Technical Report A

Number 210

Computer Laboratory

Higher-order unification,
polymorphism, and subsorts

Tobias Nipkow

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© Tobias Nipkow

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Higher-Order Unification, Polymorphism,
and Subsorts

Tobias Nipkow*
University of Cambridge
Computer Laboratory
Pembrolke Street
Cambridge CB2 3QG
England

Tobias.NipkowQcl.cam.ac.uk

Abstract

This paper analyzes the problems that arise in extending Huet’s higher-
order unification algorithm from the simply typed A-calculus to one with type
variables. A simple, incomplete, but in practice very useful extension to Huet’s
algorithm is discussed. This extension takes an abstract view of types. As
a particular instance we explore a type system with ML-style polymorphism
enriched with a notion of sorts. Sorts are partially ordered and classify types,
thus giving rise to an order-sorted algebra of types. Type classesin the func-
tional language Haskell can be understood as sorts in this sense. Sufficient
conditions on the sort structure to ensure the existence of principal types are
discussed. Finally we suggest a new type system for the A-calculus which may
pave the way to a complete unification algorithm for polymorphic terms.

*Research supported by ESPRIT BRA 3245, Logical Frameworks.

1

1 Introduction

Huet’s algorithm for higher-order unification in the simply typed A-calculus [11]
forms the core of a number of theorem provers based on higher-order logic[1, 17, 14].
In this paper we discuss extensions to this unification algorithm which permit more
expressive type systems: ML-style polymorphism enriched with a notion of sorts
constraining type variables. It turns out that the step from the simply typed A-
calculus considered by Huet to one with type variables is nontrivial. The unification
algorithm we analyze is in fact incomplete. A complete extension remains an open
problem which is briefly considered at the end. On a more positive note, the intro-
duction of sorts is completely orthogonal to the higher-order unification algorithm
and causes no problems whatsoever.

It has to be stressed that this is not the first extension of Huet’s algorithm to
a polymorphic type system. Nadathur [14] reports on an implementation of the
programming language AProlog which features polymorphism. His extensions seem
to be very similar to the ones analyzed in this paper. In particular he faces the
same problem with completeness that we have. However, the author is not aware
of a formal treatment of these issues, in particular not in connection with an order-
sorted type system.

All the features described in this paper have recently been implemented in the
generic theorem prover Isabelle. Isabelle is generic in the semse that it can be
parameterized with the intended object-logic. Its meta-logic is a fragment of higher-
order logic and its inference mechanism is based on higher-order unification. Detailed
descriptions of the monomorphic version of Isabelle can be found in [18, 19]. Before
we go into technical details, the motivation for the extensions to the type system in
presented.

Although ML-style polymorphism hardly needs to be motivated in a programming
language context, some simple examples from the realm of generic theorem provers
seem appropriate. The basic reason for the introduction of polymorphism is the
desire to shift type-checking in many-sorted logics from the object to the meta level.
A typical example is the definition of an ordinary many-sorted first-order logic. We
need to model a type of formulae form, and an unbounded number of different
types of terms like natural numbers, reals, lists etc. In a polymorphic type system,
the operation of equality between terms has type a — a — form where a is a type
variable. The built-in type checker ensures that equality always compares terms of
the same type.

In a monomorphic type system, we would have to declare a new equality =; of
type s — s — form for each new type of terms s, and give the same inference rules
over and over again. This is clearly impractical. Alternatively, we can formalize
types as part of the object-logic. In this case terms have to be decorated with their
types, the type checking rules are part of the inference system and type checking is
part of a proof. This is the approach taken in all logics defined in the monomorphic
version of Isabelle. If a logic’s type system is sufficiently expressive to become unde-
cidable, for example Intuitionistic Type Theory [12], this is in fact the only possible
approach. For simpler systems, however, ML-polymorphism is clearly preferable.

