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Summary

Technological advances in digital communications and in personal computer workstations are be-
ginning to allow the generation, communication and presentation of multiple information media
simultaneously. In particular, the ability to support real-time voice and video makes a new range
of advanced and highly interactive multimedia applications possible. These applications are not
restricted to the computer industry, but extend to other technologically intensive industries which
have some form of multimedia communication requirement. Such industries include medicine, con-
ferencing, teaching, broadcasting, publishing and printing. Each of these application areas has its
own particular set of requirements and makes corresponding demands on the computer systems
used.

Such a wide range of application areas leads to a correspondingly large and diverse set of require-
ments of the systems used to implement them. In addition, the real-time nature of voice, and
especially video, place heavy demands on the underlying systems. Many of these requirements
and demands are not met by existing computer communication systems. This is due to the fact
that the architectural models used to design and implement these systems were constructed before
the technological advances making multimedia communication possible took place. As a result,
existing multimedia systems have tended to concentrate on either low level implementation issues
(e.g. communication networks and protocols) or on a single restricted application area, without
paying any regard to their respective problems and requirements. The inevitable consequence is
that there is a mismatch between the functions provided at the lower levels and those actually
required by higher level applications.

This dissertation presents an attempt to overcome these problems by defining a new architecture
for multimedia communication systems which recognises and supports a wide range of application
requirements, in addition to satisfying the requirements made by the information media them-
selves. A thorough survey of existing multimedia systems was conducted in order to identify and
understand the requirements made by both applications and information media and led to the
formulation of a set of design principles. In recognition of the fact that any multimedia communi-
cation system is inherently distributed in nature, the architecture is presented as an extension of
existing distributed systems.

The resulting architecture is called the Integrated Multimedia Applications Communication ar-
chitecture (IMAC) and a prototype implementation of IMAC has been constructed and used to
evaluate the utility and feasibility of the architecture and to identify its strength and weaknesses.
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Introduction

This dissertation is concerned with the provision of an environment which facilitates the construc-
tion of advanced and highly interactive multimedia applications. In other words, the goal is to make
the writing of multimedia applications easier than is currently the case. This desire is motivated
by the observation that little or no practical experience and insight exist into what the practical
uses, benefits, and pitfalls of multimedia communication will be. The only way to overcome this
problem is to build a number of diverse applications for experimentation and evaluation; for this
experimental process to occur it is first necessary to make the construction of the experimental
applications easier.

The term media is used in this dissertation to refer to a variety of information forms, including
text, graphics, voice, still video images and full motion video. The real-time nature of media such
as voice and video makes rigorous demands of any computer system managing and implementing
them. Multimedia communication implies that multiple media may be used simultaneously during
communication; therefore, any multimedia communication application must be able to handle
multiple media streams simultaneously.

It is the real-time nature of voice and video, coupled with the need to handle multiple streams si-
multaneously which are the primary source of the problems posed by multimedia communication.
Multimedia communications applications intrinsically require some form of distributed comput-
ing environment. The services provided by existing operating systems, communications protocols
and distributed programming tools (e.g. remote procedure call) predate the advent of multime-
dia communication and provide insufficient and inappropriate services for supporting multimedia
applications. The divergence between the services provided, and those required by applications,
is set to increase as more diverse, advanced and highly interactive multimedia applications are
constructed. ' :

This dissertation presents a new architecture, the Integrated Multimedia Applications Commu-
nication architecture (IMAC), which has been designed to accommodate multimedia application
requirements as well the problems posed by the presence of multiple information media and commu-
nication. IMAC provides a coherent framework within which to design and implement all system
components and thus avoid functional mismatches in the future. The IMAC architecture can
therefore be used to guide the design and implementation of the applications support environment
as well as the applications themselves.



2 1. INTRODUCTION

1.1 Multimedia Communication Systems

Advances in networking and workstation! technology are making multimedia applications possible
and increasing the desire for, and expectations of, such applications.

Advances in local and wide area digital communications networks enable the efficient transmission
of multimedia traffic. The Integrated Services Digital Network (ISDN) promises to provide ubig-
uitous, wide area, digital communication capabilities. Although the ISDN is primarily designed
to handle voice and data traffic, the higher speed Broadband ISDN (B-ISDN) is intended to carry
video in addition to voice and data. A variety of local and metropolitan area networks operating
in the 10-100Mb/s range can already carry multimedia traffic. This ability to communicate mul-
timedia information is making a new range of information processing applications possible, and
is stimulating the increasing use of computers in other technologically intensive industries which
have some form of multimedia communication requirement.

The increasing power of workstations means that in addition to supporting a greater variety of
advanced and highly interactive applications, they are increasingly able to support multimedia.
However, the data and switching rates required by real-time video communication are still beyond
the capability of most workstations. Therefore, such workstations can, at best, be used to control,
rather than switch, video streams. Although less demanding media, such as voice, can be easily
switched using current workstations, it may not be possible to transport the voice between work-
stations using existing protocols and networks such as TCP/IP and Ethernet. As a result a hybrid
approach is often taken, whereby a workstation is used to control external hardware implementing
media streams which it cannot directly implement itself. This leads to the idea of a “multime-
dia desktop” or MMDT. An MMDT is a collection of hardware and software components which
implement and provide access to multimedia application and communication facilities. The parti-
tioning between the media implemented within and without the workstation is constantly shifting
and in the future it may be possible to implement all media within the workstation. However
there will always be some delay between the introduction of new media and their integration into
workstations; therefore the notion of an MMDT seems likely to persist.

The use of multimedia networks to interconnect MMDT’s leads to the concept of a Multimedia
Commaunication System or MMCS. An MMCS can be considered as being an extension of the
traditional notion of a distributed computing system (DCS) to include the ability to generate,
manipulate, communicate and present multiple, ‘possibly real-time, media simultaneously. The
next section discusses the components of an MMCS.

1.1.1 System Components
A multimedia communication system is composed of five functional componeﬁts:

Information Media Component (IMC): implements the basic mechanisms for the generation
and presentation of information media. Simple examples include a digital camera or micro-
phone; a more complex example is a frame buffer with video input.

Communications Component: transports multiple information media from one place to an-
other. It includes both the physical network and low-level access protocols in addition to
higher level communications protocols. However, as discussed below, the boundary between
the Communications component and DPC is often blurred.

1The term workstation is used to refer to a personal computer which supports a powerful multi-tasking operating
system and programming environment.
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Distributed Processing Component (DPC): provides the base set of services required by an
application for distributed processing. This will usually be a superset of the functionality
required for stand-alone processing. The provision of storage is also considered to lie within
this component. The work of ANSA [ANSA89b] and the ISO Open Distributed Processing
(ODP) standardisation effort represent significant efforts to define, design and implement
such services.

Application Component: responsible for controlling and coordinating the lower level mecha-
nisms to bring about some meaningful user interaction and communication.

User Interface Component (UIC); the interface between the application and the users of that
application. The application and user interface components are separated in order to allow
a single application to have a number of user interfaces. The application is concerned solely
with functionality whilst the user interface deals with human computer interaction.

The partitioning of communication protocol functionality between the Communications and Dis-
tributed Processing components is not straightforward; in particular the lower levels of the OSI
protocol stack are part of the Communications Component whilst the session and presentation
layers are best considered part of the DPC. This separation is likely to vary for different protocol
architectures and distributed operating systems. As a rough guideline, functions related solely to
communication are placed in the Communications Component, whereas functions which have an
impact on other system components are placed in the DPC. Typically the interface to communi-
cations protocols and associated resource management are considered to be part of the DPC.

It is not clear that storage should be entirely subsumed into the DPC, especially when the demands
made on it by voice and video are so great. However, storage is a service required by applications
and as such can be considered to lie in the DPC.

1.1.2 Functional Integration

There are two principal ways in which multimedia can be integrated into a DCS. The inclusion
of additional media within an individual component is Multimedia Integration, whilst Functional
Integration is concerned with the interoperation of system components. The research survey in
chapter 3 shows that whilst considerable progress has been made on multimedia integration for one
or two components in isolation, little attention has been paid to the need for functional integration.
This can be seen by the fact that many projects have concentrated on multimedia integration for the
IMC and Communication components alone (i.e. communications systems) or on the Application
and User Interface components (i.e. stand-alone systems).

The lack of functional integration is the biggest problem facing the designer of an MMCS; currently
there is a mismatch between the functions expected of one component by another and the functions
actually provided. This leads to the situation where advances in one component are either stymied
by previously unforeseen deficiencies in another, or are simply ignored and not used by the other
components. The lack of functional integration makes writing multimedia applications inordinately
difficult and in many cases the application writer is forced to implement or re-implement DPC
level functions. This has led to the proliferation of ad hoc solutions to common problems. Clearly
the goal of making application writing easier translates directly to one of increasing functional
integration. ‘
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1.2 An Architectural Approach

In order to increase functional integration it is necessary to understand the requirements and
demands system components make of each other and also to appreciate the relationships between
components. This approach is often referred to as erchitectural and can be considered to define
system building blocks and interfaces, design rules, guidelines and recipes for how to design specific
systems. An additional benefit of an architecture is that it provides a framework within which
related work can be evaluated and incorporated, and thus ensure that good use is made of such
work. '

The thesis of this dissertation is that such an architectural approach is effective in increasing
functional integration and that this reduces the difficulties which are currently encountered in
constructing multimedia applications. Moreover, sufficient research has been carried out to allow
the identification of a set of common architectural principles and thus enable such an architectural
approach to be taken.

1.3 The IMAC Architecture

As already noted, an MMCS can be viewed as a logical extension of a DCS to incorporate multi-
media. Extending a DCS in this manner offers a number of potential advantages:

e a DCS provides a comfortable environment for writing distributed applications.
e reuse of a large amount of existing knowledge, infrastructure and software.

e easing the interoperation of multimedia applications with current and future distributed
applications.

~ To ensure that these potential advantages are realised IMAC is based on an existing DCS ar-
chitecture, namely the Advanced Networked Systems Architecture (ANSA), which is described
in [ANSAB9Db][ANSAS89a] and is briefly summarised in appendix A. :

ANSA is a general architecture for distributed systems; IMAC is a specialised instance of ANSA
catering specifically for multimedia. The implementation of IMAC is an extension of the ANSA
Testbench [ANSA90b], which is itself a particular implementation of the architecture. In the
- long term the architectural concepts identified by IMAC will be incorporated into the ANSA
architecture itself.

1.4 Outline

The approach taken to the work presented in this dissertation was to conduct a detailed survey
of background and related work. This enabled the problems, requirements, inter-relationships and
design principles of a Multimedia Communication System to be understood. This information was
then used to guide the design of IMAC and the prototype implementation used to evaluate the
utility and feasibility, and to identify the strengths and weaknesses of the architecture.

Chapters 2 and 3 present background and related work respectively, and chapter 4 discusses prob-
lems and requirements. The IMAC architecture is presented in chapter 5; the architecture is
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informally defined and its design justified. The prototype implementation is described in chap-
ter 7; chapter 8 describes how a complete application can be constructed using this prototype.
Chapter 9 presents an evaluation of IMAC and its prototype implementation.
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Background

This chapter begins by describing what is meant by the terms multimedia, multimedia communi-
cation, multimedia integration, functional integration and multimedia deskiop. This is followed by
a description of the background to this dissertation, in particular relevant standards work.

2.1 Multimedia

The term media is used to refer to a variety of information forms including, text, graphics, struc-
tured data (e.g. spreadsheet), voice, still video images and full motion video. That is, the unqual-
ified term media is used to refer to information media as opposed to transmission media. Voice
and video are used in a generic sense to refer to all encodings and standards used for these media,
e.g. video may be of PAL television or High Definition TV (HDTV) standard. The term, contin-
uzous media, is often used to refer to real-time information media such as voice and video. This
dissertation is primarily concerned with continuous media and wherever the term multimedia is
used it implicitly includes continuous media. Section 4.2.1 discusses the implications of continuous
media.

2.2 Multimedia Communication

Within this dissertation multimedia communication refers to interaction which explicitly allows for
the simultaneous use of multiple information media. This is distinct from the ability to communi-
cate using multiple media where only a single medium may be in use at any instant in time. These
two interpretations are often confused. Wherever such confusion is possible, or emphasis of one
over the other is required, the first usage will be qualified as being ¢rue multimedia communication.



8 2. BACKGROUND

User Interface User Interface
Application Application
Distributed
Processing

Service
Communications
Information Media Physical
MMCS Integration
components levels

Figure 2.1: System Component and Integration Level Relationships
2.3 Multimedia Integration

The presence of multimedia places significant demands on each system component. An increase in
multimedia integration for a given component implies that it is better able to meet the demands
of some new media or multiple existing media. Multimedia integration can occur at the following
four levels.

Physical Level integration: the multiplexing of multimedia traffic over a single piece of hard-
ware or a single communication channel.

Service or System Level integration: the provision of a common service interface to the ap-
plication for access to multimedia communication facilities and for communication between
its constituent parts.

Application Level integration: the design and implementation of applications which can effec-
tively manage, manipulate and communicate multimedia data.

User Interface Level integration: the presentation of multiple types of media to a human user.

The relationship between these integration levels and the MMCS components introduced in sec-
tion 1.1.1 is illustrated in figure 2.1. Physical level integration occurs within the Information Media
Component (IMC). Service level integration is concerned with the interfaces to the IMC, Commu-
nications Component and DPC, and is therefore shown as spanning the DPC and Communications
Component to touch the upper layers of the IMC. The Application and User Interface levels map
directly to their respective MMCS components.

Within the Physical Level it is possible to identify two independent types of integration, namely
hardware and network integration. Independence means that a given level of integration of one
type does not imply a corresponding level in the other.

2.3.1 Hardware Integration

MMDT functional components may be implemented on a single hardware component or be spread
across several such components (see section 2.5). The fewer the number of hardware components,
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Figure 2.2: Degrees of Hardware Integration

the greater the degree of integration. Thus, there is a spectrum of hardware integration ranging
from completely unintegrated hardware to fully integrated hardware. Figure 2.2 gives three simple
examples showing the increasing integration of voice and data communication hardware. The first
configuration uses a terminal, a telephone handset connected to a computer controlled PABX and
a minicomputer running the application which controls the PABX and terminal. Each functional
component of the MMDT is implemented using a different piece of hardware. The second config-
uration uses a workstation to implement both the user interface and the application components,
thus removing the need for a minicomputer. The final configuration is an integrated voice and date
workstation which incorporates the telephone handset directly. Increasing hardware integration
offers potential reductions in cost and increased performance capable of supporting more advanced
applications.

This integration path will also be followed for video communication as workstation performance
increases and allows the implementation of video directly. So far, only partial hardware integration
has been achieved with MMDT’s providing video communication; Pandora (section 3.7.4) and
Palantir (section 3.7.3) are examples of such systems.

2.3.2 Network Integration

Several networks are described as integrated or multi-service, because they can support multiple
types of traffic using the same infrastructure. As a result of early work on the integration of voice
and data within the ISDN [Gerla84] three levels of integration have been identified, which are
distinguished by the multiplexing technique used within each network component. Two principal
multiplexing techniques are used: the first is Space Division Multiplexing (SDM) which uses a
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separate channel between communication endpoints. The second is Time Division Multiplexing
(TDM) which shares a single channel between multiple endpoints over time; that is, each end point
is allowed access to the channel for some period of time before the next end point is allowed access
for some period and so on.

The three levels of integration identified are illustrated in figure 2.3:

Integrated Access: provides a single access interface for both voice and data traffic. Within
the network this traffic may be carried over separate physical networks each of which has
its own switching mechanism. User access is multiplexed using some form of TDM, whilst
transmission and switching are multiplexed using SDM.

Integrated Transmission: uses a single physical network to carry both voice and data traffic,
however the switching may still be handled separately. Here TDM is used for access and
transmission, but SDM is used for switching.

Integrated Switching: uses a single switching mechanism to handle all types of traffic.

Increasing network integration can therefore be viewed as the increasing use of Time Division
Multiplexing to multiplex different media types within the network. These levels of integration
can be easily generalised to include other media in addition to voice and data. Note that, in
general, these levels of integration are independent of one another. For instance, it is possible to
have integrated transmission and switching without integrated access.
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2.4 Functional Integration

Functional integration is concerned with the co-operation of system components to achieve some
composite goal. The degree of integration is the degree to which system components co-operate to
meet the goals set for the system as a whole. To increase functional integration it is necessary to
devise a common abstraction which can be implemented across all components and thus provide a
framework within which each component may identify the functions it provides and the functions
it requires of other components.

2.5 Multimedia Desktop

Given the varying degrees of hardware and network integration possible it is dangerous to choose
a single point in the integration spectrum and design applications specifically tailored to that
point. The danger lies in designing a system which may be difficult or impossible to port to a
new configuration or even to interwork with different configurations. The notion of a Multimedia
Desktop is useful for avoiding such a pitfall. An MMDT represents a set of functions which can
be accessed by application software independently of the physical and network configuration used
to implement them. In particular, it must support the management of shared and distributed
IESOULCES.

2.6 ISDN and Broadband ISDN

ISDN is the result of an international effort to produce a comprehensive set of standards for a global
digital communications network capable of carrying multiple traffic types. This standardisation
is being coordinated by the CCITT and has led to the I-Series Recommendations. The ISDN is
designed to support a range of voice and non-voice (i.e. data) services within a single network. This
integration is provided at the network access level, that is, a single point of access is defined for
all traffic types supported. The CCITT refer to this access level integration as service integration;
this is not the same as the notion of service integration introduced when discussing multimedia
integration within an MMCS. The 1.400 User-Network Interfaces recommendations deal with the
definition of these access points.

2.6.1 TUser Network Interfaces

By definition an ISDN is recognised by the functionality it provides at its access point and not in any
way by its internal architecture or implementation. The ISDN recommendations concentrate on the
definition of these access points. A user network interface consists of a number of fixed bandwidth
communication channels presented as an isochronous series of time slots; i.e. synchronous time
division multiplexing. Three! types of channel are defined as follows:

Bearer (B) Channels: provide 64Kbits/s and are targeted at digital voice communication, they
may also be used for data.

Higher (H) Rate Channels: higher bandwidth B channels offering 384Kbits/s, 1536Kbits/s
and 1920Kbits/s; these are called HO, H11, H12 channels respectively.

1The E channel is not mentioned in this description as it is rarely used.
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Data (D) Channels: either 16 or 64Kbits/s and are often called signaling channels since their
intended use is for the management of connections on associated bearer channels.

The signaling protocol used on the D channel is defined in 1.451 and is related to the existing
CCITT Signaling System No. 7 defined in the Q.700 series recommendations.

Different channel combinations are used to offer different ISDN rates as follows:

Basic Rate: 2xB channels and a single 16Kbits/s D channel.

Primary Rate (2.048Mbits/s): 30xB channels and a single 64Kbits/s D channel; this rate is
used within Europe.

Primary Rate (1.544Mbits/s): 22xB channels and a single 64Kbits/s D channel; this rate is
used within the U.S.A.

The use of separate channels for call management and routing (control) and actual voice traffic
(data) is generally referred to as out-of-band signaling. Within the context of the ISDN and
circuit switched networks in general, such out-of-band signaling is referred to as Common Channel
Signaling (CCS). Allowing user access to CCS, via the D channel, promises to bring some of the
power and flexibility present in computer data communications to the wide area telephone network.

2.6.2 Service Capabilities
Two broad categories of service are defined by the CCITT (1.112):

Bearer services: provide the capability for the transmission of signals between user network
interfaces. Bearer services are either restricted, in which case the data communicated may
be modified in transit, or unrestricted, in which case no such modification occurs. Bearer
services are defined for restricted circuit-mode 64Kbits/s speech and unrestricted circuit-
mode 64Kbits/s which can support speech, X25 and other information streams which may
be multiplexed onto the channel. A packet-mode bearer service is defined, as are virtual call
and permanent virtual circuit services which allow for packetised data transfer over a virtual
circuit.

Teleservices: provide a complete service capability, including terminal equipment functions, for
communication between users according to protocols established by agreement between ad-
ministrators. Teleservices use bearer services to communicate data and in addition provide
higher level (OSI Layers 4-7) functions. Teleservices are less well developed than bearer
services but are likely to include services such as facsimile, videotex and electronic mail.

It is possible to define supplementary services which in some way extend the functions provided by
bearer and teleservices; these supplementary services can only be offered in association with their
base services.

All services within the ISDN are characterised using the attribute based model described in 1.130.
There is a set of generic attributes and a set of attribute values which can be assigned to these
generic attributes. This approach has the potential drawback that only services which can be
characterised by the attributes defined in I.130 can ever be implemented. A specific set of services
have been targeted for standardisation.

The ISDN is currently being implemented within the existing telephone network infrastructure
with a gradual move to transmission level integration as more digital communication capability




2.6. ISDN AND BROADBAND ISDN 13

becomes available. The emphasis of the ISDN is on improving telephony based services rather
than on general purpose multimedia services; the term “Computer Integrated Telephony” (CIT)
is often used to describe the ISDN. However the wide area digital communication offered by the
ISDN is stimulating the desire for other multimedia services to be offered in the future.

2.6.3 Broadband ISDN

As aresult of advances in opto-electronics it is possible to build very high speed networks running at
hundreds of Mbits/s. In response to the this the CCITT and ANSI are attempting to standardise
these networks as the Broadband ISDN (B-ISDN). The B-ISDN promises to support video to
the same degree as the ISDN currently supports voice, with proposed bandwidths starting at
150Mbits/s.

In recognition of the limitations of the current telephone network it is anticipated that the B-
ISDN will be entirely implemented using new communications technology which can support the
wide variety of traffic required. The goal is t6 provide integrated switching and transmission of
all traffic types. The mechanism targeted for achieving this integration is Asynchronous Transfer
Mode (ATM) which is discussed in section 2.7.

The B-ISDN uses many of the principles defined for ISDN, including out-of-band signaling and
attribute based service characterisation. The attribute set has been extended to more fully char-
acterise video. Also two service classes have been identified:

Interactive services: include real-time communication, messaging and retrieval services.

Distributive services: deal with the distribution of information, in either a broadcast fashion
without user presentation control (e.g. TV and radio) or as a multicast with presentation
control (e.g. teletex).

Both service classes allow for true multimedia communication. As for ISDN a set of candidate
services have been identified for standardisation.

The B-ISDN explicitly recognises the need for multimedia communication and advocates a “strongly
structured approach” to such communication to ensure:

e flexibility for the user.

e simplicity for the network operator.

e control of interworking situations.

e commonality of terminal and network equipment elemenﬁs.

It is worth noting that the first two are almost certainly in conflict and that strict adherence to
the last two is likely to stifle innovation.

The work on B-ISDN is at a very early stage, especially with regard to multimedia, with most
attention being paid to the network itself (i.e. application of ATM techniques).
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2.7 ATM

The term ATM refers to a very general class of networks and is not restricted to the standards
being drawn up by the CCITT and ANSI for specific implementations of ATM networks. Many
existing and future networks will justifiably be described as ATM even though they do not conform
to CCITT recommendations. '

ATM has gained favour for implementing the B-ISDN because it represents a compromise be-
tween the Synchronous Transfer Mode (STM) used within the telephone network for digital voice
transmission and Packet Transfer Mode (PTM) used for computer data communications. This
compromise offers the following potential advantages:

e fine granularity bandwidth sharing.
e low and bounded delay.
o low and predictable variation in delay (jitter).

e ability to efficiently carry bursty and variable rate traffic.

The disadvantages centre on the technical difficulties encountered in building such ATM networks.
In particular extensive hardware implementation is required to achieve the data and switching rates
required. This forces the lower levels of the protocol stack to be as simple as possible and therefore
amenable to hardware implementation, which in turn means that functions such as internetworking
and routing must be pushed up to higher levels in the protocol stack. McAuley discusses these
issues in more detail [McAuley89].

Current ATM networks can be recognised by the presence of three principal features:

o fixed cell size.2

e asynchronous access.

e bounded access time.

The CCITT and ANSI describe ATM as being “connection oriented”, however there is currently
a great deal of debate as to exactly what this means. The motivation behind this appears to
be the desire to pre-allocate and effectively manage network resources at connection setup time.
Guarantees can then be made with regard to per-connection quality of service which can be met
for the duration of the connection. It is not yet clear if such a reservation mechanism will be
defined as a core part of the standards currently being drafted for B-ISDN. The term lightweight
virtual circuit is used throughout this dissertation, as it is in [McAuley89][Leslie83] to represent
an end-to-end connection establishment without any implicit guarantee of reliability. Lightweight
virtual circuits do not in anyway preclude the provision of a connectionless style service on top of
ATM.

The service provided by ATM is intended to be useful to all traffic types, and as such must not
be parametrised for any single service. An ATM Adaptation Layer (AAL) is used to provide a
particular service, such as voice, video or data communication over the underlying ATM bearer
service.

2The CCITT has defined the ATM cell size to be 53 bytes; 5 bytes of header and 48 bytes of user data.
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2.8 OSI Reference Model

The ISO Open Systems Interconnection (OSI) Reference Model defines seven layers as illustrated
in figure 2.4. The primary aim of this model as defined by [Day83] is “to provide a framework
for coordinating the development of OSI standards”. These standards form the basis for the
interconnection of heterogeneous computer systems to create open systems. The ultimate goal is
that by fully specifying the function of each layer, and then by standardising these specifications it
will be possible for a variety of manufacturers to produce conforming layer implementations which
will interwork with each other.

The inherent danger in this approach is that if the standardisation takes too long then by the time
conforming implementations come into existence the design assumptions and tenets made whilst
defining the layer functions will have become invalid. Also, the desire for interconnection at all
costs leads to a lowest common denominator approach to defining the layer functions, which may
in the long term lead to functionally deficient standards. Similarly the fear of getting it wrong
has led to vast array of complex standards offering a great number of options. The sheer number
of standards (over 200) has forced procurement agencies to develop OSI profiles which specify a
particular set of options to use for each layer, thus taking a vertical slice or plane through the OSI
stack. The complexity of the options available means that there is no guarantee that one profile
will interwork with one another.

The current ISO OSI standards are found lacking in a number of respects when applied to multi-
media communication. These are a result of the differing and previously unforeseen requirements
of multimedia communication:

o the insistence that the transport service provided be a reliable one; reliability is often pro-
hibitively expensive for real-time multimedia communication.

e the presence of multiplexing in six out of seven layers;® multiplexing is a major source of
jitter and performance loss.

o the sheer complexity of the protocols means that they are unlikely to provide the high levels
of performance required for multimedia communication.

3The exception being the presentation layer, but for erchitectural consistency even it allows for demultiplexing
using address selectors
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Other deficiencies arise due to the delay in accommodating the technology required for multimedia
communication; the primary example being the incorporation of ISDN, B-ISDN and ATM.

The standardisation process has been through two main phases; the first dealt with the lower
four layers and lead to the full definition of the transport service. Whilst the second has been
concerned with the session, presentation and application layers. As for ISDN, a very specific set
of applications have been identified and targeted for standardisation, including:

FTAM File Transfer and Access Mechanism.
X.400"Electronic Mail.
VTP Virtual Terminal Protocol.

OSI-T'P. Transaction Proéessing.

Standardising a set of applications clearly cannot lead to a variety of diverse and powerful appli-
cations, but rather to a base set of essential tools. In recognition of this ISO have set up a new
working group, ISO/IEC JTC1/SC21/WGT for Open Distributed Processing (ODP) to investigate
application requirements and to standardise a Support Environment for ODP (SE—ODP) ODP is
discussed in section 2.11.

2.9 DARPA Internet

Clark [Clark88] describes the evolutionary approach taken with the DARPA Internet, whereby
the design, implementation and evaluation of protocols took place before standards were set. The
results of the evaluation phase often forced a redesign, and reimplementation. This philosophy is
in stark contrast to that of OSI.

The Internet architecture defines four levels of protocol. These protocols along'with their rela-
tionships to the OSI layers are shown in figure 2.5. Internetworking was a primary goal and is
implemented within the network level by the IP protocol. A range of transport, or host-to-host,
protocols may be used over IP, the principal ones being UDP which provides an unreliable data.-
gram service, and a reliable byte stream protocol TCP. There is no requirement that TCP be
layered on UDP, in fact TCP uses IP directly. The absence of strict layering leads to a hierarchical
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architecture, which allows for redundant layers to be bypassed, thus offering a considerable increase
in flexibility.

As with OSI a standard set of applications have been constructed, the principal ones being FTP
(File Transfer Protocol), SMTP (Simple Mail Transport Protocol) and Telnet (remote login). More
applications have been constructed using the Internet protocols than ISO, simply because more
Internet implementations exist. In fact the vast majority of UNIX systems offer the Internet
Protocols as standard.

The Internet TCP/IP protocol suite provides much of the same functionality as that being stan-
dardised by ISO; indeed DARPA intend to adopt the U.S. Government OSI Profile (GOSIP) as
an eventual replacement for the TCP/IP protocol suite. The U.S. GOSIP specifies a connection-
less network service, whereas European and UK GOSIP’s specify a connection oriented network
service. It is not immediately obvious that the two profiles will be able to interwork efficiently.

2.10 RAVI

RAVI [Oguet90] is a proposed standard for the Representation of so-called Audio/Visual Interac-
tive applications or AVI’s; hence the acronym RAVI. This work is of interest because it is aimed at
producing an application standard within the OSI framework and can be considered as extending
OSI to provide application support. The anticipated application areas for RAVI include multime-
dia computer-assisted training, public information retrieval and transaction services as exemplified
by tele-shopping.

The RAVI representation allows for the interchange of applications components themselves in
addition to the data these applications manipulate and access. It consists of an interchange format
for the data and a “formulation” describing the application body. This scheme allows for the easy
propagation of application and information updates and is well suited to a commercial environment
in which multiple organisations access the same applications and data. For instance RAVI provides
a uniform means for television manufacturers to supply computer-assisted training applications for
the maintenance of their televisions to a number of different servicing companies.

2.11 ODP

The ODP effort has two major goals, the first is concerned with establishing a single, consistent
framework within which to express ODP requirements. The second is the standardisation of a sup-
port environment for these ODP requirements, within which ODP applications can be constructed.
ODP is at a very early stage, however the ESPRIT ISA Project has been a major contributor to
ODP and already has an architecture for ODP, namely the Advanced Network Systems Architec-
ture (ANSA) and a prototype Support Environment for ODP, called the ANSA Testbench.

The Testbench is used as the base for the practical work carried out for this dissertation and is
described along with the ANSA architecture in appendix A.

Neither ODP nor ANSA have yet made a serious attempt at supporting multimedia communication.
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2.12 Distributed Computing Research

An early distributed system was the Cambridge Distributed Computing System [Needham82].
Since then work has been concentrated on Remote Procedure Call (RPC) [Birrell84] and in
particular to the integration of RPC into existing languages [Hamilton84]. However RPC is often
criticised for providing poor performance. Improved performance can be achieved with a highly
optimised implementation as exemplified by Firefly RPC [Schroeder89]. Another possibility is
to extend or modify the semantics of RPC to better match particular application requirements
and thus to increase the performance achieved for a particular set of applications. For instance
the pipelined or streamed RPC as advocated by Gifford [Gifford88], offers increased throughput
for RPC’s whose results are not immediately required and is particularly useful for communication
with window or graphics systems. Gifford also identifies the need to synchronise operations on
related pipes and provides an explicit, procedural, mechanism for doing so.

2.13 Summary

The ISDN provides access level integration for voice and data and is primarily aimed at tele-
phony based applications. Within the context of such applications the ISDN has achieved a high
degree of functional integration. The ISDN cannot be considered as providing true multimedia
communication. '

The B-ISDN is being designed to handle true multimedia communication from the outset and will
provide integrated switching. However this work is at a very early stage. The out-of-band signaling
techniques developed for ISDN are of general utility, as is allowing user access to signaling functions.
These should ensure that the ISDN and B-ISDN are of use for building multimedia applications.

ATM is of fundamental importance to progress in multimedia communication since it provides
the enabling communications technology. Its use in the B-ISDN will ensure that a wide area
network capable of effectively handling multimedia communication will come into being over the
next decade or so. Therefore any MMCS architecture must address the issues raised by ATM and
allow for the effective exploitation of the advantages offered.

The main benefit offered by ISDN, B-ISDN and ATM is that of increased multimedia integration
at the physical level. Targeting applications for standardisation is unlikely to encourage the ex-
perimentation required for the full potential offered by multimedia communication to be realised;
neither is it likely to lead to generally useful tools which can used by other researchers in their
experimentation.

OSI and the DARPA Internet have paid little or no attention to application requirements, and
even less to multimedia application and communication requirements. They have concentrated
on providing transport services across heterogeneous computer systems and networks. RAVI is
a proposed standard which can be viewed as extending OSI to cover the application level; its
principal application area to date has been that of computer assisted training,.

ODP and ISA are addressing application requirements but have yet to tackle multimedia. Simi-
larly research into distributed computing has evolved from message passing to RPC and various
optimised styles of RPC. Again little or no attention has been paid to multimedia.

This chapter has examined the background to multimedia systems and found it to be lacking any
effective support for the construction of multimedia applications. Most of the related work and
standardisation efforts have concentrated on physical level aspects whilst the architectural work of
OSI, DARPA and ODP has yet to pay attention to multimedia. A great deal of research is now
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under way aimed at overcoming these shortcomings, which is described in the following chapter.
The goal of this dissertation is to draw upon this research to construct an architecture which can
better support multimedia applications.
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Related Research

This chapter presents a survey of research related to this dissertation. A large number of projects
are covered in brief in order to identify broad research directions. A smaller number of projects
which are of direct relevance to this dissertation are discussed in more detail.

3.1 Multimedia Networks

A great deal of effort has been applied to the design and implementation of multimedia or multi-
service networks. Some of these networks were specifically designed for multimedia traffic, whilst
others are initially designed for high speed data communications and have subsequently been
adapted for multimedia use. None of the networks described are in widespread use, although
several have been adopted as standards and are becoming more common place.

3.1.1 FDDII and II

FDDI (Fibre Distributed Data Interface) [Ross86] was originally intended as a data or packet
oriented high speed local area network. A Timed Token Rotation protocol is used to bound the
token latency. This scheme imposes a single upper bound on the token latency for all hosts
attached to the network and thus makes it impossible to provide, efficiently, the low latency and
fine granularity sharing required for real-time traffic at the same time as providing the higher
throughput required by data traffic on the same network. FDDI II attempts to overcome this
problem by defining four different traffic types (or priorities): isochronous channels, synchronous
traffic, restricted and unrestricted asynchronous traffic. Isochronous channels effectively provide
direct access to the network; packets are clocked into and out of the network using a single (usually
external) clock. Synchronous traffic is guaranteed a maximum transmission delay of twice the timed
token rotation time. The remaining types must simply wait for the restricted and unrestricted
tokens respectively before being granted access to the network. FDDI II thus provides a mix of
slotted and token ring media access protocols. Although FDDI II caters for multimedia traffic, its
increased complexity means that complete implementations will not be available for some time yet

21
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and are likely to be very expensive. Commercial implementations of the original FDDI ring are
just beginning to appear.

3.1.2 Distributed Queued Dual Bus

The Distributed Queue Dual Bus (DQDB) network, formerly know as QPSX (Queued Packet and
Synchronous Switch), is based on dual busses operating in opposite directions, thus allowing full
duplex communication between each pair of nodes. DQDB provides separate isochronous and
non-isochronous services which function independently of one another with the total capacity of
the network being shared dynamically between them. DQDB is now embodied as the IEEE 802.6
standard.

3.1.3 Cambridge Fast Ring

The Cambridge Fast Ring (CFR) as described in [Temple84][Hopper86] is a slotted ring with a

- fixed 32 byte cell size designed to run at 100Mbits/s. Its high speed, small cell size (providing a fine
granularity of bandwidth sharing) and fair access mechanism (effectively guaranteeing a minimum
point-to-point bandwidth and a maximum access delay) make it suitable for multimedia traffic.
The CFR is currently being used within the Pandora project (see section 3.7.4) to carry real-time
voice and video.

3.14 Cambi;idge Backbone Network

The Cambridge Backbone Ring [Greaves90] is a fibre optic network designed to run in the 500
to 2000 Mbits/s range. It is an ATM style network designed from the outset to efficiently support
voice and video traffic in addition to data. A slotted ring access protocol is used.

3.1.5 Terresfrial Wideband Nétwork

The Terrestrial Wideband Network (TWBNet) is a wide area network spanning the U.S.A. from
Boston to Los Angeles. It is based on commercially available T1 (1.792Mbits/s) telephone trunks
with plans to upgrade to DS3 (40Mbits/s) lines in the future. TWBNet is an initial part of
DARPA’s Defense Research Internet (DRI). Bandwidth management is provided using the BBN
Dual Bus Protocol (DBP) which is a type of Distributed Queue Dual Bus similar to IEEE 802.6.
DBP includes extensions to support wide area networking and multimedia voice and video con-
ferencing. Access to TWBNet is provided by IP and Stream Protocol (ST) (see section 3.3.2)
gateways.

3.1.6 Fairisle

Fairisle, a joint project between the University of Cambridge Computer Laboratory and Hewlett
Packard Laboratories in Bristol, aims to design and build a prototype for a 200Mbits/s ATM net-
work, using fast packet switching techniques. Once built, the network is to be used for research into
the management and control functions required by networks to support multimedia applications.




3.2. DIGITAL VOICE AND VIDEO 23

3.2 Digital Voice and Video

A great deal of work has gone into the design, simulation and implementation of protocols for real-
time voice and video; the June 1989 issue of the IEEE Journal of Selected Areas in Communications
was devoted to this subject. The emergence of ATM has lead to the increasing use of variable and
so-called, hierarchical, encoding schemes which provide a constant quality service using varying
amounts of bandwidth. This is in contrast to the majority of existing encodings and protocols
which use a constant amount of bandwidth to provide a variable quality service. The variable rate
encoding schemes usually have a minimum bandwidth requirement which must always be available
and a higher bandwidth requirement which may be used if available, but whose absence will not
adversely affect the quality of the service provided.

3.3 Communication Architectures

3.3.1 Unison and MSN

Project Unison [Tennenhouse87][Tennenhouse89b] demonstrated the use of ISDN to intercon-
nect high speed local area networks such as Cambridge Rings, Cambridge Fast Rings and Ethernets.
In particular the dynamic management of ISDN bandwidth using out of band mgnahng techmques
(via the ISDN D channel) was investigated [Harita89].

The Unison protocol architecture was subsequently extended to support multi-service and inter-
networking requirements and led to the Multi-Service Network (MSN) architecture [McAuley89].
The MSN architecture is designed for efficient operation over high speed, ATM, networks as well
as more traditional data networks and to allow for the subsequent hardware implementation of
the lower levels of the protocol stack. Particular attention is paid to avoiding unnecessary de-
multiplexing and fragmentation as these introduce large amounts of jitter. The MSN protocols
use the establishment of Lightweight Virtual Circuits to pre-allocate host and gateway resources
in order to meet application specified requirements. The speed obtained for both local area and
internetworking is directly attributable to this resource pre-allocation.

3.3.2 Defense Research Internet

The DARPA DRI is intended to support wide area multimedia applications; currently conferencing!
is being supported over TWBNet. The Stream Protocol? (ST) is used to carry voice and video
traffic. ST is at the same level as IP, but provides an explicit setup phase during which an
application may specify its communication requirements. The ST gateways are then able to set
up an appropriate route through the wide area network and to reserve sufficient gateway and
network bandwidth to meet the application requirements. If insufficient resources are available the
connection is refused.

Casner [{Casner90a] describes how the problems of video clock synchronisation, end-to-end delay
and packet loss are solved by TWBNet and ST. The need for clock synchronisation was removed
by arranging for the receiving video codec to be run at a higher rate than the transmitting codec
and for it to provide a means of indicating that no new sample is available. Thus for every clock
cycle the receiving codec either plays back a newly arrived sample or is told that no sample has

1For a fuller description of computer conferencing see section 3.8.

2The original ST protocol is specified in IEN 119, [Forgie79] and has just been superceded by ST-II described
in [Casner90b].
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arrived and to do nothing. This approach also removes the need for receiver buffering and thus
reduces end-to-end delay. The bandwidth reservation provided by the ST protocol helps reduce
delay by pre-allocating resources and thus allowing fast packet forwarding within gateways. Packet
loss due to buffer overflow is reduced by ST resource pre-allocation and by the use of forward error
correction. ‘

The Dual Bus Protocol used over TWBNet allows for dynamic creation of multicast groups with
the underlying network providing packet replication and multi-site delivery. An application need
only send a single packet to a multicast group and the network will replicate and deliver the packet
to each group member. The source address in every multicast packet can be used to distinguish
between streams originating at different sites.

3.3.3 Extending OSI

N

Salmony and Shepherd [Salmony89] propose that the OSI transport layer be extended to sup-
port multimedia by the inclusion of multi-channel synchronisation, a multicast facility and multi-
connection management.?> Two new concepts are added to implement synchronisation: namely
Synchronisation Markers and Synchronisation Channels.

Synchronisation Markers are embedded in the data stream by the sender, so that the receiver can
then compare markers from multiple streams and to buffer data until all the requisite markers are
received before delivering the data. This is a simple scheme that may require extensive buffering
and involves modification of the application data stream. However, it suffers from the fact that
only a single, temporal, synchronisation scheme is possible and that the application has little or
no control over this synchronisation.

Synchronisation Channels are intended to overcome these problems by providing an out-of-band
means of specifying synchronisation relationships between multiple media. The synchronisation
channel is used to instruct the receiver as to what order the data stream components are to be
presented to the application. Such a scheme allows for greater synchronisation flexibility and avoids
data stream modification, but introduces the greater problem of identifying and specifying data
stream components and their inter-relationships.

This approach of extending the transport layer to support a particular set of anticipated application
synchronisation requirements is in keeping with the OSI philosophy of identifying a restricted set
of common applications which are then standardised. The example application used by Salmony
and Shepherd is DARPA Multimedia Mail (see section 3.4.2) which allows for the independent,
sequential or simultaneous presentation of mail document components.

3.3.4 Magnet

Magnet [Lazar87][Lazar85] was a test-bed for investigating the integration of multimedia traffic
into a local area network environment. To efficiently support the varying mix of isochronous and
non-isochronous traffic expected under practical use, an adaptive, 100Mbits/s, fibre-optic network
was constructed. Adaptation is implemented by varying bandwidth and buffer allocation for each
host in order to meet application requirements. An expert system instructs the low level bus
controllers connecting hosts to the network as to how much bandwidth and buffer space to use.

A multiprocessor workstation, called EDDY, was built to experiment with the network. EDDY
used separate service processors for processing voice, video and other network data; it also used

3The ability to establish and destroy multiple related connections simultaneously.
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separate busses to interconnect the processors to each other and to the network. A variable rate,
fixed quality video protocol was implemented to transport video between workstations.

An extension to the OSI model, called the Integrated Reference Model (IRM) [Lazar86] was
designed. The IRM includes explicit representations for the resource management (M), connection
management and control (C) and user data (U) information flows. IRM slices the seven layer OSI
stack vertically to give three planes called the M, C and U planes. Layers in a given plane can,
and do, communicate with adjacent layers in the other planes. Connection establishment is a two
phase process, the first of which allocates resources for the second phase as well as subsequent user
communication. The second phase allows for negotiation between sender and receiver to determine
if the receiver wishes to accept the connection. Once a connection is established data may flow
through the U plane. The separation into planes explicitly supports the use of out-o6f-band control
techniques.

Magnet II [Temple89] is based on Asynchronous Time Sharing which separates traffic into different
classes which expect a similar quality of service and prioritises them accordingly. Magnet II
extends Magnet to the metropolitan area by using commercially available 45Mbits/s (T3/DS3)
links to interconnect local area Magnet networks. A distributed, knowledge based Traffic Control
Architecture (TCA) called Wiener [Mazumdar89] controls the hardware support for network
adaptation.

The resource management and adaptation facilities of both Magnet and Magnet II are fundamental
components of the network and as such have no control over higher level resource management.

3.4 Multimedia Documents and Electronic Mail

These projects allow for the creation and editing of multimedia documents; such documents typ-
ically include text, graphics, spreadsheets, voice and more recently video. Once created such
documents may be transmitted asynchronously to other users using standard document and trans-
port protocols. The absence of synchronous or real-time communication allows the use of existing
network data oriented protocols (such as TCP). The storage of multimedia documents presents a
number of difficulties arising from the voluminous nature of voice and especially video.

3.4.1 Agora

The Agora [Naffah86] project designed and implemented a multimedia document editor and
mail system. The architecture of the Agora mail system was defined at the same time as the
IFIP [IFIP-WG6.579] and CCITT X.400 [CCITT-X.400] models and is very similar to these,
see figure 3.1.4 This architecture defines a user agent providing user interface and application func-
tions, a name server, a message server providing mail boxes (and therefore storage) for multimedia
messages and a message transfer service for transmitting messages from one user agent to another.
Within the message transfer system, the message transfer ends (MPE’s) communicate with user
agents or with other MPE’s.

3.4.2 DARPA Multimedia Mail System

The DARPA Multimedia Mail Project [Reynolds85]{Postel88] was a large project involving some
ten organisations and produced two separate implementations of multimedia document editors.

4 These figures are based on those in [Naffah86] and [Reynolds85] respectively.
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Figure 3.1: Multimedia Mail System Architectures

Common protocols were defined for document format [Postel82a] and transmission [Postel82b]
to ensure interoperability. The architecture for these systems is illustrated in figure 3.1; UIP
stands for User Interface Program, MPM for Message Processing Module, MMTP for Multimedia
Mail Transport Protocol and MMCP for Multimedia Mail Content Protocol. The main difference
between this architecture and that used in Agora is the absence of a name and message server;
there is no need for a name server since the Internet already provides equivalent functionality and
messages are stored in the host file systems.

The ISI Multimedia Mail Handler runs on Xerox 1108 machines and is written in Interlisp; the
Diamond [Thomas85] editor was implemented on Sun workstations in C by BBN. Both systems
allow creation, editing, transmission and management of multimedia documents, which may contain
text, graphics, images, spreadsheets and digital speech. Within a document voice annotation is
represented by an icon and voice caption, the user may invoke voice playback via the icon using
a mouse. Voice editing is achieved using a graphical representation of the speech waveform and
allowing the user to cut and paste voice segments using the mouse. Slate [Lison89] is a product
version of Diamond marketed by BBN.

