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The Dialectica Categories

Valeria Correa Vaz de Paiva
Lucy Cavendish College

Abstract

This work consists of two main parts. The first one, which gives it its name,
presents an internal categorical version of Gédel’s “Dialectica interpretation”
of higher-order arithmetic. The idea is to analyse the Dialectica interpretation
using a category DC where objects are relations on objects of a basic category
C and maps are pairs of maps of C satisfying a certain pullback condition. If
C is finitely complete, DC exists and has a very natural symmetric monoidal
structure, If C is locally cartesian closed then DC is symmetric monoidal
closed. If we assume C with stable and disjoint coproducts, DC has cartesian
products and weak-coproducts and satisfies a weak form of distributivity. Using
the structure above, DC is a categorical model for Intuitionistic Linear Logic.

Moreover, if C has free monoids then DC has cofree comonoids and the
corresponding comonad “I” on DC, which has some special properties, can be
used to model the exponential “of course!” in Intuitionistic Linear Logic. The
category of “1”-coalgebras is isomorphic to the category of comonoids in DC
and, if we assume commutative monoids in C, the “V’-Kleisli category, which
is cartesian closed, corresponds to the Diller-Nahm variant of the Dialectica
interpretation.

The second part introduces the categories GC. The objects of GC are the
same objects of DC, but morphisms are easier to handle, since they are maps in
C, in opposite directions. If C is finitely complete, the category GC exists, If
C is cartesian closed, we can define a symmetric monoidal structure and if C is
locally cartesian closed as well, we can define internal homs in GC, that make
it a symmetric monoidal closed category. Supposing C with stable and disjoint
coproducts, we can define cartesian products and coproducts in GC and, more
interesting, we can define a dual operation to the tensor product bifunctor,
called “par”. The operation “par” is a bifunctor and has a unit “L”, which
is a dualising object. Using the internal hom and .l we define a contravariant
functor “(—)L”, which behaves like a negation and thus it is used to model
linear negation. We show that the category GC, with all the structure above,
is a categorical model for Linear Logic, but not exactly the classical one.

In the last chapter, a comonad and a monad are defined to model the expo-
nentials “!” and “?”. To define those endofunctors, we use Beck’s distributive
laws, in a interesting way. Finally, we show that the the Kleisli category GC,
is cartesian closed and that the categories DC and GC are related by a Kleisli
construction.







Introduction

This work grew from the idea of providing an internal categorical version of the “Dialectica Inter-
pretation” of higher order arithmetic.

Godel’s “DialecticaInterpretation” - as it came to be known - based on his “System T”, was first
published in the journal “Dialectica” in 1958. A very elucidating translation, by W. Hodges and
B. Watson, can be found in the Journal of Philosophical Logic, where there is also an extensive
bibliography of work resulting from it, compiled by J.R. Hindley. This bibliography does not
mention Scott’s “The Dialectica Interpretation and Categories” [Scol, a first categorical version of
the Dialectica.

The work presented here, however, is completely different from the work of Scott. There,
a syntactical categorical characterization of HAY - a version of intuitionistic arithmetic in all
finite types - is given and the Dialectica Interpretation appears as a functor preserving the logical
structure. Here we have a much more internal characterization, in the sense that morphisms in
the category in question, correspond to Dialectica interpretations of implication.

The original idea, as suggested to me by Hyland, was to consider the interpretation in a way
now familiar from the “propositions as types” school of categorical proof-theory. As usual the
objects of the category are well-determined, and in our case they represent essentially the &%,
where @ is a formula in higher-order arithmetic and ()P is the Dialectica translation, see [Tro].
The maps are more problematic, however - looked at from the proof-theoretic point of view they
should represent normalisation classes of proofs, but more abstractly a map from ®” to ¥P can
be taken to be some kind of realisation of the formula “®P — ¥P”, Hyland’s observation was that
in the case of the Dialectica Interpretation this realisation could be given very abstractly, leading
to the notion of a Dialectica category DC for an arbitrary category C with limits, which we shall
discuss in Chapter 1.

The objects of the category DC are relations in the base category C, which we write as (U &Xx )

and the maps from an object (U & X) to another % & Y) are pairs of maps f: U — V and
F:U xY — X in C, satisfying a certain condition. The motivation behind such an odd definition
of maps can be found in the Dialectica translation of implication. Implication, by far the most
interesting rule in the Dialectica translation, is described by Troelstra [p.231] as:

(A= B)? (JuVzAp = FwVyBp)P
[Vu(VzAp = TwVyBp) P
[ Vudu(VeAp = YyBp) 1"
[ VudwVy(VeAp = Bp) 1P
[ VudwWyde(Ap = Bp) 1P
IVXVuy[Ap (v, X(u,y)) = Bp(V(u),y)]

e me e e uen

Hence to translate the logical connective implication we need the functionals V:U — V and
X:U xY — X, which correspond to morphisms (f, F') in C in our definition.




A Dialectica category, however, differs from conventional proof-theoretic categories in that it
is not cartesian closed. In fact, in a Dialectica category, there are two constructions that seem to
correspond to the interpretation of conjunction, a tensor and a categorical product. Rather than
the product it is the tensor, that, along with the interpretation of implication, provides a “good”
(i.e a monoidal closed) categorical structure.

New input came when we received accounts of Girard’s work on Linear Logic, [Gir] 1986,
and realised that many aspects of it seemed close to the categorical behaviour of the Dialectica
categories. Indeed, it became clear that we had a categorical version of the intuitionistic fragment
of linear logic (cf.[G-L]).

The interpretation of the operator “I”, called by Girard the modality “of course” turned out
to pose a problem. This was solved by looking at cofree comonoid structures in DC, and as a
spin-off from this categorical setting we got another category DC,, the -Kleisli category, which
corresponds to the variant of the Dialectica Interpretation described by Diller and Nahm [D/N].

The work above on the Dialectica categories was presented at the A.M.S Conference on Cate-
gories in Computer Science and Logic, Boulder 1987, and there I met Girard, who suggested a new
category, which should be a model of Classical Linear Logic. This new construction is presented
in Chapter 3 and for obvious reasons is called GC, since it is again functorial for finitely complete
categories C.

One of the interesting points about the categories GC is that when we describe the categorical
constructions modelling the linear logic connectives, we find that the units for “tensor” and “par”
do not collapse into a single object, as they do in most other models.

But for the GC categories the exponential connectives “I” and “?” proved more elusive. They
were eventually found by composing the connective “P” of DC with the comonad, respectively
monad, suggested by Girard for “/” and “7” in GC. That gave rise to some interesting uses of
“distributive laws of monads”, a concept proposed by J. Beck in 1973, but not very often used.

Another interesting point raised by the categories GC is that, one might wish to talk about
a linear logic which has an “almost” involutive negation, instead of a really involutive one, As
R.A.G Seely points out in [See] 1987, the problem of finding a categorical model for Classic Linear
Logic, was answered, long before it was posed, by M. Barr, who wrote a book on the subject
of *-autonomous categories. But using an analogy not completely out of place, in the same way
that general vector spaces are more interesting than finite-dimensional ones, categories with a
“half-involutive” negation may prove to be more exciting than *-autonomous categories.

I should perhaps mention that when Girard explained his ideas about these new categories GC,
he suggested that they could probably be connected with Henkin quantifiers ( [Hen] and [B/G]),
in a interesting way. In the year or so, that has elapsed between the meeting in Boulder and the
writing up of this work, I have not had time to pursue this idea as I would have liked. There is
clearly some connection. We can try to understand the meaning of an object in GC, (U & X ) as
a kind of “game” between players “U” and “X”, where “U” picks an element “u” and “X” picks
“e’s”. If “u” is such that for every “z” the second player chooses, it happens that uaz, then “U”
wins. On the other hand, if for every “@” it is true that —(uaz) then “X” wins. With this kind of
interpretation in mind, the connection of GC with Henkin quantifiers may be unveiled, but at the
morment it seems very opaque to me. Of course, this interpretation, does raise several interesting
questions about the natural meaning of linear logic and related issues, but that is a new research
project in itself. ‘

This work consists of 4 chapters. In Chapter 1 we describe our basic construction, the Dialectica
categories DC, for C finitely complete. In Chapter 2 we define a comonad (!, €1, &), which is used
to model the modality “of course!” in Intuitionistic Linear Logic. In Chapter 3 we describe the
categories GC with all their structure and show they are a model of Linear Logic, but not exactly
the Linear Logic presented in [Gir]. In Chapter 4 to define the comonad “” we use distributive
laws and conclude that DC is a Kleisli category for GC.

[We take for granted some basic concepts of Category Theory, which can be found for instance
in MacLane’s book.)

«




Chapter 1

The Dialectica categories DC

This chapter presents the general construction of a Dialectica category DC, for any category
C finitely complete, and describes some of their categorical structure. The chapter contains 5
sections. The first explains our basic construction DC and shows it is really a category. The
second shows a symmetric monoidal closed structure in DC. The third defines cartesian products
and weak-coproducts in DC, while the fourth observes that the construction D(—): Cat — Cat is
functorial, In the fifth and last section we show the very nice connection with Intuitionistic Linear
Logic.

1.1 The general construction

In this section we describe the general construction of the Dialectica category DC associated to a
basic category C with finite limits. Martin Hyland’s idea was to build a category of relations on
objects of the basic category C, with rather special maps.

A typical object of DC is a subobject of the product U x X, thus a monomorphism A U xX,
where U, X and A are objects in C. We write this object as (U & X) and call it simply A or

sometimes “o”, meaning the (equivalence class of the) monic.

A map between two such objects A »>» U x X and B A V x Y consists of a pair of maps of
C,(f,F) f:U—-V, F:U xY — X such that a non-trivial condition is satisfied. Namely, pulling

back 4>% U x X along U xY ™57 U x X and B¥S V x Y along U x ¥ 7Y v x ¥, as the

1 !
diagram shows, the first subobject A’ > U x Y is smaller than the second B/ 2 UxY.
Thus, there is a (unique) map k: A’ — B’ in C making a comutative triangle in the diagram:

A — A
o Ta

/ (Wl)F)

B> UXY —————Ux X

fxyY

B>—‘—IB-—‘>VXY




If we write (U & X) for A»> U x X, (V & Y) for B 2V x Y and (—)~! for the pullback
functor, then a map in DC can be represented as the pair (f, F) in the diagram below

U+—+—X
f F

Ve———Y

p

where the condition reads as
(m1, F) N a) < (f xY)7H(B). (*)

The intuition here is to think of an object (U & X) as a set-theoretic relation between U and
X, so that for some u’s and some z’s we have uaz, for others we do not. Thus there is a map

AYY) B in DC iff whenever uaF'(u,y) then f(u)pfy.
Since (*) is not a straightforward categorical condition it is not obvious that DC is a category
and we have our first proposition.

Proposition 1 Given a category C with finite limils we can define a category DC using the
construction above.

Proof: Composition needs checking. Given two maps (f, F): A — B and (9,G): B — C' their
composition (g, G) - (f, F') is gf: U — W in the first coordinate and G o F:U x Z — X given by

UxZ222F UuxUuxzP5%uxvxzfuxy L x

in the second. Using diagrams we have:

U ¢é—t— X

To verify that the new map (gf, Go F): A — C satisfies condition (*) we use pullback patching.
It is easy to see that composition is associative and that identities are (1y, m2) where 1g: U — U




is the identity and mo: U x X — X is the canonical second projection in C.

o
Ue~—————X

1y M2

Ue——X

Notice that, of the finite limits required of C, only finite products and pullbacks have been
used to define the categorical structure of DC.

1.2 A monoidal closed structure in DC

The category DC has a natural symmetric monoidal structure and we can define an internal hom
functor (cf.[Kel]) to make it monoidal closed.

Definition 1 For objects A = (U & X) and B = (V & Y) in DC, define their tensor product
AQ® B as the object

(UxVﬁ@EXxY)

The relation “‘«®pB” is defined by straightforward product of the morphisms « and § and intuitively
it says (u,v)a ® B(z,y) iff uaz and vBy.

Notice that the tensor product above does not define a product, since we, in general, do not
have projections. For example, a projection p1: AQ B — A,

a®
UxVe——+— XxY

m

U +&——— X

would imply the existence of a canonical map U x V' x X Ly,

)

The operation “®” is a bifunctor. Givenmaps A ) A’and B @8 B!’ we have a correspondent
map A® B — A’ @ B given by (f x ¢, F x G) in the diagram

a®p

UxV ¢&——t—— X XY

UxV e—tr X' xY’
a,l@ﬁ/




One can easily check that the bifunctor “@” defines a symmetric monoidal structure on DC with
I =(14é 1) as its unit.

Another remark is that there is no natural diagonal map with respect to ®, A — A® A, since
neither of the natural maps in the second coordinate satisfies condition (). Using diagrams,

U —— X
Ay D

UxUé+——t—— X x X
aQ@

if we take D above as any of the canonical projections, the condition (*) is not satisfied, since uaw
does not imply uaz and uaz’.

Assuming C finitely complete, we defined DC and verified that it has a symmetric monoidal
structure. Next, assuming C is cartesian closed, we want to define internal homs, or function
spaces, cf. [Kel] page 33, in DC.

To define the internal homs in DC recall that, intuitively, [B, C]p ¢ should represent “the set
of pairs of maps in C, f:1V — W, F:V x Z — Y satisfying the () condition”. Therefore it is
reasonable to start with [B, C]pc as a subobject of WY x YV X2 x V x Z, or better, an object of
the form

(WY xYV*Z + V x Z).

Definition 2 Given the objects B = (V & Y) and C = (W & Z), to define the internal hom
[B, Clpc consider the following diagram, where the first square is a pullback of B A V xY along
WY x YVXZ 3y x 7 " e%xa") o Y, the second square is a pullback of C ¥ W x Z along
WY xYVxZ x v x 2 S o g,

B B

: [

/

7 “BUV Z”
C’>7—>W"><YV><Z><V><Z (s, x2”) VxY
(((evv”)ﬂ,‘l)

o >—~‘7——-> Wx Z




and the objects B' and C' are defined by these pullbacks. Then define [B,Clpc as the greatest
subobject A>S WV x YV*XZ x V x Z such that AN B' < C,

AANB

T

A B/

T

' > WV xYVX2 xV x Z

where the symbol “A” means pullback over WY x YV*Z x V x Z, as the diagram shows.

Note that this is the usual categorical translation of Heyting implication. Intuitively, the
relation “y#” in the definition

[B,Clpa = (WY x YV*2 L v x 2)

says (f, F)y? (v, z) iff vBF(v,z) = f(v)y2.

To guarantee the existence of the greatest subobject we ask for C locally cartesian closed as
well as cartesian closed. By that we mean that for any object A of C, the slice category C /A is
cartesian closed, cf [See] 1984.

[But notice that we are not, at the moment, taking in consideration minimality of assumptions,
so taking C locally cartesian closed is certainly enough to make the definitions work, but we could
probably have a weaker assumption.]

Proposition 2 The construction above defines an internal hom bifunctor
[(—), (—)]DCr DC? x DC — DC,
contravariant in the first coordinate and covariant in the second coordinate.

Given a map (f, F'): B’ — B, it induces a map [B,Clpc — [B/, Clp ¢ shown in the diagram
below, where

8
Y
WY xYVXZ + VxZ
Wi x 3, “fx 77
, , d
WV xYVXZ VixZ
o the map W/: WV — WV"' is simply pre-composition with f: V' — V;

o by “f x 2” wemean WY x YV*Z x V' x 2 ™™ yr o 7 X2y o 70

¢ the map @, is given by the exponential transpose of the long composition,




YVRZ Vi G Doy VX2 g Y VI x 2L YV*2 v« VI x 225 v kY Sy,

Also, given a morphism (g, G): C' — C” it induces a map [B, Clpg — [B, C'|p¢ as shown by
the diagram below, where

B
WV x yVx2 <———1+— VxZ
(gV - m1, @) (73, @3)

6
WY xYV*E eV x 7

o the map ¢gV: WV — W'V is post-composition with g: W — W’;
¢ the morphism &, is the exponential transpose of
YV*Z x WY xVx 2 28 YVXZ s Wx 2 xVEVYV*Z x vV x 7 8,
where G:W x Z' — Z,;
e the map “®j3” is given by

YVXZ w WY 5V x 7! RNy VZ gy g T2 oo G,

Proposition 3 The adjunction (=) ® B 4B, (=)lpq makes DC a monoidal closed category.
Proof: We check the natural isomorphism
Hoch(A ® B, O) = Hoch(A, [B, C]DC’),

which corresponds to the following diagram

a®p o
UXVée————XxY U — X
f (FuF) (7o) !

7 v VxZ v
w — 7 WY xYVX4 eV x7

Firstly, to see the bijective correspondence take a morphism in Hompy (4 ® B, C). It is of the
form (f, (F1, Fy)) where f:U x V — W, and on the second coordinate, we have two components,
Fr:UXV xZ— X and Fo:U XV x Z —Y. The map f is bijectively associated (by exponential
transpose in C) to f:U — WV and analogously Fj is associated to Fy: U — YV *Z,

Therefore the mapping (f, (Fi, F2)) — ((f, F3), F1) has appropriate domain and codomain and
is clearly bijective. Also a long and tedious arrow-chasing proves that (f, (1, F»)) is a map in DC
if and only if ((f, F), Fy) is one as well. ‘ O




As usual with monoidal closed categories we have isomorphisms A = [I, A]pc and natural
transformations eva: [A, Blpc ® A — B, given by the maps

@

VU XUXY [ —+  UxY xX

« »
“e'l)U” (7T3’7T4: EVUxY )

1.3 Products and weak-coproducts in DC

In this section we consider C a locally cartesian closed category with stable and disjoint coproducts.
[As mentioned before we are not interested, for the time being, in minimality of assumptions, but
it has been pointed out to us by P.T. Johnstone that coproducts in lcc categories are stable and
quasi-disjoint,.]

Using these extra hypotheses, we shall define categorical products and weak-coproducts in DC
and show a weak form of distributivity of product over weak-coproducts. Before doing that, we
recall the notions of stable and disjoint coproducts.