2

Having adopted polymorphism, we need to tame its power. Initially one might
be tempted to declare equality and universal quantification as follows:

= a— a— form
V: (e — form) — form

The intention is that « ranges only over different types of terms, but certainly
not over formulae or arbitrary function types (if the logic is supposed to be first-
order). However, there is nothing in this declaration to enforce those constraints.
As a consequence, some rather surprising inferences are possible. In first-order logic
V-elimination is

Vz. P(z)

P(t)
where z : o, t : @, P : @ = form and a are variables. Using the substitution
{a— form,t— Q,P — Az.z} we obtain the derived rule

V. z
q
In a first order-logic, Vz. z is ill-formed. This formula could only arise because of the
instantiation of @ by form. In a higher-order logic, Vz. z is in fact a valid formula,
usually identified with falsity, and the rule expresses ez falso quodlibet.

In order to avoid such pitfalls, Isabelle’s types are classified by so called sorts.
The sort of a type variable defines the subset of types the variable ranges over, thus
prohibiting undesirable instantiations. Details are given in Section 4. Note that a
similar mechanism for restricted polymorphism is embodied in ML’s equality types
and, in a more general form, in Haskell’s type classes [24, 16].

After fixing the basic notation in Section 2, Section 3 presents the extension to
Huet’s algorithm, taking an abstract view of types. Section 4 focuses on the type
system, introducing polymorphism, sorts and subsorts. Finally, we speculate on a
way to obtain a complete unification algorithm for the polymorphic case.

2 Preliminaries

The reader should be familiar with the basic notations and facts of equational logic as
found for example in Dershowitz and Jouannaud [4]. We are broadly consistent with
their notation, except that we treat substitutions as ordinary functions. Function
composition is denoted by o: (f o g)(z) = f(g(x)). The rest of this section presents
the notation for the typed A-calculus with o, 8 and 5 equality. For more details see
[23, 10].

For the time being we take an abstract view of types with just enough detail to
describe the unification process. Section 4 gives the full description of the intended
type system. This separation is possible because the unification of terms and types
proceeds largely independently.

The set T of all types is a subset of the free algebra over some set of type
constructors, including the function-space constructor “—”, generated by a set of

3

type variables V7. The idea is that the types themselves form a sorted algebra
and 7 is the set of all “well-sorted”, i.e. well-formed types. Types whose outermost
constructoris “—"” are called function types, all other types are called base types. The
letters o, T and v represent types. Function types associate to the right: ¢ — 7 — 4
means ¢ — (7 — 7). Instead of 0y — --- — 0, — 7 we write &, — 7. The latter
form is used only if 7 is a base type. The type variables occurring in a type o are
denoted by V(o).

T comes with a set of type substitutions S which is some subset of the set of
all possible mappings from Vr to T and contains {}, the empty map. Again, the
sorted nature of types has to be taken into account. Elements of St are denoted by
O and A. The quasi-order < on terms and substitutions is defined in the usual way.
Correspondingly, there is a unification function & : 7 x T — 257 which returns a
complete set of unifiers: for any two 0,7 € 7 and any A € St with A(s) = A(7)
there is a © € U(o,7) such that @ < A [V(o,7)]. For simplicity we assume that
all variables in the range of a substitution returned by U/ are “new”.

Terms are generated from a set of free variables V', a set of bound variables X,
and a set of constants C' by M-abstraction and application. Free variables are denoted
by F', GG, and H, bound variables by z, y and 2, and constants by a, b, and ¢. Terms
are denoted by s, ¢, and u. The inductive definition of typed terms in a context T,
which is just a mapping from X to 7T, is as follows:

Iz)=r

Tra s 'EF:7 F'kc T
'rsio—=71 TFkt:o Fo{z—o}rs:T
Trh(st):7 TH(zes):o— 1

Note that free variables and constants on their own are not legal terms. They have
to be tagged with some type, as in the second and third formation rule above. In
particular we assume that all occurrences of a free variable in a term are decorated
with the same type. There is no corresponding requirement for constants because
they can be polymorphic. A term ¢ is well-typed if {} F ¢ : 7 holds for some 7 € 7.
Instead of {} - ¢ : 7 we simply write ¢ : 7. In the sequel we consider only well-typed
terms, which means in particular that there are no “loose” bound variables: z, for
example, is illegal. Instead of Azy....Az,.s we write Azy,...,z,.s or just A\F.s.
Similarly we write #(uy,...,un) or just t(%;) instead of (...(f u1)...)u,. The free
variables in ¢ are denoted by V(t), the type variables by Vz(t). Type decorations
are omitted if they are not important.

