Technical Report R

Number 218

Computer Laboratory

Higher-order critical pairs

Tobias Nipkow

April 1991

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1991 Tobias Nipkow

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Higher-Order Critical Pairs*

Tobias Nipkow!
University of Cambridge
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
England
Tobias.Nipkow@cl.cam.ac.uk

Abstract

We consider rewrite systems over simply typed \-terms with restricted left-
hand sides. This gives rise to a one-step reduction relation whose transitive,
reflexive and symmetric closure coincides with equality. The main result of
the paper is a decidable confluence criterion which extends the well-known

critical pairs to a higher-order setting. Several applications to typed A-calculi
and proof theory are shown.

*To appear in Proceedings of the 6th IEEE Symposium Logic in Computer Science, 1991,
tResearch supported by ESPRIT BRA 3245, Logical Frameworks.

1

1 Introduction

In 1972, Knuth and Bendix published their seminal paper [12] which shows that
confluence of terminating rewrite systems is decidable: a simple test of confluence
for the finite set of so called critical pairs suffices. The objective of this paper is to
generalize this construction from first-order rewrite systems (all functions are first-
order) to rewrite systems over simply typed A-terms. The aim of this generalization
is to lift the rich theory developed around first-order rewrite systems and apply it
to the manipulation of terms with bound variables such as programs, theorems and
proofs.

The quest for a unified theory of first-order rewrite systems and A-calculus goes
back to Aczel [1] and the ground-breaking work by Klop [11]. Both authors use a
meta-language of A-terms with conversion rules built in at the meta-level. Within
this framework the reduction rules of various A-calculi can be expressed as object-
level rewrite rules. This is in contrast to recent work by, for example, Breazu-
Tannen [3], which does not distinguish meta and object-level, and where a fixed set
of reduction rules for A-terms are combined with arbitrary first-order rewrite rules.

The work in this paper is very close to that of Klop, although the formal foun-
dations go back to Church [4]. Instead of defining our own meta-language, we use
Church’s simply typed A-calculus. The latter comes with a well-defined equational
theory and is part of a richer logical system which could be the basis for future
extensions like conditional rewriting. In particular this paper can be seen as an
investigation of the meta-theory of computer systems like AProlog [14] and Isabelle
[15].

Section 2 reviews basic terminology and notation. Section 3 introduces a subclass
of A\-terms, called patterns, which have unification properties resembling those of
first-order terms. Higher-order rewrite systems are defined to be rewrite systems
over A-terms whose left-hand sides are patterns: this guarantees that the rewrite
relation is easily computable. In Section 4 the notion of critical pair is generalized
to higher-order rewrite systems and the analogue of the critical pair lemma is proved.
The restricted nature of patterns is instrumental in obtaining these results. Finally,
Section 5 applies the critical pair lemma to a number of A-calculi and some first-order
logic formalized by higher-order rewrite systems.

2 Preliminaries

What follows is a description of the meta-language of simply typed A-calculus which
is used to define object-level rewrite systems. The notation is roughly consistent
with the standard literature [8, 5, 10].

Starting with some fixed set of base types B, the set T of all typesis the closure
of B under the function space constructor “—”. The letter 7 represents types.
Function types associate to the right: 7, — 71 — 73 means 7y — (r2 — 73). Instead
of 1 — -+ = 7, = 7 we write 7, — 7. The latter form is used only if 7 is a base
type.

Terms are generated from a set of typed variables V = |J,c7 V; and a set of typed
constants C =), ¢7 Cr, where V; NV = C, N Cr = {} if 7 # 7/, by A-abstraction
and application. Variables are denoted by z, y and z, and constants by ¢, d, f and
g. Atoms are constants or variables and are denoted by @ and b. Terms are denoted
by I, r, s, t, and u. The inductive definition of simply typed A-termsis as follows:

z eV, ce C,
T:T c: T
s:T—71 ti7T z:1 s:7!

(st): 7 (Az.s) i1 — 7/

In the sequel all our A-terms are assumed to be simply typed.