Say that a coproduct in C, A = [[ A, is disjointif each of the canonical injections jo: Ay — A4
a€A
is a monomorphism and for each pair of distinct indices «, ' the pullback of j,, jo is the initial

object.
Say also that the coproduct A above is stable under pullbacks if, given any map f: B — A, if
we take the pullbacks of each of the canonical injections j, along f: B — A and call them f~1A,,

then B2 [] f~1Aq cf. [Makkai-Reyes] page 49.
aEA

Proposition 4 Given disjoint monics A»> X and B»> X in a category C finitely complete with

)

stable and disjoint coproducts, the canonical map A+ B =¥ X is monic.

Proof: We say that monics A ¥> X and B »> X are disjoint if their pullback is the initial
object.

Recall that in a category C with pullbacks A 4, B is monic iff the square below

A—m— A

A———B

is a pullback.

)

It is a simple calculation to check that the pullback of A ¥+ X along A+ B % X is simply A.




We form the pullback square

a1
P — A

T Tm

A+B—-voouy
(%)
n
Call it P and verify that, using identity A — A and canonical inclusion j;: A — A+ B, the object
A makes the outer square commute, so there is a unique map A 2 P such that the composition
A = P25 Ais the identity in A. Using that a, is monic we show that the composite P 3 4 5% P
is the identity on P, so A and P are isomorphic. Similarly, the pullback of n along ('7':) is simply
B.
(rn.

Now to show A+ B ¥ X is monic, we simply calculate the pullback

R —A+B

e

A+B —

)

In other words, we calculate the kernel-pair of (’::) .
Using the stability of coproducts we decompose R as R + Rig + Ra1 + Ras.
And if we draw the big pullback diagrams, e.g

Rll * A

J
A—2 . 44B X

(%)

they show that Ry; is simply the pullback of m along m, Ryy is the pullback of n along n and both
Ry3 and Ry; are pullbacks of m along n. But since the monics are disjoint, Ry and Ro; turn out
to be 0 so R = A 4 B and we have the result.

O

Corollary 1 Given monics A > X and B»> Y in C, with stable and disjoint coproducts, the

canonical morphism A+ B "t X 1Y is a monic.

. v e . . . i1~m ig'n
As the canonical injections are monic in C, so are A >+ X +Y and B ¥+ X + Y, also these
m+4n

monics are disjoint by construction, which implies that A + B X 4+ 7Y is a monic,

10




Definition 3 Consider the product
AYB=Ux V& X 1Y)

of two objects A = (U & X) and B = (V & Y) of DC, obtained by “adding up” the subobjects

axV

UxBYUXVXY and AxVEY UxV xX inC. Thus,

axV4+Uxp
—

A&4B=AxV+UxB UxXxV4+UxVxY2UXVx(X+Y),

or using diagrams

; .
AXV — L AXVAUXB —2 UxB

TaxV Ta&,@ TUxﬁ

; .
UxX XV —r s UxVx(X+Y) —D VXY XU

Notice that we use the corollary of Proposition 4 to say that A& B is a monic, thus an object
of DC.

This determines a bifunctor &:DC x DC — DC. Given morphisms (f,F):A — A’ and
(9,G): B — B’, we have a map A&B — A'&B’ given by

adf
UxV ¢«—— X +7Y

UV e—s— X' +Y'
o' &

The bifunctor “&” is a symmetric monoidal structure on the category DC, with unit given by the
object 1 = (1 & 0). Intuitively, (u, v)a&ﬂ(z’f) reads as  either uaz or vfy.
Proposition 5 The category DC has cartesian products.

Proof: To check that A& B does give a categorical product, note that:

e There are canonical projections py: A&B — A and py: A&B — B. The map p1: A&B — A
consists of (w1, j1-m3), where U x V' 53 U and jj - 3 is the composition U x V x X XY,

Using diagrams,
adef
UxVé———X+Y
m Ji+ 73

o
U ——— X

Similarly, ps: A&B — B consists of (72, ja - 3), where ji: X - X +Y and jn:Y - X +Y
are canonical injections in C.

11




¢ The object A& B has the universal property. Given morphisms in DC, (f, F):C — A and
(¢9,G): C — B there is a unique map in DC, namely ((f,g), (Z)) C' — A& B, making the

diagram
c c 6
(f, F) J { J (9,G)
AP P .3

commute. Notice that the universal map corresponds to the diagram below

v

Ww o —— Z

(f,9) } (e)

UXxVée———u-X+Y
alsf

Again some pullback patching is needed to show ((f,g), (5)) is a map in DC. O
As expected Hompy (4, 1) is a singleton, since there is a unique map U — 1 and a unique map

U x 0 — X. Moreover, [4,1]pc = (1V x XUX0 LU« 0) 22 1, cf. left diagram below. Notice as
well that there is a map I — 1, from the unit of the tensor ® into the unit of “4”, (right diagram)

U<——~3—-——X 1«——14——1

!l Z 1J i
€ [

1l e——+— 0 le———090

but not conversely, as that would imply 1 2 0 in C.
Another remark is that we have a diagonal map with respect to “&”,

Agi A — ALA

given by:

U e———— X
Ay (:2)

ado
UxU+———X+X

12




We do not seem to have all coproducts in DC, but we have some special ones, e.g. for (U & X )

and (V &x ) the object (U +V &F x ) is a coproduct, where the relation “a + 8”7 is defined in
the obvious way. We also have the following proposition.

Proposition 6 There is an initial object in the category DC, given by 0 = (0 < 0). Actually any
object of the form (0 & X) is an initial object.

It is clear that there is a unique map from (0 & X) into any object (V & Y),

o
0 ——X

More importantly, we always have weak-coproducts, and by that we mean that there is an
operation “@”, not a bifunctor, which satisfies some of the properties of coproducts, namely:

¢ There are canonical injections i1: A — A® B, 13: B — A® B.

o If there are maps (f,F): A — D and (¢,G): B — D, then there is a map A@® B — D, but
that is not necessarily unique.

Definition 4 For objects (U & X) and (V & Y), the operation @ is defined by first taking the
pullback of A»5 U x X (respectively B 2vox Y) along U x XV (ra,ep0) U x X (respectively
VxyV ey Y ), multiplying the new o (resp. ') by YV (resp. XV),

A — A B - B

| |- | |
(w1, ev) (71, ev)

UxXV — s UXX VXYY —————— VXY
and adding it to the correspondent new B, as the diagram shows.

A'xYY —— A XYY+ B xXV ——— B xXxU

Ta'xYV Ta+ﬂ Tﬁ’xXU

UxXVU XYY ————(U+V)x XU XYV o V x YV x XU

Therefore,
(AeB) =U+V & XV xvY")
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and the relation “a ® B” reads intuitively as

(Z ?) a® B(f,9) if uaf(u) or vfg(v).

The operation @ clearly satisfies the conditions above definition 4. For the canonical injections
i1:A— A® B and i3: B — A ® B, use canonical injections and evaluations in C. For example, to
geti1: A — A® B,

o+
U+V<—————*ﬂ—XU><YV

use j1:U — U + V and projection followed by evaluation U x XU x YV “°¥" X,

Given maps A ) C and A ©.9) B to get a morphism A @ B — D use the natural map
(?; ) :U+V — W and any of the possible maps in the second coordinate, for example

ad
U+V+———wﬂ—XU><YV

( 'an)

W Z

Y

where U x 2 5 X L XU,V x Z 5 Y and G is the composition U x Z 33 z8yv,
Notice that despite the formal similarities between A&B and A ® B, there are no natural
morphisms between those objects in the category DC. In one direction A ® B — A&B,

a®
UXVée—a—— X xY

ak
UXVée—s—X+Y
because, e.g. there is no necessary map U x V x X — Y and in the other direction,

ol ~
UXxVe—m——a—X+Y

ll
®p

UxVée————XxY
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- because even if there are maps of right domain and codomain - the relations are not satisfied,
since uaw or vBy does not imply vaz and vBu.

Now we want to relate the bifunctors “&” and “®” to the operation “@®”. To do that we use
morphisms X x Y — X + Y. There are two natural maps to consider here, namely ny: X x ¥ 3

x i X+Yandna XxY3Y I3 X +7Y. We use either of these maps “n;” in the following.
We have the following morphisms, in the category DC:
s A® B— A® B, given by

®p

UxVe——— X xY
nil eV X evy

U+Ve——— XU xYV

o AUB — A® B, given by

aldef
UxVeée—a— X4Y

ni[ ni - (ev X ev)

U4V e—+—— XU xYV

Distributivity Laws

Looking for distributivity laws, we have a natural morphism 4 ® (B&C) — (A ® B)&(A ® C), as
the diagram shows, but not conversely.

U x (V x W) “® (Phey) X x (Y + 2)

Alej

UxVxUxW : (X xY)+ (X x 2)
(¢ ®p)l(a®7)

Similarly, we have a natural map A&(B ® C) — (A&B) ® (A&C), but not conversely.

&
UxVxW : (ﬁ:®7) X+ x2)
AUX1J
UxVxUxW : X+Y)x (X +2)
(a&f) ® (aley)
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Another point to mention is that we do not have distributivity of tensor product ® over weak-
coproduct @, nor of categorical product “&” over weak-coproduct @. But we do have maps going
from A® (B®C) to (A® B)® (A ® C) and conversely.

Proposition 7 The natural morphisms
(4,1)A®(B®C) ~ (A® B)® (A®C):(j,J)
form a retraction in DC, which means that (4, 7) - (i, I) = 1ag(nec)-

We describe explicitly the map (7, I) which is going to be mentioned again. In the first coordi-
nate, it consists of the usual isomorphism

BUXx(VAW)oSUXxV+UXW.
In the second coordinate the map
LUX(V+W)x (X xY)TV x (X x 2)V*W 5 X xYV x 2%

can be decomposed as (H, M, N) where H = Hy + Hj, all of them consisting of evaluations and
projections,

a®(B®7)
Ux(V+W) (: X xYVxzW
i I
UxV+UxW : (X x Y % (X x 2)U*W
a@pfOa®y
Recapitulating:
C finitely complete = DC exists

C locally cartesian closed = DC monoidal closed
C  stable and disjoint = DC has products

coproducts and weak — coproducts

1.4 The relationship between C and DC

We can consider a natural “forgetful” functor U: DC — C. The functor U: DC — C takes an

object (V & Y) to V and amap (f,F): B — C to f:V — W. This functor U has a left-adjoint,
called E: C — DC. The functor E: C — DC is given by U — (U & 1) where the relation e on
U X 1 is the empty relation. The functor E acts on maps V — W as the diagram shows,

Voo Ve—e 1
[
W s We—r—1
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thus, E(f) = (f,!): EV — EW.
Proposition 8 The functor E: C — DC is left-adjoint to the forgetful functor U:DC — C.
It is enough to check the natural isomorphism
Homp (E(V), C) = Homg (V,U(C)).

This is immediate from the diagram

vV —5 1 v

N

We——Z—Z w

There are some other “inclusions” of C into DC to consider. For example, we could consider

the functor G: C — DC which takes U to the object (U <+ U), where the relation “¢” is the total
or identity relation in U x U. But GG does not seem to have an easy adjoint.

Besides that, as usual, we have a diagonal functor A:DC — DC x DC which has a right
adjoint, corresponding to the existence of cartesian products “&” in DC.

A more interesting observation is that if B and C are finitely complete categories and F: B — C
is a lex-functor, that is a functor which preserves finite limits, then the construction

D(-): Cat — Cat
is functorial. Note that Cat means the category of (small) categories with functors as morphisms.

Proposition 9 Given a lex-functor F:B — C, where B and C are finitely complete calegories,
we have an induced functor DF: DB — DC.

The functor DF acts on objects (U & X) as (FU £ FX) and on morphisms (9,G): A — B
as (Fg,FG): FA— FB, as the diagram shows.

g Fp

Vee—tF——-Y FV e—— FY

Notice that, as F' preserves all finite limits, in particular it preserves monics and pullbacks.
Thus, F(U & X) = F(A»5 U x X) = (FA £ FU x FX) is a monic and a well-defined object in

DC, (FU P rx ). Since F also preserves pullbacks, morphisms in DB are taken to morphisms
in DC,
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1.5 Intuitionistic Linear Logic and DC

Linear Logic was recently introduced by Girard in [Gir] 1986. The key idea is to decompose
the logical connectives into more primitive ones. Thus the usual implication “=” is decomposed
into two operations, a binary “—o”, called linear implication and a unary “V”, called by Girard
the modality “of course!”. The Intuitionistic version, or rather the propositional part of the
Intuitionistic version of Linear Logic, was described in [G/L} and this section presupposes some
acquaintance with these two papers.

In [G/L] categorical models for the propositional fragment of Intuitionistic Linear Logic are
briefly considered and linear categories are defined, for this purpose, as symmetric monoidal closed
categories with cartesian products and coproducts. Those categories should have units for product
(1), for tensor (I) and for coproduct (0). An observation is that in [See] 1987, a richer notion of
“linear category” - including an involution - is considered.

The aim of this section is to show that DC can be considered a categorical model for (the
propositional fragment of) Intuitionistic Linear Logic. As we have remarked before, the category
DC is symmetric monoidal closed and has cartesian products, but it does not have all coproducts,
only weak-coproducts. Thus, the aim is to show that the constructions in DC satisfy the rules of
the Gentzen style system for (propositional) Intuitionistic Linear Logic.

Intuitionistic Linear Logic

We shall not repeat here the motivations behind Linear Logic or Intuitionistic Linear Logic, since
these are thoroughly discussed in [Gir] 1986 and [G/L]. But for the sake of self-containment, we
describe briefly, the logical system referred to as Intuitionistic Linear Logic.

This system can be conveniently explained using sequents a la Gentzen, but some comments
are in order. The main difference between Intuitionistic Linear Logic and usual Intuitionistic
Logic, from a proof-theoretic point-of-view, is that in Linear Logic, one is not allowed to use the
contraction or weakening (structural) rules, cf. below, when giving a proof.

Tt B T, A Ar B
e (weakening) ——— (contraction)
T,AF B T,A+ B

One of the consequences of the lack of the rules above is that the two possible ways of introducing
conjunction, namely,

I'FB AFB A TFB
T,A+AAB I'AAB

are not provably equivalent and thus we have two different kinds of conjunction, respectively, “®”
- or tensor product - and “&”, direct or cartesian product.

The very concise presentation below introduces the linear logic binary connectives ®, &, ® and
—o, and the constants I, 1 and 0, and at the same time describes their behaviour.

Recall the Gentzen style presentation of the rules of Intuitionistic Linear Logic, from [G/L].
Structural Rules:

TFA AAFB T,A,B,AFC
lL—— (id) 2. (cut) 3. ——————  (exc)
AF A I'AF B [,B,A,AFC
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Logical Rules:

2PFA 3FFA AFB
1.— i — —_—

b1 T, IF A I''A-A®B

T A BFC ' A T'+B
4—" J— S——
T,A® B+ C k1 T+ A&B

T, AFC T,BFC
T g 9 —

T A4BF C T, A4BF C T,0F A

THA T+ B I A+ C T,B+-C

10, ———— — 19.

THA®B I'tA®B T,A® B+ C
) T,A+B 4FFA A,BFC

‘THA—B ‘T,A,A— BFC

where I' = (G, ...,,Gy) and A = (Dy, ..., D) are strings of formulae and T, A is juxtaposition.

A remark about notation. In [G/L] the constant I is written 1 and 1 is written as “”, but I
is a far more traditional notation for the unit of the tensor product in category theory. Moreover,
1 is usually kept for the terminal object, thus we make these two modifications.

Notice that some rules might as well be considered as axioms, for example the structural rule
(id) could be given as the axiom A I A.

We call the logical system above I.L.L, since later on we want to compare it with Intuitionistic
Logic (I.L) and Classical Linear Logic (C.L.L).

Categorical Interpretation of Propositions-as-Types

Now we want to recapitulate some basics of Categorical Model Theory, or rather, the categorical
interpretation of “propositions-as-types”, cf. [How] or [Gir] 1988. The idea here is to amalgamate
two steps, hence we consider “propositions as types” and “types as objects of a category”, which
gives us “propositions as objects of a (suitable) category”. To do that it is by now traditional to
define an interpretation of (the propositional part ) of a (any) logical system £ in a category C as
a map | — |o which associates to each atomic formula A of £ an object of the category C.

This definition is only useful if one can extend the interpretation function to all the formulae
of the logical system £ considered. This is done by associating the logical connectives in £ to
categorical constructions in C. Usually, the categorical constructions involved are limits and
colimits. Thus we have a function | — |: Formulae of £ — C.

But the point here is to use the structure that exists in the collection of proofs in £ - for
example, it makes sense to compose proofs - to establish a correspondence between proofs in £
and morphisms in C. In the syntax, the structure on the collection of proofs is expressed by the
rules of the logical system, thus we read the rules as recipes for basic proofs. Then a “deduction”
in the logical system corresponds to the existence of a morphism, made out of the composition of
basic morphisms, in the category C.

Finally, we say that a category C is a categorical model of L, if every entailment in the logical
system £, T' ¢ A, corresponds to the existence of a morphism |T'| — ¢ [A] in the category C.

Intuitionistic Linear Logic and DC

In our case we want to propose DC as a model for (the propositional part of) Intuitionistic Linear
Logic. Therefore we suppose that we are given an interpretation function which maps atomic
formulae of I.L.L to objects of DC, |A|o = (U & X). We extend that interpretation to the sets of
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formulae by setting |T'| = |G1, ..., Gn| = |Ga|®...® |G1| and by interpreting the connectives ®, &,
—o, @ as the corresponding constructions - the bifunctors ®, & and [—, ] and the operation
@ of weak-coproducts, in DC.

Then it is straightforward to check that the structures defined for DC satisfy the rules above
for I.L.L., when we read the rules downwards.

Theorem 1 The category DC is a categorical model for (propositional) Intuitionistic Linear Logic
and if T'trp. A then there exists a morphism in DC, (f, F): || — |A|.

Proof: We have only to check each of the rules presented and they are trivially verified, but for
rule 4, which is actually the origin of the interpretation of sets of formulae.

As anotational simplification we write G for |G,|®...®|G1], the tensor product of the objects
|G;] in the category DC and similarly we write D for |Dy|® ... ® |Dy|.

The structural rule 1 is ensured by the existence of identities in DC. Rule 2 is obtained by
tensoring and composing maps. Thus I' + A and A, A F B imply that there are morphisms
(f,F):G — A and (h,H): A® D — B and then the composition G ® D (L0814 ®D *H) g
gives I', A - B. Rule 3 comes from the symmetry of the monoidal closed structure, since we have
AQ B=B®A.

