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Abstract

A process is proposed for refining specifications of abstract data types
into efficient sequential implementations. The process needs little manual
intervention. It is split into three stages, not all of which need always be
carried out. The three stages entail interpreting equalities as behavioural
equivalences, converting functions into procedures, and replacing axioms by
programs. The stages can be performed as automatic transformations which
are certain to produce results that meet the specifications, provided that sim-
ple conditions hold. These conditions describe the adequacy of the specifica-
tions, the freedom from interference between the procedures, and the mode of
construction of the procedures. Sufficient versions of these conditions can be
checked automatically. Varying the conditions could produce implementa-
‘tions for different classes of specification. Though the transformations could
be automated, the intermediate results, in styles of specification which cover
both functions and procedures, have interest in their own right and may be
particularly appropriate to ob ject-oriented design.

*This work was partly supported by a Royal Society / SERC Industrial Fellowship held on
leave at the Cambridge University Computer Laboratory. An earlier version of this paper was
presented at the Fourth BCS - FACS Refinement Workshop, 1991.



1 Introduction

1.1 Scope

Most work on specifying data types abstractly emphasises applicative constructs,
without any notion of store. Most work on implementing software emphasises im-
perative constructs; for instance, informal structured analysis and design methods
use data stores instead of parameters, and programming methods use object
classes instead of abstract data types. There are both cultural and technical
reasons for this difference of emphasis: applicative constructs are regarded by
their supporters as being easier to understand and to manipulate formally, whilst
imperative constructs are regarded by their supporters as being easier to write
and to execute efficiently. Indeed, to people accustomed to data stores and object
classes, the benefits offered by applicative constructs are rarely self-evident. The
work in this paper explores ways of reducing this difference between theory and
practice. The ways involve providing imperative specifications of software, re-
lating applicative and imperative specifications, and converting specifications into
implementations systematically; here an ‘applicative specification’ is one which
specifies applicative functions, whilst an ‘imperative specification’ is one which
specifies imperative procedures.

This work contributes to the assembly of techniques for developing specifications
by stages into implementations that guarantee correctness by construction. The
implementations are adequately efficient for conventional computers and readily
expressible in commonplace programming languages, such as C and C++. They
could nonetheless be generated automatically for a very wide range of specifica-
tions. The stages of development are distinguished from one another partly so
that alternative implementations may be devised if necessary and partly so that
the corresponding stages of maintenance, which in practice often involve moving
from implementations to specifications, may be understood more fully.

This work also assists with the validation of specifications, by identifying condi-
tions which specifications must meet in order to be acceptable for abstract data
types. These conditions could be checked automatically.

In this paper the techniques discussed allow equalities to be interpreted as equiv-
alences of observable behaviour, applicative functions to be converted into imper-
ative procedures, and axioms to be replaced by programs using assignable store.
Each of these three techniques requires that specifications be validated against
some associated conditions. These conditions ensure that the functions in ap-
plicative specifications are adequately defined (and, in particular, are sufficiently
complete), that the procedures in imperative specifications do not interfere with
one another, and that the functions or procedures are constructed in certain
ways. The first and second of these conditions could reasonably be imposed on



finished specifications of all abstract data types. The third is specific to a par-
ticular technique for replacing axioms by programs and to a particular class of
abstract data types; other techniques and classes are also important and should
be considered. (In fact rather few techniques and classes require consideration:
many useful abstract data types can be collected and organised simply, by rely-
ing on the ways in which their members are constructed and observed, and these
ways need to differ only in very constrained manners.)

The emphasis in the paper is on sequential implementations which copy data
structures. It can be extended to cover sequential implementations which share
data structures. Some work has been done on handling concurrent implementa-
tions in a similar manner [12], but more needs to be done to provide techniques
for such implementations which satisfy enough compositionality conditions.

In order to convey the ideas, the presentation in this paper is fairly informal; the
formal definitions, assumptions, and proofs should appear elsewhere.

1.2 Structure

As motivation, in §2 there is a simple application of the techniques, an argument
for the correctness of the application, a discussion of the limitations of the ap-
plication, and an outline of how the techniques are generalised to circumvent the
limitations. The notation used by the imperative specifications is explained in
§3; it is very closely related to that for the RAISE specification language. The
concepts used for the applicative specifications are discussed in §4, but some of
them are not used until much later in the paper. The separate stages of the gen-
eral techniques are described in some detail in §5, §6 and §7; they are illustrated
using modest extensions of the simple example, but the stages have been tested
on several realistic abstract data types. For ease of reference, the specifications
considered are collected together, in §8.

2 Motivation

2.1 Survey

The techniques considered in this paper permit applicative specifications to be
transformed into imperative implementations. To demonstrate the techniques in
their simplest forms the obvious example (of lists or stacks) is discussed in 2.2.
An argument for the correctness of the techniques in this case is sketched in 2.3.
The reasons why the simplest forms cannot be generalised immediately are given
in 2.4. The appropriately general techniques are outlined in 2.5.



2.2 A simple illustration

In 8.1 there is an applicative specification of ‘List’ which largely takes a familiar
form. The axioms in it consist of equations and an induction rule. The equations
are actually unconditional, in that they hold irrespective of any pre-conditions; in
other specifications the equations may need to be conditional. The induction rule
quantifies over predicates, which are treated as functions having result type Bool
(as is usual in systems based on higher order logic). (Many languages provide
short ways of writing induction rules, but in this paper the long way exhibited in
8.1 is adopted, in order to expose the concepts more clearly.) In the specification
in 8.1 (and in every other specification in this paper) ‘Element’ is taken to be
a type which is given in advance; it might be Bool or Int, for instance. The
general forms of types and specifications are analysed in 4.1 and 4.3.

An intuitive conversion of this applicative specification into an imperative speci-
fication is given in 8.2, using notation which is explained in 3.1, 3.2, 3.3 and 3.4.
(Again the notation is not shortened, in order to expose the concepts.) Among the
axioms are ones asserting that ‘empty ( )’ and ‘add ( e )’ are always ‘determinis-
tically convergent’ in the sense discussed in 3.4. The presence of these particular
axioms is justified informally because the types of ‘empty’ and ‘add’ convey less
information in 8.2 than in 8.1 and formally because such axioms are needed for
the argument in 2.3.

Before the imperative procedures can be compared directly with the applicative
functions their names must be changed to avoid clashes. A specification which
changes the names is provided by 8.3. It has the same properties as the speci-
fication in 8.2, except that it uses the names ‘empty.’, ‘add.’, ‘head_’, ‘tail_’ and
‘is.empty_’ instead of ‘empty’, ‘add’, ‘head’, ‘tail’ and ‘is_empty’.

The imperative specification in 8.2 does not mention the type ‘List’ and is not
immediately susceptible to being proved correct using abstraction functions [7]
or simulation relations [13]. To establish that it is correct, versions of ‘List’ and
the applicative functions acting on lists are defined in terms of the imperative
procedures by extending the specification in 8.3 without giving the procedures
new properties. The relevant definitions are given in 8.4. These definitions are
examined at some length in 2.3, which sketches an argument that they have
the properties laid down in 8.1. This argument relies heavily on the notation
explained in 3.1, 3.2, 3.3 and 3.4. It demonstrates that the specification in 8.4
is a ‘refinement’ of that in 8.1, in the sense discussed in 4.2; this particular
refinement effectively uses an abstraction function which is the identity.

It is straightforward to implement the procedures specified in 8.2 by defining
them fully. This is done in the specification in 8.5, on the assumption that the
implementation language provides variables capable of holding finite lists. The
procedures in 8.5 evidently have the properties laid down in 8.2, so they can be
interpreted as in 8.4 to provide functions having the properties laid down in 8.1.
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2.3 The correctness of the illustration

In 8.4 the members of ‘List’ are taken to be procedures; the application of one of
these procedures terminates with a store which embodies the fact that ‘add_’ has
been applied some number of times since the most recent application of ‘empty.’.
Consequently,

A () ¢ empty- ()
must be such a procedure, and if ‘I’ is such a procedure then
A()1();add(e)

(which signifies what happens when an application of ‘I’ is followed by one of
‘add_’) must also be such a procedure. However, not every member of the type

Unit = write any Unit

can be a member of ‘List’: to be so, it must represent a sequence of applications of
‘empty_’ and ‘add.’. There is therefore a representation invariant which restricts
attention to the subtype of

Unit — write any Unit

comprising members of ‘List’. This representation invariant is provided by the
predicate ‘is list’. It could be defined by primitive recursion; however, in practice
it is more convenient to ignore ‘is list’ and use instead an induction rule to describe
all the possible members of ‘List’, as in 8.4. This induction rule is in fact that
provided in 8.1, but relies on the definitions

empty = A () * empty- ()

and
add(e,l)=A()1();add.(e)

Here ‘add’ is defined to be a function which, when applied to an element and
a procedure representing a list, returns a procedure representing a list. It is
therefore a higher order function.

