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Abstract

This note presents a categorical treatment of multirelations, which is, in a loose sense a generali-
sation of both our previous work on the categories GC, [dP’89] and of Chu’s construction 4AxC
[Barr’79). The main motivation for writing this note was the utilisation of the category GC by
Brown and Gurr [BG90] to model Petri Nets. We wanted to extend their work to deal with mul-
tirelations, as Petri Nets are usually modelled using multirelations pre and post. That proved
easy enough and people interested mainly in concurrency theory should refer to our joint work
[BGdP’91}, this note deals with the mathematics underlying [BGdP’91]. The upshot of this work
is that we build a model of Intuitionistic Linear Logic (without modalities) over any symmetric
monoidal category C with a distinguished object (N, <,0,e o) - a closed poset. Moreover, if the
category C is cartesian closed with free monoids, we build a model of Intuitionistic Linear Logic
with a non-trivial modality ‘¥ over it.

Introduction

This note extends the treatment of relations in the category GC - which is an interesting model
of (Full Intuitionistic) Linear Logic [dP89] see sequent presentation in the appendixl - to multire-
lations over a category C where C is a category with a distinguished (ordered) object (M,<). In
particular we discuss the case of multirelations [Wins88] in the category Sets, where (N, <) is the
set of natural numbers N with its usual ordering.

The main motivation for writing this note was the utilisation of the category GC by Brown
and Gurr [BG90] to model Petri Nets. The idea of using category theory to model Petri Nets
originates with Glynn Winskel, who attributes some of the insights to Mike Fourman. Brown and
Gurr following Winskel’s lead and also Girard’s dictum that Linear Logic ought to relate nicely
to Concurrency, used the category GC to model Petri Nets, but as GC dealt with relations, they
could only account for particular Petri Nets, called in some of the literature elementary Petri Nets.
Elementary Petri nets are nets where the relations pre and post have multiplicities restricted to
0 — 1. It seemed to us that it should be easy to extend the treatment in (BG90] to modelling Petri
nets with multiplicities; that turned to be the case and people interested mainly in concurrency
theory should consult [BGAP’91]. This note deals with the mathematics underlying (BGdP’91],
which could not be all explained in that paper.

The construction described here can also be seen as a common generalisation of the construc-
tious of the category GC cf.[dP89] and of GAM Ek of Yves Lafont [YL’88], [LS'91]. Note that, as
the category GAM Ek can be seen as a special case of Chu’s construction Ay C - cf. the appendix
of x-Autonomous Calegories [Bar79] - this note compares GC and Chu’s category.

In the first section we present our generalisation of Chu’s construction, which we call the
category My C and compare the two constructions. We also state a proposition interesting from
the abstract viewpoint, but not explicitly used anywhere in the paper and whose proof, by Dominic
Verity, would make this note even longer. This proposition shows that one of Chu’s main results,
that his category was enriched over the base category C, is also true of our construction MxC. In
the second section, to motivate the richer structure on the category My C, we restrict ourselves
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to the case where C is the category Sets and N is the set of the natural numbers with its usual
order. That is the interesting case for Petri Nets applications. In the third section we describe
the multiplicative and additive structures of My C in the general case. In the fourth and longest
section we discuss Linear Logic modality ‘!" for MyC under the strong assumption that C is
cartesian closed with free commutative monoids. This section is a straightforward generalisation
of our previous results for GC, but the calculations are slightly more complicated and quite
lengthy. Finally, in the last section we describe some of the possible generalisations of My C under
investigation and their possible applications.

This work was first presented at the Edinburgh Workshop in Concurrency, Petri Nets and
Linear Logic in April 1990 and subsequently at the CLICS review meeting in Paris, September
90. Many thanks to these audiences, in particular to Martin Hyland, Jean-Yves Girard, Carolyn
Brown, Doug Gurr, Harold Schilinx, Andy Pitts and Dominic Verity. Thanks also to Peter Dybjer,
who made me write about the relationship between My C and GAM Ex.

1 Chu’s Construction Revisited

In this section we define a category My C and compare it to Chu’s original construction in {Barr'79].
To construct My C we assume that C is a symmetric monoidal closed category and N is a distin-
guished object of C equipped with a partial order.

The objects of the category MyC are triples (U, X, a) where U and X are objects of C and
U® X 3 N is a morphism in C. We write this triple as (U < X) and call it the object A.

