapping theorems achieving these subgoals to a theorem achieving the
original goal. (This amounts to generating the intermediate chain of
theorems.) Often, a mixture of forward and goal-oriented proof is
successful; this section describes one way of mixing the two.

A goal is a composite object in ML. It includes, of course,

the formula to be proved, such as the current one

't. 'op. 's. 'w. los. 'fs. WD t == TT & DEF op == TT &
DEF s == TT & rell(op,w,s) == TT &
rel2(op,0s,s) == TIT & :
- rel3(op,s) == TT IMP
parse (APP(unparse op s t)w, 0s, rs) ==
parse(w, os, CONS t rs)

Y

or the formula for the lemma mentioned in section 3.2:

's. 'b. rell(op,w,s) == TT & BPrec b = Prec op == IT &
NOT (left(destBINOP op)) == TT &

isright s == TT IMP

rell(mkBINOP b, w, R) == TT

A goal also includes a list of formulae (the assumption list), representing
the current assumptions at a point in the proof. For example, midway in
proving the Unary Case of the main theorem, we happen to have a subgoal

with the formula

parse (APP (unparse op s (mkUN u t) w), os, rsg) ==
parse(w, os, CONS(mkUN u t) rs)

and with seven assumptions in its assumption list. These include the
induction hypothesis and six more assumptions introduced in the course of

the proof so far. (Lists in ML are written in the form "[ e,;...3e_1".)
1 n

['op s wos rs. WD t == TT & DEF op == TIT & DEF s == TIT &
rell(op,w,s) == TT & rel2(op,0s,s) == TT &
rel3(op,s) == TT IMP
parse (APP (unparse op s t)w,08,rs) ==
parse(w,0s,CONS t rs);

WD(mkUN u t) == TT;




22

DEF op == TT;

DEF s == TT;
rell(op,w,s) == TT;
rel2(op,o0s,s) == TT;
rel3(op,s) == TT]

The subsequent case analysis (based on relative precedence) introduces
one more assumtiom to this list, in each case.

The third component of a goal reflects the observation we have
made about the informal proof: that most of the proof steps are left-to-
right rewritings or unfoldings according to already proven theorems and
axioms. For example, the parser clause 6, which we formalised in section

4, is used as a rewrite rule twice in the Unary Case of the proof:

‘u wos rs. parse(PUTUW u w, os, rs) ==
parse(w, PUTUO u os, rs)

The first use occurs in the case where op > u (Z.e. Prec op > UPrec u ==

TT); it applies to a subgoal whose formula is:

parse (PUTUW u (APP (unparse u N t) (CONS RB w)),
.PUTBRO LB os, rs) ==
parse(w, os, CONS(mkUN u t)rs)

To-apply clause 6, an instance of the left-hand-side of the clause is
sought in the formula above. Here, the instance is the whole left-hand-
side of the formula. The bound variable "u" is instantiated to the
particular "u"; "w'" to "APP(unparse u N t)(CONS RB w)"; "os" to

"PUTBRO LB os"; and "rs" to the particular "rs". This completely
instantiates clause 6, and allows us to rewrite the left-hand-side of our

formula to be

parse(APP (unparse u N t) (CONS RB w), PUTUO u (PUTBRO LB os),
rs) ==

parse(w, os, CONS(mkUN u t)rs)

and the proof is advanced a bit.

Facts such as clause 6 which are used in this way as
simplification rules are included in the third part of a goal: the
simpset. A simpset is an abstract type in ML containing representations

of theorems intended to be used as rewrites (as illustrated).




23

Simplification rules (or simprules) may also be conditional.