Similarly ‘tail’ is defined to be a function which, when applied to a procedure
representing a list, returns a procedure representing a list. It satisfies

tail (1) =X ()+1(); tail-()

When it is applied to non-empty lists, ‘tail’ cannot construct any lists that cannot
already be constructed using ‘empty’ and ‘add’, owing to the assertion

O(add-(e);tail- () =())

inherited by the specification in 8.4 from the specification in 8.3 which changes the
names of the procedures in 8.2. This assertion ensures that given the functions
in 8.4, for every element ‘e’ and for every list ‘I’,
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tail (add (e ,1l) ) =
(A()+add(e,1)();tail-())=
(A()e1();add-(e)();tail-())=
(A()10);0)) =

gf\()‘l())=

However, ‘head’ is applied to lists but does not return lists. In effect it must
execute a procedure representing a list and then execute ‘head_’ in order to extract
information from the store. The information extracted should depend only on the
list; in other words, it should depend only on the effect of executing, in any store,
the procedure representing the list. Consequently ‘head’ should satisfy

head (1) =1lete: Element «+ QO (e=result (1(); head_()) ) ineend

It is not immediately obvious that this assertion is appropriate, because it is not
immediately apparent that

result (1();head_())

represents the element at the head of the list independently of the store. Indeed, .
if ‘I’ is ‘empty’ then nothing in the axioms of 8.2 ensures that this is so; also, if
the execution of ‘1 ( )’ did not terminate then

result (1(); head_())

could be defined arbitrarily. However, there is no need for ‘head ( 1 )’ to be useful
for every ‘I’; all that is necessary is that it be useful for non-empty lists. In
fact induction demonstrates that ‘1 ( )’ is always deterministically convergent for
every list ‘', because the specification in 8.4 inherits the assertions

O definite empty. ( )
and

O definite add_(e)

from the specification in 8.3. Furthermore, as ‘1 ( )’ is deterministically conver-
gent, the inherited assertion

O(add-(e);head_()=add-(e);e)
for every element ‘e’ guarantees that

head (add (e ,l) ) =

result (add (e,1)();head-()) =
result (1();add-(e);head_()) =
result (1();add-(e);e) =
result e =

The connection between ‘Is.empty’ and ‘is_empty.’ is similar to that between
‘head’ and ‘head.’.



2.4 The limitations of the illustration

The transformation of an applicative specification of lists into an imperative one
illustrated in 2.2 appears simple. However, it cannot instantly be formalised in
a way which covers types other than lists as specified in 8.1. The reason for this
is that these lists are subject to various limitations and treating them offers no
hints about how to deal with the following problems.

Equalities satisfied only as behavioural equivalences
The proof that
tail (add (e,1)) =1
for the specification in 8.4 depends crucially on the assertion
O (add-(e);tail . ()=())
However, this assertion may be invalid: in an implementation an application
of ‘add.’ may modify the store in a way which is not reversed by ‘tail.’ but
which is irrelevant to the observable behaviour of lists. If this happens,
the correctness proof outlined in 2.3 breaks down. This can happen in an
implementation of lists like that in 8.12 which, by contrast with that in 8.5,
does not assume that lists are available as members of a concrete data type
which can be held in single variables.
Specifications containing inadequately defined functions
The proof that
head (add (e,l) ) =e

for the specification in 8.4 depends crucially on the fact that an application
of ‘head.’ returns a result which is independent of the store, provided that,
immediately before, a procedure representing a non-empty list is executed;
as ‘add. ( e )’ is always deterministically convergent this fact is evidently
ensured by the assertion

O(add-(e);head_()=add.(e);e)

If now the specification in 8.1 is extended with the declaration
unhead : List — Element

and the assertion
~ (unhead (add(e,l))=¢)

(with the intention, perhaps, that ‘unhead’ is a choice function of some kind
when ‘Element’ contains at least two members), then the specification in
8.2 must be extended in a corresponding manner, which when inherited in
turn by the specifications in 8.3 and 8.4 gives the declaration

unhead_ : Unit = read any Element

and the assertion



O~ (add.(e);unhead_()=add.-(e);e)

This assertion does not at all guarantee that an application of ‘unhead.’
ever returns a result which is independent of the store. The problem arises
not because of the use of ‘~’ but because in a certain sense ‘unhead’ is inad-
equately defined. Realistic examples where the problem arises are provided
by name generators (which allow the generation of hitherto unused names
when a particular function is applied) and, in a less troublesome manner,
by maps and queues (which allow the extraction of elements other than the
ones most recently added).

Assertions about more than one object

The specification in 8.2 relies on the restriction that only one list need
ever be identified in any of the assertions in 8.1: none of the functions act-
ing on lists ever acts on more than one list at once. This restriction in the
specifications is quite common and is ruthlessly exploited in object-oriented
programming languages, which typically declare the procedures acting on
the objects in a class alongside the variables private to an object. However,
sometimes the restriction is violated; for example, the specification in 8.1
might be extended with the declaration

join : ( List x List ) = List
and with assertions which mention more than one list, such as

join (add (e, ),z;)=add(e,join(1;,1;))
When a class definition must consider more than one object in the class at
once, object-oriented programming languages typically resort to a syntactic
device (self or this) to indicate the instance with which the procedures are
associated. This device is both ugly and irrelevant to the issue for specifica-
tions, which involves finding ways of providing imperative implementations
for functions like ‘join’. Other examples where the issue manifests itself are
provided by trees (as a tree is usually constructed from more than one tree
at once) and by equality functions implemented using equality procedures;
this latter case is the one handled in the specification in 8.9.

Relations between constructed values

The specification in 8.1 contains an induction rule which indicates that all
the members of ‘List’ can be constructed using ‘empty’ and ‘add’. However,
it contains no axioms relating an application of ‘add’ to another applica-
tion of ‘add’ or to ‘empty’: the equations in it just define functions (‘head’,
‘tail’ and ‘is.empty’) in terms of ‘empty’ and ‘add’. A specification con-
cerned with sets instead of lists might contain axioms relating applications
of ‘constructor’ functions like ‘add’. The first and second of the transfor-
mation techniques discussed in this paper do deal with such axioms. The
third does not do so in the form presented here; however, it can be adapted
to apply to specifications which do not require such axioms but which can
nevertheless treat members of types as having different constructions but
the same observable behaviour.



2.5 The general techniques

In order to handle the problems mentioned in 2.4, it is necessary to impose con-
straints on the specifications to be transformed and to introduce extra functions.
The resulting process is sketched below. It is split into three stages, involving
different transformation techniques, because departing from the process at some
stages can allow implementations to be optimised or specifications to be im-
plemented despite violating the assumptions underlying subsequent stages. The
stages are discussed in more detail in §5, §6 and §7.

Interpreting equalities as behavioural equivalences

When verifying that a refinement of a specification is correct, ‘=" in the
specification may need to be interpreted as behavioural equivalence (equal-
ity of observable behaviour) rather than as equality in the refined specifi-
cation. To achieve this, given the view of refinement outlined in 4.2, the
specification must be transformed so that ‘=" is replaced by a conventional
operation. If it is to embody behavioural equivalence, this operation should
distinguish between the values of two expressions if and only if observations
of behaviour can distinguish between the expressions. When this operation
is itself intended to be implemented conditions must be imposed on the
applicative specification; these ensure that the functions are adequately de-
fined, in that (in a certain sense) they depend only on the construction of
their parameters. The transformation of the equalities into equivalences,
and a sufficient check on the adequacy of the definitions of the functions,
could be automated.

Converting functions into procedures

An applicative specification can be transformed into an imperative spec-
ification, provided that the functions in the applicative specification are ad-
equately defined; if the functions are adequately defined the procedures in
the imperative specification are influenced only by relevant aspects of ob-
jects. If the functions in the applicative specification depend on more than
one member of the types to be implemented, then the procedures must
satisfy conditions which ensure that they do not interfere with each other
when they act on different objects; only if this is so does the imperative
specification give rise to a ‘refinement’ of the applicative one, in the sense
discussed in 4.2. The transformation of the functions into procedures, and
a sufficient check that the procedures in a pre-existing specification do not
interfere with one another, could be automated.

Replacing axioms by programs

The axioms in a specification can be replaced by programs, using a tech-
nique which is specific to a given class of abstract data types; the class
considered in this paper is quite wide. The transformation of the axioms
into programs, and a sufficient check that a given abstract data type is in
this class, could be automated.



3 Notation

3.1 Functions and procedures

For types ‘t;’ and ‘ty’,
ty =ty

signifies the type of applicative partial functions which take members of the pa-
rameter type, ‘t;’, as parameters and which may return members of the result
type, ‘t2’, as results. By contrast,

t; — write any t,

signifies the type of imperative partial procedures which take members of ‘t,” as
parameters, which may read from or write to any accessible variable, and which
may return members of ‘ty” as results. In addition,

t, — read any t,

signifies the subtype of this type of procedures comprising those procedures which
may read from, but not write to, any accessible variable.

If types ‘t1’ and ‘t;’ have subtypes ‘t3’ and ‘t,’ respectively then
ty = ty

consists of those applicative partial functions (‘f, say) in
t, — to '

such that when the execution of an application of ‘f’ to a parameter in ‘t3’ termi-
nates then the result is in ‘ty’; in other words,

{f]
f:tl-:’tz‘
VX3:t3‘(3X22tg'X2=f(X3))$(3X42t4'X4=f(X3))}

3.2 Units

The type Unit has a unique (trivial) member. Accordingly,
t; — write any Unit

is the type of procedures which take members of the type ‘t,” as parameters,
which may read from or write to any accessible variable, and which may return
trivial results; such procedures are effectively “without results” and are used only
because they modify the store. Also,
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Unit = write any t,

is the type of procedures which take trivial parameters, which may read from or
write to any accessible variable, and which may return members of the type ‘t;’
as results; such procedures are effectively “without parameters”.