To define the morphisms in My C, first note that the order in the object (N, <) of C induces
an order on the homset C(U, N) given by

for f,goU—-N f<g iff Yuel f(u) <g{u)

Then for objects 4 = (U & X) and B = (V & Y) in MyC, say that a morphism from A4 to B
corresponds to a pair of morphisms in C, (f,F), f: U — V and F : Y — X such that, in the
following diagram,

URF
Uey —27 _vex

f®Yl [a

VoY N

we have c o (U ® F) < (f ® Y) o # as morphisms in C(U ® Y, N).
Diagramatically we have:

[
Ue——r—mX

'
fl 4 lF Vu@yeU®Y a(ud Fy) <B(fu®y)

14 Y

g

The data above can be collected in the following definition.

Definition 1 Given a symmetric monoidal closed category C with a distinguished object (N, <)
the category My C consists of:



o objects are triples (U, X, a) written as (' = X), where U € X = N is a morphism in C;

o morphisms are pairs of maps (f, F) inC, f:U — V and F:Y — X, such that in the following
diagram

, U®F B}

UQY — — U X
vy a

VeovY N

we have a o (U@ F) < (f ®Y) o B as morphisms in C(U @ Y, N).

Identities in My C are identities of C in each coordinate, composition is given by composition
in each coordinate and associativity comes from the associativity in C. Thus we have the following
proposition.

Proposition 1 The description above defines a category MnC.

The only thing to check is composition of morphisms (f, F): 4 — B and (g, G): B — C, which
is easily done using the diagram:

Ue———X

I
f F YVuRyelURY a(u® Fy) < B(fu®y)

9 G YwzeEVQRZ Bv®Gz)<v(gv®2)

We clearly have composite morphisms gf: U — W and FG:Z — X in C. Now for u € U and
z€ Z,wehave a(u® FGz) < B(fu®Gz) < v(9fu® z), which shows that (9f, FG) is a morphism
in MxC. ]

Note that composition really corresponds to the following diagram:

UeG U®F
4 'U®Y ® U X
VeZz Vov
Ved
g2z > <
WoZzZ N
v



1.1 First Comparison

It is clear, for those who know Chu’s construction,[Barr'79}], that the category Ay C is - in one
sense - an easy generalisation of it. To keep this note self-contained we recall the definition of Chu’s
category, which he calls 4y - A4 for autonomous - . There is a small clash of notation, as Chu uses
X for the distinguished object, which we call N and he does not mention the base category C,
whereas we want to have it explicit. Thus we write Chu’s category as AxC. The category AxC
can be constructed over any symmetric monoidal closed category C with pullbacks, see definition
below.

Definition 2 Given a symmetric monoidal closed category C with pulbacks and a chosen object
N, the category AnC consists of

o Objects are triples (U, X, @), where U @ X = N is a morphism in C;

o Morphisms in Ay from an object UQX = N to an object V@Y 2 N are pairs of morphisms
inC, (f.F) f:U —V and F:Y — X such that the following diagram commutes.

UQF
U®Y—~—§>———:-U®X

f®1’|1 o

Vey

The commutativity of the diagram above means that for all u® y in U®Y one has a(u® Fy) =
B(fu ® y) in AxNC, when we only ask in MyC that a(u ® Fy) < B(fu ® y), so MyC is a
generalisation of AyC.

On the other hand, My C ‘looks like’ a special case of Chu’s construction, as we need a partial
order on the object N, whereas for Chu’s construction any object in C will do. But one could say
that Chu is using the trivial partial order in N, the one which says n < m iff n = m.

To compare Chu’s construction with GAM Ek note that the category Sets is trivially symmetric
monoidal closed - as it is cartesian closed. Also instead of writing N for the distinguished object
write K to make explicit the analogy with vector spaces. Thus GAM Ek is A g Sets in our notation,
but note that GAM Ex arises from a more restricted case in Linear Algebra, where U is a vector
space over a field K and X is the collection of linear functionals on U, U*.