Actually, the symmetric monoidal structure “®” in DC ensures logical rules 1 to 4. Rule 1
states the existence of the unit for tensor product, {I] = (1 & 1). Rule 2 states a property of the
unit I of tensor, namely that if there is a map G — A then there is a map G® I — A. Rule 3 only

says that the tensor product is a bifunctor; if G @1 Aand D =~ (1) B then G®D ()8 H) AQB.

Rules 5 to 8 are obtained by mtelpletlng |A&B| as the categorical product of objects |A] and
| B, |Al&|B| in DC Rule 5 says there is always a morphism from any object |G| ® ... ® |G|

into 1 = [1| = (1 & 0), which is obvious, since 1 is a terminal object. Rule 6 conesponds to

the existence of a morphism, given by the universal property of products. Thus if G L5 A

?h ) g . .
and G (k. H) B, then ¢ “ —)QH)) A&B. Rules 7 and 8 correspond to the existence of canonical
projections in DC, since e.g., if G A ¢ C, then G @ (A& B) R G A ¢ g,

In addition logical rules 9 to 12 correspond to the weak-coproduct. Notice that the weak-
coproduct does not have a unit, but every object of the form (0 & X) is an initial object. In
particular, in rule 9, the object 0 = (0 & 0) works, since G ® 0 = 0 and there is a morphism into
any object 4 in DC from 0, given by the initial map in C, 0 — U and the identity on 0, 0 x X — 0.
Rules 10 and 11 couespond to the existence of canonical injections into the Weak—coploduct since,
e.g. it 6 L) 4 then ¢ V) 4 2, A® B.

As we are reading the rules only downwards, Rule 12 corresponds to the weak form of distribu-
tivity in DC. The weak-distributivity gives the map ({,1): G ® (A® B) —» (A® B) ® (A ® O)
mentioned in section 2. If G @ A =¥ L) Cand G® B (2.H) C' then

. I F
G@(AeaB)(LI?(G@A)@(G@B) ((")QH)C

Finally, rules 13 and 14 reflect the monoidal closed structure. Thus if G ® 4 L=y ¢ B, using the

adjunction we get G (2} [4, Blpc or T'+ A — B. Similarly, if G "2~ @E) 4 and D®B - ") & then
we have a morphism G ® D ® [4, Bl — C using the long composition

GoD®ABlpc 2 40 Do 4, Blpc=D e A® (A, Blpc e Do B ¢

which corresponds to T, A, 4 — B C. O

As we said earlier, the proof of Theorem 1 is very easy, but the theorem itself has a very
interesting meaning. It says that the intrinsic logic of the “Dialectica Interpretation” is not in-
tuitionistic, which is quite surprising. It can be made so, if one takes, as Godel did, “decidable”
atomic propositions, non-empty types and forgets about the different proofs of a proposition. But
in its more general form it is “linear” in Girard’s terminology. More about that at the end of
Chapter 2.
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Chapter 2

The linear connective “!” in DC

The logical idea behind the connective “!” in linear logic is that it should give you the possibility
of using the same hypothesis as many times as you wish. Thus, even if there is no diagonal map in
DC (with respect to ®) we would like to have a natural map !4 —!A®!A. From that to develop
the idea that “I” should be, not only an endofunctor, but a comonad in DC is not, perhaps, the
most natural thought, but it seems to work.

In the first section we recall some basic facts about comonads and comonoid objects in monoidal
categories. Then we describe monoids and comonoidsin C and DC. In the next sections, assuming
DC with all the structure described in chapter 1, we discuss the comonad “I” (section 3), its basic
properties (section 4), a very useful variant of “!” (section 5) and some logical consequences (section

6).

2.1 Preliminaries

Monoids and comonoids in categories

Recall that if (B,0, I) is any monoidal category, where “C1” is the associative bifunctor and I a
left and right unit for “O0”, we can consider the category Mon B, consisting of monoid objects in
D with respect to this monoidal structure, cf. page 166 [CWM].

The category Mon B consists of triplets (M, u: MOM — M,n: I — M), where M is an object
of B, and p and 7 are morphisms in B, x the monoid multiplication and 7 its unit. These maps
make the following diagrams commute:

pOM
MOMOM —— MOM
MUOp 7
7]

MOM @ —7——— M
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My nM
M —mM s MOM ——————— JOM

]

Morphisms of monoids f: (M, p,n) — (M’,p',n') are maps f: M — M', which preserve the
monoidal structure, thus they make the following diagrams commute:

I————n—>M MDM—”—»]\([

Jf fof

Recall that we say that (B,[J, I) is a symmetric monoidal category if we have “twist” isomor-
phisms 7x,y: X0Y — YOX, natural in X and Y in B, satisfying some coherence equations, cf.
page 180 [CWM].

Notice that, one can also define the category Comon B of comonoids on B, whose objects are
triplets,

(C,6:C— COC,e:C— 1)

where C' is an object in B, § and € are morphisms in B as above, § called comultiplication and ¢
the counit. These maps satisfy diagrams dual to the ones for monoids, thus

C

1

o ———— cocac
st

cac

Cné

e b

Cle eld
car ——— ¢ ———— 1ac

Basic Comonad Theory I

We recall some results from chapter 6 in [CWM], using comonads instead of monads. The proofs
are only easy dualisations of MacLane’s, so we omit them.
Recall that a comonad G = (G, ¢, §) in a monoidal category C, consists of an endofunctor G

and two natural transformations e:G — I and §: G — G?, which make the following diagrams
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commute.

5
¢ — . ¢ G G
51 JG& }5

) € G
2" ¢ 16— - g1

Recall as well that every adjunction < F,U, 7, >: D — C givesrise to a monad in the category
D and a comonad in C. The functor part of the comonad is given by the endofunctor FU, the co-
unit of the comonad ¢ by the co-unit of the adjunction ¢: FUX — X and the unit of the adjunction
n:I — UF yields by composition a natural transformation §, where § = FoU: FUX — FUFUX.

Also every comonad G: C — C gives rise to two categories, the category C% of G-coalgebras
(or Eilenberg-Moore category) and the G-Kleisli category, Cg. The category C¢ has as objects
G-coalgebras, that is pairs (X,h: X — GX), where X is an object of C and h is a morphism,
called the structure map of the coalgebra, which makes both diagrams commute:

h h
X —— GX X —GX

jah
ba

GX ——— G2X X =e=— X

h ofed

A morphism of G-coalgebras is an arrow f: X — X' of C which renders commutative the
diagram:

hx
X ——m GX

hx:

X — s GX'

The G-Kleisli category Cg, has the same objects as C, but Homg (X,Y) is, by definition,
Hom(GX,Y). Composition of f: GX — Y and g: GY — Z is given by:
exbaex gy Lz

Finally, let < F,U,n,e >:D — C be an adjunction, G = (FU, ¢, §) the comonad it defines in
C. Then there are unique functors K:D — C% and L: Cg — D making the following diagram
commute:

K

C¢ —— D ——— C€

Rl R e

C =—=——— C ———— C

The functors L and K are called “comparison functors”. Under certain hypotheses the (unique)
functor K:D — C% can be an equivalence as we shall discuss.
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A proposition about comonoids

This proposition is just an application of Beck’s Theorem, as well as being part of the folklore of
symmetric monoidal closed categories. For the proof we need Beck’s Theorem for comonads, which
we quote, adapting from [CWM], page 147,

Theorem 2 (Beck) . Let < F,U,n,e >:C — D be an adjunction, G = (G,¢,8) the comonad i
determines in D, DP the category of coalgebras for this comonad. Then the following conditions
are equivalent:

o The (unique) comparison functor K:C — D% is an equivalence of categories.

e The functor F: C — D creates equalisers for those parallel pairs f, g in C for which Ff, Fyg
has an absolute equaliser in D.

Notice that in the dualisation, one asks for the left-adjoint to create equalisers.

Proposition 10 If B is any monoidal category and U:ComonB — B has a right-adjoint R,
then U ts comonadic. The functor U being comonadic means that Comon B = BG:G-coalgebms,
where G is the comonad defined in B by the adjunction U 4 R.

Proof: To show the proposition we use the theorem for the adjunction U - R. We verify that
the forgetful functor U satisfies the condition required, namely that U: Comon B — B creates
equalisers for those parallel pairs f, g in Comon B for which U f, Ug has an absolute equaliser in
B.

Thus we have to show that, if, in the following diagram, (E, e) is an absolute equaliser in B, it
induces an equaliser in Comon B as well,

uf
E >—i————>U(A,8A,5A) —— U(B,EIB,(SB)
Ug

As the functor U is simply the forgetful functor, we can write the equaliser in B as

I > A B

g

But since the equaliser £ »» A =3 B is an absolute equaliser we have that (E' x F,e X ¢) in the
diagram below is an equaliser too.

Using (E x E,e X e) is an equaliser in B, we define a comultiplication in £, 65 induced by the
comultiplication in A4, §4: A x A — A. Similarly, we can define a co-unit for E, eg: B — I.

Ixf

E><E>—e—i<—?-—>A><A:L—>B><B
gxg
oy b4 6m
Pt o4 L 3
g
ER €4 53{
I I I

Then E with the induced structure is a comonoid object, the map E »» A is a comonoid
homomorphism and it is easy to see that (E, e) is an equaliser in Comon B,
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2.2 Monoids and comonoids in C and DC

Recall that to define the category D C appropriate to our purposes in Chapter 1, we have considered
C, a finitely complete, locally cartesian closed category, with stable and disjoint coproducts. We
want to describe monoids and comonoids in C and DC, but before doing that, we prove another
folklore proposition about T-algebras on cartesian closed categories.

A proposition about T-algebras

A strong functor (also called a V-functor), is usually defined for enriched categories, cf. [Kel] or
[E/K], page 444-445. But as any symmetric monoidal closed category (thus any cartesian closed
category) can be seen as enriched over itself, the definition of a strong functor can be given solely
in terms of the symmetric monoidal closed structure.

Notice that we use the exponential notation for internal homs in a cartesian closed category,
thus we say, generally, XY instead of [Y, X]c. But sometimes the second notation - without the
subscript - is more convenient, as it is for example, in the next definition.

Given a symmetric monoidal closed category C, a strong functor T: C — C is a functor such
that, for every pair of objects (X,Y) in C, there is a map st(x,y): [X,Y] — [TX, TY] making the
following diagrams commute, cf. [Kel] page 24.

[X, X] —— [IX.7X]
S

M
{X,Y]@[Y,Z] - [X>Z]
st ® st st

[TX,TY]® [TY,TZ] — [TX,T7]

A strong monad is a monad T = (T, 7, 1) whose functor part T is a strong functor and whose
natural transformations 7 and u are strong natural transformations. The natural transformations
K, 1 being strong make the following diagrams commute, cf. [Koc].

[X,Y] —_— [X>Y]
st [1>77Y]

[TX,TY] ———— [X, TY]
[UX) 1]
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¢ ¢
[X,Y] —— s [TX,TY] ——— [T2X, T2Y]

st 1, py]

[TX,TY] bex, 1 [T2X,TY]

Proposition 11 If T = (T,7n,u) is a sirong monad on a cartesian closed category C, then the
induced category of T-algebras, CT is closed under ezponentiation by objects of C. Thus, if
(X,0:TX — X) is a T-algebra, then XY, where Y is any object in C, has a natural T-algebra
structure.

Proof: We have to define a natural T-algebra structure for XY, thus a map ¢": T(XY) — XV,
using the T-algebra structure of X, 6: TX — X. Since we have a map 8Y: (T'X)¥Y — XY, what is
needed is a map o: T(XY) — (TX)Y. But using the fact that T is strong, we have the following
transformations:

XYov 2 Xx

Yy B x(&X) st pxT(XY)

T(XY) & 17XY

We should show that ¢: T(XY) 5 (TX)Y XY isa T-algebra structure, but the commutativity
of the necessary diagrams is simply given by 7, # being strong natural transformations. O
A remark is that if C is cartesian closed, then any monad whose functor part preserves products,
has a unique structure as a strong monad.
Notice that if (X, 6) and (Y, ') are T-algebras, their tensor product X @ Y has a natural 7-
algebra structure, provided there is a natural transformation T(X ® Y) 5 TX ® TY, satisfying
some conditions. If so, the composition

T(X®Y)STXTY ¥ xov

gives a structure map for the tensor product.

Momnoids and comonoids on C

Recall that we consider C a cartesian closed category, with coproducts. Thus we have two symmet-
ric monoidal structures in C, “x” and “+”. They give rise to four categories, namely, Mony C,
Mon; C, Comony C and Comon,C.

We can easily show that Mon C 2 C, since every object in C has a unique monoidal structure
with respect to “4”. This monoidal structure is given by the (unique) initial map 0 — X and the
multiplication, by the folding map (:g) : X +X — X. The uniqueness can easily be checked from
the diagrams,

Dually, we have Comony C 22 C since every object in C has a unique comonoid structure. The
co-unit is given by the (unique) terminal map X — 1 and the co-unit laws imply that §: X — X x X
is really the diagonal map Ax = (id, id).

Moreover, Comon C = 0, the degenerate category using the fact that if there is a map X — 0
in a cartesian closed category C with coproducts, then X 2 0, [Lambek-Scott] page 67.

The only interesting category is Mony C, which we write as Mon C. It consists of triplets
(X,mx,px), where nx:1 — X and px: X x X — X and the appropriate equations are satisfied.
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Free monoids on C

Now consider a category C, cartesian closed, with stable and disjoint coproducts and with free
monoid structures. By that we mean that there exists a functor F: C — Mon C, which is left-
adjoint to the forgetful functor U: Mon C — C. In other words, we suppose that we are given an
adjunction < F,U,n,& >:C — Mon C.

If C has countable coproducts, such left-adjoint F' does exist and it is given by

F(X) = (X* = [ X%, nx+, pxe)
iEN
cf. [CWM] page 168. The intuition here is to think of X* as finite sequences of elements of X , thus
nx+:1— X* is the “empty sequence” in X, 1 +— A and px.: X* x X* — X* means “concatenation
of sequences”.,

The adjunction says that every map on C, X ER U(Y,ny, pty), corresponds by natural isomor-
phism, to a monoid homomorphism

(X*,UX*,MX*) l') (Y) 771’)/'“’)‘

Notice that the unit of the adjunction F 4 U, nx«: X — UFX = X*, is given by the canonical
injection of X into X* or intuitively the “singleton sequence”. The counit of the adjunction
e FU(Y,qy, py) — (Y, nv, py) which maps

(Y*,nys, py+) = (Y, v, py)

is given by multiple applications of the map py, thus e.g the sequence (y1,Y2,y3) is taken by € to
py (Y1, py (Y2, ys)).

The composite * = U - F:C — C is a monad, its unit is given by the singleton sequence,
Nx:X — X* and the multiplication (p*)x: X** — X* by “forgetting parenthesis”.

We check that the monad (¥, 74, jt) in C, defined by the adjunction F' 4 U is a strong monad.
There is clearly a family of maps stx,y: X¥ — X*¥" where st: XY xY* — X*is given, intuitively,
by (f, [y1, -, 9]) — [F(31), ..., F(yr)]. The maps “st” satisfy the following diagrams:

1
[X, X] —— [X*, X*]

XY x[v,2) —2 . i, 2]

st X st st

[X*,Y*] x [Y*, 2] — [x*, 7%

But notice that the functor part of the monad “+” does not commute with products, that is, we
have maps going both ways m: X* x Y* < (X x Y)*: 7, but they do not form an isomorphism, nor
a retraction. Intuitively, the map 7: (X x Y)* — X* x Y* transforms a sequence [@1y1 ... zpyi]
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into pairs of sequences ([&1... 2], [y1...y&]). The map m: X* x Y* — (X x Y)* transforms the
pair of sequences ([¢1,...,2x], [t1,...,Yn]) into the sequence

(wl[yl)y%‘ . ')ym]>" 'Jmk[yla"')ym]) = [wlyla“',wlym;'-')mkyl;""wkym]'

Another remark is that the maps r: (X X Y)* — X* x Y* form a natural transformation and
moreover, they make the following diagrams commute

Ur.$3%
XxY —— " (X xY)

XY
XXY ————m 5 X*xY*

Nx X Ny

HXxY
(X x V) - (X x Y)*

r* XY

(X* « Y*)* —_— XM Y™ — L X*x Y™
TX*Y* Hx X py

Finally, we have the following diagram and the isomorphism of categories C* 2 Mon C.

Cy ——— C*=2MonC

C———':.. C

Monoids and comonoids in DC

Now considering the category DC, we have two symmetric monoidal structures given by the bi-
functors “&” and “®”. Therefore we can consider categories Mong DC, MongDC, ComongDC
and ComongDC.

The category ComongDC is equivalent to the category DC. To see that, just use the result
that Comony C = C, since “&” is the cartesian product in DC.

The category MongDC consists of triplets (4,74:1 — A, pa: ALA — A), where 4 is an
object of DC, and 7, 4 are morphisms in DC. The existence of the morphism, 74:1 — A4

1e—S% 0

o
U———X
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implies that A is of the form (U & 0) and that U is a monoid object in C, thus a triplet
(Uyuo:l — U,py:U x U — U). Notice that there are no conditions imposed on the relation
“a” and MongDC =2 MonC.

The category MongDC consists of triplets (A4, 74:1 — A, pa: A® A — A), where A is the
object (U & X), and 14 and p4 are morphisms in GC given by

? oo
1l e———1 UxUé+——— X x X
uol ! /_LU} ((6”
@ «
Ue———X U —yw— X

Thus, U is a monoid object in C, (U,uo:1 — U, py: U x U — U). The unit n4 consists of (ug, Ix)
and the multiplication p14 is given by (pu, “6”). The relation “a” satisfies:

o If up is the unit of the monoid U, ugaz, for all z € X.
o If uaw and v o then py(u, v')az.

The category ComongDC consists of triplets
(AeatA— 1,64 A— AR A),

where A = (U & X) is an object in GC and the morphisms, e4 and &4 are given by

(47 o

Ue———X U e—+—— X
!J I A M

2 aQ@u
1l ey—- 1 UxUée—s—Xx X

As the diagram shows, the co-unit of A, £4: A — I consists of the terminal map U L landa
morphism I U x 1 — X. The comultiplication map §4: A — A ® A consists of the diagonal map
UAUXU and a morphism M:U x X x X — X.