We assume «, 8 and 7 conversion on terms. Relying on the strong normalization
property of the typed A-calculus we assume that terms are in 8-normal form. We
also ignore o conversion by working with a-equivalence classes of terms, using the
generic bound variable names z and y. Similarly n-conversion is ignored by working
with the n-ezpanded form of terms [23]. The n-expanded form of the B-normal form
of a term ¢ is denoted by t].

A term A7 .s(wr) in B-normal form is called rigid if s € X U C, and flexible if
sevV. :

Substitutions on terms are defined as mappings from free variables to M-terms
in the usual way. They are denoted by 6 and 6. Applying a type substitution to a
term means applying it to all type decorations in the term. '

A unifier of two terms s and ¢ is a pair of substitutions (@, 0) on types and
terms respectively such that §(0(s)) and 6(O(t)) are equivalent modulo e, 8 and
n-conversion.

3 Higher-Order Unification

The starting point for most work on higher-order unification is Huet’s algorithm
[11] which enumerates a complete and minimal set of unifiers with respect to the
stmply typed A-calculus [10]. As higher-order unification is undecidable in general [9],
this is the best one can hope for. Snyder and Gallier [23] have recently reformulated
Huet’s algorithm in terms of inference rules, which simplifies the presentation. Their
version will be our reference point.

Isabelle was originally based on the simply typed A-calculus and used Huet’s
algorithm. A recent extension permits polymorphic constants in the ML sense. As
a consequence, terms may now contain type variables as well as term variables,
both of which may need to be instantiated during the unification process. This is a
significant departure from the original problem.

Example 8.1 Let 7 be some base type and a a type variable, let a : 7 be a constant
and G : e and F': @ — 7 be two variables. The following matching problem is given:

F(G)=a (1)

Let us first look at (some of) the infinitely many solutions to this problem. We know
that any instantiation of & must be of the form

Tp = =Ty —

for suitable types 71,...,7, and 4. In particular we may assume that v is not a
function type. Without any assumptions about o we get the solution F' = Mz.a. In
terms of Huet’s algorithm this is the solution obtained after a single imitation step.
In fact, for any instantiation of a where v s 7, this is the only solution.

If we also assume that v = 7, we get the following infinite set of solutions,

indexed by n:
F = \z.x(A(z),...,Au(z)), G=Ary,...,Tn.a

The A; are new free function variables.
Further instantiations of a yield yet more solutions. For examplea =7 — 7
alone has an infinite set of independent solutions:

F=)zak(a), G=lzz
is a solution for any natural number k, where z* is the k-fold composition of z.

5

This shows quite drastically that type variables introduce a new degree of freedom
into unification problems. Different type instantiations give rise to completely inde-
pendent sets of solutions with greatly varying cardinality (finite vs. infinite). This
is not in itself surprising, but it raises the question how this new freedom can be
incorporated into the unification algorithm. We shall try to “lift” Huet’s algorithm
to this new setting by replacing equality tests on types by unification. The following
example shows why such a simple-minded extension is problematic. You need to be
familiar with Huet’s algorithm to follow it.

Example 3.2 We return to the unification problem in Example 3.1. As mentioned
above, a single imitation step finds the solution F' = Az.a which requires no type
instantiations. Projection, however, is different. F' can be a projection only if the
result type of its argument G is 7. This means that projection is applicable for any
instance of a of the form 7 — -++ — 7, — 7. Unfortunately, the set of these types
does not have a finite representation in terms of function types and type variables.
Hence we can either try all possible type instantiations (which is complete but
completely impractical) or sacrifice completeness for efficiency. In the latter case
we pick the simplest type instantiation that permits projection. In this example it
means unifying o and 7. This results in the instantiation of & by 7 and the single
additional solution

F = Az.z(A(z)), G =)z

This is obviously incomplete. In particular, if (1) is just one in a set of equations
to be solved simultaneously, some of the other equations may well require o to be
instantiated by a different type. In that case we would find no solution unless we
also backtrack over possible type instantiations.