Each multimedia document has a number of constituent components which are in some way related
to each other. These relationships must be maintained when the document is presented to a user.
Document components can be labelled as being independent, simultaneous or sequential. Text and
associated annotating voice will be simultaneous, whereas an image and associated text will be
sequential. There is no synchronisation between simultaneous components: both are started at
the same time and allowed to run independently of one another, assuming that there will no loss
of synchironisation between them. Given that real-time playback only involves the local host this
approach works well in practice.

3.4.3 Minos

Minos concentrated on the presentation of, and information extraction from, multimedia docu-
ments [Christodoulakis86b][Christodoulakis86a]. A client-server architecture is used, with
a central server implementing the multimedia object store (multimedia documents are composed
from'such objects) connected to a series of client workstations by an Ethernet. The client worksta-
tions are decoupled from the real-time limitations of the network by taking local copies of objects
to be edited and played back in real-time and then accessing them from local storage.
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Figure 3.2: MICE Architecture
3.5 Centralised Architectures for Telephony

This section describes a number of projects which have used computers to control and supple-
ment traditional telephony services. They have typically made use of PABX’s which allow call
management to be controlled by computer. This is in contrast to PABX manufacturers provid-
ing new and more sophisticated functionality such as voice storage and mail directly within the
PABX. The use of workstations allows the provision of user customisation and additional function-
ality (in particular databases) which cannot be conveniently provided using a telephone handset.
Schmandt [Schmandt89b] argues this point in more detail and presents two applications, Phone-
tool and Rolotool, illustrating the advantages gained.

All of the systems described below exhibit a low degree of hardware and network integration, using
separate hardware and networks for voice and data communication.

3.5.1 BerBell

The BerBell [Redman87] telephone switch was amongst the first to allow for computer control, via
a serial line, of its operation. BerBell provides two programming interfaces to its call management
functions: a C language interface, and a proprietary interpreted language called BERPS. Users
may then either choose to use pre-existing applications or to construct their own.

3.5.2 MICE

The Modular Integrated Communications Environment (MICE) [Herman87] was designed to
allow for fast prototyping of, and experimentation with, new telephony based services. Figure 3.2°
illustrates this software architecture. A central control process (CCP) and associated database is
used to store service configurations and to instantiate the services in response to user requests. A
simple interprocess communication system allows agent processes providing services to communi-
cate with the CCP and for the CCP to communicate with the processes managing the telephone
switch and associated hardware. A variety of services were provided including simple voice mail
and paging services. These made use of the voice storage and retrieval functions provided by the
PABX and a speech synthesiser to convert stored voice back into speech. DynaMice [Root86] used
a powerful workstation with bitmapped display to provide a very informative, direct manipulation
style of interface to the underlying call management services.

5This figure is based on that appearing in [Herman87]
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MICE has recently been extended to incorporate ISDN access and terminals [Chow90]; this work
has centered on the construction of a protocol gateway connecting the existing MICE network with
the ISDN.

3.5.3 Computer Integrated Telephony

DEC’s Computer Integrated Telephony (CIT) [Strathmeyer87] is another example of a cen-
tralised architecture; in this case the ISDN provides call management functions via D channel
signaling. Strathmeyer identifies the need for increased functional integration between the applica-
tion and communication components, with the ISDN viewed as the principal enabling technology.
CIT and similar applications are set to proliferate as ISDN becomes more widely available.

3.6 Distributed Architectures for Audio

Audio is used to refer to a wider range of services than those implied by telephony. These additional
services are made possible by the use of a distributed architecture, whereby control, generation,
presentation, storage and communication functions are distributed over a number of physically
separate system components. ’

3.6.1 Etherphone

The Etherphone project [Swinehart83] built custom telephone handsets implementing a real-
time voice protocol over a 3Mbits/s Ethernet. Each handset has sufficient intelligence to be con-
trolled over the Ethernet using the Cedar RPC protocol. Applications typically run on user work-
stations and communicate with Etherphones and other servers using Cedar RPC. Sophisticated
call management operations and programming interfaces are provided by a central Voice Conirol
Server [Swinehart87]. Text documents may be annotated with voice; such voice annotations are
identified by surrounding a text character with a distinctive shape and may be played back, inserted
or deleted using on-screen menus. A voice editor allows annotations to be displayed graphically
using a “capillary tube” representation, within which speech appears black and silence as white.
A play back cue, or cursor, moves along the capillary tube in time with the voice. Cut and paste
editing operations are used to edit the voice. A Voice Storage Server designed to support voice
editing was also implemented [Terry88]. A Tezt-to-Speech server is used to convert text strings
to voice which can then be played back via an Etherphone.

The Etherphone project paid particular attention to architectural and system support require-
ments [Swinehart88] and developed a Voice Systems Architecture to meet the following goals:

Completeness: to be able to specify the role of system components (e.g. telephone transmission,
switching and associated network services) in supporting the range of applications required,
e.g. computer controlled telephony and voice recording, storage and editing.

Programmability: to allow for existing applications to be modified and extended. Simple ap-
plications should be easy to construct and complex ones possible. A fault in one application
should not have an adverse affect on other applications and users.

Openness: by defining component functions rigorously it should be possible to replace individual
components with re-implementations of the same functions.

A five layer reference model (similar in spirit to OSI) is defined as follows:
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Physical Layer: represents the physical transmission medium (OSI Layer 1).

Transmission Layer: provides real-time voice encoding and transport protocols, as well as non
real-time control protocols. Nothing is said about the relationships between the real-time and
associated control protocols with- regard to performance and synchronisation requirements.
This layer corresponds to OSI Layers 2, 3 4 and 6, but not 5.

Conversation Layer: provides a uniform approach to the establishment and management of
voice connections, called conversations, between services. It also deals with the distribution
of conversation state and associated state transitions across interested parties. All commu-
nication between system components are mediated by this layer. The conversation layer is
analogous to OSI layer 5. '

Service Layer: identifies useful voice related services such as telephony, voice playback, recording
and storage, speech recognition and synthesis. This corresponds to OSI layer 7.

Applications Layer: contains the client applications that make use of lower layer functionality.

The conversation layer is of crucial importance, and a sound design and implementation of this
layer must be produced if any practical implementations of the architecture are to meet the goals
set. Within the current Etherphone system the Voice Control Server constitutes a centralised
conversation layer implementation; this centralisation is an implementation, rather, than an ar-
chitectural constraint. The Etherphone system has recently been extended to handle video (see
section 3.7.1) without requiring any major modification and thus validating many of the ideas used
in its design. :

Although the Etherphone architecture has demonstrated its utility, it fails to address the prob-
lems of heterogeneity and synchronisation as described in chapter 4. The entire system has been
implemented within the extremely powerful, but homogeneous, Cedar programming environment
using a single instance of voice hardware, namely the Etherphone. Synchronisation between related
media, such as the playback cue used for voice editing and the real-time voice being played back
is open loop; that is, no feedback is provided by the voice stream to ensure that the cue is kept in
step. For instance, if the voice connection breaks or is delayed the cue will continue moving along
the capillary tube as if nothing had happened. Similarly the assumption is made that sufficiently
high bandwidth, low delay and predictable jitter are provided by the Ethernet (which is physically
separate from the Ethernet used by the rest of Xerox PARC) for voice communication and control
of this communication to proceed in real-time.

3.6.2 ISLAND

The Integrated Services Local Area Network Development (ISLAND) [Ades87][Calnan87] project
investigated the transmission, storage and manipulation of real-time voice in a distributed com-
puting environment. ISLAND used the Cambridge Ring [Wilkes79] local area network and made
extensive use of the Cambridge Distributed Computing System (CDCS) [Needham82]. Voice
communication was provided by custom built Ringphones interconnected by a Cambridge Ring.
A new protocol was developed for voice transport between Ringphones; the existing Single Shot
Protocol (a primitive RPC protocol) was used to control the Ringphones over the network. The
ISLAND Ringphones were designed to be as simple as possible (to increase reliability), and to be
controlled by remote software. In this way the controlling software could be implemented using all
the facilities provided by the CDCS, whilst the Ringphones could be optimised for both hardware
and software reliability. A distributed, replicated, software implementation of a PABX (the Ex-
change) was constructed [Want88] with each component of the Exchange executing on a separate
network server to provide a high degree of fault tolerance. A voice editor [Calnan89] allowed
voice to be edited using only the Ringphone handset. To make the use of the handset practical
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the voice was automatically structured into a series of silence delimited phrases with play back,
insertion, deletion and replacement operations occurring at the phrase level.

The ISLAND architecture originally outlined in Ades’ thesis [Ades87] and subsequently refined by
Calnan [Calnan87] partitions the system into components rather than layers; this decomposition
is based on the low levels of hardware integration possible for voice at the time. Media specific
Terminals or Devices (such as Ringphones) represent the most basic components in the system.
Such Devices are usually used in combination under higher level control, provided by a Conductor,
which furnishes applications with an integrated view of the underlying system. Manipulation and
control of a single medium is provided by a Trenslator; Translators are usually only used directly by
Conductors in order to satisfy application requests. The use of Conductors is not mandatory and
it is possible to access Devices and Translators directly. Testing of new Devices and Translators is
usually carried out independently of a Conductor and once the new Devices and Translators are
working the Conductors can be updated to manage the new functionality.

A Conductor is defined to provide its client applications with device and location independence.
A Conductor mediates all access between physical devices and applications and maps from the
logical device interface it presents to applications and the underlying physical device interfaces.
Access to network servers (such as for voice storage) is also via a Conductor, thus providing the
same degree of independence for servers as for devices. It is also common for servers to use a
Conductor to provide device and location independence with regard to its clients. Conductors are
also responsible for managing multiple related physical devices in order to achieve a common goal;
for instance a single operation to play back a previously recorded voice file requires the Conductor
to instruct the server to play back the voice and a Ringphone to listen to the voice stream to be
played back. Resource management is also provided by Conductors, for example access to a single
physical device from multiple applications is mediated by a Conductor.

A Translator is éha.rged with providing interfaces for the control and manipulation of a single
medium and defines the interfaces between real-time and non real-time system components. Trans-
lators perform the following functions: '

1. Convert between real-time and non real-time encodings, e.g. between the small packet sizes
used between Ringphones and the much larger blocks required by the voice storage server.

2. Provide an interface for the control of a medium, in particular for capture and display.

3. Provide an interface allowing the controlled medium to be manipulated.

Translators are intended to be designed to provide a range of interfaces from which applications
can choose the one best suited to their needs. Conductors are responsible for the insertion of
appropriate Translators. Returning to the example of voice playback, the Conductor will insert a
Voice Translator between the storage server and Ringphone as illustrated in figure 3.3.

The Exchange provides a mechanism whereby other applications and servers may gain and relin-
quish control of individual Ringphones. Thus, the Exchange and all other system components are
able to co-exist within the same environment. C

The ISLAND architecture uses the Conductor to manage heterogeneity and to provide an in-
tegrated view of an un-integrated hardware base. ISLAND demonstrated that voice could be
effectively integrated into a distributed computing environment. However no attention was paid
to the synchronisation of related media. A great deal of effort went into the design and imple-
mentation of the Ringphones and hardware for the server machines in order to ensure that they
could meet the demands made by real-time voice. Similarly the Cambridge Ring network provides
guaranteed point-to-point bandwidth and access delay.
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Figure 3.3: Use of Conductors in ISLAND

3.6.2.1 MIT Audio Server

A similar project at MIT [Schmandt88] used an IBM XT equipped with plug-in cards for tele-
phone interfaces, voice digitisation and recognition, as a per workstation audio server. These audio
servers were controlled by a low speed serial line from a powerful workstation. Real time voice
transport was implemented using analogue telephone lines. This infrastructure formed the basis
for a number of other projects including the Conversational Desktop and Pitchtool.

In this system the serial line, and access to it, constituted the main performance bottleneck for im-
plementing real-time control of the audio server’s functions. To overcome this, operations requiring
real-time performance have two variants; the first is used to prepare for a subsequent operation,
thus allowing buffers to be created and filled from disk, before the second, continue, operation
is issued. Examples are prepare_play and play, prepare_record and record. This scheme minimises
the delay between the continue operation being issued and it taking effect with the result that it
appears instantaneous. A second drawback was encountered in the situation where two identical
operations were required in quick succession; the problem being that the second operation could
not be prepared until the first was completed. To overcome this a queue for prepare operations is
provided for each operation type.

3.7 Video

The following projeéts show that the multimedia integration of video is following the same evolu-
tionary path as that taken by voice.

3.7.1 Etherphone Video

The Etherphone project has recently been extended by the addition of a central video switch,
an analogue distribution network and a central analogue video mixer to display up to four video
images on a separate colour monitor associated with each workstation. The video switch and
mixer are under computer control and identical editing facilities are provided for video as for voice.
The incorporation of video required a minimal amount of software to drive the new hardware and
involved no major changes to the existing architecture and servers.



32 3. RELATED RESEARCH

Video Server

®

- Analogue video
— Digital network

Figure 3.4: Palantir Architecture

3.7.2 MUSE

The Athena MUSE project [Hodges89] set out to build a system which would reduce the “time
and skill” required to construct multimedia teaching and learning applications. A centralised
architecture is used, with a central video server (using video discs), a campus wide cable TV
network and workstations fitted with Parallax boards. The Parallax board accepts an analogue
video input and then digitises this directly into its frame-buffer, giving the workstation direct access
to digital video. In addition some of the workstations have local video disc players. MUSE provides
a general mechanism for representing temporal relationships between multiple media, e.g. text used
to annotate video must be rewound and fast forwarded in time with the video. Rather than relating
such streams to each other, an independent timer is used to drive both of them, which allows for
the addition and removal of media without disturbing existing relationships.

3.7.3 Palantir Project

The Palantir project at the University of Kent at Canterbury (UKC) is building a video server
which is intended to provide a variety of video services. A video server manipulates analogue
video, but is controlled via a digital network. Each workstation is equipped with a wvideo mizer
which accepts analogue video from the server and mixes it directly into the workstation’s monitor
output. Currently Ethernet is used for the control network and an analogue video network and
switch are used to route video to and from, the video server and workstations. Figure 3.4 outlines
this system architecture; note that the analogue network switch is not shown. The server and
mixer allow external control of the placement of video windows on the display and are designed
to allow interworking with standard workstation window systems. UKC plan to use the ANSA
Testbench to implement the control and management interfaces to the video server and network.

3.7.4 Pandora

Pandora [Hopper90], a collaborative project between the University of Cambridge Computer
Laboratory and Olivetti Research Limited, uses a distributed architecture. Each workstation is
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equipped with a complex multimedia peripheral, called Pandora’s Boz, which implements real-
time voice and video communication. The Cambridge Fast Ring is used to provide real-time
voice and video transport between boxes. Internally, a Pandora Box is a structured as a set of
separate devices which are interconnected using a central switch, both to each other, and to network
source and sink devices; the workstation controls the interconnection of devices. Pandora Boxes
currently contain as many as five Inmos Transputers controlled via a 20Mbits/s Transputer Link,
and use an analogue mixer to display video on the workstation monitor under workstation control.
The controlling workstation software is charged with managing connections between boxes. The
X11 window system is used and has been extended via the protocol extension mechanism, to
provide a programming interface to the video capabilities of the Pandora Box. The design and
implementation of the controlling software is at an early stage.

Applications built so far include a simple “video-phone”, and a video mail system supporting video
storage and limited video editing.

3.7.5 Lancaster Distributed Multimedia Research Group

The Distributed Multimedia Research Group at the University of Lancaster are investigating sev-
eral aspects of distributed multimedia systems, including the construction of a powerful “Multi-
media Network Interface” multi-processor for providing real-time voice and video communication
between general purpose workstations. This network interface consists of a number of Inmos
Transputers, and is connected to the workstation via a 20Mbits/s Transputer Link. This network
interface is not only charged with implementing voice and video communication, but also imple-
ments an X server and an instance of the ANSA Testbench for control of the interface’s voice and
video devices.

A network emulator is also being constructed to provide real-time voice and video communication
between the network interfaces and also to allow experimentation with a range of different styles
of network. The initial configuration is for ATM, with FDDI and ISDN support to follow.

Other on-going work includes an investigation of the requirements made by the provision of trans-
actions in a multimedia system and an investigation into the heterogeneity requirements made by
multimedia systems.

Much of the Lancaster work is being carried out within the framework of the ANSA architecture
and use is being made of the ANSA Testbench.

3.8 Computer Supported Cooperative Working

Computer Supported Cooperative Working (CSCW), or Computer Conferencing as it is sometimes
called, is concerned with using computers to allow physically distant individuals to cooperate on a
shared piece of work or information. Such cooperation typically takes the form of providing access
to, and manipulation of, a “shared workspace”, within which participants have a consistent view
of the same information. The information media commonly supported are text, graphics, bitmaps,
still images; voice is most often provided via external means (e.g. via a PBX). Two main problems
are encountered in providing such a shared workspace: ensuring that all participants see the same
consistent view of the workspace and providing effective management of access to the workspace
for manipulation (often referred to as floor control).

Centralised architectures (see figure 3.5) use a single conference server to accept input and output
from participants and then to multicast this to all other participants. Such an architecture is
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Figure 3.5: Centralised and Distributed Conference Architectures

straightforward to implement; however the conference server is an inherent performance bottleneck
and is likely to lead to poor interactive response. It also doubles the network traffic; all messages
are sent twice, once to the server and then again to all other conferees. Distributed architectures
(see figure 3.5) attempt to overcome these drawbacks by replicating much of the conference server
functionality at each participant’s workstation. Each workstation runs a conference agent, whose
primary function is to multicast updates generated locally to all other agents and to accept such
updates from other agents. This approach improves performance and reduces network traffic at
the expense of the increased complexity required to maintain consistency. The term workstation
agent is used to collectively refer to a workstation’s window and .input/output system.

3.8.1 RTCAL and MBIlink

The RTCAL and MBIlink systems developed at MIT [Sarin85] represent early CSCW systems;
both systems used external voice channels to augment the shared workspace provided. RTCAL
implemented a shared calendar and diary for scheduling group meetings. MBlink investigated the
low level issues involved in replicating a bit mapped display across multiple workstations.
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3.8.2 EMCE

SRI constructed an Experimental Multimedia Conferencing Environment (EMCE) [Aguilar86]
as part of a larger project to build a Command and Control Workstation [Poggio85] for the U.S.
Navy. EMCE was implemented on Sun workstations, interconnected by a 10Mbits/s Ethernet, each
equipped with an Adams-Russel Speech Processing Peripheral controlled via a serial line. Speech
is encoded using Linear Predictive Code Modulation at 2400bits/s. To facilitate the construction
of complex, distributed software an object oriented approach was taken.

Only one conference participant may speak at a time, with voice packets being multicast to all
other conferees. A voice activated, collision sensing, floor control scheme was used. As soon as the
current floor holder’s workstation receives a voice packet form another workstation it gives up the
floor. If the floor is free and two speakers try to take the floor at the same time they both give it
up. This policy was found to be effective for small, two to ten participant, conferences over a low
delay local area network.

To maintain synchronisation between the pointer position and speech, pointer coordinates and
speech are combined into a single stream which is multicast to all other conferees. Due to the
relatively long delays involved in displaying graphics the EMCE designers decided not to tightly
synchronise such graphics operations with speech; this assumption is no longer valid for high
performance workstations which are capable of real-time or near real time graphics update and an-
imation. All outgoing information from each workstation contains a timestamp and object or host
identifier, thus allowing the receiver to distinguish between information sent at the same time by
different hosts. Incoming packets are buffered (up to the some maximum delay to allow for packet
reordering) and sorted in order of transmission time before being forwarded to the application.
This ordering forms the basis for maintaining a consistent view of the shared workspace.

Four types of network traffic were identified as requiring different communication services:

control commands for conference management.

real-time interactions, e.g. voice communication and graphics updates related to voice com-
munication (e.g. pointer movement or dragging a window).

non real-time interactions; text and graphics updates not related to voice communication.

bulk data transfer, for files and large graphics operations.

The suggested mapping of these traffic types onto communications services is as follows: a) control
and non real-time interactions to a reliable packet protocol, b) real-time interactions to a low delay
circuit channel and c) bulk data transfer to a wideband satellite channel.

3.8.3 Lantz’s Conferencing System

Lantz [Lantz86][Lantz87] argues for a greater degree of integration between conferencing systems
and existing applications, programming methodology and system’s software. Lantz claims that
this increased integration should allow for the use of existing, unmodified, applications within
conferences, the incorporation of material and information created outside of the conference into
it and the ability to develop applications without being forced to be aware of the presence of the
conferencing system.

An experimental system was constructed using a distributed architecture and running over the V-
System [Berglund86]. The experimental prototype did not support voice communication, rather
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an external channel was used. Each workstation ran a conference agent which is responsible for
mediating all communication between the workstations agent and the application being used in the
conference. The conference agent takes advantage of the V-System’s message passing nature and
intercepts all messages passed between the application and workstation agent. For the workstation
with control of the floor, the conference agent multicasts updates to all other conference agents;
all the other agents simply buffer any input requests and wait for the agent with the floor to
multicast the input to them. A central Conference Manager was used to control the conference
and to implement floor control. The workstation agent required minor modification to provide
the conference agent with sufficient information. Care had to be taken when floor control was
transferred to avoid a loss of synchronisation due to input requests issued before the change of floor
being erroneously satisfied after control had been transferred; the solution adopted was simply to
abort all outstanding input requests on a change of floor control.

3.8.4 MMConf

BBN’s MMConf [Crowley89] takes an almost identical approach to Lantz, except that MMConf
runs over UNIX. Conference agents are called managers and the workstation agent is replaced by
the SunView”™ window system. Each application is relinked with a new system library which
passes all input/output events to the conference manager which is then able to multicast or buffer
them as necessary. Users request floor control by taking some action within the applications
window (pointer movements do not count as actions). This results in a call to the conference
manager requesting the floor, which is then multicast to all other managers. On receipt of a floor
control request the conference manager with the floor passes it on to all its applications which may
then either, tidy up any internal state before relinquishing control, or refuse to give up control.
This scheme works well when there is little contention for control; in practice the external voice
channel helps to reduce such contention.

MMConf identified a large number of problems encountered with maintaining synchronisation and
consistency within a distributed architecture. However, on closer examination many of problems
described are not entirely due to distribution and are the result of the low level at which replication
is implemented (i.e. window system events), the lack of integration between the conferencing system
and the system’s software supporting it and the lack of any user accessible distributed processing
support for sharing common resources and synchronising access to these resources. Some of the
problems described are briefly summarised below:

—

. inconsistent data files at any site rapidly lead to a loss of synchronisation.

2. non-deterministic applicatiohs - some applications are either inherently non-deterministic,
others as a result of implementation error.

3. user customisation of key bindings and other software options leads to misinterpretation of
events multicast from a workstation with one set of bindings to another with a different set.

4. timing dependencies; many operations are faster on one kind of workstation than on another
and if no means of synchronising on the termination of all such operations is provided then
synchronisation is rapidly lost. Window scrolling was found to be particularly problematic
and was disabled.

5. race conditions between events synchronised within the window system and events occurring
outside of the window system (which affect conference state) can lead to different event
orderings on different machines, and on the same machine, at different times.

6. differing application versions were found to lead to rapid synchronisation losses even if the
differences appeared to be minor.
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7. interference with conferencing by other applications. For instance an application which grabs
full screen control (i.e. locks out all other applications) may well lock all the conference
participants screens if executed on the conference floor holder’s workstation.

8. adding a new member to an existing conference requires establishing the current conference
state for the new participant; a possible, but inelegant solution is to playback all of the
window system events made within the conference up to the current time.

9. lack of feedback led to the use of external voice communication to establish that all conference
participants did have the same view of the workspace. Users were often heard to ask each
other what the current state of their display was.

3.8.5 Medical Applications

Karmouch et al [Karmouch90], describe a comprehensive multimedia system for use in a hospital
radiology department. Multimedia documents (stored in a database), incorporating X-ray images
and voice annotation (provided by a PBX), are used to represent patient records. A two party
conferencing facility is provided for on-line communication between radiologists and doctors, and
provides simultaneous access to the same patient record. Floor control is implicitly passed between
participants whenever mouse input occurs. '

The system was evaluated using a seven week in-hospital trial. The results of these trials showed
that the system could be made more useful by decreasing the time taken to digitise and commu-
nicate the X-ray images, by improvements in image contrast rather than resolution and by the
provision of the ability to view multiple images simultaneously. The conferencing facility was used
nine times during the trial and was found to be effective and easy to use.

These results illustrate that whilst multimedia systems are becoming practical, there is a strong
requirement for qualitative improvements. It is difficult to foresee the features and requirements
that the users of these systems value the most. In Karmouch’s system the absence of the ability
to view two X-ray images simultaneously was an unanticipated problem, whilst the tool provided
for measuring angles in X-ray images was found to be of little use because it did not accurately
model the way that a radiologist would perform the same measurement.

3.8.6 Floor Control

Floor control is an important component of any conferencing system and the style of floor control
required is highly dependent on the style of conference being supported. Floor control policies
or protocols lie along a spectrum defined by the degree of agreement required to change who
has control. At one end there are implicit policies which automatically change control of the
floor whenever a user takes some action which is an inherent component of his or her work. For
example, whenever a user speaks or moves the mouse cursor. At the other extreme there are
explicit policies that only transfer control in response to a request, (e.g. a special phrase which
is recognised as requesting the floor or selecting an icon). In an explicit scheme there is some
notion of a floor controller (either software or human) which is responsible for arbitrating between
multiple requests. Between these two extremes, lie any number of hybrid policies which vary in
the degree of interaction required to transfer control. The style of communication which can be
supported by these policies ranges from the very informal (implicit policy) to the formal (explicit

policy).

Ideally it should be possible to choose the most appropriate policy for the particular communication
required; e.g. an implicit policy for an informal technical meeting or an explicit policy for a board
meeting. However, in practice the policy choices available are constrained by the underlying
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communication network and in particular by the communication delay imposed by this network.
A local area network with low delay and a multicast facility is well suited to supporting an implicit
policy. A wide area network with much larger delay can only support an explicit policy. The
advent of high speed, low delay, wide area networks will remove this restriction.

Although implicit policies offer the potential for informal and more social communication than
explicit policies they suffer from a number of disadvantages. Implicit policies do not scale well; as
the number of participants increases the conference becomes chaotic as floor control is switched
too rapidly for the participants to keep up. Conflict arises when two or more participants take
some action which implicitly requests control of the floor at the same time; some way of deciding
who should be granted control is required as is some form of synchronisation to ensure an orderly
change. Completely implicit policies can only support a small number of users.

Implicit policies may be modified or extended to provide better scaling characteristics. A simple
extension is to only transfer control if the current floor holder has been idle for some time. To ensure
synchronisation some form of atomic multicast protocol, as advocated by Birman [Birman87], may
be used. Note that both of these mechanisms introduce additional delay which if too large may
destroy the implicit nature of the conference and lead to the adoption of a more explicit protocol
between the conference participants. Any multicast algorithm must be carefully designed to remain
stable, in terms of the computation and communication resources it requires when faced with a
large number of rapid floor control requests.

3.9 VOX Audio Server

The VOX Audio Server [Arons89][Schmandt89a] is designed to integrate voice and video into
standard workstation environments and user interfaces. The system architecture is intended to
satisfy the following goals:

Sharing: allow multiple applications to share the same audio hardware.
Routing: provide dynamic creation of routes or connections between devices.
Real-time: be capable of handling real-time audio events.

Device independence: hardware heterogeneity must be hidden from applications wherever pos-
sible.

Extensibility: allow for unexpected uses of audio, the incorporation of new hardware and the
integration of video.

The resulting architecture has been heavily influenced by the X Window system; a VOX audio
server runs on each workstation with network transparent connections between the server and its
clients. A workstation manager is intended to provide a workstation wide resource management
policy and operates in an analogous manner to window system managers. Figure 3.6 illustrates
this structure.

At its lowest level, VOX defines Logical Audio Devices (LAUD’s, pronounced louds) which represent
physical devices such as microphones, speakers, audio mixers and recorders. LAUD’s have audio
ports which may be “soldered” together to build Compound Logical Audio Devices or CLAUD’s
(clouds). Resource management is provided by allowing LAUD’s to be mapped and unmapped from
their physical devices; when mapped exclusive access is granted to the device. Client applications
may request that devices be mapped, but only the workstation manager is able to force such
mappings to occur. Figure 3.7 illustrates the construction of an answering machine CLAUD using




3.9. VOX AUDIO SERVER 39

Audio Server Window Server

Audio monitor Root window
Devi Dev2 Win1 Win2
LN J 7

Cotee 7 N olot >

Figure 3.6: VOX Architecture

Control

l

Control

Y

Play *1 Phone Record

Data Analogue Data

Figure 3.7: Answering Machine CLAUD

separate audio play, telephone and record LAUD’s. All interaction with LAUD’s and CLAUD’s
is achieved via queues of input and output events. To attain real-time performance the same
mechanism of having separate prepare and continue operations (input events in VOX) as used
for the MIT audio server (see section 3.6.2.1) is used again. The VOX server is responsible for
maintaining the synchronisation, or rather, the relative ordering of events. This is achieved by
multiplexing all input events from a CLAUD’s component LAUD’s into a single time stamped
event queue and by de-multiplexing output requests within the server.

The VOX architecture appears to be primarily intended for the control of audio (and video) streams
and devices which are implemented outside of the controlling workstation.® This approach is
dictated by current technological limitations; however these limitations are set to disappear in the
future and the VOX architecture does not offer any means of using the additional flexibility and
finer control which will then become available.

6The current hardware platform transmits voice using analogue technology with a crossbar switch used to im-
plement device interconnection.
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3.10 DASH

The DASH [Anderson90b] project is concerned with the integration of real-time or continuous
media (CM) into distributed computing systems. DASH assumes that all information media used,
including continuous media, will be handled in entirely digital form and that continuous media will
flow along the same data paths as all other data in the system. This approach, called Integrated
Digital Continuous Media (IDCM), allows general purpose processing power to be applied to
continuous media and offers greater flexibility as a result. Clearly IDCM assumes a very high
degree of hardware and network integration. The project can be split into two broad components:
the first deals with the communication of CM over digital computer networks, whilst the second
is concerned with the construction of applications and the integration of CM into the existing
system’s environment.

3.10.1 DASH Resource Model

The DASH resource model [Anderson89)] forms the basis for supporting continuous media by
providing a mechanism which pre-allocates resources for real time use and guarantees sustained
real-time performance. In this model, the system components which handle CM are decomposed
into resources: a CPU and its scheduler, networks, host interfaces and low level protocols are all
treated as resources. The unit of work for a resource is a message and continuous media consist
of a stream of such messages. Such a CM stream is unidirectional, with a source and sink, and
may use multiple resources between the source and sink. Resource reservation is provided by
the establishment of sessions; sessions may involve a single resource or they may be end-to-end
sessions which concatenate a number of basic sessions (i.e. sessions for a single resource) to provide
end-to-end resource allocation.

The interface to the resource model is provided by resource managers which accept requests for
resources for a specified message size, message rate and maximum end-to-end delay. The resource
manager then attempts to satisfy the request using a two phase protocol. The first phase proceeds
from the source to the sink and obtains a series of basic sessions satisfying the request parameters
for each resource specified. The second phase proceeds in the reverse direction and attempts
to optimise the resource allocation. On completion of the second phase either an end-to-end
session has been created which guarantees the requested requirements, or if sufficient resources
were unavailable at any stage, the session is refused.

A similar scheme is used by Ferrari [Ferrari90] for establishing real-time channels in a wide area
network. Requests for channel establishment include parameters for minimum packet inter-arrival
time, maximum packet size, delay bounds and packet loss rates. These parameters are then used
to establish an end-to-end channel in the same way as that described above for DASH.

3.10.2 DASH Architecture and CMEX

DASH proposes to integrate multimedia communication into existing systems such as Mach,
TCP/IP and X11. The Session Reservation Protocol (SRP) [Anderson90a] may be used in
conjunction with TCP/IP to implement the DASH resource model. Of particular interest is the
Continuous Media Extension to X (CMEX) which proposes to extend the X11 Release 4 server im-
plementation to handle real-time voice and video and to provide synchronisation of related streams.
CMEX uses an identical structure of physical, logical and composite logical devices as that used
in VOX.

Two encoding abstractions are defined: namely sirands and ropes. A strand represents a single
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information medium stream, and multiple strands may be interleaved to create ropes. Synchro-
nisation of related streams is achieved by interleaving multiple strands into a single rope which
is then transmitted over a single communication channel; the receiver de-multiplexes the rope to
obtain the individual strands. Alternatively, strands transmitted over multiple channels may be
synchronised to a real-time clock and played back in lock step.

Whilst offering the potential for increased functional and multimedia integration, CMEX suffers
from a number of practical and architectural disadvantages. The principal practical disadvantage
centres on the fact that X servers are already very complex and very large pieces of software,
adding yet more complexity is a major undertaking; in particular CMEX will almost certainly
require a multi-threaded X server. Strand and rope formats must be understood by CMEX servers
if they are to be synchronised, therefore the addition of new formats requires the modification of
the server. In addition the synchronisation provided by the server is largely outside of application
control, and offers a restricted set of synchronisation operations. These issues are discussed in
more detail in section 4.2.4.3.

The CMEX server is currently at the design stage and a suitable hardware base for DASH has yet
to be identified and installed. o

3.11 Extending UNIX

Leung et al [Leung90], have built a multimedia communication system by extending UNIX to pro-
vide system level support for such communication. This approach allows the use of existing UNIX
applications from within multimedia conferencing applications and provides a uniform program-
ming paradigm for the construction of multimedia applications. Two abstractions are provided;
one for communication and the other for application programming. Both are then integrated into
a single, consistent programming model. An experimental 100Mbits/s fast packet switch is used
to provide data and real-time voice transport between the UNIX workstations.

3.11.1 Communication

Multimedia virtual circuits are used for transporting multimedia data between hosts and are re-
sponsible for maintaining the temporal synchronisation between related media streams. Synchro-
nisation is achieved by multiplexing the related media streams or channels (e.g. data and voice)
over a single multimedia virtual circuit. Thus, there is a two level structure of multiple, sepa-
rate, media channels multiplexed over a single virtual circuit with temporal synchronisation being
maintained between the constituent channels. Each channel has a service class which describes
its average and peak bandwidth and a priority which represents its delay requirements. A high
priority channel will be granted resources such as network buffers and network access ahead of a
lower priority channel. However, this two level structure means that resource management must
be applied to virtual circuits as well as individual channels. This is implemented by the simple
rule that the priority of a virtual circuit is the highest priority of its constituent channels. Given
that a virtual circuit group consists of all the virtual circuits of the same priority the following
scheme is implemented:

e sirict priority is applied between virtual circuit groups; that is, a lower priority group cannot
be transmitted whilst a higher priority group has yet to be transmitted.

e within a virtual circuit group, each virtual circuit’s constituent channels are granted network
access in a round-robin manner and thus provide temporal synchronisation.
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This scheme is extended to allow the optional provision of flow control; for instance a voice channel
would not be flow controlled, whereas a data channel would. When channels are combined into
virtual circuits the flow control scheme may be extended to all of the constituent channels and
therefore if one channel is stopped then so are all of the others in the circuit. Flow control
is implemented using a dynamic window scheme, whereby the window size may be dynamically
altered based on current resource availability. Another aspect of multimedia virtual circuits is
that channels may be added to, and deleted from, existing circuits, and that the service class and
priorities may be dynamically modified.

3.11.2 Programfning

7

The observation is made that multimedia applications often require multicast (one to many) and
multidrop (many to one) communications. In some cases the multicast must be ordered across all
recipients; that is, all such recipients receive multicast data in the same order. Finally applications
often need to add new connections, modify existing ones and destroy redundant connections.

The notion of a connector is introduced to satisfy these requirements and is closely modelled on
the UNIX pipe facility. Unlike pipes, connectors, may have more than one sink or more than one
source. Connectors are used to interconnect UNIX process in a similar fashion to pipes, with the
added provision of multicast and multidrop communication. Processes access connectors using the
standard UNIX system calls open, read, write and close. If one process writes to the connector
then allreading processes will receive the data, similarly if several processes write to the connector
then all reading processes will receive the data sent by each process in the order that it was
sent. To.overcome the inconsistency present in UNIX between communication between processes
(provided by pipes) and communication between processes and devices (provided by input/output
redirection) the idea of an active device is introduced which allows all multimedia devices to be
treated as processes. The use of active devices means that connectors may be used in a uniform
fashion to connect all multimedia devices and processes. Figure 3.8 illustrates how connectors and
active devices can be used to construct a recorded telephone conversation.

The multimedia virtual circuits described above appear as active devices. Connectors are used
to connect local devices to a circuit which then traverses the network to a remote machine where
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the same circuit is connected to the receiving device; in this way an end-to-end channel may be
established. '

The active device interface provides a single input and output interface similar to that of a UNIX
process. In order to allow more complex devices and processes to be implemented this interface
may be extended on a per device or per process basis. The active device interface is considered to
be the base class and devices or processes may extend this base class by adding new interfaces as
required.

A high-level programming language called Non-Procedural Language (NPL) provides an event-
driven programming model. Applications consist of a number of event-handlers which are invoked
when the corresponding event occurs; these event-handlers are then able to create and manipulate
virtual circuits and devices. Each host runs a User Interface and Call Controller component which
implement a simple session protocol to allow the creation of new calls between users on separate
hosts. A series of user interfaces, varying in sophistication, are provided to the system. A basic
interface is provided for placing and managing calls, an advanced interface allows the creation of
new services using existing NPL components and finally it is possible to create new NPL programs.

3.11.3 Extending UNIX Summary

Multiplexing of related channels onto a single circuit provides ordering of the data flowing along
the constituent channels. However, this does not provide synchronisation with respect to absolute
time: the resource management and scheduling policies applied to channels must provide such
synchronisation. It is claimed that ordering provided by the multiplexing helps provide temporal
synchronisation. This scheme suffers from many of the same disadvantages as those discussed
above for CMEX; these issues are discussed in more detail in section 4.2.4.3.

The connector and active device model appears to provide a clean and powerful programming
model for constructing multimedia applications.

3.12 Summary

A great deal of effort has been applied to increasing multimedia integration at the network, and
low level protocol levels. Either ATM or some form of dynamic bandwidth allocation is being
used to physically support multimedia traffic, whilst protocol architectures are moving towards
resource management with pre-allocation of resources to provide guaranteed, sustained real-time
performance. Similar effort has gone into the construction of workstation and associated peripheral
hardware which can support real-time multimedia communication; again the major issue is the
degree of application control and flexibility provided by these systems.

Voice systems have followed an evolutionary path from centralised to distributed architectures, both
in terms of hardware and software. The same path is also being followed for video. Most progress at
the application and user interface levels has been made by voice systems; whilst video related work
has been concentrated at the physical level. The Etherphone and ISLAND projects both provided
real-time voice communication over digital networks and implemented sophisticated applications; -
this level of sophistication has yet to be reached for video systems. Projects providing multimedia
document and multimedia mail facilities have avoided the need for real-time voice communication
by using asynchronous communication, whilst many other projects have used analogue transmission
for voice. There is great variation in the degrees of hardware and network integration present in
multimedia systems and there is a similar variation in the system architectures used. The inevitable
delay between greater integration being possible and it becoming commonplace, and continuing
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technological progress dictates that this situation is unlikely to change. Therefore, whilst the
DASH IDCM approach is attractive, it is unlikely to become practical and common place for some
years yet.

Although architectures such -as those used in VOX and CMEX are distributed, the distribution
is provided at a coarse granularity. That is, the unit of distribution is the VOX or CMEX server
and the client application programs, this has the disadvantage that even minor extensions to the
system’s functionality require updating the servers and client applications.

A common feature of all the architectures presented is the provision of some means of separating
real-time from non real-time system components. This separation is typically fixed and funda-
mentally affects the design of application programmes. Such separation is either forced entirely
by performance constraints or results from the observation that real-time environments are gener-
ally very poor for program development whereas rich development environments (such as UNIX)
are equally poor for real-time operation. Leung’s work is a notable exception which attempts to
integrate multimedia communication into the rich programming environment provided by UNIX.

Most systems do not provide any means of synchronising related media and have ignored the
problem by using an oper loop approach. Where synchronisation has been provided its nature
has been predetermined and its operation largely outside of application control; there is little
separation between synchronisation mechanisms and synchronisation policies inevitably leading to
a restrictive system.

Finally the lack of functional integration is clear with projects either concentrating entirely on
physical and service level issues or on application and user interface issues without paying any
regard to one another. ‘




Problems
and
Requirements

The nature of existing computer systems presents a series of problems which must be overcome in
order to make the support of multimedia possible. In addition, the nature of multiple information
media, and in particular continuous media, have requirements which must be satisfied by the un-
derlying computer systems if such media are to be successfully supported. The distinction between
problems and requirements provides a framework within which to discuss the issues relevant to
multimedia. '

4.1 Problems

Each component of a Multimedia Communication System encounters its own particular set of
problems in addition to any problems common to multiple components. Recall that an MMCS has
five components as follows:

e Information Media Component (IMC).
e Communications Component. »
o Distributed Processingy Component (DPC).
e Application Component. .
e User Interface Component (UIC).
The following discussion concentrates on the IMC, Communication and Distributed Processing

components, as these represent the most significant obstacle to progress in the Application and
User Interface components.

45
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4.1.1 Information Media Component Problems

Continuous media such as voice, and especially video, require much higher data rates than those
supported by existing systems. Although compression may reduce these rates, it will often be
necessary to support multiple simultaneous connections, increasing the aggregate rate further.
Multimedia communication also demands flexible connectivity, both within individual, and between
separate, workstations. Common examples include connecting a camera to a screen or network
output, or a network input to screen output.

Current workstations are predominantly uniprocessor machines with bus based access to memory
and input/output devices. Unfortunately, buses represent an inherent bottleneck in any system
design. This bottleneck is rarely reached in current systems because bus accesses are typically
bursty and caching techniques may be used to reduce bus latency and access. However, continuous
media connections are often long lived, requiring sustained high data rates and are therefore more
likely to saturate a bus. During such a connection little or no bandwidth may be available for
other computation - potentially stalling the rest of the system. Alternatively, other computation
may stall the continuous media stream in unpredictable ways and therefore make it impossible to
provide the guaranteed performance required for such media.

In many existing multimedia systems, these problems are avoided by off-loading much of the
multimedia processing to separate, specially designed, and often complex, peripherals or front
ends. A good example is the Pandora Box (section 3.7.4), which is designed to be controlled by
a separate workstation and is described as a multimedia peripheral. In such systems care must
be taken to ensure that the control path between the controlling workstation and the peripheral
provides sufficient flexibility and sufficiently low latency to allow for the effective control of the
peripheral. Any latency measurements must be taken on an end-to-end basis; that is, from the
user of the system all the way to the low level hardware devices. The large amount of diverse
software involved in such a data path makes it difficult to provide a reliable bound on the latency
introduced.

To summarise, existing workstation architectures are poorly suited to supporting the sustained,
possibly multiple, high data rate connections required for multimedia. Whilst off-loading the
processing to a peripheral avoids some of these problems it requires that care be taken to provide
effective control of the peripheral.

4.1.2 Communications Problems

Existing communications networks generally fail to provide the high bandwidth, low latency and
communication guarantees essential for multimedia communication. As seen in section 3.1, a new
generation of networks is being designed and implemented with the explicit goal of overcoming
these problems.

Established protocols, protocol architectures and their implementations, predate the emergence
of multimedia communication and inevitably suffer from the same problems as the underlying
networks. The complexity of these protocols makes these problems much harder to overcome at the
protocol level than at the physical network level and consumes substantial amounts of processing
time for each network packet transmitted and even more so for each packet received. A final
problem associated with excessive complexity is that predicting the performance of protocols and
offering the performance guarantees required for continuous media is, at best, extremely difficult.
Factors contributing to this complexity include: coping with heterogeneous physical networks,
providing a high degree of reliability, standards conformance, excessive multiplexing and internet
routing.
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The increase in network speed, from 10Mbits/s to 100-500Mbits/s, coupled with the decrease
in network packet size (53 bytes for CCITT ATM) outweighs the increases in CPU speeds. This
entails a net decrease in the amount of processing time available between potential network accesses.
Therefore, the amount of protocol processing must be reduced or it will prove impossible to make
full use of the increased network capacity. Another important consideration is that as network
speeds increase the end-to-end delay, expressed as data bits in transit, as opposed to time, also
increases. This has the effect of lengthening any end-to-end feedback loops designed to provide
flow control; the information available for making flow control decisions will be out-of-date with
respect to the current state of the network. The only way of overcoming these problems is to
reduce protocol processing time and end-to-end delay, by implementing as much of the protocol
in hardware as is practical. The complexity of existing protocols such as TCP/IP and OSI makes
such hardware implementation impractical and as a result a new series of protocols are currently
being designed with the explicit goal of being amenable to hardware implementation.

The principal drawback associated with hardware implementation is the lack of flexibility available
once the hardware has been implemented. The large investment required to realise such hardware
implementations dictates that a great deal of research be carried out to validate the design of the
protocol before committing to hardware.

The presentation delay (i.e. OSI layer 6) is often a significant delay in many protocol implemen-
tations. The obvious way to reduce this delay is to improve the quality of the presentation layer
implementation. Another option is the use of pipelining to overlap the presentation of one packet
with the transmission of the next one.

Unfortunately, multimedia communication by definition requires multi-service protocols and out of
necessity requires high speed networks. McAuley [McAuley89] discusses these issues in more de-
tail and presents a new protocol architecture and associated implementation designed to overcome
these problems.

4.1.3 Distributed Processing Problems

The problems posed by the distributed processing component fall into two categories: hardware
and protocol heterogeneity, and inappropriate resource management policies.

4.1.4 Heterogeneity

Heterogeneity is one of the oldest problems in computer science and is usually solved by providing
a level of indirection, in the form of a common interface, between the heterogeneous hardware
or software and the controlling software. Such a solution works well if the underlying system
differs in detail rather than fundamental functionality; even so, it is often necessary to provide
an escape mechanism to allow access to implementation specific functions. The heterogeneity
found in multimedia systems is further increased by the varying degrees of hardware and network
integration, and the diverse range of multimedia devices and networks used.