Instead of Awy...Aw,.s we write Azy,...,2,.8 or just A\Z,.s, where the a; are
assumed to be distinct. Similarly we write #(u1,...,u,) or just ¢(%,) instead of
(...(t u1)...)u,. The free and bound variables occurring in a term are denoted by
FV(s) and BY(s), respectively. Capital letters denote free variables.

We assume the usual definition of a, f and 7 conversion [8] between A-terms.
We write s =, ¢, where v € {, 8,7} if s and ¢ are equivalent modulo «-conversion,
and s =t iff s and ¢ are equivalent modulo «, f and 7 conversion. We write s —4 ¢
if ¢ is the result of a single B-reduction of s.

The simply typed A-calculus is confluent and terminating w.r.t. S-reduction (-
reduction) and the B-normal form (n-normal form) of a term t is denoted by ¢}z
(tl,). Let t be in B-normal form. Then ¢ is of the form A%,.a(w,,), where a is called
the head of t. The n-expanded form of t is defined by

tTn = /\wn+k.(L(Uan, wn+1Tn7 s ,$n+kT7,)

where ¢ : 7oz — 7 and Tpq1, ..oy Togk € FV(Ur). Instead of tlgT, we write t] or L.
A term ¢ is in Bpl-form if t = £. It is well known [8] that s = ¢ iff § =, 1.

Terms can also be viewed as trees. Subterms can be numbered by so-called posi-
tions which are the paths from the root to the subterm in Dewey decimal notation.
Details can be found in [10, 5]. We just briefly review the notation. The positions
in a term ¢ are denoted by Pos(t) C IN*. The letters p and ¢ stand for positions.
The root position is €, the empty sequence. Two positions p and ¢ are appended
by juxtaposing them: pg. Note that natural numbers are valid positions. We write
p < ¢ if p is a prefix of ¢. In that case there is a p’ such that pp’ = ¢ and ¢/p is
defined as the suffix p’. If neither p < ¢ nor p > ¢, we write p || ¢, indicating that p
and ¢ are in different subtrees. Given p € Pos(t), t/p is the subterm of ¢ at position
p; t[u], is t with t/p replaced by u.

Abstractions and applications yield the following trees:

Az .
| /\
8 s 1

Hence positions in A terms are sequences over {1,2}. Note that the bound variable
in an abstraction is not a separate subterm and can therefore not be accessed by
the s/p notation.

It has to be stressed that we do not work with a-equivalence classes of terms.
Otherwise the notation s/p would not make sense because =, is not a congruence
wart. /i 84 =q 83 does not imply s1/p =, s2/p because s;/p may contain free
variables which are bound in s;.

Substitutions are finite mappings from variables to terms of the same type. Sub-
stitutions are denoted by 6. If § = {x1 — t1,...,2, > t,} we define Dom(d) =
{z1,...,2.}, Cod(0) = {t1,...,tn}. The application of a substitution to a term
is defined by 0(t) = (AZ,.t)(T,)l. A renaming p is an injective substitution with
Cod(p) C V. Renamings are always denoted by p.

Given a relation —, —* denotes the transitive and reflexive closure of —. We
write s | ¢ iff there is a u such that s —=* u and t —* u. The relation — is (locally)
confluentif r —* s (r — s) and r —=* ¢ (r — t) imply s | £. The relation — is
terminating if there is no infinite sequence s; — s;41 for all 7 € IN. It is well known
that terminating relations are confluent iff they are locally confluent [10].

3 Higher-Order Rewrite Systems

Higher-Order Rewrite Systems (HRS) ave similar to Klop’s Combinatory Reduction
Systems (CRS) [11]. Both are generalizations of first-order rewrite systems [5] to
terms with higher-order functions and bound variables. The main difference is that
Klop’s positive results cover mainly regular systems, i.e. no overlaps and no repeated
variables on the left-hand side, whereas this paper makes no such restrictions?.

Definition 3.1 A term t in f-normal form is called a (higher-order) pattern if every
free occurrence of a variable F' is in a subterm F'(%w,) of ¢ such that w, is n-equivalent
to a list of distinct bound variables.