Notice that I: U x 1 — X and M:U X X x X — X define an U-indexed monoidal structure on
X, since they make the following diagrams commute.

Ax1 UxmgxlI
UXxXXx1l————"UxUxX)x({Ux1) Ux X xX

o M

X X
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UxUXUxXxXx =—=Ux{UxX)x{UxXxX)

Uxmgx M
Ux(UxXxX)xUxX UxXxX
Ux M X M
M
UxXxX _— X

The relation “a” satisfies:
o VueU, ual(u) = o,
o uaM(u,z,2') = uvaz and uaz’.

From now on we drop the subscript ®, since we are only interested in Comon DC and Mon DC
and no confusion can arise.

2.3 A co-free comonad in DC

The aim in this section is to define an endofunctor “l: DC — DC?”, a comonad to model the linear
connective “I”. First, we need to define special maps C(~,-) for pairs of objects V,Y of C and to
define those maps C(_,_y we use Proposition 2 of last section.

Definition 5 We can define auziliary maps Cyy using the following transformations:

VxY "D (v x v

Y L (v x Y)Y

v S (v xy)y

[of
Vx Y LD (v xy)

Some explaining is needed on those transformations. The first line is just the unit of the
adjunction F' 4 U in C. The second line is its exponential transpose. To go from line 2 to line 3,
we use Proposition 2, because as (V x Y)* has a natural monoid structure, so does (V x Y)*V.

Thus a morphism in C, Y 1y ((V x Y)*V) corresponds naturally, by the adjunction F H U in C,

to a monoid homomorphism (Y*, 9y, ) — ((V % Y)*V, 7, 1), which we write simply as C. The
last line is its exponential transpose.

Definition 6 The endofunctor 17 is defined on objects of DC, which are monomorphisms in C
of the form A5 U x X. An object (U & X) is taken by the endofunctor 47 to (v & X*), where

. c
the relation “la” is given by the pullback of A* ¥ (U x X)* along U x X* AL (U x X)* as the
diagram shows:

A — A*

!aT Ia*
Clu,x)

Usx X ——"" (U x X)*
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The functor “¥” acts on morphisms in DC as, !(f, F) = (f,!F):!A —!B, where |F: U x Y* — X*
is the composite

Uxy ‘Y xy)» D xr,
Intuitively, the relation “uaz” is transformed into the relation “lo”, which is given by
“u(la)[wy ... zx] iff uaz; and uazy and ... and uvazy”
It is easy to check that (f,!F") is a map in DC and that “I” does define an endofunctor.

Proposition 12 The functor 1:DC — DC” has a natural comonad (!, ¢,8) structure.

Proof: To describe the comonad we have to exhibit two natural transformations, §:14 —!1A
and €:14 — A, which make the comonad diagrams below commute.

14 —6————> nA 1A 14 14
) 16 é
€14 le
A —— A 14 A 1A
bia

The natural transformation 64:!4 —!1A, maps (U & X)) (U & X**), using diagrams

o
Ue—— X*

Ha
U e X*

and it is given by the identity in the first coordinate U — U and U-indexed “forgetting parenthesis”
s U x X** — X* in the second coordinate. The natural transformation & 44— Aor

o
Ue—— X*

o
U+——r—— X

is given by identity in U and the U-indexed “singleton sequence” on the second coordinate, n,: U x
X — X*,

An easy manipulation shows that the two natural transformations ¢, and 6 satisfy the comonad
equations:

o 16464 =104 64
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[ E!A-(SA:idgA :!6-5,4 (]

Moreover, the object !A has a natural comonoid structure with respect to ®, as the next
proposition shows.

Proposition 13 There is a functor R: DC — Comon DC, such that the composition U-R =2 “I”,

Proof: To define R we just check that objects !4 = (U & x *) admit a natural comonoid
structure. Indeed, there is a natural transformation, a comultiplication, §4:14 —!A®!A. That

natural transformation maps the object (U & X*) s (U x U 8 X x X*) or using diagrams

!
U oe— X

la®la
UxUé—a— X* x X*

The natural transformation § is given by diagonal in C, A: U — U x U and U-indexed “concate-
nation of sequences” C:U x X* x X* — X*,
Also a co-unit g4:14 — I, or

Ue———— X*

1<——§————1

is easily seen as the canonical unique map to terminal object, U — 1 and U-indexed canonical
injection into coproduct, U x 1 — X*. So !4 has a natural comonoid structure and we call R the
functor from DC to Comon DC which takes A to (14,8 4:!4 —!AQ!A, e14:14 — I).

The next step is to show that “R” provides us with good categorical structure.

Proposition 14 The functor R: DC — ComonDC is right-adjoint to the forgetful functor,
U:ComonDC — DC
Proof: We have to show U 4 R , that is
Hompy (U4, B) = Homgomon D (4, BRB).

Thus we have to check that for every map (f, F): A — B in DC there is a natural comonoid
homomorphism (g, G): (A,e4,64) — (!B, &8, 618) and conversely. Or using diagrams,

83 (574
U——X  (Ue——X, €4, 64)
f F g G

g ‘6
Ve——Y (Ve———7Y* ¢}, 6%)
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But notice that if (A4,e4,84) is a comonoid in DC, where A is an object of the form (U & X)
then X is a U-indexed monoid in C,

X=X, LUx1—>X,M:UxXxX—X).

Then, using the “monoid” structure of X, we want to show a natural comonoid homomorphism
7a: (A, €4,64) — (1A, €14, 6:14). If we can show such comonoid homomorphism, given (f, F): UA —
B in DC we get (¢,G): A —!B via composition,

(9,G) =!(f, F) - a2 (4, &,6) T2 (14, €14, 64) 'L2 (1B, ¢, 6).

The natural morphism 74: 4 —1A4, is given by identity U — U in the first coordinate and
T:U x X* — X in the second. Formally, T' is given by the co-unit ¢ of the adjunction F 4 U in C.
Intuitively T' is obtained using the U-indexed multiplication on X, M:U x X x X — X as many
times as necessary to transform the sequence [2y, s, ..., ;] into a single element of X.

Conversely, given (t,T7): A — RB to get (5,5):UA — B we simply compose (¢,7) with the
co-unit of the comonad (!, &1, 8), that is, the natural transformation !B — B.

Of course the comonad induced by the adjunction U + R, send us back to the described
comonad in DC given by (!, &1, 6). '

Notice that all this section is very similar to the subsection “Free monoids in C”, with the
obvious differences that ® is not a cartesian product and DC is not cartesian closed.

2.4 Properties of the comonad “!”

We want to discuss some of the properties of the rather special comonad “/” in DC.

We start by recalling the categories it gives rise to, respectively, DC' the -coalgebras and DC;,
the -Kleisli category.

The objects of DC' are pairs (4, h: A —!A4), where h satisfies the l-coalgebra diagrams below:

Notice that a map h: A —!A corresponds to a morphism U — U and a morphism H: U x X* — X,
as follows

o
Uée——— X

1 H

lov
Ue—y— X*

such that uaH(u, @1, ...,2) = uaz; and...and uazy.
Morphisms are maps in DC, which preserve the coalgebra structure,
The category DCy, on the other hand, has the same objects as DC but

HomDCy(A4, B) = HomDC(!4, B).

Recall as well that Propositions 1 and 4, from previous sections, have shown that:
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Corollary 2 The “comparison functor” K: ComonDC — DC' is an equivalence of categories.

This equivalence can be seen concretely by noticing that given a T-algebra structure map
h: A —1A, its second coordinate H:U X X* — X necessarily implies the existence of maps I =
Hy:UxI— X and M = Hyp: U x X x X — X, which satisfy the conditions making A a comonoid.
Conversely, if (4,£4,64) is a comonoid in DC, a structure map h: A —!A can be built using I
and M from €4 and 84, as we did in Proposition 4. The map h: A —!A is of the form (1y, H) and
H:U x X* — X is given by and similarly for any k.

The functor part of the comonad !: DC — DC has one characteristic of a “monoidal” functor
cf. page 473 of [E/K], namely, we have natural transformations R4 p:!A®!B —!(A® B), given by

la®!p

UXxVée——— X*xY*

({924

1 T(xY)

!
UxVe—-—Ea;?w—(XxY)*

where the maps rx v: (X xY)* — X* xY* were described in the subsection “Free monoids in C”,

Notice, however, that the comonad “!” is not strong, since there are no natural morphisms
st:[A, Blpc — [!4,!Blp . These, if they existed, would correspond to st:[4, Blp®!4 —!B,
thus to a map in the diagram

Y@l
VUxXUxYer——ﬂ—»—X*xeY

TP ?

On the other hand, it is easy to see that the -Kleisli category DC) inherits the cartesian
products from DC.

Proposition 15 The /-Kleisli category DC, has products “lifted” from the category DC,
Proof: Actually it is a general fact, in particular, we have the following
HomDC!(C’, A&B) = Hoch(!O, A&B) = Hoch(!C, A) x Hoch(!C, B)

= Homp ,(C, 4) X Homp ¢, (C, B).

We can also easily verify that the tensor product of two comonoids in DC is a comonoid, using
the symmetry of the tensor product ® bifunctor,

Proposition 16 The category ComonDC is closed under tensor products and the comonoid

(A® B,eagB,b488)

has natural projections to A and B.
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Given (A,e4,64) and (B,ep,8p) comonoids in DC, we have a natural comonoid structure for

A ® B. The co-unit eqggp: A ® B — I is given by the map A ® B 4855 1 ® I = I and the
comultiplication morphism §4gp is given by

A®B™%% (40 A)e (B B) “®22%® 4eBo A B,

where 7 is the symmetry isomorphism associated with ®.
Projections are given by AQ B 488 1@ B~ B and A ® BA8F 4 ®1I=A.
Using the equivalence Comon DC 2 DC', we have the following proposition.

Proposition 17 The category of !-coalgebras DC' is closed under tensor products.

Given !-coalgebras (4, h: A —!A4) and (B, h': B —!B), their tensor product A® B has a natural
coalgebra structure, given by the composition

A@ B"% 14018 (A e B)

Notice that the tensor product in DC does not become a cartesian product in Comonp . If
A, B and C are comonoids in DC, there are natural maps

Hoch(C,A) X HOTnDc(C, B) — Hoch(O,A(X)B),

[1

In the direction “—”, the map is given by the composition

((/, F), (9,0))  C 2 c @ 0 VRN 40 .

Conversely, we use the projections just described, thus C (. H) A® B % A and similarly for B.
But neither 8¢ nor €4 need to be a comonoid homomorphism.

A remark is that if (A,e4,64) and (B,ep,8p) are comonoids in DC, their cartesian product
A&B need not be a comonoid, since there is no natural map é455: (A&B) — (A&B) ® (A&B).

Another remark is that even if the category Comon DC were cartesian, it would not be nec-
essarily closed, since the internal hom of two comonoids [4, B]pc need not be a comonoid.

Notice that we have a natural morphism !(A&B) —!A®!B given by the composition

1(A&B) —L1(A&LB)@(A&B) 2071 A\ B

It would be very useful, if we could have an isomorphism between objects (A& B) =!A®!B. To
have that we need a natural transformation in DC, !A®!B —!(A&B), which implies a natural
transformation in C of the form U xV x (X +Y)* — X* xY*. If we only consider free commutative
monoids in C, we do have a morphism (X +Y)* — X* xY*, Thus, we ask for commutative monoid
structures in C.

2.5 Commutative comonoids in DC

Recall that given a symmetric monoidal structure in C, we can consider commuiative monoid
objects in C, as well as monoid objects in C. By that we mean triplets as before, satisfying the
extra condition that the diagram below commutes

MxM— s MxM

M @—m M

35




Dually, we can consider (co)commutative comonoids in DC, which make the dual diagram
commute,

From now on we consider the category C locally cartesian closed, with stable and disjoint
coproducts and with free commutative monoid structures. Then there is a functor F,: C — Mon,C
left-adjoint to U: Mon,C — C, where U: Mon, C — C is the forgetful functor. So we suppose
we are given an adjunction < F,,U,n,& >:C — Mon¢ C. As before, that adjunction induces a
monad %: C — C, which gives us free commutative monoids in C,.

The main difference from the situation we had before is the isomorphism

X* ) Y* 22 (X 4+ Y)Y,

whereas before we only had X* x Y* — (X +Y)*.
It is still possible to define a comonad, as before, called, : DC — DC, taking (U & X) to

U & X*), where X* is the free commutative monoid on X.

The functor “” naturally induces a functor F: DC — Comon.DC, where the subscript “c”
serves to remind us that we are only considering commutative comonoids structures in DC. The
functor F:DC — Comon,DC takes A to (14,114 — 1,614 —1A®!IA). Also it naturally
induces categories DC; and DC'.

Proposition 18 We have the adjunction U - F, with Comon.DC = DC'.
Proposition 19 The endofunctor “I” gives us the isomorphism (A& B) 2! A®!B in DC.

Proof: This can be seen directly, using the isomorphism mentioned above, X* x Y* = (X +Y)*.
But it also says that the category DC' has some cartesian products, induced by the tensor product
in DC.

Since F is a right-adjoint it preserves products, (A&B) is the product in DC, so F(A&B) =
({(A&B), ¢, 6) is isomorphic to the product of comonoids !A®!B.

That takes us to the last result in this section. Let the Kleisli category for the commutative
comonad “1”, DC,, be called DNC, then we have:

Proposition 20 The category DNC, the Kleisli category associated with the comonad “7” is carte-
stan closed.

Proof: We have to verify the natural isomorphism
Homp i, (A& B, () = Homp ¢, (4,[B, Clpc,):
To check that we look at the following series of equivalences
Homp ¢, (4& B, C) = Homp ({(A&B), C) = Homp ¢ (14®!B, C)

= Hoch(!A, !B, Clpo) = HomDC!(A, ['B,Clpc) = HomDC!(A’ [B, O]DC,)'
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2.6  Intuitionistic Linear Logic with modality “!”.

The aim of this section is to tie up the Linear Logic aspects with the category theory presented in
this chapter. So we show that (DC,!) corresponds to a model of Intuitionistic Linear Logic with
modality and that DC,, the Kleisli category of DC, which is cartesian closed, can be related to
DC in a very interesting way.

Denote by I.L.L; the logical system consisting of (the propositional part) of Intuitionistic Linear
Logic plus the modality “/” rules, which we read off from Girard’s paper. These are:

I,AFB TFB
I.———— (dereliction) II.———— (weakening)
T,IAFB T,!Al B
T''A,'JAFB THA
III. ————  (contraction) Iv. M
T,IAF B I HIA

Note that in rule IV the notation IT' - A means, in fact, !G4, ...,!G, F A.

Let (DC,!) denote the category DC with the comonad ! = (!, &y, &) described in the last section.
Then it is easy, cf. section 5 of Chapter 1, to check that (DC,!) is a model for Intuitionistic Linear
Logic with modality or I.L.Ly.

Proposition 21 The category DC with the comonad “” is a model of I.L.Ly,. Thus for each
T'trr.n, A, we have a correspondent morphism |U'| —pnc |A| in DC.

Proof: We have only to check the rules for the modality.
To have rule I it is enough to have a map !4 5 A, since if G ® A ) B and !A 5 A we can

compose these maps to get GRA S Goa UE) B. But as “” is a comonad, there is a natural
transformation !4 5 A.

To have rules II and 111 it is enough to have maps !4 — I and A —!A®!A which we have since
!A is a comonoid object in DC.

Finally, we do have rule 1V. First recall that T’ corresponds to

1Gn ®...®1G 2N (Gole ... &Gy) =T

by the isomorphism in Proposition 6 in section 5. Since we have the adjunction, cf. prop. 5,
< U,R,ne> ComonDC — DC, any map !H — A corresponds, bijectively by the adjunction,
to a map !H —!A.

(f’F)
—

@

Observe that, since is a comonad, given a map |H A, it is very easy to get another

map |H —!A, by simply composing morphisms ! H S A The adjunction allows you to
interpret the rule upwards as well as downwards.

Relationship between Intuitionistic Logic and Intuitionistic Linear Logic

The modality “!” was introduced by Girard to recover the strength of Intuitionistic Logic, by means

of the following translation, cf. [Gir] 1986.

Al = A for A atomic
(ANBY = A&B
(AVBY = |(AY8l(B)
(A—B) = l(A4')—(B')
(4" = 1) =0

Using this translation we want to show the proposition below, which is slightly stronger than
the corresponding Proposition 4 in [G-L)]. Before stating the proposition, we recall the rules for the
(propositional) fragment of Intuitionistic Logic.
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Structural Rules

TFB 2I‘,A,AI-B 3I‘,A,B,Al—C
1 — \ e N T ——
T,AF B AR B I''B,A,AFC
5I‘i-A AAFB
AR A "~ T,A+B
Logical Rules
21"I-A A+ B TAFC
1, — \ — 3 s
¢ T,A-rAAB TAABFC
T,BFC TF A
4, — e S 6. ——————e
TLAANBEC FHA I'+AVB
I't+B 8F,A|—C’ A,BFC 0 I'AF B
7 — . .
THAVB TAJAVBEC '+A— B

I'+A ABFC
‘T,A,A— BFC

10

For clarity, in the proposition below, we shall write “tr;,” for b7 11 and %" for Frr.
Proposition 22 Tk A iff ' bp, A

Proof: Notice that I Fr;, A’ means !GY,. .., |G} Frin AL

We show the direct implication by structural induction on the deduction I' k7,3 A. Thus, we
look at the last application of any of the rules of I.L and check that, if the premises have been
translated using I.L.L plus modality rules, then we can get a translation of the consequence. For
instance, the structural rule 5, the CUT rule, namely

TFA AAFB

I'A+ B
becomes the following deduction:
I Frin A
ITY bl A IA' VA by BY

A Frin B

Another example, structural rule 2, the contraction rule becomes,

/1A' 1A+ BY

IT 1A b B
where the point is that the use of contraction and weakening is only allowed for formulae of the
form “lA”,
The other structural rules are straightforward applications of the modality rules, but for the
exchange rule which is simply linear exchange.