Despite its incompleteness, the solution outlined in the above example has been
adopted in both AProlog and Isabelle. In the sequel we present a formal treatment
of this extension to Huet’s algorithm.

3.1 The Algorithm

This section formalizes the idea of “lifting” Huet’s algorithm. Our treatment is very
. close to that of Snyder and Gallier [23]. In fact, parts of our algorithm are identical
to the one they present. The price we pay is the incompleteness discussed above.

The unification algorithm is presented as a collection of conditional rewrite rules
on pairs (@, D), where © is a type substitution and D a multiset of unification
problems s ="t. D is called a system in the sequel. We assume that all occurrences
of a free variablein D are decorated with the same type, a property that is preserved
by the inference rules below. Note that © merely records and accumulates the type
substitutions, whereas D represents both the current multiset of unification problems
and the term substitutions obtained so far.

sio t:17 o#T A€elU(o,rT)

(0,{s="t}UD) = (A0 ©,A({s="t} UD)) (T)

(©,{s£s}uD) = (0, D) (D)

te XucC (0)
(0, [\ 1(57) =7 a7 F (@)} U D) = (0, (a1 F () =F Aerd (o)} U D)

F¢V(t) Fev(D)

(0, {\ex.F'(zx) ="t} UD) = (0, {\z%.F (=) =7t} U {F £}(D)) V)
p— Z iT _7A._€ Lf(iT) (TS)
(0, {\z5.c’(57) =" Azr.c” (@)} U D) =
(A 00, A({Ar.c”(s7) =" A71.¢™(%7)} U D))
teXucC)

(0, {M77.1(37) =" Azy.t(Tn) } U D) =
(©, {Azr.si =" AZp.u; [i € {1,...,n}} U D)

O=0Tppi 20 T=To; >0 . (1)
(6, {\zg.F(55) =" Az1.¢™(5;)} U D) =
(0, {F=" AT i (Hnys (Tmti))s AT Fo(37) =" AT1.¢7(Ug)} U D)

teEXUC o=0o,70—0 o,i=T—71 o471 Ael(d,r
+ i=Tp
?

(0, {\z5.F* (5) =" Azy.4(u;) } U D) — (Tp)
(A0 0, A({dz.F(57) =" Az1.t(w)} U D))
teXucC O =COpyi =T O =T, =T (P)

(0, {Azx.F(35) =" \z1.t(w;)} U D) =
(0, {F7 =" M.z j(Hy (@)), MT5. P (377) =" \a.t(5) } U D)

The rules (T), (Ts), and (Tp) unify types and are new. Rule (O) orients rigid-
flexible pairs. The remaining rules unify terms and are almost identical to the ones
given by Snyder and Gallier. (T) unifies the types of two terms. (Ts) unifies the
types of two rigid heads. (Tp) unifies the result type of a rigid term with the result
type of one of its arguments. (Ts) and (Tp) may need to be applied before (S)
and (P) respectively in order to make types meet. We assume that (I) and (P) are
immediately followed by (V), eliminating F. The free variables H, in (I) and (P)
- are assumed to be new.

Huet’s insight, which turned higher-order unification from a mere curiosity into
computational reality, was that flexible-flexible pairs need not be solved. This sim-
plifies the algorithm but requires some new terminology. The following definitions
are broadly consistent with the literature.

A system D is in presolved form if for every unification problem s="1 in D

7

e either s = \7,.F(Z;;) and F occurs neither in ¢ nor in the rest of D, or both
s and ¢ are flexible, and

e s and t have thé same type.

If D is in presolved form, define
= {Fw—t|(Az5.F(z%) ét) € D}.

Like Gallier and Snyder [23] we define & to be the least congruence on well-
typed terms of the same type containing all flexible-flexible pairs. The pair (@, §)
is a preunifierof D if §(O(s))| = §(O(t))] for all pairs s ="t in D.