The interfaces provided for managing hardware and network heterogeneity are often separate and
different in style. For instance, Berkeley UNIX provides a file based interface for managing hard-
ware heterogeneity and a separate, specially designed interface, Berkeley sockets, for managing
protocol heterogeneity. Unfortunately, the often close relationship between multimedia devices
and communication protocols, and the desire to be able to freely interconnect multimedia de-
vices, requires that any scheme for managing hardware heterogeneity also be used for protocol
heterogeneity.
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There is an inevitable performance penalty associated with managing heterogeneity which existing
systems assume is worth paying. However, this may not be true for multimedia systems in which
great care is required to reduce the performance overhead to an acceptable level, otherwise system
implementors will simply bypass any such mechanisms provided.

4.1.5 Resource Management

The othet major problem encountered is that the resource management policies used by general
purpose operating systems for CPU time, buffer management and network access are designed to
provide fairness rather than guaranteed real-time performance. Such policies make it impossible
to construct real-time multimedia applications. Whilst this is reasonable for shared machines,
it is much harder to justify for a high performance workstation which has a single user for the
vast majority of the time. As a result, the rich programming and run-time environments offered
by such systems cannot be used by multimedia applications. Similarly the real-time operating
systems which can provide the performance demanded by multimedia only provide very primitive
programming and run-time environments. Some form of compromise must be found between rich
programming and run-time environments on the one hand, and real-time performance on the other.

4.1.6 Common Problems

There is a fundamental tradeoff between placing functionality as near the hardware as possible for
performance reasons, and for keeping it near the application and user for generality. This tradeoff
is particularly evident in multimedia communication systems which inherently require high levels
of performance at the same time as sufficient flexibility to experiment with new applications.

The most obvious instance of this tradeoff is that between heterogeneity management and perfor-
mance. To date most multimedia systems have opted for performance, and have ignored hetero-
geneity issues, with the result that these systems are very difficult, or impossible, to port to new
hardware and software platforms.

Representing and maintaining the relationships between multiple media is a problem faced by all
components and is discussed in more detail in section 4.2.8.

4.1.7 Problems Addressed by IMAC

IMAC and its prototype implementation address a subset of the problems discussed above. A
uniform interface for managing hardware, protocol and multimedia heterogeneity is provided, as is
a means for representing and maintaining the relationships between multiple media. Care is taken
to ensure that the performance penalty associated with the use of the heterogeneity interface is
kept to a minimum.

The remaining problems associated with workstation design, operating system and protocol design,
and resource management are not tackled by IMAC; however, section 9.3 presents requirements
for the design and implementation of future systems to avoid these problems.
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4.2 Requirements

This section discusses the requirements made by continuous media and the requirements made by
multimedia on each component of an MMCS; particular attention is paid to synchronisation.

4.2.1 Continuous Media Requirements

Some information media inherently consist of a continuous sequence of symbols which have strict
timing dependencies between symbols. Such media are described as continuous and the term
stream is used to refer to the sequence of symbols constituting such a medium. By this definition
voice, video and graphical animation are continuous, whilst text, images and graphics (excludmg
animation) are not.

The digitisation of continuous media may take many forms:

1. sampling the original stream at regular intervals and generating a fixed size sample repre-
senting the stream’s state at the instant it was sampled.

2. sampling at regular intervals but generating samples of varying size.

3. sampling at irregular intervals and generating fixed or variable sized samples.

If there is physical separation between the point of generation and the point of presentation,
then the samples must somehow be communicated from one point to the other. There are a
number of ways in which a continuous media stream may be packetised for transmission over a
communication network. If a single channel is used then any combination of fixed or varying
sample sizes, transmitted at fixed or varying time intervals may be used. Alternatively, multiple
channels may be used, whereby a single media stream is split into several sub-streams, each of which
may be transmitted over a separate communication channel; some form hzerarchzcal encoding is
required to allow a single stream to be split into multiple sub—streams. Although the use of variable
sized samples, varying transmission intervals, and multiple communication channels appears to
contradict the initial definition of continuous media, this is not the case since the continuous
nature of the media need only be apparent at the source and sink of the media stream. The use
of such variable rate and hierarchical encodings considerably complicates the timing constraints
imposed on the communication system, since the constraints must vary in line with the variation
in the encoding used.

The term isochronous is often used as a synonym for continuous. However, within this dissertation
an important distinction is made between the two. Continuity is viewed as a fundamental property
of a medium, whereas the term isochronous is used to refer to how a communication medium is
being used; that is, a single continuous medium may be isochronous when used in one way but
merely continuous when used in another. Thus, isochronous media are a special case of continuous
media, with the added requirement that they be synchronised with respect to real-time. For
example, video communication between two users is isochronous, whilst a video stream which is
being recorded to disc need not be synchronised to real-time and is therefore only continuous.

Real-time synchronisation is discussed further in section 4.2.9, whilst section 5.2.3.4 gives a precise
definition of isochronous media as used within IMAC. The following sections discuss the require-
ments imposed by continuous media in detail.
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[ Protocol | End-to-end Delay | Packet Rate | Packet Size |  Compression
Etherphone 40ms 50/s 160 x 8 bit samples® | silence suppression
ISLAND 2-5ms 500/s 16 x 8 bit samples® none

Table 4.1: Example Voice Protocols

4.2.1.1 Basic Requirements

The requirements made by continuous media are often summarised as:

1. low latency

2. high bandwidth

These requirements are stated in relative terms with respect to existing communication require-
ments, the remainder of this section quantifies these terms.

The CCITT defines encoding standards for voice at 32Kbits/s! and 64Kbits/s,? with a 16Kbit/s
standard under development. Although these rates appear modest, the 8 bit sample size they
require dictates a latency of 125us between successive samples. It is possible to relax this latency
requirement by aggregating several voice samples into a single packet for network transmission at
the risk of reducing voice quality and robustness.?

The Etherphone [Swinehart83] and ISLAND [Ades86] voice protocols are summarised in Ta-
ble 4.1. Both protocols use standard 64Kbits/s voice Codecs, an 8 bit sample size, and 125us
between samples; each network packet carries a number of 8 bit samples. Both protocols give
acceptable voice quality cormmunication over a local area network using custom built phone hard-
ware, and represent an accurate indication of the bandwidth and latency requirements of real-time
voice. The lower delay achieved by the ISLAND voice protocol is largely due to its smaller packet
size, lack of compression and encryption, and the use of the Cambridge Ring as opposed to the
Ethernet.

For video, the demands are far greater, with required bandwidths ranging from 4.6Mbytes/s for
ISDN video phones,* to 20 MBytes/s for broadcast video and 144 MBytes/s for HDTV. The
use of compression techniques promises to reduce these requirements, but only at the expense of
introducing additional latency.

At the time of writing the Pandora Box (see section 3.7.4) can generate, transmit over the CFR,
and present real-time video in one of four resolutions.” Video frames are captured at 128x120
resolution, with 8 bit pixels. DPCM coding is used to reduce the 8 bit pixels to 4 bits and thus
halve the data rate. Each frame may be optionally sub-sampled to a resolution of 64x60, and
before being displayed a frame may be interpolated to double the screen resolution. The various
combinations are summarised in table 4.2. '

- 1COITT G.711 PCM coding.
2CCITT G.721 ADPCM coding.
3The loss a single network packet entails the loss of several voice samples.
*CCITT H.261.
5Representing 20ms voice.
6Representing 2ms of voice.

7Pandora video data was supplied by Alan Jones of Olivetti Research Ltd.



4.2. REQUIREMENTS ‘ 51

[ Sub-sampling | KBytes/Frame | Interpolation | Resolution |

Yes 1.875 - No - 64x60

Yes 1.875 Yes 128x120
No 7.5 No 128x120
No 7.5 Yes 256x240

Table 4.2: Pandora Video Options

In the current implementation, 12.5 frames are transmitted each second, giving data rates of
either 23.43Kbytes/s (187.5Kbits/s) and 93.75Kbytes/s (750Kbits/s). A new implementation of
the network interface is under construction which will allow transmission of either 25 frames/s
at the currently supported resolutions (187.5Kbytes/s), or 12.5 frames/s at 256x240 resolution
(375Kbytes/s). These figures are intended to give a general idea of the data rates required for
video, they are not entirely accurate in that they do not account for protocol headers.

4.2.2 Additional Requirements

In addition to the basic requirements discussed above, there are a number of other requirements
which have a fundamental impact on the design of an MMCS. *

1. timeliness: continuous media data is only valid for a bounded period and once this time has
elapsed the data is useless.

2. variations in delay, commonly referred to as jitter, must be bounded to some statistical limit
such as the ninety-ninth percentile,® and if possible, minimised.

3. high reliability is not of primary importance since voice and video are inherently tolerant of
small amounts of error. However, if the medium is compressed or being recorded then the
tolerable communication error rate will be decreased.

4. media and application specific error recovery strategies. Different media require different
action to be taken in the face of errors. For instance, some media, primarily voice, have no
meaning if stopped or delayed, whilst other media may degrade to a discrete representation;
e.g. video degrades to a still image. This particular requirement is called continuity.

5. synchronisation: the fact that samples are generated and presented at regular intervals means
that some form of synchronisation must be maintained between the source and sink.

6. guarantees must be provided for latency, bandwidth, jitter and timeliness to ensure that the
continuous nature of the media is maintained.

7. all of these requirements and guarantees must be met on an end-to-end basis; that is, from
the point the media is generated to the point it is presented, regardless of the number of
stages present in the path from generation to presentation.

The following discussion initially concentrates on the requirements of single continuous media
streams, before moving on to multiple, related, continuous media streams.

8i.e. 99% of all packets experience less than some stated amount of jitter.
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4.2.2.1 Timeliness and Latency

The notion of timeliness imposes an upper bound on the maximum acceptable latency and dictates
that any data exceeding this latency is of no use. This simple observation means that late data is
as useful as lost, or corrupted, data and can, therefore, be ignored. Similarly, there is no point in
using acknowledgements to detect lost, corrupted or delayed packets since any retransmission on
a timeout of such an acknowledgement will almost certainly arrive too late to be of any use. As
a result of the timeliness requirement, any protocol design for continuous media should avoid the
use of retransmission schemes. Such schemes also increase bandwidth requirements.

The primary use of re-transmission is to provide reliability. Therefore, other means must be used to
provide any required level of reliability. An alternative method is Forward Error Correction (FEC)
which introduces sufficient redundancy into the data transmitted to allow the receiver to recover
from lost or corrupted samples. Unfortunately, FEC inherently increases bandwidth requirements
and latency. The fact that voice and video, especially when presented to humans, are inherently
error tolerant makes the provision of high levels of reliability unnecessary. For voice an error rate
of 1%, provided each error burst is shorter than 4ms, is often quoted as acceptable; the acceptable
error rate for video is entirely dependent on the encoding and compression algorithms used.

The timeliness requirement suggests that low latency is of greater importance than reliability for
continuous media; therefore, reliability is not a goal for such media.

The end-to-end path between generation and presentation can be subdivided into a series of delays
as follows:

e packetisation delay; the time taken to generate the sample and transfer it to a network buffer.
o network access delay; the time the network buffer spends waiting for access to the network.
e transmission delay; the time taken to transmit the sample over the network.
e receiver buffering delay; the time spent buffering the sample at the re<.:eiver.

o presentation delay; the time taken to present the sample.

These delays will vary depending on the media and communications network used and are largely
the result of contention for shared resources such as CPU time, memory and network access. On
a LAN the packetisation and receiver buffering delays are likely to dominate.

Aggregating several samples for transmission in a single network packet increases the packetisation
delay, but is necessary if network and communications protocols are too slow to provide the lower
- latency required for smaller, more frequent, samples. The sample size also affects the network
utilisation and larger samples may be used to increase network utilisation. Therefore, there is a
tradeoff between the sample size, decreased packetisation delay and increased network utilisation.

The Etherphone voice protocol employed a large packet size to increase network utilisation at the
expense of an increased packetisation delay. The 40ms of end-to-end delay is broken down as
follows:

20ms: packetisation delay.

5ms: encryption and Ethernet transmission.

5ms: software delays.

10ms: receiver buffering to remove jitter.
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The dominant delays are for packetisation and receiver buffering, which together account for 75%
of the total delay. The large packetisation delay reinforces the claim that presentation delays are
a major communication cost.

4.2.2.2 Jitter

Jitter refers to the statistical variation in delay introduced by the presence of queues in computers
and computer networks. Jitter may be reduced by the use of buffering at the receiver. Incoming
samples are added to the tail end of a list of already received samples. Samples are removed from
the head of this list at regular intervals, timed using the receiver’s local clock. In this way delay
variations are absorbed by variations in the size of the list. Such a buffering scheme, although
reducing jitter, increases delay. Therefore, the amount of jitter allowed must be traded off against
the latency requirements. Given a reliable estimate of the jitter present in the system it is possible
to decide how much buffering to use (i.e. the maximum size of the list) and the latency that this
buffering introduces. For such a scheme to work effectively the jitter must be bounded; if this is
not the case then there is little that can be done to remove jitter. Removing jitter using receiver
buffering assumes that the dominant source of jitter is the network and that the presentation of
the media does not, in itself, introduce substantial amounts of jitter; in practice this is a reasonable
assumption.

With the exception of receiver buffering, each source of delay described in the previous section is
also a source of jitter. The delay introduced by receiver buffering is intended to reduce jitter. The
largest and most studied source of jitter is that introduced by buffering for network access and
network transmission. Clock rate variations are an additional source of jitter; if the generator’s
clock rate varies then so do the intervals at which at which it generates samples. Clock rate
variations are discussed further in section 4.2.2.4.

4.2.2.3 Continuity, Media and Application Specific Error Recovery

It must be possible to take action to preserve continuity in the face of lost, corrupted or delayed
samples. For video it is often possible to redisplay the previous frame (assuming it is still available)
and so degrade to a still image if full-motion video can no longer be maintained. Voice is more
problematic since it has no meaning if stopped. If only a few samples are lost it is possible to play
“white noise” to fill in for the lost samples without introducing a noticeable degradation in quality.
However, if the voice stream is broken or suspended for more than a short period of time, 10ms
say, then there is little that can be done, other than to notify the user of the problem.

Steinmetz [Steinmetz90] also identifies the continuity problem and suggests a synchronisation
mechanism called partial blocking which allows for the specification of some alternative action to
be taken in the face of communication errors and suspension.

Continuity and partial blocking are just one ezample of a media specific error recovery strategy.
The precise strategy required will be media and application specific. Some applications may be
prepared to tolerate far greater error rates than others; for instance, a voice and video editor may
be tolerant of increased communication delay whilst requiring increased reliability. Therefore, some
means is required for allowing the application to control the action taken on errors.

4.2.2.4 Single Stream Synchronisation

An implicit assumption made so far is that each sample transmitted over the network contains suf-
ficient information to detect lost and re-ordered samples. This information is required to maintain
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the ordering of samples and in conjunction with meeting timeliness and jitter constraints, allows
synchronisation between the source and sink to be maintained.

Another source of synchronisation problems is differing clock rates at the source and sink. If the
source clock runs faster than the sink’s clock then the source will generate samples faster than
the sink can present them and this will eventually lead to a loss of synchronisation. The sink can
monitor the rate of incoming samples and adjust its clock rate to match that of the samples and
hopefully that of the source. This only ensures that the source and sink run at the same rate; it
does not detect if both clocks are running at an incorrect rate. One approach is for each sink to
periodically communicate with a source which is known to have a highly accurate and stable clock
and thus allow the sink to synchronise its clock to the correct rate. Clock rate variations are almost
entirely due to temperature variation and could be largely eliminated by the use of temperature
compensated clocks.

The synchronisation requirement for a single stream depends on the timeliness and jitter con-
straints being met, on sufficient information to order samples, and on the maintenance of the
same, constant, clock rate at source and sink.

4.2.2.5 End-to-end Guarantees

Continuous streams demand that their timing constraints be met for the entire duration of the
stream; that is, stream requirements must be guaranteed. In order to provide guarantees a means
must be found for expressing the guarantees required. Simple guarantees include minimum band-
width, maximum latency and maximum jitter. In order to more accurately model the performance
and behaviour of a real-time stream a more complex set of parameters, such as those used by
DASH, is required. These parameters constitute a Quality of Service (QoS) and are commonly
referred to as QoS parameters. The simplest means of providing such guarantees is to pre-allocate
the necessary resources and ensure that these resources are not re-allocated for the duration of the
connection. There is a need for negotiation between the guarantees requested and those which can
be efficiently provided.

The end-to-end argument [Saltzer84] states that many communications problems can only be
solved, or solved efficiently, on an end-to-end basis. This is especially applicable to multimedia
communication involving human participants as the final communication end-points. All require-
ments and guarantees must be on end-to-end basis if the human users are to be able to effectively
communicate. Therefore, QoS must be extended beyond networks and communication protocols
to include operating systems, applications and user interfaces. This extension of QoS underpins
the increased functional integration provided by the IMAC architecture. The use of QoS in IMAC
is described in section 5.2.7.

4.2.2.6 Multiple Streams

The discussion so far has centered on the requirements of a single continuous media stream; how-
ever, this dissertation assumes that multiple streams will be used simultaneously. The use of
multiple streams introduces two more requirements:

1. guarantees must be met in the face of multiple streams.

2. related streams may need to be synchronised with respect to each other.

The first requirement is not unique to continuous streams; guarantees must be met regardless of all
other system activity. Therefore, any resource management scheme must cover all system resources
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and not just network and protocol resources.

The synchronisation required for multiple streams is discussed in detail in section 4.2.8.

4.2.2.7 Summary

The continuous media requirements discussed above can be categorised as follows:

o those requirements which are related to the implementation of communications protocols
and can be hidden behind the interface to these protocols. These include reducing latency,
bounding jitter and increasing bandwidth.

e those which have wider implications and must be explicitly represented in the protocol in-
terface. These include support for the synchronisation of multiple streams, media and appli-
cation specific error recovery and QoS specification and negotiation.

The first category contains requirements for the design of communication protocols to support
multimedia communication. This dissertation is primarily concerned with the construction of
multimedia applications and therefore concentrates on the second category.

4.2.3 Information Media Component Requirements

The primary requirement of the IMC is that its constituent devices provide an effective interface for
controlling and monitoring the behaviour of the information media supported. Sufficient flexibility

and status information must be available to support a wide range of applications over the same
IMC devices.

4.2,.4 Communication Component Requirements

The continuous media requirements discussed in section 4.2.1 must be satisfied by the communica-
tions component. The communications component must also satisfy any communications related
application requirements. It is argued that adherence to the following design guidelines will lead
to a communications component satisfying the requirements made of it.

e reduce complexity.

e minimise multiplexing.

support QoS specification.-

provide guaranteed performance.

As already stated in section 4.1.2, the complexity of existing protocols is a serious obstacle to their
use over the next generation of high speed networks and to their use for multimedia communication.

4.2.4.1 Minimising Multiplexing

Multiplexing is an essential part of any communications system and protocol; however, the cost
incurred by multiplexing is high and often neglected. The primary function performed by multi-
plexing is the sharing of communication resources. It allows for a single communication channel
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user processes
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media access layer

transmission medium

Figure 4.1: Minimal Multiplexing

to be shared between several higher level communication channels or user processes. This leads to
a tree structure in which internal nodes represent a communication channel and leaf nodes a user
process. The root node represents the transmission medium. On the transmission side, data flows
from the leaf nodes to the root of the tree; at the receive side, data flows from the root to the leaf
nodes.

If the arrival of communication requests is asynchronous and the available communications. re-
sources finite then there will inevitably be contention for the available resources. Under these
conditions the form of multiplexing provided is referred to as being asynchronous and the follow-
ing discussion assumes such asynchronous multiplexing. Synchronous multiplexing occurs when the
arrival of communication requests is synchronous and can be controlled so as to avoid contention.
A major consequence of asynchronous multiplexing is that the associated resource contention intro-
duces variations in the time taken to process each communication request and therefore variations
in the communication delay for each request. Such delay variations are referred to as jitter.

There are two points at which multiplexing mus? be provided. Namely, between hosts to allow
a common transmission medium to be shared by these hosts and within each host to allow the
points of attachment to the transmission media to be shared by an inevitably larger number of
user processes; i.e. at the media access layer. Figure 4.1 illustrates the structure of this minimal
amount of multiplexing.

Traditional, layered protocol architectures, as exemplified by OSI, introduce additional multiplex-
ing beyond these minimal requirements. OSI requires multiplexing at six of its seven layers; the
exception being the presentation layer, but even here it is suggested that multiplexing be imple-
mented for “architectural consistency”. The increased complexity of OSI multiplexing can be seen
by comparing Figure 4.2 to Figure 4.1; given that each node is a source of jitter it is clear that the
OSI stack is bound to introduce large amounts of jitter. Such excessive multiplexing is based on
the assumption that communications channels are an expensive resource and must, therefore, be
shared at every layer. Another argument made for multiplexing is that it preserves the functional
independence of each protocol layer. The use of multiplexing in this manner allows the system to
be scaled to support a large number of channels. As' discussed in section 4.2.4.3 multiplexing is
also often used to provide synchronisation between multiple, related, information media streams.

4.2.4.2 Multiplexing Disadvantages

Multiplexing inevitably introduces additional complexity and, as seen in section 4.1.2, comnplexity
is a serious problem for multimedia communication. The disadvantages of layered multiplexing are
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Figure 4.2: OSI Multiplexing

discussed in greater detail by Tennenhouse [Tennenhouse89a].

In a layered implementation each layer is commonly implemented as a separate thread of control
and a synchronisation overhead is incurred when data passes from one layer to another; this syn-
chronisation is an additional source of jitter and leads to even greater implementation complexity.

If several channels are multiplexed onto a single channel then traffic and delay variations in one
channel may adversely affect the performance of the others; this is referred to as performance
cross-talk. The presence of jitter increases the likelihood of such cross-talk, as each channel is
more likely to experience sudden bursts of traffic. If the amount of jitter is large, then it may also
lead to cross-talk between non-multiplexed channels. Cross-talk makes it impossible to provide
communication guarantees.

Excessive multiplexing makes it very difficult to meet application specific communication require-
ments or QoS. If several higher level channels, each with their own QoS requirement, are multi-
plexed onto a single lower level channel, with a single QoS, then the QoS requested for the higher
level channels is likely to be compromised. If several layers of multiplexing are used, then the
original communication requirements may be completely lost by the time the data reaches the
network. Such a loss of QoS has not been a problem for existing systems since they assume that
all applications have the same communication requirements. This is no longer true, both from the
application point of view, and for the emerging multi-service networks, which have been explicitly
designed to offer a range of communication services. The compromise of QoS in this manner is
referred to as QoS cross-talk.

Thus excessive multiplexing, and the jitter, performance and QoS cross-talk this generates, ef-
fectively destroy any notion of application specific communication requirements, communication
guarantees and the opportunity to take advantage of advances in networking.

4.2.4.3 Multiplexing for Synchronisation

Synchronisation of multiple, related, continuous media streams is often provided by multiplexing
the separate streams onto a single, order preserving, communication channel. The DASH CMEX
server (section 3.10.2) and Leung’s work (section 3.11.1), both use multiplexing for this purpose.
Such a synchronisation scheme is conceptually simple and straightforward to implement. However,
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in addition to the problems associated with the use of multiplexing discussed above, there are a
number of other disadvantages related solely to the synchronisation of multiple media:

e a great deal of additional complexity is required to multiplex different types of media (e.g. voice
and video) since they will use different, complex, and possibly compressed encodings.

e increased complexity may lead to excessive delay; therefore, although the related streams
are synchronised with respect to each other, they may lose synchronisation with respect to
real-time. That is, they may not be synchronised with respect to the human users of the
system.

o the ability to apply media specific hardware assist is lost; video compression hardware may
not be easily applied to both voice and video. The alternative of multiplexing pre-compressed
streams introduces yet more complexity.

e multiplexing all media onto a single stream removes the opportunity for communicating
each media stream over the communication network or channel best suited for it. The
communication requirements for voice and video are very different and using a single channel
for both is likely to be inefficient; similarly, different continuous media streams using the
same network may require differing QoS.

e by definition, multiplexing serialises all of the streams being multiplexed and therefore re-
moves any opportunity to use parallelism to increase performance.

e the media which can be synchronised (i.e. multiplexed), and their synchronisation relation-
ships (i.e. the way they are multiplexed), are determined by the communication systems
implementation. Adding new media and synchronisation schemes requires changing the com-
munications component.

e the application has.only limited control over the synchronisation of the multiplexed media.

o the ability to use application level knowledge to influence, and possibly, relax the synchroni-
sation requirements is lost.

o all of the media to be multiplexed must either originate from, or be passed through, the same
network source in order to be synchronised.

Given the immaturity of multimedia applications it is unlikely that a common set of synchronisation
schemes can be devised and implemented within the communication system which can satisfy all
potential application requirements. The disadvantages described centre on the lack of flexibility
offered by this scheme, both in terms of the scope provided for experimentation at the application
level, and for its inability to use application and media specific requirements and information to
efficiently manage communication resources. '

A commonly used justification for the use of multiplexing for synchronisation is that given the
performance of current systems there is no alternative but to use multiplexing. Any designs making
such an assumption should take care to allow for subsequent reduction in the use of multiplexing as
system performance inevitably improves and thus increase the flexibility available to the application
level.

4.2.4.4 Advantages of Using Multiple Channels

The use of separate channels to communicate separate information media offers a number of po-
tential advantages as follows:
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separate channels may be processed and transmitted in parallel, thus increasing performance.

allows the use of channels best suited to each medium, and thus allows for more efficient
resource utilisation.

e media specific hardware is more easily applied to a single medium than to multiple, multi-
plexed media.

allows the possibility of relaxing communication requirements based on application and media
specific knowledge and requirements.

preserves the modularity and separation of information media.

4.2.4.5 Guaranteed Quality of Service

In order to provide QoS and guarantee that a given QoS is maintained, some means is required for
associating the QoS with the required communications channels and resources. Therefore, some
form of end-to-end connection must be established which provides the resources to satisfy a given
QoS. The notion of a Lightweight Virtual Circuit® (LVC), used in the UNIVERSE [Leslie83],
MSN [McAuley89] and UNISON [Tennenhouse89b] architectures meets this requirement, in
addition to minimising multiplexing. Other protocol architectures, such as DASH and MAGNET,
use the same approach coupled with the pre-allocation of resources to provide guaranteed commu-
nications performance.

Both the MSN architecture and UNISON restrict multiplexing to the data link layer and by so
doing effectively give communicating peers a private instance of the protocol stack. This is in
contrast to OSI where all communicating parties share the same, single protocol stack. Figure 4.3
- illustrates the difference between these two approaches and shows the points at which multiplexing
is implemented. The first approach may require more memory but is computationally more efficient
than the second, which conserves memory at the expense of poor performance and excessive jitter.
In order to take full advantage of minimal multiplexing it is necessary to have a means of specifying
the multiplicity of available protocol stacks and for identifying the protocol stack which best meets
the application’s communications requirements. The QoS facilities provided by IMAC, described
in section 5.2.7, directly address these requirements.

20ften called an essociation.
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4.2.5 Interactivity

The notion of interactivity provides a useful characterisation of the degree of real-time interaction
required by a particular style of communication. For instance, a telephone conversation involves
real-time interaction between the communicating parties, whereas an electronic mail message is
asynchronous and involves no real-time interaction. Interactivity can be measured in terms of
the delay between, or the amount of data communicated by, one party before the other party
has an opportunity to reply. The amount of delay or data is expressed as a proportion of the
total duration or data communicated. For the telephone conversation the delay is essentially
instantaneous (given human reaction times), whilst for electronic mail the delay is the entire
duration of the communication. Thus the degree of interactivity may be expressed as the inverse
of the delay or data proportion, giving oo interactivity for the phone conversation and 0 for mail.

The amount of delay introduced by communication channels will affect the degree of interactivity
which can be provided. A high delay wide-area network will reduce the interactivity of any digital
voice communication implemented over it.

4.2.6 User Interface Requirements

There is a strong drive within the User Interface Management System (UIMS) research community
towards more concurrent user interfaces and UIMSs which support this concurrency [Lantz87].
This drive is motivated by the general belief that concurrent input is a natural way for users
to interact with computers [Buxton86][Buxton85][Hill86], and by the desire to build direct
manipulation interfaces as described by Schneiderman [Schneiderman83]. Direct manipulation
interfaces are characterised by concurrent input and the provision of timely positive feedback
in response to user actions. Hudson [Hudson87] and Tanner [Tanner87] explore in detail the
demands made on a UIMS by this type of user interface. An important requirement is that the
feedback provided should appear instantaneous to the user, thus imposing a maximum response
time in the order of 10-40ms (human perception threshold time).

Feedback must be provided, not only in response to the local users actions, but also in response
to remote users actions and in response to errors. The error feedback generated must reflect the
error in some meaningful fashion to the user, thus avoiding the situation where a user is left to
stumble across the error in the normal course of his or her communication.

As a simple example consider the situation where a user is running the X window system. This user
has a terminal connection to a remote machine, if the remote machine crashes no feedback is given;
rather the user is left to determine that the remote machine crashed based on its lack of response.
This is largely a result of the fact that the communications protocol used does not generate any
indication that it is having difficulty communicating with the remote machine. This may not in
itself seem a great hardship for the user. However, if more complex conferencing applications
which support communication with multiple users using multiple media are to be built, then the
provision of positive feedback becomes essential.

There is a strong requirement to allow users to customise their user interface to personal taste.
As found by MMConf (section 3.8.4) such customisation must be carefully managed to avoid
interference between conference participants. Similarly, users may wish to present the same data
in different ways, e.g. one user may wish to see some data as a pie chart, whilst another prefers
a bar graph. Again such functionality must be part of the initial design as it is very difficult to
retrofit to an existing user interface.
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4.2.7 Application Requirements

Application requirements fall into two categories: firstly, those which are common to all applica-
tions, but are exacerbated by the inclusion of multimedia, and secondly, those which are a direct
result of multimedia. In the first category the requirements are as follows:

e increased productivity for the application writer. The primary tool for achieving such an
increase is the re-use of modular application components.

o extensibility: the ability to add new functions in an incremental manner, whilst preserving
the maintainability of the application.

e portability: applications should be capable of running over a wide range of platforms.

o distribution: distributed applications require heterogeneity management, efficient communi-
cation and effective handling of communication failures and partial failure. Effective error
handling often includes a notion of graceful degradation.

Any architecture intended to make writing applications easier must address all of these require-
ments. However, the immaturity and lack of experience with multimedia applications means that
common application components and concepts have yet to be identified and as a result there is
little scope for component re-use. Multimedia applications may need to be extended to handle new,
previously unforeseen media, in addition to media specific enhancements. Applications should also
be easily extended to take full advantage of technological progress. Clearly, restrictive communi-
cations component design (e.g. using multiplexing to implement synchronisation)- will make such
extension difficult.

The heterogeneity present in a multimedia communication system is even greater than that found
in a traditional distributed system. As seen in chapters 2 and 3 this heterogeneity occurs across
hardware and software, and also in system configuration; i.e. not only are many different hardware
and software components used, but they are used in different- ways. Multimedia applications
are often distributed and must therefore manage communication and partial failures. Failure
handling is of primary importance in any interactive application and even more so for a conferencing
application involving two or more participants.

Graceful degradation refers to an application’s ability to offer restricted functionality in the face of
partial failure; for example a conferencing system providing voice and video communication could
degrade to voice only communication if video communication is lost.

4.2.7.1 Multimedia Related Application Requirements

The introduction of multimedia introduces a number of additional application requirements. Most
information media are sufficiently different to one another to warrant special treatment; in partic-
ular communication and error handling requirements are media specific. These requirements also
change from one application to another as media are used in different ways for different purposes.
Continuity (section 4.2.2.3), is one such example. In some conferencing systems voice is used to
control the floor and is the primary medium. Alternatively, a multimedia document editor may
use voice as a secondary medium to recite annotations and may be replaced by a text annota-
tion if voice is unavailable or not desired. The Etherphone project uses a different voice protocol
for interactive real-time voice communication to that used for recording. The recording protocol
requires additional reliability but is tolerant of greater latency.

The QoS parameters used to specify these requirements should be declarative rather than proce-
dural; i.e. they should say what is required rather than how it is to be provided. They should
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also be specified using application level terms and concepts, rather than communication leve] ones.
For instance it should be possible to request a high quality voice channel rather than directly
specifying the encoding, bandwidth, delay and jitter characteristics required to realise high qual-
ity voice communication. In this way, it is possible to shield the application from the details of
how the desired communication is implemented. The mappings between the application level and
communication QoS parameters must be maintained in some application component. The use of
procedural parameters will lead to non-portable, non-reusable application components which are
tied to particular implementations of particular protocols over particular platforms.

Given that a single QoS request may be satisfied in a variety of ways and that the QoS actually
provided may influence the behaviour of the application, it is necessary for the application to be
able to determine the QoS used to satisfy its original request. For example, a request for voice
communication may be satisfied using a terrestrial network or using a satellite link, the large
delay introduced by the satellite link is likely to affect the behaviour of the application, especially
with regard to the degree of interactivity and synchronisation it provides. The application must
therefore, be able to determine whether the satellite link is being used or not.

Given that a major use of an MMCS will be for personal communication there is a requirement
to name end users rather than physical locations or machines. For example, the current telephone
system and even electronic mail systems, name locations which are easily accessible by the intended
user. This works well if the user does not frequently move from one place to another. It would
be far more convenient to name the user directly and have the system take care of identifying the
physical location of the user on demand. In this way, if a user a, moves from location z to location
y, then the name a can be used to contact a at location y, or indeed any other location user a
chooses to visit. This is called user addressing.

The final multimedia specific application requirement is the synchronisation of related media
streams and is discussed in detail in the following section.

4.2.8 Multiple Stream Synchronisation Requirements

It is possible to identify three broad categories of synchronisation which are important for multi-
media applications: <

e event synchronisation: the synchronisation between the application and certain, well defined,
events or states, (including errors), in the execution of the system.

e stream synchronisation: the synchronisation between the end-points of a single media stream
and the synchronisation between multiple, related media streams. .

¢ synchronisation with respect to real-time.

_The first category is concerned with allowing for the effective control of system components, whilst

the second deals with the synchronisation of multimedia communication. The third is concerned
with assuring that related actions within the system occur at the same absolute time, and also
that the synchronisation of operations within the system is synchronised with respect to external
system events and in particular the user’s notion of time. The following discussion assumes that
the components being controlled execute in parallel and are asynchronous with respect to each
other. The term controlling application may refer to a single thread of execution, or it may consist
of multiple execution threads distributed across several machines.
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4.2.8.1 Event Synchronisation

In order to allow for the effective control of system components it is necessary to identify points
of interest in the execution of the components to be controlled. These points, referred to as event
synchronisation points, provide an opportunity for the controlling application to synchronise its
execution with that of the components being controlled. The following examples illustrate some
likely uses of event synchronisation.

Consider an application which uses a remote camera as a video source and arranges for this video -

to be displayed in a window on a local workstation. Both the camera and the window system
providing the local window execute concurrently with respect to each other and with respect to
the application. The application must arrange for the window to be displayed before the video
begins to appear and for the video to stop before removing the window. The appearance of the
window represents a synchronisation point, i.e. the application must wait for this point to be
reached before allowing any video to be displayed. Similarly, the application must wait for the
video stream to cease being displayed before removing the window; the display of the video ceasing
constitutes another synchronisation point. Note that the synchronisation point is defined to be
when the video has actually ceased to be displayed, rather than when the camera has been told
to terminate the video stream. This implies that the synchronisation point is reached within the
local workstation window system rather than within the camera. The use of synchronisation points
in this manner avoids the race condition between the camera being told to start and the window
appearing, and between the camera being told to stop, the video stream actually stopping and the
window being removed.

It is also useful to treat errors as event synchronisation points as this allows the controlling ap-
plication to synchronise with the component reporting the error and thus determine the nature of
the error. By so doing, the important application requirement of effective error handling may be
satisfied. Finally, it will often be necessary to associate a timeout with any awaited synchronisation
point in order to detect the failure of the component responsible for the synchronisation or any
communications failures.

4.2.8.2 Stream Synchronisation

Section 4.2.2.4 discussed the synchronisation of a single stream and identified the likely causes of
a loss of synchronisation as: lost or corrupted data, clock rate variations and jitter. This section
is primarily concerned with the requirements for synchronising multiple, related streams.

It is possible to define a synchronisation spectrum ranging from no synchronisation at one extreme
to a very high degree of synchronisation at the other. The degree of synchronisation refers to
the amount of skew which may be tolerated between two synchronised streams, if this skew is
exceeded then the streams are no longer synchronised. In a discrete digital system, skew is best
represented as the granularity at which synchronisation is implemented; a fine granularity implies
a small amount of skew is tolerated, and as granularity increases so does the amount of tolerable
skew. In other words, the smaller the sample size, the greater the degree of synchronisation.
Sample sizes, and therefore, granularity, can be measured in terms of the amount data present in
each sample, or the amount of time it takes to create (i.e. digitise) each sample. In an interactive
system, time is often the most useful measure of synchronisation. Absolute synchronisation can
never be achieved. However, if synchronisation is implemented at the finest granularity supported
by the system in question, usually at the hardware sample level, then it will be referred to as being
complete. Figure 4.4 illustrates this spectrum with increasing synchronisation from left to right.

The style and granularity required are entirely application dependent and any proposed synchro-
nisation scheme must support a diverse range of synchronisation requirements. As already shown
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in section 4.2.4.3 multiplexing cannot provide the level of flexibility required.

“Lip-synching” is the most obvious example of multi-stream synchronisation and requires syn-
chronisation to within +100ms between the voice and video streams. Other examples include
synchronising voice and cursor movement in a conferencing application, or voice and the graphical
display of that voice in a voice editor. Multimedia document systems and editors must synchronise
displayed text and graphics with any annotating voice. The degree of synchronisation required
varies widely between these applications and also different users may prefer different levels of
synchronisation for the same application.

In order for any multi-stream synchronisation to be implemented there must be a way of relating the
contents of one stream to the contents of another. Therefore each stream must exhibit some form
of structure which can be used to determine the granularity of the synchronisation required. Video
is typically structured as frames, whilst voice is often treated as a series of silence delimited talk-
spurts. The structure chosen for a particular stream should allow for subsequent synchronlsa,tlon
with as wide a range of other information media as possible.

Given that streams are structured, it is then necessary to relate components of one stream to
components in another. For non-isochronous streams a simple sequence numbering scheme can be
used. Isochronous streams require that the sequence numbers be extended to include some notion
of time; this in turn may require the provision of a synchronised clock across all the stream sources
and sinks.

The principal causes of a loss of multi-stream synchronisation, in addition to the causes of single
stream synchronisation, are performance and QoS cross-talk and partial system failure. Therefore
cross-talk must be minimised and failures detected and handled accordingly.

Despite all attempts to reduce the likelihood of a loss of synchronisation, there still remains a
finite possibility that such a loss will occur. Therefore, support must be provided for detecting
such losses and for taking some action in response to a synchronisation loss. This action may
simply consist of reporting the error, or it may be possible to take some corrective action to restore
synchronisation. The nature of any corrective actions is media and application specific. These
requirements impact on the communications component and require that it provide a means of
monitoring synchronisation and for taking corrective action to restore synchronisation following a
loss. Possible corrective action includes the provision of additional buffering, altering process and
network access priorities and changing QoS requirements.
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4.2.9 Real-Time Synchronisation

Real-time synchronisation refers to the process of synchronising operations and events within a
system with respect to an external time scale. The term “real-time” is used to convey the fact
that the external time scale is outside of the control of the system in question.

The communication delays inevitably involved in observing time make it impossible for multiple
observers to agree, with absolute precision, on the current time. Therefore, it is impossible to
maintain a single, global clock across a distributed system, whereby all system components see the
same time. The best that can be achieved is to impose a bound on the skew between individual
views of the global clock.

Multimedia communication systems, although having strict synchronisation requirements, cannot
be classified as being hard real-time systems. A hard real-time system imposes a maximum delay
for responding to external events, which if exceeded constitutes a possibly catastrophic system
failure; fly-by-wire aircraft control systems are a good example of hard real-time systems. If an
MMCS loses synchronisation, then communication quality may be degraded or lost altogether - in
the vast majority of cases this will not be a disaster.1?

MMCS’s require real-time synchronisation for two purposes:

e to ensure that two or more operations occur at the same time, or more correctly, that these
operations occur within the time range delimited by the allowed clock skew.

e to provide synchronisation for isochronous media, and in particular to provide a means for
relating components of one isochronous stream to components of another.

Finally, for an MMCS providing communication with, and between human users, the acceptable
amount of real-time synchronisation skew is determined by human reaction and perception times.

4.2.10 Distributed Processing Component Requirements

The DPC requirements are heavily influenced by the application and user interface component
requirements; the DPC inherits many of its requirements from these other components. Functions
provided by a DPC typically include some form of RPC system, lightweight threads and asso-
ciated synchronisation primitives and naming. The DPC will provide a homogeneous interface
to these functions even though they are implemented over heterogeneous software and hardware;
management of heterogeneity is therefore an important MMCS function. It is the DPC interface
which must be extended to meet the new requirements made by the application and user interface
components.

The requirements that the DPC, its interface and implementation must satisfy are as follows:

o effectively manage the heterogeneity found in multimedia communication systems.
e provide a QoS based interface to the underlying communications component.

o the implementation of the DPC must maintain the guarantees made by the communications
component;!! i.e. those guarantees must be met on an end-to-end basis.

10 Although, it is possible to envisage medical, air traffic control or vehicle guidance applications where maintaining
communication quality is of greater importance.

11QOr at worst distort these guarantees in a known fashion.
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provide sufficient flexibility for the control of a wide range of multimedia devices.

support event, single and multiple media stream synchronisation.

allow the degree of real-time processing implemented by the application to be varied, (see
below).

e support scaling, both in terms of the number of hosts present in the system and in terms of '
increased physical separation between hosts.

Section 4.1.3 suggested that a compromise is required between rich programming and run-time
environments and real-time performance. Chapter 3 showed that many existing systems separate
the real-time from the non real-time components in an attempt to find such a compromise. There-
fore, the DPC is required to support such partitioning of applications. This partitioning must be
sufficiently flexible to allow for the inclusion of new functionality and new information media, and
also to take advantage of technological advances.

4.2.10.1 Open Systems Requirement

The term “open systems” is used in a variety of ways to describe different system properties. The
two most commonly used definitions are discussed before defining the usage of open systems within
this dissertation. ’

The Open Systems Interconnection (OSI) Reference Model uses the term “open” to “emphasize
that by conforming to OSI standards, a system would be able to communicate with any other
system obeying the same standards anywhere in the world” [Day83]. That is, an open system is
a system which allows heterogeneous system components to communicate with each other using a
set of standards. :

Lampson and Sproull [Lampson79] provide a somewhat different definition of an open system.
In their definition an open system is one which offers a variety of facilities, each of which may be
used in conjunction with, or in isolation of, one another. However, wherever a given facility is built
from a set of existing facilities the existence of this compound facility should not preclude the use
of its constituent parts.

These definitions turn out to conflict when practically applied. The OSI definition leads to a lay-
ered system within which each layer implementation may be substituted by another functionally
equivalent implementation without affecting any of the other components. It is not allowed to
bypass one layer and use an underlying layer directly; this lends itself to very inefficient imple-
mentations. Whereas, the Lampson and Sproull definition leads to an essentially hierarchically
structured system, within which it is possible, and indeed encouraged, to make use of compound
components as constituent components. The drawback with this approach is that modifications
to a single constituent component may require changes to the possibly large number of compo-
nents which make use of it. However, if the most commonly used components are standardised, as
advocated by OSI, this drawback can be avoided.

The definition used within this dissertation attempts to capture the advantages of both of these
definitions whilst avoiding the drawbacks. This is done by advocating a hierarchically structured
system with standardised common components or facilities. The definition used is as follows:

An open system is one which allows the interoperation and interconnection of het-
erogeneous systems and system components and can be incrementally extended by the
addition of new system components without disturbing the existing system components,
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This definition is intended to characterise systems which are extensible and flexible, in addition
to adhering to standards for the interconnection of independently developed systems and system
components.

The requirement for an open system is added to the list of all other DPC requirements.

4.3 Summary

This chapter has discussed the problems presented by the design and implementation of existing
systems to the incorporation of multimedia communication and applications. These problems are
largely a result of the fact that multimedia is a recent development and existing systems were
simply not designed to support multiple information media. The high data rates and real-time
performance required by voice and video are particularly problematic.

In order to understand how to design new systems capable of overcoming these problems the re-
quirements made by the incorporation of multimedia were discussed at length. Particular attention
was paid to the communication and synchronisation requirements of the new media to be incorpo-
rated. In order to overcome the lack of functional integration exhibited by existing systems seen in
chapter 3, the requirements made by multimedia on all system components have been discussed.

The full list of requirements is long and satisfying all of them would require greater resources
than those available for this dissertation. Therefore, the IMAC architecture and its prototype
implementation concentrate on the following subset of these requirements:

e synchronisation of multiple, related, media streams.
e management of heterogeneity.
e support for media and application specific requirements, in particular:

— QoS specification and negotiation.
— error handling and recovery strategies.

— greater application level control of the underlying communication system.

e to provide an architectural framework within which the remaining requirements may be
satisfied.

The choice of these requirements is based on the observation that, as yet, little or no work has
gone into addressing them, and that the absence of satisfactory solutions represents a serious
obstacle to continued progress in the field of multimedia communication applications. Finally, by
taking the remaining requirements into account when designing the architecture and prototype
implementation it is possible to provide a framework within which they may be satisfied at some
future point.
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The
IMAC

Architecture

This chapter presents a detailed description of the Integrated Multimedia Applications Communi-
cation architecture (IMAC) and the principles guiding its design. Many of the ideas presented in
this chapter were first described in [Nicolaou90].

5.1 Architectural Principles

The process of conducting the research survey presented in chapter 3, and that of researching the
problems and requirements made by multimedia discussed in chapter 4, led to the formulation of
the principles presented in this section.

The principles listed below and described in the following sections are the principal ones to have
influenced the design of the IMAC architecture:

Media Separation
Modularity
Choice

Evolution

In recognition of the inherently distributed nature of multimedia communication systems, IMAC
has been based on the ANSA architecture. Consequently, IMAC inherits many of the distribution
and scaling properties of ANSA; the relationship of IMAC to ANSA is described in section 5.2.2.