The unique member of Unit can be written as ‘( )’. The application of a function
or procedure (‘f’, say) to a parameter of type Unit can be shortened to ‘f ( ). A
function abstraction ‘A x : Unit ¢ €’ such that ‘x’ is not mentioned in ‘e’ can be
shortened to ‘A () s €.

3.3 Specifying the effects of expressions

For any expression ‘e’ having type Bool
Oe

indicates that ‘e’ is equal to true for every store, no matter what values have
been written to the variables.

For any expressions ‘e;’ and ‘e;’ with the same types evaluating the equivalence
e = €
returns true for the current store if and only if the executions of ‘e;’ and ‘e;’ in
the current store have identical effects. These effects may be to modify the store
and to return results. The evaluation of the equivalence itself does not modify the
store; it merely returns a member of Bool by comparing the modifications to the
store and the results returned. Moreover, the executions of ‘e;’ and ‘e;’ do not
have to terminate in order to make the evaluation of the equivalence return true;
hence a specification which relies on ‘=’ (as opposed to one which relies on ‘=)
typically needs to include explicit assertions to ensure that executions terminate.

As with v’ and ‘X’ in higher order logic,
(O(e1=e)) =

((AO)re)=(A()re))
For example, the assertion

empty = A () * empty- ()
in 8.4 is equivalent with

O ( empty () = empty-( ) )
or indeed with

empty = empty-

In this paper ‘0’ is given the same precedence as the quantifiers (which are given
higher precedence than implication and conjunction). Also, ‘=’ is given higher
precedence than *;’.
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3.4 Describing the results of expressions

For any expression ‘e’ without input and output, the assertion that in the current
store ‘e’ is deterministically convergent, in that its execution terminates with a
unique store and with a unique result, is written in this paper as

definite e

In the RAISE specification language this is
e post true

The result returned by the execution of ‘e’ is signified by
result e

Provided that ‘e’ is deterministically convergent, in the RAISE specification lan-
guage this is

leti:te(e=(e;i))iniend

Here executing the expression ‘e ; i’ involves executing ‘e’, discarding its result,
and executing ‘i’ (which simply returns as its result the value of the constant ‘1’).
(Also, let is used to define i’ because the language does not provide ‘e’.)

Much as with ‘2’ and ‘3P, ‘result e’ is usable if ‘definite e’ evaluates to true:
definitee = ' i: te(e=(e;i))
For example, in the imperative specification in 8.2 if the assertion
O definite add (e )
holds, then
O(add(e);head () =add(e);e)
is equivalent with
O definite (add (e ) ; head () ) A (result (add (e ) ;head () ) =e)
or indeed with
O definite head ( add (e ) ) A (result head (add (e ) )=e)

In 2.3 and elsewhere it is necessary to require that the sequential composition
of deterministically convergent expressions be deterministically convergent and
that the results of the expressions be properly related; in other words, for all
expressions ‘e;’ and ‘ey’, '

( definite e; A ( result (e, ; definite e; ) = true ) ) =
( definite (e; ,e2 ) A .
(result (e;,e; ) =(resulte ,result(e ;resulte;))))
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If there are non-deterministic constructs in the language, this requirement is not
met just by demanding that the results of the expressions be unique; they must
also modify the store in ways that are deterministic. As an illustration of this, in
the RAISE specification language

(n:=0[n:=1);n

does not have a unique result, though both
(n:=0[n:=1)

and
n

do have unique results.

Both definite and result have precedence no higher than the precedence of ‘=’.

4 Concepts

4.1 The form of types

The types declared in a specification may be either sorts or abbreviations for
other types. Sorts are not interpreted further in the specification but may be
constrained by axioms. Types may be pre-defined types (such as Bool), sorts
or composite types composed by applying pre-defined operators (such as x) to
other types.

A flat type is one that can be composed without the use of function type operators
like those in 3.1.

A subset of a type may be a type. Hence possible declarations of types include
List

and, when ‘islist’ is a predicate defined on members of ‘List_’,
List = {1]1: List_ e isdist (1) }

The range of types permitted allows specifications to be either model-oriented
(as in VDM [9]) or property-oriented (as in OBJ [1]). However, the only types
that may be refined are sorts. Where a type is expected to be refined, it should
be treated as a sort; a concrete data type can be used to model this sort by
introducing an ‘observer’ function which has the concrete data type as its result

type. An example of this is provided by extending the specification of lists in 8.1
with the declaration

gather : List = Element-list

13



and the assertions

gather ( empty ) = (),
gather (add (e,l) ) =(e) ~ gather (1)

In fact, for all ‘l;’ in ‘List’ and for all ‘1’ in ‘List’,
gather (1; ) =gather (L )= L, =1,

but ‘List’ is not identified with ‘Element-list’, just as an abstract data type of
trees is not identified with the set of encodings of trees as lists.

Behavioural abstraction requires that the members of a sort can be distinguished
from one another by observations. It therefore requires the selection of certain
observable types; all other types are unobservable. The observable types are those
composed from pre-defined types and observable sorts by applying pre-defined
operators. A sort which is regarded as observable at one stage in a development
may be regarded as unobservable at a subsequent stage.

4.2 The nature of refinement

In this paper, a refinement of a specification is another specification which allows
one to make the same assertions (and possibly more besides). This view of re-
finement (as theory extension) seems common to HOL {2], Larch [4] and RAISE
[11] (though the emphasis on refinement, and the underlying logic, differ between
the cases cited). It requires behavioural abstraction from model-oriented spec-
ifications to be treated explicitly (as exemplified in 4.1). A more general view,
adopted for Extended ML [14], permits behavioural abstraction.to be treated
more succinctly but needs reasoning about model classes when there are no suit-
able proof rules; such proof rules are beginning to emerge, but they are of little
help if the equivalence induced by the behavioural abstraction is itself intended
to be implemented.

Here, as for the RAISE specification language, a specification can contain dec-
larations (of types, constants and functions, among other things) and axioms,
and refining a specification can involve turning sorts into abbreviations for other
types, adding extra declarations or adding extra axioms.

4.3 The form of specifications

Applicative specifications are often expressed as conditional equations plus in-
duction rules. Each conditional equation may have quantified names, which are
named members of types bound by universal quantifiers, a premise, which is a
finite conjunction of equations between expressions having observable types, and
a consequence, which is a finite conjunction of equations between expressions hav-
ing observable or unobservable types. Each induction rule takes a standard form,
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with a finite conjunction of hypotheses that themselves have quantified names.
premises and consequences; the premises help to indicate when the functions
occurring subsequently in the premises or the consequences are applicable. In -
order to let behavioural equivalences take simple forms, either premises should
be allowed to include universal quantifiers binding members of observable types
or types consisting of finite sets (or lists) of members of observable types should
be observable.

In practice certain abbreviations to conditional equations are permitted. For
instance, an equation taking the form ‘e = false’ may be shortened to ‘~ e'.

It is not a severe practical restriction to require that applicative specifications
of abstract data types rely on conditional equations and induction rules. In
particular, specifications of applicative functions using pre-conditions and total
correctness post-conditions, as in VDM, are equivalent with ones using conditional
equations. For instance,

add (e,l)as! post (head (I')=eAtail (') =1)
is equivalent with
head (add (e,l))=eA tail (add (e,1)) =1

In fact specifications of imperative procedures using pre-conditions and total cor-
rectness post-conditions can also be turned into things akin to conditional equa-
tions by using ‘=" and definite (discussed in 3.3 and 3.4).

Hereafter the definitions assume that applicative specifications are expressed as
conditional equations plus induction rules.

4.4 Constructors, inspectors and observers

The functions in applicative specifications can usually be defined in terms of
constructor constants and functions, tnspector functions and observer functions.
The types of the constants, and the parameter and result types of the functions,
are flat. (In the specification of lists in 8.1, ‘empty’ and ‘add’ are constructors,
‘tail’ is an inspector, and ‘head’ and ‘is_empty’ are observers.)

The constructors are the constants and functions used in the (consequences of
hypotheses in the) induction rules: every consequence applies a predicate to a
constructor constant or function. Each constructor constant has an unobservable
type and each constructor function has an unobservable result type. (A stronger
version of this assumption, to the effect that the types are actually sorts, would
preclude treating procedures which both return results and have effects on the
store.) Though in principle this use of the term ‘constructor’ is different from
that in term rewriting theory (8], in practice it is very similar.
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The inspectors and observers are the functions used to distinguish between dif-
ferent members of sorts. An inspector function serves to extract other members of
an unobservable sort from a given member, so it has an unobservable result type.
An observer function serves to observe the members of an unobservable sort, so
it has an observable result type.

These terms need to be generalised somewhat (though the generalisation can
largely be ignored in the reading of this paper). Loosely, a generalised con-
structor is defined using conditional equations formed from suitable expressions
using constructors; a generalised inspector or observer is defined using condi-
tional equations formed from suitable expressions using inspectors and observers
(in such a way that the result type is unobservable for an inspector and observ-
able for an observer). A suitable expression is a constant, a quantified name,
an application of a function to a suitable expression, a product of suitable ex-
pressions, or a component of a product. (For the specification of lists in 8.1,
‘A1: List « (head (1), tail (1) )’ is a generalised inspector.)

In any application of a generalised constructor function there is a greatest depth
of nesting of constructor functions. As the constructors constitute the constants .
and functions used in the induction rules, every member of an unobservable sort
can be expressed in terms of them (though the means of expressing it may not be
apparent in the absence of extra conditions). The construction level of a member
of an unobservable type is the greatest depth of nesting of constructor functions
needed by the “shallowest” means of constructing the member by applying gen-
eralised constructor functions to generalised constructor constants.