To compare My C with GC, first recall that we can write usual relations on Sets either as a
subset of a product A > U x X or as a function into 2, I/ x X <= 2. Thus to talk about relations in
a general categorical set-up one can use either subobjects of a (possibly tensor) product A = U®X
- call it the ‘subobject’ approach - or maps of the form U@ X = 2 if your category has an object 2 -
call it the ‘span’ approach. In our previous work with GC [dP89] we used the subobject approach.
Thus objects in GC are (classes of equivalences of ) monics A >+ U x X and morphisms are pairs
of maps in C satisfying the same conditions as the ones for My C.

Each approach to ‘categorical relations’ has advantages and disadvantages. For instance, using
the ‘subobject’ approach one can talk about ‘decidable’ and ‘undecidable’ relations, if your am-
biance category C has enough structure. This notion of ‘decidability’ comes from topos theory,
[PTJ page 162]. There is an interesting problem to look at if the constructions of this paper are car-
ried inside a realisability universe, for instance the effective topos, where other (recursion-theoretic)
notions of decidability could be used.

On the other hand, using the ‘span’ approach and looking for instance at M>C - where C is
a ccc with coproducts - all your objects are decidable. Given a relation a: I/ x X — 2, you can
always produce &: U x X — 2, saying that uar iff it is not the case that uazr.



Thus we can draw the following diagram

MyxC

AyC GC

l
GAMEg

and summarize as follows:

e The category GAM Eg is AnC, where Ax(—) denotes Chu’s construction: N is the set K
and C is the category of Sets.

o The categories ANC and MxC have the same objects, but there is an inclusion of the set of
morphisms. The morphisms of AxC are contained in the morphims of MxC, thus for any
pair of objects A and B

AnC(A,B) C MNC(A, B)

¢ The morphisms of My C and GC are the same for any two objects A and B,
MyC(A, B) = GC(A, B)

but the objects of GC can only be compared with the objects of M>C. For objects in M,C
we have |M2C| C |GC|, as all objects in M-C are decidable.

¢ Both categories Ay C and My C are symmetric monoidal closed categories with finite prod-
ucts and coproducts. The symmetric monoidal closed structures are very similar, but different
- more about that in section 3.

We now state a proposition, not necessary for the rest of this note, whose proof can be found
n {Ver91l]. The reason for mentioning the proposition is that its analogue for Ay C was one of
Chu’s main results in [Barr’79]. Note, however, that to prove this proposition, we assume that C
has pullbacks as well as being a symmetric monoidal closed category with finite products.

Proposition 2 The category My C is enriched over the category C.

The next step lS to define more structure in My C. Given objects A and B respectively,
(U & X) and (V ~Y) in MyC, we want to define an internal hom [A4, B]. The object [4, B]
should look like (VY x XY 2P U x Y), but the problem is to define a map

a—oBVUx XY xUxY —N

with good properties. By good properties it is meant mean that we should be able to define an
adjoint tensor product to the internal hom. That can be difficult in the general case, but if C is
Sets and N really is N the set of natural numbers it is easy. We start with the easy case in the
next section and then do the more general one in section 3.



2 The Category MSets

If we consider the construction of My C where C is the category of sets and usual maps Sets
and V is the set of natural numbers N, then our objects (U = X)) correspond to multirelations
U x X < Ncf. [Wins]. Recall that Sets is not only cartesian closed with coproducts, but a topos.
A morphism (f, F): A — B in AMnSets corresponds to a condition on multirelations a and 3
saying that
YuelUVyeY alu, Fiy) < 8(fu,y)

as natural numbers, or equivalently that Yu € U,Vy € Y — a(u, Fy) + 3(fu, y) > 0.

Moreover the set of natural numbers N has some extra structure, apart from its usual order,
that allows us to define a symmetric monoidal closed structure in MnSets. For a start we can
add natural numbers, so we can define a tensor product in MxSets, which we call from now on
MsSets. Before defining the tensor product, we summarize the discussion above in a definition.

Definition 3 The calegory MSets consists of:

o Objects are triples (U, X, a) written as (U & X), where U x X = N is a function in Sets,
that is a multirelation.
e Morphisms in MSets from an object U x X =N or (I & X) to an object V x ¥ 2 N or

(v s Y') are pairs of morphisms in Sets, (f, F) where f:U — V and F:Y — X are such
that

That means that Vu € U,Yy €Y — a(u, Fy) + 8(fu,y) > 0.