Examples of higher-order patterns are Az.c(z), X, Az. F'(Az.2(2)), and A2, y.F(y,),
examples of non-patterns are F(c), Az.F(z,2) and Az . F(F(z)).

The following crucial result about unification of patterns is due to Dale Miller
[13]:

Theorem 3.2 It is decidable whether two patterns are unifiable; if they are unifi-
able, @ most general unifier can be computed.

This result will ensure both the computability of the rewrite relation defined by
an HRS and of critical pairs. Appendix A presents a simplified form of Miller’s
unification algorithm.,

Definition 3.3 A rewrite rule is a pair { — r such that [is a pattern but not -
equivalent to a free variable, [and r are of the same type, and FV(I) D FV(r). A
Higher-Order Rewrite System (for short: HRS) is a finite set of rewrite rules. The
letter R always denotes an HRS. An HRS R induces a relation —p on terms:

st & Il —r) € R,pePos(3),0. §/p=0l A t=35[0r],

1Of course we pay the price of obtaining only local confluence results.

4

Note that —pg is invariant under =: ¢’ = s —g ¢t = t/ implies s’ — g t/. Therefore
— g is infinitely branching and should be thought of as a rewrite rule between =
equivalence classes.

Although this definition of rewriting is very restrictive (only subterms of terms
in Bnl-form may be rewritten) it is only decidable because of Theorem 3.2. For
more general left-hand sides, the existence of a matching substitution § may not be
decidable.

It may be tempting to think that the restriction to patterns as left-hand sides
is “only” due to computability considerations. However, there are other reasons as
well. Consider the rule

f(e(F(X), F(a))) = f(X), (1)
where the left-hand side is not a pattern. Substituting Az.Y for F' yields f(c(Y,Y)) —
f(X), which is not a proper rewrite rule since X occurs on the right but not the
left-hand side. This problem surfaces when rewriting the term f(c(a,a)), which
forces that very substitution and yields the new term f(X), thus introducing a
new free variable. These problems are caused by the fact that we rewrite mod-
ulo an equational theory, the A-calculus, which is irregular: s = ¢ does not imply
FY(s) = FY(t). It is the restriction to patterns as left-hand sides which guarantees
that the matching substitution 8 is ground.

In addition to the operational — g we have the logical notion of equality modulo
R. The latter is formalized by taking «, £, and 5-conversion together with all
instances of R

{01=0r|(l—r)€R)

as axioms and closing under reflexivity, symmetry, transitivity and the two congru-

ence laws
s=1 81 = tl SS9 = tg

Az.s = Aot (81 82) = (t1 ta)

The resulting relation is called =g. For a concise statement of the connection be-

tween rewriting and equality the following notation is useful: given an equivalence

= and a relation — on terms, we write [s]a — [t]e iff there are s’ and ¢/ such that
n

s 2 s — t' 2 t. The following theorem says that, modulo =, <% coincides with
:R:

Theorem 3.4 If all rules in R are of base type, then
s=pt & [s]= ?[t]z

Thus we know in particular that, if — g is terminating and confluent, two terms are
equivalent modulo =p iff their —x normal forms are equivalent modulo =.

Notice that this equivalence between =g and <% does only work for rules of
base type. Given the rule ‘

Az.c(z, F(z)) — Aa.d(F(z),z),

the relation ¢} is strictly weaker than =p: although c(a, f(@)) =g d(f(a),a) holds,
¢(a, f(a)) <% d(f(a),a) does not hold because both terms are in normal form

5

w.r.t. B. The reason is the restrictive definition of —p which insists on rewriting
only terms in f-normal form. Otherwise it would be easy to rewrite ¢(a, f(a)) =
(Az.c(z, f(2)))(a). It is not obvious that the restriction to B-normal forms can be
dropped without sacrificing decidability of — g.

It should be noted that another obvious way out, pulling all rules down to base
type by supplying them with new free variables, fails. In the above case this yields
the new rule ¢(X, F'(X)) — d(F(X),X), where the left-hand side is not a pattern,
thus leading to all the problems described in connection with rule (1) above.