4.5 Applicability functions

Associated with every generalised constructor, inspector or observer function (‘f,
say) there is its applicability function, ‘applicable[f]’. This is a generalised ob-
server which provides the pre-condition indicating when ‘f’ is applicable in the
conditional equations and induction rules; it is a total function. If ‘€ has type
‘t; — to’ then ‘applicable[f]’ has type ‘t;, = Bool’. The applicability function for
‘f can (for the present) be any total function which, when applied to any pa-
rameter to which ‘" is applied in the specification, evaluates to true. (In fact the
applicability functions used in this paper can be devised by a systematic process,
the details of which are omitted.)

4.6 Destructors

Associated with a constructor function (‘c’, say) there may be a destructor func-
tion, ‘destructorfc]’. This is a generalised inspector which acts as a left inverse
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for ‘c’ when ‘c’ is applicable. If ‘c’ has type ‘t; — t3’ then when ‘destructor[c]’
exists it has type ‘t; — t;’ and

A4 X - t; e
applicable[c] ( x; ) =
destructorfc] (c(x;) ) =x;

For example, for the lists specified in 8.1, ‘A1: List « (head (1) ,taill (1)) is
a destructor function for ‘add’. There may not be any destructor functions: a
specification of sets, for instance, would not have them (because set union is
commutative) but could have inspectors and observers.

4.7 Discrimination functions

Associated with a constructor constant {‘k’, say) there may be a discrimination
function, ‘discriminant[k]’. This is a generalised observer which indicates when
something must be ‘k’; it is a total function. If ‘k’ has type ‘t;’ then when
‘discriminant[k]’ exists it has type ‘t; — Bool’ and, for every generalised con-
structor function ‘f* of type ‘t3 — t;’ such that ‘k’ is not mentioned in ‘f’ but
another constructor is mentioned in ‘P,

Vx3:tze
applicable[f] (x5 ) =
discriminani[k] (k ) A ~ discriminantk] (f (x3 ) )

For example, for the lists specified in 8.1, ‘is_.empty’ is a discrimination function
for ‘empty’.

Associated with a constructor function (‘c’, say) there may be a discrimination
function, ‘discriminant]c]’. This is a generalised observer which indicates when
something can only be constructed by an application of ‘c’; it is a total function.
If ‘c’ has type ‘t; = t;’ then ‘discriminant[c]’ has type ‘t, — Bool’ and, for every
generalised constructor function ‘f” of type ‘t3 — t,’ such that ‘c’ is not mentioned
in ‘I’ but another constructor is mentioned in ‘f,

Vxp:ty,x3:t3e
applicablef[c] ( x; ) A applicable[f] ( x5 ) =
discriminant]c] (¢ (%, ) ) A ~ discriminant]c] (f(x3))

For example, for the lists specified in 8.1, ‘A 1: List + ~ is.empty ( 1)’ is a dis-
crimination function for ‘add’. There may not be any discrimination functions:
an assertion such as

join(add(e,l;),l;)=add(e,join(];,1))

(which is discussed in 2.4) precludes ‘add’ and ‘join’ from having discrimination
functions if both ‘add’ and ‘join’ are classified as constructors. (However, in the
case discussed in 2.4, ‘join’ would be not be classified as a constructor, because
the induction rule would use only ‘empty’ and ‘add’.)
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5 Interpreting equalities as behavioural equiva-
lences

5.1 Survey

The first stage in refining applicative specifications into imperative implementa-
tions entails interpreting equalities as behavioural equivalences. The technique
needed replaces tests for equality between the members of unobservable types by
applications of functions having result type Bool. The specification must obey
conditions which ensure that no implicit uses of equality in it cannot be made ex-
plicit. These conditions are rather weaker than ‘stability’ requirements [15], which
also prohibit the use of set and map operators involving abstract data types.

The technique is described in 5.2 and illustrated in 5.3. Assumptions that it
requires are mentioned in 5.4. Variants of it are discussed in 5.5. The main
assumption about the applicative specification is formalised in 5.6.

5.2 Tasks

5.2.1 Transforming the specification to interpret equality

o For each unobservable sort with name ‘S’, a function
eqs: (S xS) = Bool
is introduced. This function is intended to replace ‘=’ for ‘S".
e For each such ‘S’, ‘eq_s’ is postulated to be an equivalence (which is reflexive,
symmetric and transitive). In fact this amounts to asserting that ‘eqs’ is
symmetric and is a congruence for the function ‘eqs’, in the sense that

when two members of ‘S’ are related by ‘eq_s’ then one may be substituted
for the other in parameters of the function.

e The explicit uses of ‘=" in the specification are replaced by uses of ‘eqs’
(with appropriate modifications when the types of the left and right hand
sides of the equality are not unobservable sorts).

e The implicit uses of ‘=" which exploit cardinality assertions are replaced by
uses of ‘eq.s’. For example,

Fictee
needs to be regarded as
(Fi:tee)A(Vig:t, iz te(eafi]Aefiz/i])=>l=12)

Cardinality assertions also arise from size functions (such as card for sets).
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o The implicit uses of ‘=" which exploit congruence properties are replaced by
uses of ‘eq_s’. The congruence properties of ‘=" are used in the application of
functions to parameters, so there must be assertions to ensure that ‘eqs’ 1s
a congruence for all the functions declared in the specification (including the
functions which are used as predicates in the induction rules); for instance,
if ‘f is a function having type ‘S = S’ then it must satisfy

Vs :S,s2:5¢
eqs (s1,s2)=>eqs(f(s1),f(s2))
This style of assertion can be used whatever the parameter and result types
of the function may be.

e Given that the functions introduced in the specification satisfy the condi-
tions outlined in 5.6, there is no need to postulate that ‘eq_s’ is an equivalence
and a congruence for all the functions declared in the specification. Indeed,
‘eq.s’ can be defined as a total function using just the observers and inspec-
tors, applied when their applicability functions permit; for instance, if there
is only one inspector function ‘i’ and only one observer function ‘o’ and if
they both have ‘S’ as parameter type then ‘eq.s’ can satisfy

Vs :S,s2:5¢
eqs (s1,8 )=
( ( applicableli] ( s1 ) A applicable[i] ( sz ) =
eqs (i(s),i(%)))A
( applicablefo] ('s1 ) A applicadlefo] ('s; ) =
o(si)=o0(s2)))
This style of definition can be used whenever the parameter types of the
inspector and observer functions each contain at most one occurrence of an
unobservable sort; however, when these types are not sorts, the premises
in a specification must include universal quantifiers binding members of
observable types if the definition is to be turned into conditional equations.

5.2.2 Renaming the specification to distinguish names

e The specification, thus transformed, is subject to renaming by changing the
names declared in it to avoid clashes with the names declared in the original
specification. (Below, the name of an unobservable sort ‘S’ is taken to be
changed by this means to ‘S_".)

5.2.3 Extending the specification to show refinement

e For each hitherto unobservable sort with name ‘S’, the declaration
S =
{s]

s : S_-infset

s#F{}A

Vsy:S.,52:S.*s1E€Es=>eqs(sq,52)=(s2€s)}
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is provided. The type ‘S’ comprises the equivalence classes of members of
‘S.’ with respect to ‘eqs’, so ‘=’ for it is the equality between equivalence
classes.

e For each such ‘S’, functions

abss:S_.5 S,
reps: S = S.

are introduced. These functions constitute the main use of abstraction and
representation functions required by the view of refinement adopted in this

paper.
o For each such ‘S’, ‘abs_s’ and ‘rep.s’ are made to satisfy

Vsq:S.cabss(sy)={s2|s2:S ¢eqs(sq,s:)},
Vs:Sereps(s)€s

Consequently

Vsy:8.+eqs(sy,reps(abss(sy))),
Vs:Ses=abss(reps(s))

Here the abstraction function, ‘abss’, maps the members of equivalence
classes to the equivalence classes, and the representation function, ‘rep_s’,
maps the equivalence classes to representative members.

o Versions of the constants and functions declared in the original specification
are defined using ‘abs_s’ and ‘reps’ according to the usual ‘homomorphic’
approach; for instance, if ‘.’ is a function having type ‘S_ = S_’ then the
defined function ‘f’ must satisfy

Vs:S-f(s)=abS-S(f-(reP-S(5)))

This style of definition can be used whatever the parameter and result types
of the function may be.

e Given that the functions introduced in the specification satisfy the condi-
tions outlined in 5.6, there must be induction rules. In this situation the
constructor constants and functions can construct all the members of each
unobservable sort, so the specification thus extended provides a refinement
of the original specification in which ‘=" is replaced by a function which can
be implemented further.

5.3 Example
5.3.1 Transforming the specification to interpret equality

The applicative specification of ‘List’ given in 8.1 can be transformed by applying
the technique described in 5.2. The outcome of doing so is presented in S.6.
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5.3.2 Renaming the specification to distinguish names

The type, constant and functions declared in 8.6 must have their names changed
before they can be compared directly with those in 8.1. This is done in 8.7.

5.3.3 Extending the specification to show refinement

To establish that the specification in 8.6 is an appropriate transformation of that
in 8.1, versions of the type, constant and functions declared in the specification
in 8.1 are defined by extending the specification in 8.7. The outcome of doing so
is presented in 8.8.