The next simple lemma shows that the terminology is consistent in that presolved
forms give rise to preunifiers which in turn extend to unifiers. The precise statement
requires some more notation. With every base type o we associate some arbitrary
but fixed free variable F,, and with every type 7 = 75, — ¢ a term 4, = \zor.F,
where the z; are all distinct.

Lemma 3.1 If D is in presolved form, ({},13) is a preunifier of D. If (0,6) is a
preunifier of D, then (0,0 U €) is a unifier of D, where ’

¢ = {F i, | F* € V(D) - dom(8)}

The following soundness and completeness theorems can be proved along the
same lines as their counterparts in [11, 23]:

Theorem 3.1 If (0, D) =" (0, D') and D' is in presolvedform, then (O, D' is
a preunifier of D,

Theorem 8.2 Let (A, 6) be a unifier of a system D such that no type in the range
of A is a function type. Then there exzsts a presolved form (©,D’) such that
({1, D) =" (6,D"), © < A [Vr(D)], D' < 6 [V(D)], and 6 is a unifier of all
flezible-flexible pairs in D',

The completeness theorem is rather more conservative than the actual algorithm.
In many practical cases it will find all solutions, although some of them require type
variables to be instantiated by function types.

- As with all unification algorithms expressed as rewrite rules on collections of
unification problems, there are two kinds of nondeterminism during execution: the
choice between different transformations that apply (“don’t know”) and between
different unification problems they can be applied to (“don’t care”). Ideally, all
strategies for selecting unification problems should be equivalent with respect to
completeness. For example Huet [11] and Elliot [5] show this quite explicitly for their
algorithms. This result also holds with respect to the limited completeness theorem
above. However, our algorithm is in general not just incomplete but also sensitive to
the selection of unification problems. The point is that (Tp) commits to a particular
type instantiation out of an infinite set, thus reducing the solution space. Hence
the application of (T'p) should be delayed as long as possible in order to minimize

8

incompleteness. More precisely, one can give an operational characterization of
completeness: the above set of transformation rules enumerates a complete set of
unifiers for a particular unification problem if (Tp) need not be applied in such a
way that either v or 7 are type variables. This means that no solutions are lost if
the application of (Tp) to a particular unification problem can always be delayed
until the types are sufficiently instantiated.

3.2 Optimizations

In this section we briefly consider some simple optimizations of the above rather
high-level algorithm. First we look at issues connected with conversion of A-terms.
In the description above, we have abstracted from all three conversion rules by
considering a-equivalence classes of n-expanded B-normal forms. Here are some
remarks on how to minimize the work of obtaining these normal forms:

a If De Bruijn notation [3] is used, a-conversion can be ignored completely.

B The question here is mainly how much of the normal form to compute when. As
we can see from the rules, full f-normal form is not required — head-normal form
will do. If all terms are in f-normal form initially, only the application of (V)
entails further normalization.

7 In contrast to unification for the simply typed A-calculus, our transformation
rules do not leave terms in 7-expanded form because type-variables may become
instantiated. Fortunately, only (S) requires the n-expansion of the head, thus
minimizing the need for -expansion. In Isabelle we have gone so far as banning
the instantiation of type variables by function types during the unification process,
thus removing the need for n-expansion completely (provided the input is in 7-
expanded form). However, preliminary experiments suggest that in practice this
is a rather drastic restriction, requiring frequent explicit type instantiations by
the user.

Further important optimizations concern the order in which rules are applied. In
contrast to (Tp), (T) and (Ts) should be performed as soon as possible, to detect
nonunifiability by type-clashes. It is in fact sufficient to apply (T) to the input
because the remaining rules maintain the invariant that the two terms of a unification
problem have the same type. The rules for unification of terms, simplification (S),
imitation (I), and projection (P), should be tried in the order embodied in Huet’s
algorithm.