This definition is just an instance of the definition of MxC in the first section, so we have a
category. Also recall that both a(u, Fy) and B(fu,y) are natural numbers, hence the condition

above makes sense. We use the usual addition of natural numbers to define a tensor product in
MSets:

Definition 4 Given two objects (U < X) and (V & Y) tn MSets we define A® B their tensor
product as the following object:

a®p v
A@B=(UxVe—V XV x¥Y)

where the multirelation “a @ 3” is given by a ® B(u,v, f,9) = a(u, fv)+ B(v, gu).

To give a formal definition of a ® 3, consider the composition:

“(ev, ev)” ax g +

UxVxXVxylU UxVxXxY NxN N

Note that we are using the cartesian closed structure of Sets - to write XV and ¥ - and the
monoidal structure ‘4’ of N to define a @ 3.



This operation clearly defines a bifunctor, which is a tensor product. Associativity and com-
mutativity are straightforward and the object I = (1 2 1) - where the multirelation 1 x 1 N
‘picks’ the 0 of N - is the identity for this tensor product.

Actually this odd-looking tensor product, analogous to the one in GC, is the right one to prove
monoidal-closedness of MSets with respect to a (reasonably) intuitive internal-hom, which we
proceed to define.

Definition 5 Given two objects (U % X) and (V L Y) in MSets we define [A, B] their internal-
hom as the object,
-8

[A,B] = (VY x XY

UxY).

The multirelation o —o )7 is given by (@ —o B)(f, F,u,y) = ~a(u, Fy) + B(fu,y), where the
dotted subtraction is truncaled subtraction, that is ~a+ 8 = —«a ifa < 3 and 0 otherwise.

The truncated subtraction in the definition above is very intuitive after reading Lawvere’s “Met-
ric Spaces, Generalised Logic and Closed Categories”[Law], where the same kind of construction is
done using the positive real numbers instead of the natural numbers.

Proposition 3 The construction above defines a bifunctor [—, —]: MSets®® x MSets — MSets.

Having defined an internal hom and a tensor product we have the obvious:

Theorem 1 The calegory MSets is a symmetric monoidal closed category with respect to the
tensor product @ and the internal-hom {—, —] defined above.

The proof is simple, one has to verify the natural isomorphism

HomMSets(A @ B, C) = HomMSets(A’ [B, C])

This can be done by looking at the diagrams

a®
UxV P xvyv v o —3  x
f (Fy, Fa) (f, F2) F
-0
w T A WV xvY? i VxZ

and calculating the sums. If the morphism (f, (Fi, F2)) is in Hompggats(A ® B,C), then we
know —(a ® §) + v 2 0, which means —a(u, Fi2v) — B(v, Fazu) + 7(f(u,v),z) > 0. But to
show that the corresponding morphism ((f, F2), F1) is in Hompggets(4, [B, C]) we have to show
—a + (8 —o v) 2 0, which corresponds to —a{u, Fi(v, z)) + [~B(v, Fauz) + ¥( fuv, z)] > 0, which
we know, if transposing is allowed. a

In the next section we generalise the constructions of this section to categories other than Sets
and to N’s other than the set of natural numbers.

3 Structure on MyC

The categorically-minded reader may have noticed that we used an “adjointness situation” in N
to define the symmetric monoidal closed structure in MSets. That is we have used the facts that



in Nwecansayn<m, alson+m &N and =n+m &N - that is *+’ and ‘=" are bifunctors and
there is an adjunction: _
~(m+n)+p>0iff =m + (<n+p)>0.

Thus to generalise the construction of MSets we first define “a symmetric monoidal closed
poset” (N, <.0, —, ¢), then we show how the closed structure of ¥ allows us to define a symmetric
monoidal closed structure in My C, if C is symmetric monoidal closed with products.

We should mention that Flagg has, independently, the same definition of a (symmetric monoidal)
closed poset in [Fla’90], but he really considers integral closed posets, the ones where the identity
for the monoidal structure ‘e’ is also the identity for an extra ‘additive’ structure, exactly the
condition we want to avoid. We give our definition in two easy steps.

Definition 6 An ordered monoid (N, <,0,¢e) is a poset (N, <) with a given compatible symmetric
monoidal structure (N,o,e). The structures are compatible in the sense that, if a < b, we have
aocc<boc, forallcin N.

These are called ordered monoids in Concurrency Theory, but could as well be called and posets
as in [HdP’91]. Note that to be very precise we should call the monoids above, symmetric ordered
monoids, see [dP'91] for a slightly more general notion.