5.4 Assumptions

In order to exploit the explicit construction of ‘eqs’ in terms of inspectors and
observers, the applicative specification must take the form described in 4.3 and
the functions introduced in it must satisfy the conditions outlined in 5.6.

The parameter type of each inspector or observer function must contain only one
occurrence of an unobservable sort.- (This assumption is not merely convenient;
it is central to defining ‘eq.s’.)

In this situation induction on construction levels can demonstrate that ‘eq.s’,
defined according to the scheme in 5.2, is a total function, an equivalence and
a congruence for all the functions (including the constructors); accordingly it is
sufficient to define ‘eqs’, as is done in 8.6, and it is unnecessary to postulate
that ‘eq_s’ is an equivalence and a congruence for the functions. In fact ‘eq.s’ is
the interpretation of ‘=’ which distinguishes between two members of ‘S’ if and
only if they can be distinguished using applicable observations. (However, ‘eq.s’
depends on the applicability functions, which can be devised in various ways.)

The specification must contain no constructs that may read from or write to
variables having unobservable types.

Every construct in the specification which implicitly makes a cardinality assertion
must be capable of being rewritten to make the assertion explicit through the use
of ‘=". In particular, if the language provides ‘.’ it must provide ‘¢’ also.

Every construct in the specification which implicitly exploits a congruence prop-
erty of ‘=" must be capable of being rewritten to make the property explicit
through the use of ‘=". In particular, if the language provides types which are
not flat then it must provide subtypes also.
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5.5 Variants

The technique described in 5.2 is applicable even when the conditions outlined
in 5.6 are not satisfied. When this happens, it is necessary to postulate that the
constructor constants and functions can construct all the members of each unob-
servable sort (perhaps owing to induction rules) and that ‘eq_s’ is an equivalence
and a congruence for all the functions. (For lists this is done in 8.13; the spec-
ification in 8.13 can be related to the specification in 8.1 by the same renamings
and extensions as are adopted in 5.3 for the specification in 8.6.) It may still
be necessary to ensure separately that ‘eq_s’ distinguishes members of ‘S’ only if
they can be distinguished using observations.

The technique can be specialised as well as generalised. When the functions
satisfy the conditions outlined in 5.6 and for each constructor function there is
a corresponding destructor function, the only generalised inspectors that need
be considered are the destructors. In particular, the scheme for the definition of
equality in 5.2 need mention only the destructors instead of the inspectors. This
can be established by induction on construction levels.

5.6 The adequacy of the definitions

The functions declared in a specification can be related in varied ways. However,
they generally obey conditions that enable them to induce behavioural equiva-
lences that can even be used in imperative specifications. These conditions ensure
that applications of functions to parameters produce results which are deter-
mined solely by the way in which their parameters are constructed; they thereby
facilitate induction on construction levels.

Induction on construction levels, as practiced in this paper, requires essentially
that for any inspector ‘I’ and for any appropriate parameter ‘x’ the construction
level of i ( x )’ is less than that of ‘x’. To bring this about it is necessary to
impose conditions on the constructors, inspectors and observers. The condition
for the inspectors and observers is that they all be adequately defined, in a sense
to be clarified below. The condition for the constructors is that no constructor
function can produce a constructor constant as a result; in other words for any
generalised constructor constant ‘k’ with type ‘t;’ (and with greatest depth of
nesting of constructor functions 0) and for any generalised constructor function
‘c’ with type ‘t; = t,’ (and with greatest depth of nesting of constructor functions
1) there must be a generalised observer ‘o’ with type ‘t; = Bool’ such that

Vxg:tpe
applicablefc] ( x; ) =
o(k)A~o(c(x1))
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An inspector ‘i’, with type ‘t; = t3’, is adequately defined by a specification if the
following conditions hold:

o for any generalised constructor constant ‘k’ with type ‘t,’ (and with greatest
depth of nesting of constructor functions 0) it is the case that

~ applicableli] ( k)

so a constructor constant is never extracted by applying an inspector func-
tion, just as it 1s not constructed by applying a constructor function;

e for any generalised constructor function ‘c’ with type ‘t; = t;’ (and with
greatest depth of nesting of constructor functions 1) there can be inferred
m > 0 conditional equations, each with the form

v Xy t]_ .
applicablefc] ( x; )Api(x1 ) =q(x ) =
i(e(x))=c(i(x))
where
v Xp ity
applicablefc] ( x; ) A applicablefi] (c(x;,)) =
P(x)=q(x1)V..VPn(x1)=qu(x)
and where (for all | having m > 1 > 0) ‘p,’ is a generalised observer func-
tion, ‘q;’ is a generalised observer function, ‘c,’ is a generalised constructor
function and ‘i;’ is a generalised inspector function such that the greatest

depth of nesting of constructor functions in ‘c;’ is no more than the least
depth of nesting of inspector functions in ‘,’.

For gxample, for the lists specified in 8.1, if
~ applicableftail] ( empty )

‘tail’ is adequately defined as, for all ‘e’ in ‘Element’ and for all ‘I’ in ‘List’,
tail (add (e,1) ) =1

An observer ‘0’, with type ‘t; — t3’, is adequately defined by a specxﬁcatxon if the
following cond.ltlons hold:

e for any generalised constructor constant ‘k’ with type ‘t;’ (and with greatest
depth of nesting of constructor functions 0) there can be inferred an equation
with the form

applicablefo] (k) =>o(k) =D

where ‘b’ is a constant which has an observable type and which can be
defined without mentioning members of unobservable types;

o for any generalised constructor function ‘c’ with type ‘t; — t;’ (and with
greatest depth of nesting of constructor functions 1) there can be inferred
m > 0 conditional equations, each with the form
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Vxp:te
applicablefc] (x1 )APpi(x1)=q (%)=
o(cixi))="f(o(ec(ii(x))))
where
Vxp:tye
applicable[c] ( x; ) A applicablefo] (c(x1)) =
p(xi)=q(x)V.Vpn(xi)=qn(x)
and where (for all  having m > [ > 0) ‘f/’ is a function which has observable
parameter and result types and which can be defined without mentioning
members of unobservable types, ‘p,’ is a generalised observer function, ‘q;’
is a generalised observer function, ‘o;’ is a generalised observer function,
‘c/’ is a generalised constructor function and ‘i’ is a generalised inspector
function such that the greatest depth of nesting of constructor functions in
‘c;’ is no more than the least depth of nesting of inspector functions in ;.

For example, for the lists specified in 8.1, if
~ applicable[head] ( empty ) |

‘head’ is adequately defined as, for all ‘e’ in ‘Element’ and for all ‘!’ in ‘List’,
head (add (e,l) ) =e

However, an assertion such as
~ (unhead (add(e,l)) =e)

(which is discussed in 2.4) is not enough to make ‘unhead’ adequately defined,
even when it appears as the more orthodox conditional equation

unhead (add (e,1) ) = e = true = false

The function ‘unhead’ could be made adequately defined in several ways; the
simplest of them, which ensures that ‘unhead ( add (e ,1) )’ depends only on
‘e’, entails introducing the declaration

reject : Element = Element

and the assertions

unhead(add(e,l))=rejéct(e),
~ (reject (e)=¢e)

In order to ensure that the definitions of constants like ‘b’ above and functions
like ‘f;’ above do not depend on members of unobservable types, such constants
and functions can be taken to be fully defined in a different specification.

A specification may introduce other functions beside the constructors, inspectors
and observers; for instance, the function ‘join’ described in 2.4 is likely not to
be a constructor or an inspector, at least if it is being defined for lists. These
primitively defined functions are all taken to be ‘primitive recursive’, in that if
‘© is such a function having type ‘t; = t;’ it must satisfy equations taking the
general form
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Vx :t
p(x)=q(x)=

f(xi)=g(h(u(x)))

where

Vx1:t1°
applicable[f] ( x; ) =
Pl(X1)=Q1(X1)V-~-VPm(X1)=Qm(x1)

and where (for all [ having m > 1 > 0) ‘p,’ is a generalised observer function,
‘q/’ is a generalised observer function, ‘g, is a generalised constructor, inspector
or observer function, “f;’ is a generalised primitively defined function and ‘i
is a generalised inspector function such that the greatest depth of nesting of
primitively defined functions in ‘f;’ is no more than both 1 and the least depth
of nesting of inspector functions in ‘i,’. (In fact this condition can be weakened.)
Here a generalised primitively defined function is defined by conditional equations
formed from suitable expressions using primitively defined functions.

Induction on construction levels can demonstrate that, if the observer and inspec-
tor functions in the specification are adequately defined and the functions other
than the constructor, inspector and observer functions are primitively defined,
then the specification is sufficiently complete: every suitable expression in which
there are no occurrences of quantified names and in which the functions are ap-
plied only to parameters which satisfy their applicability functions can be reduced
to a term which does not mention observer or inspector functions. (This notion

of sufficient completeness is the counterpart for partial functions of the notion for
total functions [3].)

6 Converting functions into procedures

6.1 Survey

The second stage in refining applicative specifications into imperative implemen-
tations entails converting functions into procedures. The technique needed turns
declarations of, and assertions about, functions into declarations of, and asser-
tions about, procedures. The functions must be defined so adequately that the
procedures are influenced only by relevant aspects of the objects on which they
act. Moreover, if the functions depend on more than one member of the types
being implemented, then the procedures acting on different objects must not
interfere with one another.