4 Polymorphism and Subsorts
This section fills in the details left open by the rather general discussion of types in
Section 2. As indicated in that section and motivated in the introduction, type vari-

ables need to be constrained in order to capture certain restrictions, for example the
first-order nature of some proof system. In Isabelle, type variables are constrained

9

by introducing a third level into the system: so far we had terms, and types which
qualify terms. Now we add sorts which qualify types. This is very reminiscent of
generalized type systems [2], a relationship that needs further investigation. In con-
trast to generalized type systems we have a partial order on the sorts, indicating that
a subclass of types identified by one sort is contained in the subclass identified by
the another sort. This embodies the central ideas behind the notion of type classes
in the functional language Haskell [24], a relationship that is made precise in [16].
Note that we are dealing with coercion on the level of sorts, not of types. Hence
the system is quite different from OBJ [6], where we have a partial order between
typesl.

The step from ML-style polymorphism to one with partially ordered sorts leads
from a single-sorted to an order-sorted algebra of types. Therefore we need some
basic vocabulary of order-sorted types. After that we look at order-sorted unifica-
tion, which fulfills two functions in Isabelle: it is required for type checking [16] and
for higher-order unification of polymorphic terms as described in Section 8.

The following definitions are consistent with [21, 22, 25]. Note that the naming
conventions established in Section 2 do not all carry over. This is important to keep
in mind since the order-sorted terms discussed below are the fypes in the A-calculus
discussed in Section 2.

An order-soried signature consists of a set of sorts S, a partial order < on S, and
a set of function declarations f : (3;)s. Given a fixed signature and an S-sorted set
V = Uses Vs of disjoint sets of variables, a set of typed terms is defined inductively:

zeV, s<s fi(ER)s s<s Vit:s
z:s f@n): s

The definitions of substitutions, unifiers, complete sets of unifiers etc. are straight-
forward generalizations of the unsorted case and can be found for example in [21]. In
the sequel the ordering < is extended from S to S* in the canonical componentwise
way.

A signature is called regular [22] if every term has a least sort. Regularity is
decidable for finite signatures:

Theorem 4.1 (Smolka et al. [22, 25]) A signature (S, <,X) is regular iff for every
f €L andw € 5% the set {s | Jw' > w. f: (w')s} either is empty or contains a
least element.

Regularity is important because it implies that order-sorted unification is finitary.
Order-sorted unification in non-regular signatures may be infinitary [22].

As in the section on higher-order unification, the algorithm is presented as a
rewrite system on multisets of equations. The following rules are similar to those in
Jouannaud and Kirchner’s survey [8]. With respect to some fixed signature define

s1As; = maz{s|s<s1As< sy}

D(f,8) = mar{w|3s. f:(w)s'As' < s}

"Which happen to be called sorts in OBJ, an unfortunate confusion.

10

HE={z;="1,...,2,=" t,} such that all z; are distinct and no z; occurs in one
of the ¢;, E is in solved form and E = {z; — #,...,2, + t,} is a most general
unifier of E.

{tZ{}UE=E
{{)EfEIVE = {nt,...,raEt,}UE
tgvV
{t="2}UF = {z="1}UE
cteV,NV(E) z¢V({) t:s
{z="t}UE = {z="t} U {z = t}(E)
zeV, yeVy s<s
{e="y}UE = {y="2} UE ‘
zeV, yeVow sfs '£s zeVw s"€shs z¢{z,y)UV(E)
{z="y}JUE = {z="2,y="2)UE
s€V, n>0 3;€D(f,s) Viizgi€ Vi Azi € {a} UV(ty,...,1,, E)
{z="fE)IVE = {e=" f(T), 21 ="t1y..., ="t} UE

This algorithm is less deterministic but essentially equivalent to the ones given by
Schmidt-Schauf [20] and Waldmann [25]. Adapting their results one can easily show:

Theorem 4.2 For any regular signature the set of all § such that E =>* S and S
is in solved form is a complete set of unifiers for E.

It follows that in finite regular signatures, where s A s’ and D(f,s) must be finite,
finite complete sets of unifiers always exist.