Definition 7 Suppose (N,<,0,e) is an ordered monoid and a,b € N. If there exists a largest
z € N such that aox < b then this element is denoted a —o b and it is called the relative
pseudocomplement of @ wrt b. A closed poset is an ordered monoid (N, <,0,¢) such that a —o b
ezists for alla and b in N.

Since we defined a closed poset to be a restriction of the notion of a symmetric monoidal closed
category to the category of Posets, we have an obvious proposition:

Proposition 4 A closed poset (N, <,0,e,~0) has the folowing properties:
1. aob<ciffa<b-—oc
2. Ifa<b, then for anycin N,c oa<c—obandb—oc<a-oc;
3. As ‘e’ is the identity for 9 ace =a < a impliese <a—oa for anya in N.

Note that set of the natural numbers with its usual ordering and operations - addition and
truncated subtraction - defined in section 2 is a closed poset (N, <, +,0, =). For other interesting
examples of closed posets see [Flagg].

Having done the first generalisation - to consider a closed poset, instead of the set of natural
numbers - we now proceed to generalise the category Sets to any symmetric monoidal closed
category C with finite products. Thus, suppose that C is a symmmetric monoidal closed category
with finite products and that (V, <, 0, e, —0) is a closed poset as above. Write [-, =] for the internal
hom and ® for (its adjoint) tensor product in C, as well as x for the cartesian product. Then
we can construct the category My C as in section 1 and one of the possible symmetric monoidal
structures of My C is given by:

Definition 8 Given two objects A = (U & X) and B = (V £ Y) in MNC we define AQy B
their tensor product as follows:

(e ® B)ar
ARy B=(UBV

V. X]x [U,Y)])

The morphism {a® B)ar” intuitively says (x2Mm(u@v,(f.g9) =c(u® fr)oBv® gu), where
o is the monoidal structure in (N, <,0, ¢, —o).



To define formally the morphism (a © 3)ys consider the following map, which we call @:
CeV)o(VXIxUy) "2 reve 1 x]" regx SN

Similarly we define (U@ V) © ([V, X] x [T, Y]) 2. N. Then to get ¢ ® F we pair @ and 7 and use
the monoidal structure ‘o’ of N, as follows:

CeV)o(V.X]x[U,Y]) 222 N x N N
Proposition 5 The consiruction above induces a bifunctor,
Oy MyC x MNC — MNC

covariant in both coordinates, which is a tensor product. The identity Ins is given by (I & 1), where
the morphism I @ 1 =1 = N just picks up the identity ‘¢’ from the closed poset (N, <,0,e,—0).

Associativity and commutativity of @as are easy to prove. Note that we are using the tensor
product ® and the categorical product x in C, as well as the tensor o in N to define the tensor
product ®@ar in My C. Note also that @y is not in general a categorical product, for instance we
have no projections, even if C is a cartesian closed category.

In our previous work with the categories GC, since C was cartesian closed, it was not clear that
only a tensor product was necessary in the first coordinate, whereas a real categorical product was
necessary in the second coordinate, to make the definition above work. But as before, this tensor
product @a is designed to make My C monoidal closed, if we consider the following internal-hom.

Definition 9 Given two objects A = (U & X) and B = 4 L4 Y) in My C we define [4, B]y
their internal hom as follows:

(c —°‘ﬂ)M

[Aa B]‘[ = ([Uv V] X {Y, X] U®Y)

The morphism o —o 3)ar” intuitively says (o —o 8)pr({f, F),u®y) =a{u® Fy) —o B(fu®y),

where —o is the ‘internal-hom’ in N.

The formal definition of the morphism (& — 8)4s is similar to the definition of @,y in MnC. First
consider maps @ and §:

(UVIx [V XNeUeY) "2 I vieUey “¥Y vey L N
(WVIxv,xDeWUey) " v, X]eUoy "2 yeox 2. N

Then to obtain (o —o #)ar we pair @ and 3 and compose the result with —o, considered as a map
from N x N to N:

(VI XD UeY) T2 Nx N 2 N

As an illustration of how the structure of the closed poset N relates nicely to the categorical
structure of C, note that if we consider the internal hom [A, A]ss that is the object

([0, U] x [X, X] °2°U @ X)

there is always a morphism from Iy to it,

Ue X

[U, U] x [X, X] -

as C is symmetric monoidal closed with products and ¢ < a(u @ z) — a(-u Q).