The technique is described in 6.2 and illustrated in 6.3. Assumptions that it
requires are mentioned in 6.4. Variants of it are discussed in 6.5. The main
constraint on the imperative specifications is formalised in 6.6.
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6.2 Tasks

6.2.1 Transforming the specification to convert functions

e Any function having an unobservable parameter type is given the right
to read from any accessible variable. Any function having an unobservable
result type is given the right to read from or write to any accessible variable;
however, any such function which is used in the definition of a function
having an observable result type (such as ‘eq.s’) may only be given the
right to read from variables, not to write to them. The functions are thereby
replaced by procedures.

e For each unobservable sort with name ‘S’, a procedure
has.s : S = read any Bool

is introduced. This procedure is intended to provide a test that in a given
store a member of a type with name ‘S’ gives access through the store to a
representation of a member of the unobservable sort S’.

o For each such ‘S’, ‘has_s’ is postulated to be deterministically convergent -
for every store and for every parameter.

e For each such ‘S’, ‘has_s’ is postulated to return the result true when applied
to a constructor constant.

e For each such ‘S’, ‘has_s’ is postulated to provide results that are not inter-
fered with by the application of any procedure declared in the specification
for every store and for every parameter which satisfy both the applicability
procedure and ‘has_s’ (with appropriate modifications when the parameter
type or the result type is not an unobservable sort); for instance, if ‘f is a
procedure having type ‘S = write any S’ then it must satisfy

Vs;1:S,s;:Se
applicableff] ( sy ) Ahass(s; ) Ahass(s;) =
(result (f( s, );hass(s;)) =true)

This style of assertion can be used whenever the parameter ty= s of the
procedures are flat.

o After every universal quantifier binding members of unobservalble types, ‘0’
is inserted and an extra premise is added, to test that each quantified name
of sort ‘S’ satisfies ‘has_s’ (with appropriate modifications when the types
of the quantified names are not unobservable sorts).

e Any equation ‘e; = e,’ is treated as follows. If ‘e;” and ‘e,” have unobserv-
able sorts the equation is replaced by ‘e; = e,’. If ‘e;’ and ‘e,’ hawe observable
types the equation is replaced by ‘result e; = result e,’ (though ‘=’ is used
instead of ‘=’ purely for clarity). If ‘e;” and ‘e;’ have unobservable types
that are not sorts the equation is regarded as a conjunction of equations
between the components of ‘e;’ and ‘e;’.
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o Each procedure declared in the specification is postulated to be determin-
istically convergent and to provide results that satisfy ‘has_s’ for every store
and for every parameter which satisfies both its applicability procedure and -
‘has_s’ (with appropriate modifications when the parameter type or the re-
sult type is not an unobservable sort).

e Each inspector or observer procedure is postulated to provide results that
are not interfered with by the application of any declared in the specification
for every store and for all parameters which satisfy both the applicability
procedures and ‘has_s’ (with appropriate modifications when the parameter
type or the result type is not an unobservable sort). The need for, and
nature of, the postulates depends on the forms taken by the conditional
equations in the specification and is discussed in 6.6.

e The induction rules are removed.

6.2.2 Renaming the specification to distinguish names

e The specification, thus transformed, is subject to renaming by changing the
names declared in it to avoid clashes with the names declared in the original
specification. (Below, the name of an unobservable sort ‘S’ is taken to be
changed by this means to ‘S_’.)

6.2.3 Extending the specification to show refinement
e For each hitherto unobservable sort with name ‘S’, the declaration
S={s]|s: Unit 5 writeany S_+iss(s)}

is provided. The type ‘S’ comprises procedures members of ‘S_’ with respect
to ‘eqs’, which may read from or write to any accessible variable and which
may return members of ‘S_’.

e For each such ‘S’ a function
iss : ( Unit S write any S.) 5 Bool

is introduced. This function is used merely to indicate that ‘S’ may not
comprise all the members of ‘Unit = write any S_".

o The induction rules are added from the original specification to delimit ‘S’.

¢ Versions of the constants and functions declared in the original specification
are defined; for instance, if k.’ is a constant having type ‘S_’ then the defined
constant ‘k’ must satisfy

k=X()eke

if ‘f.’ is a procedure having type ‘Bool = write any S_’ then the defined
function ‘f” must satisfy
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Vb:Bool+f(b)=A()*£(b)

if f_" is a procedure having type ‘S. S write any S_’ then the defined func-
tion ‘f’ must satisfy

Vs:Sef(s)=A()f(s())

and if ' is a procedure having type ‘S_ = read any Bool’ then the de-
fined function ‘£ must satisfy

Vs:Sef(s)=1letb: Bool+O(b=resultf.(s()))inbend

This style of definition can be used whenever the types of the constants
and the parameter and result types of the procedures are flat (though it
requires extension if the types of the constants and the result types of the
procedures may contain more than one unobservable sort occurrence).

e Given that the functions introduced in the specification satisfy the condi-
tions outlined in 5.6, the specification thus extended provides a refinement
of the original specification in which functions are interpreted as acting on
procedures.

6.3 Example
6.3.1 Transforming the specification to convert functions

The applicative specification of ‘List’ given in 8.6 can be transformed by applying
the technique described in 6.2. The outcome of doing so is presented in 8.9.

6.3.2 Renaming the specification to distinguish names

The type, constant and functions declared in 8.9 must have their names changed
before they can be compared directly with those in 8.6. This is done in 8.10.

6.3.3 Extending the specification to show refinement

To establish that the specification in 8.9 is an appropriate transformation of that
in 8.6, versions of the type, constant and functions declared in the specification
in 8.6 are defined by extending the specification in 8.10. The outcome of doing
so is presented in 8.11.



6.4 Assumptions

The applicative specification must take the form described in 4.3 and the in-
spectors and observers must satisfy the conditions outlined in 5.6. (In fact the
inspectors and observers may satisfy any conditions which make the specification
sufficiently complete and which allow the behaviour of expressions to be charac-
terised using generalised observers.) '

In any equation ‘e; = e;’ the expressions ‘e, and ‘e;’ must be ‘suitable’ in the
sense explained in 4.4.

Functions must be able to take procedures as parameters.

6.5 Variants

Very often the applicative specification which is to be transformed does not make
assertions about more than one object (where the term ‘object’ is used in the sense
of object-oriented programming). This is so if each equation in the applicative
specification takes a form which, according to the rules in 6.6, needs no assertions
about freedom from interference. When this is so, each equation mentions at
most one quantified name having an unobservable type.

For instance, the equations in 8.6 do not take such forms, because the assertion
about ‘eq.list’ mentions two members of the sort ‘List’. By contrast, the equations
in 8.1 do take such forms (as a constant having an observable type needs no
inspector or observer procedures to characterise its behaviour).

When the applicative specification needs no assertions about freedom from in-
terference, the technique given in 6.2 can be modified to produce less intricate
imperative specifications. Doing this involves:

e replacing in the applicative specification each constructor constant, having
type ‘t’, by a constructor function having type ‘Unit = t’, so that when
its type is altered by the transformation it is given the right to read from
or write to any accessible variable;

e taking ‘has_s’ in the imperative specification to be ‘A () * true’ (or omitting
its declaration entirely);

o taking ‘S’ in the imperative specification to be Unit (or omitting its decla-
ration entirely);

e removing superfluous components of type Unit from the parameters and
results of procedures in the imperative specification.



The specification in 8.2 results from applying this modified transformation to
the specification in 8.1, so the modified transformation formalises the process
described in 2.2.

The trick of replacing each constructor constant by a constructor function can be
employed quite generally, whenever creating a member of an abstract data type
ought to have an effect on the store. It is usually appropriate if the abstract data
type is implemented using static storage allocation and is frequently appropriate
if the abstract data type is implemented using dynamic storage allocation.

6.6 Freedom from interference between procedures

In order to make sure that the procedures in imperative specifications do not
interfere with one another, it is necessary to introduce certain assertions into
the specifications. The form of these assertions is influenced by the form of
the specifications; in the interests of simplicity the versions presented here are
fairly insensitive to the form of the specifications. The assertions may relate to .
‘absorption’, ‘commutativity’ or ‘idempotence’. The absorption assertions imply
the idempotence assertions; moreover, for an equation in the specification which
equates expressions having observable types, general absorption assertions are
equivalent with general commutativity assertions.

When in the specification there is an equation ‘e; = e;’ between two expressions
such that a quantified name having an unobservable type is mentioned in one
and only one of the expressions (‘e,’, say), then absorption assertions are added
for applications of the procedures used in the other expression. Here the ‘proce-
dures used in the other expression’ include the constructor procedures if the other
expression mentions any quantified names having unobservable types. If ‘e,” and
‘e’ have unobservable types then the absorption assertions take the following
form: if ‘fy’ and ‘f;’ are such procedures having types ‘t; = write any t;’ and
‘t; = write any t,’ respectively (and used in ‘e,’ and ‘e,’ respectively) then
Vxgoty,xp:tpe

applicadleff;] ( x; ) A applicable[f,] ( x, ) =

((A(x)ifa(x2))=fh(x))
If ‘e;” and ‘e;’ have observable types then the absorption assertions are typified
as follows: if ‘fy’ and “f,’ are as above except that ‘fy’ is an inspector or observer

procedure needed for characterising the behaviour of ‘ey’, then, when ‘t;’ and ‘t,’
are both ‘S’,

Vs;:S,s;:S
applicable[f;] (s; ) A hass (s; ) A applicable[f,] ( sz ) A hass (s ) =
(result(fl(sl);fg(sz))sresultfg(sz))
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(with appropriate modifications when a parameter or result type is not an unob-
servable sort). This version of the absorption assertions is essentially that adopted
for the conditions imposed on ‘has_s’ in 6.2.