The remainder of this section sketches the proof of Theorem 3.4, which proceeds
via an auxiliary rewrite relation

3{-;}15 & J(l—r)eR,pePos(s),d s/p=0l N t=4 s[0r],.

The whole point of —(g) is to allow rewriting of terms not in f-normal form.
The following two lemmas provide simple relationships between —g and —g:

Lemma 3.5 If s =gt then 8§ — g £
Lemma 3.6 If all rules in R are of base type, then slg — gt implies s =g t.

Since —g) preserves f-normal form we have:
Corollary 3.7 If all rules in R are of base type, then s, —p L implies s =% t.
A careful analysis of redexes proves

Lemma 3.8 Let R be an HRS were all rules are of base type. If [s]=, —r) [t]
and [s]=, —p [s']=. then there is a t’ such that [¢']=, —f [t]=. and [t]-

=a a @ —-)E [t/]=a'

To extend this lemma to many-step reductions, we need the following result about
abstract reduction relations:

Lemma 3.9 Let —4, —p and > be relations on some set S such that > is a
terminating partial order, s — 4 t implies s > t, and s —pg t implies s > t. Then

Va,a,y. e —pa' Ae—asy = . o' =4y Ay—%y
=
Ve,a,y. e =F ' Ae -y = . o' -4y Ay =Sy

In pictures:

A I A 3
i :
B B i* . Bix B *
i |
\ v
*
o oo >y a:/——~>f~->y/
A

The proof proceeds by well-founded induction on 2 using the relation >.
Combining Lemmas 3.8 and 3.9 yields

Lemma 3.10 Let all rules in R be of base type. If [s]=, —} [s']=, and [s]=, =g

“a

[t]=., then there is a ' such that [s']-, =g []=a and [t]=, —} [t]=..

-

The proof uses the ordering > induced by the length of the longest chain of f-
reductions starting from a term.
Finally we can prove that, modulo =,, —{g) 18 contained in —F%.

Theorem 3.11 If all rules in R are of base type then [s]-, =g [t=. implies
[sl=a =% [t]=a-

Proof From [s]-, —{g [t]=. it follows by Lemma 3.10 that [s|,]-, —{p [P]=a
for some t' = t. Corollary 3.7 yields [s|g]=, —% [t']=. and the proposition follows
because — g is invariant under =. o

At last, we connect rewriting and directed equality: let >5 be the subset of =g
obtained by omitting the symmetry rule.

Theorem 3.12 If all rules in R are of base type, then

s>pt & [3]57*;[75]5

Proof The <=-direction follows easily from the definitions. The =s-direction is
proved by induction on the structure of >g derivations. For the conversion rules
and the laws of reflexivity and transitivity this is trivial. For congruence w.r.t. ab-
straction it follows because s —p t implies Az.s —gr Az.t. The only tricky case
is congruence w.r.t. application, the raison d’étre for — R If s; 2R t;, the in-
duction hypothesis implies [s;j]= —% [ti]= and hence [si]=, —% [ti]=,. Hence it
follows from Lemma 3.5 that [di]=, —1x [fi]=.. The definition of —z) implies that
[(61 $2)]=0 =R [(£1 £2)]=. and Theorem 3.11 yields [(8; &2)]=, —% [(f1 £3)]=.. Be-
cause —p is invariant under =, this implies [(s1 82)]= —% [(t1 t2)]=, thus concluding
the proof. 0

Theorem 3.4 is a direct consequence of Theorem 3.12.