For example, clause 9, which we also formalised in section 4, is:

b2 w os tl t2 rs. BPrec b > Prec(GETOW w) == TT IMP
parse(w, PUTBO b2 os, CONS t2(CONS tl rs)) ==
parse(w, os, CONS(mkBIN b2 tl t2) rs)

The consequent of this fact can be used just as clause 6 to simplify a
goal or subgoal Zf the antecedent, "BPrec > Prec(GETOW w) == TT",
appropriately instantiated, can first be seen to be true. (It may be true
either because it has already been assumed, or because it can itself be
simplified to something obviously true. It must be the case that aqll of
the instantiable variables of the antecedent, in this case '"b" and "w'",
must occur in the left-hand-side of the consequent -— they do -= or else
the matching will not meaningfully instantiate the an;gcedent.) Simprules
of this form are called conditional stmprules. In the cése of clause 9,
the antecedent will have been assumed by the time we wish to use the
clause as a simprule. The induction hypotheses in the Unary and Binary
Cases are other examples of useful conditional simprules.

To summarise, the ML type goal is defined as:
goal = form x simpset x form list

A goal with formula w, simpset ss and assumption list A is written as

"(w,ss,A)'", or occasionally as:

Goal~oriented proofs are advancedby the application of
tactics to goals. Tactics are ML procedures which given goals produce
(i) lists of subgoals and (ii) justifications of the proof step made in

moving from goal to subgoal:

tactic = goal -> (goal list x proof)

A proof is also an ML function, mapping the (respective) achievements of




24

the subgoals (a list of theorems) to the achievement of the goal (a theo-

rem) :
proof: thm list -> thm

For example, one of the simple strategies used in the informal proof can

be pictured as

('x.w, ss, A)

(w [x'/x], ss, A) (x' not free in A)

meaning: to prove a fact about all x, try proving the fact for an arbitrary

' (not occurring free in A). The proof function returned when this

X
tactic is applied to a goal appeals to the PPLAMBDA rule of inference

GEN: term -> thm -> thm

A |- w‘
A= Tx.w (x not free in A)

where x is a term (not occurring free in A). This means: from the upper
theorem, deduce the lower one. Because it 'inverts' the inference rule
GEN, we call the tactic GENTAC. GENTAC is a built-in tactic in LCF as
it is so commonly used. Another simple tactic reflecting steps in the

informal proof is

DISCHTAC: tactic
(wl IMP w2, ss, A)

w2
(. |- wl) + ss
wl.A

which reflects the strategy: to prove an implication, try proving the
consequent having assumed the antecedent (and using the assumption as a
simplification rule, too). A PPLAMBDA rule called DISCH is used to
justify this step (hence the name of the tactic). The ". |- wl" indicates
that the theorem depends on the one assumption. This tactic is not

built in to LCF but is easily implemented as an ML procedure.




25

This last tactic generalises to

IMPCONJTAC: tactic
(wl & w2 & ... & wn IMP w, ss, A)

w
ss + (. |=wl + ... + . |- wn)
[wl;wn;...;wnl@ A

when we expect an antecedent which is a conjunction.

Simprules are engaged by a standard tactic called SIMPTAC
which ‘'when applied to a goal (w,ss,A) uses all of the simprules in ss
to rewrite the formula w as many times as possible until either no more
simprules can be applied, or until a trivially easy subgoal is produced.
- Each rewriting step is justified in the proof function which SIMPTAC
returns when applied. The consequents of conditional simprules are used
when the appropriately instantiated antecedents can be reduced first to
tautologies. (SIMPTAC can recognise certain trivially easy formulae and
tautologies.) When a trivially easy subgoal is reached, and empty list of
subgoals is returned.

5.2, More complex tactics

By combining small tactics such as GENTAC and DISCHTAC and by

designing and implementing more sophisticated strategies, one is able to
generate whole proofs, or large parts of proofs, by the application of
tactics.  Much of the interest of doing proofs in LCF lies in the search
for useful, general strategies. Behind the scenes, one is assureéd that
every inference step of the proof is being evaluated when the proof
function is applied -- but to the extent that ome's tactics are successful
in reducing goals to trivial subgoals, one is not forced to be aware of
the details of the proof. We go one to describe some of the more complex
tactics needed in this proof (and useful in other proof attempts).