9



Proposition 6 The construction above induces a bifunctor [—, =]y, contravariant in ils first co-
ordinate and covariant in its second coordinate.

Having defined both a tensor product ®ys and an internal hom [—, —]ar, we want to prove that
they provide My C with a symmetric monoidal closed structure.

Theorem 2 The category MxC is a symmetric monoidal closed category.
The proof is very simple, to verify the natural isomorphism:
Hom‘"hlc(:i Ry B,C) = HomMNc(A, [B,Clu)

we lock at the diagrams

UeV V.X]x Y] U X
| |

fl (f1, f2) _ l(f,fz) h
A zZ  [VW]x[ZY] P27 ez

If the morphism (f, (f1, f2)) isin Hom (A® B,C), then given u@vin UQ® V and z in Z, we
know (¢ ® B um(u® v, {fiz, f22)) < ¥(flu ® v), 2).

That means, by definition of tensor, that a{u ® fizv)o (v @ fazu) < v(f(u @ v) ® z). But as
N is a closed poset,

a(u® fizv) o f(v @ f22u) L W(f(u@v) B 2) < a(ud fizv) < F(v© fazv) = Y(f(u®v)Q 2)
Now to show that ({f, f2), f1) is in Hom(A, [B, C]ar) we have to show
a(u® fi(v,z)) (B — 7)({fu, fau),v® 2)

But (8 — 7)({fu, fou),v®z2) = B(v® fruz) — y{fuv @ ) thus we know exactly what we need
to show, if transposing is allowed. a

This proof is basically the same as the one in section 2 for Sets, which shows that we came up
with the right definitions for the generalisation proposed.

3.1 Second Comparison

In this section we want compare the symmetric monoidal closed structures of Ay C and MyC, but
it is slightly easier to compare AySets and My Sets. As we noted before the two categories have
the same objects, eg

A=UxX"-Nand B=VxY L. N

and for morphisms
AnSets(A, B) C MySets(A, B)

as any morphism in Ay Sets satisfies not only a(u, Fy) < B(fu,y) but also the converse. The
internal-hom and the tensor product are very similar in shape, but different enough. To make this
comparison meaningful we recall the structure of Ay Sets albeit in a concise way. More details
can be found in [Barr79], [Barr91], {L88], [LS'91].
The definition of the internal-hom [A. B]. in AySets, for objects A and B is given by the
object
(@~ B)a

(L£.(A, B)

UxY)

10



to use Lafont’s notation. Chu writes £,(4, B) as V(.4, B). The object £;(A, B) is a subset of the
internal hom [U/, V] x (Y, X], which as Sets is cartesian closed, can be written as VU x XY. The
subset £,(4, B) is defined by the following pullback:

Li(A, B) 144
l |
l |~
XY NUxY
aY

which intuitively means that
L£1(A,B) ={{¢1,02) | 61:U — V,¢2:Y — X and a(u, ¢=y) = B(¢14,y)}

The diagram above is a pullback so, in particular, it commutes. To define the morphism
(e — B)a4 we want a map
(0 0B L1 (A, By x U xY — N

so nothing more natural than taking the transpose of either of the two composition maps in the
square above.

The definition of tensor product in Ay Sets is similar, for two objects 4 and B, A4 B is
given by the object

(e®B)a
U xV—2"2 r.4,B)

where L£5(A4, B), in Lafont’s notation is a subset of the internal hom [V, X] x [U, Y] given by the
following pullback:

L2(A, B) XV
| {
yU NUxV

which intuitively means that
‘CZ(A’ B) = {(¢1)¢2> I 61:V — X,¢2:U — Y and a(u,¢1v) = ﬂ(qubzu)}

That is equivalent to saying that £,(A, B) can be ‘represented’ by maps ¢:UxV — N,¢;: U —
Y, ¢2:V — X such that
O’(U, ¢20) = ﬁ(v! ¢lu) = ¢(uy v)

But note that the map U x V' — N is redundant, as it can be defined in terms of ¢1 and ¢a.
As before, to define the tensor we want a map

a®@0:UxVxLyA,B)— N

so we take the transpose of either of the two composition maps in the pullback square. - _
Chu does not explicitly describe the tensor product, as it can be defined in terms of negation,
as A®a B =[4, Bt]*
Since AxC is a subcategory of MyC, the two symmetric monoidal closed structures can be
compared within My C. '