4 The Critical Pair Lemma

Confluence of terminating (first-order) term rewriting systems is a decidable prop-
erty [12]. The decision procedure is based on an analysis of so called critical pairs
[10], which are patterns of interference between rules, They arise by unifying the
left-hand side of one rule with the subterm of the left-hand side of another rule:

(zxy)xz — ax(yxz)
e xy) — y) xi(z)

gives rise to two critical pairs, one of which is the result of reducing i((z x y) x 2)
in two different ways:

i((@ X y) x 2) —> 1(2) X i(z x y)

v
iz x (y x 2)) - > i(2) % (i(y) x i(2))

The dashed arrows indicate the common reduct of the critical pair. In the above
case both critical pairs have a common reduct?.
Due to the presence of bound variables, critical pairs for HRSs are more complex:

Definition 4.1 Let ; — r;, 4 = 1,2, be two rules such that FV(l;) N BY(l) =
{}, let p € Pos(ly) such that the head of I;/p is not a free variable, let 7} =
FV(li/p) N BY(l1) where a; : 7, let p be a renaming such that Dom(p) = FV(ly),
Cod(p) N FV(h) = {}, and p(z) : 7 » 7 if a1 7, let 0 = {2 = p(a)(zF) | 2 €
FY(l3)}, and let 8 be a most general unifier of A\Z5.l; /p and Azx.cls, both of which
are patterns. Then

™ = 11[0'7“2]p

is called a eritical pair.

Lemma 4.2 (Critical Pair Lemma) Let R be an HRS where all rules are of base
type. If s = Rr t1 ands — g ty, then eitherty | g ts, or there are a critical pairu, = Usg,
a substitution 6, and a position p; € Pos(3) such that t; = §[6u;],, fori=1,2.

The proof proceeds roughly as in the first-order case [10], but is considerably more
subtle in its details. Many derivations that are trivial for first-order terms require
explicit sublemmas. These sublemmas depend crucially on the fact that the left-
hand sides in an HRS are patterns. Even a slight generalization invalidates the
lemma. Consider the rules

ci(Az.F(z,z)) — co F)
Cll(X,X) —d dg

where ¢;(Az.F'(z,2)) is not a pattern because of the repeated z. The term
c1(Az.dy(z,z)) rewrites to both cy(dy) and ¢1(Aw.dy), which have no common reduct
(because they are both in normal form), and there is no critical pair either. This
shows that the whole setup is very sensitive to the form of the rewrite rules.

The following corollary is an easy consequence of the Critical Pair Lemma:

Corollary 4.8 Let R be an HRS where all rules are of base type. If uy g up for
all critical pairs uy = uq, then — g is locally confluent.

*The other case is (2 X y) x (2 x v) «— ((z x y) x 2) x v = (& X (y X 2)) x v with common
reduct @ X (y x (2 x v)).

For terminating HRSs this yields a decision procedure for local confluence and hence
for confluence.

Although we have not mentioned this aspect so far, it is obvious that the critical
pair lemma gives rise to a completion algorithm: critical pairs without common
reduct are turned into rewrite rules and added to the non-confluent system. This
process may need to be repeated to generate a confluent system. It is not clear
whether the standard results on completion (e.g. {2]) carry over to higher-order
systems. In order to automate the completion process it is also necessary to test for
termination of HRSs, an issue that seems completely unexplored.

5 Applications

Higher-order rewrite systems have the same logical basis as systems like Isabelle
[15] and AProlog [14] which are designed for the manipulation of terms with bound
variables. Hence it is hardly surprising that many logical reduction calculi can be
expressed as HRSs. This section presents a number of such calculi and applies the
critical pair lemma. The syntax of each calculus is defined by a signature which is a
set of types plus a set of typed constants. Terms are generated by application and
abstraction, as defined in Section 2, subject to the type constraints in the signature.

5.1 A\-Calculi

Untyped A-calculi tend to be nonterminating systems, for which confluence does
not follow from local confluence. However, it is easy to see that confluence of the
terminating fragment, i.e. the set of terms all of whose reductions terminate, does
follow. This encompasses in particular all those typed variants which are known to
terminate.

The syntax of the pure A-calculus involves just the type term of terms and two
constants for abstraction and application:

abs: (term — term) — term
app: tlerm — term — term

The rewrite rules are:

B : app(abs(F),S) — F(S)
n: abs(Az.app(S,z)) — S

Note how the use of meta-level abstraction and application removes the need for a
substitution operator (in the f-rule) and side conditions (in the n-rule).