The remainder of this section focuses on the existence of single most general
unifiers. Since our terms represent types, this happens to coincide with the exis-
tence of principal types. A lack of principal types is undesirable for two reasons:
expressions may have any finite number of incomparable types, making them rather
hard to comprehend from a user’s point of view; finite sets of type unifiers increase
the search space for higher-order unification.

Waldmann [25] characterizes unitary signatures, i.e. those leading to unitary
unification problems?. He calls a partial order (S, <) downward complete iff the set
s A ' contains at most one element.

Theorem 4.3 (Waldmann [25]) A regular signature is unitary iff it is downward
complete and for all s, w, and f: (w°)s® such that w < wP® and s < s° the set

W(f,w,s)={w' |3w,3. f: (W)5AT<sAw <wAw SE}

either is empty or contains a greatest element.

2The characterization results by Meseguer et al. [13] do not immediately apply to our situation
because they admit unsorted variables in their unification problems.

11

Unfortunately, the definition of the set W(f,w,s) is not very intuitive, difficult to
check, and hence unsuitable as a guideline for users.

The programming language Haskell [7] solves this problem by imposing a num-
ber of severe context conditions which are sufficient to guarantee principal types.
Although they are not necessary, they- make a lot of sense from a programming
language point of view. Their essence is captured in the next lemma, which follows
easily from Lemma 4.2 below.

Lemma 4.1 A signature is unitary if it is finite, regular, downward complete,
e injective: f: (w)s and f(w')s imply w = w', and

o subsort reflecting: f : (w')s' and ' < s imply the existence of w such that
w' <w and f: (w)s.

Isabelle uses a slightly weaker criterion called coregularity. A signature is coregular
if for all f and s the set D(f, s) contains at most one element. The following lemmia
goes back to Schmidt-SchauB and is also given by Smolka et al. [22].

Lemma 4.2 Signatures which are finite, regular, downward complete, and coregular
are unitary.

This lemma follows directly from the correctness of the unification algorithm above
because downward completeness and coregularity eliminate all essential nondeter-
minism from that algorithm. '

It is easy to see that injectivity and subsort reflection together imply coregularity
but that coregularity implies neither. Nevertheless, the two criteria are equivalent
in the following sense: given a coregular signature I, there exists an injective and
subsort reflecting signature ¥’ on the same sort structure but with declarations

Af :(w)s | De(f,8) = {w}}

such that ¢ : s holds w.r.t. iff it holds w.r.t. £’. This means that the sorting judge-
ments derivable w.r.t. ¥ and X’ are identical. Hence ¥ and ¥’ are interchangeable
for all intents and purposes.

5 Speculation

The algorithm for higher-order unification in the presence of type variables presented
in Section 3 is incomplete. The source of this incompleteness is our inability, given a
type o, to find a finite representation for the set of all types ; — . We propose a
radical extension to the type system which overcomes this limitation. We introduce
a “pseudo”-product type # and a unit-type 1 which are related to — as follows:

axfory = a=afoy a—=fry = (= f)*x(a—7)
axl = « lxa = «
loa = « a—1 =1

(axf)xy = ax(fx7)

Read from left to right, this is a terminating and confluent rewriting system. Nor-
mal forms are products of simple types. Notice that this system, together with
commutativity of *, axiomatizes isomorphism in ‘Cartesian Closed Categories. The
unification problem for the latter and related systems, but not for the one above,
has already been considered by Narendran et al. [15].

The point of this new type system is that the set of all types &, — o can be
represented by o — o, where a is a type variable. To obtain & — o, simply
instantiate o with o * -+ % 0.

The new type constructors * and 1 are accompanied by two new term construc-
tors (-,-) and () and a number of equalities between A-terms containing pairs and
units.

Whether this approach leads to a complete higher-order unification algorithm
for polymorphic A-terms over these new types is not clear yet, in particular since
the unification problem for the types themselves is now highly nontrivial (it contains
associative unification as a special case).

Acknowledgements

The author wishes to thank Larry Paulson and David Wolfram for many discus-
sions on higher-order unification and polymorphism, Uwe Waldmann for his patient
explanations of order-sorted unification, and Annette Schumann for proof reading.