Finally,Asection 5.1.5 discusses the relationship of Functional Integration to the architectural prin-
ciples presented in this section. '

69



70 5. THE IMAC ARCHITECTURE

5.1.1 The Principle of Media Separation

The principle of media separation states that, wherever possible, a single information medium
should be stored, communicated and manipulated separately from other information media. An
immediate consequence of this principle is that each medium must provide an interface for con-
trolling its behaviour; that is, a single information medium consists of a representation, or data,
component and an algorithmic component for implementing its control interface.

The principle of media separation supports the construction of open systems through the ability
to add new media, and remove existing media, without unduly disturbing any other media. Also,
given that some form of multiplexing must be used if multiple media are to be treated as one, then
adherence to the principle of media separation minimises the use of multiplexing and thus avoids
the associated disadvantages discussed in section 4.2.4.1. The media specific interfaces constitute
a point at which system components interoperate and are therefore candidates for standardisation.

The granularity of the media that can be separately supported is inevitably an implementation
consideration and will change as technology progresses. Some system implementations may find
it impossible, largely for performance reasons, to keep certain media separate. For instance, the
voice and video components of a “video-phone” conversation may be treated as a single medium
to maintain “lip-synch”; that is, they may be multiplexed over a single communications channel
and stored in a single file. If the merged media are in turn treated as a single compound medium
with respect to the other information media present in the system then media separation is still
provided but at a coarser granularity.

The interface provided by each information medium must be capable of supporting the synchro-
nisation requirements discussed in section 4.2.8. The advantages offered by media separation with
regard to the synchronisation of multiple media centre on the ability to change the set of media
being synchronised and to alter the nature of the synchronisation being provided, in response to
application requirements and without having to modify each individual medium.

5.1.2 The Principle of Modularity

A modular system is one whose functions can be naturally divided into coherent components
that can be separately developed and maintained. Modular systems are commonly accepted as
being easier to design, implement and maintain than non-modular, monolithic, systems. They also
support the extension of system functionality by the addition of new modules and also offer greater
flexibility through the re-use of existing modules in previously unforeseen ways and combinations.
It is much easier to change the configuration of a modular system than a non-modular one; that
is, it is possible to change the physical and logical structure of the system without affecting its
constituent modules.

A criticism sometimes made of modularity is that it reduces system efficiency; however, it is the
mechanism used for communication between modules which reduces efficiency and not modularity
itself. Therefore, a modular system requires the use of efficient inter-module communication. If
a given mechanism is too inefficient then it may be possible to change the configuration of the
system to use a more efficient one; for instance, co-locating client and server modules on the same
machine if network communication is too slow.

Modularity, whether it be in the form of layers, or a more general structure, is an essential principlé
for the construction of open systems. The principle of media separation discussed in the previous
section is an example of the application of modularity to information media.
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5.1.3 The Principle of Choice

When designing and implementing any computer system a series of ‘decisions have to be made
between a range of possible options, and in particular, between a set of different policies. The
anticipated use of the system in question typically forms the basis for making these decisions. The
principle of choice states that such decisions be made at the most appropriate times and not any
earlier than this. For instance, the communication system should not be designed to provide a
narrow set of anticipated communication requirements and thus constrain applications to these
anticipated requirements, regardless of whether they are appropriate for the application or not.
This implies that the system design and implementation must be sufficiently general and flexible
to support as wide a range of options as possible. The amount of choice which can be provided
is constrained by the other principles of media separation and modularity; that is, providing too
much, or inappropriate, choice may lead to a loss of media separation or modularity.

The principle of choice is intended to ensure the construction of systems which can support the
variety of diverse requirements made by multimedia applications discussed in chapters 3 and 4.
The separation of policy and mechanism is closely allied to the principle of choice, and forms the
basis for providing choice; a system design and implementation must endeavour to provide a set
of mechanisms to which an applicat.ion may apply a policy of its own choice.

As argued in section 4.2.7.1 the mechanism provided for specifying the choice being made should
be declarative, rather than procedural. -

5.1.4 The Principle of Evolution

As seen in section 2.3, and chapters 3 and 4, multimedia systems cover a broad range of multimedia
hardware and network integration. In addition, the level of integration achieved for one medium is
often different to that achieved for another; for instance, a greater level of integration is currently
possible for voice than for video. The rapid pace of technological progress and the inevitable delay
between some function becoming available and it being integrated into a general purpose system,
suggests that systems of varied levels of integration will always exist.

It is possible to discern an evolutionary path from mixed analogue and digital systems using
separate hardware and networks for different information media, all the way to fully integrated,
all digital, systems using the same general purpose processors and networks for all media and
applications. :

If an architecture for multimedia communication systems is to be successful then it must allow for
the gradual evolution from one level of integration to another. In addition it must be able to cope
with the various levels of integration currently in existence and exhibited by different media.

5.1.5 Functional Integration

Functional integration, as defined in section 2.4, is concerned with the effective interoperation

of system subcomponents to provide the functionality of the system as a whole. The lack of .
functional integration, identified as a major weakness of existing multimedia systems, shows itself

as a mismatch between the functionality provided by one component and that expected of it by

other components.

Functional integration is, therefore, not so much an architectural principle as a goal to be achieved
by the judicious application of the principles discussed above. The principles of media separation,
modularity, choice and evolution must be applied in a way which increases functional integration.
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5.2 The IMAC Architecture

This section presents the IMAC architecture in detail. Not only is the architecture itself defined,
but its principal features, and the design options and decisions which led to these features, are also
discussed and justified. That is, this section not only describes what the IMAC architecture is, but
why it is the way it is.

5.2.1 Assumptions

The principal assumption which pervades this dissertation is that a multimedia communication
system (MMCS) is inherently distributed and can be viewed as an extension of existing distributed
computing systems. An MMCS must, therefore, manage all of the problems that distribution
entails. Similarly, this assumption requires that existing distributed systems be extended to meet
the requirements made by multiple information media, and in particular, by continuous media.

A consequence of distribution is that separate information media may be implemented using phys-
ically separate processors, interconnected by one or more shared communications networks. In
addition, the applications making use of these media may execute on separate processors from
the media, again interconnected by shared network(s). This means that separate media streams
and their controlling applications may execute in parallel and asynchronously with respect to each
other.

IMAC assumes that all devices will be able to support an ANSA interface, in practice this requires
that such devices be able to support an instance of the ANSA Testbench. This assumption is
justified as follows:

° Etherphom_;,s (section 3.6.1) had sufficient intelligence, circa 1983, to run the Cedar run-time
environment which has similar requirements to the Testbench.

e the same CPU cards used for the ISLAND Ringphones (section 3.6.2) are now in use running
the ANSA Testbench over the Wandal! operating system. Given that the processing overhead
for relatively infrequent control operations is low, then there is no reason to believe that
ISLAND could not be re-implemented using the ANSA Testbench.

e the multimedia network interface under construction at Lancaster (section 3.7.5) uses an
instance of the Testbench to implement device control.

e finally, both CPU speeds and memory sizes have increased significantly since the Etherphone
and ISLAND phones were implemented and as a result it is fair to assume that an ANSA
interface can be provided by such devices.

5.2.2 Overview and Relationship to ANSA

As a direct result of the distribution assumption IMAC was based on the ANSA architecture
(see appendix A). Familiarity with the ANSA architecture is assumed in many of the subsequent
sections. IMAC inherits the following features from the ANSA Computational Model:

e ANSA definition of interfaces, interface types and interface type conformance.

e ANSA invocation and parameter passing scheme.

1Wanda is a light-weight, thread-based, kernel in use at the University of Cambridge Computer Laboratory.
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e the ANSA concept of interface trading.

ANSA is based on the client/server model of interaction. Interfaces represent the point of service
provision and define the service being provided; interfaces contain definitions for a set of operations
which may be invoked to use the service being provided. In order to detect programming errors as
early as possible, services are typed and a client must specify the types of the services it wishes to
use. Trading provides the mechanism for matching client requests for a service with an available
service. A database is provided for storing available services; servers must ezport the services
they provide to this database, and clients then import services from this database. Interface type
conformance defines the algorithm used to match client requests, which are specified in terms of
interface types, with the available interface types. These functions are implemented by a service
called the Trader.

Care has been taken to preserve the minimal nature of the ANSA architecture - extensions and
modifications have been kept to a minimum. The new concepts introduced by IMAC are as follows:

Streams: (section 5.2.3), the notion of a stream is introduced to represent a single, continuous,
information medium, and in particular the communication of such a medium. The repre-
sentation used has been chosen to explicitly support the synchronisation of multiple, related
streams to each other, and also to allow applications to synchronise their execution with that
of the stream.

Stream Types: (section 5.2.3), streams are unidirectional and connection oriented. Stream
sources are called plugs, and stream sinks are called sockets. Plugs are connected to sockets
to create end-to-end streams along which information media may flow. Stream plugs and
sockets are typed and only like types may be interconnected.

Devices: (section 5.2.4), an extension of an ANSA service to include one or more stream end
specifications. The combination of interface operations and stream ends is intended to repre-
sent devices such as video cameras, framestores, microphones and speakers. More complex,
compound, devices can be constructed from multiple devices, provided that it is possible to
synchronise the operations of the grouped devices. Devices are responsible for the generation,
communication and presentation of a particular set of information media.

Device Types: (section 5.2.5), ANSA services are typed, as are streams, thus making it an
easy matter for devices to be typed. A device type is the combination of its underlying
ANSA service, i.e. its operation component, and its stream types. By defining a conformance
relationship for devices they may be traded in the same manner as ANSA interfaces.

Quality of Service: (section 5.2.7), all operations in IMAC may specify a set of QoS options
with which they are prepared to be invoked. At invocation time the caller may specify the
QoS required for the current call. Such QoS options are expressed as constraints on the QoS
which can be provided by the underlying implementation.

Orchestration: (section 5.4), refers to the management functions required to coordinate IMAC
streams, devices, QoS and services (defined below).

A number of new architectural services are defined by IMAC in addition to those defined by ANSA;
these are as follows:

QoS Manager: (section 5.3.1), provides a system wide database for the available QoS options
and may be used to provide compile-time checking of QoS options.
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Figure 5.1: Application View of iMAC

User Locator: (section 5.3.2), is responsible for identifying the current physical location of a
given user, and is intended for use by applications which require user -addressing. Given
a user name it will determine and return an address for that user which can be used for
subsequent communication. ‘ '

Desktop Manager: (section 5.3.3), the Desktop Manager provides a management interface for

controlling the various devices and services provided by a single Multimedia- Desktop, (see
section 2.5). The ANSA Node Manager? (see section A.12) provides much of the functionality
‘required. However, it lacks the ability to create and destroy services in multiple run-time
environments (i.e. each Node Manager assumes a single such environment) and to manage
shared resources.

Translation Manager: (section 5.3.4), provides a mechanism for resolving stream type mis-
matches via the insertion of stream translators. ‘

It is possible to revisit the functional decomposition of an MMCS given in section 1.1.1, and to
assign IMAC functions to MMCS components as follows: ‘

Information Media Component (IMC): IMAC streams and devices.
Cdmmunications Coniponent: IMAC QoS and QoS management.

Distributed Processing Component (DPC): orchestration and the features inherited from
ANSA. -

Application Component: services such as the User Locator, Desktop Managér and Translation
Manager. Any applications built using IMAC.

User Interface Component (UIC); in order to allow for the widest possible range of user inter-
faces to be supported, IMAC does not provide any functions specifically for the construction
of user interfaces. This is an application of the principle of choice, whereby decisions re-
garding the design of user interfaces are left to user interface designers. However, the other
‘components of IMAC have been designed to satisfy the requirements which will be made by
multimedia user interfaces.

2Designed and implemented by the author to replace a simpler design due to Hugh Tonks.




5.2. THE IMAC ARCHITECTURE 75

Plug ‘ Socket
l |
“VideoStream” “VideoStream” “VideoStream”
I |
Camera Display

a) Simple Stream Connection

Plug Translator Socket
] 1 L
“ | s “Audio- “Audio- " | ]
'‘Audio-A-Law’ A-Law” Mu-Law” 'Audio-Mu-Law”
I— I L :
Microphone Speaker

b) Stream Connection Using a Translator

Figure 5.2: Stream Connection

IMAC applications are presented with a uniform interface, via a series of language extensions
and libraries, to the functionality provided by IMAC. The coordination of the activities of sep-
arate services, and the interface to these services, is provided by orchestration functions and is
a fundamental component of the interface seen by applications. This structure is illustrated in
figure 5.1.

5.2.3 Streams

Streams are used to represent a single, continuous, information medium and in particular the flow
of information media data from one location to another. The source is called a plug and the sink
a socket. Stream plugs and sockets are typed as defined in section 5.2.4, and are jointly referred
to as stream ends. Two plugs, two sockets, or a plug and a socket, are of the same type if, and
only if, they have the same textual name. In addition plugs or sockets, may be designated as being
multiway, in which case they may transmit to multiple sockets, or receive from multiple plugs
respectively. The type of a multiway plug or socket applies to all of the streams it may source or
sink.

A plug must be connected to a socket in order for any data to flow. Such a connection can only
be made between plugs and sockets of the same type. In the case of multiway plugs and sockets,
connections may be incrementally created or destroyed, again provided that the plug and socket
are of the same type.

Streams provide the flexible connectivity required by multimedia applications, whilst satisfying the
principle of media separation. The typing of streams ensures that programming errors are detected
as soon as possible and may also allow for the automatic insertion of translator devices between
plugs and sockets of incompatible types. A translator must have a socket of the same type as the
original plug, a plug of the same type as the original socket, and must convert the data read on its
socket into a form suitable for transmission over its plug. For example, to connect a plug of type
Audio-A-Law to an Audio-Mu-Law socket, a translator device with an Audio-A-Law socket and an
Audio-Mu-Law plug would be inserted between the original plug and socket. Translator devices are
identical to any other device except that they are explicitly identified as candidates for resolving
such type incompatibilities. The translation manager (see section 5.3.4) is charged with managing
the insertion of translators. Figure 5.2 illustrates stream and translator interconnection.
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The requirements for the synchronisation of multiple, related, information media were discussed in
section 4.2.8. Three forms of synchronisation were identified: namely event, stream and real-time
synchronisation. Section 5.2.3.1 defines the support for event synchronisation. IMAC supports
stream synchronisation with the single concept of a structured stream and re-uses the mechanism
used to implement event synchronisation for stream synchronisation; structured streams are de-
scribed in sections 5.2.3.2 to 5.2.3.5. However, as justified in section 5.2.3.6, IMAC explicitly does
not define a means for providing real-time synchronisation.

5.2.3.1 Event Synchronisation

As seen in section 4.2.8.1 event synchronisation refers to the requirement for an application to
synchronise its execution with that of another system component. Such synchronisation is usually
required in response to some exceptional condition or error. Stream synchronisation can be viewed
as a particular instance of event synchronisation.

Exceptional conditions include stream termination, end-of-file, or a user terminating some commu-
nication with another user. Errors include communication and network failures, and partial failures
as exemplified by a loss of communication between one application component and another, or the
independent failure of a particular stream or application component with respect to other compo-
nents. Exceptional conditions and errors are jointly referred to as event synchronisation points.

In order for a stream socket to be able to determine the difference between stream termination
and a communication failure, all stream plugs must ensure that an end-of-stream indication is
transmitted to the receiving socket. This indication may take the form of a token sent in the data
stream, or may be provided by the underlying communication protocol.

There are three candidate methods for indicating to a controlling application that an event syn-
chronisation point has been reached:

1. asynchronous events: data or tokens which are generated when a synchronisation point is
reached and communicated, asynchronously, to any controlling application.

2. an outstanding invocation whose termination indicates the occurrence of a synchronisation
point. Such invocations must be issued far enough in advance of the synchronisation point
to ensure that it is not missed.

3. callbacks: when a synchronisation point is reached an operation supplied by the application
is invoked, thus synchronising the source of the synchronisation point and the application.

The callback and outstanding invocation mechanisms are preferable to asynchronous events because
they allow for synchronous communication between the stream and application, and-therefore
provide a means for synchronisation to be actually implemented. In any case, events may be easily
implemented using callbacks or outstanding invocations, whilst the converse is not true.

In a distributed environment outstanding invocations are inherently more expensive to implement
than callbacks because the invocation is likely to be outstanding for long periods of time, consuming
communication resources all the while. The callback on the other hand is only invoked when the
synchronisation point is reached and consequently will execute for a much shorter time. Therefore,
callbacks are preferred to outstanding invocations. Note that both mechanisms can be implemented
using ANSA invocations, the distinction lies entirely in how the invocation mechanism is used.

In this model an application, or another stream, provides an interface containing operations to be
invoked by the stream being controlled, as and when, synchronisation points are reached. This
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Figure 5.3: Invocation Structure for Event Synchronisation

relies on the ability to pass references to interfaces from one application or stream to another. In
this way, applications play a client role when controlling streams and devices, and a server role
when receiving synchronisation invocations; figure 5.3 illustrates this invocation structure.

It is possible to use asynchronous ennouncements and synchronous interrogations as supported by
the ANSA Computational Model. Interrogations synchronise the caller and callee for the duration
of the invocation, but as soon as the invocation terminates synchronisation is no longer guaranteed.
Announcements may be used for operations which do not return any results and for which the caller
does not wish to be blocked until the invocation is complete; the caller is only blocked for the time
it takes to issue the invocation. However, no attempt is made to ensure the reliable . delivery
of announcements. Announcements may be directly used to represent unreliable events. The
arguments passed to either form of invocation can be used to indicate the nature of the exception
or error represented by the event synchronisation point. The use of ANSA operations also provides
a convenient means for typing stream synchromsatlon points; the type of a stream synchronisation
pomt is the type of the operation invoked when it is reached.

If more than one application is interested in the same exception then some form of multicast3
protocol is required. Being an extension of a distributed system, and in particular of ANSA,
IMAC is able to accommodate the use of a suitable protocol as it becomes available.

5.2.3.2 Stream Synchronisation

IMAC streams provide a novel means for synchronising related information media. Although
streams will often be used to represent continuous media, this need not always be the case, sim-
ilarly the media to be synchronised need not be restricted to continuous media. It may prove
useful to represent a non-continuous medium as a stream for subsequent synchronisation to a con-
tinuous medium represented as a stream. If a medium is not represented as a stream, it may
still be synchronised to stream-based media; however, any tools provided for automating stream
synchronisation may not be applicable to such non-stream based media.

In addition to the features described in the previous section, IMAC streams contain a data compo-
nent representing the flow of data from source to sink, which is broken up into a series of records or

3 Also often called a group protocol.



78 5. THE IMAC -ARCHITECTURE

frames which are visible at the stream interface. These records are called Synchronisation Frames.

The end of each synchronisation frame constitutes a stream synchronisation point. A stream syn-
chronisation point represents a point in the execution of the stream, at which a controlling appli-
cation, or another stream, may synchronise its execution to that of the original stream. Therefore,
the same scheme used for indicating that event synchronisation points have been reached can also
be used for stream synchronisation points; that is, an operation supplied by the controlling ap-
plication is invoked when the appropriate stream synchronisation point is reached. For maximum
flexibility separate interfaces should be used for event and synchronisation operations.

5.2.3.3 Logical and Physical Synchronisation Frames

The lowest level, not normally visible at the stream interface, consists of Physical Synchronisation
Frames (PSF’s). PSF’s represent the lowest level data samples used within devices and by com-
munication protocols between devices. The PSF for a video stream might be a scan line, whilst
for an audio stream a 2ms audio sample might be used.

The synchronisation frames introduced above, are more properly called Logical Synchronisation
Frames (LSF) and are computed from a number of PSF’s. LSF’s are visible at the stream interface.
The number of PSF’s required to construct an LSF need not be fixed, that is, it may vary from
one LSF to another.

The mapping from LSF’s to PSF’s may be one-to-one, essentially exposing PSF’s at the stream
interface. Alternatively, arbitrary amounts of processing may be applied to constructing LSF’s
from PSF’s, thus allowing very high level LSF’s to be provided. For example, if voice recognition
hardware is available it may be possible to provide LSF’s which represent recognised words, whilst
the underlying PSF’s represent digitised speech samples. In most cases an intermediate amount
of processing will be applied, for instance a video stream with a scan-line PSF, is likely to use a
video frame for its LSF, where each LSF maps to 625 PSF’s.%

The computation required to construct LSF’s from PSF’s is provided by the stream implemen-
tation, and in this way the encoding and internal media representation are isolated within each
stream.

By varying the number of PSF’s required to construct an LSF it is possible to vary the granularity,
and therefore the degree of synchronisation provided (section 4.2.8.2) and in this way determine
the point in the synchronisation spectrum that this stream occupies. Figure 5.4 illustrates some
possible LSF to PSF mappings.

This two-level structure has been designed to support arbitrary degrees of synchronisation, and it
allows applications to state, precisely, their synchronisation requirements in terms of LSF’s and to
rely on the underlying stream implementation to deal with constructing LSF’s from PSF’s. Ideally
each stream will offer a range of LSF to PSF mappings and applications will be able to choose the
most appropriate mapping, and therefore degree of synchronisation, for their current needs.

An important advantage offered by LSF’s is that new media can be added to, and existing ones
removed from, the set of media currently being synchronised without affecting the remaining
members of the set. :

4This assumes the use of PAL.
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Figure 5.4: Logical to Physical Synchronisation Frame Mappings

5.2.3.4 Measuring the Degree of Synchronisation

LSF’s provide a convenient metric for quantifying the degree of synchronisation; that is, the amount
of acceptable skew between synchronised streams can be expressed in terms of the number of
LSF’s. If skew between any two streams exceeds this acceptable value then synchronisation has
been lost. Such a loss of synchronisation can be detected by monitoring the synchronisation points
encountered by each stream.

Depending on the nature of the LSF to PSF mapping, the number of LSF’s may be expressed:

e in terms of time.
e in terms of data.

e only in terms of the LSF’s themselves.

For the video stream example used above, each LSF can be expressed in terms of time or data;
the time metric is given by the inverse of the frame rate, whilst the data metric is the amount of
data used within each frame. If compression is used within each frame, then the data metric is
no longer applicable, whilst the time metric remains valid. The audio stream example, with LSF’s
representing recognised words, cannot be quantified in terms of time nor in terms of data, since
each LSF may take an arbitrary amount of time to compute and data to represent. For such a
stream, the skew can only be expressed in terms of LSF’s, in this case recognised words.

Streams whose LSF’s can be directly quantified in terms of time are referred to as isochronous. A
single stream may support one LSF which is isochronous and another which is not, thus reinforcing
the distinction between the terms continuous and isochronous made in section 4.2.1. That is,
continuity is viewed as a fundamental property of a medium, whereas the term isochronous is used
to refer to how a communication medium is currently being used.
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5.2.3.5 Identifying Logical Synchronisation Frames

The arguments passed to the synchronisation operation can be used to carry arbitrary information
describing the state of the stream. Typically the information conveyed will include an indication of
the LSF which has just ended, plus any other information required to relate this LSF to any other
LSF in this, or in another, stream. The identification scheme chosen, and therefore, the arguments
passed, must contain sufficient information to support the degree of synchronisation required, and
in particular to allow LSF’s from one stream to be related to LSF’s from another. For isochronous
streams, sufficient information must be included to allow synchronisation with respect to real-time.

Although the range of possible identification schemes is large and varied, there are a number of
generally applicable guidelines as follows:

e LSF synchronisation point operations should be invoked from as near the stream sinks as
possible, therefore such operations will often be associated with stream sockets.

e stream plugs must insert sufficient information in the data they send to the stream socket to
allow the socket to identify each LSF.

e sockets will typically include some local information to indicate the current state of the
stream and LSF.

Any values returned by a synchronisation operation may be used by the stream to influence its
future execution. In this way the controlling application may control the stream via the results it
returns from a synchronisation point invocation. This offers the significant advantage of reducing
the number of invocations required to control the stream; if such control were not possible, then
the application would be forced to make a separate call to alter the behaviour of the stream.

5.2.3.6 Real-Time Synchronisation

IMAC does not stipulate how real-time synchronisation is to be provided, because the general
solution of providing a global system clock is complex, hard to implement, does not scale and in
some cases may not even be required. IMAC does not preclude the use of a global clock; it allows
for the use of any mechanism which can provide the required degree of synchronisation.

The implementation detail of crucial importance in deciding how to provide real-time syﬂchronisa—
tion is the ratio of the delay introduced by communication to that of the acceptable synchronisation
skew.

If communication delays are very much lower than the allowed skew, then no other form of syn-
chronisation is required since communication will appear instantaneous with respect to these other
synchronisation requirements. Such an implementation could start two streams at the same time
simply by issuing the relevant operations directly - they would appear to start instantaneously
because the communication delays are negligible. The fact that communication delays are decreas-
ing as technology progresses, whilst many user related synchronisation requirements remain static
means that this approach becomes increasingly valid.

As the communication delay reaches, or exceeds, the allowed skew, then the need for explicit
synchronisation increases. In such cases a global clock, such as that provided by the Network Time
Protocol [Mills89] or Tempo [Gusella83] may be the best solution.

As discussed in section 4.2.9, real-time synchronisation ensures that multiple operations occur at
the same time and relates LSF’s from one isochronous stream to LSF’s from another; the following
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sections outline a number of possible schemes for implementing such synchronisation and show
that IMAC can be used to implement any of them.

Pre-Scheduling

Given the use of a global clock it is possible to ensure that operations occur at the same time,
regardless of communication delays, via the use of pre-scheduling whereby operations are explicitly
scheduled for some future time.

The instructions to start a voice and video stream at the same time, would take the form of “start
stream at time z”, where z is set far enough into the future to avoid any delays involved in issuing
these instructions.

Such operations can be easily expressed as part of the operation component of an IMAC device
interface, (see section 5.2.4). :

Prepare and Act Operations

Another approach is to split operations into prepare and act sub-operations. The prepare operation
instructs the device to pre-allocate all of the necessary resources and prepare for the subsequent
execution of the operation in question. When the act operation is issued its startup time will be
significantly reduced through the use of pre-allocated resources, thus reducing the delay between
the issue of the operation and it having some effect. Both the MIT Audio Server (section 3.6.2.1)
and VOX (section 3.9) use this approach.

Again such operations may be easily expressed for IMAC devices.

Global Clock Timestamps

A global clock can be used by plugs to timestamp all LSF’s generated and by sockets to timestamp
the receipt of each LSF; in this way, it is possible to relate LSF’s from one isochronous stream to
LS¥’s from another simply by comparing timestamps. ’

Such timestamps may be passed as arguments to stream synchronisation point operations.

Local Clock Tﬁnestamps

If no global clock is available then it is possible to use a combination of local timestamps, coupled
with a knowledge of the skew between the local clocks to provide real-time synchronisation. Each
plug and socket must provide an operation for determining its local time, thus enabling the caller
of this operation to determine the skew between its clock and that of the callee. Plugs timestamp
outgoing LSF’s and sockets timestamp incoming LSF’s with their local clock. The controlling

application must then add the known clock skew between each stream combination to the local -

timestamps generated by each stream to compute a temporary approximation to a global clock
which can then be used to relate the LSF’s from multiple streams.

Although this scheme is inelegant compared to that offered by the use of a global clock, it may
provide an adequate degree of real-time synchronisation without the need to implement a global
clock. Again the required timestamps are passed as arguments to the stream synchronisation point
operations.
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Real-Time Synchronisation Summary

The decision to avoid stipulating a global clock was largely motivated by the principle of choice;
that is, delaying policy decisions to the latest possible stage. The provision of this choice is made
possible by the flexibility offered by the use of structured streams, and in particular by the fact that
stream synchronisation points are represented as operations which may take an arbitrary number
of arguments of arbitrary types.

5.2.3.7 Stream Summary

IMAC streams represent the unidirectional, typed, communication of a single information medium.
They are structured into a sequence of so-called Logical Synchronisation Frames, each of which is
composed from a number of lower-level Physical Synchronisation Frames.

Event and stream synchronisation points are communicated to any interested party using operation
invocation, thus synchronising the execution of the stream and the other party.

IMAC does not stipulate how real-time synchronisation is to be provided, but provides sufficient
flexibility to support a range of real-time synchronisation schemes. Chapter 6 includes a series of
examples illustrating the use of IMAC streams.

5.2.4 Devices

IMAC devices are an extension of ANSA interfaces to provide a particular style of service suited
to the requirements of multimedia applications. Devices consist of an operation and stream com-
ponent. The stream component contains specifications for any number of stream types and stream
ends; the operation component contains operations for controlling the behaviour of the device and
is directly equivalent to an ANSA interface.

e a stream type consists of:

— a textual name denoting the stream type.

— a list of all of the interfaces containing event synchronisation point operations supported
by this stream.

— a list of all of the interfaces containing stream synchronisation point operations sup-
ported by this stream.

—~ a QoS specification.
e a stream end consists of:

— a textual name denoting the stream plug or socket.
— the name of the stream type which this stream end sources or sinks.

— an indication of whether it is a plug or a socket.

e an example stream type could be:

VideoStream : STREAM = { EventIf } { StreamIf } QOS "X 128 Y 128"
a stream type called VideoStream, supporting single event and stream synchronisation
interfaces, EventIf and StreamIf, respectively and offering a QoS of 128x128 picture
resolution.
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Figure 5.5: Blocking and Non-blocking Control Operations

e example stream ends:

VideoPlug : PLUG VideoStream
a plug, called VideoPlug, for the stream type VideoStream.

VideoSocket : SOCKET VideoStream
a socket, called VideoSocket, for the stream type VideoStream.

Operations in a device interface which in some way affect one, or more, streams in that interface
are defined to take effect at the end of the current LSF for each stream affected. As illustrated in
figure 5.5, the completion of such an operation may be indicated in one of two ways:

1. the operation is blocked until completion.

2. the operation returns immediately and an explicit event synchronisation point is defined for
when the action instigated by the returned operation has taken effect.

The stream synchronisation point operations define the LSF’s that the stream may support. Note
that no attempt is made by IMAC to associate any behavioural semantics with the stream synchro-
nisation point definitions; that is, there are no automated checks to determine what a particular
LSF means and to ensure that the underlying implementation adheres to this meaning.

The QoS specifications take the same form as that defined in section 5.2.7 for operations. It is used
to specify the range of QoS options which the stream may support, and from which a client may
choose the most appropriate one for its needs. Options will typically include choosing which LSF
to use from the set of possible LSF’s, or specifying a particular data rate, encoding, or compression
algorithm. As a simple example, an audio stream which can support either A-law or Mu-law
encodings could allow the client to choose the desired encoding via QoS selection.

Devices are intended to model the underlying multimedia hardware. The decision to support
multiple streams within a single device is based on the observation that multimedia hardware will
often support multiple streams. The alternative of only allowing a single stream is restrictive, and
in any case is a subset of supporting multiple streams. An important implementation guideline,
which is illustrated by the example in section 6.4, is that devices which support multiple streams
must be implemented in such a way as to allow the use of individual streams within that device in
isolation of the other streams. Clearly, this is only possible if the underlying hardware allows the
use of single streams in isolation of the others. By so doing, the scope for re-using such complex
devices in previously unforeseen ways, and therefore system flexibility, is greatly increased.
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5.2.5 Device Types

to be substituted for another, functionally equivalent, interface. Conformance can be applied to
independently developed interfaces and does not rely on any form of inheritance mechanism. Con-
formance is a relationship between interfaces, as opposed to a relationship between implementations
as expressed by inheritance as used in Smalltalk or C++. The conformance relationship used in
ANSA is defined in section A.10.1, and is extended by IMAC to include streams. For a fuller
description of conformance and its implications see the ANSA Computational Model [ANSA90a].

' All ANSA interfaces are typed and a conformance relationship is defined to allow one interface

’ A device type is specified by a (stream component type, interface type) pair. A stream component
type is a set of stream end signatures, and a stream end signature consists of:
e a stream end name.
e a stream type name.

e a stream direction: a plug or a socket.
A device X conforms to a device Y if:

1. the stream component type of X conforms to the stream component type of Y.

2. the interface type of X conforms to the interface type of Y.

The rules for interface type conformance are given in section A.10.1.

A stream component type X conforms to a stream component type Y if:

3. for every signature in Y there is a signature in X which defines a stream end of the same
name and stream type.

4. for every signature in Y which defines a plug the signature in X with the same stream name
defines a plug.

5. for every signature in Y which defines a socket the signature in X with the same stream name
defines a socket.

For instance, an interface containing stream ends VideoSource and AudioSource, of stream types
VideoStream and AudioStream respectively would conform to an interface containing only the
VideoSource stream end. Stream types represent information media and stream ends must be of
the same stream type, that is, the same medium, if they are to be used in place of one another.

The trading service for an IMAC system must be extended to use device conformance for matching
device requests to available devices.

5.2.6 ANSA Quality of Service

ANSA already prq;/ides two mechanisms which can be used to provide limited QoS support:

e trader properties and constraint expressions, (section A.3).
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e interface and operation attributes, (sections A.1.1.1 and A.5).

Trader properties and constraints may be used to provide device wide QoS; that is, to specify
a QoS which applies to a device as a whole. For example, a camera device could export three
instances of the same interface to the trader, each with a different set of properties as follows:

Export 1: XResolution 128 YResolution 128
Export 2: XResolution 512 YResolution 512
Export 3: XResolution 1024 YResolution 1024

An import with a constraint of “XResolution > 512 and YResolution > 512” would obtain the
third export. The client would then invoke operations on this interface to control a 1024x1024
video image. This is a very restrictive form of QoS since it applies to an entire interface and does
not provide a mechanism for the service provider to determine the QoS actually requested. In
this example the service provider is free to provide any resolution greater than 512x512. The fact
that it does not know the QoS actually requested constrains it to provide the maximum 1024x1024
resolution.

In addition the current implementation of the trader does not allow the importer to determine the
properties of the offer it has imported. The import constraint used above could be satisfied by
either a 512x512 or 1024x1024 resolution image, but the client has no way of determining which
one has been selected.

Attributes may apply to an entire interface, or to a particular operation within an interface,
and provide a declarative means for controlling the various distribution transparencies provided
by ANSA. The intended use for attributes is to specify the provision of transparencies such as
atomicity, replication and concurrency control. Attributes will be implemented as transformations
applied to the language extensions provided by ANSA for managing distribution.

Neither of these mechanisms can be used to directly control the underlying communication system,
and in general cannot influence dynamic system behaviour.

5.2.7 IMAC Quality of Service

IMAC provides a new mechanism for the specification of communication oriented QoS on a per-
operation basts, with the added stipulation that applications be able to determine the QoS that is
being used for a given operation.

Interface operations may specify a set of separate QoS options with which they are prepared to be
invoked. Operation invocations may then specify a QoS request which must be supported by. this
set. Although QoS may appear in the specification of an interface, it does not contribute to the
type of the interface and consequently plays no part in conformance.

QoS options are expressed as constraints on the underlying communication system. The system
is viewed as offering a set of communication properties which can be used in a variety of ways
by the application. The communications system is viewed as the QoS provider or server, and the
application components using communication resources as clients. This model follows naturally
from the client/server paradigm in which the provider of a service or resource is represented as a
server, and the user of that service or resource as a client. The novel aspect is that clients specify
the services and resources they require as constraints on the set of available services and resources.
In this way, clients express their requirements in a declarative, as opposed to procedural, manner.
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The process of matching a particular QoS constraint to the available set of QoS offers is called
QoS negotiation and involves the following operands:

QoS offers: the underlying system makes a series of QoS offers representing the QoS it can
support.

QoS specification: each operation in an interface may specify a set of constraints which are used
to select the set of QoS offers which can be used for that given operation.

QoS request: the invoker of an operation is able to specify a single QoS constraint for use with
that operation. This constraint must be satisfied by the offers selected by the QoS specifica-
tion.

Given that IMAC is intended for use in an open distributed environment, the QoS mechanism
must be able to manage a variety of communication architectures and protocol suites. As stated in
section 4.2.7.1 the QoS specification available at the application level must be declarative and ex-
pressed in application level terms and concepts, therefore some means of mapping from application
level QoS to communications level QoS is required. These requirements are met by the following
constructs:

QoS Domains: used to delimit the scope of QoS offers, specifications and requests. A domain
represents a particular implementation and configuration of a particular protocol architecture.

QoS Layers: each QoS domain is layered, with each layer representing a point at which QoS is
provided.

QoS Mapping: some form of mapping function is required to map QoS constraints at layer n 41
to constraints suitable for layer n.

Each domain may have an arbitrary number of layers depending on the nature of the communi-
cation architectures and protocols it represents. In this way end-to-end QoS may be provided by
representing user interface, application and other system components, in addition to the commu-
nications system, which provide some form of QoS, as QoS layers.

An important point is that there need not be a one-to-one correspondence between QoS and
protocol layers, and that other system components may be represented as QoS layers.

The term QoS negotiation is extended to include negotiation at all layers, and the term per-layer
QoS negotiation is introduced to refer to negotiation at a single layer. Per-layer QoS negotiation
takes the form a single QoS constraint which is presented as a request to the layer in question.
This request, if successful, has two results:

1. alist of QoS offers made at this layer, any of which can be used to provide the QoS specified
by the constraint.

2. a list of QoS constraints, one for each offer, to be passed on to the next layer. These
constraints are produced by the application of a QoS mapping function. A mapped constraint
may be null, in which case it will be matched by all QoS offers.

The terms static and dynamic QoS are used to refer to the two results of per layer QoS negotiation.
These names are chosen to reflect the use to which these results will be put. The first result is
the dynamic QoS since it will be subsequently presented to the underlying system as a request
for resources, the results of which will vary depending on the current resource utilisation of the
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system. The process of selecting a single offer, from a set of candidate offers, is called dynamic
QoS negotiation. The second result is used in subsequent QoS negotiation whose results should
only change when the system configuration is changed, that is, when new QoS offers are added or
old ones removed.

In order to ensure the consistent use of QoS domains and constraints between interface providers
and users some form of system wide database is required for storing QoS information. This service,
called the QoS Manager, is described in section 5.3.1.

5.2.7.1 QoS Algorithms

Given that the underlying system must make a series of QoS offers for each layer in each domain
it supports, it is possible to outline the algorithms used for negotiating QoS across all layers.

The algorithm for QoS specifications is outlined in figure 5.65. This algorithm is recursive and
identifies all possible combinations of QoS offers which can be used to provide the stated QoS
specifications. For simplicity, the resulting offers are concatenated into a single string. However as
shown in section 5.2.7.2, the offers resulting from QoS negotiation at each layer can be combined
to form a set of protocol stacks, any of which can potentially provide the specified QoS. In this
way, QoS negotiation is carried out at each layer, and the QoS constraints presented to each layer
are mapped from one layer to the next by the per-layer QoS negotiation operation.

The algorithm for QoS requests is similar to that used for specifications, except that it includes an
additional check to ensure that only QoS offers which are supported by both client and server are
used. This assumes that the set of offers produced by the QoS specification algorithm are available
to the client. The algorithm for QoS requests is outlined in figure 5.75.

IMAC does not specify the representation to be used for QoS offers, specifications or requests,
neither does it specify the per-layer QoS negotiation algorithm. This is another application of the
principle of choice, and allows the implementation to choose the most appropriate representation
and algorithm for its requirements.

5.2.7.2 QoS Protocol Stacks

The QoS algorithms can be viewed as either producing, or operating on, a set of protocol stacks,
any of which may be used to provide the requested QoS. The QoS specification algorithm produces
such a set, and the QoS request algorithm subsequently selects the most appropriate member of
this set.

Such protocol stacks consist of a sequence of QoS offers, where each offer is taken from the results
of per-layer QoS negotiation at each layer. The set of protocol stacks is obtained by combining
each offer at layer n 4+ 1 with each offer at layer n. This is illustrated in figure 5.8 where each
possible path from the top layer to the bottom layer represents a protocol stack. The total number
of protocol stacks is given by the number of possible paths from the root of the tree to its leaves.

This view highlights the utility of QoS for specifying a multiplicity of protocol stacks and for
selecting a single stack which best matches the applications communications requirements. As
discussed in section 4.2.4.5 this is required if full advantage is to be taken of minimal multiplexing.

5The domain is specified for the entire interface.
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PROCEDURE negotiate_constraint( layer, constraint )
RETURNS ( result, offers )
BEGIN

new_offers := negotiate QoS at the layer for constraint

IF negotiation unsuccessful THEN
result := FALSE

offers := NULL
RETURN

END

JF layer == last layer THEN
result := TRUE
offers := new_offers
RETURN

END

next_layer = next layer in the current domain .

offers := NULL

sucess := FALSE
FOR offer IN new_offers DO
next_constraint := mapped constraint for offer

IF r_result == TRUE THEN

offers := offers + r_offers -- string concatenation
success := TRUE
END

DONE

result := success
RETURN

FOR constraint IN each constraint in the QoS specification DO
layer := first layer in ‘the current domain

( success, offers ) := negotiate_constraint( layer, constraint )

( r_result, r_offers ) :=
negotiate_constraint( next_layer, next_constraint )

" Figure 5.6: Algorithm for Negotiating QoS Specifications
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current_constraint := QoS request, success := TRUE
FOR layer IN each layer in the current domain DO
negotiate QoS at layer for current_constraint

IF negotiation unsuccessful THEN
success := FALSE
BREAK -- leave this loop

END

FOR offer IN offers resulting from negotiation DO
IF offer cannot be used to satisfy QoS specification THEN
discard offer
END
DONE

next_offer := result of dynamic QoS negotiation on remaining offers
current_constraint := mapped constraint for next_offer

DONE

Figure 5.7: Algorithm for Negotiating QoS Requests
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Figure 5.8: QoS Protocol Stacks

5.2.7.3 End-to-End QoS

. Dynamic QoS requests can be made at any time preceding the invocation. If QOS is to be provided
on an end-to-end basis then sufficient resources must be available at both the client and server ends
of the invocation. In other words the dynamic QoS requests must be satisfied by both client and
server. '

There is a tradeoff to be made between when and for how long resources are allocated and the
degree of certainty that sufficient resources will be available when they are required. At one extreme
it is possible to pre-allocate the maximum resources ever likely to be required; this guarantees that
the QoS required will be available, but may be prohibitively expensive to implement. On the
other hand it is possible to only allocate resources when they are required; although this makes
efficient use of resources it makes providing QoS guarantees considerably more difficult. Providing
guarantees does not necessarily require the pre-allocation of resources. For instance, some form
of priority based scheme may be used to ensure that guaranteed resources can be made available
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when they are required, but may be available for wider use at other times. In such a scheme only
the available priorities are pre-allocated and not the resources themselves. IMAC attempts to offer
a compromise between these two extremes as discussed below.

In order to make efficient use of the available resources it is necessary to defer making dynamic QoS
requests until the latest possible time. In particular, if the server is to efficiently allocate resources
it must know the QoS actually requested by the client. This implies that some communication
takes place between the client and server prior to the invocation of the QoS controlled operation.
IMAC does not:

e stipulate precisely when or what form the communication of QoS results from the client to
the server should take place - just that it should occur before the operation is invoked.

e stipulate that QoS be re-negotiated on a per operation invocation basis - it is left to the
implementation to decide when re-negotiation takes place.

This is an application of the principle of choice and allows the system implementor to choose
the optimal combination of QoS re-negotiation and client/server communication of QoS for the
implementation environment in question. In this way, it is possible to make an implementation
specific trade-off between efficient resource utilisation and QoS guarantees which is likely to be
more efficient than one made at an earlier time. The exact trade-offs made should be invisible to
the application writer; that is, application code written in an environment where one trade-off has
been made should also work in a different environment where a different trade-off has been made.
Therefore, the only observable difference should be one of performance.

5.2.7.4 Availability of QoS Results

Both the client :and server applications must have access to the results of the preceding QoS
negotiation since the QoS actually provided is likely to affect the subsequent behaviour of said
applications. The QoS information available falls into the following categories:

1. server operations being informed of the QoS request specified by the client.

2. client and server being informed of the QoS offers used, at the uppermost, QoS layer to satisfy
the QoS request.

3. client and server being informed of the QoS offers used at all layers.
IMAC stipulates that 1 and 2 must be provided whilst 3 is optional. This allows applications to

vary their behaviour and in particular the degree of interactivity they provide in response to the
QoS currently in use; see section 4.2.5.

Allowing access to the lower layers of QoS negotiation may lead to non-portable applications and
is therefore discouraged. However, there may be applications which have an absolute requirement
for such information.

5.2.7.5 Multi-Channel Synchronisation

An inevitable consequence of providing per-operation QoS is that invocations using different QoS
and hence communication channels, will no longer be synchronised with respect to each other. The
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term multi-channel synchronisation is used to refer to the synchromsatlon of operation mvoca,tlons
issued over separate communication channels.

In many cases, such operations are inherently independent of one another and hence have no need
for multi-channel synchronisation. However, in other cases such synchronisation will be required.

Any implementation of multi-channel synchronisation is likely to rely on the insertion of sequence
numbers, at the client, which can be used to re-order invocations at the server. Such sequence
numbers may be generated, and invocations ordered, at any of the following levels:

e within the remote invocation protocol, with appropriate sequence numbers being inserted in
the protocol header and re-ordering implemented by the destination protocol implementation.

e as part of the stub code generated for marshalling and unmarshalling invocation arguments
and for invocation dispatching at the server.

e as part of a more general mechanism such as a group execution protocol or atomic transaction
manager.

left to the application to include explicit sequence numbers and implement re-ordering itself.

Each of these possible solutions has its own advantages and disadvantages, and each is best suited
to a different implementation environment. The principle of choice requires that IMAC does not
make the choice between these options, and it is consequently left to the implementation to choose
the most appropriate for its needs.

5.2.7.6 QoS Summary

IMAC provides comprehensive support for QoS on an end-to-end, per-operation basis. QoS is
specified at the application level as a constraint on the services provided by the underlying system.
QoS constraints may be mapped from one layer to the next, thus shielding higher levels from
lower-level QoS details.

The algorithms for QoS negotiation were outlined and the results of these algorithms are subse-
quently made available to the client and server components of the operation in question.

Although IMAC QoS is primarily targeted at the communication system, its structure is sufficiently
general to allow other system components to be represented as a QoS layer and thus participate
in QoS negotiation.

5.3 IMAC Services

This section defines the functions of the various IMAC services mentioned in section 5.2.2 in greater
detail.

5.3.1 QoS Manager

The QoS manager provides a system wide database for storing QoS data and may also be used to
provide compile-time checking of QoS specifications and requests. Its functions can be split into
two broad categories:
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Database Management: creation of QoS domains, layers within domains and naming of do-
mains and layers. Domains and layers are named using textual strings.