The proof calls for a structural induction tactic special to
the recursively defined type TREE. In PPLAMBDA the only induction rule is
Scott's rule of computation induction. However, for certain recursively
defined domains, the appropriate rule of structural induction can be
derived from computation induction. The derivation of such rules, like
the construction of theories of these types, is a standard process, and

is part of the ML procedure by R. Milner mentioned in section 4.




26

The tactic corresponding to the rule of tree induction is:

TINDUCTAC: tactic
(Tt:(*,** **x*)TREE ., w[t], ss, A)

(w({UU], ss, A)

(‘I. wimkTIP I], ss, A)

('u t. wit] IMP w[mkUN u t], ss, A)

(! b tl t2. w(tl] & w[t2] IMP w[mkBIN b tl t2]1, ss, A)

When the proof function of this tactic is applied, the entire derivation of
the rule of structural induction for TREEs from the rule of computation
‘induction is performed. This is unavoidable as the structural induction
rule cannot be expressed as a theorem in PPLAMBDA.

Very many of the facts and axioms needed in the proof are used
without difficulty as simplification rules. These include many facts about
lists, symbols, the propositional calculus, the three relations, the
parser and unparser axioms, as well as several simple theorems about
symbols. The next tactic is suggested by a number of lemmas and small
facts needed in the proof which (for a variety of reasons) cgnnot be used
directly as simprules (or conditional simpfules). For example, to enable
the induction hypotheses to be used as conditional simprules in the proof,
we must, as we said, satisfy certain instances of their antecedents. As
we saw in the informal proof, this requires an appeal to the axioms of

well-definedeness of trees, for example:
|—!ut.WD(mkUNut)==TTIMPWDt==TT

This rule (and the two similar ones for binary trees) do not themselves
make sense as conditional simprules -- if they did, a straightforward
chain of conditional simplification could enable the induction hypotheses
to be used. As remarked in section 5.1, these axioms do not make sense
as simprules because their antecedents are not fully instantiated by an
instantion of "WD t" (during a match to part of a subgoal). Since the
use we wish to make of axioms of this form goes beyond simplification in
the LCF sense, we must design a new tactic for using the axioms.

Other facts and axioms which present the same problem include

the transitivity axiom for ranks




27

|- ' rl r2 r3. rl = r2 ==TT & r2 > r3 == TT IMP rl > r3 =TT

and the axioms about the constant "AND"

TT IMP p
TT IMP q

TT
TT

]
]

|- 1 pq. pAND q =

|- ! pq. pAND q =

as well as several other axioms and simple lemmas such as the following

(the second a minor one not mentioned earlier):

|- 'opl op2. Prec opl = Prec op2 == TT IMP opl == op?2
|- ! b op. Prec(mkBINOP b) = Prec op == TT IMP
DEF (destBINOP op) == DEF op

More importantly, the lemmas we discussed in section 3.2, another example
of which is
|- 'op ws b. rell(op,w,s) == TT & BPrec b = Prec op == TT &
NOT(left(destBINOP op)) == TT &
isright s == TT IMP
rell(mkBINOP b, w, R) == TT
(and those lemmas which factor out the case arguments on rell and rel2)
also share the property of being unsuitable as simplification rules.
A few more axioms are unsuitable as simprules for a different
reason -- because, individually or collectively, they cause the LCF
simplifier to loop. For example, a simple axiom of the theory of parsing

(not mentioned earlier) is:
|- !'s:SIDE. isleft s == TT IMP s ==

This is applied as a simprule by tring to replace an occurrence of a term
matching "s'" by "L" if‘ "isleft s" can first be rewritten to "TT". To do
that, the simplifier sets out to simplify "s", and so on ad inf.

We treat all of these facts and axioms in the same way. We
first write a tactic, parameterised on a list of facts, to place the

conclusions of the facts in the assumption list of a goal:



28

USELEMMASTAC[ [-wl; |-w2; ... ; |-wn]
(w,ss,A)

(w, ss, [wl;w2;...;wn]@ A

The proof function of USELEMMASTAC simply discharges the extra assumptions
and appeals to the PPLAMBDA rule of Modus Pomens (MP) to achieve the goal
(w,ss8,A).