When in the specification there is an expression which is a product, then com-
mutativity assumptions are added for the applications of the procedures used
in different components of the product. Here the ‘procedures used in different
components of the product’ include the constructor procedures if the compo-
nents mention any quantified names having unobservable types. If the expression
occurs in an equation between expressions having unobservable types then the
commutativity assertions take the following form: if ‘f;’ and ‘f;’ are such pro-
cedures having types ‘t; — write any t3’ and ‘t, = write any t,’ respectively
(and used in different components of the product) then

Vxlztl,x2:t2° -
applicable[f;] ( x1 ) A applicableff;] ( x2 ) =
((G(x1);6h(x))=letxyg=6f(x;)inf; (% );x; end)

If the expression occurs in an equation between expressions having observable
types then the commutativity assertions reduce to the absorption assertions. (The
commutativity assertions also have longer forms which are symmetrical in their
uses of ‘f;’ and ‘f;’.)

When in the specification there is an expression which has an unobservable type
containing more than one unobservable sort occurrence, then idempotence as-
sumptions are added for the applications of the procedures used in the expression.
Here the ‘procedures used in the expression’ include the constructor procedures if
the expression mentions any quantified names having uncbservable types. If the
expression occurs in an equation between expressions having unobservable types
then the idempotence assertions take the following form: if ‘f’ is such a procedure
having type ‘t, — write any t,’ then

VX12t1°
applicableff] ( x; ) =
((f(x);if(x))=f(x))

If the expression occurs in an equation between expressions having observable
types then the idempotence assertions again reduce to the absorption assertions.

In an implementation it is difficult to satisfy the absorption and commutativity
assertions needed by equations between expressions having unobservable types.
Hence all such equations tend to be replaced by behavioural equivalences using
‘eqs’. In this case it i1s enough to have general absorption assertions; in the
notation adopted above, these should let “f;’ range over all constructor proce-
dures and let ‘f;’ range over all inspector and observer procedures needed in the

characterisation of behaviour using ‘eq_s’.
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7 Replacing axioms by programs

7.1 Survey

The third stage in refining applicative specifications into imperative implemen-
tations entails replacing axioms by programs. The technique needed supplies the
procedures declared in a specification with executable definitions. The specifi-
cation must obey conditions which ensure that no member of the sorts can be
constructed in two distinct ways by using constructors alone. These conditions
therefore allow lists and queues, but not sets and maps, to be implemented using
this technique. In fact they permit many of the flat “recursive” types that can
be defined briefly in RAISE [6] and all of those that can be defined briefly in
Standard ML {5], HOL [10] and Z [16].

The technique is described in 7.2 and illustrated in 7.3. Assumptions that it
requires are mentioned in 7.4. Variants of it are discussed in 7.5.

7.2 Tasks

7.2.1 Transforming the specification to replace axioms
e For each hitherto unobservable sort with name ‘S’, the declaration

S = Int

b

is provided. The type ‘S’ comprises the possible indexes into an array. It
induces a representation of the members of any flat, hitherto unobservable,
type. (If the induction rules indicate that there is a bound on the permitted
depth of constructor functions, then a finite range of integers can be used
instead of Int; this range must contain one entry per constructor constant
and one entry per permitted depth of nesting.)

e For each such ‘S’, an index variable
indexs: S

is introduced. This index variable is intended to indicate where unused
array elements lie.

e For each such ‘S’, an array object
array.s : ...

isintroduced. An element of this array is brought into use by the application
of a constructor procedure; it must be capable of storing information which
can identify the constructor procedure and represent the parameter in the
application of the constructor procedure. Consequently the array object
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must provide, for every possible index, a finite collection of variables which
suffices to store both a tag (drawn from an observable type in which every
constructor procedure is allocated a distinct tag) and the representation
of any parameter in a constructor procedure application. The tag can be
omitted if there is only one constructor procedure.

For each such ‘S’, each application of ‘has_s’ tests whether its integer pa-
rameter lies between the value most recently written to the index variable
and the lowest representation of a constructor constant. (A more modular
treatment would combine the array, the index and the definition of ‘has_s’
in the implementation of a name generator; it is omitted from this paper in
order to concentrate on the systematic development of just one module.)

For each such ‘S’, each constructor constant is represented by a different
integer; the representations are arranged consecutively.

For each such ‘S’, each application of a constructor procedure increments the
value in ‘index_s’ (making sure that it is above the highest representation of
a constructor constant) and stores in the corresponding element of ‘array._s’
the information noted above.

For each such ‘S’, each application of a destructor procedure uses its pa-
rameter to determine an array element from which it then extracts the rep-
resentation of the parameter in a constructor procedure application.

For each such ‘S’, each application of a discrimination procedure checks
whether its parameter is a constructor constant; if so, it checks which con-
structor constant is its parameter, but, if not so, it uses its parameter to
determine an array element which identifies a constructor procedure.

Given that the procedures introduced in the specification are derivable from
functions which satisfy the conditions outlined in 5.6, the remaining pro-
cedures are defined recursively in terms of the constructor procedures, the
destructor procedures, the discrimination procedures, and the observations
on the constructor constants: some of the axioms are replaced by defini-
tions, in which first the discrimination procedures and then the appropriate
constructor, inspector and observer procedures are applied.

Any axioms that are not replaced in the above manner should be proved
to be consequences of the definitions of the procedures. If they are proved
to be consequences, they can be deleted from the specification; if they are
not proved to be consequences, they must be retained in the specification
(which may well be inconsistent). Generally the interpretation of equalities
as equivalences of observable behaviour, according to the scheme laid down
in 5.2, ensures that these axioms are indeed consequences of the definitions.
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7.3 Example
7.3.1 Transforming the specification to replace axioms

The imperative specification of ‘List’ given in 8.6 can be transformed by applying
the technique described in 7.2. The outcome of doing so is presented in 8.12. No
renaming or extending is needed in order to establish refinement: the procedures
in 8.12 have already all the properties specified for those in 8.9.

7.4 Assumptions

The imperative specification must be derivable by applying the transformation
described in 6.2 to an applicative specification satisfying the conditions in 6.4.

For each constructor function in the applicative specification there must be de-
structor and discrimination functions obeying the rules in 4.6 and 4.7. There is .
then a unique way of constructing each member of a sort using constructors alone.

For every observable type which can appear as part of the parameter type for
a constructor function there must be a way of declaring a finite collection of
variables which can hold any member of the type.

7.5 Variants

An extension to the technique considered in 7.2 allows certain inspector proce-
dures to be implemented without the use of constructor procedures (which write
to variables) and destructor procedures (which need to be applied recursively).
It applies if there is a unique constructor constant ‘k’ and if for all constructor
and inspector functions (‘c’ and ‘i’ respectively), in the notation of 5.6,

Vxg:tye

applicable[c] ( x, ) A applicablefi]) (¢ (x1) ) =

i(c(x))=kVi(c(x))=c(i(x))
In this case, each array element must store, besides the information noted in
7.2, an “upwards-pointing” array index indicating which array element (if any) is
constructed from the given one; also, the representation of a member of ‘S’ must
provide, beside the array index for its “latest” constructor, array indexes for the
results of applying the inspector procedures. This extension to the technique can
be used to implement queues for which applications of the constructor procedures
take linear time (unless there is only one object, which is defined according to 6.5
and which then does not need to be copied) but applications of the inspector and
observer procedures take constant time.
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8 Specifications

8.1 First applicative specification

FIRST_APPLICATIVE.LIST =
class

type
List

value
empty : List ,
add : ( Element x List ) = List ,
head : List — Element ,
tail : List — List ,
is_.empty : List = Bool

axiom forall e : Element ,1: List ¢
is_empty ( empty ) = true
head (add (e ,l)) =e,
tail (add (e,1)) =1,
is_empty (add (e, 1)) = false

axiom forall p : List = Bool -
(p (empty ) A

(Ve:Element,l: Listep(l)=p(add(e,l))))=
(V1:Listep(l))
end

8.2 First imperative specification

FIRST_IMPERATIVE_LIST =
class
value
empty : Unit = write any Unit ,
add : Element — write any Unit ,
head : Unit = read any Element ,
tail : Unit = write any Unit ,
is_empty : Unit = read any Bool
axiom forall e : Element ¢
O definite empty ( ),
O ( empty () ; is-empty ( ) = empty () ; true ),
O definite add (e ),
O(add(e);head () =add(e);e),
0 (add (e)ital ()= (),
O (add (e);isempty () =add (e); false )
end ’



8.3 Renamed first imperative specification

RENAMED_FIRSTIMPERATIVE_LIST =
use
empty. for empty ,
add. for add ,
head._ for head ,
tail. for tail ,
is_.empty. for is_empty
in FIRST_IMPERATIVELIST