For the logical rules we have to add some steps, in general very easy ones as in the introduction
of conjunction on the left, logical rule 3, which becomes

38




I 1A b C7

T/ LA’ 1B b O

I NA'®B! Frin C

T, (A& B") bpin O

where we use the fact that I(A&B) =!AQ!B and recall that A’&B’ = (A A BY'.

The only slightly complicated case is the introduction of “—” on the left, rule 10, which requires
the lemma !A —o!B F1;,!(!A — B).

The lemma is easily given by :

A" —!B’ !B’ — B’

1A’ — B!
({1A" — B')
Thus we have, for rule 10,
T brin A

T’ brin!d’ LA" 1B brin O

T IA/ VA" —oI B! Frin C

TV LA/ N(LA —o BYY Fpin O

~ and all the other rules are similar to the ones above.
To show the converse we follow the suggestion in [G-L] and look at the translation which takes

linear logic into intuitionistic logic via:

|'Al = A for A atomic
|[A®B| = [A|A]B]
|A®B| = |A]lv|B]|
|A—B| = [4]—|B]|

Then it is trivial to check that for A an intuitionistic formula |A!| = A. Moreover, if A br;, B
then |A| b, |B|. Thus if (IV) Fr, A’ then we obtain |'T’| Frnt |A’] which implies T Fr,: A.

Conceptually, the proposition above reflects the fact that in the same way as DC is a model
for Intuitionistic Linear Logic, its Kleisli category DC) = DNC is a model for Intuitionistic Logic.
It was shown in section 5 that the category DNC is cartesian closed, thus if one takes its poset
reflection, one gets a Heyting algebra, cf. [Fre] page 18.

On the other hand, taking the poset reflection of DC one ends up with a very odd-looking
algebraic structure, unless one assumes that all the relations on C, that is, that all the objects in
DC are decidable and that all objects in C are inhabited. If these two conditions hold, then the
tensor product and the cartesian product collapse into one, in the poset reflection. If we have that
every U in C is inhabited, we can provide projections from the tensor product into its components,
Decidability is used in a subtler manner.

Recall that the original Dialectica assumed decidability of the atomic formulae. Decidability
was essential to prove the consistency of A — A A A and the soundness of the whole system
depended upon it, cf. Troelstra’s comments, [Tro] page 230. The categorical model gives us a
glimpse of why that happens. There we do not have, in general, maps A — A® A, but if 4 is
decidable we can use the following trick to get a map in DC from A to A® A
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v — %  x

a®@«
UxUé——Xx X

2’ if uazx
z otherwise
above, we have that A and A® A are equivalent in the poset reflection, which means that the logic
is allowing contraction and weakening again.

The last interesting remark is that the Kleisli category DC; = DNC corresponds to the Diller-
Nahm variant of the Dialectica Interpretation, c¢f. [Tro]. For the Diller-Nahm variant of the
Dialectica, one does not assume decidability of atomic formulae, but there is a bound on the scope
of the quantifier. This bound should correspond, loosely speaking, to a finite number of functions
in the second coordinate of objects in the category DC. This would give rise to a category whose
objects would be like the objects of DC, but where a morphism from (U & X) to (V & Y)
corresponds to a map in C, f:U — V in the first coordinate and finitely many maps, say k, on
the second coordinate, Fi, Fy, ..., Fy:U x V — X such that if uaFy(u,v) and ... and uaFy (u,v)
then f(u)pv.

where D(u,z,2') = makes (A, D) a map of the category. Thus, using the map

o
Ue——ouX

f (F1,..., Fy)

B

Ve——Y

For instance, in the example above, if one is allowed the use of many maps on the second
coordinate, one can certainly get a function from 4 to A ® A, by saying, cf. the diagram,

U <———i¥—-—~ X
|
A] (m1,73)

UxUée———XxX
a®

that if ua(m (2, 2’), 2(x, 2’)) then (u, u)a ® a(z, @’). The comonad “!” does this “multiplication”
of functions in a uniform way.
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Chapter 3

The categories GC

This chapter is very similar in essence to Chapter 1. Here we define the categories GC and describe
some of their categorical structure. The main differences are that, in one hand, the morphisms in
GC are much easier to handle than those in DC; on the other hand there is much more structure
to describe in GC. We have 6 sections, the first shows that GC is a monoidal closed category, with
respect to bifunctors tensor “@” and internal hom [—, —]g . The second section describes the
bifunctors par or “00”, cartesian product or “&” and coproduct or “@”. The third section deals with
distributivity between those bifunctors. The fourth defines linear negation, while the fifth shows
that the construction G(—): Cat — Cat is functorial and that, under special circumstances, we
can define left and right adjoints to the functor A: GC — GD, induced by the functor F: C — D,
The sixth section makes explicit the connections with Linear Logic.

3.1 Basic definitions

We start with a finitely complete category C. Then to describe GC say that its objects are
relations on objects of C, that is monics A »™ U x X, which we usually write (U & X).

Given two such objects, (U & X) and (V & Y'), which we call simply A and B, a morphism
from A to B consists of a pair of maps in C, f: U — V and F:Y — X, such that a pullback
condition is satisfied, namely that

U x F)"He) < (f x Y)7H(B), (1)
where (—)~! represents pullbacks. Notice that condition (1) above is a simplification of condition

(%) in Chapter 1.
We say (f, F') is a morphism in GC if there is a (unique) map in C k: A’ — B’ making a
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commutative triangle in the diagram,

B>—>’H VxY

where A’ is the pullback of @ along U x F' and B’ the pullback of # along f x Y. Note that we
refer to the object (U & X) as “o”, meaning the (equivalence class of the) monic, as well as A.

The intuition here is that, if we consider o and f set-theoretic relations, there is a morphism
from « to S

iff  whenever ua F(y) then f(u)By.
This time is easy to see GC is a category, since composition is just composition in each ‘coor-
dinate’, thus if (f, F): A — B and (g9,G): B — C then (9,G) o (f, F) = (¢f, FG): A - C.

Clearly, if uaF'(y) = f(u)By and vBG(z) = g(v)yz then
waF'G(z) = f(w)BG(z) = gf(u)yz.
Proposition 23 Given a finitely complete category C, the description above gives a category GC.

If we assume that C is cartesian closed, the category GC has a symmetric monoidal structure
(tensor product) denoted by @ that makes it symmetric monoidal closed. This tensor bifunctor -
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next definition - seems somewhat involved and not very intuitive, but it is exactly what is needed
to show that GC is monoidal closed. Actually, while in DC the tensor product was very natural
and the internal hom was contrived to make the category monoidal closed, in GC the internal hom
is natural and tensor is defined to obtain monoidal closedness.

Definition 7 Assuming C is cartesian closed, consider the tensor product in GC given by the
operation @: GC x GC — GG which takes the pair of objects (A, B) to

A@B=(UxV 82XV xyY) ©)

To describe the relation o @ B notice that, pulling back the monic A »> U x X along the map
[P 1
Ux XV x V) 0w X we get a new relation A' > U x XV x V, (similarly for B)

A’ s A B ey B

R

UxVxXV — 3 UxX UxYUXV — 0 VXY
(71,0, ((ev”) (7“3, «e,v)))

and then define o @ (B as the pullback of o/ x YU along B/ x XV. Intuitively, (u,v)e @ B(f,9) iff
uaf(v) and vBg(u).

ApB >——— Al x YU

I TY

B’xXV>—V—>U><V><XV><YU
g x X

To see that the operation @ defined above is really a bifunctor, consider morphisms in GC
AYE) 41 and B9 B/ Then we have induced maps A B— A'"@B

aQf

UXxV e—v—— XV xYV

fol
o Qp

U'xVe—a— X'V xyU

‘FV x Y/f

and similarly, AQ B — A @ B!,

[42%)

UxV<—fﬁ——XV><YU

Uxg X9 xGY
aQf

UxV e——— XV x YU
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Thus we have a morphism A @ B — A’ @ B’ given by (f x g, F(—)g x G(=)f), using diagrams,

a@
UxV <———+—ﬂ—— XV xyU

fxgj
CY’@,BI

U x V! e—a— X"V x Y1

[F(—)g x G(=)f

Intuitively, it is easy to see that this is a map in GC; if (u, v)a @ f(Fhig, Ghyf) then ucwF(higv)
and vBG(hyfu). But since (f, F) and (g,G) are maps in GC, then uaF(2') = f(u)a'z’ and
vBG(y') = g(v)By’. Thus we have uaF(higv) = f(u)a'hig(v) and vBG(hafu) = g(v)Bhs f(u),
which corresponds exactly to (fu, gv)a’ @ B'(higv, ha fu).

The functor “@” is not a categorical product, for example projections do not exist necessarily.

@@
vxv 228 xv.yv

v o—%— X

The object I = (1 & 1) is the unit for the tensor product “@”, which is associative and symmetric.
Another tensor product, similar to the tensor bifunctor in DC can be defined, but it is not
very useful, since it is not left-adjoint to the internal hom.

Definition 8 The bifunctor @ GC — GC, which takes (A, B) to
A®B=UxV& X xY) (3)
is associative and symmetric. It has the same unit I = (1 & 1) as the bifunctor “@”.

Notice that there is a natural transformation 74,5y A© B — A ® B, given by the morphism
(Quxv, (k1, k2)),

2%
U><V<—1LXV><YU

1val {(kl;k?‘)
aXxf

UXxVée——— X xY

where (k1,k2): X x Y — XV x YU consists of constant maps - or exponential transposes of the
projections - in each coordinate. But note that there is no natural transformation in the opposite
direction,

Definition 9 There is an internal hom bifunctor in GC,

[-,-laq: GCOP x GC — GC
given by

[4, Blac = (VU x X¥ & U x Y) (4)
where intuitively the relation f* reads as (f, F)B*(u,y) iff whenever uaF(y) then f(u)By.
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Formally, we define 8% as the greatest subobject F of VU x XY x U xY such that EAA' < B/,
where A’ is the pullback of A along the map

VU x XY x U xy ™ g« x,

B’ is the pullback of B along VU x X¥ x U xY (") % Y as the diagram shows,

Al —_— A
o \[a
. ﬂ/ v v (7‘.3’ “6'1)”)
B >— VUV x XY xUXY — U x X

(((e,v” , 7T4)

B >—— VxY

and “A” means pullback again, cf. Chapter 1.

To guarantee the existence of such greatest subobject, we insist on C being locally cartesian
closed. Note that C being locally cartesian closed, the pullback functors do preserve function
spaces.

To show [—, —]q is a contravariant functor in the first coordinate and a covariant one in

the second coordinate, look at maps A’ (f—’f) A and B @9 B’. They induce maps as follows,
[A4,Blac — [4, Blgc, given by [(f, F), 1] or diagrammatically

’BCY
VU XY e————UxY

foFY{ [fo
o

VU XY e— v U'xY

and [A, Blgc — [4, B'lgc given by [14,(g,G)} or

(o4
VWi XY e  UxY

gU % XGl
/o

VU x XY e+ UxY'

lUxG
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Thus we have an induced map [4, Blgc — [4', Blqc given by

o
VWWxXY —+  UxY

fxG

@1 X @2]
ﬂ/oz’

V/U’ « XY U < Y!
where ®; is the exponential transpose of the composition
u
VUxU v 2y Sy
Y
and dually, ®; is the transpose of X¥ x Y’ XX xvy vy &, x B xv,
Proposition 24 The category GC is a symmetric monoidal closed category,

Proof: It’s enough to see the natural isomorphism

Hoch(A®B,O) EHoch(A, [B’C]GC) (5)
Using diagrams,
aQ@
vxv 2P v, yu U —%— x
fj {(Fl,Fz) (?fz)l i—F-l
v 0
W o e—  Z WY xY?2 e———V xZ
That is very similar to what we have done for DC and so we skip the details. . O

As usual with monoidal closed categories we have A = [I, Al and evaluation natural trans-
formations, evs: [A, BlJgc @ A — B given by morphisms (f, (Fy, F2)),

o
VU x XY x U —2 2% (U x Y x X(VUXXY)

.f (FlaFZ)

|4 e Y

where f: VU x XY x U — V is “evaluation” at U and in the second coordinate
(F1, Fy):Y — (U x Y)U x x(VIxXT)

is given by exponential transposes in C. The first component F1:Y — (U x Y)Y is the transpose

of 1yxy, and the second component Fy: Y — X(V7XXY) the transpose of VU x XY x Y ¥ X.
For symmetry reasons that will be apparent later, we want to introduce yet another bifunctor,
to be called “0”, which is, in some sense, dual to the tensor product “@” bifunctor. Note though,
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that the duality mentioned above cannot be made precise yet, since the operation of “swapping
coordinates of an object” - very natural if you think of symmetric relations on C - is not a functor
in GC. ‘

To define the bifunctor “0” categorically we need some extra hypotheses on the category C,
which up to now had to be finitely complete and locally cartesian closed.

3.2 More structure in GC

For the following definition and propositions we have to require additional categorical structure
on C, the same way we had to require it in Chapter 1. From now on, we consider categories C
finitely complete, locally cartesian closed with stable (under pullbacks) and disjoint coproducts.
[see observation about minimality of assumptions in Chapter 1]

Recall that to say a coproduct A = [] 4, is disjoint means that each of the canonical injections

agA

Jat Aq — A is a monomorphism and for each pair of distinct indices «, o’ the pullback of j4, jo is
the initial object.

Again, we say that A as above is stable under pullbacks if given any map f: B — A, if we take
the pullbacks of each of the canonical injections j, along f: B — A and call them f~1A,, then

B2 I] f~1Aq cf. [Makkai-Reyes).
agA

Definition 10 Consider the bifunctor O that takes (A, B) to
AOB=(UY x VX &L X x V). (6)

The relation defining AOB says that (f,¢)a0p(x,y) iff f(y)az or g(z)By. Categorically, the
object AQB is defined, like the tensor A@ B, by pulling back o along UY x X x Y (fev?yma) UxX,

resp. B along VX x X XY Cevyms) v Y, multiplying the new object (A' = UY x X xY ) by VX,
again respectively (B »— VX x X xY) by UY,

Al ————— ) A B/ —_ B

| - | |
(“61)”, 7(2) (“6’0” , 71.3)

UY xXXY ——— ™ 5 UxX VEXXXY ———— 1 VXY
and then taking the “coproduct map” A’ x VX + B' x UY »+ UY x X x Y x VX, as the diagram

shows
Jo . J1
B'xUY — S A'XVX4B xUY — A x VX
I I(a,xvx) T
BIXUY

VEXXUY x X XY =——= UY x VI XX XY ==V ExUY x X xY

To see that the operation “0” really determines a bifunctor, we take maps A ) A’ and
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B9 B and check the induced morphism AOB — A'OB’ given by

o0
UV xvX <——£——X><Y

F(=)G x g(=)F FxG

) , o/0Op
U/V % VIX —_—  XIxVY!

Note that the object L = (1 S 1), where 0 is the empty relation on 1 x 1, is the unit for the
operation “00” and that there is a natural map L — I, given by,

0

1l ————1

le——1

but not conversely.
Another remark is that there is a natural transformation of bifunctors T(' 4,B); A® B — AOB

given by

a®f
UxV —a—— X xY

(k1, ko) 1

a0
DY x VX —+—— X xY

where (k1,k2):U x V. — UY x VX consists of the constant map in each coordinate. Note that
this natural transformation can be composed with m: A @ B — A ® B and so we have a natural
transformation 7/ o 74,8 A© B — ADB.

Notice that tensor “@” and its dual “0” are very similar, but duality here is transforming the
metalanguage “and” into “or”.

It is not surprising that GC has cartesian products, analogous to the products in DC.

Proposition 25 The category GC has categorical products.

Proof: Categorical products are given by the bifunctor &: GC x GC — GC, which takes the
pair of objects (4, B) in GC to

ALB=(UxV &L X +Y) (7

and the relation “aéf” is given, intuitively, by (u,v) a&f (;’2) iff either uaz or vfv.

Categorically, we take the natural coproduct map induced by the morphisms A x V Y
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Ux X xVand B x Uﬁ>>—<+U V xY x U as the diagram shows,

BxU -——JZ———+ AxV4+BxU <—Jl— AxV

MT T Iaxv

VxYxU——jz——>U><V><(X+Y)<———J—1-—-U><X><V

Use the corollary of Proposition 4 to say that the coproduct map

AxV+BxU Dy (X +7)

is monic.
To check “&” is a bifunctor look at maps A @L) 41 and B 29 pr, They induce a map
A&B — A'& B’ as the diagram shows

ol
UxV —+— X +7Y

fxg‘ [F+G
o' &p

U'xVe——X'+Y’

The object A& B is a cartesian product, as can easily be checked by noting that

e Projections p1: A&B — A and py: A&B — B are given by p1 = (71, 1) and py = (72, ja),
for example,

ade
UxVée————X+Y

J

(84
v +—s— X

where m1: U XV — U and 79: U X V — V are canonical projections and j1: X — X +7Y and
j2:Y — X 4+ Y canonical injections in C,

e If there are maps C 5 A and C ©.9) B, then there is a (unique) morphism

c@:05) 4o

with the universal property, cf. diagram.

W e gz
T

(f,9) {

UXxVée——X+4+Y
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Also note that the object 1 = (1 & O) is the unit for the cartesian product and so it is a
telmlnal object in GC, meaning that thele is a unique map A — 1, given by the terminal map on

U, U -5 1 and the initial map to X, 0 % X. Moreover, [4, Ugo=1V x X° & ux0)21.
Proposition 26 The category GC has categorical coproducts.

It is easy to see that the construction above can be dualised in the first coordinate. Thus, if

we take the coproduct map of A x Y Y U x X xY and B x X % V xY x X that gives us

AeB=U+V & X xY) (8)

where the natural relation reads as ( Y a® B (z,y) iff either uaz or vy
Clearly we have an endofunctor @ and that defines coproducts in GC. Canonical injections
i1:A— A® B and i3: B — A® B are given by

U <————f¥+—— X 14 e——!é————— Y
T
jll ‘71'1 jz} Ty
adf a®p
U4V ée——+—— X xY U4+Vée——+——— X xY

where jl‘: U—U+YV and j5:V — U + V are canonical injections and m1: X x Y — X and
79: X XY — Y canonical projections in C.