References

[1] P.B. Andrews, D.A. Miller, E.L. Cohen, F. Pfenning. Automating Higher-Order
Logic. In Automated Theorem Proving: After 25 Years, AMS Contemporary
Mathematics Series 29 (1984), 169-192.

[2] H. Barendregt. Introduction to Generalised Type Systems. To appear in J.
Functional Programming.

3] N. G. de Bruijn. Lambda Calculus Notation with Nameless Dummies, a Tool
for Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem. Indagationes Mathematicae 34 (1972), 381-392.

[4] N. Dershowitz, J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen (edi-
tor), Handbook of Theoretical Computer Science, Vol B: Formal Methods and
Semantics, North-Holland, to appear.

[5] C. Elliot. Higher-Order Unification with Dependent Function Types. Proc.
Rewriting Techniques and Applications, LNCS 355 (1989), 121-136.

[6] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer. Principles of OBJ2.
Proc. 12th ACM Symp. Principles of Programming Languages (1985), 52-66.

[7] P. Hudak, P. Wadler (Eds.). Report on the Programming Lanyuage Haskell.
Version 1.0, April 1990.

13

[8] J.-P. Jouannaud, C. Kirchner. Solving Equations in Abstract Algebras: A Rule-
Based Survey of Unification. Technical report, March 1990.

[9] W. Goldfarb. The Undecidability of the Second-Order Unification Problem.
Theoretical Computer Science 13 (1981), 225-230.

[10] J.R. Hindley, J.P. Seldin. Introduction to Combinators and \-Calculus, Cam-
bridge University Press (1986).

[11] G.P. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Com- -
puter Science 1 (1975), 27-57.

[12] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis (1984).

[18] J. Meseguer, J.A. Goguen, G. Smolka. Order-Sorted Unification. J. Symbolic
Computation 8 (1989), 383-413.

[14] G. Nadathur. 4 Higher-Order Logic as the Basis for Logic Programming. PhD
Thesis, University of Pennsylvania (1987).

[15] P. Narendran, F. Pfenning, R. Statman. On the Unification Problem for Carte-
sian Closed Categories. Ergo Report 89-082, School of Computer Science,
Carnegie Mellon University, September 1989. '

[16] T. Nipkow, G. Snelting. Type Classes and Overloading Resolution via Order-
Sorted Unification. Tech. Rep. 200, University of Cambridge, Computer Labo- -
ratory, August 1990.

(17] L.C. Paulson. Natural Deduction as Higher-Order Resolution. J. Logic Pro-
gramming 3 (1986), 237-258.

[18] L.C. Paulson. Isabelle: The Next 700 Theorem Provers. In P. Odifreddi (editor),
Logic and Computer Science, Academic Press (1990), 361-385.

[19] L.C. Paulson, T. Nipkow: Isabelle Tutorial and User’s Manual, Tech. Rep. 189,
University of Cambridge, Computer Laboratory, January 1990.

[20] M. Schmidt-SchauB. A Many-Sorted Calculus with Polymorphic Functions
Based on Resolution and Paramodulation. Proc. 9th Int. Joint Conf. Artifi-
cial Intelligence (1985), 1162-1168.

[21] M. Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with Term -
Declarations, LNCS 395 (1989).

[22] G. Smolka, W. Nutt, J.A. Goguen, J. Meseguer. Orderl—Sorted Equational Com-
putation. In H. Ait-Kaci and M. Nivat (eds.), Resolution of Equations in Alge-
braic Structures Vol. 2, Academic Press (1989), 297-367.

(23] W. Snyder, J. Gallier. Higher-Order Unification Revisited: Complete Sets of
Transformations. J. Symbolic Computation 8 (1989), 101-140.

14

(24] P. Wadler, S. Blott. How to Make ad-hoc Polymorphism Less ad hoc. Proc. 16tk
ACM Symp. Principles of Programming Languages (1989), 60-76.

[25] U. Waldmann: Unification in Order-Sorted Signatures. Forschungsbericht 298,
Universitdt Dortmund, Fachbereich Informatik (1989)

15