The rules B and 7 on their own do not generate any (non-trivial) critical pair.
Their combination, however, gives rise to two critical pairs which stem from the solu-
tions to the two unification problems abs(F') = abs(Az.app(S, x)) and Az.app(9,) =
Az.app(abs(G(z)), T()):

app(S, T)

/g
app(abs(Az.app(S, z)),T)
N\
app(5,T)
abs(Az.H(z)) = abs(H)
/6
abs(Az.app(abs(H), z))
e

abs(H)

Both critical pairs are trivially joinable.

Now we consider the combination of A-calculus and “algebraic”, i.e. first-order,
reductions as in [3]. The first-order term f(s1,...,s,) translates to the term
app(...(app(f,t1),...),ts), where t; is the translation of s;. It is easy to see that
the combination of B-reduction with the translation of algebraic term-rewriting sys-
tems does not generate any new critical pairs. In fact, we have the more general
lemma:

Lemma 5.1 Let R be a set of rules whose left-hand sides contain no abs and no
subterm of the form app(X,t) where X is free and t is arbitrary. If R is locally
confluent, so is R U {f}.

Comparing this with Theorem 2.3 by Breazu-Tannen [3] which states that if R is
confluent, so is RU{f}, we find that the above lemma admits a larger class of rules
R but requires termination of R to deduce confluence. The critical pair approach
also explains why the addition of 7 to R may distroy confluence: new critical pairs
may arise.
A well-known instance of R in Lemma 5.1 are the three rules for products with

surjective pairing:

m: m(S, Ty — S

o (S, T) — T

m: (S, mS) — S
where

(,,2): term — term — term
T, Ty o term — term

Surjective pairing gives rise to the following two critical pairs with 7 and s
(S,T) — (r1(S,T),7a(S, 7)) = (,72(S,T)) and (S,T) « (m1(,T),7(S, T)) —
(m1(S,T'), T); both reduce to (S,T). Hence the untyped A-calculus with surjective
pairing is locally confluent. This is independent of whether we consider 8, 5, or

10

B + 1 because none of the pairing rules overlap with 8 or 7. Confluence holds for
terminating fragments, e.g. typable terms, but fails in general [11].
However, there is another formulation of pairs using the constant

split: (term — term — term) — term — term
instead of 7y and 7, and the single rule
splitg 1 split(F,(S,T)) — F(S,T)

instead of the two rules m; and m,. This system is obviously locally confluent since
there are no critical pairs. The constant m; is now definable as Az.split(Az1, 2.3, 2)
and m;((Sy, S2)) — S; follows from splitg. Surjective pairing, however, does not hold:
the splitg-normal form of (715, 72S), is (split(Az1,x2.21,S), split(Az1, x2.29, S)),
which is not equivalent to S. This can be fixed with the additional rule

split, : split(Az,y.F((z,y)),P) — F(P)

Surjective pairing is now derivable, but not by rewriting: not only is the left-hand
side of split, not a pattern, but the combination of splitg and split, is also non-
confluent because of the following “critical pair”:

split(Az,y.F(A\g.g(x,y)), P)
/‘splitﬁ
split(Az,y.F(Ag.split(g, (z,y))), P)
\split,,
F(Ag.split(g, P))

This suggests adding a reduction between split(Az,y.F()\g.g(z,y)),P) and
F(Ag.split(g, P)). However, not only do we lose termination, no matter in which
direction the reduction is oriented, but both sides are now so far removed from our
patterns that a substantial extension of the theory is required to deal with it.

The same problems recur with disjoint unions, defined by the constants

inlyinr @ term — term
case: term — (term — term) — (term — term) — term

and the rules
case(inl(X), F,G) — F(X)
case(inr(X), F,G) — G(X)
case(U, \e. F'(inl(2)), \a. F(inr(z))) — F(U)
where the “critical pair” is
case(U,A\e. H(\f,g.f(2)), A\e. H(A [, 9.9())) = H(\f, g.case(U, f,9)),
generated by case(U, \a. H(\f, g.case(inl(z), f,g)), \e. H(Af, g.case(inr(2), f, 9))).