If (f,F): A— C and (g,G): B — C then the map (( ), (F,3)): A® B — C has the couniversal
property, cf. diagram.

a@f
U4+Vée—— X XY

(5)‘ I(F, @)

y

W e 7

O

The object 0 = (0 & 1) is the unit for this construction and the initial object. Moreover,
[0,Algc = 1. Another remark is that the “or” in the definitions of & and @ are given by the
coproducts, while the one in the definition of O is a real “or”,

We now turn our attention to the maps X x Y — X +7Y. There are two very natural maps to
consider here, namely n1: X x Y B X 3 X 4+Y and ny: X x Y B2 Y B X 4V,

If you think of products as conjunctions and coproducts as disjunctions, the existence of the
maps “n;” tells you that A A B entails AV B. Note that the nullary version of this implication
does not hold, since T't/ L. Using maps like “n;” above we have:

Proposition 27 There are “natural” maps AQ B — A® B, A&kB — AOB and A&B — A @ B.

Those are given by
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o (ni,idxxy):A® B— A& B,

o
UXxVée————XxY

m] !1X><Y
ad®f

U4V ee——— X XY

o ((k1,ks),n;): A&B — ADB, where (kq,k2):U x V — UY x VX are constant maps,

a8
UxV ———X+Y

(kls k2) J ’ g
«0p

UY x VX e X X Y

e and (n;,n;): A&B — A® B,

adefl
UXVe————X+Y

1
n; n;
adp

U4+Vée——— X XY

Notice that whenever we say “n;”, we mean choose one of the maps ny or nj.

Summarizing all the remarks on the connectives in GC we have the following diagram:

3.3 Distributivity in GC

It is easy to verify that the tensor product “@” of GC distributes over the coproduct @ and dually,
that the bifunctor par “00” distributes over the cartesian product “&”.
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Proposition 28 The following isomorphisms hold in GC
Ao(B®(C)=(A0B)® (Ao C) and AD(B&C) = (AOB)&(AOQC).

The proof uses isomorphisms in C, i: U x(V4+W) = (UxV)+(UxW) and j: XVIW x (Y x Z)V =
XV x YV x XV x ZU| as the diagram shows.

aQ (B
Ux(V+W) (= 7 XVAW) x (Y x Z)V
a2 d (a0
UxV+UxW ( ):( 7 XV xYUxXW x zZU

Dually, of course, we have the isomorphism AD(B&C) = (AOB)&(ADC).

oO(B&

UW+2)  (V x W)X (Bey) X x (Y +2)
0N &(aO

UY x VX xUZ x WX (o ﬁ)=(a 7 XxU+Xx2Z

O
Notice that ‘multiplicatives’ distribute over ‘additives’, thus we do not have distributivity of

“@” over “I1”, as in A@(BOC) = (A@ B)I(A@C), nor do we have A&(BaC) 2 (A& B)®(A&C).
But there are natural morphisms of the form

(Ao A) 0 (BOC) -1 (Ao B)O(A 0 C)

or using diagrams,

UxU'xVZxWY¥ e (XU x XYV WY o (v x Z)UXU

U xVYX™ 8 (U W)X XV YU XV x U

And symmetrically
(AOB) o (Co ") LN (AoC)a(B o).
They reduce, k, if A’ = I, respectively &’ if C' = I, to the morphisms A@(BOC) _, (AeB)DC
and (AOB) @ ¢’ £, AD(B @ C"). Those are given by the following diagrams:

@@ (607)

UxVZxWY XPXWY) (¥ x Z)U

(U x V)2 x WX xYY) XV xYUxZ

(@ ;G)D'r
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and

(«0B) @ 7

UY x VX x W' (X x Y)WV x ()T xV¥)

Y <2y (v x WX X x (YW x2v)

aD(ﬁ;®7

There are also natural morphismsin GC, (AQB)®(A®C) — A®(B®(), and A&B®A&C —
A&(B @ C), but not conversely.

3.4 Linear negation in GC

We shall define in GC a strong contravariant functor, which induces an involution on a subcategory
of GC.

Recall that, given a symmetric monoidal closed category C, a coniravariani strong functor
T:COP — C is a functor such that, for every pair of objects (A4, B) in C, there is a family of maps
st(a,B):[A, Blg — [T'B, TA]c making the following diagrams commute.

] = I

]

X, X] ——— [TX,7X]

XYo,2 —a . [X,7]

st®st{ lst

[TY,TX]® [TZ,TY] — (T2, TX]

Definition 11 Consider the internal hom bifunclor evaluated ot L = (1 & 1) in the second
coordinate, that is consider [—, L]qq. This defines a contravariant functor (=)*: GC? — GC,

More precisely to each object (U & X), the functor (—)* associates the object (X Hu ) where
the relation “L*” intuitively says « L u iff whenever uaz then L. As “1” is the empty relation,
it is never the case, so if we are dealing with decidable relations in Sets, z | “u iff it is not the case
that uaz. Hence the name linear negation.

Proposition 29 The functor (—)+: GC? — GC is a strong contravariant functor.
To see (=)' is sirong, we need to show that there is a family of maps st(a,B), where

st(a,B): [4, Blgc — [B“L, AJ‘]GC

o aJ.B
goes from (VU x X¥ & U xY) 1o (XY x VU 5 Y x U). The morphisms st are given by the
symmetry T of C in both coordinates and the diagrams commute without much effort. O
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Note that there is always a map in GC of the form, A — A++ = [[A, 1], L], but not conversely.
Now we want to consider the subcategory “Dec GC”, whose objects are the decidable objects
in GC, that is decidable relations on C.

Definition 12 By a decidable object on GC we mean that (U & X) is such that the canonical
mayp from (U & X) to (U == X) is an isomorphism.

Our next proposition is to give names to structures. Following Barr, cf. [Bar] page 13, we say
that a *-autonomous category comprises:

o A symmetric monoidal closed category C.

o A strong (contravariant) functor x: C°? — C, thus the functor * and a family of maps
st*:[A, B]GC — [B*,A*]Gc.

e An isomorphism d = dA: A — A** such that the following diagram commutes

t
[4, Blg ——— [B* A*]¢

st
[d=1,d] }
[A’ B]C —_ [A**a B**]C

Proposition 30 The subcategory Dec GC is an *-autonomous category, for x = (=)*.

3.5 Relationship between C and GC

We can consider at least three natural “forgetful” functors from GC. Not surprisingly two of them
induce adjunctions.

Besides that, as usual, we have a diagonal functor A: GC — GC x GC, A — (4, A) which has
left and right adjoints, corresponding to cartesian products and coproducts in GC.

Let us denote by Fi: GC — C the forgetful functor which takes an object (U & X)toU and a
map (f, F): A— B to f:U — V. Consider also the functor Gi: C — GC, given by V s (V & 1)
where the relation e on V x 1 is the empty relation.

Proposition 31 The functor Gy is left-adjoint to the funcior Fy.
It is enough 1o check the natural isomorphism

Homgc(Gi(U), B) = Homg (U, Fi(B)),

which is trivial from the diagram
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On the same lines we can consider the functor G,: C — GC, which takes V to (V & 0), where
the relation “e” corresponds to the identity relation on V x 0.

Proposition 32 The functor F1 is left-adjoint to the functor G,.
It is easy to check the natural isomorphism

Homg (F1(4),V) =2 Homg (4, Gr(V)),

or using diagrams

o
U Ue—r—X
1
f|f "
14 Vée———002 0

Combining the results that we have obtained above, we have the 3-adjoint situation
GiHF; G,

Using the symmetry of GC, denote by Fy the forgetful functor which takes the object (U & X )
to X and the map (f,F):A — B to F:Y — X. Note that Fy is a contravariant functor. By
symmetry we have functors H; and H, which satisfy H; 4 Fy - H,.

We could also consider the forgetful functor F5: GC — C x COP which forgets the relations.

Notice that if F' is a lex-functor, that is if F preserves all finite limits, we have that the
construction G(—): Cat — Cat is functorial.

Proposition 33 Given a lex-funcior F: C — D, between finitely complete, locally cartesian closed
categories C and D, it induces a functor

GF:GC — GD.

Proof: If F' preserves all finite limits, in particular it preserves monics and pullbacks. Thus,
given an object (U < X) in GC, simply applying F to it, gives us a monic F A £ FU X FX in
GD or (FU i FX). Also GF acts on maps (g, ): A — B as (Fg,FG): FA— FB.

Ue—S\ X FU -2 _Fx

I

Fp

Ve——t—Y - FVéee—v  FY

Notice that (Fg, F'G) being a map in GD is a immediate consequence of the pullback preservation
property of F.

As the last result in this section we want to show the following proposition.

Proposition 34 Given a 3-adjoint situation C S D where 54 A 41l and X is a faithful functor,
that gives rise to a $-adjoint situation GC S GD, where L 4 A 4 R.
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Proof: The functor A is a right-adjoint, thus it preserves limits and so it defines a functor, still
called A: GC — GD, as in Proposition 11. We show that A which maps (U & X) to (AU pea AX)
has a right-adjoint R: GC — GD.

For an object (V & Y) in GD, define R(V & Y)= 1V i YY). As usual the difficulty lies
in defining the new relation “Rf”.

Recall that, as we have two adjunctions ¥ + A I II, we have two units and two co-units, as
follows 71:Y — AXY, £1: ZAX — X, 55:U — TAU and €5: ATIV — V. Since ¥ is a faithful
functor, 71 is monic for every Y in C.

Vxn

To define the relation “Rf3” compose B A VxY with VxY »= VxAXY and pullback the

composite along the map AIIV x ALY X8Iy AYY, as the diagram shows.

AHVX?]]_
B > SANIVXY ATV x AYY
l 52><Yj €2 X AYY
g Vxm
B>—— VXY V x AYY

Then apply the functor II: D — C, which preserves monics, to the big pullback diagram above and
pullback the result along 72, as follows

RB oV x XY

2

0B >—— ATV x Y) >——— TA(IIV x BY)

|

B >—— I(VxY) > I(V x AZY)

The functor R acts on maps as R(f, F) = (ILf,XF) and it is easy to check the adjunction A + R,
since in the diagram,

Aw
14 <—ﬁ+—————- Y HV(——-——RoIB—EY

f corresponds to f, using the first adjunction and F' corresponds to F by the second adjunction
in C. Dually, we can define L: GD — GC using the same construction on the first coordinate of
objects in GC. Thus we have the 3-adjoint situation L 4 A - R, between categories GD and GC.
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3.6 Classical Linear Logic and GC.

The category GC came into existence aiming to be a categorical model of Classic Linear Logic.
It stems from a suggestion of Girard in Boulder 87, to whom I am very grateful, and to a great
extent it fulfils its promise. In particular, the category GC is a very interesting model of Classical
Linear Logic, since it does not collapse the units of “tensor” and “par” into a single object.

But to show that GC is in fact a model of C.L.L is not as straightforward as it was before.
Because of the huge symmetries of C.L.L, it does not fit as nicely into a pattern of directed
morphisms as does the Intuitionistic fragment. We have 2 equivalent presentations of Classical
Linear Logic with slight variations in notation.

The original one, cf. [Gir] 1986 page 22, presented below is very sleek and elegant, but it is
hard to read off a categorical model from it.

Identity rule : Cut rule :
0 FAT FAL A

FA AL FT,A

Exchange rule :

1

T  where IV is obtained
3. —— by permuting the
FT"  formulas of T

Additive rules:
itive rules FAT BLT

Ft, A F A&B, T
AT +B,T
+A® B,T tA® B, T
Multiplicative rules:
FA
F1 F1,A
AT FB,A A BT
FA® B,T,A F AQB,T

Note that there are no rules for (—)%, 0 and L. Again, following the categorical tradition, we
shall replace “t” by 1 and 1 by I. [Also due to typographical reasons we use O for Girard’s par,
usually written as an upside down ampersand.]

Seely in [See] 1987, on the other hand, gives a presentation, which is geared towards the sym-
metries and thus more helpful. In his presentation a sequent has the form

G1,Gy,...,Gn D1, Da, ..., D,

where the commas on the left should be thought as some kind of conjunction and those on the
right, some kind of disjunction.

A (propositional) Classic Linear Logic consists of formulae and sequents. Formulae are gener-
ated by the binary connectives ®, O, &, ® and —o and by the unary operation (—)*, from a set of
constants including 7, L, 1 and 0 and from variables.

The sequents are generated by the following rules, from initial sequents or axioms.

A F A (tdentity)
FoT L F
r + 1,A o F A
A+ AL At kA (negation)
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Structural Rules:

kA T'FAA  ATFA
————  (permutation) (cut)
o' 7A LT ALA
Logical Rules:
T,AFA T+ B,A
(var, ) —— (var)) ————
TF AL A I,BtFA
Multiplicatives:
r'FA TFA
(unity) ——— (unit, ) —
T, 1A TFLA
@) TA,BFA r-4,A TI'FBA
&) ————
TAQ B A LI'FA® B,AA
IMAFA T,BrA’ TF A, B,A
(B1) 0p) ——
T,TY, AOBF A, A/ I+ AOB, A
'A,A I/, BFA LA+ B,A
—o; (0 ) reemmmrmmeremee——
I,T,A— B+ A, A I'tA— B A
Additives:
THFAA T+ BA TVAFA I''BFA
r) T+ A&B,A T,A&Bt+ A T,AYBF A
T,AFA T,BFA TFAA T+ B,A
(&r1) Oy ) ———— E——
A BFA I'-rA®B,A TFA®B,A

A remark on notation. Seely writes in his paper “x” for “&”, “4” for “®”, ® for O and ~ for
(=)*, but we want to keep, as much as possible, the original notation from [Gir]. [Seely also has
a single rule for negation]

We would like GC with all the structure defined in Chapter 3, to be a categorical model of
Classical Linear Logic. But it is clear that we do not have morphisms of the form A++ — A for all
objects A in GC. So, not all the objects are equivalent to their double linear negations, A = AL+,

Thus, we omit from the system just presented the negation axiom A+LL + A, Negation, in our
model, is the same as linear implication into L, so A - ALL is trivially true. But the negation
axioms and rules are not essential when describing linear logic, cf for example [Sch].

Also only the rule (var;) is satisfied in GC. That happens because the logic we are dealing with
is really intuitionistic, at the bottom level. Thus, for example, in the model, the objects (A@ B)*
and (A+0OB?1) “look” exactly the same; they are both of the form

(XY xYY « U x V)
But taking in consideration the relations, we only have a morphism in one direction
(A*oBY) - (Ao B)*

This is just as in Intuitionistic Logic, thinking of “0” as “or” and “@” as “and”. Also from A+0OD
we can prove intuitionistically, A —o D, but not conversely. Thus we have to change the rule for
—o-introduction on the right. The new rule, not surprisingly is

T,A+ B
(—r)

'FA—B

Let the new logical system, with restricted (—o,), be called L.L, or sometimes just L.L. [Thanks
to H. Schellinx, who made me think a bit more clearly about the logical system I was modelling. ]
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Theorem 3 The symmetric monoidal closed category GC, with bifunctors tensor product @; “par”
0; internal hom [—, —]gc; cartesian product &; coproduct ® and contravariant functor (=)* for
linear negation, is a model of L.L,. Thus to each entailment I' -1, 1, A corresponds the existence
of @ morphism in GC,(f, F): |T| — |Al.

Proof: We check each of the axioms and rules, as we did before for I.L.L.
Notice that rules @; and O, are fundamental, since they indicate how we should interpret the
sequents in the category GC. They show that

Gh,Ga,...,Gp k- D1,Ds,...,Dp
should be read as there exists a morphism in GC,
|Gn| Q...0 lGll — !Dk’D.‘ -DIDll

As before we write G for |G| @ ... @ |G1], the tensor product of the objects |G;| in GC and
D for |Dy|0...Q|Dy], the “par” of objects |D;| in GC. Apologies for the notation @, for tensor
product, which is normally written ®, but in GC we need two different names for distinct tensor
products.

The first axiom only says we have identities in GC. The second pair of axioms states the
existence of constants I and L. The third pair of axioms is satisfied since there are isomorphisms
0@G=0and 10D =1,

The rule (permutation) holds since both monoidal structures @ and O are symmetric.

To check the rule (cut) we use the natural morphism

it A@(BOC) — (A@ B)OC
given in section 3. Thus we say that given morphisms (f, F'): G — A0D and (9,G): A0 G' — I,
which correspond to I' F 4, A and IV, A+ A’, we look at the composition
Goc S (40D) o ¢’ = ¢’ @ (AOD) 4 (& @ A)oD 9 pap,

and that corresponds to T', TV F A, A/,
The rules for unit, (unit;) and (unit,) are satisfied since I is the unit for the tensor and L the
unit for par. Thus G@ I =2 G and L.OD = D,
3%

Rule (@) uses again the natural morphism “”. If we have morphisms G (1) AOD and
G @9 BOD', which correspond to I'+ A, A and TV + B, A/, composition gives us

Goc P19 (4op) o (BoD') L (A0D) @ BYOD! =

(B @ (AoD))aDp’ % (B @ A)DDOD' = (A @ B)aDOD!
Rule (O;) uses the natural morphism “k” of section 3. Given maps (f,F):G@® A — D and
(9,G): G' @ B — D' we have
(Go G o (ADB) & (G 0 A)B(G o B) V2299 popr,

which corresponds to T, IV, ADB F A, A/,
Rule (—o;) uses “4” and “ev” as follows. If G W) 40D and ¢ @ B €9 pr , then the long
composition gives
Go(G'@(A— B) VI8! (40D) @ (G 0 (A — B)) =

(G' @ (A— B)) @ (ADD) L (¢’ @ (A — B) @ A)DD 2 (G")OD (9,G)BD

which says T, TV, A — BF A/, A,

D'oD,
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Rule (—o,) uses the adjunction. If G @ A — B, then, by adjunction, G — (4 —o B).

Finally, the rules for the additives are satisfied using the distributivity laws and canonical
injections and projections.

Rule (&) says that, if e.g. G@ A — D, then G @ (A&B) 998 G @ A — D and rule (®,) says

if e.g. G — AOD, then G — ADD “2% (4 @ B)OD.

Rule (&) uses the distributive law. Given G — AOD and G — BOD then
G — (ABD)&(BOD) = (A&B)0OD

Rule (@) uses the other distributivity law,if G@ A — D and G@ B — D then G 0 (A® B) =
GoA®GoB— D. |

We want to check the symmetries involved and summarize the properties of the connectives in
GC.