Next we implement a tactic which searches for and 'resolves'
certain pair of assumption in the assumption list, namely the new non-
simplification-like formulae, and any instances of their antecedents which

may also appear in the assumption list. For example,

!ut, WD(mKUN u t) == TT IMP WD t == TT
WD {(mkUN u t) == TT

are a pair of formulae where the first is the problematic sort and the
second an assumption arising in the Unary Case of the proof. The latter
formula is matched to the antecedent of the former, so that the first

is instantiated to

WD(mkUN u t) == TT IMP WD t == TT

for the particular values of "u'" and "t" occurrirg in the latter. If we

assume the second formula, and the correct instance of the first,

. |- WD(mkUN u t) == TT
|-~ WD(mkUN u t) == TT IMP WD t == TT

and perform MP, we prove (in a forward way):

.. |- WD t == TT

This new theorem can be used as a simplification rule (and so helps to
enable the induction hypothesis to be used as a conditional simprule).
Here, a small chain of forward proof produces a useful simprule for the
subsequent part of the goal-oriented proof. During the evaluation of the

proof function, the two extra assumptions are discharged; then MP is used




29

to dismiss the axiom about well-definedness.

To reflect this strategy we implement a tactic called RESTAC
because it is a primitive version, in LCF terms, of classical resolution
(Robinson 1979). RESTAC searches the list of assumptions of a goal for
any pair of formulae which can be resolved in the manner described.

In general, RESTAC tries to resolve any pair of assumptions
of the form (w, 'xl...xn. wl IMP w2) where w may be quantified but is
not an implication. The tactic tries to match w to wl to determine
instantiations v for some (of all) of the X; It then assumes both w
and the correct instance of the formula in question, evaluates MP to
prove .. |- w2[yi/xi], and generalises again to those X, which were not
instantiated. (In the case illustrated above, there were no uninstantiated
variables.) This new theorem's conclusion is placed in the assumption
list of the subgoal returned (where it can participate in further reso-
lutions) and the new theorem itself is placed in the simpset (if possible)
to play a role in later simplifications. RESTAC fails if it cannot prove
any new theorems from the current 1ist of assumptions. Some subtlty is
required in not adding to the simpset theorems which would obviously
loop, but there is nothing heuristic about RESTAC's forward search.

RESTAC is usefui in every one of the cases in this proof
where certain non-simplification-like facts or axioms have to be used.

This includes the use of the main lemmas, such as

|- 'op ws b. rell(op,w,s) == TT & BPrec b = Prec op == TT &
NOT(left(destBINOP op)) == TT &
isright s == TT IMP
rell(mkBINOP b, w, R) == TT

which can be resolved with the assumption "réll(op,w,s)" to give

.. |- 'b. BPrec b = Prec op == TT &
. NOT(left(destBINOP op)) == TT & isright s == TT IMP
rell(mkBINOP b, w, R) == TT

which 7g a useful conditional simprule. (Note that op and s are mnot
instantiable variables because they occur in the assumption "rell(op,w,s)".)

This new theorem, as a simprule, also helps enable the induction hypothesis

to be used. (The lemmas which factor out the case arguments on rell and
rel? also become useful conditional simprules via RESTAC.)



30

Another pair of useful, general tactics for the proof relates
to our theory of propositional calculus. The first tactic we implement
is a case analysis tactic (one of several we need). It is based on the
PPLAMBDA rule of case analysis, which considers whether some truth-valued

term is "TT", "FF" or "“UU".

ORCASESTAC: thm =-> tactic

A" |- pl OR p2 OR ... OR pn == TT
(w,ss,A)

4

ss + (. |- py ==TT)

(p; == TD).A

. That is, suppose we know that ome of the p; is true; then the tactic
produces n subgoals from the goal, assuming that each p; in turn, is true.
This tactic has the pleasant effect of concealing all métters to do with
undefined cases, although a full proof in PPLAMBDA is carried out internal-
ly by the proof function, as always. The user also enjoys the effect of
working in the propositional calculus, as is natural to the problem.