The difficulty of obtaining confluent reductions for disjoint unions is also discussed
by Dougherty [6].

11

5.2 First-Order Logic

This subsection discusses a number of normalization procedures for formulae in
classical first-order logic. More precisely, we have two types term and form of terms
and formulae, and the following constants:

- : form — form
ALV _: form — form — form
V,3: (term — form) — form
We allow ourselves the luxury of writing Va.P(z) instead of V(Az.P(z)). The sym-
bols A and V, and ¥V and 3 are completely dual to each other. Therefore we will only
present half the rewrite rules for each system, the other half being the exact dual.
All the systems terminate.

The negation normal form [7], where - is only applied to atomic formulae, can
be defined via the following rewrite system:

- -—P — P
N APAQ) = (P)V ()
-V =Y(P) — Fz.oP(z)

This system has 5 critical pairs, all of which arise by unifying the left-hand side of
some rule with the subterm —P of ==, and all of which are joinable. For example

3(P')
o
~—(3(P)

\4‘13
'1\'/3:.—|P'(a:)

is joinable because —=Va&.—~P'(z) — Ja.—=P'(z) — Jz.P'(z) = I(P'). Hence the
negation normal form is uniquely determined.
Prenex normal form [7] can also be described by a rewrite system containing the
two rules
VA: V(PYAQ — Va.(P'(z)AQ)
AV: PAY(Q) — VYz.(PAQ'(2))
This system is not confluent because V(P') A V(Q') gives rise to the critical pair
Va.(P'(z) AV(Q") = Ya.(V(P') A Q'(x)) which has the two distinct normal forms
Va Vy.(P'(2)AQ'(y)) and Va.Vy.(P'(y) AQ'(z)). Commutativity of quantifiers needs
to be taken into account as well.
The inverse operation mini scoping, i.e. pushing quantifiers inwards, is confluent:

v(P) — P
Vo (P(@) AQ'(z)) — Y(P)AY(Q)
Ve.(Pa)V Q) — V(P)VQ
Va.(PV Q'(z)) — PVVY(Q)

All critical pairs are joinable.

12

6 Future Extensions

The class of rewrite rules considered in this paper are only a fragment of a much
larger class of higher-order rewrite rules allowing more general left-hand sides. Al-
though Section 3 points out some problems with relaxing the restriction to patterns
as left-hand sides, the rules for products and sums considered at the end of Sec-
tion 5.1 require such a relaxation. Hence a corresponding extension of the theory
seems highly desirable.

Acknowledgements

The author wishes to thank Dale Miller for help in debugging the pattern unification
algorithm, Eugenio Moggi and Andrew Pitts for many discussions on topics related
to this work, and the referees for their helpful comments.

References

[1] P. Aczel. A general Church-Rosser theorem. Technical report, University of
Manchester, 1978.

[2] L. Bachmair. Canonical Equational Proofs. Research Notes in Theoretical
Computer Science. Wiley and Sons, 1989.

[3] V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. 8rd
IEEE Symp. Logic in Computer Science, pages 82-90, 1988.

[4] A. Church. A formulation of the simple theory of types. J. Symbolic Logic,
5:56—68, 1940.

[56] N.Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Formal Models and Semantics, Handbook of Theoretical Computer Science, Vol.
B, pages 243-320. Elsevier - The MIT Press, 1990.

[6] D. Dougherty. Some reduction properties of a lambda calculus with coproducts
and recursive types. Technical report, Wesleyan University, 1990.

[7] J. Gallier. Logic for Computer Science. Harper & Row, 1986.

[8] J. Hindley and J. Seldin. Introduction to Combinators and \-Calculus. Cam-
bridge University Press, 1986.

[9] G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

[10] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. ACM, 27:797-821, 1980.

[11] J. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts 127.
Mathematisch Centrum, Amsterdam, 1980.

13

[12] D. Knuth and P. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263-297.
Pergamon Press, 1970.