Proposition 35 We have the following properties of the connectives in the category GC.
Properties of the multiplicatives:

1. The bifunctors “par” O and “tensor” @ are commutative and associative. They have neutral
elements L and I respectively.

2. Linear tmplication —o satisfies:
e o0 A=A
o A—ol 24l
¢ (A0B)—o(C=A4—(B—C)
¢ (A— B)F Bt — At
¢ A—o (BOC)F (A — B)OC
3. We have the following natural morphisms in GC:
e AOB— At o B+l = (AlnBL)L
o AOB —)AJ-J-DBJ-J- —_ (A-L @BL).L
o AOB — A++oB — (A'L —o B)
e AlOB - A —oB
Properties of the additives:

4. The bifunctors “plus” @ and “with” & (or cartesian product) are commutative and associa-
tive. They have neutral elements, 0 and 1, respectively, which satisfy:

e 0A=0
e 1I0A=1

e 0—o0A=1
e A—o01=1

5. We have semi “de Morgan” principles:
o AYB — AtLLBLL = (AL @ BL)L
e A® B — (AtY) @ (BHL) — (AL&BL)L,
Distributivity properties:
6. We have the following distributivity rules:
s A0(Be(C)=(AoB)®(A00)
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o AD(B&C) = (ADB)&(ADC)

¢ A —o (B&C) 22 (A—o B)&(A — C)

¢ (A®B) o (C=(A—C)(B—0)
7. We have the following natural morphisms:

e A@(B&(C) - (A0 B)&(A®C)

e (ADB)® (A0 (C)— AD(B o C)

¢ (AoB)d(A—oC)—=(A—(Ba(O)

Proposition 36 The subcategory “Dec GC” is a model of C.L.L.

Proof: Just have to check that the subcategory Dec GC is closed under the logical operations,
represented by the bifunctors @, 0, [-,—]qc, & and & .

Proposition 37 We have the following isomorphisms in the category Dec GC
1. A= ALL
2. A—o B= B+ — AL,

3. A—- B= ALOB.
De Morgan principles:

4. (Ao B): = AloBtL,
5. (ADB)t =2 AL ¢ BL.
6. (ALB): = AL @ BL.
7. (A® B): = AL&BYL,
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Chapter 4

Modalities in GC

Interpretations of the modal, or exponential, operators “” and “?” of Linear Logic, in a categorical
set-up, should correspond to a comonad and a monad, respectively, satisfying certain conditions.

We shall discuss several possible endofunctors on GC, which could play the role of the connec-
tive “I” in Classical Linear Logic.

We have 6 sections, the first is another recapitulation of monad theory. Then we define two
monads in C and induced comonads, 7" and S in GC. The third section recall distributive laws
- following Beck - while the fourth discusses some properties of 7. The fifth section defines the
comonad “!” and the sixth relates the categorical results to Linear Logic.

4.1 More Preliminaries

Recall that given a monad T = (T,7:1 — T, u:T? — T') on a cartesian closed category C we
can describe its category of algebras (or Eilenberg-Moore category) usually denoted C7 and its
T-Kleisli category, Cp. The category CT of algebras consists of pairs (X, 0) where X is an object
and ¢ is a morphism in C, §: T'X — X, called the structure map of the algebra, which makes the
following diagrams commute:

Ui T80
N —TX T°X ——— 5 TX

Pk
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A map of T-algebras is a morphism of C, f: X — Y such that the square below commutes

The T-Kleisli category Cr has the same objects as C, but morphisms are, by definition, given
by HomCT (4,B) = Homg(4,TB).

Also, given the monad T = (7', n, 1), from abstract nonsense only, we can draw the following
diagram, where the horizontal map ® is called the “comparison functor”

Cp — CT
Fr lUT FT lUT
C p——— C
Given two monads on the same category C, it is usual to define a (monad) morphism a: T — T/

cf. [Barr-Wells] page 125) between the monads T = (7,75, u) and TV = (T",7', /) in C, as a
H 17 /‘t )
natural transformation «: T — 7" making diagrams below commute.

o a?

T e— Tz_______ﬁle
7 nop '
] =T i J——

84

It is easy to verify that o T — T a monad morphism induces a morphism in the opposite direction,
&: CT' — CT between the T-algebra categories. Given a T'-algebra (X,0:T'X - X), &(X,0") is
the composition induced T-algebra ¢ given by

0
T7X — X

"X — X
6/

Similarly, the monad morphism ¢: T — T induces a morphism @ Cr — Cpi - in the same
direction as « - between the Kleisli categories. Given a map X — Y in Cg, which corresponds
to a map X — TV in C, we can compose it with ay, to get X — TY ¥ T'Y in C and this
corresponds to a morphism X — Y in Cqp.
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Another remark is that monads on C, with monad morphisms, form a category which we call
MONg. Observe that capitals are used to make MON different from Mong, which means
the category of monoid objects in C.

All the above can be dualised, simply inverting arrows and adding the prefix “co”, where
appropriate. Thus, given a comonad G = (G,e:G — 1,6:G — G2) we can form the category
of coalgebras, denoted C¢ and the G-Kleisli category, denoted Cg. Note that h: X — GX a
coalgebra structure map, makes the following diagram commute,

h h
X —GX X — GX

€ h )
Xe=——— X GX — %X
Gh
but not necessarily
€
GX — X
h

Given two comonads in C a comonad map is a natural transformation o: G — G/ such that
the following diagrams commute:

o o
G —_ Gl GZ —_— G/2
€ g & &

(67

But notice that a comonad morphism «: G — G’ induces a morphism of coalgebras &: C¢ —
C% in the same direction as “a”. Thus, given a G-coalgebra (X, h: X — GX), &(X,h) is the
G’-coalgebra (X, h': X — G'X), where b/ is given by the composition

X Mox % ax.

Dually, a:¢ — G’ induces a morphism @ Cg: — Cg between the Kleisli categories. Given
amap X — Y in Cgs, which corresponds to G’X — Y in C, precompose it with ax to get
GX 2% G'X — Y, which corresponds to X — Y in Cg. We can consider the category
COMON, whose objects are comonads on C and maps are comonad morphisms.

Monoids and comonoids in GC

Recall from Chapter 2 that if we consider C cartesian closed with (stable and disjoint) coproducts,
then Comon; C 22 0, Mon;C = C and ComonyC 2 C,

We now turn our attention to GC, which is only symmetric monoidal closed. Since we have
five symmetric monoidal structures in GC, we can consider Mony GC, MongGC, Mong GC,
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MongGC and MonnGC. Dually, we can consider categories ComonyGC, ComongGC,
Comong GC, ComongGC and ComongGC.

From these ten categories, using the argument above, we deduce the isomorphisms of categories
MongGC = GC and Comong GC = GC. Notice that to say Comon;C = 0 we have used
the cartesian closed structure of C, thus now we have, instead, ComongGC = MonC and
Mong GC =2 MonC.

To describe the two categories induced by the “old” tensor product ® we recall:

o The category MongGC consists of triplets (4,74, p14), where A is an object (U & X), and
the maps 74:1 — A and pa: A® A — A satisfy monoid equations. This means that U is a
monoid object in C, (U,1 =8 U, uy: U x U — U) and the relation “a” satisfies

— If ug is the unit of U, ugax for all z € X.

— If uaw and o then py(u, v')as.

Notice that the existence of maps in the second coordinate is not a problem, since X has a
natural comonoid structure given by the terminal map X 41 and the diagonal map in C,
XA XxX.

¢ Dually, the category ComongGC consists of triplets (4,14, p4) where A = (U & X) and
X is a monoid object in C, (X,1 28 X, ux: X x X — X). The relation “a” satisfies

— If @ is the unit of X, uazg for allu € U.

— If wopx(z,z’) then vaz and uaz’,

Again the existence of maps in the first coordinate is no problem, since U has a natural

comonoid structure given by the terminal map U 1 and the diagonal map U AUxU.
There are still four categories left, which we describe as follows:

¢ The category MongGC consists of triplets (A,74:] — A, ps: A@ A — A) where A is an
object of GC (U & X) and U is a monoid in C,

(U138 U,py:U x U = U).

le—r— 1 UxUe—22% xv,xv
Up V' o )
(6} [84
Ue—emy—X U —— X

The natural transformation 74 consists of the unit of U, ug: 1 — U and the terminal map in
X, X % 1. The relation “a” satisfies uwpae for all 2 € X, The multiplication py: AQA — Alis

given by the multiplication on U, prr, and the existence of a morphism §: X <°1$?> xU « xU
such that uaé(x)(v') and w'abs(2)(u) implies that puy (u, u)aw.

e The category ComonyGC consists of triplets

(AynatA—1,64:4A— AQ A),

where A = (U & X) is an object in GC and X has a point 1 23 X. The natural transforma-

tion 774 is given by the terminal map in U, U 1 and the point of X, zp: 1 — X, The relation
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“o” is such that uow for all v € U. More importantly , there is a map : XU x XV — X,
such that the comultiplication §4: A — A@ A is given by (Ay, §). This says that the relation
“o” satisfies uaf(f, g) = (uafu and uagu).

U S _x v o—% x
! Ty A ¢
le——1 UxU—"2% xv,xv

o The category MonnGC consists of (4,74 L — A, pa: ADA — A) where A = (U & X) and
U has a point 1 28 U. The natural transformation 7,4 consists of the point 1 %3 U and the
terminal map in X, X — 1.

2 alo
l ——+1 UX xUX ——+ X xX
UO} ! 0} {A
o o
Ue——X U —_— X

There exists a map 0: UX x UX — X, which is the first coordinate of the multiplication on
A and the relation « satisfies fear or gzaw implies 0(f, g)az.

¢ Finally, the category ComongGC consists of triplets,
(AynatA— L,64: A— ADA),

where A = (U & X) and X is a monoid in C, (X, 13U, px: X x X = X).

o o
Ue————X U —_— X
AL oD
1 e—%— 1 UX xUX —+— X x X

There exists a map 6: U <*3*> UX x UX, such that ucrpx (2, 2') implies that 61 (v)(z")ea
or 63(u)(e)aw.

The point of going through these lengthy descriptions is to show that, with respect to “©”,

which is the tensor product in GC, comonoids do not look familiar at all.

4,2 The comonads T and S

In this section we shall consider monads in the category C, two “induced” comonads in GC and
describe the categories they give rise to. In the next sections we consider some relationship among
those categories .
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The first monad we consider in C is the one described in Chapter 2, called there : C — C.
This monad, which will be called Sy in this Chapter, gives free monoids on C. Thus, as before, we
suppose we are given is an adjunction ' +H U: C — Mon C.

Recall that So(X) = X*, So(Y) = Y* and So(f) = f*. Intuitively X* stands for “finite
sequences of elements of X” and f* for “f applied to each element of the sequence”. Also Sp is.
clearly a monad and it does not preserve products. Despite that, we can still, as in DC, define an
induced endofunctor S: GC — GC and “S” has a natural structure as a comonad.

Definition 13 The endofunctor S on GC is given by S(U & X) = (U pi X*) on objects, where
the relation “Sa ¥ is given by the pullback below

SA — A*

Ux X —— (U x X)*
Cu x

and S(f, F) = (f, F*) on maps, as the diagram shows

So

Ue——t+——X*

The relation “Sa” reads intuitively as
“u(Sa)(®1,...,xr) iff uazr and ... and uoazy”.
To define the relation “Sa” we pullback the auxiliary map C(~,-) - discussed in Chapter 2 -
along the image of A»% U x X by Sp, A* & (U x X)*, as we did before.

Proposition 38 The functor S:GC — GC has a natural comonad structure, induced by the
monad structure of So. Namely, the counit (es)a:SA — A is given by identity on U and the
singleton map X > X* and the comultiplication (65)a: SA — S?2A is given by identity on U and
“forgetting brackels” X** £ X* on the second coordinate, as the diagram shows

S Sa
Uée——tr—X* Ue———murw— X*
20
Ue——a— X U e X**

Both are easily natural transformations and they make the respective diagrams commaute.

Alas, this comonad has not the nice categorical properties it had before, due to the fact that
the tensor product in GC is much more complicated than then one in DC,
There are other very natural monads to consider in C, if C is cartesian closed.
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Definition 14 For each U in C, a cartesian closed category, let Tyy: C — C be the endofunctor
which takes X — XY, Y — YU and f € XV to fg e YU.

That is clearly a monad in bfC with unit (91, )x: X — XY given by the “constant map”, and
multiplication (pr, )x: XUY*V — XU, simply “precomposition with diagonal”. We now turn our
attention to defining a comonad “induced by the monads T” in GC.

Definition 15 Consider the endofunctor T: GC — GC which takes the object (U & X) to the
object (U & XU) and the object (V & Y) to (Vv T2 YV). The relation “Ta” is defined by the
pullback of the object A»> U x X along the map U x XV v U x X,

TA ————— A

! §

Ux XV — UxX
(71, ev)

Intuitively, that says that “u(Te)f iff uaf(u)”. To complete the definition say that T applied to a
map (f,F):A— B is (f,F(=)f):TA — TB as the diagram shows

To

Ue——w XU

d
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F(=)f

It is easy to show that 7" is a comonad, but it is interesting to see that to describe its comonad
structure only the natural transformations given by the monads Ty need to be considered.

Proposition 39 The endofunctor T' is the functor part of a comonad (Tyer,br) with co-unit
er:TA — A given by identity on U and the natural “constant” map ny: X — XV in the second
coordinate. The comultiplication (67)a:TA — T?A is given by identity on U and “restriction to
the diagonal” py: XU*U — XU in the second coordinate.

Ta To
Ue—r— XU Ue——p— XU
Uio Hu
o T?«
Ue—s— X Ue——— XUxU

It is easy to check that both natural transformations are really maps in GC and they do make
the usual comonad diagrams commute.,

Moreover, the monads Ty relate to Sy in a very special way, described by Beck [69] as a
“distributive law”.
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Beck defines a distributive law of S over T, where we are given monads T = (T, np, ur) and
S = (S5,1ns, pts) on a category C, as a natural transformation A: ST — T'S such that the diagrams

T —=—m—— T S —— §
A A
ST oo TS ST — TS

and
At TX
STT —or—mr—T'ST —— 5 TTS
Spr 1 \ wr
A
ST Ts
SA As
SST —o-—u STS ——— TSS
Hs l j Tps
A
ST TS
commute,

Now we want to see that, for each U in C, we have a natural transformation X: SoTy — Ty Sg or
Ax: 80Ty X — TySoX, corresponding to (XV)* — (X*)U, satisfying those diagrams. Intuitively,
such A exists. Given a sequence of functions (¢;)ier , each ¢;: U — X, take the product function
$1 X ... %X ¢p:U¥ — X* and precompose it with the diagonal map A:U — U*, to get a map
U— X*.

Definition 16 There is a natural transformation in C, X: SoTy — Ty So such that at the object
X, WNx:STuX — Ty SoX is given by (A) x: (XU)* — (X*)U. To define the map A, it is enough
to define its exponential transpose X, which is given by the composition of (an instance of) the map
Ci—,—y in Chapter 2 and evaluation, as follows:

c .
(XUY x U ©.xY) (XU x U 2 x

Proposition 40 The natural transformation X satisfies the conditions for a “distributive law” in
C.

More interesting is the fact that A above, induces a new distributivity law A, this time between
the comonads T' and S in GC.

Proposition 41 There is a natural transformation A: TS — ST, at each object A, Aq:TSA —

ST'A is given by (1y, (A)x) where (N x: (XU)* — (X*)V is the distributive law above in C. This
natural transformation A satisfies the conditions for a “distributive law of comonads”.
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Using the monads Ty and Sp in C and checking the definitions in the previous section, we can
consider:

o The category CTv of Ty-algebras, that is pairs (X, 6x) where the structure map of the
algebra X, 0x: XY — X is such that the composition of the morphisms X =¥ XU %% x
is the identity on X and also such that the two morphisms (XV)V (hL)U XU "% x and
(XUYW = XUXU 'Y XU X ¥ a6 equal.

o The category C% of Sy-algebras, that is pairs (Y, jv) where jy:Y* — Y makes Y a monoid
object in C'. Thus we have the equivalence of categories G50 =2 Mon C.

e The category Cry,, the Ty-Kleisli category, with the same objects as C, but for morphisms
we have

Homg, (X,Y) = Homg(X,TyY) = Homg(X,Y") = Homg(U x X,Y).

¢ The category Cg,, the Sy-Kleisli category, with the same objects as C, but morphisms are
given by Homg_ (X,Y) = Homg (X, SoY) = Homq (X, Y*).

On the other hand, looking at the comonads we have described in GC we have the following
categories:

o The category GCT of T-coalgebras, that is pairs (A, hs) where A is an object in GC and
ha: A — TA, the structure map of the coalgebra, consists of identity on U and 8x: XV — X,
a structure map for Ty in X,

e The category GC? of S-coalgebras that is pairs (4, ha) where hq: A — SA the structure
map of the coalgebra, consists of identity on U and a morphism jx: X* — X making X a
monoid object in C, so GC¥ = ComongGC.

e The category GCr, the T-Kleisli category of GC, with the same objects as GC, but maps
given by Homg o, (4, B) = Homg (T4, B), of. section 4.

e The category GCg, the S-Kleisli category, with the same objects as GC, and morphisms
given by Homg (4, B) = Homg (54, B).

Since we have the distributive laws A and A, it makes sense to adapt Beck’s paper on “Dis-
tributive Laws” to our monads and comonads and to check some conclusions that can be drawn
from it.

4.3  Using Distributive Laws

It is widely known that the composition of monads is not always a monad, but given a distributive
law A, we can define the composite monad defined by A, cf. [Beck]. We can also define the “lifting” of
one of the monads and several relationships among the categories of algebras and Kleisli categories
involved.

Recall that A: SoTy ~ Ty Sp is a distributive law in C. Thus, if we define 7 as the diagonal
in the first diagram below, and po as the composition of Ty ASy with the diagonal of the second

diagram below, then Ty Sp with these two natural transformations comprises the composite monad
induced by A, cf. [Bec]

UED

X — SX

Ty Ny

TUX it TUS()X
Tuns,

70




Ty ASo ToTups,
TUSQTUS()X i 4 TUTUSQS()X ———-—-%TuTUSoX

/’LTU “ TU

TUS()S()X _— TUSOX
Typs,

Definition 17 The composite monad (TySo)a, in C, takes X +— (X*)U and its unit no is given by

T
the composition x % x+ Ty (X*)Y or equivalently by X g xu Tlso) (X*)Y. Multiplication
Lo (TUSO) — Ty Sy is given by the exponential transpose of the long composition

(CoMPETA M ORI COVERIED el P S
which corresponds to the composite in the second diagram above.
To show that (TySo, 7o, o) is indeed a monad is just a long naturality calculation.