The second propositional calculus tactic we need, called
ORRESTAC, is another simple resolution tactic. Like RESTAC, it examines
the assumptions of a goal in an attempt to make some deductions which
might be useful. This tactic looks for propositional formulae of the
form "pl OR p2 OR ... OR'pn == tv", where "tv" is a truth-valued constant,
and n 2 2. The tactic reduces (simplifies) such assumptions according to
all of the axioms of the propositional caleculus, the parser theory axioms
such as "|- isleft L == TT" which are propositional, and any other
current assumptions which are equivalences with a truth-valued right-~hand-
side. If the result of the simplification is either a contradiction,

" |- FF == TT", or an equivalence with only one disjunct on the

such as
left-hand-side, then the tactic is considered to have been successful.
Otherwise, it has not really advanced the proof, and is said to have
failed. (The failure of tactics is implemented using the exception-—
handling facilities of ML.) If a contradiction is obtained, ORRESTAC
returns an empty list of subgoals and a proof function which will achieve
the original goal. If it can reduce the formula in question to an equi-

valence with one disjunct, that new result is assumed and used as a




31

simprule. ORRESTAC uses, internally, a proof-by-contradiction tactic

which is not difficult to implement in ML:

CONTRTAC: tactic
W, 88, [...3 TT == FF; ...] (or UU == FF, etc.)

(]

If an of the assumptions of the goal is a contradiction (in the three-
valued logic), then one can prove the goal immediately, whatever it is.
- Thus, ORRESTAC sometimes completes the process of gemerating subgoals
(like SIMPTAC), and sometimes just adds a new result to the simpset of the
next subgoal.

The proof also requires a few more case analysis rules, like
ORCASESTAC, which are all derived from the basic PPLAMBDA case analysis
rule. We need tactics to dé cése analysis based on sidedness, associa-

tivity and relative precedence of two operators. We implement in ML:

SIDECASESTAC: tactic
w(s:SIDE], ss, A

w
ss + (.|~isneither s == TT)
(isneither s == TT).A

W

ss + (.}=isleft s == TT)
(1sleft s == TT).A

W
ss + (.|~isright s == TT)
(1sright s == TT) .A

This tactic is justified by the parser theory axiom that ome of the

assumptions must hold (if "s'" can be shown to be defined).

ASSOCASESTAC: tactic
w{b:BINOP], ss, A

r r
w W

ss + (.]=left b == TT) ss + (L |-NOT(left b) == TT)
(left b == TT).A (NOT(left b) == TT).A




32

This is based on the propositional calculus tactic that a proposition (if

it is defined) or its negation must hold.

ORDERCASESTAC: tactic
w[op1:OP, 0p2:OP], ss, A

W
ss + (.|-Prec opl > Prec op2 == TT
(Prec opl > Prec op2 == TT).A

LW
ss + (.]-Prec opl = Prec op2 == TT)
(Prec opl = Prec op2 == TT).A

W
ss + (.|=-Prec op2 > Prec opl == TT)
(Prec op2 > Prec opl == TT) .A

The formula "w'" may also contain "u:UNOP" or "b:BINOP". ORDERCASESTAC is

is based on the order axiom that one of the three cases must hold, where

1f 1"t

op, and "op

1"

2
In all of these case analysis tactics, the tactic fails when

are defined.

the appropriate objects cannot be shown to be defined -- but again, this

reasoning is concealed from the user.

5.3. The proof in LCF

The tactics for the proof are all ready; it remains only to
combine them. To do this we write (or use standard) tacticals. For
example, for tactics T, T, and Tg’ the standard sequencing tactical
THEN combines T, and T2 to produce a tactic (T1 THEN TZ)' This new

1

tactic applies T1 to a goal to obtain subgoals, and T, to each of the

subgoals. The iterating tactic REPEAT is such ihat (REPEAT T)
applies T to a goal to obtain subgoals, applies T to these, and so on,
until T fails to apply (if ever). The tactic (T1 ORELSE T2) applies Tl
and only if that fails applies T2. For brevity, we write

to suggest sequencing; T* for iteration and (T1 ? TZ) for (T1 ORELSE T2).
We let T+ mean (T THEN SIMPTAC), as this combination occurs frequently.