Domain Operations: per domain operations including;:

* o registering QoS offers at a given layer.
e specifying QoS mappings at a given layer.

e per-layer QoS negotiation.

The exact format for QoS offers, specifications, requests and mappings is not defined by IMAC, it is
left to the implementation to choose the most appropriate representations for its needs. Similarly
the exact nature of per-layer QoS negotiation will depend on the representations chosen and is also
implementation dependent.

The QoS negotiation algorithms outlined in section 5.2.7.1 may be implemented within the QoS
manager or in some other system component which uses the QoS manager purely as a database.
The provision of per-layer QoS negotiation allows for compile-time checks to be implemented
by programme development tools which access the QoS manager database and QoS negotiation
facilities.

5.3.2 User Locator

The User Locator is responsible for identifying the current physical location of a given user, and
given a user name it will determine and return an address for that user which can be used for
subsequent communication. The request takes the form of “find an instance of the specified service
at the user’s current location”. The address returned takes the form of an interface reference. In
order to associate a location with a service it is necessary to impose the convention that all services
and IMAC devices which can be accessed by the user locator, include a property in their export to
the trader which specifies their location. For instance a property of the form “Location Basement”
could be used. The algorithm implemented by the User Locator is as follows:

1. determine the physical location of the user.

2. import the specified service with the constraint that the location property is the user’s current
location.

IMAC does not specify how a user should be located, just that the User Locator is informed of
the user’s physical location whenever it changes. This allows for a variety of location schemes to
be implemented.

5.3.3 Desktop Manager

The Desktop Manager provides a management interface for controlling the various devices and
services provided by a single Multimedia Desktop, (see section 2.5). It extends the ANSA Node
Manager (section A.12) to support the creation and destruction of devices in multiple run-time
environments, and to provide management of shared resources.

The first extension. can be implemented by extending the Node Manager’s service description to
include an optional specification of the service to use for creating and destroying the service in
question. This allows for each service to specify the means used to create and destroy it.
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The Node Manager already allows the number of activations for a given service to be bounded and
thus provide for simple resource management. The Desktop Manager extends this scheme to allow
multiple services to be collected into an activation group and to limit the number of activations
allowed for the entire group. Shared resources can then be represented by a group and all users
of that resource included in the group, thus allowing access to the resource to be conveniently
controlled.

As a simple example consider a workstation equipped with a single speaker and which supports
AudioWindow and Telephone IMAC devices which use this speaker. By creating a new activation
group, which allows at most one activation, and which contains the AudioWindow and Telephone
devices, it is possible to ensure that only one device is active, and hence using the speaker, at any
given time.

In order to allow for more sophisticated resource management policies to be built on top of this
mechanism the Desktop Manager must allow for the external control of the number of activations,
and for access to the current status of the activation group. In this way, a device may temporarily
relinquish control of a shared resource by explicitly decrementing the activation count for the group
in question, without terminating its execution.

5.3.4 Translation Manager

The Translation Manager provides a database for translator devices which can be searched for
devices with a plug and socket of specified types. All devices capable of translating from one
stream type to another must be registered with the Translation Manager in addition to any other
databases such as the Trader or Desktop Manager. The Translation Manager is consulted whenever
an attempt to connect a plug to'a socket fails due to a stream type mismatch.

5.4 Orchestration

Orchestration is the name given to the management functions required to coordinate IMAC
streams, devices, QoS and services. Orchestration provides a uniform interface to the other com-
ponents of IMAC and provides commonly used functions as part of this interface.

There is no single architectural component or service charged with implementing orchestration.
Orchestration functions will typically be provided by a combination of language extensions, appli-
cation libraries and services such as the translation and QoS managers.

In order to implement orchestration functions it is necessary for all device interfaces to provide
a common set of management operations. In other words, all device interfaces conform to a
common interface, containing the required management operations. The operations provided, their
arguments, results and terminations are not defined by IMAC - it is left to the implementation to
specify this management interface.

However, IMAC does provide some general requirements for the system implementor, and in par-
ticular the following functions must somehow be incorporated into the orchestration interface.

e type checked connection management of stream plugs and sockets.

e explicit identification of translator devices, and subsequent interaction with the translation
manager to register their existence.
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° trépping of stream connection failures due to type mismatch and subsequent interrogation
of the translation manager to find a suitable translation device.

e specification of client QoS requests and server QoS specifications.

o specification of QoS offers provided by particular client and server implementations, that is,
providing a means for stating the current communication system configuration of client and
servers.

e creation and passing of interface references for event and stream synchronisation operations.

e provision of an interface to the user locator.

Providing orchestration functions as language extensions, rather than as libraries, offers a number
of important advantages:

e provides a simple, coherent, programming model.
e allows for compile-time checking.

e decouples the application from lower level implementation details and interfaces.

The first two advantages simplify application development. The third allows for the independent
evolution of the application and the underlying system, for instance, it is possible to change lower
level system interfaces without disturbing the application.

The functions provided by orchestration, and the way they are provided, are intended to reduce
the complexity and thus ease the programming burden of coordinating the activity of multiple
system components to provide a coherent view of the underlying system components.

5.5 Summary

The IMAC architecture and the principles which influenced its design have been presented in
detail. In addition, the motivation and justification for its design have been presented, as have the
features deliberately omitted from IMAC. IMAC is an extension of the ANSA architecture and its
relationship to, and features inherited from ANSA have also been discussed.

IMAC streams provide the basis for the synchronisation of multiple, related, information media,
whilst IMAC devices are instrumental in managing heterogeneity. Comprehensive support is pro-
vided for end-to-end, per-operation QoS. A suite of services are defined for locating users, managing
devices, QoS and stream translation.

All IMAC components are coordinated by the so-called orchestration functions which provide a
uniform interface to all of the other IMAC functions and components.




IMAC
Examples

This chapter presents some examples illustrating how IMAC may be used to implement a variety
of synchronisation schemes and to manage heterogeneity. A final example contains some sample
orchestration functions and demonstrates how such functions simplify interacting with multiple
IMAC services.

The pseudocode used in these examples is not part of IMAC; it is used purely to illustrate and
simplify the explanation of the examples presented. The only things of note are the INVOKE,
WAIT FOR and RETURN INVOCATION statements. INVOKE issues a remote invocation, WAIT_FOR sus-
pends the calling thread until one, or more, specified invocations are received, and RETURN allows a
WAIT.FOR invocation to return. The IMAC language is ANSA PREPC with the extensions defined
in chapter 7.

6.1 Event Synchronisation Example

This example provides a solution to the event synchronisation problem outlined in section 4.2.8.1.

A video stream of type VideoStream is implemented by a Camera device containing a plug, and a
VideoWindow device containing a socket. The interfaces for these devices are outlined in figure 6.1.

The VideoWindow Create operation will not return until a video window is actually displayed on
the screen, this device also invokes the following event synchronisation operations:

VideoStarted: an interrogation invoked when the video stream is first transmitted or received.

VideoTerminated: an interrogation invoked when the last sample is transmitted or received.

The controlling application creates a video stream, and allows it to run until the user requests its
termination; this application is presented in pseudocode form in figure 6.1, and diagrammatically

95
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Camera: DEVICE =
BEGIN

videosource: PLUG VideoStream;

OPERATION Play; -- start video output
OPERATION Stop; —— stop video output

END

VideoWindow: DEVICE =
BEGIN

videosink: SOCKET VideoStream;

OPERATION Create; -- create a video window

OPERATION Destroy; -- destroy video window
END

Application: PROGRAM =
BEGIN

INVOKE VideoWindow.Create
INVOKE Camera.Play

WAIT_FOR VideoStarted INVOCATION
-~ issue prompt for user input

RETURN VideoStarted INVOCATION

WAIT_FOR user input
-- user input received

INVOKE Camera.Stop

WAIT_FOR VideoTerminated INVOCATION
RETURN VideoTerminated INVOCATION

INVOKE VideoWindow.Destroy

END

Figure 6.1: Event Synchronisation Example Pseudocode

in figure 6.2. The.“\rideqstarted‘ event synchronisatién point allows the application to perforrh
any initialisation which is required once the video stream is active but before it is displayed; in
this example the application issues a prompt for the subsequent termination of the video stream.

6.2 Monitoring-Syhchrdnisation

" The previous examI)Ie can be easily extended to implement simple monitoring of the video stream’s
synchronisation and also to handle communication errors gracefully.
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Figure 6.2: Event Synchronisation Example Diagram

The video stream is extended to support LSF’s representing a single video frame, the end of each
LSF represents a stream synchronisation point which results in the invocation of a FrameReceived
interrogation. FrameReceived takes two arguments:

st LSF._seq: the sequence number of the stream’s current LSF.

st LSF_time: the timestamp of the stream’s current LSF.
FrameReceived has three results:

sync_error: a boolean, which if true, indicates that a synchronisation error has been detected.
app-LSF._seq the sequence number of the application’s current LSF.

app LSF_time the timestamp of the application’s current LSF.

The stream implementation examines these results and if a synchronisation error has been detected
it must take some action to restore it. By examining the app.LSF_seq and app.LSF.time results it
can determine if it is running ahead or lagging behind the application. If behind, it can attempt to
catch up by dropping any buffered data and moving to the most recently received data. If ahead,
it may slow itself down by ignoring recently received data. In both cases it may be possible to
use flow control, or even to vary the QoS being used, in order to vary rate at which LSF’s are
transmitted and received.

The issue of flow control is complicated by the potential use of multicast. For instance, if a stream
sink finds itself running ahead of its controlling application, then it may ask the source to slow
down its rate of transmission. However, if the source is multicasting to multiple sinks then the
source must decide whether to slow its transmission to this single sink, or to allsinks. This problem
is compounded if some of the sinks are themselves multicasting. The obvious solution of applying
flow control on a per-sink basis, that is, transmitting at different rates to each multicast sink, may
be very expensive to 1mplement if it precludes the use of hardware multicasting provided by the
underlying network.
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—- create video window and start video stream
LOOP
WAIT_FOR FrameReceived OR CommunicationError INVDCATION

IF CommunicationError THEN
BREAK -- leave loop
END :

—- FrameReceived invocation.
sync_error := FALSE

IF first invocation THEN
prev_st_LSF_seq := app_LSF_seq := st_LSF_seq
prev_st_LSF_time := app_LSF_time -:= st_LSF_time
prev_local_time := current_time()
‘RETURN FrameReceived INVOCATION
CONTINUE -- iterate

END

n_frames := prev_st_LSF_seq - st_LSF_seq
expected_frames := (current_time() - prev_local _time) / frame_time

IF n_frames > (expected_frames+2) OR
n_frames < (expected_frames-2) THEN
—-- Synchronisation has been lost
sync_exrror := TRUE '
app_LSF_seq_no = prev_st_LSF_no + expected_frames
app_LSF_time = prev_st_LSF_time + (expected_frames * frame_time)
RETURN FrameReceived INVOCATION '
ELSE
~- Synchronisation is maintained
RETURN FrameReceived INVOCATION
END

prev_st_LSF_seq := st_LSF_seq
prev_st_LSF_time := st_LSF_time
prev_local_time := current_time()

END ,
-- Terminate the video stream

.Figure 6.3: Monitoring Stream Synchronisation Example

The event synchromsatlon operatlon CommunicationError, is invoked by either the plug or socket
device if a communication error is detected. A stream synchromsatlon skew of two video frames
is allowed. Figure 6.3 extends figure 6.1, to monitor the streams synchronisations and to handle
communication errors.

This example assumes s that the time taken to transmit and receive the FrameReceived operatlons
is 51gn1ﬁcantly less than the allowed skew. It also does not monitor the communication latency
between the stream plug and socket.

A frame rate of 50 frames per second requires 20ms per frame, thus imposing an upper bound
of 40ms (two frani_és worth of skew) for the FrameReceived operation. Given that current RPC
implementations provide circa 10ms performance and that announcements, although unreliable,
will be even faster:since they need not wait for a reply, the first assumption is valid. Section 9.1
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includes more detailed RPC performance results for the ANSA Testbench and other contemporary
RPC implementations.

Note, that because both announcements and interrogations may not reach the application within
the tolerated communication latency as a result of communication errors, any practical implemen-
tation must impose a timeout at each point waiting for such operations. In most cases the timeout
can be set to the same value as the acceptable synchronisation skew and if it expires a loss of
synchronisation will almost certainly have occurred.

6.3 Mutually Synchronised Streams

This example illustrates how real-time synchronisation between two streams might be implemented.
The two streams are synchronised with respect to each other, and with respect to real-time. The
controlling application is only required to start and stop both streams at the same time. For
simplicity, both streams are of the same VideoStream type used in the previous example. One
of the streams could be replaced by a different stream type without altering the synchronisation
algorithm used in any fundamental way. A global clock is assumed and the Camera operations
are extended to support pre-scheduling with the addition of a “time to start” argument. The new
Camera interface and application are outlined in figure 6.4. A time of one second is assumed to be
long enough to outlive the duration of operation invocations.

Two LSF’s (i.e. video frames) worth of skew is allowed between peer streams and between each
stream and real-time. Synchronisation is implemented within the VideoWindow devices. Incoming
LSF’s are added to a first in, first out, (FIFO) buffer to smooth out communication jitter. Synchro-
nisation is implemented at the point where LSF’s are removed from the FIFO by only displaying
LSF’s which satisfy both of the following synchronisation conditions:

1. the LSF lies within the range defined by the allowed skew with respect to real time; that is,
within +1 frame time.

2. the LSF lies within the range defined by the allowed skew between peer streams; that is,
within £2 LSF’s.

The real-time skew is specified as half of that allowed between peer streams to ensure that even
if the peer streams are at opposite extremes of the real-time skew (i.e. one is 1 frame ahead of
real-time, whilst the other is 1 frame behind) then inter-stream synchronisation is still maintained.

The first check, for real-time synchronisation, is easily implemented by comparing the timestamp
of the LSF removed from the FIFO with the current value for the global clock. The check for the
second condition can be implemented by comparing the sequence number of the LSF just removed
from the FIFO, with that of the most recent LSF reported by the peer stream via an invocation
of FrameReceived.

If real-time synchronisation has been lost (condition 1) then the stream must decide if it is running
ahead, or behind, of real-time and take appropriate action as outlined in the previous example. If
synchronisation has been lost with respect to the peer stream, the local stream must decide if it,
or the peer stream, is in error. This can be determined by checking its real-time synchronisation,
that is, if the local stream meets the first condition but fails the second, then the peer stream is
in error. If it fails both conditions then it is in error, but cannot decide on the status of the peer
stream.

The local stream can tell the peer stream that it (i.e. the peer stream) is out of synchronisation via
the results of the peer stream’s next FrameReceived invocation. Similarly the local stream must
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Camera: DEVICE =
BEGIN .

PLUG VideoStream;

OPERATION Play [ time ]; -- start video output

DPERATION Stop [ time ]; -- stop video output
END

Application: PROGRAM =
BEGIN

INVOKE VideoWindow_1.Create
INVOKE VideoWindow_2.Create

time_x = current_time + 1 second -

INVOKE Camera_1.Play [ time_x ]
INVOKE Camera_2.Play [ time_x ]

-- wait for user'input, etc
time_y = current_time + 1 second

INVOKE Camera_1.Stop [ time_y ]
INVOKE Camera_2.Stop [ time_y ]

INVOKE VideoWindow_1.Destroy
INVOKE VideoWindow_2.Destroy

END

Figure 6.4: Pre-Scheduled Operations

Threadi : THREAD =
Loop
WAIT_FOR incoming LSF OR stream termination

IF stream termination THEN
INVOKE StreamTerminated
BREAK -- leave loop

END -

IF first LSF THEN
INVOKE StreamStarted
END -

add :LSF 'to FIFO buffer
“END - :

a5

Fig_tire 6.5: Mutually Synchronised Streams: LSF Reception Thread °
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Thread2: THREAD =
LOOP
WAIT_FOR next frame_time

IF FIFO buffer empty THEN
current_LSF := prev_LSF

ELSE
current_LSF := LSF at head of FIFO buffer
prev_LSF := current_LSF

END

IF synchronisation check 1 fails THEN
IF ahead of real-time THEN
apply flow control
ITERATE -- ignore this LSF
ELSE -- behind real-time
flush multiple buffers from FIFO
display most recently received LSF
ITERATE
END
ELSE
IF synchronisation check 2 fails THEN
tell Thread 3 that a synchronisation error has been detected
END
END

display current_LSF

st_LSF_seq := current_LSF.seq_no
8t_LSF_time := current_LSF.time
INVOKE FrameReceived

IF sync_error THEN
-- peer claims that we are out of synchronisation
IF synchronisation check 2 using app_LSF_seq_no
and app_LSF_time fails THEN
attempt to resynchronise
END
END
END
END

Figure 6.6: Mutually Synchronised Streams: Synchronising Thread

examine the results of any FrameReceived invocations it makes to determine if the peer stream has
detected that it (i.e. the local stream) has lost synchronisation. The local stream must then decide
what action to take based on the previous result of the real-time synchronisation check and by
repeating the second check using the newly received arguments in the FrameReceived invocation.
If, for instance, it has lost synchronisation with respect to its peer stream it may attempt to restore
such synchronisation by increasing the amount of skew it experiences with respect to real-time, (so
long as it remains within the allowed bounds) and thus catch up, or wait for its peer. In this way
both streams monitor each other’s synchronisation,! in addition to their own.

This synchronisation algorithm is outlined in figures 6.5, 6.6 and 6.7 and makes use of three threads

1Each stream acts as an application monitoring the synchronisation of the other.
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Thread3: THREAD =
LooP
WAIT_FOR FrameReceived INVOCATION

app_LSF_seq := current_LST.seq

app_LSF_time := current_LST.time

IF Thread 2 has detected a synchronlsatlon error THEN
sync_error := TRUE

ELSE
sync_error := FALSE
END
RETURN FrameReceived INVOCATION
END

END

Figure 6.7: Mutually Synchroniséd ‘Streams: Invocation Reception Thread
as follows:

1. to receive LSF’s from the stream plug and add them to the FIFO.

2. t:o remove frames from the FIFO, to perform the synchronisation checks and take any neces-
sary action, to display frames and to issue FrameReceived invocations on the peer stream.

3. to wait for FrameReceived invocations from the peer stream.

If multiple synchronisation losses are detected in quick succession and attempts to resynchronise fail
then either, or both, streams can invoke the CommunicationError event synchronisation operation
to inform the application of an irretrievable loss of synchronisation. Similarly if FrameReceived
invocations repeatedly fail then CommunicationError should again be invoked. '

Implementing such mutually synchronised streams is undoubtedly complex but provides increased
robustness in the face of synchronisation losses and relieves the application from the burden of
monitoring synchronisation. However, this complexity is confined to the stream implementation
and does not affect the application. In addition, the fact that the synchronisation interface is clearly
defined in terms of stream synchronisation operations makes it possible to build a set of library
streams implementing often used synchronisation algorithms. A particularly useful example would
be the provision of a real-time clock stream which would periodically issue and accept a variety of
synchronisation point operations and be used by streams requiring real-time synchronisation but
which do not have access to a real-time clock. That is, real-time synchronisation could be achieved
by synchronising streams to another, clock, stream wh1ch is known to be synchronised with respect
to real-time.

Note that this exémple is only intended to give a general view of how LSF’s can be used to
implement synchronisation, and is not in any way intended to be definitive.

6.4 Manag.ing}Heterogeneity

The previoué exarhples have concentrated on the control and synchronisation of IMAC streams,
.this example illustrates how IMAC devices can be used to manage heterogeneity.
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Microphone: DEVICE =
BEGIN

audio: PLUG AudioStream;

OPERATION Start; -- start voice input
OPERATION Stop; -- stop voice input

END

CompactDiscPlayer: DEVICE =
BEGIN

audio: SOCKET AudioStream;

OPERATION Start; -- start playing the current track
OPERATION Stop; —- stop playing the current track

OPERATION Next; -~ skip to next track

OPERATION Prev; -- skip to previous track

OPERATION Program [ tracks ]; -- program a sequence of tracks

END

VideoPhone: DEVICE =
BEGIN

audio: PLUG AudioStream;
video: PLUG VideoStream;

speaker: SOCKET AudioStream;
screen: SOCKET VideoStream;

OPERATION Start; -- start communication

OPERATION Stop; -- stop communication

OPERATION Suspend; -~ suspend communication

OPERATION Resume; -- resume communication
ERD

Figure 6.8: Real-Time Voice Devices

Figure 6.8 contains definitions for a variety of devices capable of sourcing a real-time voice stream.
Each of these interfaces is likely to be supported by a different variety of workstation or network
server consisting of different multimedia hardware. An application charged with obtaining voice
input from any of these would, at first sight, be required to manage all of the different interfaces
specified. However, the use of device conformance allows the application to deal only in terms
of the simplest device which provides the functionality it requires, in this case the Microphone
device. The CompactDiscPlayer and VideoPhone devices both conform to the Microphone device
and may therefore be used in its place. Although conformance allows such functionally equivalent
devices to be substituted for each other it does not guarantee that the underlying implementation
may actually be used in the manner expected by the simpler device. For instance, the VideoPhone
implementation. may not be capable-of supporting voice only communication. This leads to the
simple implementation (see section 5.2.4) guideline that devices supporting multiple streams must
allow the use of a subset of the streams supported and not insist that all the streams be used.

The fact that the same interface may be implemented across a number of different hardware
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VideoErrors: INTERFACE =
BEGIN

OPERATION CommunicationError
END

VideoEvents: INTERFACE =
BEGIN

OPERATION VideoStarted
OPERATION VideoTerminated

END.

Application: PROGRAM =
-- user_1 and user_2 are specified on the command line
sourceDesktop := LOCATE( user_1, DesktopManager )
‘"destDesktop : LOCATE(. user_2, DesktopManager )
camera := sourceDesktop.Create( Camera )
videowindow := destDesktop.Create( VideoWindow )

stream := CONNECT camera.videosource TO videowindow.videosink

errors := CREATE.INTERFACE( VideoErrors )
events := CREATE.INTERFACE( VideoEvents )

SETEVENTS errors FOR camera

SETEVERTS errors FOR videowindow

SETEVENRTS events FOR videowindow

-- control the video stream as in the previous example

DESTROY stream

destDesktop.Destroy( videowindow )
sourceDesktop.Destroy( camera )

END

Figure 6.9: Orchestra:tioh Example.

42,

plé.tforms is compieﬁely tra:nsparent to the clients of the interfaces. ',

6.5 Orchestration

This section illustrates some likely orchestration functions. The event synchronisation example (see
section 6.1) is revisited and the orchestration operations required to locate users, create and destroy
devices, create streams and set synchronisation point operations are shown. These operations are

shown in pseudocode form in figure 6.9. The application takes command line arguments identifying
the users wishing to communicate. The LOCATE orchestration function interfaces to the User
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Figure 6.10: Orchestration Interaction Diagram

Locator and Trader and finds an instance of the Desktop Manager running on the workstation
nearest each of the users. If the users are not found, this operation will report their absence. The
Desktop Manager is then used to create an instance of the Camera and VideoWindow devices at
the respective locations. These operations will fail if insufficient resources are available to create
the devices. For example, if the source workstation only supports one camera and that camera
is already in use then the request to create a new Camera device will be refused. Having created
the devices their stream plug and sockets may be connected to create an end-to-end stream along
which video may flow. Then the interfaces containing required event synchronisation operations
(i.e. VideoErrors and VideoEvents) are created and passed to the two devices. Note, that only the
VideoWindow is asked to invoke the VideoStarted and VideoTerminated event synchronisation
operations, whilst both devices are asked to invoke CommunicationError. This is because this
particular example only requires synchronisation with the VideoWindow device, other applications
may require synchronisation with the Camera as well.

Each of the orchestration functions themselves (LOCATE, SETEVENTS etc) may be complex but this
complexity is hidden from the application. In this way orchestration simplifies the process of
interacting with multiple services. Figure 6.10 illustrates the interactions involved in this example.

6.6 Summary
The examples given in this chapter have outlined how IMAC can be used to control and synchronise
information media streams, to manage heterogeneity and to provide orchestration.

Although IMAC does not provide any algorithms for implementing synchronisation it does provide
a flexible framework within which to implement such algorithms. The provision of a well defined
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interface for stream synchronisation allows a library of commonly used streams and their associated
synchronisation algorithms to be compiled and made available for re-use.



A

Prototype
Implementation

This chapter describes a prototype implementation of the IMAC architecture carried out in order to
establish the feasibility, and identify the strengths and weaknesses of the architecture. A complete
implementation, including demonstrable multimedia applications, would require greater resources,
both time and material, than those available for the purposes of this dissertation. Therefore, the
prototype implementation concentrates on the original and novel aspects of IMAC at the expense of
other system components which although important, have and are being researched elsewhere. The
description of the prototype implementation concentrates on its design and structure as opposed
to lower level implementation details. This allows the work presented to be more easily compared
with other related architectures and system designs.

Just as the Testbench is an example implementation of ANSA, the prototype implementation
presented here is an ezample implementation of IMAC, and is by no means definitive.

The practical work for this dissertation was initially based on version 2.5 of the Testbench. The
results of this initial work, presented in section 7.2.1, proved sufficiently general to be incorporated
into version 3.0 of the Testbench.! Version 3.0 was then used as the new basis for the prototype
implementation presented here, the resulting prototype implementation is often referred to as
IMAC 3.0. Some of the design and implementation of version 3.0 was the work of the author, and
where such work is of direct relevance to IMAC and to this dissertation, it is described as being
part of IMAC 3.0.

1The exact syntax and detailed changes made were agreed with Joe Sventek before being incorporated into
version 3.0.

107
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7.1 Overview

All implementation and experimental work has been carried out over UNIX, primarily because of
the powerful programme development environment it provides. However, the resulting prototype
implementation can be easily ported to the other platforms supported by the Testbench; these
include MS-DOS, VMS and Wanda. No use has been made of UNIX specific features other than
those already used by the Testbench.

The Testbench is briefly described in section A.2 and in the Testbench Implementation Man-
ual [ANSA90b]. The Testbench can be viewed as having four principal components, each of
which has been extended or modified to create the prototype implementation presented here.
These components are:

Capsule: the run-time system for a Testbench application, including support for threads and
communications. These functions are accessed via a procedural interface, called the capsule
library. A single instance of this run-time system is called a capsule.

IDL: the Interface Definition Language used to define ANSA interfaces, and an associated com-
piler, STUBC, which generates stub code from the IDL definitions. STUBC also generates a
signature file containing a description of the interface compiled.

PREPC: a preprocessor which scans C programs for embedded statements (referred to as PREPC
statements) which augment the original program to bind to interfaces and invoke remote
operations. These statements are translated into calls on either the capsule library or the
stub procedures generated by STUBC.

Services: the various services required by an ANSA distributed system. In Testbench version 3 0
the following service’s are prov1ded

Trader: (section A.3), provides a directory and -management facility for distributed appli-
cation -components.

Factory Service: (section A. 11), provides a means for creatlng and destroying new appli-
cation instances.

Node Manager: (section A.12), provides an interface for managing services on a single
node. ‘

The features provided by IMAC 3.0 can be grouped as follows:

ANSA Deficiencies: both the Testbench implementation and the Engineering Model? are found
to be deficient in a number of respects when used to support IMAC and multimedia in
general. Wherever possible these deficiencies have been remedied. ‘

QoS: the implementation of IMAC QoS within the Testbench communication system, the repre-
‘ sentation of QoS offers and constraints, and QoS negotiation algorithms. The extension' of
IDL and PREPC to provide a programming interface for QoS. '

IDL Streams and Devices: extensions to IDL to support application programming of IMAC
streams and devices.

PREPC Streams and Devices: extensions to PREPC to support application programming of
streamn, dev1ce and connection management.

2The abstract design for the Testbench.
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IMAC Services: the design and implementation of the various services required by IMAC.

Orchestration Functions: functions provided for co-ordinating IMAC streams, devices and ser-
vices.

7.2 ANSA Deficiencies

The ANSA deficiencies fall into the following areas:

o features lacking from version 2.5 of the Testbench and subsequently added to version 3.0 by
the author.

o features lacking from 3.0 which have been added as part of IMAC 3.0.
e conformance is only partially implemented.

e Engineering Model deficiencies.

7.2.1 Testbench Version 2.5 Déﬁciencies

Version 2.5 of the Testbench lacked facilities for managing references to ANSA interfaces and for
application level timers.

7.2.1.1 Interface References

Although IDL supported an InterfaceRef data type representing a reference to an ANSA in-
terface, it did not provide a means for explicitly associating instances of this data type with the
interfaces to which they refer and hence could not type check their use. InterfaceRef’s could,
however, be passed as arguments and returned as results of operation invocations.

Another important omission was the lack of a mechanism for dynamically creating interface ref-
erences which were to be subsequently passed directly to other applications; that is, were not to
_ be traded. A possible kludge was to create an InterfaceRef by exporting an interface of the
appropriate type to the Trader. This was not only inelegant, but led to offers being registered with
the trader which were not intended to be generally available.

These omissions represent a major obstacle to implementing an IMAC prototype because of IMAC’s
heavy reliance on the ability to freely generate and distribute interface references to other applica-
tions, streams and devices. Frequent use of interface references in this manner is also likely to lead
to an increase in programming errors associated with their incorrect usage; type checking would
greatly reduce the occurrence of such errors.

The following sections outline the extensions made to IDL and PREPC to provide the required
functionality.3 :

IDL Extensions

The following new statements were added to IDL and are illustrated in figure 7.1:

3The syntax shown here is the final form agreed with Joe Sventek for integration into version 3.0 of the Testbench.
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-- IDL Interfaces

SampleTypes: INTERFACE
BEGIN

SampleInt: TYPE = INTEGER;
ERD.

Sample: INTERFACE
NEEDS SampleTypes;
BEGIN
SampleIfRef: INTERFACEREF OFTYPE Sample;
Opi: OPERATION [ i: SampleInt ] RETURNS [ j: SampleInt J];
END. . :
-- PREPC statements, start'vith an !
! DECLARE { ir } : SampleIfRef SERVER
b {ir } :: Sample$Create( args )

t {} :: Sample$Destroy( ir )

Figure 7.1: IDL and PREPC Extensions

NEEDS InterfaceName
a declaration directing STUBC to read the interface specified by InterfaceName and add it
to the context of the current interface.

InterfaceRefType: INTERFACEREF OFTYPE InterfaceName
a type definition stating that InterfaceRefType is of type InterfaceRef and is used.to
refer to an instance of the interface InterfaceName. Such definitions are passed to PREPC
via the signature file, thus allowing PREPC to type check the usage of any InterfaceRef
variables of this. type.

PREPC Extensions

PREPC insists that all InterfaceRef variables be declared before they ‘are used. The DECLARE
statement, shown below, states that the variable will be used to contain an interface reference of the
type InterfaceRefType, and that it will be used as either client or a server. InterfaceRefType
must have been defined in an IDL specification.

DECLARE { variable }V : InterfaceRefType CLIENT
DECLARE { variable } : InterfaceRefType SERVER

PREPC is now able to type check the usage of this variable and to detect any programming errors
relating to its misuse.
Two further statements, illustrated in figure 7.1, were added to support the creation and destruction

of interface references.

{ variable } :: InterfaceName$Create( optional arguments )
Creates a new interface reference to the interface specified by InterfaceName and assigns it
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to variable. The result varlable must have been previously declared to be a reference to
InterfaceName.

{} :: InterfaceName$Destroy( variable )

Destroys a previously created interface reference; this is type checked in an identical manner
to Create.

These extensions also allow user defined state to be associated with each interface reference created.
The optional arguments to the Create statement, if specified, are passed to a user supplied function
which may then allocate interface specific state. This state is then stored in a database keyed by
the returned interface reference. Operations are provided by the capsule library for retrieving such
state given the interface reference. Similarly a user supplied routine will be invoked to destroy such
state when a Destroy statement is executed. The user supplied routines, for an interface IfName,
must be named IfName_Create and IfName_Destroy.

7.2.1.2 Timer Management

Testbench 2.5 lacked any facilities for application level timers, that is, there was no way for an
application thread to suspend itself for a specified period of time, nor to specify an operation to
be executed when a timeout period has elapsed. This deficiency makes it difficult to construct
applications which implement any form of real-time synchronisation.

A generalised timer facility was implemented to provide both thread suspension and execution of
a specified operation on timeout expiry. The Testbench communication system was modified to
make use of this generalised timer facility instead of the ad-hoc mechanisms originally used.

7.2.2 Testbench Version 3.0 Deficiencies

The 3.0 implementation of the Trader has two major deficiencies:

1. if an import request can be satisfied by multiple service offers in the Trader’s database, the
Trader will randomly select one of these offers and return that as the result of the import.
The client is unable to exercise any choice over the service offer selected.

2. there is no mechanism for the client to obtain the properties specified for the service offer it
has obtained. This prevents the client determining which, from the range of possxble offers,
has been selected.

The first omission makes it impossible to apply any other selection policy than the random one
imposed by the Trader. The second deficiency (see section 5.2.6) deprives the client of the oppor-
tunity to modify its behaviour to suit the service offer actually obtained. These problems have
been overcome as follows:

e the existing Trader Lookup operation, responsible for selecting a particular offer, has been
enhanced to return the property list specified for the returned offer. Random selection is still
applied in the case of multiple offers matching the import request.

e anew Query operation is provided which returns all of the offers matching an import request.
This operation allows an arbitrary selection policy to be applied by its invoker.
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The other major restriction associated with trading, identified in section 5.2.6, is the inability for
the service provider to determine the constraint expression used to select its offer. This restriction
has not been tackled since it would involve extensive changes to components other than the trader.
A simple implementation would be for the Trader to invoke an operation on the server to inform
it of the constraint used. However, such a solution would not scale well and is therefore rejected.
A better scheme would be for the client to include its constraint expression as part of its first
invocation on the server.

7.2.3 Implementation of Conformance

Type conformance .is only partially implemented in version 3.0, and in particular there is no
implementation of the conformance relationships defined in section 5.2.5. Instead, IDL provides
a simple mechanism for forcing one interface type to conform to another, but it is left to the
programmer to decide if independently developed interfaces conform.

IS COMPATIBLE WITH InterfaceName;
states that the interface containing this statement conforms to InterfaceName and effec-
tively copies InterfaceName into the current interface, thus ensuring that the conformance
relationship is maintained.

When new interface types are registered with the Trader it is possible to state which other inter-
face types they conform to. In this way, the Trader is able to build a directed acyclic graph of
conformance relationships, without requiring any knowledge of the conformance relationship itself.

This scheme is also used in IMAC 3.0; the only extension being that IS COMPATIBLE WITH also
copies stream related information.

7.2.4 Engineering Model Deficiencies

The ANSA Engineering Model makes two assumptions which become 1nvahd in a multimedia
environment:

e bursts of simple interactions will be more common than sustalned bulk transfer, therefore
latency is the key factor affecting performance.

e communications resources are assumed to be expensive and in order to support scaling such
resources must be shared, and therefore multiplexed, wherever possible.

The first assumption has led to the tight coupling of the CPU scheduler and the communications
system to ensure that CPU time is quickly scheduled to process communication requests. In
addition, memory copying is kept to a minimum and the path from an ANSA interface to the
network interface is kept as short as possible. These are all useful features for a multimedia system.
However, the final consequence of this assumption is counter-productive, namely that there is no
need to explicitly allocate and guarantee resources for the duration of the invocation. Indeed, doing
so would be extremely inefficient under the envisaged communication requirements. Unfortunately,
multimedia communication requires the guaranteed provision of resources' over prolonged periods,
. -and not only for single invocations, but for a succession of invocations.

The second assumption has led to a layered communication system with each layer providing a
number of communications channels to be multiplexed between a greater number of higher level
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Figure 7.2: Multiplexing in The Testbench

channels. Such a system inevitably suffers from the disadvantages associated with multiplexing
discussed in sections 4.2.4.1 and 4.2.4.2.

The following sections describe the design of the ANSA communication system, and the modifica-
tions made to overcome its deficiencies in greater detail.

7.2.5 ANSA Communication System

The Testbench relies on the underlying operating system to provide transport protocols, and
also assumes that such protocols are accessed via a Berkeley UNIX socket style interface. The
currently supported protocols are: UNIX named pipes, UDP, TCP and MSNL [McAuley89].
The Testbench implements three protocol layers:

Message Passing Services (MPS): provide an interface to the transport protocols provided by
the underlying operating system; there is an MPS for each supported protocol.

Execution Protocols: implement the invocation of ANSA operations. Currently two protocols

are defined: the Remote Execution Protocol (REX) for point to point invocations, and the

" Group Execution Protocol (GEX) for multiway, or group, invocations. A REX implementa-
tion is supplied with version 3.0, whilst GEX has only been partially implemented.

Sessions: used to store the end-to-end state required for a remote invocation and to synchronise
the execution of the scheduler and the communications system. '

Efficient resource utilisation (particularly of memory) is achieved by multiplexing the channels
provided by each of these between those of the next layer.

Each MPS provides a single channel to each execution protocol. MPS’s provide a stateless interface,
and rely on the execution protocol to provide complete addressing information for each message
transmitted, and on the underlying operating system for each message received.

Execution protocols provide channels for issuing operations to a specified remote interface and for
receiving invocations on a specified interface. These are called plug and socket channels respectively.
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There is a one-to-one correspondence between channels and interfaces. The terms plug and socket
are not intended to imply uni-directional communication, but rather that sockets may be used
to wait for un-solicited receptions, whilst plugs cannot. Servers transmit invocation replies over
sockets, and clients receive replies over plugs.

Sessions are created dynamically for each client/server interaction pair; therefore, a different session
is required for each client invoking operations in a single interface. Channels are multiplexed
between all of the sessions supported by the interface in question. Therefore, a server providing
three interfaces, each being used by two clients, requires three sockets and six sessions. Sessions
are shared across all of the operations in an interface, that is, all operations invoked by a particular
client on the same interface will use the same session. Figure 7.2 illustrates this structure for a
server supporting two interfaces, X, Y, each providing two operations. Interface X is being used
by one client, whilst Y is used by two clients.

A new session is created on receipt of the first invocation from a previously unseen* client, and an
identifier for the newly created session is passed back to the client in the reply to the invocation.
This identifier is then included in subsequent invocations from that client.

Sessions are decayed, and if no invocations appear on a session for a pre-determined period of time,
the session is garbage collected. The exact duration of this period depends on the precise semantics
of the execution protocol and on the maximum time for which the lower level transport protocols
are likely to retransmit the same packet; that is, a session must be kept for at least as long as it is

4In this context unseen means a client which does not include a specific session identifier in its invocation.
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possible to receive a retransmitted packet from the last invocation. This scheme avoids the need
for an explicit message exchange to create and destroy session state and thus reduces latency.

The process of creating sessions is called binding, and the time at which sessions are created
(i.e. when binding occurs) is referred to as the bind-time. A client can force the server to create a
new session by issuing a new invocation which does nof include a specific session identifier.

At the lowest level, the scheduler waits for new network receptions and uses a data structure
called the protocol table to associate network receptions on a particular Berkeley socket (not to be
confused with channel sockets) with an execution protocol. On being called by the scheduler the
execution protocol invokes the appropriate MPS to actually obtain the newly received packet and
subsequently decodes the address fields in that packet to determine the source and destination end
points. It may then match the destination end point to a channel socket, which may in turn be
matched to an existing session, if one was specified in the packet, or cause a new session to be
created otherwise. Figure 7.3 illustrates this process.

This design suffers from the following disadvantages:

e excessive asynchronous multiplexing, which inevitably introduces jitter.

e the stateless MPS interface does not allow for the association of QoS with a higher level session
or channel. Although the QoS request could be included in every transmission request this
would be prohibitively expensive, and in any case does not solve the problem of specifying
QoS for network receptions or for multiple invocations.

o ‘it is assumed that all operations in an interface use the same session, thus imposing the
constraint that any QoS provided be on an interface wide basis.

The prototype implementation attempts to overcome each of these problems as follows:

e anew MPS interface has been designed explicitly to support QoS and to allow multiplexing
to be reduced. This interface is based on a new communication abstraction called a Local
Channel Resource, and is described in section 7.2.5.1.

o the restriction that all operations in an interface use the same session is not inherent in the
design of the communications system, but is an assumption made by the stub code to invoke
the underlying communication system. STUBC has been modified to use separate sessions
for operations which specify QoS constraints.

e sessions provide a convenient vehicle for storing the results of QoS negotiation and also
allow QoS to be associated with a succession of invocations. Whenever a session is decayed,
any associated resources are freed, and whenever a new session is created, QoS must be
re-negotiated. Section 7.3 describes the implementation of QoS in more detail.

7.2.5.1 Local Channel Resources

An important design goal for the new MPS interface was that the provision of QoS should not
adversely affect the performance and scaling properties of communication not requiring QoS. Local
Channel Resources (LCR’s) were designed to provide a compromise between the scaling properties
provided by multiplexing on the one hand, and the desire to minimise multiplexing and provide
QoS on the other.
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Figure 7.4: Multiplexing Using Local Channel Resources

Local Channel Resource Design

Local channel resources represent the local communication resources required to guarantee a given
QoS; they do not represent communication end-points and do nof contain any addressing informa-
tion. Therefore, it is impossible to transmit data to, or receive data from, an LCR. It is left to
higher level protocols to make use of the resources provided by LCR’s to implement data transmis-
sion and reception. Similarly LCR’s do not provide end-to-end QoS, again, it is left to higher level
protocols to provide end-to-end QoS by creating appropriate LCR’s at the source, destination and
any intermediate capsules.

- LCR’s may support any degree of multiplexing ranging from the general case of multiplexing at

all levels, to providing no multiplexing whatsoever. A single LCR may be multiplexed between
multiple higher level plugs or sockets, alternatively a single LCR may be reserved for a single plug
or socket. Each such channel may, or may not, be multiplexed between multiple sessions. In this
way it is possible to vary the degree of multiplexing to suit higher level QoS requirements and
allows multlplexmg to be viewed as a particular QoS attribute. A capsule may receive requests to
create new, non-multiplexed, LCR’s over an existing multiplexed LCR. This forms the basis for
lmplementmg end—to—end QoS as descrlbed in sectlon 7.3.3. -

- It is also possible for an LCR to prov1de no partlcula.r QoS and hence no resource guarantees;

such LCR’s are referred to as being empty. Empty LCR’s will typically be multiplexed between
multiple channels and provide identical functionality to that provided by the existing, stateless,
MPS interface. In IMAC 3.0 each execution protocol creates ‘a single empty LCR which it uses
for all invocations which do not require a specific QoS.% In this way, there is no scaling penalty to
be paid for such operations. The smaller the degree to which LCR’s are multiplexed, the greater
the cost incurred, that is, the greater the number of LCR’s required. Each active LCR is likely to
require the allocation of a transport level protocol port and associated resources in the underlying.
operating system, in addition to the resources used within the capsule. o

5 Re(iu'ests to create new, non-multiplexed, LCR’s will be received using this LCR.
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Figure 7.4 shows the various multiplexing combinations which may be provided at the server using

LCR’s. .

Whenever a new LCR is created, precautions must be taken to ensure that the provision of the
requested resources do not overcommit the communication system and therefore potentially com-
promise the guarantees made for existing LCR’s. Empty LCR’s, which have no QoS requirement
of their own, must defer resources to other, non-empty, LCR’s.

Finally, LCR’s can be used for both data transmission and reception; that is, they are bi-directional.
However, there is no restriction that the same QoS be provided for both directions, it is left to the
QoS specification to state the resources required for each direction. Allowing duplex communication
allows for the efficient use of underlying transport protocols which also provide bi-directional
communication. The alternative, of using two uni-directional LCR’s, would force the use of two
underlying communication channels where one would suffice.

Local Channel Resource Interface

The Local Channel Resource Interface (LCRI) provided as part of IMAC 3.0 provides a uniform
interface to the underlying transport protocols and allows full advantage to be taken of both
connection-oriented and connection-less protocols. The principal features of the LCRI are as
follows:

the LCRI supports two types of LCR: namely, client and server LCR’s. Both may be used to
send and receive data, but only server LCR’s may be used to accept new network connections.

e the creator of a server LCR must specify an upcall to be invoked when a new connection is
accepted. The arguments to this procedure include an indication of the newly created LCR,
it is then possible to specify another procedure to be upcalled when data is received on the
new LCR.

e the operation for creating client LCR’s includes an implicit connection request, which need
only be implemented by connection-oriented MPS’s.

e all transmission and reception operations include full addressing information, thus allowing
the use of a single LCR to be used to communicate with multiple sites. This follows directly
from the fact that LCR’s do not represent communication end-points.

e a cost function is defined to return an indication of the cost of providing a given QoS.

The ability to use server LCR’s to accept connections maps directly to the functionality provided by
connection-oriented protocols. It can also be simulated by a connection-less protocol by arranging
for its MPS to invoke the specified upcall when the LCR is created, as opposed to when a new
connection is accepted. The only problem is that of deciding how to obtain an LCR for the
supposedly newly accepted connection; this is solved by re-using the original server LCR, that is,
the server LCR is specified as the new LCR.

The fact that transmission and reception operations include full addressing information allows a
single LCR, regardless of the underlying protocol, to be multiplexed between multiple higher level
communication channels. In this way, it is left to the higher level protocols to decide how to
multiplex the resources provided by an LCR.

One restriction is applied to the use of server LCR’s in order to allow for the implementation
of end-to-end QoS by higher level protocols. That is, a non-empty LCR is constrained to only
accept a connection request from a specified end-point or end-points. Section 7.3.3 describes the
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implementation of end-to-end QoS in detail. On the other hand, an empty LCR may listen for
connections from any remote end point.

Both client and server LCR’s are created to satisfy a particular QoS offer and dynamic QoS
negotiation is assumed to have taken place before this interface is invoked, (see 'section 7.3.2). The
negotiation algorithm used will base its decision as to. which QoS offer to use on the results of the
cost function provided by the LCRI.

Another important feature of the LCRI is that when an LCR is created, the creator may associate
some data with that LCR, which will be subsequently made available as an argument to both
the connection accepted and data received upcalls. This data may then be used to speed up the
mapping from LCR to higher level protocol state and thus improve performance. In addition, if
this mapping can be implemented in constant time, then jitter may also be reduced.