Similarly, we have the composite comonad, induced by A and given by (T'S): GC — GC.

Definition 18 The composite comonad (T'S) takes (U & X) — (U & 15 (X*)Y) and has counit

(ers)a:TSA — A given by identity on U and 1o - the unit of Ty Sy - on the second coordinate.
The comultiplication (6rs)a:TSA — (T'S)2A is given by identity on U and po the multiplication
of Ty Sy on the second coordinate.

U TS« (x*)Y U TS« (X*)
o ; (TS)*a
Ue—3%— X Ue—+— (x*)V)*Y

Besides the “composite monad”, a distributive law provides a “lifting” of one of the monads to
the category of algebras for the other monad.

Proposition 42 The monad Ty: C — C “lifis” to the category of Sp-algebras, which means that
we can describe a monad TU CS — C%, Given an Sp-algebra (X,ix:S0X — X), the endofunctor

TU is given by

Ty (X, jx) = (Tv X, hryx),
where Ty X = XY. The new structural map h(XU):(XU)* — XU s given by the composition
(XU)* _i) (X*)U (j_’f_zU XU.

The endofunctor TU acts on maps as Tyy. The unit for TU is the unit for Ty and the multiplica-
tion for Ty is p1, . Beck shows that h(xvy is a structure map and that the unit and multiplication
are Sp-algebra maps.

Dually, you can lift one of the comonads to the category of coalgebras for the other comonad.

Proposition 43 The comonad T in GC lifts to the category of S-coalgebras. The endofunctor
T:(GC)5 — (GC)5 has a comonad structure given by the monad structure of TU Namely, if

(A, Ba: A — SA) is an S-coalgebra, then T(A, Ba) = (T'A, apy), where TA = (& ¥ XY) and the
new structure map o 4. TA — STA is given by identity on U and the structure map

hxoy: (XU G v
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given in Proposition .

o To
Ue—+— X —» Ue—uw— XU
l TS« ]

U(————P—(X*) — U <——4———(X*)U

Using the categories above we can draw the following diagrams, and each of them has three
sides consisting of adjoint-pairs.

CTvSo ———= CToS GCTS ——=qGCT*
(CSO)’-?;U CTu (G?S)% GTT
CS GC® —/—= GC

T
It is easy to check that the maps Ty k] TuSy and Sy (nﬂ) Ty Sy are monad maps. To

malke notation less cumbersome we write o for Ty — Ty So, thus the natural transformation
ax:TyX — TySoX takes XV — (X*)V and is given by Ty applied to the natural transformation
(1so): I — So. Also write B for Sy — Ty S, which is (1) applied to the object So X, thus taking
X* — (X*)U

Similarly, there are comonad morphisms §: 7S — T and «:T'S — S, where §4: TSA — TA is
given by 64 = (lu,ax) and k4: TSA — SA by k4 = (ly, fx) as the diagram shows.

T8 Ts
U <—~_+(&_ (X0 U <———————o«i—— (x*v
1Ul ,ax 1U[ !ﬁx
Ta T
Ue—uw——— XU Ue——nr— X*

Proposition 44 The monad and comonad morphisms above induce:
e maps in the categories of algebras, @: CTvSe — CTv qnd §: CTvSe — CSo,
e maps in the categories of coalgebras §: GCT — GCTS and k: GCS — GCTS,

Thus we now know the direction of two of the morphisms in the diagrams on the previous page.
Our next aim is to relate the categories (CS0 )Tv and C5Tv - dually (GCS)T and GC5T,

Proposition 45 There is an equivalence of categories of algebras,
B: (C50)To —y 5oy
and respectively, of categories of coalgebras ®: (GCS)T“ — GCT,
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The proof for algebras in Beck’s paper translates exactly to the coalgebras case, thus we omit
it. O

Clearly the monad Sy does not lift to the category of Ty-algebras, since we cannot define the
Ty-structural map for SoX using A, but it seems to lift to the Ty-Kleisli category, Cr,,. Here
we have to be a little more careful since the results have not been proved by Beck, who was only
interested in algebras. Clearly also, we are talking about duality once more, but that is a more
subtle case.

Proposition 46 The monad Sy “lifts” {0 the Kleisli category Cr,. That is the endofunctor
So:Cry — Cry that takes X to So(X) = X* and a morphism in Cr,, X — Y - correspond-

ing to a map f: X — TyY in C - to the composition Sp(X) Solfo) SoTy(Y) LS Ty So(Y) which
corresponds 1o So(f): SoX — SoY in Cry, has a natural comonad structure.

Proof: This is a general consequence of the existence of the distributive law. The unit

77§03X — So X

in Cr, corresponds to the map 7g: X — Ty SeX in C. The multiplication of 5’5, N@“O:X o X*
in Crp, corresponds to a map §: X** — (X*)V in C.

There are more easy calculations to come. The important point here is that they all “could” be
read off from Street’s paper “The formal theory of monads”, by a very clever 2-categorically minded
reader. We will not go into the 2-categorical aspects of the theory here, but for one observation:

Recall that if K is a 2-category, one can write K for “reverse the 1-cells” and K., for “reverse
the 2-cells”. Recall as well, from [Str] that a monad (4, .S) in K consists of an object A and a 1-cell
S: A — A, together with two 2-cells7: 1 = S and p: S? = S such that the usual diagrams commute.
In this context a morphism of monads (f, ¢): (4,S5) — (B,T) consists of a 1-cell f: A — B and a
2-cell ¢: T'f = 5, such that appropriate diagrams

f =——F TfS =—==—=TfS
nfl }f’) Te ¢S
Tf Tfs T2f fs?
nf fu
¢

T7f ——— fS

commute. Also, a transformation (of monad morphisms) consists of a 2-cell a: (f, ¢) — (g, %) such
that the diagram

T —2 7y

commutes.
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Thus, we have a 2-category of monads in K, denoted by Mnd(K) and by inserting or not “op”
and “co” in the appropriate positions, marked with a “4+” in

Mnd(K +) +,
+ o+

one obtains 16 distinct 2-categories!!
The point we want to make here is that a distributive law, between monads T = (7', yp, pur) and
S = (S,ns,ps) on C, as defined by Beck, that is a natural transformation A: ST — T'S, such that
the 4 mentioned diagrams commute, consists of (T, A): (C,S) — (C,S), a standard morphism of
monads in Mnd(CAT) and (S, A): (C,T") — (C,T) a non-standard morphism in Mnd(CATOP),
Back to more pedestrian issues, we have

Proposition 47 The comonad S lifts to the Kleisli category GCrp. The endofuncior S takes A
to SA. Given (f,F): A — B a map in GCp, corresponding to (fo, Fo): TA — B a map in GC,

define S(f, F) as the composition of the maps TSA A, 74 5UoT0) SB, which corresponds to a
map SA — SB in GCrp.

Using propositions 9 and 10, we can draw two new diagrams as follows:

Crys, === Crys, GCrs =—=GCrs
(Cry)sz, Cs, (GCr)z GCs

H —_ l GCr =—= GC

Cr, ——= —

Proposition 48 The monad maps in C, a: Ty — Ty Sy and 8: Sy — Ty Sy and the comonad maps
in GC, 6:TS — T and k:T'S — S induce morphisms between the Kleisli categories &: Cp, —
Cr,s, and 3: Cs, — Cry,5, over C, and §: GCrg — GCrp and #: GCprg — GCg over GC.

To finish the “dualisations” the next proposition relates with an equivalence, two vertices of
the “pentagons” above,

Proposition 49 There is an equivalence of categories Uy: (CTU)§; — Crp,5,. Dually, there is an
equivalence ¥: (GCr)z — (GC)rs.

Summary: We can sum up the results of this section in the four “squares” below. Each square
has three sides consisting of adjoint-pairs and the last side given by a very natural morphism. In
C, relating algebras and Kleisli categories,

CTuSo v Cry5, ———= Crp,
Cd Cs, —/——
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and in GC relating coalgebras and Kleisli categories,

GCTS —  gcT GCrg &——= GCrp
GCf —/—— GcC GCy &——= GC

Note that if we ask for C with equalisers then, the two top squares are totally composed of adjoint-
pairs, but we do not pursue it here, since it is not clear that equalisers in C would imply equalisers
in GC.

4.4 Properties of the comonad T

In the last section the endofunctor “I” was defined in GC taking the object (U & X) to the
object (U e x U) and with relation “T'o” defined by the pullback of the object A v U x X along

the map U x XU Uxero 7 « X
This endofunctor seems a reasonable candidate to represent the connective “”. For a start it
has a “dual” endofunctor, to be denoted R, described in the next paragraph.

Deﬁmtlon 19 The endofunctor R takes the object (U & X) to (UX £ X), the object (V &+Y)
to (VY i Y) and the map (f, F): A — B to the map (f(~)F, F): RA — RB, using a diagram,

Ra

UX e+ X

o]
Rp

VY eV

Similarly to “Ta”, the relation “Ra” is defined using the pullback of A % U x X along the
evaluation morphism UX x X 079) 17 « X and intuitively it says “g(Ro)z iff g(z)az”.

Rae —————— A

T §

UXx X — s Ux X
(ev, m3)

Again using the monad properties of Ty we have the following proposition.

Proposition 50 The functor R is the functor part of a monad, with unit na: A — RA given by the
constant map nu: U — UX in the first coordinate and identily on X. Multiplication p: R?°A — RA
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is given by “restriction to the diagonal” py:UX*X — UX in the first coordinate and identity on
X, using diagrams,

R

U e——?—————X (UX)XG——-——f———X
UX e——X X X

We would like to have in GC results for “T” analogous to the ones for “!” in DC. For example
the isomorphism !(A&B) =!A®!B would be nice. But there is no obvious relationship between
T(A&B) = (U XV «+ (X +Y)V*Y) and T(A) @ T(B) = (U x V «+ XYXV x YUXV), What we
do have is a relation between the tensor products in GC.

Proposition 51 There is a natural isomorphism in GC, T(A® B) 2 TAQ@TB.
Proof: The result needed is

T
vaﬂ (X x Y)UxV

Ta@Tp

U XV e XUXV x YVXU

That means isomorphisms in both coordinates, which is irivially the case.

For a far more interesting result, analogous to the ones in Chapter 2, recall that the T-Kleisli
category GCr has as objects the objects of GC but as maps from A to B, maps in GC from T'A
to B.

Proposition 52 The maps from A to B in the T-Kleisli category GCr, are in 1-1 correspondence
with maps from A to B in the category DC,

Proof: We want to check
Hom GCyp (A, B) = Hom GC(TA’ B) ~ HOInDc(A, B).

The second equivalence holds, since a map (f, F):TA — B in GC, corresponds to f:U — V
and F:Y — XU, satisfying the condition

(U x F)™He) < (F x Y)7H(B). (1)

in Chapter 3. That corresponds to f:U — V and, by exponential transpose, to F:U x Y — X,
satisfying the correspondent condition (*) in Chapter 1, that is a map (f, F): A — B in DC.

Since objects are the same in both categories GC and DC, Proposition 15 implies that there
is an equivalence between categories GC7 and DC.

4.5 The comonad “!”

In this section we consider the composite comonad T'S defined in the last section, with the difference
that now Sy denotes free commutative monoids in C. Thus the composition USy corresponds
to “4” in Chapter 2 and S on objects, correspond to the functor “Y of that Chapter. Thus
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S(U & X) = (U & X*) and S takes a morphism (f,F):A— B to (f,F*):SA — SB, as the
diagram shows:

Let the comonad T'S be called “I”. The functor part of “” acts on objects as (U & X) =
w & (X*)V) and on maps !(f, F) = (f, F*(=)f), or using a diagram

TS«

Ue—nt—rr (X*)U

fl lF “(=)f
TSp

Ve (v

«y»

As we have shown in section 3 is the functor part of the composite comonad

(Lentd— A, 614 -1A)

and we can consider the categories GC' of -coalgebras and GC, the I-Kleisli category.
Moreover, the objects “!A” have a natural comonoid-like structure, with respect to “@”.

Proposition 53 There are natural morphisms in GC as follows
o From the object !A to I, given by the terminal map on U and the natural map 1 — (X*)V,

o From A to |AQ!A, which is given by the diagonal map in C, A:U — U x U and the
map 0: (X*)UXU x (X*)UXU — (X*)V. The map 0 is given, intuitively, by taking a pair
of functions (¢,%), each of them of the form U x U — X*, to the product map ¢ X o
precomposing it with the diagonal in U and post-composing it with the multiplication on X*,
as follows,

U250 xU 2% x* x x* 22, x>,
Proposition 54 We have the following natural isomorphisms for all objects A and B in GC,
(A&B) =2lA@!B

Proof: Look at the following series of equivalences and recall that S on objects is the same as
“1” in Chapter 2.

|(A&B) = TS(A&B) = T(SA® SB) = TSA @ TSB =!A0!B.

Then the first equivalence comes from Proposition 9 and the second from Proposition 14.
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Proposition 55 The Kleisli category GC is cartesian closed.
That is an easy corollary of the above, since
Homg (T'S(A @ B),C) 2 Homg o (!4A0!B, C) =
~ Homg (!4, ['B, Clgq) & HomGC!(A, [B, G]GC,)'

Proposition 56 The morphisms from A to B in the category GCy, correspond naturally to mor-
phisms in the category DNC from A to B.

We have to go through the series of equivalences:
Homgc, (4, B) = Homg ('S4, B) = Homg g, (S4, B)
= HOl’nDc(SA, B) = HOH’IDNc(A, B)

The notation is a bit unfortunate here, since we have two very different functors, one in DC
the other in GC, with the same name “1”,

4.6 Linear Logic with modalities.

In this section the situation is slightly more complicated than the one in Chapter 2. As we have

stressed we have a composite comonad, which satisfies the rules for the modality “/”, but we would

like also a monad “?” satisfying the rules for the dual connective, called by Girard “why not ?”.
We start by recalling the rules for the modality “!”. These are:

I'NAFB I'-B
[ (dereliction) Il —————  (weakening)
I'IAFB I'''/AFB
IVIAJIAEB THA
I, ————— (contraction) IV. M
IIA+B T'HA

Then it is clear that the category GC with modality “” | defined in section 4, is a model for
Linear Logic enriched with modality “1”,

Proposition 57 The category GC with the composite comonad “1” defined in section 4 is a model
for Linear Logic enriched with modality 47,

We have already checked that the composite comonad satisfies the necessary conditions in
Proposition 16, previous section.

Now we turn our attention to the monad “?”. As we have seen in definition 7, the comonad
T has a dual functor, called R, which is a monad in GC. Composing R with the monad in GC,
induced by the monad U +— U* in C, we get a composite monad, which satisfies all the necessary
conditions,

Definition 20 Consider the monad S1: GC — GC, given by S1(U & X) = (U* € X) on objects
and S1(f, F) = (f*, F) on maps, as the diagram shows:

Oy
U ——— X

f*J i |F

V¥e——n— X
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The relation “Sia”, which is written ay, is defined in the same way as “So”. Thus we use
morphisms like the morphisms C(— _y of Chapter 2, as follows:

V xY S (1 ¢ vy

V~Z—>(V x Y)Y

Vr— (V x Y)YV

Cl
vExy 23 (V xY)
And we define the relation “Sy¢” using the pullback

@, ———  A*

U* X X ——— (U x X)*
C/

Definition 21 Consider the endofunctor “?” in GC given by (U & X) = ((U*)X @ X) on
objects and 7(f, F') = (f*(=)F, F) on morphisms, as the diagram shows.

T
U e———X

wor| |
6

(VY ——Y

This endofunctor is the composition of R and S in GC.

Proposition 58 The endofunctor “7” has a natural structure as a monad in GC. Moreover, it

satisfies dual conditions to the ones on “1”. Namely, we have natural morphisms n:I —7A and
7A07A —7A, given by

? ?
1 1 (U )XXX (U)X xX (_.a?._a_x x X
|
l ! A
, T . Ta
(U*)A —_— X (U*)A P X

We repeat the rules for the modalities, using the modality “7”.

T,7AFB T'HB
I —— (dereliction) I e (weakening)
T,AFB I'7AFB
T,?7AFB TH?A
I~ (contraction) 1V. (M
T,7A,7AFB TTH7A
Proposition 59 The category GC with the monad “?” is a model of L.L+. O
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Concluding remarks

To conclude it is perhaps worth mentioning some of the several questions that the work on the
categories DC and GC prompts, apart from the ones already mentioned in the introduction.

1.

Is there an interesting connection between the categorical models DC and GC and Girard’s
new work on the Geometry of Interactions 7

. Since we think of maps in DC and GC as “linear morphisms”, in opposition to the more

usual morphisms in the Kleisli categories, can we characterize bilinear maps in this context ?
There is some interesting work of Kock on categorical bilinearity, but the obvious approach
does not work, due to the fact that the comonad “!”, or rather, its functor part, is not a
strong functor.

. We have shunned away from the 2-categorical aspects of everything discussed in the previous 4

chapters, but that is not, probably, the best policy, as was indicated by the need of distributive
laws in this chapter. More to the point, there is a very interesting question of using “spans”
instead of relations in the construction of DC and GC, which was suggested by Aurelio
Carboni.

. We have worked only with commutative versions of the connectives, that is with symmetric

tensor products, “par” bifunctors etc. There is a interesting case to look at, if this commuta-
tivity condition is dropped. Along these lines there is some connection with Joyal and Street’s
work on braided monoidal categories. In particular there is also a preprint by D. N. Yetter
on “Quantales and (Non-commutative) Linear Logic”.

Finally, there is the very promising, but as yet very vague idea of connecting Linear Logic with
Concurrency and Parallelism. The idea being that Linear Logic may provide an infegrated
logic, where one would hope to model computational processes in a less ad hoc fashion than
it has been up to now. In particular, Petri Nets have been proposed as a model for Linear
Logic, cf. [Gir] 1987 and the references therein.
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