11



Proposition 7 The tensor products (a £ 3) s and (aD3) 4 can be related by the following diagram:

a® ), ]
UxV ( Y XYV xyt
|
11 i
(a @B)A
UxV La(A, B)

Similarly the internal homs can be related via the diagram

(a—o,@)A N

Li(A, B) UxY
T

i 1

VU xy 2B L

In particular, the identities for the tensors can also be compared

] 1

id

1 ——N

One very nice thing about the category AnSets or GAMFEg is its relationship to Linear
Algebra, cf. [LS'91]. Seely remarks in [See] that when Chu was writing about symmetric monoidal
closed categories, Linear Logic had not been invented by Girard. Hence there is nothing about
additives - nor about a ‘" comonad - in Chu’s original construction. Also, when following Girard’s
and Hyland’s suggestions in Boulder 87, I wrote about the categories GC as models of Linear
Logic, I knew nothing about Chu’s construction. But additives were very easy to construct in GC,
as they are in My C.

3.2 Additive Structure in MyC

If C has finite coproducts - as well as being symmetric monoidal closed with products - and N
is a closed poset as before, products and coproducts in My C are very easy to define using their.
counterparts in C. The method is the same used for GC and subsequently for GAM Ex and
AyxSets.

Definition 10 Given two objects (U & X) and (V 4 Y) in MnC we define their categorical
product as follows:

ALB=(UxV**¥ x4+v)
The morphism “a&B” is given intuitively by a&3({u, v), (;?)) = a(u, ) (v, y)

12



But we do no operation to a(u, z) and (v, y), as we either have (z.0) or (¥, 1), but never both,
by definition of the coproduct X +Y.
More precisely a& 3 is given by the morphism

. Mt ' (3)
(UxV)o(X+Y)=(UxV)8X+{UxV)8Y ————U@X+VOY ——N

It is easy to check that this operation defines a bifunctor with identity given by 13 = (1 = 0) - the
empty multirelation - and that a& 3 is a categorical product. The projections are projections in the
first coordenate and canonical injections in the second coordinate. Similarly we have coproducts.

Definition 11 Given two objects (U =~ X) and (V L4 YY) in MxC we define their categorical
coproduct

AeB=U+V*¥ XxY)

The morphism “a @ 37 is given by a & /3((‘:’?), (z,9)) = a(u,z)- B(v, y)

Again it is easy to check that the bifunctor “@” provides categorical coproducts and that 03 given
by (0 - 1) is the initial object.

Proposition 8 The category MnC has binary products and coproducts.

It is clear that the category My C above provides a model for Intuitionistic Linear Logic, as
described in the appendix.

Theorem 3 The category MxC is a categorical model of Intuilionistic Linear Logic.

The proof is trivial, as the constants Ipy, 13, 0y and bifunctors ®, —o, &, & were defined for it.

]

Observe that the additive structure of Ay C is the same as that of My C - or GC for that
maftter.

4 Modalities in MyC

This section should be considered as ‘work in progress’, as we really would like to have the results for
a category C symmetric monoidal closed with products, instead of for a cartesian closed category.
But the calculations seem to be correct and the case of C cartesian closed is the important one for
the Petri Nets applications.

If we assume that C is a cartesian closed category - thus a fortiori a symmetric monoidal closed
category with products - with free commutative monoids we can provide the linear logic modality
‘Y for My C as a model of Intuitionistic Linear Logic. Note that, in particular the category Sets
satisfies all these conditions.

The general idea - analogous once more to the previous work on CG - is to define comonads T'
and S in MyC and compose them to get another comonad called suggestively ‘" in My C. But
comonads T and S come from monads (—)V, (=)* and their composite (<)Y, in C. Thus we have
subsections for T, S and ‘", as well as one subsection on the logical properties of the comonads.