33

The proofs of the main theorem and the main lemmas are »
accomplished by (i) setting up goals whose simpsets contain the appropriate
axioms and proved facts, (ii) building up compound strategies using
tactics and tacticals, and (iii) applying the tactics to the goals, to
generate empty lists of subgoals (eventually). The proof functions re-
turned can then be applied to generate the desired theorems. In that
process, all of the intermediate inference steps are evaluated.

We first discuss the tactic which solves the various lemmas
(a typical one of which was described in section 3.2). We let "L" stand
for the list of facts which are non-simplification-like (e.g. the axioms
about the transitivity of "=" and ">"). The tactic which generates the

proofs of all of the lemmas is:

USELEMMASTAC L
GENTAC*
IMPCONJTAC+

.+ |- rell(op,w,s) == TT
ORCASESTAC {

. |- rel2(op,0s,s) == TT
(RESTAC THEN (ORRESTAC ? SIMPTAC) ) *

We explain each line in turn:

- The first uses the facts in L by placing then in the
assumption list, to be used later.

- The second strips off all of the quantifiers, proving the goal
for arbitrary values of the variables.

- The third assumes the several antecedents of the implication
being proved and returns the consequent as result (and then
simplifies the subgoal).

- The fourth performs a cases analysis on the ways in which
rell (or rel2, depending on which the lemmas is about) can
hold.

- Finally, the tactic repeatedly (on each of the four subgoals
resulting from the case analysis) resolves, so that elements
of L meet with the various subgoals to produce new simprules;
then resolves the propositional assumptions, such as the
assumption that rell (or rel2) holds. This completes the
proof in some cases, or may just add some new simprules. If
ORRESTAC fails, SIMPTAC is engaged to use all of the new
simprules. If there are still any unsolved subgoals, this
whole line (beginning with a round of resolution) is again
applied (to them).

This compound tactic is written in a general form so that the same tactic
can be used for all of the lemma proofs. As some of these proofs are
simpler than others, we sometimes arrive at an empty list of subgoals

before the whole tactic is applied.




34

The simplification sets of all of the lemma goals contain some
axioms (and simple facts) about symbols, some of the axioms from the
parser theory, some axioms of propositional calculus, some axioms about
ranks and the axioms defining the three relations. (The theorems and axioms
in "L" have mostly been discussed in section 5.2.)

The LCF proof of the main result is not much more complicated
than the lemma proofs. Again, some facts and axioms can be used as simp-—
rules without ado. These include the parser and unparser clauses, various
facts about "CONS" and "APP" (from LIST theory), some axioms and simple
theorems about symbols and the parser, some axioms of propositional
calculus, and a few more. As before, some axioms and theorems are not
suitable as simprules -- for example, none of the lemmas discussed are
suitable. We call the class of unsuitable facts "L'". The generation of
the machine proof begins with the.application of the following tacic to

the goal:

USELEMMASTAC L'
TINDUCTAC+
(GENTAC* THEN IMPCONJTAC)*

This tactic, in turn

- places the appropriate facts in the assumption list
- generates four subgoals, corresponding to the Undefined, the
Tip, the Unary and the Binary Cases, and simplifies to
solve the first two cases for us
- strips off quantifiers, to prove the goal for arbitrary
values of the bound variables, and proves the consequent by
first assuming the several antecedents (the whole line re-
peated if necessary)
At this point, two subgoals remain, the Unary and Binary Cases. A call of
RESTAC is made in both cases to use the elements of L' by resolving them
with the six current assumptions (the antecedents). This single round
of resolution results in versions of the main lemmas which are useful as
simprules (and the same for a few other elements of L' too). These new
rules are placed in the simpset. Then, in both cases, we apply ORDER-
CASESTAC to reflect the division into cases based on relative precedence
(of "op'" and "u", or "op" and "b" - the tactic figures out which). We
are left with three subgoals in each of the two cases.