QoS provision offers significant advantages even for connection-less protocols. For instance, it is
now possible‘to create multiple LCR’s over a connection-less or a connection-oriented MPS and
use each of these to communicate with a different capsule, using-a different transport channel and
QoS for each. Not only does this allow for QoS to be provided, but it also reduces the amount of
multiplexing required. It is also possible for each MPS to gather per-LCR performance statistics,
which can be used by higher level protocols to optimise their performance.

Local Channel Resource Implementation

The existing MPS interface has been replaced by one based on Local Channel Resources, and
the UNIX named pipe, UDP and TCP MPS modules have been re-implemented to use this new
interface. The diﬁ'erences between the new and previous implementations are as.follows:

o the scheduler now calls the appropriate MPS module, rather than the execution protocol, to
process network receptions. ’

o each LCR uses a separate Berkeley socket and network address. This allows an array lookup
to be used to map Berkeley sockets to LCR’s and-hence provide constant time demultiplexing
of incoming data. In addition, non-empty LCR’s are given priority over empty ones, that
is, if network receptions are pending for both an empty and a non-empty LCR, then the
reception for the non-empty LCR will be seryicéd first.

e REX associates a channel identifier with each non-empty LCR it uses. This is then used to
implement a constant time lookup for matching data received over LCR’s to channel sockets.
The previous implementation used a complex search algorithm to match incoming data to
channels, and as a result the new implementation should provide better performance over
non-empty LCR’s. :

e QoS may be used to control the policy applied when the finite number of available Berkeley
sockets is exhausted. LCR’s may be designated. as permanent, in which case their sockets are
never re-used, whilst non-permanent LCR’s have their sockets re-cycled on a least recently
used basis.

The prototype implementation also imposes a number of restrictions:

e it does not support the multiplexing of multiple sessions over a single channel for non-empty
LCR’s; that is, there is a one-to-one correspondence between channels and sessions when they
are used to provide a particular QoS. This simplifies the implementation, without suffering
any great loss of flexibility.
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e as a result of the use of UNIX, the only resources managed are Berkeley sockets and the cost
of providing a given QoS is measured as the number of sockets required to realise it, (i.e. 0
if an existing socket can be re-used or 1 if a new socket is required).

Local Channel Resource Summary

The design of the ANSA communications system has been reviewed and its shortcomings identified.
A new MPS interface has been designed and implemented to overcome these shortcomings. It
provides a new communication abstraction, called a Local Channel Resource, which provides a
means of associating a particular QoS with the communications resources required to realise and
guarantee that QoS. The new interface combines the features of connection-less and connection-
oriented transport protocols to provide a QoS based interface with flexible multiplexing options.
This combination of connection-oriented and connection-less protocol interfaces is made possible
by the fact that LCR’s do not represent communication end-points, but rather communication
resources at end-points. By so doing it is possible to provide QoS without adversely affecting the
performance and scaling properties of communication not requiring QoS.

The prototype implementation only offers a limited range of QoS, but reduces multiplexing, and
also jitter, through the use of constant time lookups for incoming receptions.

7.3 QoS

This section describes the QoS representation and negotiation algorithms used, the implementation
of QoS within the higher levels of the communication system, the provision of end-to-end QoS and
the programming interface provided to the underlying QoS implementation.

The prototype implementation supports two QoS layers: one layer for execution protocols and
one for MPS modules. However, there are no restrictions placed on the number of QoS domains
provided, and hence there may be multiple instances of these layers.

The algorithms and data structures discussed below do not make any assumptions as to the number
of layers used and are designed to cope with an arbitrary number of layers.

7.3.1 QoS Representation and Negotiation

There are two distinct representations used for QoS within the Testbench. The first is used to
specify QoS offers and constraints, and for matching QoS constraints to offers; this representation
is described in section 7.3.1.1. It is used to implement per-layer QoS negotiation as defined in
section 5.2.7. :

The second is concerned with representing the QoS required by a given interface in a suitable form
for communication to poiential clients of that interface. The word potential is used to indicate that
such clients will be able to invoke operations on the interface in question, if, and only if, they can
provide. the QoS required by the interface and its operations. ANSA interface references are the
logical place to include such QoS information, and their extension to include such information is
described in section 7.3.1.2.



TURE
S

120 7. A PROTOTYPE IMPLEMENTATION

== 2 QoS macros

"VideoProtocol" "x,y,z" "(Rate >= x and Delay <= y and Encoding == ’z’)"
"AudioProtocol" "x,y" "(Rate >= x and Delay <= y)"

-- 3 QoS offers and associated suppliers

"Name Video VideoProtocol °1000,1,pal’" "video_1"

"Name Video Type Cheap VideoProtocol ’100,10,pal’" "vyideo_ 2"
"Name Audio AudloProtocol ’10,15°" "audio_1"

-- QoS constraints and results

"Name == Video" -- returns two offers

- "Name Video VideoProtocol °1000,1,pal’" - original offer
. "(Rate >= 1000. and Delay <= 1 and Encoding == ’pal’)" - expanded offer
"yideo_1" ) _ ) - supplier
"Name Video VideoProtocol Type Cheap ’100,10;pal’" - original offer
"(Rate >= 100 and Delay <= 10 and Encoding == ’pal’)" - expanded offer
“gideo_2" ) ' " - supplier
"Name == Audio" -- returns one offer
"Name Audio AudioProtocol ’10,15°" - original offer
"(Rate >= 10 and Delay <= 15)" ~ expanded offer
"audio_1" - _supplier

Figure 7.5: Per-Layer QoS Negotiation Example

7.3.1.1 Per-Layer QoS Negotiation

The experimental nature of this implementation coupled with the wide range of uses to which QoS
could be put by applications, requires as flexible a representation as possible. The representation
used by the Trader for specifying interface properties and constraints was chosen as a suitable
starting point for QoS representation. It was chosen primarily because of its ability to support
arithmetic comparison and boolean connectives to link sub-expressions. Appendix B includes
a definition of the Trader constraint language. The implementation of this language has been
separated out from the rest of the Trader and made available for wider use.

QoS offers are specified as a list of (name, value)‘ pairs, called properties. Associated with each
QoS offer is a textual string identifying its supplier. Property values may be textual strlngs, sets

* of textual strings or numbers.

Constraint expressions are used to search a set of QoS offers for matching offers. The result of a
constraint expression is the set of all offers matching that constraint. Constraint expressions may
include tests for equality and inequality of string values, set membership and numeric comparison.
Boolean connectives may be used to link sub—expressmns, whllst minimum and maximum operators
are provided for numeric expressions. ' ‘

In order to support the mapping of QoS constraints from one layer to another (see section 5.2.6)
property lists and constraints have been extended to provide a simple macro facility, illustrated in
figure 7.5 and defined below:
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Macro Definition: macro definitions have three parts:

1. the macro’s name.
2. an optional list of comma separated formal parameters.

3. the macro body, specified as a textual string, containing instances of the formal param-
eters which will be replaced by the actual parameters when the macro is expanded.

Macro Properties: macros can be specified as properties, with the macro’s name specified as
the property name and its actual parameters specified as a string value for that property.
Individual parameters are separated by commas; for instance, two parameters a and b would
appear as ’a,b’.

Constraints: macros are treated as string properties when evaluating constraint expressions.

Macro Expansion: macros are expanded when they are specified as a property in a QoS offer.
Expansion consists of replacing all instances of the formal parameters in the macro body with
the corresponding actual parameter specified in the property value. All macros appearing in
a QoS offer are expanded and the results of each expansion concatenated to form a single
expanded string. This string is made available along with its corresponding, un-expanded,
offer as part of the result of evaluating a constraint expression. Non-macro properties are
not copied into the expanded string.

The result of a constraint expression is a list of matched offers, each of which includes three items:

QoS offer: specified as property list.
Expanded QoS: the result of expanding any macros speciﬁed in the QoS offer.
QoS supplier: a textual string identifying the supplier of this offer.

Given that the intended use for macros is to map QoS constraints at one layer to constraints at
the next, the body of the macros used will take the form of a constraint expression.® Figure 7.5
gives a complete example of per-layer QoS negotiation.

Due to the size of the code and data required to implement the constraint language it is implemented
by the QoS Manager and not within each capsule. This scheme incurs the overhead of a remote
invocation for every constraint expression evaluated. However, because QoS offers change slowly
over time (only when the system is re-configured) it is possible to cache the results of previously
evaluated, or well known, constraint expressions. The QoS Cache is described in section 7.3.1.4.

To implement per-layer QoS negotiation all that remains to be provided is for QoS offers and
macros to be associated with a single QoS layer and for constraint expressions to be evaluated
within the scope of that layer. The QoS Manager and QoS Cache are responsible for implementing
QoS layers.

7.3.1.2 QoS Interface References

The data type used to represent ANSA interface references is called an InterfaceRef. In version
3.0 it consisted of a unique identifier for the interface referred to, and a sequence of addresses
(called an AddressHint) that the interface may be invoked on. Each such address (called an
AddressRecord) contains a channel identifier and MPS address. Although this supports the use
of a separate channel over each MPS, version 3.0 always used the same channel over all MPS’s.

6This is not enforced by the macro facility itself, but is a convention adopted for its use.
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This structure has been extended in IMAC 3.0 to include a description of all of the QoS offers
which may be used to provide the QoS specified for the interface. As shown in section 7.3.4,
QoS constraints may be specified for all or individual operations within interfaces. These QoS
specifications are then negotiated, using the algorithm defined in section 7.3.1.3, to determine all
the QoS offers (or protocol stacks) which may be used to provide the required QoS. It is these
offers which are encoded in the new InterfaceRef data type, and communicated to clients of the
interface in question, via an instance of this data type. The AddressHint field is now a sequence
of ExtendedAddressRecords, each of which contains the following sub-structures:

AddressRecord: identical to that used in the original InterfaceRef.
ProtocolStack: a list of protocol layers, each of which consists of:

LayerName: the name for this layer.

ProtocolOfferList: alist of QoS offers which may be used at this layer, where each protocol
offer contains the following;:

Offer: the QoS offer itself.
Supplier: the supplier of this offer.

OperationList: the list of operations to which this QoS applies.

On receipt of such an InterfaceRef the client must match the QoS offers it wishes to use at
each layer against those available at the server interface. If no match exists then communication
is not possible, if-a match does exist then communication may be possible, but is subject to the
negotiation of dynamic and end-to-end QoS as described in subsequent sections.

A set of minimal QoS offers are defined, for which no particular QoS resources are required, but
which identify execution and MPS protocols. In this way, it is possible to encode the configuration
of the server’s communication system in an InterfaceRef. These offers consist of a single property,
Name, whose value is the name of an execution or MPS protocol, (i.e. one of REX, IPC?, UDP, TCP,
or MSNL). The client is now able to avoid attempting to use an unsupported protocol and even to
choose the most efficient protocol for its requirements. Such an AddressHint is referred to as the
default AddressHint and is used for operations which do not include a particular QoS specification.
For instance, a capsule supporting REX, and three MPS modules, requires a default AddressHint
consisting of three ExtendedAddressRecords, one for each possible combination of REX and MPS
protocol. ‘

7.3.1.3 Static QoS Negotiation

This section describes how static QoS negotiation involving multiple layers is implemented. The
algorithms outlined in section 5.2.7.1 are followed, but only the static results of per-layer QoS
negotiation are considered. This allows the complete set of protocol stacks which can potentially
be used to provide a given QoS to be determined, but does not attempt to realise any of these
stacks. Sections 7.3.2 and 7.3.3 describe dynamic and end-to-end QoS negotiation and show how
one of these stacks is selected and realised.

At the server, the algorithm for QoS specifications (given in figure 5.6) is executed, and the result
for each constraint is represented as an AddressHint, containing as many ExtendedAddress-—
Record structures as there are combinations of matching offers at each supported protocol layer.
All operations without an associated QoS specification are grouped together and have a default

TUNIX named pipes.
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AddressHint constructed for them. The resulting series of AddressHints are then merged into a
single AddressHint for inclusion in an InterfaceRef. The server’s algorithm is executed whenever
a new interface reference is created.

The client implements the algorithm given in figure 5.7 for QoS requests, with one important
optimisation. Given that the client knows all the QoS offers that can be used to satisfy the
server’s QoS specification (contained in the server’s InterfaceRef) in addition to knowing all of
the locally supported QoS offers, it can determine which, if any, of the server’s offers it could
possibly use. In this way, it can decide whether communication is possible with the server in
advance of executing the QoS request algorithm. This avoids the need for per-layer QoS negotiation
and possible interaction with the remote QoS Manager. Therefore, no great cost is incurred in
situations where communication is impossible. In the case of default AddressHint’s only this
algorithm need be executed, and not the QoS request algorithm. Therefore, operations which do
not require QoS do not pay a performance penalty for its use by other operations.

Dynamic and end-to-end QoS negotiation are also performed from within the client’s algorithm,
but are described separately, in sections 7.3.2 and 7.3.3, in order to simplify their explanation. The
client’s algorithm is executed whenever the client re-binds to the server.

7.3.1.4 QoS Cache and Configuration

The QoS Cache provides a per-capsule cache of QoS offers and constraints known to match those
offers, and is used to reduce the number of invocations made to the QoS Manager. The QoS Cache
is structured as a set of domains, each consisting of a linked list of named QoS layers. The name of
a domain is the name of its uppermost QoS layer.2 The QoS Cache is implemented in two parts:

Simple Cache: the low-level management and database portion which supports the creation of

new layers and the registration of offers with each layer. For each offer, there is a list of

. constraints which are known to be satisfied by this offer. A constraint request for a given

layer, is implemented by searching the constraint lists for each offer in the specified layer,

for constraints which are identical to that specified in the request. It is also possible to

cache negative results, that is, to specify a constraint that is known to have failed to match

an offer. This scheme means that the simple cache has no knowledge whatsoever of the
constraint language, and uses only string comparison to identify matches.

Transparent Cache: provides transparent access to the underlying simple cache, or the QoS
Manager in the case of a cache miss. Having invoked the QoS Manager to execute the
constraint expression it is responsible for loading the simple cache with constraints known to
match the resulting QoS offers. If the expression failed, then the specified constraint is cached
as having failed to match all offers in the specified layer. In this way, all future requests for
the same constraint can be satisfied from the simple cache.

The current implementation of the QoS Cache does not provide any means for invalidating existing
cache entries; that is, it assumes that the QoS configuration does not change during the lifetime of
a capsule. This is justified by the observation that the configuration of capsule’s communication
system can only be changed at compile or link time and hence cannot be changed whilst the capsule
is actually running.

The configuration of a capsule’s communication system has two components and is represented by
the QoS offers 1t supports:

8The same structure is used for the QoS Manager.
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Default Configuration: defined at compile time, and used to construct the default AddressHint
for this capsule. This information is stored in the well known domain ez.ansa®, consisting
of the layers ez.ansa and mps.ansa. These offers are pre-loaded into the simple QoS cache,
and since their format is known (i.e. a single property stating the name of execution or MPS
protocol) it is also possible to register constraints which are known to match these offers.

Full Configuration: the complete list of QoS offers supported by this capsule, in all other do-
mains, and read from a text file during capsule initialisation. These offers are pre-loaded into
the simple QoS cache, but no matching constraints are known at this time, so any attempts
to match against these offers will result in an invocation on the QoS Manager.

In order for this scheme to work, a consistent set of QoS domains, layers and offers, must be
maintained between the QoS cache in individual capsules and the QoS Manager. In the prototype
implementation consistency is maintained manually and an automated scheme would be required
for a more widely used implementation. For instance, a set of system administration tools could
be provided which interrogate the QoS Manager and examine the configuration files used by cap-
sules for inconsistencies. A better scheme would be to automatically generate new configuration
files whenever the QoS Manager’s database is updated. Ensuring the consistency of the default
configuration is easier than for the full configuration since it will change less frequently.

7.3.2 Dynamic QoS Negotiation

Dynamic QoS negotiation is concerned with selecting the most appropriate QoS offer, from a
list of candidate QoS offers, based on current resource utilisation. It is therefore responsible for
managing any resources which have a bearing on QoS provision. Within IMAC 3.0, such resource
management is implemented using cost functions, that is, each QoS supplier provides a function
for determining the cost of providing a given QoS offer. In this way, it is possible to keep track of
the cost of the resources allocated so far and use this information to implement a range of resource
management policies, such as simple load-balancing across the various QoS suppliers. In addition,
if the total cost of all the available resources is known, the incremental cost of providing a QoS
offer can be determined and used to implement system-wide resource management. In this way it
is possible to determine the relative cost of providing a given QoS with each supplier.

Dynamic QoS negotiation is invoked from within the QoS request algorithm (sections 7.3.1.3

and 5.7) at each QoS layer encountered.

The prototype implementation defines a standard interface for dynamic QoS negotiation with the
following operations:

QoSReserve: selects a single QoS. offer from- a list of QoS offers, and tentatively allocates the
resources required to guarantee it. A data structure, called a QoSHandle is returned, which
identifies the resources allocated, and is used as an argument to all the other operations in
this interface.

QoSCancel: cancels a previous reservation and makes any reserved resources available for re-use.

QoSConfirm: confirms a reservation and allocates the associated resources. A time-out period
may be specified for the maximum time that the allocated resources may remain unused. If
this period is exceeded then. they may be freed and made available for re-use. In this way,
resources remain allocated until a QoSDiscard operation is executed or the time-out expires.
A successful call to QoSReserve does not necessarily mean that QoSConfirm will also succeed.

9The name of a domain is the name of its uppermost layer.
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QoSDiscard: discards a confirmed reservation and frees the associated resources.

The use of separate operations for resource reservation and confirmation allows for a number of
resource optimisations to be made. For instance, resources may be overcommitted during the reser-
vation phase, on the assumption that some reservations will be subsequently cancelled. In addition,
given the delay introduced by the remote invocation of Bind, it is possible to receive subsequent
QoS requests, whose requirements may be taken into account before confirming previously reserved
resources. In the extreme, later reservations may preempt earlier ones. This is made possible by
delaying irreversible resource management decisions to the latest possible instant. Thus, even if
QoSReserve succeeds, QoSConfirm may fail, but if QoSConfirm succeeds then the resources are
guaranteed for as long as they are required.

Two instances of this interface are provided, one each for the execution and MPS protocol layers.
The execution protocol instance manages the allocation of channel plugs and sockets, whilst the
MPS instance manages LCR’s. The current implementation is constrained by the use of UNIX
as the underlying operating system and implements only rudimentary resource management. The
execution protocols do not provide a cost furiction, since the only resources they consume are
memory, whose cost is negligible over UNIX.1? The cost functions provided by the MPS reflect the
number of Berkeley sockets required to realise the QoS offer, and will be either 0 if an existing
socket can be re-used or 1 if a new socket is required. In this way it is possible to ensure a fair
distribution of the available sockets across MPS’s.

However, the use of a uniform interface for dynamic QoS negotiation allows more elaborate poli-
cies to be easily implemented in the future. In addition, it is possible to change the underlying
implementation of the communication system without affecting the QoS negotiation algorithms
and their implementation.

7.3.3 End-to-End QoS

This section describes how the previously described algorithms for negotiating QoS and the inter-
face for dynamic QoS negotiation are used to implement end-to-end QoS.

The client side dynamic QoS negotiation algorithm selects a single QoS offer at each supported
protocol layer and tentatively allocates the resources required to provide that QoS.

In order to implement end-to-end QoS, a means must be found for communicating the QoS offers
actually selected by the client to the server with which it wishes to communicate. Such commu-
nication can be implemented in-band, that is, the selected QoS offers are contained within the
invocations issued to the server. Alternatively, an oul-of-band approach may be taken in which the
QoS offers are communicated separately from the invocations to which they refer and are used to
create a separate communications channel over which subsequent invocations may be issued.

The in-band scheme avoids the need for a separate QoS communication stage and since the re-
quired QoS is encoded in every invocation, the server does not need to maintain any QoS related
state. However, the protocol overhead, both in terms of data communicated and processing time
at the server, is increased, because the QoS is contained in every invocation and processed on a
per-invocation basis. In addition, such a scheme hinders the pre-allocation of resources and results
either in all resources being allocated on demand as invocations are received or with certain re-
sources being cached in anticipation of their subsequent use. Both of these factors increase latency,
and if resources are allocated solely on demand,!! or on cache miss, then jitter is also likely to be

10providing the system is not thrashing.

11The demands for resources will inevitably be asynchronous.
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Capsule: INTERFACE =

BEGIN
BindStatus: TYPE = { C_F, C_S };
BindReason: TYPE = CARDINAL;

BindRecord: TYPE = RECORD [ destAddress:AddressRecord ];

BindResult: TYPE = CHOICE BindStatus OF {
C_F =>BindReason, C_S =>BindRecord

};

Bind: OPERATION [
destIfld:Interfaceld;
exProtocol:CARDINAL; exOffer:STRING;
mpsProtocol : CARDINAL; mpsOffer: STRING;
gosRequest: STRING

] RETURNS [ BindResult ];

UnBind:- OPERATION [ binding: BindRecord ] RETURNS [1;

END

Figure 7.6: Bind and UnBind Operations

increased.

Within IMAC 3.0 the out-of-band approach has been adopted for the following reasons:

1. it allows for the easy pre-allocation of resources.
2. it minimises per-invocation communication and processing overhead.

‘3. it 1s possible to use an ercisting execution protocol, recursively, to communicate with the
server. The only restriction is that the recursive call cannot make use of QoS.’

The ability to re-use an existing execution protocol is particularly powerful since it provides well
defined communication semantics and allows the full flexibility available to the application pro-
grammer to be used from within the communication system. Consequently it is possible to describe
the operations prov1ded usmg IDL and use the stub code generated by STUBC

The dlsadvantage is tha.t a separate invocation is required, thus increasing the total latency of
operation invocation. However, this can be minimised by only issuing such an invocation when
QoS is re-negotiated, and hence only incurring the associated overhead for the first of a sequence of
invocations. Given that multimedia communication is likely to be long lived then such re-binding
will be required relatively infrequently and therefore its cost can be amortised over a large number
of 1nvocatlons :

Two operations are provided by every server capsule, called Bind and UnBind; figure 7.6 contains
the IDL definitions for these operations. The end-to-end QoS algonthm is 1llustrated in ﬁgure 7.7,
and summarised below:

1. in order to invoke the Bind operation a channel identifier and MPS address must somehow
be obtained for it. In addition, an interface identifier is required for the interface to be
subsequently invoked. Both of these items can be found in the AddressHint component of
the original InterfaceRef. . 2
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Figure 7.7: End-to-End Resource Allocation

2. at the client, QoSReserve is invoked!? first for the execution protocol and then for the MPS
modules, to select a single QoS offer and reserve any required resources.

@

. the QoS offers for each layer, the original QoS constraint and the interface identifier are
passed as arguments to the Bind operation. The QoS constraint is included so that it may
be made available to the application implementing the operation to be subsequently invoked.

>

. the implementation of Bind invokes QoSReserve to allocate the necessary resources at the
server. If successful, QoSConfirm is used to confirm these resources, otherwise QoSCancel is
used to cancel them. The MPS operation is invoked first and then the execution protocol,
thus resources are allocated bottom-up at the server.

ot

. Bind either returns an error condition or a completed BindRecord if successful.

6. the client examines the result of its Bind invocation, and if it failed, the previously reserved
resources are cancelled, otherwise they are confirmed. If a confirmation fails then the client
must call UnBind to free the confirmed resources at the server. The information in the
BindRecord is copied into the client’s channel and session data structures, and from there
into the header of subsequent invocations. ‘

-~

. the client issues invocations on the server.

8. to un-bind, the client calls the server’s UnBind operation, with the BindRecord that was
returned by the original call to Bind. If the client fails to call UnBind then the server will
free any allocated resources when the timeout specified when the resources were confirmed
expires.

In version 3.0 every invocation of Bind or UnBind would result in the creation of a new session
in the server, thus doubling the number of sessions required. In order to avoid this overhead, and
thus improve scaling, IMAC 3.0 provides a new form of channel, called a promiscuous channel.
Promiscuous channels support a single session, which is multiplexed between all clients of its
associated interface. In this way, only a single session is required for Bind and UnBind regardless of
the number of clients that invoke them. The use of a large number of sessions represents a scaling
problem for the current Testbench because of the slow rate at which it decays idle sessions; it takes
30 minutes to discard an unused session. An alternative solution would be .to increase the rate at

12From within the QoS request negotiation algorithm.
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SameQoS: [ "Name == ’Video’" | "Name == ’CheapVideo’" ] INTERFACE =
BEGIN

Samel: OPERATION [1 RETURNS [1;

Same2: OPERATION [] RETURNS [1;
END

DifferentQoS: INTERFACE =
BEGIN
Diffi: [ "Name == ’Video’" ] OPERATION [1 RETURNS [1;
Diff2: [ "Name == ’Audio’" ] OPERATION [] RETURNS [];
END

Figure 7.8: IDL QoS Specification

which sessions are decayed; unfortunately, this would require that servers be able to communicate
with their clients to establish the validity of the session being requested.

7.3.4 QoS Programming Interface

This section describes the interface presented to the application programmer for stating QoS spec-
ifications and requests. IDL has been extended to support QoS specification for either individual
operations, or for entire interfaces. If the same QoS is required for a number of separate opera-
tions then they must be placed in a separate IDL interface and the required QoS specified for that
interface.

QoS specifications take the form of a series of constraint expressions, (see section 7.3.1.1); multiple
constraint expressions are separated by a vertical bar (|) symbol. Such QoS specifications may
appear either in the definition of a single operation, or at the head of an interface definition.
Figure 7.8 contains two interfaces, the first of which defines two operations, both of which will use
the same encompassing QoS, and hence the same communication channel. The QoS specification for
these operations allows the use of either a Video or CheapVideo QoS. The second interface contains
operations with individual QoS specifications; Diff1 supports the use of a Video QoS, whilst Dif£2
requires an Audio QoS. STUBC generates the code required to interface with the underlying QoS
specification algorithm implementation, and thus shields the application programmer from the
implementation details of this algorithm.

If QoS specifications exist for both the. interface and individual operations, then QoS for the
individual operations overrides that for the interface. Operations which do not provide a QoS
specification are referred to as requiring an empty QoS. Such operations will be issued and received
using an empty LCR and will, therefore, be multiplexed.

The QoS domain and layer in which QoS specifications are evaluated, is specified as an argument
to STUBC, thus allowing for the system to be re-configured without the need to change interface
definitions. ' ‘ ‘

Invocations of IDL operations are written as PREPC statements and preprocessed to generate C
code which invokes the stub code generated by STUBC. The PREPC invocation statement has
been extended to include a QoS request. This takes the form of a single constraint expression,
specified as either a C string constant (i.e. enclosed in double quotes) or as a C string variable.
The fact that the QoS request may not be known until run-time precludes compile-time checking;
in this instance, the flexibility of being able to dynamically select the QoS to use at run-time
outweighs the benefits of compile-time checking. In particular, this allows clients to dynamically
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! DECLARE { same } : SameQoS CLIENT
! DECLARE { diff } : DifferentQoS CLIENT

! { same } <- traderRef$Import( "SameQoS", "/", "M )

! {} <- same$0pi1() [ "Name == ’CheapVideo’" ]
{} <- same$0p1() [ "Name == ’CheapVideo’" ]

! same$Discard
! {} <- same$0pi() [ "Name == ’Video’" ]-
! {} <- same$0p2() [ "Name == ’Video’" ]

" ! same$Discard

! { diff } <- traderRef$Import( "DifferentQoS", "/", " )

{} <~ diff$0p1() [ "Name == ’Video’" ]
{} <~ diff$0p2() [ "Name == ’Audio’" ]

! diff$DiscardOp( "0p2" )

{} <- diff$0p1() [ "Name == ’Video’" ]
{} <- diff$0p2() [ "Name == ’Audio’" ]

! diff$Discard

Figure 7.9: PREPC QoS Requests

vary their behaviour in response to exceptional conditions and error.

Dynamic and end-to-end QoS negotiation take place the first time an operation is called, and the
resulting binding is re-used by all subsequent invocations. For interface wide QoS, the first invo-
cation of any operation in that interface will result in this negotiation taking place, for operation
specific QoS it will take place the first time that particular operation is called. The Discard state-
ment can be used to discard the binding for all the operations in an interface, whilst the DiscardOp
statement only discards the binding for the specified operation. In both cases an invocation to
UnBind will be issued to free all QoS resources maintained at the server.

Figure 7.9 contains example invocations of the operations defined in figure 7.8.

An attempt to invoke Diff1 or Dif£2 with a QoS other than that specified in its IDL definition will
fail. Similarly, attempts to invoke Same1 or Same2, with any QoS other than Video or CheapVideo
will also fail.

The Testbench imposes the convention that the first argument of all server operations, is reserved
for passing system information to that operation. The QoS request and offers currently in use are
passed to the invoked operation as part of this first argument. PREPC provides the 0fferInUse
statement to allow clients to determine the QoS offer currently in use for a given operation. In
both cases, only the QoS offers in use at the uppermost QoS layer are available. The syntax for
this statement is as follows:

{ offer } <- interfaceRef$0fferInUse( operationName )
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7.3.5 QoS Summary

This section has surveyed the QoS facilities provided by the prototype implementation of IMAC.
The Trader constraint language has been adopted as the basis for representing QoS offers and
constraints, and is used to implement per-layer QoS negotiation. A macro facility has been added
to allow QoS offers to be mapped from one QoS layer to another and thus shield applications from
the implementation details of their QoS specifications and requests. The constraint language is
implemented within the QoS Manager, as opposed to within every capsule, and a cache is used to
reduce the number of interactions required with the QoS Manager.

A uniform interface is provided for managing resources, and is used for both execution protocols
and MPS modules. The provision of separate reserve and confirm resource operations allows for
efficient end-to-end resource management. This interface is used for both dynamic QoS negotiation
within the client and to implement end-to-end resource management for both client and server.

The use of UNIX as the underlying operating system has severely restricted the scope of the
resource management provided by IMAC 3.0. Future ports to more flexible operating systems will
enable the implementation of a wider range of resource management policies within the framework
currently provided.

A simple interface is provided for specifying QoS specifications in interfaces, and QoS requests for
operation invocations. QoS may be applied to individual operations within interfaces or to entire
interfaces. QoS requests may be varied at run time, thus allowing clients to respond to exceptional
conditions and errors.

Figure 7.10 illustrates the complete series of steps involved in QoS negotiation, from when an
InterfaceRef is first created to when UnBind is invoked.

7.4 IDL Streams and Devices

The IDL implementation of IMAC streams provides separate statements for defining stream types
and instances of those types, called stream ends. A stream type consists of a name, a list of event
synchronisation interfaces, a list of stream synchronisation interfaces and a QoS specification. A
stream end is a named instance of a named stream type whose direction is qualified as being either
a plug, a multi-plug, a socket or a multi-socket. Multi-plugs and multi-sockets support multicast
and multidrop communication. The IDL syntax, followed by some examples, is given below:

StreamType: STREAMTYPE =
{ list of event synchronisation interfaces }
{ list of stream synchronisation interfaces }
[ QoS specification ];

StreamEnd: STREAMEND StreamType
[ PLUG | SOCKET | MULTIPLUG | MULTISOCKET ];

Examples:

AudioStream: STREAMTYPE = { AudioEvents } { AudioLSFs }
[ "Encoding ALaw" | "Encoding MuLaw" ];

MicroPhone: STREAMEND AudioStream PLUG;
Speaker: STREAMEND AudioStream SOCKET;
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In order to create a path over which data may flow, two, or more, stream ends must be connected
to form an end-to-end stream; often just called a stream. In order for such a connection to be
made the following conditions must be met: '

1. the source and sink streams must all be of the same stream type; in IMAC 3.0 this means
that the stream types must have the same name.

2. the directions and connectivity of the stream ends must be compatible. Only plugs and
multi-plugs may be used as sources, and sockets and multi-sockets as sinks, and the number
of sources must match the number of sinks. For instance a single plug can only be connected

-to a single socket, but two plugs cannot be connected to a single socket.

These two conditions are not to be confused with device conformance, which applies to interfaces
and not to stream ends; there is no corresponding notion of stream type conformance.

IMAC devices are distinguished from ordinary interfaces by the use of the keyword DEVICE in place
of INTERFACE. The only effect of this keyword is to force the device to conform to the orchestration
interface, IMACOrchestrate. This interface contains a set of management operations which must
be implemented by all devices and is described in section 7.10.

In the current implementation there is no support for autoniatically synchronising operation invo-
cations with LSF-boundaries; it is left to the device implementation to provide such synchronisation
itself. Section 9.4.2 presents a design for such support.

STUBC generates the following additional code specifically for streams and devices:

e stream type and stream end definitions are written to the signature file and thus made
available to subsequent invocations of STUBC and PREPC.

e a UNIX Bourne shell script for updating the QoS Manager’s database with the QoS infor-
mation for the newly defined stream types. This script creates a single QoS domain for each
stream type defined, and registers all of the QoS offers supported by each stream type with
this domain. The name of the QoS layer is that of the stream type. A stream type contains
QoS offers, as opposed to constraints, becauses it is viewed as service provider and not a
service user. Once this script has been run, per-layer QoS negotiation can be used to match
the QoS constraints specified at stream creation time to these offers.

e a C file containing a statically initialised set of data structures representing the stream types
and stream ends defined in this interface. Library procedures are provided for accessing these
data structures. In this way, all of the stream related information available at compile time
is also available at run-time. These data structures are referred to as the stream and device
configuration.

Chapter 8 presents a complete example illustrating the use of IDL streams and devices.

7.5 PREPC Streams and Devices

PREPC divides the process of creating an end-to-end IDL stream into three stages:
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Stream Declaration: provided to support type checking and to allow the use of multiple in-
stances of the same stream ends within a single application. The STREAM statement is pro-
vided for this purpose and specifies a named femplate for the stream to be subsequently
created, which identifies the source and sink devices and stream ends. The syntax for this
-statement is as follows:

STREAM StreamName { list of plugs } -> { list of sockets }

The stream name is used to refer to this declaration from other PREPC statements. Stream
plugs and sockets are identified by the name of the device interface and the name of the stream
end within that device, separated by a full stop. For instance a stream plug VideoSource in
an interface Camera would appear as Camera.VideoSource.

Obtaining Device Interfaces: in order to realise a stream, it is first necessary to obtain, or
create, instances of the source and sink device interfaces which implement the required stream
ends. An interface reference must be obtained for each device involved, and may be obtained
by any means available to the appllcatlon including the Trader, User Locator or Desktop
Manager. #

Stream Realisation: once interface references have been obtained for all of the devices implicated
by the stream declaration, it is possible to invoke the management operations provided by
these devices to realise the stream in question. PREPC provides the REALISE statement which
takes these interface references as arguments and invokes the required management operations
on behalf of the application. A stream reference is returned which may subsequently be used
to perform further management operations on the realised stream. A QoS request may be
specified when a stream is realised in the same way as for operation invocations. The REALISE
statement has the following format:

REALISE { stream reference } <~ StreamName
{ interface references for devices containing plugs } —>
{ interface references for devices containing sockets }
[ QoS request ]

" In order to be able to type check the use of stream references the DECLARE statement has
been extended to support their declaration as follows:

DECLARE { stream reference } : StreamType STREAMREF

StreamType must be a stream type defined in an IDL interface.

A stream declaration will fail if either of the conditions given in the previous section for connecting
stream ends are not met. However, if it is only the stream types of the plug and socket which do not
match then it may be possible to use a translator to reconcile this mismatch. The facility provided
by the current implementation for managing stream translation is described in section 7.10.2.1.

The number and type of the interface reference arguments to a REALISE statement are checked to
ensure consistency with the original declaration; the interface references must refer to the devices
given in the original stream declaration. Once a stream has been realised, its behaviour may be
controlled by directly invoking the operations in its device interfaces. PREPC also provides the
following statements for setting and clearing event and stream synchronisation interfaces:

{} <~ device$SetEventSync( StreamEnd, SyncInterface, InterfaceRef )
{} <- device$ClearEventSync( StreamEnd, SyncInterface )
{} <- device$SetStreamSync( StreamEnd, SyncInterface, InterfaceRef )
{} <- device$ClearStreamSync( StreamEnd, SyncInterface )
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In all cases, device is an interface reference for the device generating the event or stream syn-
chronisation points. The StreamEnd argument is required to distinguish between the possibly
multiple stream end points supported by a single device, and must be set to the name of the
stream end point in the device interface. The SyncInterface is the name of the event or stream
synchronisation interface that is to be set or cleared. InterfaceRef is the corresponding interface
reference which will receive synchronisation operation invocations. In this way, the controlling
application may conveniently specify the synchronisation interfaces that it wishes to be invoked
on. The stream implementation makes use of the stream configuration generated by STUBC to
check the correctness of these arguments at run-time.

PREPC provides a DestroyStream pseudo-operation which may be invoked on a stream reference,
to shut down an existing stream. The 0fferInUse statement used by clients to determine the QoS
in use for a specified operation may also be invoked on a stream reference to determine the QoS in
use for a specified stream end. It can only be used after a successful REALISE statement and has
the following syntax:

{ offer } <- streamRef$0fferInUse( Device.StreamEnd )

The current implementation does not provide any means of automating the implementation of the
event and stream synchronisation interfaces; section 9.4.2 presents a design for automating this
process.

Section 7.10 describes the management operations implemented by all devices and the additional
support provided to aid in the implementation of devices themselves.

Chapter 8 presents a complete example illustrating the use of PREPC streams and devices.

7.6 QoS Manager

The prototype implementation of the QoS Manager (section 5.3.1) provides a system wide data
base for QoS information, and an implementation of the constraint language and macro facility
used for per-layer QoS negotiation.

QoS domains are represented as a linked list of QoS layers, with the name of the head layer in this
linked list being used as the name of the domain. This scheme avoids the need for a separate field
to identify QoS domains both within the QoS Cache and within interface references. QoS offers
and macro definitions are posted to a single layer, and QoS constraints evaluated within the scope
of a single layer. The QoS Manager can be invoked from within the Testbench communications
system and therefore resides at a well known network address.

7.7 User Locator

The current implementation of the User Locator makes use of the Olivetti Active Badge system!3
to determine the physical location of users. Every user is equipped with an ective badge, which
transmits an infra-red signal, every fifteen seconds or so, uniquely identifying each badge. A
network of receiver stations is used to detect these signals and the user’s locations is taken as that
of the receiver which most recently detected a transmission from that user’s badge. The interface

13Donated by Olivetti Research Limited to the Computer Laboratory.
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to this system is provided by two ANSA interfaces:'* one providing location information and the
other a database of user names, badge identifiers and station locations.

The User Locator uses a private instance of the database interface in order to associate its own
information for describing station locations; currently the name of the nearest workstation is used.
In this way, it is possible to identify the workstation that the user is currently closest to. The
workstation name is then used as part of a Trader constraint expression to locate an instance
of the service required at the workstation in question. The User Locator is thus able to provide
an extended version of the Trader’s Lookup operation. This operation takes an extra argument
identifying the required user and only returns an instance of the service requested running on the
workstation that the specified user is currently nearest to. If this service is unavailable at the
workstation in question then an error is reported. :

The level of indirection provided by the User Locator shields the application programmer from
the details of the Active Badge system, and allows this system to be updated or even replaced,
without affecting any application code. The User Locator is also able to make use of the IMAC
3.0 extensions to the Trader to implement its own policies for selecting between multiple offers.
Alternatively it could provide some form of #ccess control or customisation, whereby the user
being located may specify particular times or locations at which he or she may not be contacted.
In either case, these policies are implemented behind the standard User Locator interface and are
transparent to the application programmer.

7.8 Desktop Manager

The Node Manager supplied with Testbench version 3.0, has been extended to provide some of the
additional functions required by the Desktop Manager. The Node Manager, described in detail
in A.12, was designed and implemented by the author, with the explicit goal that it could be used
as the basis for a subsequent Desktop Manager implementation. As a result, only the following
changes were required:

o the Node Manager Run operation, which is used to create new service instances, has been
extended to return the InterfaceRef and ActivationId of the newly created service. Re-
turning the InterfaceRef avoids the need for a subsequent interaction with the trader. The
ActivationlId can be subsequently used to destroy the instance created.

e activation groups, as defined in section 5.3.3, have been implemented, and are described
below. ‘

No support is currently provided for the creation and destruction of services in multiple run-time
environments; primarily because UNIX has been the only run-time system used for the prototype
implementation. Providing such a facility is straight forward; the only change required being an
extension of the service description to include a factory service which is to be used to create and
destroy instances of the service in question. A separate factory service must then be provided for
each run-time system used. '

The Node Manager allows the maximum number of instances supported for an individual service to
be specified, and once this limit has been reached all further requests to create a new instance are
refused until an existing instance has been destroyed. The Desktop Manager extends this scheme
to support the management of resources used by multiple services. Such shared resources are
represented as activation groups, to which any service using that resource must belong. Resource

14 Jointly implemented by Joe Dixon and Andy Harter.
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usage is measured in terms of the number of service instances, or activations, that a resource can
support. Each group has an upper limit on the number of activations that it can support, and the
Desktop Manager will refuse to create any further activations once this limit has been reached.
A given service may belong to multiple activation groups, and the maximum number of instances
that may be created for that service is given by the minimum of:

' e the éctivation limit for the service itself.

e the activation limit for each of the activation groups that the service belongs to.

In addition, activation groups allow the current number of activations to be externally controlled.
In this way, a service may temporarily relinquish, or attempt to acquire, the use of a shared resource
by respectively decrementing, or incrementing, the activation number for the activation group in
question.

7.9 Translation Manager

The need for a separate service to implement the Translation Manager has been avoided by making
use of the Trader extensions described in section 7.2.2. This is achieved by adopting the convention
that all translator devices include the following common set of properties when exporting their
interfaces to the Trader: : :

“StreamSocket StreamType": states the typé of the supported stream socket.

“StreamPlug StreamType": states the type of the supported stream plug.

In addition, all devices which can be used as translators must conform to the interface type
Translator. In the current implementation Translator is a null interface, and is used solely
as a means of grouping translator devices. In this way, ell translator exports can be obtained using
a Trader Search operation, for the type Translator. Once the list of all translators has been
obtained their property lists may be searched to identify exports which provide a socket and plug
of the required type. '

7.10 . Orchestration

The orchestration functions provided by IMAC 3.0 fall into the following categories:

Streamm Management: primarily concerned with stream connection management, and with set-
ting and clearing synchronisation interfaces. ]

Service Interfacing: provides an interface to the IMAC services.
Translator Management: functions for managing the use of Translator devices.

Stream and Device ‘Implementat-;ion: provides support for imp_leménting streams and devices.
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7.10.1 Stream Management

As mentioned in section 7.10.3, all devices conform to a common interface, called IMACOrchestrate.
This interface has been designed to support the use of a wide range of underlying transport pro-
tocols, and presents a general interface to connection management.

The approach taken is to provide separate operations for creating an address to be used for subse-
quent communication, for listening for connections on a supplied address and for connecting to a
specified address. Addresses are represented as InterfaceRefs and can therefore support the use
of the Testbench communication system, in addition to any other underlying transport protocol. If
the Testbench communication system is not used then only the MPS portion of the AddressRecord
need be used.

The operation to create an address takes a QoS request -as an argument, and then performs any
per-layer QoS negotiation required; section 7.10.3 describes the support provided for implementing
such negotiation. The connect and listen operations take a sequence of addresses to connect to, or
listen from, and can thus be used for multicast and multidrop communication. In order to create
a stream connection the REALISE statement generates code to implement the following algorithm: -

. invoke the. create address operation for each stream source.
. invoke the create address operation for each stream sink.

. invoke the listen operation with the sequence of addresses resulting from steps 1 and 2.

B W N =

. invoke the connect operation with the sequence of addresses from steps 1 and 2.

The results of all of these invocations are stored in the stream reference returned as the result of
the REALISE statement.

Given that aeny of these invocations may fail, some means of determining which one failed is
required. This is achieved by generating code to check the results of each invocation and to call a
user supplied operation if an error is detected. A different procedure is required for each connection
management operation, thus implicitly identifying the source of the error.

An operation is provided to destroy an address, and is invoked for all stream sources and sinks by
the DestroyStream operation.

The implementations of these management operations must interface with the underlying transport
protocol actually used to communicate the stream data. The degree of processing required will
depend on how closely the underlying protocol matches the connection management interface.

Finally, operations are provided for setting and clearing event and stream synchronisation interfaces
and are invoked by the corresponding PREPC statements.

7.10.2 Service Interfaces

There are only two statements provided for interfacing to IMAC services: one for the User Locator
and one for the Translation Manager.

The UImport statement is an extension of the Trader Import operation which takes an additional
argument identifying a user and then invokes the User Locator as opposed to the Trader, to
import the required interface for the specified user. The following example illustrates the use of
this statement to locate an instance of the Echo service for the user Cosmos.Nicolaou.
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! DECLARE translator : Translator CLIENT

STREAM "FirstHop" { Source.X } -> { Tramslator.X }
STREAM "SecondHop" { Translator.Y } -> { Sink.Y }

DECLARE { source } : Source CLIENT

DECLARE { sink } : Sink CLIENT

DECLARE { firstHop } : FirstHop STREAMREF
DECLARE { secondHop } : SecondHop STREAMREF

TRANSLATE { translator } <- { Source.X } -> { Sink.Y }

REALISE { firstHop } <- "FirstHop" { source } -> { tramslator }

REALISE { secondHop } <- "SecondHop" { tramslator } -> { sink }

Figure 7.11: Stream Translation Example

! { userLocator } <- traderRef$Import( "UserLocator", "/" "" )
! { ir } <~ userLocator$UImport( "Cosmos.Nicolaou", "Echo", "/" \
“Name == ’Echo’" )

The Translate statement is provided for obtaining a suitable translator device given a pair of
stream end points to translate between; it has the following form:

! TRANSLATE { translator } <- { source end point } -> { sink end point }

The result is an InterfaceRef for a suitable translator, or if no such translation could be found
an error. The stream end points are identified in the same way as in a stream declaration
(i.e. Device.StreamEnd). This statement generates an invocation of the Trader Search opera-
tion and scans the result for a suitable translator as outlined in section 5.3.4. This statement can
only be used for one-to-one streams and not for multicast or multidrop streams.