[13] D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. In P. Schroeder-Heister, editor, Eztensions of
Logic Programming, pages 253—281. LNCS 475, 1991. ’

[14] G. Nadathur and D. Miller. An overview of AProlog. In Proc. bth Int. Logic
Programming Conference, pages 810-827, 1988.

[15] L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361-385. Academic Press, 1990.

[16] W. Snyder and J. Gallier. Higher-order unification revisited: Complete sets of
transformations. J. Symbolic Computation, 8:101-140, 1989.

A Unification of Higher-Order Patterns

Miller’s original algorithm [13] deals with explicitly quantified unification problems.
This section describes a simplified version which applies just to equalities between
unquantified patterns. Unification proceeds essentially as in Huet’s algorithm [9],
except that projection and imitation coincide, and that flexible-flexible pairs admit
most general unifiers. The presentation is inspired by the work of Snyder and Gal-
lier [16]. The algorithm is expressed by rewrite rules on pairs (L, ¢), where L is the
list® of unification problems still to be solved and o is the fragment of the solution
computed so far. Solving such a pair means rewriting it to normal form. If the
normal form is ([], o), o is the solution to the initial problem. Otherwise the initial
problem has no solution.

Unification problems are unordered pairs s="t where s and ¢ are patterns.
All references to types are omitted because the algorithm works for both typed
and untyped patterns. To ease notation we work with a-equivalence classes of
terms. After each rewrite step the problem at the head of L is first put into S-
normal form and then the binders are adjusted to be of equal length: the problem
AT.a(3,) =" ATyt is n-expanded to A\Trrp.a(5m, Tht1y - - - Chin) =1 AThn.t. Note
that in the typed case this expansion is valid because both terms must be of the
same type.

Solutions to trivial unification problems are propagated:

(OFFF@E) = t) i Lo) = ({F—t}(L),{F— t}oo)

if F'¢ FV(t). To guarantee termination, this rule has priority over the following
ones. Because the remaining rules do not modify the substitution component, only
the transformation of the unification problems is shown below.

3Standard ML list notation is used.

14

Rigid-rigid pairs with identical heads are decomposed:
(A\z5.a(3;,) 2 Tr.a(ty)) o L = [ATp.81 A ATR U, . .o, \TF 8, = ATE U, QL

if « € C U {zx}.
Imitation and projection coincide:

(VT (Fn) £ ATR.0(5m)) : L = [F L)gm.a(Hn (@), Mow. F () £ Aapa(s7)] QL

ifa e CU{T}, F & FV(5,), and the H,, are new.
Flexible-flexible pairs with identical heads:

(T F(5) 2 X0 F (@) = L = (FAgnH () = L

if Gy = S5l 70 = Wil {55} = {03 | 9o =), and H is new.
Flexible-flexible pairs with distinct heads:

(\&r.F(37) L2806 (W) : I = [F)7, H(5,), G £ Xz H(v;)QL

U Yn =3nly Zn = Unl,, F' #£ G, {7} = {7} N {Zn}, and H is new.
Inverting the preconditions to the above rules yields the following two failure
cases;
\Ty.a(57) = XT%.b(Tr)

where a,b € C' U {zx} and a # b, and
ATEF () = AT5.a(5m)

where F' € FV(3,,) or a € {z%} — {7n}.
The following theorem holds for both typed and untyped patterns:

Theorem A.1 The above set of rules yields a correct, complete, and terminating
unification algorithm for higher-order patterns. A list of unification problems I has
a solution iff (L,{}) =* ([], o), in which case o is a most general unifier for L.

Correctness and completeness follow by the same arguments used by Miller [13]. The
termination proof, however, is different and relies on the fact that L is a list and not
a multiset. Although Miller also uses lists, his algorithm can be rephrased in terms
of multisets without loss of termination. The reason is the different treatment of
flexible-rigid pairs: Miller manipulates the rigid part until the problem can be solved
in one step, whereas the above formulation solves the problem in layers, introducing
new variables on the way.

15