In the Unary Case, all that is required to solve the three




35

subgoals is a call to SIMPTAC to use the newly added simprules. The same
is true of the two Binary Case subgoals in which there is unequal prec-
ednce (see the informal proof in section 3). For the remaining one subgoal,
we have to work harder.

In that case, we next apply SIDECASESTAC to consider the three
possible values for the side-indicator "s'". For each of the three result-
ing subgoals we need another call of RESTAC to resolve the new case

assumptions with the following element of L' (section 5.2), among others:

|- ! b op. Prec(mkBINOP b)

= Prec op == TT IMP
DEF (destBINQOP op) ==

= DEF op

The theorem deduced from this call of RESTAC is used later to enable the
induction hypothesis to be applied.

The 'meither' subgoal is argued by contradiction, and a call
of ORRESTAC solves it. The other two remaining subgoals are again subjected
‘to case analysis ——- a call of ASSOCASESTAC. SIMPTAC solves the final
four subgoals, and the proof is completed.

The whole tactic which solves the goal is:

USELEMMASTAC ‘L'

TINDUCTAC+ :
(GENTAC* THEN IMPCONJTAC)*
RESTAC

ORDERCASESTAC+

SIDECASESTAC

RESTAC

(ORRESTAC ? (ASSOCASESTAC+))*

The effect of the tactic on the goal is most clearly seen in the tree
structure corresponding to the successive subgoals produced by the

individual tactics:

USELEMMASTAC L'

TINDUCTAC+

(GENTAC* THEN IMPCONJTAC) *
l

- -
UnaravCase Binary Case
RESTAC RESTAC
ORDER?ASESTAC ORDERCASESTAC

stMpTC SIMPTAC SIMPTAC " sIMPTAC b=op lase STMPTAC
| v




b‘=og Case
SIMPTAC
SIDE?ASESTAC
I
s=N gase s=L 'Z'ase 8= 'RVCase
RESTAC SIMPTAC RESTAC
QRRESTAC ASSOCASESTAC ~ ASSOCASESTAC

SIMPTAC —_ —
g . 2.V Yy
SIMPTAC SIMPTAC SIMPTAC SIMPTAC

This clearly reflects the steps of the informal proof, including the
reasoning by contradiction (ORRESTAC) and the reasoning required to use
the induction hypotheses (where RESTAC helps), as well as the many routine
rewritings (accomplished by SIMPTAC) and the case analyses (ORCASESTAC,
ORDERCASESTAC, SIDECASESTAC and ASSOCASESTAC). The component tactics,
especially RESTAC and TINDUCTAC, are quite general, and useful in other
proofs. Although the number of primitive inferences evaluated in the
course of applying the proof function is very large, the tactic itself
naturally reflects the proof structure. Aside from the case analyses,
which are special to this problem, the tactic is not very much different
from the tactic solving the simpler parser proof described in (Cohn &
Milner 1982).

To prove the theorem really wanted, namely

't. WD t == TT IMP
parse (APP (unparse U0 N t) NIL, NIL, NIL) ==
parse(NIL, NIL, CONS t NIL)

(as in section 3.1), we introduce the constant "UO ", include parser

clause 1 in the simpset of the goal, and apply SIMPTAC.

6. CONCLUSIONS

In this paper we have described a precedence parsing algorithm,
stated and informally proved a correctness property of the algorithm
relative to an unparsing algorithm (the one inserting the least number
of brackets), described the formalisation of the problem in the logic
PPLAMBDA, and discussed the generation of the machine proof in LCF by the
application of ML tactics.

To summarise, we show the tactics which solve the main lemmas

and the theorem, below.




37

Main Lemmas
BELEMMASTAC L

GENTAC*
IMPCONJTAC+.

o -rell(op,w,s) == TT
ORCASESTAC&I-relZ(op,os,s) == TT

(RESTAC THEN (ORRESTAC ? SIMPTAC))*

Theorem

USELEMMASTAC L'

TINDUCTAC+ .