7.10.2.1 Translation Management

The prototype implementation does not provide any support for automatically inserting the trans-
lator devices in the event of a stream type mismatch. Therefore, the application writer must
explicitly manage the use of translator devices; the required process is best illustrated by example.
In order to connect a stream plug of type X, to a socket of type Y, a translator that converts from
X to Y is required. Two streams must be declared, one from the device sourcing X to the trans-
lator, and one from the translator to the device sinking Y. The TRANSLATE statement, described
in section 7.10.2, can then be used to obtain a suitable translator; the REALISE statement can be
used to realise both streams. Figure 7.11 illustrates this example.

Unfortunately, the stream declarations will fail since the Translator device type does not imple-
ment any stream ends. Therefore, the type checking of the stream ends must be deferred until a
suitable translator has been found. Currently, the implementation of STREAM detects the use of the
interface Translatoxr and defers type checking the appropriate stream-end. The TRANSLATE state-
ment makes a note of the type of the translator device found and makes this information available
to a subsequent REALISE statement, which is then able to implement the required checking.

This approach of providing the minimal amount of support required for the application writer




7.11. SUMMARY : ‘ 139

to explicitly manage translation has a number of advantages: it is simple to implement, does not
preclude the provision of automatic translation management in the future, and may even be used as
the basis for implementing such automatic management. In any case, even if automatic translation
management were to be provided then the ability to explicitly control translation would have to be
retained for the few applications whose requirements could not be met by the automatic scheme.

7.10.3 Stream and Device Implementation

PREPC provides the following statements which are intended to be of use for implementing the
management operations required by IMAC devices.

{} :: StreamType$InitStreamQoS() '
reads the stream configuration for the stream type, StreamType, and initialises the QoS cache
in readiness for per-layer QoS negotiation

{ r, offers } :: StreamEnd$Match( qosRequest )
performs per-layer QoS negotiation and returns the set of QoS offers which can satisfy the
request. It is then left to the device to determine which of these offers to use.

{ r, streamEnd } :: Device$FindStream( streamEndName )
searches the configuration for the specified device interface for the specified stream end. The
result contains the data structure representing the stream end. This can be used to validate
requests to set and clear synchronisation interfaces. '

{ r, stream } :: Device$FindStreamType( streamTypeName )
identical to FindStream, except for stream types as opposed to stream ends.

The result r contains a status code describing the result of the operation.

7.10.4 Orchestration Summary

When deciding what orchestration functions to provide there is a compromise to be made between
providing just enough functionality to be of genuine use to the application writer on the one hand,
and providing too much functionality on the other. Providing too much is likely to lead to-a complex
interface which is hard to programme, hard to maintain and liable to frequent change. Therefore,
IMAC 3.0 provides a minimum number of widely used, and flexible orchestration functions; rarely
used or complex functions are not provided. In particular, the decision not to implement the
automatic insertion of translator devices was justified on these grounds; that is, it may only be
rarely used and its implementation is likely to be complex.

7.11 Summary

The prototype described in this chapter represents an almost complete implementation of the
IMAC architecture. It has identified and remedied a number of important deficiencies present in
the ANSA Testbench on which it was based; in particular the communication system has been
re-implemented to fully support QoS. A new communication abstraction, called a Local Channel
Resource, has been designed and implemented. Local channel resources provide a compromise
between the performance advantages offered by the use QoS and the scaling properties provided
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by multiplexing. In particular, communication not requiring QoS does not pay a scaling or per-
formance penalty for its implementation. The performance of QoS based communication has been
improved by the ability to use separate communication channels and the reduction in jitter and
latency achieved through the use of constant-time look-up for network receptions. -

A simple programming interface is provided for the use of QoS which hides the implementation
details from the programmer. In addition, QoS has also been used to manage the configuration of
the communication system and represents a powerful tool for implementing network management.

Extensive support is provided for IMAC streams and devices which has been fully integrated into
the two programming languages supported by the prototype implementation. In this way, streams

and devices have been integrated into the distributed computing environment provided by the -

Testbench.

The full set of IMAC services have been implemented and, where appropriate, orchestration func-
tions have been provided for their access. Orchestration functions are provided not only for use by
controlling applications but also for use by stream and device implementations.

There are three principal areas that have not been implemented, namely: multi-channel synchro-
nisation, the synchronisation of device operations to LSF boundaries and automatically generated
implementations for event and stream synchronisation interfaces. Although not implemented,
designs have been prepared for each of these features and are presented in sections 9.4.1, 9.4.3
and 9.4.2. »



A |
Complete
Example

This chapter presents a complete example illustrating the use of the prototype IMAC implemen-
tation and demonstrates how the various components of this implementation can be used to build
a real application. The example application manages and monitors the event and stream synchro-
nisation of a uni-directional video stream. It makes use of the User Locator and Desktop Manager
to create such a stream between named users. The description is kept as general as possible to
give an overall understanding of how other applications could be constructed. \

The example described has been completely implemented except for the transport of video data;
uninitialised memory buffers are used in place of video data and are transmitted at the rate allowed
by the underlying operating system, workstation and network.

8.1 Application Structure

The example application has two components: a control component which manages and monitors
the video stream, and the implementation of the stream itself. The stream is composed of two
devices, one for the stream source and one for the stream sink. The logical separation of these
components does not imply a corresponding physical separation; for instance, all components could
be co-located on the same workstation, within the same address space, or separated by a wide area
network. The boundaries between these components are represented as IMAC devices, streams
and synchronisation interfaces.

Figure 8.1 illustrates this structure and identifies the interfaces used; figure 8.2 shows the IDL
definitions for these interfaces. The implementation of the management operations provided by
all devices is discussed in section 8.3; these operations are invoked by the orchestration statements
contained in the control component.
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o) Video source flow control interface
f) Video sink data interface-

Figure 8.1: Example Application Structure
These interfaces are created and communicated as follows:

e the Camera and VideoWindow device interfaces are created when their corresponding devices
are created. If the Desktop Manager is used to create these devices then the InterfaceRefs
for the newly created interfaces will be returned directly to the control component.

o the video source and video sink interfaces are created and exchanged when the video stream
is realised. The REALISE statement generates the invocations on the management operatlons
required to achieve this.

e the control component creates instances of the event and stream synchronisation interfaces it
wishes to receive invocations on, and registers them with the devices using the corresponding
PREPC statements.

Figufe 8.3 illustrates the sequence of PREPC statements required to create this video stream and
associated interfaces. The brevity of this example demonstrates that application complexity has
been effectively reduced by the provision of a powerful, language based interface.

8.2 Control Component Synchronisation
The control component has two sub-components:
e a central synchromsatlon loop responsible for implementing the required event and stream
synchronisation a.lgonthm

e the 1mpleme1;tat10ns of the event and stream synchronisation operations themselves.

Some means is required for communicating the fact that synchronisation operations have been
invoked, and therefore stream synchronisation points reached, to the synchronisation loop. Existing
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VideoEventSync : INTERFACE =

BEGIN
VideoStarted: OPERATION [1 RETURNS [1;
VideoStopped: OPERATION [1 RETURNS [1;

ExceptionCode: TYPE = { communicationError };
ErrorDetected: OPERATION [ code: ExceptionCode 1 RETURNS [1;
END

VideoStreamSync : INTERFACE =
BEGIN ‘
TimeStamp: TYPE = CARDINAL;
SequenceNumber: TYPE = CARDINAL;

FrameReceived: OPERATION [
st_LSF_seq: SequenceNumber; st_LSF_time: TimeStamp
1 RETURNS [
sync_erroxr: BOOLEAN;
app_LSF_seq: SequenceNumber; app_LSF_time: TimeStamp
I;
END

VideoStream : INTERFACE =
NEEDS VideoEventSync;
NEEDS VideoStreamSync;
BEGIN ‘ ‘
VideoStream: STREAMTYPE = { VideoEventSync } { VideoStreamSync } [
"X 128 Y 128" | "X 256 Y 266" | "X 512 Y 512" ];
END.

Camera : DEVICE =
NEEDS VideoStream;
BEGIN
VideoSource: STREAMEND VideoStream PLUG;

Play: OPERATION []1 RETURNS [1;
Stop: OPERATION [] RETURNS [1;
END.

VideoWindow : DEVICE =
NEEDS VideoStream;
BEGIN
VideoSink: STREAMEND VideoStream SOCKET;

Create: OPERATION [ X, Y: CARDINAL ] RETURNS []1;
Destroy: OPERATION [] RETURNS [1;
END.

Figure 8.2: Stream and Device Interfaces for a Video Stream
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! DECLARE { cam } : Camera CLIENT

! DECLARE { vwin } : VideoWindow CLIENT

! DECLARE { eventSync } : VideoEventSync SERVER

! DECLARE { streamSync } : VideoStreamSync SERVER

! STREAM "VPipe" { Camera.VideoSource } -> { VideoWindow.VideoSink }
! DECLARE { vpipe } : VPipe STREAMREF

-- locate the desktops for the users

! { userLoc } <~ traderRef$Import( "UserLocator", "/" nn )

! { from_dtop } <- userLoc$UImport( from_user, "DesktopManager', "/, "" )
! { to_dtop } <- userLoc$UImport( to_user, "DesktopManager", "/", "" )

—- create the devices
! { cam, cam_id } <- from_dtop$Run( "Camera" )
! { vwin, vwin_id } <- from_dtop$Run( "VideoWindow" )

-- realise the video stream
! REALISE { vpipe } <- "VPipe" { cam } -> { vwin } \
[ "X == 128 and Y == 128" ] Signal *

-- create and set event and stream synchronisation interfaces
! { eventSync } :: VideoEventSync$Create()
! { streamSync } :: VideoStreamSync$Create()

1 {} <- canm$SetEventSyncPoint( "VideoSink", "VideoEventSync", \
eventSync ) o ' '

! {} <- vwin$SetEventSyncPoint( "VideoSink", "VideoEventSync", \
eventSync ) :

! {} <- vwin$SetStreamSyncPoint( "VideoSink", "VideoStreamSync", \
streamSync ) '

-- control and monitor the synchronisation
-- of the video stream

—- clear event and stream synchronisation interfaces
! {} <- vwin$ClearEventSyncPoint(."VideoSink", "VideoEventSync" )
! {} <~ vwin$ClearStreamSyncPoint( "VideoSink", "VideoStreamSync" )

== destroy the video stream
! {} <~ vpipe$DestroyStream{}

—-- destroy the devices
! {} <~ from_dtop$Kill( "Camera", cam_id )
! {} <~ from_dtop$Kill( "Camera", vwin_id )

'Figure 8.3: Application for Controlling a Video Stream
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synchronisation primitives such as semaphores or eventcounts and sequencers [Reed79] can be
used. The only complexity introduced is the requirement to wait for the occurrence of multiple
synchronisation points simultaneously. Section 9.4.2 describes a design for the automatic generation
of code and synchronisation primitives required to implement this. The examples in sections 6.1
and 6.2 have already illustrated how the control loop could be implemented.

8.3 Device Implementation

The device implementation must perform the following functions:

e implement the device interface, including management operations.
e synchronise the invocations of device operations to stream LSF’s.

e invoke the appropriate stream synchronisation operations when synchronisation points are
reached.

e implement the transport of stream data.

The PREPC statements described in section 7.10.3 simplify the implementation of the management
operations; in particular the Stream$Match statement provides easy access to per-layer QoS nego-
tiation. However, synchronisation of operation invocation to LSF’s must be implemented directly,
" and the scheme used will be highly dependent on the transport protocol used to communicate
stream data.

Data transport may, or may not, be implemented using the IMAC communications system; in
either case the control component is unaware of the mechanism used. If IMAC communication is
used then it is likely that use will be made of the QoS facilities it provides. The QoS used for
data transport should not be confused with that used for the stream, as specified in the stream
interface and when the stream is realised. A stream QoS request specified in a REALISE statement
is passed to the management operations implemented by the device. These may then use the
Stream$Match( qosRequest ) statement to match the request against the offers specified in the
stream’s IDL definition. The device implementation may then map the returned QoS offers into a
new, and different, QoS request for use when transporting the stream’s data. The mapping used is
entirely implementation dependent. For instance a stream offering a QoS of "X 128 Y 128" might
be mapped to QoS request "VideoProtocol 128,128,FullRate".

8.4 Summary

This chapter has outlined a complete example, and used it to illustrate how the various components
of the prototype IMAC implementation can be used to build such an application. The description
has covered all of the major components of the application and has been kept as general as possible
to impart an understanding of how other applications could be constructed.
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Evaluation
and
Extensions

This chapter presents an evaluation of IMAC and its prototype implementation, designs for un-
implemented portions of IMAC and suggestions for future research. The evaluation has the fol-
lowing components:

e a quantitative evaluation of the performance of the prototype implementation.

e a qualitative evaluation of how well the requirements made by multimedia systems have been
addressed by the IMAC architecture and its implementation, and a discussion of the benefits
realised as a result of satisfying these requirements.

e a set of requirements for future systems to enable them to better support IMAC implemen-
tations.

9.1 Performance Evaluation

In order to determine the cost of implementing IMAC the performance of its prototype implemen-
tations is compared against that of the original version of the Testbench on which it is based.

All experiments were run between lightly loaded Hewlett Packard Series 9000/375! workstations
running HP/UX? connected by the Computer Laboratory Ethernet. These measurements were
taken either in the evening or over the weekend when the network load is lightest. The results
presented were obtained by averaging the results of multiple experiments, where each experiment

1Rated at approximately 11 VAX MIPS.
2Running the full complement of daemons.
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Figure 9.1: Version 3.0 RPC Performance

consisted of multiple runs of 1000 or 10,000 invocations. In addition, where the results of compar-
ative experiments are presented, care was taken to ensure that these experiments were carried out
under as near identical conditions as possible.

9.1.1 Version 3.0 RPC Performance

The time taken to execute a single RPC has three major components:

system time: the time spent in the underlying operating and communication system for trans-
mitting and receiving network packets.

protocol time: the time spent in the RPC protocol itself.

stub time: the time spent in stub code to invoke and dispatch remote operations, and to marshall
and unmarshall arguments and results.

Figure 9.1 shows the performance of version 3.0. All measurements shown are for an echo operation
which sends and receives n bytes of data. Plots are given for raw UDP performance,? for the raw
RPC protocol, REX, and for an application level function, called Echo, which returns a single string
argument as its result. The size plotted along the z axis is the total size of the network buffers
transmitted and received, and includes protocol and stub headers. The UDP timings represent the
system time, the difference between the REX and UDP timings the protocol time and the difference
between REX and Echo, the stub time.

3The improvement in UDP performance seen for 512 and 1024 byte and larger packets is almost certainly due
to a larger number of network buffers of that size being available.
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| System | Time (ms ) |
Firefly RPC [Schroeder89)] 2.66
Amoeba [van Renesse88| 1.40
Testbench ' 7.51

Table 9.1: Performance of Contemporary RPC Systems
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Figure 9.2: Version 3.0 and IMAC 3.0 Performance Comparison

This graph shows that the protocol time is greater than the stub time for small packet sizes but is
gradually overtaken by the stub time as data size increases. However, the protocol time remains
constant with respect to buffer size and system time. The sum of the protocol and stub time is
just greater than the system time, indicating that the system accounts for just under half of the
total latency. The marshalling and unmarshalling of the simple strings used by the Echo operation
is'dominated by memory copying and represents the minimal marshalling overhead. More complex
arguments and results are likely to require even greater processing time.

Table 9.1 shows that the performance of the Testbench. RPC system is substantially worse than
that of other contemporary systems. However, it is the only one of these systems to run over UNIX
as a user process, to have been ported to a wide variety of operating systems and not to have had-
any concerted effort to improve its performance. Even so, it still achieves sub 10ms performance
for invocations whose argument and replies are less than 64 bytes in size.

9.1.1.1 IMAC 3.0 Performance

Figure 9.2 compares the performance of IMAC 3.0 to that of Testbench version 3.0. The timings
for the raw REX protocol are very similar, but IMAC 3.0 appears to be worse, by a constant
amount, for the Echo operation.




150 : 9. EVALUATION AND EXTENSIONS

20 T T L] Ll L

18 | 3.0 Echo: fast malloc <o— -
3.0IMAC Echo fast malloc ——-

. OIMAC REX @ -

‘ 3.0lIMAC REX fast malloc -%--

16 | -

7 14 } -
Y
5
12} .
10} 4
sl 4
s 1 - 1 1 1 L
0 200 400 600 800 1000 1200

size (bytes)
Figure 9.3: RPC Performance Using Fast Malloc

In order to investigate the source of this additional delay the client and server test programs
were profiled using the UNIX gprof program. The results showed that the new implementation
was spending a far greater amount time in the HP/UX malloc library procedure. Therefore, the
experiments were repeated using a faster implementation of malloc, also provided by HP/UX;
these results are presented in figure 9.3. The use of the faster malloc improved the performance
of the Echo operation, but appears to have slowed the raw REX timings. Further investigation
revealed that the source of the original additional delay was an obscure bug in the Testbench 3.0
buffer management code* which resulted in a failure to use pre—aJlocated buffers for each invocation
and generated a call to malloc for ewery invocation.

Figure 9.4 shows the results of a repeated set of experiments with the buffer management bug
fixed. The differences between 3.0 and IMAC 3.0 are now in the order of tens of microseconds and
are almost certainly due to the different programming style used for IMAC 3.0. The use of global
variables has been reduced, a greater number of arguments are passed on the stack and several of
the global variables used in 3.0 have been transformed into structures and hence incur an.extra
copying overhead when assigned. In addition, IMAC 3.0 has been coded in a defensive fashion and
includes a large number of run-time assertions and correctness checks. The performance advantages
gained through the-use of Local Channel Resources (LCR’s) have been cancelled out by these other
losses. Performance could be improved by streamlining the new code and removing many of the
correctness checks. )

Table 9.2 gives the actual timings for 3.0 and IMAC 3.0, and shows that IMAC 3.0 is between
0.05ms and 0.08ms slower for all but the 512 byte Echo operation, for which it is slower by 0.27ms.
It is not .clear why IMAC 3.0 should perform slightly worse for medium sized packets, however,
the most likely cause is due to a change in the ratio of time spent waiting for network operations
to complete and the time spent marshalling and unmarshalling data. The difference is sufficiently

4This bug will be fixed in future releases of the Testbench.
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Figure 9.4: RPC Performance With Improved Buffer Management
Version | REX (ms) | Null RPC (ms) Echo (ms)
1 byte | 512 bytes | 1024 bytes |
3.0 7.561 8.48 8.67 | 13.40 - 16.90
IMAC 3.0 7.58 8.53 8.75 13.67 16.97

Table 9.2: Version 3.0 and IMAC 3.0 RPC Timings

small to not be a cause for major concern.

9.1.2 Extended Interface References

The other major difference between 3.0 and IMAC 3.0 is the extended format for interface refer-
ences. Table 9.3 gives timings for a simple operation to return an InterfaceRef as a result and
for the Trader Lookup operation. The InterfaceRef timings give an indication of the marshalling
overhead for the new interface references, whilst the Lookup timings include the additional process-
ing overhead incurred within the Trader. Timings are shown for a minimal sized, default interface
reference® and for a larger one containing a substantial amount of QoS information; the interface
reference used is that created for the QoSTest interface shown in figure 9.5. The times for the
default interface reference represent the best that can be achieved using IMAC 3.0. The overhead
for the default interface reference for both experiments is in the order of a few milliseconds, but
this increases to approximately 15ms for the larger interface reference. This increased. overhead
is entirely due to the large size of the interface reference used, approximately 1200 bytes, which
required the use of fragmentation to transmit it using several transport protocol packets. The size

5j.e. one that contains a default AddressHint.
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System Interface Reference Trader Lookup

. | Default | With QoS | Default | With QoS
3.0 (ms) 9.28 N/A 12.14 N/A
IMAC 3.0 (ms) | 11.43 25.80 15.61 27.00
Overhead '2.15 16.52 3.47 14.86

Table 9.3: IMAC 3.0 Interface Reference Overhead

QoSTest: INTERFACE =
BEGIN _
. Opi: [ "Name == ’Stream’" | "Name == ’LocalStream’" ]
" ' OPERATION [ Num : CARDINAL; Str : STRING ]
RETURNS [ CARDINAL; STRING ]1;

. 0p2: [ "Name == ’DataGram’" ]
OPERATION [ ] RETURNS [ STRING; CARDINAL 1;

Op3: [ "Name == ’Stream’" ]
OPERATION [ Num : CARDINAL ] RETURNS [ 1;

' Op4: OPERATION [ Num : CARDINAL ] RETURNS [ 1;

QEcho: [ "Name == ’Stream’" | "Name == ’LocalStream’" |

"Name == ’DataGram’" ]
OPERATION [ Src : STRING ] RETURNS [ STRING ];
END. '

Figure 9.5: Interface Used for QoS Timings

of the interface reference can be reduced by either reducing the number of operations including
QoS specifications, or by using an interface wide QoS specification. This increased overhead is
not considered a serious problem because of the fact that interface references are communicated
relatively infrequently. If a large number of interface references are as verbose as that for the
QoSTest interface then the Trader may become a bottleneck; its best case performance has been
reduced to 65 Lookups per second for the default interface reference and to 37 for the QoSTest
interface reference.

Figure 9.6 shows the time taken to create an interface reference for the QoSTest interface shown in
figure 9.5. The graph shows the time taken to create an increasing number of interface references;
as this number is increased the overhead of communicating with the QoS Manager is amortised
over the greater number of creations. Two plots are shown, one using the standard malloc and
the other the fast malloc. The time to create a single 1nstance is approximately 400ms using the
standard malloc and 250ms using the fast malloc. The standard malloc fragments memory very
quickly and leads to severe performance degradation as the number of interface references created
increases; the fast malloc is much more stable and tends to a lower limit of approx1ma.tely 22ms
for interface reference creation. The time to create interface references bottoms out after creating
approximately 60 mterface references. ' The fast’ malloc was used for all subsequent experlments
involving QoS

As seen from figure 9.6 the QoS Cache is-effective in‘reducing the number of invocations to the
QoS Manager. For the QoSTest interface, a total of 10 QoS Manager invocations were requlred for
any number of interface references. These can be accounted for as follows:
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number of interface references created

Figure 9.6: Performance of Interface Reference Creation

| 1 invocation | 1000 invocations |
[ 189.20ms | 74.76ms |

Table 9.4: QoS Bind Times

e 2 invocations to identify a QoS layer: one each for the execution and MPS QoS layers.

i ¢ 8 requests to evaluate constraint expressions: one at each layer for each of the 3 different QoS
| specifications, plus an QoS empty request which is issued by the QoS cache to determine all
of the available offers at each layer.

This number could be further reduced by extending the configuration files used to store the QoS
offers supported by a capsule to include constraints known to match those offers; in other words,
by moving more of the QoS negotiation algorithm to compile time.

Table 9.4 shows the time to create a binding for the QEcho operation of the QoSTest interface; this
time includes:

e the execution of the client QoS negotiation algorithm.
e any invocations on the QoS Manager.
e the invocation of the server’s Bind operation.

e the invocation of the operation itself.
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Operation Echo Size (bytes)
1 [ 128 | 256 | 512 | 768 | 896 | 1024
Echo (ms) 8.88 | 10.13 | 11.26 | 13.61 | 15.82 | 17.05 | 17.18
Echo with QoS (ms) | 8.89 | 10.13 [ 11.23 | 13.59 | 15.82 | 17.06 | 17.16

Table 9.5: Echo Timings With and Without QoS

The QoS cache ensures that the QoS Manager will only be invoked the first time that a partic-
ular QoS binding is created, i.e. when the operation is first invoked. A total of 6 QoS Manager
invocations are required as follows:

e 2 invocations to identify a QoS layer: one each for the execution and MPS QoS layers.

e 4 requests to evaluate constraint expressions: one at each layer for the QoS request used,
plus an QoS empty request which is issued by the QoS cache to determine all of the available
offers at each layer.

Therefore, the time for a single bind includes the QoS Manager overhead, whilst the time for 1000
bindings does not. The time to destroy a binding only involves a single call to the server’s UnBind
operation, regardless of however many times it is called, and was measured at 14.58ms.

9.1.3 QoS Performance

Table 9.5 shows that the timings for the Echo and QEcho operations, with and without QoS
are virtually identical. The QoS used simply specified the use of a datagram transport protocol
(i.e. "Name == ’DataGram’") and selected the use of UDP.

Figure 9.7 shows the performance of the Echo and QEcho operations when implemented by the
same server, and invoked simultaneously by one client each. That is, a single server is receiving
invocations from two clients, one of which is calling Echo and the other QEcho. QEcho is invoked
with a datagram QoS request. This clearly shows that the prototype implementation is able to
prioritise QoS based communication and to provide better performance than for non-QoS based
communication. Although the QEcho operation performs better than Echo, it is still worse than the
performance for a single client invoking operations on a single server. This is an inevitable result of
the fact that the implementation of IMAC 3.0 over UNIX does not support any form of pre-emptive
scheduling and hence even QoS based communication must wait for any other communication to
be processed to completion.

9.1.4 | Conclusion

The performance evaluation has shown that the performance of IMAC 3.0 is very similar to that of
the original version of the Testbench on which it is based. In addition the implementation and use
of QoS has no detrimental effect on RPC performance, with the cost of QoS being concentrated
at interface creation and bind time. It has also showed that it is possible to prioritise QoS based
communication and thus provide better performance than for non-QoS based communication in
the case of multiple clients. The extended interface references make heavy use of malloc and as
a result the performance of IMAC 3.0 is highly dependent on that of the malloc implementation
used.
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Figure 9.7: QoS Performance Using Two Clients

9.2 Evaluation

The evaluation presented in this section examines how well the requirements identified for multi-
media in section 4.2 have been satisfied by IMAC and if the anticipated benefits have been realised.
The principle features of IMAC are evaluated in turn.

|
|
| 9.2.1 IMAC Streams and Devices
|

IMAC streams were designed to support the synchronisation of multiple, related, media and IMAC
devices to provide a uniform interface for managing device and protocol heterogeneity. The prin-
cipal benefits sought were as follows: ‘

e to support stream synchronisation without multiplexing.
e to support a wide variety of media and application specific synchronisation schemes.

¢ to allow the system to evolve as technology progresses and as system performance and con-
figuration changes.

e to support the construction of portable applications.

e to support the construction of open systems as defined in section 4.2.10.1.

Logical Synchronisation Frames, defined in section 5.2.3.3 and illustrated in chapter 6, define a
generic interface for synchronising multiple media streams. This interface allows streams to be syn-
chronised whilst being kept separate, thus avoiding the use of multiplexing to synchronise streams
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and allowing the advantages offered by the use of separate communication channels, (described in
section 4.2.4.4) to be realised. Synchronisation is provided in a device, stream and media inde-
pendent manner and stream interfaces represent candidates for standardisation. By keeping each
media stream separate it is also possible to add new media, and remove existing media, from the
set of media being synchronised. The two-level, LSF-PSF, structure allows the synchronisation
granularity to be varied and applications to choose the level of synchronisation they require. In this
way, it is possible to vary the degree of real-time processing implemented within the application
and thus allow applications to evolve along with technology and changes in system configuration.

A potential weakness of this scheme is the cost of communicating the LSF structure to the control-
ling application; i.e. the cost of invoking synchronisation operations may be too great. However,
as shown by section 9.1, even the un-optimised RPC implementation of IMAC. 3.0, provides sub
10ms performance and can be used to implement synchronisation at a granularity coarser than
10ms. In addition, RPC performance will only improve as technology progresses whilst user re-
lated synchronisation requirements will remain static. If this level of performance is inadequate
then two courses of action are available:

1. synchronisation can be implemented at a coarser granularity by increasing the LSF duration,®
thus reducing the performance demands.

2. the communication delay between the controlling and controlled application components can
be reduced; for instance they could be co-located on the same machine or even in the same
address space.

Whichever solution is adopted the stream and device interfaces remain unchanged,” and conse-
quently the application need not be altered in any major way. In addition, if performance im-
proves, then it is possible to decrease the synchronisation granularity or distribute the application
components - again without requiring major application change. This is made possible by the
use of well defined interfaces for streams, stream synchronisation and devices, which in turn allow
synchronisation granularity and distribution to be viewed as configuration and not design options.

IMAC devices provide an effective means for managing three forms of heterogeneity:

Implementation heterogeneity: a single device interface may have multiple implementations,
thus allowing for implementations of the same interface over a range of platforms.

Device heterogeneity: conformance allows devices which are of different, but conforming, types
to be used in an identical fashion and in place of one another. If device X conforms to device
Y, then X may be used in place of Y, thus providing a means of managing heterogeneity
among device interfaces.

Communications heterogeneity: the underlying communication system is hidden and the pro-
tocol used to transport invocations is transparent to the application. Even though QoS has
been introduced to allow control of the communications system, great care is taken to ensure
that QoS is specified in a declarative fashion and using application level terms; section 9.2.2
discusses this in more detail.

The potential problem associated with this approach is that the management of streams and
devices is likely to be complex and difficult to implement. The concept of orchestration was
developed specifically to tackle this problem, and as demonstrated by the prototype implementation

6 For an isochronous stream, the duration is that for every LSF used; for a non-isochronous stream the duration
is that for the LSF which consumes the minimum amount of time.

"Except for the addition of a new LSF if a suitable one is not already available.
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(chapters 7 and 8) provides an effective solution to the problem. In particular, the use of language
extensions provides a clean and powerful interface for managing streams and devices. The principal
omission is the lack of an automated means for implementing stream synchronisation operations;
section 9.4.2 presents a design for such a scheme. Even so, as shown in chapter 8, the orchestration
interface provided is effective at reducing the complexity visible at the application level.

The pervasive use of well defined interfaces for all aspects of synchronisation and heterogeneity
management naturally leads to the construction of an open system. The result is a system which
allows the interoperation and interconnection of its components and which can be incrementally
extended by the addition of new components without disturbing existing components. In addition,
the configuration of the system, both in terms of the physical location and the logical interoperation
of its components can be changed without changing the components themselves.

9.2.2 QoS

IMAC QoS provides the mechanism for expressing media and application specific requirements.
The benefit for applications is that they can directly specify their communication requirements
and expect them to be guaranteed. Similarly, the communications system is better able to effi-
ciently manage its resources given an indication of application requirements. The pitfall associated
with QoS is that applications will become tied to particular, implementation specific, QoS offers.
However, as shown in sections 5.2.7 and 7.3, IMAC and its implementation provide an effective
scheme for avoiding this pitfall. That is, QoS is specified in a declarative fashion, using application
terms, and a mechanism is provided for mapping application QoS requirements into lower-level
communication requirements - thus hiding the details of how the application’s QoS requirements
are satisfied.

Other important features are that applications can determine the QoS currently in use and vary
their behaviour accordingly. Applications may specify and dynamically vary QoS at run-time
and are presented with a simple programming interface for using QoS. QoS is implemented on
an end-to-end basis. The performance evaluation presented in section 9.1 shows that QoS can be
implemented at minimal cost. In addition, the scaling properties of the system are preserved for
communication not requiring QoS.

The process of designing and implementing QoS produced a number of interesting results and
observations:

o the design and implementation of QoS is complex.

e end-to-end QoS negotiation was surprisingly easy to implement.

care had to be taken to preserve the performance and scaling properties of the resulting
communication system.

e there is a fundamental relationship between QoS and minimising multiplexing.

QoS is a powerful tool for managing system configuration.

The representation for QoS offers and constraints and within the extended interface references
was complex to implement and hard to debug. The Testbench communication system had to be
extensively modified and new interfaces designed and implemented before QoS could be accom-
modated. In particular, the local channel resource and dynamic QoS negotiation interfaces were
devised specifically to support QoS. Local channel resources are fundamental to the successful
implementation of QoS since they provide the basic mechanisms for' associating resources with
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a given QoS offer and for preserving the performance and scaling properties of non-QoS based
communication.

Once the in-capsule code was functioning at the client and server, it was relatively straight forward
to implement end-to-end QoS. This was largely due to the recursive use of the Testbench invocation
scheme to communicate the QoS requirements of the client to the server. This out-of-band approach
preserved the performance of the existing RPC system by moving all QoS processing off the critical
path, to when interface references and new bindings are created and traded.

The relationship between QoS and minimising multiplexing can be seen when:

o QoS offers are viewed as defining a set of protocol stacks, any of which can be used to provide
the required QoS.

e communicating parties, employing minimal multiplexing, are viewed as using their own,
private, protocol stack.

The algorithm for QoS specification (see section 5.2.7.1) is responsible for creating this set of
protocol stacks and can be viewed as identifying all of the available non-multiplexed commu-
nication paths. In this way QoS provides the mechanism for identifying and selecting between
non-multiplexed protocol stacks, whilst minimising multiplexing allows QoS to be implemented by
reducing performance and QoS cross-talk, (see section 4.2.4.2).

As described in section 7.3.1.2, it is possible to use QoS offers to describe the configuration of
the communications system. This configuration is then encoded in an interface reference and thus
made available to any client wishing to communicate with the interface provider. The client is then
able to match the configuration of its own communication system with that of the server; i.e. to
avoid impossible protocol combinations or to choose the most efficient protocol. The advantage
offered by this scheme is that decisions regarding which protocol to use are deferred until run-time,
and are made with a knowledge of the server’s communication system. The disadvantage is that
the extended interface references are large and expensive to communicate, but fortunately, such
communication is relatively infrequent.

9.2.3 Unsatisfied Requirements

This dissertation has not addressed many of the requirements made for the implementation of mul-
timedia communications protocols and for resource management policies suitable for multimedia
applications. This is partly due to a lack of time and resources, and also to the fact that these
areas are already the subject of a great deal of research. However, by examining these require-
ments in detail and taking them into account when designing IMAC and its implementation, a
framework has been provided within which such protocols and policies can be incorporated. In
addition, the performance penalty imposed by this framework has been shown to be minimal (see
section 9.1) and as a result any performance advantages offered by advances in protocol design
and resource management should be reflected by a corresponding improvement in future IMAC
implementations.

9.2.4 Other Architectures

This section compares the flexibility and suitability of IMAC to other multimedia architectures;
finally, the relationship of IMAC to OSI is discussed.
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9.2.4.1 VOX and CMEX

VOX and CMEX have very similar architectures, which are in turn based on that of the X Window
System [Scheifler86]. In this architecture all system functions are implemented by a single server
and applications are implemented as clients of this server. The protocol used for communicating
between clients and this server defines the functions provided by the server and is highly specialised
for the job in hand. The problem with this approach is that all system functions are implemented in
a single, monolithic, piece of software, which must be modified whenever system functions, however
minor, are to be modified or extended. The degree of modification required depends on how closely
the newly designed functions match those anticipated by the original design and implementation of
the server. Such a monolithic structure is too restrictive for the distributed environment assumed
by IMAC. Therefore, IMAC represents separate system functions as separate devices which can be
implemented, modified, added and removed, independently of one another. The communication

protocol used is far more general and accommodates a far wider range of applications than those
used for VOX and CMEX.

The server based approach does offer the potential advantage of being able to easily synchronise
operations across multiple devices. It is relatively straight forward to implement such synchronisa-
tion provided that all operations pass through the same server and all of the devices to which the
operations apply are implemented within the server, (i.e. are a fixed communication delay away
from the server).

However, IMAC being an extension of a distributed system, and in particular of ANSA, is able to
make use of any general purpose distributed computing mechanisms for managing and synchro-
nising operations across multiple, distributed devices. In particular, some form of group execution
or reliable multicast protocol, as provided by ISIS [Birman87] for example, could be easily in-
corporated into IMAC. Incorporating such a protocol into VOX or CMEX would be inordinately
difficult.

9.2.4.2 Extending UNIX

The work carried out by Leung et al, described in section 3.11, shares a common goal with IMAC:
namely, the desire to provide a powerful programming interface for multimedia applications. The -
differences between the two lie in the initial architectural assumptions and in the means chosen to
achieve this goal.

IMAC assumes a highly heterogeneous environment, both in terms of hardware and software, whilst
Leung assumes the use of a single operating system, UNIX, and a single protocol architecture. In
Leung’s system separate streams are multiplexed over a single communication channel to provide -
synchronisation. Therefore, synchronisation policy is implemented within the communications
system, which is in turn implemented within the UNIX kernel.

Leung’s programming model is based on asynchronous message passing and is implemented by the
Non-Procedural Programming (NPL) language. IMAC on the other hand provides a procedural
model based on the invocation of operations provided by interfaces. The model adopted by IMAC,
inherited from ANSA, allows effective heterogeneity management and compile-time type checking,
whilst the event driven model does not. In particular, the event driven model used assumes that
the same data representation is used by all system components.
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9.2.4.3 IMAC and OSI

The scope of IMAC, although considerably larger, does overlap with that of OSI. This is most
easily seen if IMAC is viewed as an MMCS.

The IMC and Communications components of IMAC overlap directly with the OSI protocol stack,
whilst the User Interface component had no corresponding component in OSI. Some portions of
the DPC may overlap with the session and presentation layers, however the DPC provides many
functions in addition to session and presentation functions. The IMAC application component
is intended to support arbitrary, user created apphcatlons, as opposed to a standardised set of
common applications as specified by OSI.

The Communications component has the greatest correspondence to OSI, since it can viewed as
providing the network, transport and optionally the session and presentation layers if they are
not part of the DPC. Whether layers 5 and 6 are in the DPC or the Communications component
is an implementation issue. The major difference is that IMAC provides comprehensive support
for QoS, not only within the Communications system, but also allows the DPC and application
components access to QoS.

The IMC component may make use of the Communications component to transport its control
operations and even to transport multimedia data. Therefore it appears as part of the applications
layer in OSI.

9.3 Requirements for Future Systems

This section presents requirements for the design and implementation of future systems which are
better able to support IMAC. Although the prototype implementation was severely restricted by
the use of UNIX, this section is not intended as a critique of UNIX and the dlscussmn is kept as
general as possible. Each MMCS component is taken in turn. .

9.3.1 Information Media Component

As mentioned in section 6.4, if full use is to be made of device conformance then devices supporting
multiple media should allow the use of a single medium in isolation of the others.

Multimedia hardware devices must provide sufficient information regarding their current state to
allow the implementation of IMAC streams. In particular, the structure of the information media
must be visible at the device interface and be accessible whilst the medium is being communicated.

The problems discussed in section 4.1.1 of inappropriate workstation design could be solved by
adopting a workstation architecture with multiple, concurrent, data paths, usually referred to as
a switch fabric, between high speed devices, as illustrated in figure 9.8.3 Ideally full connectivity
should be possible, allowing for any device to be connected to any other. Such an architecture is
better able to support multiple, guaranteed communication paths and leads to a fully integrated
workstation which can process multiple information media as easily as current workstations process
text. For lower speed devices a single bus may be used to reduce cost. Unfortunately, such switch
based architectures are unlikely to be widely available for some years yet.

The use of the Fairisle network (section 3.1.6) for constructing such a switched multimedia work-

8Note that devices which can act as data sources and sinks appear on both sides of the switch
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Figure 9.8: Switched Multimedia Workstation

station is currently being investigated at the Computer Laboratory [McAuley90].

9.3.2 Communications Component

The principal requirement for future multimedia communications protocols are described in detail
in section 4.2.1, and can be summarised as the ability to support multiple service requirements
and the guaranteed provision of application specified QoS on an end-to-end basis. As shown in
section 3.3 this area is already the subject of much research.

The operating system interface presented to the underlying communication system must preserve
the QoS of the communications beneath it. This requires the provision of concurrency within ap-
.plications and the ability for each concurrent thread to wait for receptions on a different commu-
nications channel. UNIX does not support any such concurrency and forces all network receptions
to be multiplexed via a single call to select. This makes it very difficult to take full advantage of
any QoS provided by the underlying protocols and introduces additional multiplexing.

9.3.3 Distributed Processing Component

Of the problems outlined in section 4.1.3 heterogeneity has been directly addressed by IMAC, but
only very simple resource management policies have been implemented.

If multimedia applications and devices with predictable performance are to implemented then some
form of real-time® scheduler is required. Applications need to service incoming.synchronisation
operations within strict timing constraints, whilst devices need to transmit and receive stream
data, and issue synchronisation invocations within strict time constraints. The communication

2The term real-time is used somewhat loosely to refer to schedulers which support some notion of time and
schedule processes accordingly.
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between devices and applications requires predictable performance, the QoS facilities provided by
IMAC can be used to specify and implement these communication requirements. Although IMAC
has not provided any support for CPU scheduling, the LSF structure used for streams does provide
an application independent means for expressing scheduling requirements. That is, applications can
specify their timing constraints in terms of LSF’s and leave it to the system implementation to map
these to the parameters used by the underlying scheduler; commonly used scheduling parameters
include deadlines and thread priorities. The mapping of LSF’s to scheduling parameters should be
specified in a declarative manner and can be viewed as part of the system configuration.

9.3.4 Applicatidn Component

The application demgner and implementor is faced with three major problems. This dissertation
has addressed the first of these; namely, the almost complete lack of distributed system support
for the construction of multimedia applications.

The second problem is the absence of application level concepts and building blocks for use in
applications; this is a direct result of the short time that research in this area has been active.
MUSE (section. 3.7.2) is one system that provides such building blocks.

The final problem is that of deciding “what an application should do”; that is, what functionality
to provide, how to provide it, and also what not to provide. This problem can only be overcome
by building working systems whose use can be evaluated and the results of this evaluation fed back
into the refinement of existing systems and the design of new ones.

A large application area for multimedia communication will be CSCW. Such applications require
the ability to communicate the same data, or media stream, to multiple locations; i.e. they require
one to many, multzcast communication. The term multicast is used in two conflicting ways: the
first refers to reha.ble group multicast (as exemplified by the ISIS system [Birman87)] ) whilst the
second refers to multlcast delivery without any implicit reliability or any other QoS requirement.
CSCW a.pphcatlons require both types of multicast. Reliable multicast can be used to maintain
the consistency of the shared workspace and conference membership, whilst unreliable multicast
may be used to provide efficient multi-site delivery of voice and video which do not require high
reliability or consistency.

9.3.5 User Interface Component

People are adept at communicating and manipulating multiple information media simultaneously;
they are also capable of identifying and understanding the relationships between such multiple
media. The problem facing the user interface designer is how to integrate new information media
into a single coherent user interface and how to capture, represent, communicate and recreate the
relationships between multiple media. The word seamless is often used to describe the level of
integration sought by user interface designers.

A central aim of multimedia communication is to allow a single user to use a-computer as a tool for
communication with several other, physically distant, users. This means that the next generation
of UIMS’ which will implement user interfaces to such multimedia communication must extend
their view of human computer interaction beyond the current situation of a single user interacting
with a single computer. Therefore, the UIMS must cope with multiple sources of human input and
the very much larger class of errors introduced by the presence of a network and distribution. These
errors include communication errors due to the network itself and partial system failures which
occur when part, but not -all, of the distributed application managing the communication fails.
In addition, new UIMS’ will have to support the variations in the degree of interactivity required
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by different applications, and even by the same application when using a different communication

QoS.

CSCW, as shown by the problems encountered by MMConf (section 3.8.4), places even greater
demands on existing user interfaces and user interface management systems. In particular the
ability to customise a user interface to personal taste must be carefully managed in a shared
workspace to avoid interference between multiple users.

Capturing and presentmg the relationships between multiple information media is another problem
for current systems since they often assume that separate user activities are mdependent of one
another. Some means of expressing these relationships in an efficient and non-intrusive manner
must be found.

9.4 Future Work

This section presents designs for un-implemented portions of IMAC for extensions to the prototype
implementation, and suggestions for improvements if the current system were to be re-designed
and re-implemented.

9.4.1 Multi-Channel Synchronisation

Section 5.2.7.5 described the need for multi-channel synchronisation and outlined the various levels
at which it might be implemented. Within ANSA, work is already underway on the implementation
of atomic transactions, concurrency control and a group execution protocol; all of which require
some form of multi-channel synchronisation. The design presented in this section is for.a lower
level, stub code, implementation and could be used to implement the hlgher level mechanisms
mentloned above.

This design requires the extension of IDL to allow the definition of synchronisation groups, to which
operations requiring multi-channel synchronisation must belong. Such groups are represented as
two components: asequence counter and a set of operations to be sequenced by this counter. A new
IDL statement is required to define such sequence counters and the existing syntax for operations
extended to include a list of the sequence counters, and therefore synchronisation groups, that
each operation belongs to. The client stubs are responsible for implementing sequence counters
as monotonically increasing variables and for generating new values for each operation invocation.
This new value is passed to the server as part of operation invocation. The server maintains a
record of the last sequence number received and will only dispatch an invocation for the next
sequence number; invocations with sequence numbers ahead of the expected one will be buffered.
The process of ordering invocations at the server is called collation. It should also be possible to
specify a maximum time for which the server will wait for the next expected invocation if a future
invocation has been received and buffered. If this timeout is exceeded then a communication error
should be reported.

In order to support a range of different collation algorithms a.pphca.tlons should be able to specify
the use of application supplied collation algorithms or modules.
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9.4.2 Implementing Synchronisation Operations

As mentioned in chapter 8, there is no automatic support for implementing synchronisation oper-
ations within the control component!® of a multimedia application, nor are there any associated
synchronisation primitives. This section presents an outline design for such a scheme.

The requirements for these synchronisation primitives are that they allow the application to wait
for multiple synchronisation operations simultaneously and allow a timeout!! to be associated
with such a wait. In addition, some form of synchronisation ezpression is required for specifying
which operations are to be waited for; for instance a statement of the form “wait for operation
x or (y and z)” should be supported. The points below outline WaitFor and ReturnInvocation
synchronisation primitives to wait for, and return from, synchronisation operations respectively,
and provide the same functionality as that assumed by the pseudocode used in chapter 6.

e cach event and stream synchronisation operation is allocated an area of memory, which has
sufficient room for the following information:

— an indication of the operation using this memory.
— room for the operation’s arguments.
— room for the operation’s results.

— a semaphore which the operation will wait upon for its results to become available in
its memory area.

When invoked, each operation will place its arguments in the memory area provided for it
and then wait on its semaphore before returning.!2

e a pseudo operation is used to represent a timeout and is treated in the same way as any
other synchronisation operation. When the timeout expires this operation is invoked; it has
a single argument, identifying the timeout which has expired. The timer management facility,
“section 7.2.1.2 can be used to implement this.

e a WaitFor statement is provided and waits on a single semaphore which can be signaled by
any synchronisation operation.

o when this semaphore is signaled the implementation of WaitFor must examine all of the
synchronisation operation memory areas to determine which ones have been invoked. Using
this information it must decide if the synchronisation expression has been satisfied. If it has
then WaitFor can return and pass control back to the application, if not then it simply waits
on its semaphore once more.

e the application is now released, to examine the argnments of the invoked synchronisation
operations, to perform any processing it requires and to set values to be returned as results.
The WaitFor statement must return an indication of where these arguments and results are
to be found and set.

e the ReturnInvocation statement simply signals the synchronisation operation’s semaphore
and thus allows it to return.

e STUBC is reéponsible for generating the body of the synchronisation operations and proce-
dures for accessing and setting the arguments and results.

e PREPC implements the WaitFor and ReturnInvocation statements.