8.4 Extended renamed first imperative specification

EXTENDED _RENAMED FIRST IMPERATIVE_LIST =
extend RENAMED_FIRST IMPERATIVE_LIST with

class
type
List = {1|1: Unit = write any Unit «islist (1) }
value
empty : List ,

add : ( Element x List ) = List ,
head : List = Element ,
tail : List — List ,
is_empty : List = Bool
value
isJist : ( Unit > write any Unit ) 5 Bool
axiom forall e : Element ,1: List ¢
empty = A () + empty- (),
add(e,1)=A()+1();add_(e),
head (1) =let e: Element + O (e =result (1(); head.()))ineend,
tail (1) =A()+1();tail-(),
ijs.empty (1) =1let b: Bool + O (b =result (1();is.empty-()))inb end
axiom forall p : List = Bool ¢
(p (empty ) A
(Ve: Element ,l: List e p(1)=>p(add(e 1))))=
(V¥ 1: List p(l))
end
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8.5 Completed imperative specification

COMPLETED IMPERATIVE_LIST =
class
value
empty : Unit = write any Unit ,
add : Element = write any Unit ,
head : Unit = read any Element ,
tail : Unit = write any Unit ,
is_empty : Unit = read any Bool
variable
list : Element-list
axiom
empty = A () list:= (),
add = X e : Element « list := (e ) ~ list
head = A ( ) » hd list
tail = A ()« tlList ,
is.empty = A () ¢ list = ()
end



8.6 Second applicative specification

SECOND_APPLICATIVE_LIST =
class
type
List
value
empty : List |
add : ( Element x List ) = List ,
head : List = Element ,
tail : List = List ,
is_.empty : List = Bool
value
eqlist : ( List x List ) = Bool
axiom forall e : Element , 1 : List »
is_.empty ( empty ) = true ,
head (add (e,l) ) =e,
eqlist (tail (add (e,1)),1) = true,
is.empty (add (e,l) ) = false
axiom forall p : List = Bool »
(V1 : List ,1;: List eeqlist (; ,h)=p (L )=p (L)) =>
(p (empty ) A
(Ve:Element,l: Listep(l)=p(add(e,l))))=>
(V1:Listep(l))
axiom forall ], : List , I : List »
eqlist (1, ,1;) =
(1s_empty (1, ) = is_.empty (12 ) A
(~ iscempty (1} ) A ~is.empty (1; ) =
head (1, ) = head (13 ) A eqlist (tail (1; ), tail (1)) ))
end

8.7 Renamed second applicative specification
RENAMED_SECOND.APPLICATIVE_LIST =

use
List_ for List ,
empty. for empty ,
add. for add ,
head. for head ,
tail_ for tail ,
is_.empty. for is_.empty _
in SECOND_APPLICATIVE_LIST
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8.8 Extended renamed second applicative specification

EXTENDED_RENAMED SECOND_APPLICATIVE_LIST =
extend RENAMED_SECOND_APPLICATIVE_LIST with
class

type
List =
{1]
l1: List_-infset »
1£{}A
V1,:List_,lo: List_el; €l=eqlist (14,l2)=(lz€l)}
value

empty : List ,
add : ( List x List ) = List ,
head : List 5 Element ,
tail : List = List ,
is_.empty : List — Bool

value
abslist : List_ > List
replist : List — List.

axiom forall e : Element ,1: List »
empty = abslist ( empty- ),
add (e,l) = abslist (add.(e,replist (1))),
head (1) = head. (repdist (1)),
tail (1) = abs.list ( tail_ ( repdist (1)) ),
is.empty (1) = is_.empty_ ( repdist (1))

axion. forall 1: List ,1; : List_ e
abslist (15 ) = {15 |1l : List_eeqlist (145 ,12)},
replist (1) €1

end

8.9 Second imperative specification
SECONDIMPERATIVELIST =

class

type
List

value
empty : List ,
add : ( Element x List ) = write any List ,
head : List — read any Element ,
tail : List — read any List ,
is_.empty : List — read any Bool
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value .
eqlist : ( List x List ) = read any Bool
value
has.list : List = read any Bool
axiom forall e : Element ,1: List »
O haslist ( empty ),
O definite is_empty ( empty ) A
( result is_empty ( empty ) = true ),
O haslist (1) =
definite add (e, 1) A
O haslist (1) = .
definite head (add (e, 1) ) A
( result head (add (e,l)) =e),
O haslist (1) =
definite tail (add (e, 1)) A
( result haslist (tail (add (e ,1)) ) =true ) A
( result eqlist (tail (add (e,1)),]l) = true ),
O haslist (1) =
definite is.empty (add (e,1l)) A
( result is.empty (add (e, 1) ) = false )
axiom forall | : List «
O haslist ( L ) A has list ( 1, ) =
(eq_list(11,12)=
(is.empty (1; ) = is.empty (13 ) A
( ~ iscempty (1; ) A ~ is_empty (1, ) =
head (1; ) =head (1, ) A eqlist (tail (1; ), taill (1)) )))
axiom forall I : List «
O definite haslist (1)
axiom forall e : Element , 1; : List , 13 : List «
O haslist (1, ) A haslist (1, ) =
(result (add (e, }; );haslist (1; )) =haslist (1, ))
axiom forall e : Element , ]; : List , l; : List »
O hasdist (1; ) A hasdist (1; ) =
(result (add(e,l; );head (1)) =head (1)),
O haslist (1; ) A hasldist (1, ) =
(result (add (e, ]; );tail (L)) =tail (L)),
O haslist (1, ) A hasldist (1, ) =
(result (add (e, l; );iscempty (1, )) =is.empty (12 ))
end
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8.10 Renamed second imperative specification
RENAMED _SECOND_IMPERATIVE.LIST =

use
List_ for List
empty. for empty ,
add_ for add ,
head_ for head ,
tail. for tail ,
is_.empty- for is_empty ,
eqlist_ for eqlist
in SECOND_IMPERATIVE_LIST

8.11 Extended renamed second imperative specification

EXTENDED_RENAMED_SECONDIMPERATIVE.LIST =
extend RENAMED _SECOND_IMPERATIVE_LIST with
class
type
List = { 1| 1: Unit = write any List_« islist (1) }
value
empty : List ,
add : ( Element x List ) = List,
head : List — Element ,
tail : List = List ,
is_.empty : List = Bool
value
eqlist : List x List = Bool
value
islist : ( Unit = write any List_ ) = Bool
axiom forall e : Element ,1: List ¢
empty = A () * empty-,
add (e,1)= X ()-add-(e,1()),
head (1) = let e : Element « O (e = result head_(1()) ) ineend,
tail (1) =A()tail.(1()),
is.empty (1) = let b : Bool + O ( b = result is.empty- (1() ) ) inb end
axiom forall p : List = Bool *
(V1 : List,lp: Listeeqlist (L ,L)=p(L)=p(L))=
(p (empty ) A
(Ve: Element,l: Listep(l)=p(add(e,l))))=
(V1:Listep(1l))
axiom forall }; : List , 1y : List ¢

eqlist (1, ,1; ) =let b: Bool + O ( b = result eqlist. (1, (),1};()))inbend
end ,
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8.12 Completed second imperative specification
COMPLETED_SECOND_IMPERATIVE_LIST =

class
type
List = Int
value
empty : List ,

add : ( Element x List ) = write any List ,
head : List = read any Element ,
tail : List = read any List ,
is_empty : List = read any Bool
value
eqdist : ( List x List ) = read any Bool
value
has list : List = read any Bool
variable
indexlist : Int
object
arraylist [1: List ] : class variable h : Element , t : List end
axiom
empty = 0,
add =
A(e,l): Element x List ¢
index list := if 0 > index.list then 1 else indexlist + 1 end ;
array.list [ indexlist | . h:=e;
array list [ indexlist ] . t :=1;
index list ,
head = A 1: List + arraylist [1]. h,
tail = A 1: List « arrayJist [1]. ¢,
is.empty = A1 : List « array list [1] . t = empty
axiom
eqlist =
/\(11,12)2 List x List «
is.empty (1; ) = is_.empty (12 ) A
(~iseempty (1; ) A ~ iscempty (1, ) =
head (1; ) =head (1, ) A eqlist (tail (1; ), tail (1, )))
axiom
haslist = A1: List * indexlist > 1 A1>0
end
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8.13 Third applicative specification

THIRD_APPLICATIVE_LIST =
class

type
List

value
empty : List ,
add : ( Element x List ) = List ,
head : List = Element ,
tail : List = List ,
is_empty : List = Bool

value
eqdist : ( List x List ) = Bool

axiom forall e : Element , 1 : List o
is_empty ( empty ) = true ,
head (add (e,1) ) =e,
eqlist (tail(add(e,l)),1l) = true,
is.empty (add (e ,1) ) = false

axiom forall p : List = Bool
(V1 :List ,l;: Listeeqlist (1, , b )= p(L)=p(L)) =
(p (empty ) A

(Ve:Element,l: Listep(l)=p(add(e,l))))=

(V1:Listep (1))

axiom forall 1; : List , 1, : List , 13 : List o
eqlist (1, ,1;),
eqlist (1; ,1; ) = eqlist (1,1, ),
eqlist (1; ,13 ) Aeqlist (1;,13) = eqlist (1; ,13)

axiom forall ¢, : Element , e; : Element , 1; : List , 1 : List »
eqlist ( empty , empty ),
e1=e2/\eq.list(11,12)=>
eqlist (add (e; ,1; ),add (e2,1;)),
eqlist (1; ,13 ) A ~is_empty (1; ) A ~ is.empty (1, ) =
head (1, ) = head (1, ),
eqdist (1, ,1; ) A ~is.empty (1; ) A ~ isempty (1, ) =
eq..hst ( 11 y 12 ) =
is.empty (1; ) = iscempty (13 )

end
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