(GENTAC* THEN IMPCONJTAC) *
RESTAC

ORDERCASESTAC+

SIDECASESTAC

RESTAC

(ORRESTAC ? (ASSOCASESTAC+))*

The combination of USELEMMASTAC, IMPCONJTAC and RESTAC forms a pattern
which can be thought of as a single conceptual step of
using facts which are not handled by the standard apparatus of simplifica-
tion. The proofs all depend on the 'resolution' tactic RESTAC to apply
these facts. While most of the proof steps are accomplished by SIMPTAC,
RESTAC supplements simplification by doing a small amount of forward
search. What seems especially nice is the way RESTAC fits into the
otherwise goal-oriented framework; it is just another tactic, with the end
effect of adding to the set of simplification rules of a goal (and justi-
fying that addition in its proof function). RESTAC meshes nicely with
simplification for that reason, especially conditional simplification. 1In
the problem described here, one round of resolution was in all cases
enough to produce useful new simplification rules (often conditional ones).
The burden of proof was then transferred back to the more efficient,
direct and goal-oriented mechanism of simplification. The subgoaling
style of proof was never interrupted. We feel that RESTAC is a'primitive
form of a potentially very useful and widely applicable tactic.

In this experiment, the logic PPLAMBDA was adequate for a
very natural expression of the algorithm and its correctness property.
Using ML functions for the purpose, new types, constants and axioms were
introduced in an organised way, to form a structure of logical theories.
A general ML procedure, due to R. Milner, to construct theories and
induction rules and tactics for certain recursively defined data types
was used to build general theories of lists and trees for the problem

statement. This is an indication that general proof tools exist and can




38

be implemented in ML.

The problem of being unable to express relational constants
in PPLAMBDA was avoided here by the fortunate fact that the relations in
question were purely propositional and could be expressed in terms of a
simple theory of propositional calculus. (Had this not been the case, the
rather cumbersome formulae spelling out the relations would have had to
appear everywhefe instead. We did manage to perform the proof this way
as well, though.) This is a weak point of the current version of PPLAMBDA.

The undefined cases which often clutter up proofs in LCF are
handled neatly in this proof. If we were to perform thgviggividualh"
tactics line-by-line as written so that all the intermediate subgoals
could be seen, there would be no evidence of undefined cases, although
they are all, of course, proved. Most are handled by simplification (e.g.
the Undefined Case of the tree induction).‘ Beyond that, the various
derived case rules manage undefined cases internally (or else would have
failed). The non-strict propositional calculus also helps; had "AND"
and "OR" been defined to be strict (e.g. in terms of the basic PPLAMBDA
conditional function) many more undefined cases would have arisen. ("AND"
and "OR" are axiomatised rather than defined, though, at the cost of
having to show the axioms consistent.)

In future work we would like to experiment with the resolution
tactic in other settings, and to make it more efficient and sophisticated.
As it is, no heuristics are used at all, and all possibly useful deductions

of a certain sort are made. It would be interesting to try to import some

of the ideas from classical resolution theory into this context.

REFERENCES

1. Avra Cohn and Robin Milner, "On using Edinburgh LCF to prove
- the correctness of a parsing algorithm", Edinburgh Univer-

sity Computer Science Dept. Technical Report, to appear,
1982

2. Paul Y. Gloess, "A proof of the correctness of a simple
parser of expressions by the Boyer-Moore System", S.R.I.
Technical Report NOOO 14-75-C-0816~SRI-7, August 1978

3. Michael Gordon, Robin Milner and Christopher Wadsworth,
"Edinburgh LCF", Springer-Verlag, New York, 1979

4. J. A. Robinson, "Logic: Form and Function", Edinburgh
University Press, Edinburgh, 1979

ACKNOWLEDGEMENTS

We thank Robin Milner for the idea of proving a precedence
parser, and for doing the first parser proof; and Robin Milner and Mike
Gordon for helpful criticisms of this work.