10That is, the compionent of an application responsible for recesving synchronisation operation invocations.
11Required to detect communication and synchronisation errors.

12 Announcements need not wait on this semaphore.
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9.4.3 Device Operation and LSF Synchronisation

The wide variety of mechanisms which can potentially be used to transport stream data makes it
impossible to design an automatic scheme for synchronising device operations to LSF boundaries
which can be used in all implementations.

One approach is to use the WaitFor statement described in the previous section and to view the
portion of the device responsible for recognising LSF boundaries as a synchronisation operation
and assign it an area of memory in the same way as these operations. When an LSF boundary is
detected, an indication of which LSF has just been seen will be written into the argument portion
of this memory area and WaitFor’s semaphore signaled. This code will have to be written by hand.
The device operation code may then use WaitFor to wait for such LSF boundaries. Depending on
the style of synchronisation required (i.e. blocking or non-blocking, see section 5.2.4) the device
operation may wait until the LSF boundary is reached before returning, or return immediately
and issue a synchronisation operation when the LSF boundary is reached.

9.4.4 Streamed Invocations

There are some applications which do not need to return any results for many of their invocations;
that is, they use asynchronous invocations, (i.e. announcements). Window systems, and in particu-
lar X11, are examples of such applications. The fact that announcements do not return any results
means that multiple announcements can be buffered and transmitted in a single network packet.
The X11 window system protocol uses this approach to buffer large numbers of small requests
and achieves better performance than that currently possible using synchronous invocations. The
use of LCR’s within the communications system allows such buffering to be implemented across
multiple invocations and to be controlled via the QoS interface. That is, a QoS request can be
used to specify the amount, if any, of buffering required. However, such applications still need to
occasionally synchronise client and server and rely on the use of a synchronisation invocation to
achieve this. That is, a synchronous invocation (interrogation) forces any buffered announcements
to be transmitted immediately and before the interrogation: If the announcement and interroga-
tion use the same encompassing QoS, then they will also use the same communication channel and
hence the required synchronisation is provided by multiplexing all communication over this single
channel. In the more likely event of using a different QoS for announcements and interrogations
then the scheme for multi-channel synchronisation described in section 9.4.1 can be used.

9.4.5 Re-design and Re-implementation of IMAC 3.0

The basic structure of IMAC 3.0 appears sound and provides a strong framework for experimen-
tation with multimedia protocols and resource management policies to support multimedia. In
particular the use of LCR’s to represent QoS resources, channels to represent addressing and
sessions to tie the two together works well.

Work is required to design and implement a more compact representation of QoS for encoding
in interface references. The current interface reference structure is clumsy and verbose, and any
future implementation should improve on this. Any new representation should also provide some
form of type field to allow multiple types and versions of the interface reference structure to be
distinguished and used simultaneously. ‘

The current implementation, both of 3.0 and of the extensions made as part of IMAC 3.0, have
paid little attention to performance. Significant speed improvements could be achieved, simply
by re-implementing the same design whilst paying attention to performance issues. In particular
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greater use of pre-allocated, per-module memory allocation and improved marshalling code would
increase performance. The pre-allocation of resources supported by the LCR. interface is currently
not used; its use, especially for pre-allocating memory buffers would also improve performance.

The User Locator could be extended to support more sophisticated location and access policies. In
particular, the person being located should be able to control whether or not they can be located
and by whom they can be located.

9.5 ANSA and IMAC

The ANSA architecture has proved an excellent basis for IMAC, and no major modifications were
required to support IMAC. As a result, IMAC can be viewed as stylised usage of ANSA to support
multimedia applications. The architectural impact on ANSA has been confined to three areas:

e the extension of interface references to include QoS information in addition to addressing.
e the extension of the conformance relationship to include devices and streams.

e the incorporation of per-operation QoS to control the underlying communication system.

The implementation of ANSA provided by the Testbench required extensive modification to sup-
port the prototype implementation of IMAC. These modifications were concentrated on the removal
of communications assumptions which were invalid in a multimedia environment and on the im-
plementation of QoS. The language based approach taken by ANSA and the Testbench has been
instrumental in the successful implementation of IMAC. Not only does it provide a clean and
powerful interface for the application writer but allows the underlying system to be developed
independently of this interface and therefore of applications. The latter advantage helped reduce
the time taken to implement IMAC 3.0.

9.6 Future Research

This section outlines some broad directions for future research into multimedia communication
systems. More detailed suggestions have been made as part of the requirements for future systems
discussion. These can be categorised as follows:

e resource management policies, especially CPU scheduling, to support multimedia. Promising
areas of research are the use of the LSF structure provided by IMAC streams to specify
application timing requirements and the extension of the cost functions provided by the
prototype implementation to represent a wider variety of resources.

e continuing research into multimedia communication protocols and in particular into the prac-
tical use of QoS.

e multi-cast and multi-drop streams and in particular the detailed connection, QoS, synchro-
nisation and translation management of such multiway streams.

e research into multimedia applications and user interfaces, as discussed in sections 9.3.4

and 9.3.5.
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The contribution of IMAC is to provide an architectural framework for this research, and its proto-
type imiplementation can be used as a starting point for a wide variety of multimedia applications.
This future research can only be carried out as part of a wider and longer-term effort to build
usable and used multimedia applications. Therefore, the next logical step is to use IMAC to build
such multimedia applications and thus extend its evaluation to conditions of practical use.
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Conclusion

The thesis of this dissertation is that an architectural approach is effective at increasing func-
tional integration and that this will reduce the difficulties currently encountered in constructing
multimedia applications.

The survey of background and related research clearly showed that each of the majority of such
projects has concentrated on one very well defined area of multimedia systems, and paid little or
no regard to other system components. This piecemeal approach has led to the lack of functional
integration discussed in the introduction to this dissertation.

The IMAC architecture represents an attempt to pull together the results of this disjointed research
into a coherent architectural framework and thus provide a sound and necessary basis for continued
research into multimedia applications.

A detailed investigation of the problems and requirements for multimedia was conducted and
is presented in chapter 4. The results of this investigation led to the formulation of the new
architectural principles of media separation, choice and evolution, and the already recognised
principle of modularity. These were then used to guide the design of the IMAC architecture.

The principle features of IMAC are the support it provides for the synchronisation of multiple,
related, media streams, for the management of heterogeneity and the expression of media and
application specific requirements. The result is a distributed, open, architecture providing extensive
support for the construction of multimedia applications.

Evaluating an architecture is a difficult and drawn out process. The approach taken in this dis-
sertation has been to construct as complete a prototype implementation as time and resources
allowed and to use it to evaluate the feasibility, and identify the strengths  and weaknesses, of the
architecture. A complete evaluation, and in particular the construction of a suite of usable, and
used, multimedia applications would take a far greater amount of time than that available for this
dissertation.

The results of this evaluation are presented in chapter 9 and show that the architecture isAfeasible,

in that it can be implemented and implemented efficiently. The performance of the prototype
implementation is comparable to that of the Testbench version on which it was based, and also
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preserves the scaling properties of the Testbench. Care had to be taken when implementing com-

plex features such as QoS and the associated QoS negotiation algorithms to preserve performance
and scaling properties. The resulting implementation is therefore well placed to take full advantage
of the performance advantages promised by advances in communications protocols, networks and

resource policies designed to provide the guaranteed, real-time performance required for multime-
dia.

The strengths of the architecture and its implementation lie in the well defined interfaces provided
for stream synchronisation, heterogeneity management and QoS expression. The result is a system
which can be used to implement a wide variety of media and application specific synchronisation
requirements and which can be re-configured to suit the current implementation environment and
available technology.

The weaknesses lie in the lack of attention paid to the design and implementation of resource
management policies to support multimedia applications. However, section 9.3.3 makes require-
ments for future implementations of CPU schedulers. In addition, the potential weaknesses of poor
performance, complexity for the application programmer and non-portable QoS requirements have
been avoided as discussed in sections 9.2.1 and 9.2.2 respectively.

The result is an architecture and prototype implementation of that architecture which are suc-
cessful in increasing functional integration and provide a framework for the implementation of.
all components of a multimedia communication system. In this way, the process of constructing
multimedia applications is made considerably easier.
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ANSA
Summary

This appendix provides a brief summary of the ANSA architecture and of an implementation of
that architecture called the ANSA Testbench. It is by no means exhaustive and only covers aspects
of ANSA which are of direct relevance to this dissertation. A more complete description of the
architecture and the Testbench can be found in the ANSA Reference Manual [ANSA89b] and
the Testbench Implementation Manual respectively.

The material presented in this appendix is largely taken from the ANSA submission to the
Open Software Foundation’s (OSF) Distributed Computing Environment Request for Technology
[ANSAS9c].

Sections A.3 to A.12.3 cover particular aspects of the ANSA architecture and Testbench in greater
detail.

A.1 ANSA Architecture

ANSA consists of five related models called the enterprise, information, computational, ehgineering
and technology models. This dissertation is only concerned with the computational and engineering
models and this summary concentrates on these.

The importance of distinguishing between a distributed computing environment as seen by an
application programmer and as seen by a system programmer is of primary importance to ANSA.
Many environments have an “application programmer’s interface” as the dividing line between
the two views. In practice this interface often turns out to be clumsy and lets too much of the
system detail show through. Moreover, checks must be made at run time to ensure that application
programmers are using the interface correctly. ANSA has taken a programming language view;
that is, distributed computing concepts should be represented by extra syntactic constructs to be
added to existing programming languages. These can then be compiled dlrectly into calls at the
systems level. The advantages of this approach are threefold:
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e a simple programming model for applications programmers.
e checking at compile time rather than run time.

e independence of application programmer view from system view.

The first two increase the confidence that application programmers have in their programs. The
third provides for separate evolution of the two views of the environment, allowing for modifica-
tions to be made to one without unduly disturbing the other and helping to make applications and
systems more “future-proof”. For example, generation of stub routines from an interface specifica-
tion permits error free marshalling/unmarshalling of application data between interacting objects,
and allows the marshalling/unmarshalling operation to be modified independently of the interface
and transparently as far as the application writer is concerned.

A.1.1 Computational Model

The computational model defines the programming structures and program development tools that
should be available to distributed application programmers, in whatever application programming
language they choose to use. ‘

The purpose of the ANSA computational model is to provide a framework for describing the
structure, specification and execution of distributed application programs. Distribution brings
additional constraints and complexity to application programs but also provides the means for
enhancing certain. qualities such as performance and reliability.

The design philosophy for the computational model has been to find the smallest number of con-
cepts needed to describe distributed computations and to propose a declarative formulation of each
concept when the model is realised in a programming language. In comparison to an imperative
approach, this declarative approach provides greater scope for compile-time checking of program
safety, the automatic generation of support code and optimisation of special cases by compilers
and other development tools. These are important attributes of a distributed computing envi-
ronment, since they help to reduce the additional complexity that is brought into the application
programmer’s world.

The computational model is expressed in terms of objects which interact by passing messages.
These objects may be supported by separate processors, thus introducing the possibility of both
concurrency and independent failures. This gives rise to the need to resolve conflicts of access
and failures; this can be done either by careful programming, or by assuming special transparency
mechanisms. Transparency can be selectively controlled to allow the designer to choose whether
to deal with conflicts and failures explicitly or not.

The model distinguishes between interfaces (what an object does) from object construction (how
it does it) so that evolution.of the system can be achieved smoothly - e.g. the removal of failed or
obsolete components and the introduction of repaired or enhanced components.

This model addresses the topics of:

1. modularity of distributed applications.
. 2. naming a,n_d binding of module interfaces.

2
3. access transparent invocation of operations in interfaces.
4

. parameter passing scheme.
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. configuration and location transparency of interfaces.
. concurrency and synchronisation constraints on interfaces
. atomicity constraints on interfaces.

. replication constraints on interfaces.

© 0 =~ O o

. extending existing languages to support distributed computing.

Maximum engiheering flexibility is obtained if all computational requirements of an application
are expressed declaratively. This permits tools to be applied to the specifications to generate code
satisfying the declared requirements.

A.1.1.1 Computational Model Concepts

A distributed system consists of a collection of objects that interact at well-defined interfaces.
Objects are the units of structure, while interfaces are the units of binding.

Objects interact at interfaces; each interface is provided by one object and may be used by one
or more objects. Interfaces are defined in terms of possible interactions. An interaction at an
interface consists of a sequence of requests and responses where the requests are chosen by the
user(s) of the interface and the responses by the provider.

All requests and responses must be part of an invocation. There are two kinds of invocation: those
that consist of a request and a response are called interrogations, while those that consist of only
a request are called announcements. There is no distinction between remote and local invocations.
The notion of “locality” is not part of the computational model, apart from the distinction between
an object’s own interfaces and those of other objects, and variations in the fault models that may
apply to invocations of different interfaces. :

An operation is defined in terms of the way that the response in an interrogation is related both to
the request and to other invocations - those in this particular interaction and also those in other
interactions with the same object. Every invocation permitted at an interface must be in terms of
one of the operations of that interface.

Every invocation of an operation must have the same structure. This rule both depends upon and
allows the construction of a type system for the computational model. This structure describes
how many elements are passed in a request or response and what can be done with them. The
description of this structure is called the signature of the operation.

An operation may not be invoked in both an interrogative and an annunciate style; this may be
considered a special case of the “same structure” rule.

Request structures are very similar to argument structures of function calls in typical programming
languages. All the requests in invocations of an operation contain the operation name and a fixed
number of elements of known types.

The rule for permitted responses to an operation invocation is less conventional; it provides both for
a choice from a defined set of structures and, for each choice, it allows a choice-specific fixed number
of elements of known types. The possible responses to an operation invocation are partitioned
into groups which are called terminations; each termination is given a name. All responses in a
termination have the same structure, the termination name plus a fixed number of elements of
known types. '
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Failure of an object supported by an independent mechanism becomes visible when an operation in
an interface provided by that object is invoked. Responses reporting failure can be added as one or
more standard terminations for every operation. The question of exactly how many terminations
of this kind should be added and what elements (if any) they should carry depends upon the degree
of distribution transparency selected for the interface. '

Closure of the interaction model demands the ability to pass interface references as arguments or
results. The ability to pass more traditional data types (e.g. constants, integers, structures) is
also modeled as passing references to interfaces which contain operations that can be invoked to
read/write the value of the object. Treating these values as interfaces means that the elements that
are passed in requests and responses are all interface references; the interaction model is uniform
and relatively simple. This does not mean that the model must be mechanised in this uniform way.
Moreover, the model becomes one of “information sharing” which is a more general paradigm that
can be extended to include concepts such as bulletin boards, mailboxes and shared memory.

The type of an interface is given by the names and types of the operations in the interface, together
with a definition of how operations influence one another. The operational structure part of an
interface type is defined by a set of (operation name, signature) pairs.

The operational structure part of an operation type is given by the signature. An interrogation
signature is a fixed-length list of interface types together with a response type. An announcement
signature is a fixed-length list of interface types. A response type is a set of (termination name,
list of interface types) pairs.

The computational model also addresses the following topics:

configuration and location constraints on interfaces.
concurrency ‘and synchronisation constraints on interfaces.
. atomicity constraints on interfaces.

. replication constraints on interfaces.

. naming and binding constraints on interfaces.

These constraints on interfaces appear as attributes of interfaces, of operations within interfaces,
in interface specifications. These attributes cause specific engineering model mechanisms to be
incorporated when realising a distributed system which includes a constrained interface.

A.1.2 Engineering Model

The engineering model defines a set of logical compiler and operating system components that
realise the computational model in heterogeneous environments, namely:

[y

. thread and task management.
. address space management.
. inter-address space communication.

. distributed application protocols.

ot > W no

. network protocols.
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. interface locator.

6

7. interface traders.

8. configuration managers.
9

. atomic operation manager.

.10. replicated interface manager.

The engineering model shows the system designer the range of engineering trade-offs available
when providing a mechanism to support a particular function defined in the computational model.
By making different trade-offs the implementor may vary the quality attributes of a system in
terms of its dependability (reliability, availability, performance, security, safety), performance and
scalability without disturbing its function. This is an important feature of the ANSA architecture
since it decouples application design from technology to a significant degree. By conforming to the
computational model, a programmer is given a guarantee that his program will be able to operate
in a variety of different quality environments without modification of the source. The engineering
model gives the system implementor a toolkit for building an environment of the appropriate
quality to the task in hand. In other words, by making this separation it is possible to identify
what forms of transparency are required by a distributed application and to be able to choose the
most appropriate technique for providing the required transparency for each application.

A.1.2.1 Engineering Model Concepts

The computational model requires a virtual machine (VM) which enables interactions between
computational objects. The engineering model describes components from which this VM can
be built in an environment of networked computers. The engineering model explains how to
distribute the VM over a communication network. The VM is broken up into a nucleus object
and transparency mechanism objects; it is also provided with processing and memory resources
and connection to a network. The transparency mechanisms communicate with one another via
the nucleus and the network to achieve the desired transparency. The collection of computational
objects, transparency mechanisms, interpreter and nucleus forming a node of a network is called a
capsule. :

The nucleus is the engineering object which encapsulates all of the heterogeneity of processor and
memory architectures. It provides the functions needed to support concurrency and access trans-
parent interaction between computational objects. The nucleus is defined in terms of conventional
hardware resources: processors, memory, inter-processor message systems and clocks. Different
capsules may consist of different kinds of processors, different kinds of memory and have different
representations for computational objects. ‘

Many systems provide the means to partition resources between address spaces so that each ad-
dress space can be treated as an independent node. This is modeled as the creation’ of -capsules
which transparently share resources with one another. A capsule is mapped to the corresponding
abstraction in the local operating system - e.g. a UNIX process. '

A capsule interpreter consists of one or more virtual processors executing the instructions of the
object and a distinguished processor for synchronising the other processors and interpreting inter-
object interactions (e.g. call, cast, fork, join).

A thread is a sequence of instructions within a computational object that can be evaluated in
parallel with other threads, subject to synchronisation constraints. A thread represents a unit of
potentially concurrent activity. A task is a virtual processor which provides a thread with the
resources it requires. To make progress, a thread must be bound to a task. )
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In a distributed application there may be many threads (e.g. 100’s or 1000’s); it is important
only to allocate resources to a thread when there is a processor available to run it. All capsules
are multi-threaded; a capsule may optionally be multi-tasking. Threads only identify potential
concurrency, while tasks provide the resources for real concurrency.

In addition to the implicit synchronisation among threads caused by references to the instructions
of the interpreter’s distinguished processor, explicit synchronisation among threads occurs when the
threads employ event count objects to achieve mutual exclusion. These operations are generated
from concurrency constraints written in interface specifications. Successful mutual exclusion also
relies upon the use of sequencer objects.

The communications model is based upon remote procedure call (RPC) protocols extended to in-
clude stream-like interactions. A clear separation is maintained between the programming language
aspects of RPC (which feature in the computational model), the service primitives to the RPC
protocol, and the design of the protocol itself. This permits alternative language representations
of RPC and enables the protocol to be operated over widely differing kinds of networks.

An assumption that underpins the engineering model is that bursts of simple interactions will
be more common than sustained bulk data transfer. This means that the end-to-end latency of
interactions is the key factor affecting performance. Consequently communications are closely
integrated with the scheduler so that processors can be assigned quickly to respond to the arrival
of incoming messages, and so that the path between a computational interface and the network
involves as few steps as possible and the least amount of intermediate buffering.

Many communications systems suffer from the problem that they consume excessive local resources
such as buffer space and timers as the number of network connections increases. This presents a
severe scaling problem for computational models that emphasise concurrency where there may be
tens or hundreds of parallel invocations outstanding at a time. The solution to these problems is
to allow the greatest possible multiplexing of interactions over connections and to minimise the
dependency on end-to-end network connections. This is achieved in the ANSA engineering model
by dividing communications into three layers.

At the lowest layer are a number of Message Passing Services (MPS) that manage connection and
disconnection, as well as the transmission and receipt of messages between nodes. All message
passing services conform to the same interface.

Above them are the execution protocols that map computational model invocations onto message
exchanges via the message passing services. All execution protocols have the same interface. Two
execution protocols are currently described: REX (Remote Execution protocol) which is a protocol
for single endpoint to single endpoint communication, and GEX (Group Execution protocol) which
is a protocol for multi-endpoint to multi-endpoint communication.

The coordination between protocols and threads is the responsibility of session objects, which
make up the third layer. A session represents local state about interactions with another object’s
interface. Both the client and the server maintain session information during an interaction and
the function of a protocol, in addition to transporting data, is to maintain session state between
the client and server session objects.

A.1.3 Overall Structure

The way in which the aspects of ANSA fit together is shown in figure A.1. The host systems
represent the computers and networks used to resource the distributed computing environment.
The nucleus components take these basic resources and extend them to provide a basic distributed
computing environment. The nucleus components interwork to provide a basic support platform
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Figure A.1: An ANSA Distributed System

for distributed computing. The transparency components provide the various forms of distribution
transparency as additional functions to those provided by the platform. The engineering model
specifies the mechanisms needed to provide the various kinds of transparency and the protocols for
interaction between nucleus components on different hosts. Application components are structured
according to the computational model and the distributed computing aspects of the application
are compiled into calls on the interfaces to the appropriate transparency and platform components.

The engineering model can also be taken as a template for the implementation of the nucleus,
platform and transparency components, although this is not mandatory for either application
portability across implementations, nor for interworking between them.

It is possible to conceive of multiple implementations of the architecture which make different
engineering trade-offs. To provide interworking between systems that have made different imple-
mentation choices it will be necessary to provide gateway functions, but this will be confined to
simple interface adaptors that match the different engineering trade-offs rather than changes to
the applications themselves.

Many hosts will provide a range of functions and resources beyond those needed by the platform and
may wish to contribute them to the distributed computing environment as potential application
components. This can be achieved by extending the nucleus with additional distributed computing
environment interfaces that map onto the locally available functions.

A.2 ANSA Testbench

The ANSA Testbench is a suite of C programs that conform to the architecture described in
section A.l. These programs represent an instantiation of parts of the architecture intended for
porting across the current generation of operating systems and network protocols.

The software includes the following modules

1. a threads management package.
2. an address space management package.

3. an inter-address space communications package (the “interpreter”).
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remote execution protocol (REX).

a group execution protocol (GEX).

an interface description language' (IDL).
an IDL i)rocessor.

an application description language (PREPC).

© ® NS & e

a PREPC preprocessor for C.
10. a trader.
11. a factory.

12. a node manager.

The function of the threads management package is to provide for concurrency within an address
space, if it is not provided by the host. Concurrency is needed a) so that servers can respond to
multiple clients in parallel and b) so that clients can distribute computation in time (i.e. perform
parallel tasks) as well as space (i.e. perform remote tasks), or both (run remote tasks in parallel).

The function of the address space management package is to complement the threads package with
facilities for managing multiple stacks, communications buffers and a shared heap within a single
address space. Multiple stacks are needed to be able to support true concurrency.

The function of the interpreter is to provide an implementation-independent standard interface for
interactions between threads in separate address spaces.

The REX protocol provides for the transport of messages to implement the communications re-
quirements of the inter-address space communications package. It provides functions of transport,
error recovery, fragmentation of large messages and control of optional end-to-end connections.

IDL is used to describe interfaces between application components. It is derived from the Courier
language developed by Xerox.

The IDL processor reads interface descriptions and generates libraries of stub procedures in C
to convert the arguments and results of remote operation requests into a canonical format for
transmission between heterogeneous systems. '

The PREPC preprocessor for C extracts statements that augment a C program to bind to interfaces
and invoke remote operations and translates these statements into calls of the appropriate stub
procedures and inter-address space communication package calls.

The trader is a distributed application component which acts as a directory and management
facility for distributed application components.

The factory provides a host-independent interface for the creation and destruction of new services.

The node manager provides a host-independent way of managing application components, partic-
ularly servers, on a per-host basis.

A.3 Trading

In a distributed environment it is necessary to provide a means by which the separate pai‘ts of a
distributed application can rendezvous. This is called trading in ANSA and is an interface provided
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to every object. Trading gives access to a directory structure that can be searched by path name,
or by property values, or by some combination of both. A server can export an interface reference
to the trading service to make it accessible to other programs. An import operation is provided to
clients so that they can retrieve interfaces from the trader.

The trader performs type matching of imports and exports. This is done by maintaining a type
name space in the trading system. The name space is an acyclic graph showing the conformance
relationship between types. The trader provides operations for programs to add and retrieve types
by name from the type graph. Imports and exports are typed: trading operations are parametised
by types and the trading service will only search through exports of the required type and its
conforming types when trying to match on path and properties.

The import operation returns an interface reference to the client. These references are unambiguous
in a trading domain (a trading system can be structured as a federation of autonomous trading
domains, managed by separate trading authorities, and a domain can be partitioned into a hierarchy
of sub-domains). The importer can retain the reference for as long as required. If the distributed
computing environment has location transparency enabled, the system will be searched to find
the object. If location transparency is not enabled, an address hint in the interface reference is
assumed to be absolute.

On export the interface provider may specify a list of (name, value) pairs, called properties, for
that reference. Values may be textual strings, sets of textual strings or numbers. Import requests
include a constraint expression to be applied to the property list of any offers found matching the
specified type in the specified context. Constraint expressions may include tests for equality and
inequality of string values, set membership and numeric comparison. Boolean connectives may be
used to link sub-expressions, whilst minimum and maximum operators are provided for numeric
expressions.

A.4 Configuration

There are two styles of distributed application programming. In the first the application is treated
as a single large program. The program may be divided up into separately compiled components
for reasons of efficiency and modularity. The program, once compiled, is then loaded into an
appropriate configuration of computers and allowed to execute. In the second style, an application
is treated as a number of separate programs which are independently compiled and loaded into
individual computers. Programmers who work in this style often refer to “server” programs and
“client” programs to indicate whether a program expects to be invoked by others, or whether it is
responsible for invoking others. This second style is dependent upon some form of system directory
(i.e. a trader) that enables servers to register their presence in the network and for clients to locate
servers. In some systems the directory is itself a server, in others it is decentralised and broadcast
algorithms are used to locate servers. '

The distinction between these two styles is one of early versus late binding.

The first program style is potentially more flexible than the second, since the programmer can
change the configuration arbitrarily by altering the assignment of components to computers. How-
ever, this style does not permit an application to be developed in which some components are
developed independently of the others. This requirement is inevitable in an open systems context,
because it is unlikely two organizations will be willing to lock together their programming envi-
ronments in order to interwork over a network! On the other hand the second style tends to lead
to a rather rigid assignment of components to computers, since externally visible names have to
be invented and this can be inconvenient if the system supporting the application is restructured.
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It can be concluded that both styles are appropriate in different circumstances, and the ANSA
computational model provides for both.

The ANSA Testbench predominantly supports the client/server style of configuration, although
an application programmer does have access to the facilities required to provide the distributed
program style for himself.

A.5 Interfaces

The components of a distributed program may be written in different languages by different pro-
grammers in different places at different times. In order for a component to be constructed indepen-
dently of another component with which it is to interact, a precise specification of the interactions
between them is necessary.

This interface specification can be used to generate the interaction code as well as to independently
check that one component is correctly interacting with another. Later on, when the program is
finally assembled a check can be made that each pair of interacting components is using the same
interface specification.

An interface specification requires an action specification, a data specification and a property
specification. The action specification defines what are the actions that one program component
may request another to perform. The data specification defines what types of data may be passed
with each action request and reply. The property specification, expressed as a series of attributes,
defines what transparencies and constraints are to be associated with each action, or the whole
interface.

In general, an interaction specification may be bi-directional and specify what actions each of
a pair of program components could request the other to perform. For simplicity, the ANSA
computational model only contains uni-directional interface specifications which directly support
the client/server style of interaction. A bi-directional interaction can easily be specified as a
composition of two uni-directional interface specifications in opposite directions.

A program component acting as.a client may request a number of other components to perform
actions and thus needs a different interface with each of them. Equally, a program component
acting as a server may perform actions requested by a number of client components. There is
no reason to restrict a server to provide the interfaces with the same specification to each of its
clients. Allowing a server to provide multiple interfaces with distinct specifications enables the
computational projection to directly model the different roles of the enterprise model, especially
with regard to access control. Multiple interfaces also enable knowledge of other components to be
more tightly scoped. This conforms to the need to know principle required for program evolution
and component re-use and is an important feature of the ANSA computational model.

The ANSA Testbench includes an interface definition language (IDL) for action and data specifi-
cation. Support for attributes has yet to be implemented.

A.6 Operations

. The action part of an interface specification could be functional or procedural. Distributed pro-

grams have separate and concurrent components which need to communicate in order to interact.
Because it is hard to express communication in the functional style, actions are most naturally
expressed as procedures in distributed programs and this approach is adopted for the ANSA com-
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putational model.

In most programming languages procedures can have multiple arguments. Only a few programming
languages permit procedures to return multiple results. Single results are asymmetrical and re-
strictive, especially in a distributed system where computational level interactions must be turned
into message passing at some lower level with performance more dependent on message latency
than message size. Consequently the ANSA computational model assumes multiple results.

Actions defined as procedures with multiple arguments and results provide the protocol part of
interface specifications and are known as operations. The data specification requirement is provided
by the definition of the argument and result types.

In the ANSA computational model, properties, such as transparency or synchronisation constraints,
are specified declaratively for each operation or the whole interface specification and automatically
inserted by the invocation mechanism.

The Testbench IDL provides for multiple arguments and results of various canonical concrete data
types and composite types; a more general interface reference type can be used to convey abstract
data types.

A.7 Invocations

Operations can only be invoked via their enclosing interface. Because the program component
providing the interface may be remote an operation invocation must be via an interface reference
in order to preserve access transparency.

The results of an operation are normally required before the client can proceed. In a distributed and
therefore concurrent system this is achieved by blocking the client until the server has performed the
operation and delivered the results. Thus the client and server are synchronised by the invocation.
The local optimisation of a synchronous operation is the procedure call.

Where the client does not require an operation to deliver any results, the synchronous invocation
suffers from latency and a reduction of concurrency in distributed systems. Asynchronous opera-
tions remove the latency and preserve the concurrency when immediate results are not required.
The engineering level can make further optimisations by concatenating messages. Some systems
describe such invocations as being “streamed”.

There is no confirmation that asynchronous operatlons have terminated or even started, but if they
are serialised with synchronous operations in the same interface then the result of a synchronous
operation can indicate which of the preceding asynchronous operations failed. Thus a synchronous
operation can be used to re-synchronise a client and server after a stream of asynchronous opera-
tions has transferred data at full speed (i.e. with no latency and a concurrent client and server).
This kind of synchronisation must be explicit in the specification of the interface and therefore a
conformance requirement for an implementation.

Distributed computing systems have unpredictable delays and partial failures, which may be silent.
A client requires some way of indica,ting the urgency with which it requires a server to perform an
operation and whether or not it is to keep trying forever or give up at some point so that corrective
action can be taken.

Time is the only universal means of measuring urgency. Therefore a deadline may be required
by each operation. Soft deadlines only affect the scheduling of an operation. Hard deadlines also
prematurely terminate an operation when the deadline is reached.
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The ANSA computational model provides for synchronous operations, asynchronous operations,
streaming and deadlines.

The ANSA Testbench does not yet provide support for deadlines.

A.8 Terminations

There is not necessarily a “right answer” for every operation. An often used example is the popping
of an empty stack, say of integers. A pop operation on a stack of integers normally returns an
integer but if the stack is empty there is no integer that can be returned. The pop operation needs
to return some other response that is distinguishable from the Tesponses that indicate mtegers 50
that different actions can be taken.

Operations therefore require multiple responses (each of which may consist of multiple results).
In the ANSA computational model, these responses are distinguished by name and known as
terminations. Mechanisms are required for raising these terminations from within an operation
and for changing the sequence of actions taken after an invocation of an operation depending on
the termination it returns.

In any operation invocation one termination will cause no changes to the sequence of following
actions.  This termination is distinguished by not having a name and may be thought of as the
“pormal” response of the operation.

This termination mechanism can also be used by the engineering support environment for reporting
engineering or transparency failures to the invoker of an operation.

The ANSA Testbench includes a limited form of the termination features defined in the computa-
tional model. : : ‘

A.9 Objects

It is very hard in a networked system to achieve a workable, let alone efficient, implementation
of global distributed storage. It is therefore necessary to look for a programming model which
partitions and encapsulates state in order to describe the components of a distributed program..
Such a model is common to the object-oriented programming languages such as Emerald and Ar-
gus. In these languages each object provides a set of operations by which it can be manipulated.

Externally these operations are known by their names. The binding of operation names to com-

putations that perform operations is an internal property of each object. Thus it is possible for

different objects to respond to the same operation names, but to have different implementations
of those operations. '

This indirection from operation name to implementation has useful properties for distributed com-
putations. Firstly it allows for heterogenelty two interacting objects need not share the same

‘infrastructure; they merely require communication between their infrastructures. Secondly the in-

direction provides a point to transparently insert the mechanisms that provide for communications.
Thirdly the indirection makes it possible to substitute replacement objects without requiring any
actions by the users of the object’s operations. This has important benefits for software maintain-

- ability and evolution.

. The ANSA (obgect-onented) computational model is specialised for distribution by packaging sets

of operations into interfaces to restrict the scope of operation names as tightly as possible and by
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always accessing interfaces indirectly so as to preserve location transparency.

All data is stored in objects and accessed indirectly via interfaces. Thus the ANSA computational
model only deals with interface references. It makes no statements about how values are repre-
sented. The obvious optimisations can be made when invoking references to the interfaces of local
(co-located) objects, especially trivial ones such as integers and booleans, but such optimisations
are definitely not part of the computational model and are an issue for the mechanisation of the
model which is considered in the engineering model.

A.10 Type Checking

Because the component parts of distributed applications programs are separated in both space
and time, extra care needs to be taken when composing them into a whole for final evaluation.
The computational model concentrates on those checks designed: to ensure that the assumptions
made by the programmers in different places and at different times are still valid. These checks are
generally known as type checks and will validate such things as the use of operators, types of data
items, ranges of data items, representations of data, matching of operations used and provided,
and allowed ordering of operations.

In addition to type checks, the computational model is also concerned with checking that compo-
nents of an application that interact with each other have compatible transparencies. Other checks
such as access controls and consistency constraints are passed through the computational model
from information models for the system in question.

Checks can be performed in various epochs but steps must be taken to ensure that early checks
are still valid during the final evaluation epoch.

In the ANSA computational model, interfaces are typed. An interface type describes both the
operations in the interface and the properties of those operations in terms of transparency and
security attributes.

In the ANSA Testbench some type checking is performed by the IDL and PREPC processors; the
remaining type checking is deferred to the application programming language.

A.10.1 - Type Conformance

An interface type defines the requests and responses permitted in an interaction where a client
uses an interface of that type.

An interface type is defined by a set of signatures.

A signature specifies:

the name of an operation.
e the number and interface types of argument parameters.

whether the operation is an interrogation or an announcement.

in the case of an interrogation,.the response type for that operation.,

A response type defines the set of permitted responses for an interrogation. A response type is
defined by a set of terminations.
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A termination specifies:

e the termination name.

o the number and interface types of result parameters.

Interface type X conforms to interface type Y if no interaction errors can arise from the use of an
interface of type X as if it were of type Y.

An interaction error occurs:

e when a server receives a request which is not in the set of requests defined by the type of the

interface provided by the server.

e when a client, having invoked an interrogation, receives a response which is not in the set of

responses defined by the response type for that interrogation.

e when a client, having invoked an interrogation, receives no response.

e when a client, having invoked an announcement, receives a response.

For intetface types that are not defined recursively, the conformance relation can be described in
terms of signatures and response types as follows:

An interface type X conforms to an interface type Y if:

. for every signature in Y there is a signature in X which defines an operation of the same

name.

-for each signature in Y the signature in X with the same operation name defines an operation

with the same number of arguments.

each interface type in each Y signature conforms to the interface type in the same position
in the corresponding X signature.

for every signature in Y which defines an announcement the signature in X with the same
operation name defines an announcement.

for every signature in Y which defines an interrogation the signature in X with the same
operation name defines an interrogation with a response type which conforms to the response
type in the Y signature.

A response type X conforms to a response type Y if, for every termination in X:

. there is a termination with that name in Y.

. for each termination in X the termination in Y with the same name has the same number of

parameters.

. each interface type in each X termination conforms to the interface type in the same position

in the corresponding Y termination.

These rules do not cover the cases where a type refers to itself as the type of an argument or resuit.
In such cases, following these rules leads to situations where a type X conforms to a type Y if X
conforms to Y. A more detailed definition of conformance, which can handle such recursive types,
can be found in the ANSA Computation Model [ANSA90a].
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A.11 Factory

‘Factories are the objects in a distributed system which facilitate the dynamic creation of other

objects. A mapping from object factories to the facilities provided by the engineering model must
be found in order to realise an ANSA system.

A.11.1 Computational Model Considerations

Object factories are implicit in the computational model. The computational model must define
some means of delineating object boundaries in order to permit state to be encapsulated. Upon
encountering one of these object boundaries, interaction with an object factory of the correct object
type will occur, resulting in a new object instance. Attributes associated with the object-defining
syntax may affect how the object is instantiated.

The arguments and results to an object instantiation depend upon the object type; as a result,
there is a separate factory for each object type. The results from a successful object instantiation
is a list of interface references which may subsequently be invoked by the creator or other objects.

A.11.2 Engineering Model Considerations

Capsules are engineering model concepts; they act as carriers of objects. Since one object may
wish to create another, each capsule which supports objects of a particular type must provide the
ability to cause another instance of that object type to come into existence. Likewise, it must
support the ability to terminate an object instance.

The support environment for a distributed system must provide the following basic facilities:

e the creation/destruction of capsules
e the creation/destruction of objects within a capsule

e the creation/destruction of interfaces within an object

When an object is instantiated, it is expected that an initial sequence of instructions are executed;
this initial sequence may cause interfaces to be instantiated and some initial interaction with other
objects in the system (e.g. traders, authentication servers, time servers). The pseudo-computational
statement: 4

create instance of Foo;

should cause the following things to happen:

1. check for the existence of a capsule which supports objects of type Foo; if not found, instan-
tiate one using the capsule factory ' '

2. instantiate an object in that capsule, returning the list of interface references generated by
the Instantiate operation

A capsule factory permits the instantiation and termination of managed capsules - i.e. those that
permit object instantiation/termination.
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A.12 Node Manager

The node manager provides an architectural interface for the creation, simple monitoring and
destruction of ANSA services on a single node.. Both static and dynamic services may be created;
static services may be declared as persistent in which case they will be automatically restarted if
‘they terminate. The node manager makes use of the proxy export facility provided by the trading
service to provide dynamic services; it uses the factory service to create service instances, and the
notification service is used to inform the node manager of the termination of any services previously
created by the node manager.

The functions provided by the node manager can be split into three principal components; namely
a database for describing services, the creation of services and the creation of dynamic services via
the trader proxy export facility. Once a service has been created it is referred to as an activation.

A.12.1 Service Database

In order to create services it is first necessary to provide a means for describing such services; the
node manager implements a persistent database for such descriptions. Each service description
is identified by an alias string and each alias is unique within an individual node manager. Each
service description consists of the following information: :

e alias string uniquely identifying this service description
e maximum number of activations allowed for this alias
e trader interface name

e trader context name

e trader properties string

e template string

e arguments string

e environment string

In order to provide simple resource management the Node Manager allows the specification of a
maximum number of activations for each alias. This limits the number of service objects which can
be created for each alias and therefore also places an upper bound on the number of capsules which
can be created. The section on Activation management below describes how this parameter may
be used and also explains the policies applied by the Node Manager when the maximum number
of activations is reached. '

The trader interface, context and property strings are used to describe the service within the
trading system. The template, argument and environment strings are passed to the factory service
and contain sufficient information to create an instance of the service. The template string is the
name of an executable file, the argument string represents the command line arguments to this
executable and the environment is a sequence of variable assignments which can be accessed using
the getenv() C library function.

Operations are provided for installing new descriptions and for deleting existing ones. The node
manager will refuse to delete an alias if any activations of the service are still in existence. In
-order to avoid the race between removing an alias, and the creation of any new activations which
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could cause such a removal to fail, it is possible to inhibit any further activations of the alias to be
removed using the mask operation.

No operation is provided to modify an existing description since this can be easily implemented
outside of the node manager by removing and reinstalling the description to be changed.

Operations are provided to list all of the installed aliases and for displaying the full description for
a given alias. A complete listing of all of the service descriptions maintained by the node manager
can be obtained by first requesting the list of installed aliases and then for each alias in the list
requesting the full service description.

Finally all updates to the service description database are logged to stable storage as they are
executed and read back from stable storage whenever the node manager is executed. In this
way the database persists across successive invocations of the node manager and also across node
crashes.

A.12.2 Activation Management

Each active instance of a service is called an activation; activations may be created by invoking
the node manager’s run operation which creates a new instance of a service given its alias name.
Such activations may be designated as being persistent, in which case the node manager will
automatically restart them should they terminate.

Activations may be destroyed by the kill operation; note that kill will terminate both persistent as
well as non-persistent services. Given that an alias may have multiple activations it is necessary
to provide a means of identifying a specific activation from the list of all activations for that alias.
Therefore each activation is assigned an activation identifier which is unique within the context
of that activation’s alias; i.e. any activation can be uniquely identified by an alias name and
an activation identifier. The kill operation therefore requires both an alias name and activation
identifier as arguments.

- When the maximum number of activations is reached, the Node Manager applies one of two policies
depending on whether the activation request originates from a run operation or a trader lookup on
a proxy export. In the first case, the Node Manager simply refuses to create any new activations
and returns an appropriate error code from the run invocation. In the case of the trader lookup,
the interface reference from an existing activation is used to satisfy the request; a round-robin
policy is used to decide which activation’s interface reference to return. It is possible to bypass
this resource management by specifying the maximum number of activations to be zero, in which
case no upper bound is place on the number of activations.

Operations are provided for listing all of the aliases which have at least one activation and for
listing all of the activations associated with a particular alias. Again it is left to a client program
to obtain the list of active aliases and then to obtain the list of activations for each alias in turn in
order to display all of the activations currently in existence. The use of separate operations does
introduce a race condition, however the effects of the race condition are not sufficiently harmful to
warrant the complexity required to overcome them.

Creating an activation involves interacting with the factory service to instantiate a capsule and
then interacting with the capsule to instantiate an object. The result of an object instantiation
is an Object Identifier and a sequence of Interface References representing the service provided.
Because a capsule may be capable of instantiating multiple types of objects the first argument in
the argument string is conventionally used to denote the type of the object required. The current
implementation of the Node Manager imposes a one-to-one mapping of objects to capsules, i.e. it
will always create a new capsule when creating a new activation.
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. A.12.3l Proxy Export and Dynamic 'Services

The node manager makes use of the trading service’s proxy export facility to provide dynamic
service creation. Operations are provided to post proxy exports for a glven alias and to remove
* a previously posted proxy export. Once posted, the node manager will receive any trader lookup
operations for the service identified by the alias, and on receipt of such lookup requests 1t will
either create a new activation or return an e)astmg one as follows:

e if the maximum number of activations has been reached then cycle through all existing
activations in a round-robin fashion.

e if the maximum number of activations has not been reached, or an unbounded number of
activations has been specified, (i.e. a maximum of zero), then create a new activation.

In both cases the result of the lookup request is an interface reference which can be used to invoke
the service instance created. As mentioned above the result of instantiating an object is a sequence
of interface references, however the lookup request only returns a single interface reference, therefore
a convention is used whereby the first interface reference in the sequence returned by an object
instantiation is the one which can be returned by the lookup request and. subsequently used for
interacting with the service.

Activations created by the proxy export mechanism are treated in an identical fashion to those
created directly using the node manger run operation. All activations may be listed and killed in
the same way. Objects created dynamically w1ll terminate of their own accord if they are idle for
longer than some period of time. :



Trader
Constraint
Language

The Trader constraint language consists of the following items:

e superlative functions: min, max

e comparative functions: ==,! =,>,>=,<,<=,in
e constructors: and, or, not, — (is restricted by)

e property names -
e numeric and string constants

e mathematical operators: +,—, *, /

e grouping operators: (,),[,]
The following precedence relations hold in the absence of parentheses, in the order lowest to highest:

e 4 and -
e *and /
e or

and

e not
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The comparative operator in checks for the inclusion of a particular string constant in the list
which is the value of a property. The is restricted-by constructor (—) permits the client to specify
that a superlative function should be applied to the set of instances which match the preceding
portion of the constraint expression.

As a simple example consider the following:

1. The following QoS offers are made:

o “Name TCP Rate 100™
e “Name TCP Rate 1000”
e “Name UDP” '

2. The constraint expression “Name == TCP” would return:

° “N;dme TCP Rate 100”
e “Name TCP Rate 1000”

3. Alternatively “Name == TCP and — max [ Rate ]” would return:

e Name TCP Rate 1000

The full BNF for the constraint language follows:

<program> = <empty>
| <expr>
| <expr> -> <superlative>
| => <superlative>
<empty> =
<expr> 1= <expr> or <expr>
| <expr> and <expr>
| not <expr>
| ( <expr> )
| <nexpr> in <nexpr>
| <nexpr> == <nexpr>
| <nexpr> != <nexpr>
| <nexpr> < <nexpr>
| <nexpr> <= <nexpr>
| <nexpr> > <nexpr>
| <nexpr> >= <nexpr>
<superlative> := min [ <nexpr> ]
| max [ <nexpr ]
<nexpr> = <term>
| <nexpr> + <term>
| <nexpr> ~ <term>
<term> <factor>

| <term> * <faétor>
| <term> / <factor>
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<factor>

<identifier>

<letter>

<characters>

<character>

<digit>

<constant>

<floatnumber> :

<string>

<mantissa>

<exponent>

<sign>

<digits>

<chars>

<char>

<other>
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<constant>
( <nexpr> )
- <factor>

<letter><characters>
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