Recall that for C a cartesian closed category My C simplifies slightly as it has as objects maps
U x X =~ N and as morphisms pairs of maps (f, F) in C f:U — V and F:Y — X such that in
the following diagram

13



UXxY ——Ux X
| I
fx}"l la
VxY N

we have o (U x F) < (f x Y)o 3. Also we recap briefly our constructions of the last section, for
C cartesian closed: '

» the tensor product 4 @ar B in MnNC is given by
(U x V2 XY x vX)
with identity I = (1 S 1);
o the internal hom [A, B]ys is given by

(VU x XY 2Py xy),

o categorical products A& B are
(UxVEX4+Y)
with identity I = (1 < 0);
¢ and coproducts A @ B are
U+VE3XxxY)

4.1 The comonad T

The comonad T is as easy to define for My C as it was for GC. Recall that any fized object U in
a cartesian closed category C induces an endofunctor

(W:c—cC
X — Xxv
] .
Y — Yv

This endofunctor has a natural monad structure where the unit of the monad X 2t XU is given
by the transpose of the second projection [’ x X 22 X and the monad multiplication (XU & xv

L XS o
is given by precomposing with the diagonal map A: U/ — U x U, thus (XV)V = yUxv X0 yv

We summarize that in the definition below.

14



Definition 12 For each object U in a cartesian closed category C we have a monad (( )V, n1, 1)
in C given by the natural transformations below:

X" xv xuxv B v

As they are monads, the endofunctors ( )V make the following diagrams commute:

N
XU nxv XUxU (m) YU XUxUXU XUxU
#11 / #{fr{ {/11
Ve
‘YU XUXU — ‘YU

B

One important fact about the monads (=)V is that they also make the following diagrams
commute.

Fact 1 The following diagrams commute.

Uxn U x
UxX —— 2 UxXU Uxxuxt ~7H g oxu

(w1, ev)

l (m1,ev)  {m,ev)

UxX Ux XV UxX

(71, ev)

That is a consequence of the fact that ( )V is the monad induced by the adjunction
< AUil-IUu € >:C — C[D']

also written as Ay - Iy, cf. [LSc’86]. We use the monads ( )V in C to define the comonad T in
My C and the fact above is used to show that T has a comonad structure.

Definition 13 The endofunctor T:MyC —MxC takes an object (U < X) of MyC to the object
(U T XY), where intuitively the object Ta is given by Ta(u, f) = a(u, fu).

In other words, the object T'e is given by the following composition:

(71, ev)

Ux XV

Ux X N

If (f,F): A— B is a morphism in MyC, then T(f, F) is given by

Ta

Ue————n XV

|
d
Ve———V

T3

Fo()of

15



To show that T' is an endofunctor in My C we have to check the following diagram,

UxY/ . UxFv .
UxYV X UxY" UxX*
fxyv (my,ev) = (71, ev)
. v ) DV x F v
] UXY ———————— Ux X
|
l fxy > a
VxY Y ———— VXY — . N
{71, ev) 8

The functor T has a natural comonad structure inherited from the monoidal structure of the
functors (=)V for U in C. Thus we have natural transformations €:TA— Aand 6§;:TA — T34
in MxC given by,

Ta Ta

U XY Ue——_ XU

| |
11 m 11 3]
v—S%  x L yuxw

To show that these are morphisms in My C we note that the following diagrams commute:

X U x
UxX T uxxv Uxxuxv 27 xu
|
1 Ta 11 Ta
UxX N U x XUXU N
@ T a

Commutativity here is a consequence of the commutativity of the diagrams in fact 1.

4.2 The comonad S

Now to define a comonad S we assume free commutative monoids in C, analogous to what we did
for the categories GC.

Suppose C has strong commutative free monoids. By that we mean that there exists a functor
F:C — Mon¢C, which is left-adjoint to the forgetful functor U': MoncC — C and the monad
induced by this adjunction is a strong one. In more detail, recall that:

Fact 2 The category MoncC consists of (commautative) monoid objects in C. That is objects in
MoncC are triples (Y, ny, py) where ny:1 — Y and py:Y xY — Y are morphisms in C such

16



that the following diagrams commute:

n (n) A
Y%l —m Y x¥Y 1 xY Y<xYxY —YV xY
B ]
Y YxY Y

Morphisms in MoncC are morphisms in C, which preserve the monoidal structure.

There is an adjunction < F,U,n,¢ >:C — MoncC, also writen as F 4 U, which says that a
map in C corresponds by a natural isomorphism, to a monoid homomorphism f in Mon¢C, as
follows:

XL Uy, py)

(‘Y-) UX':IJX') L (y: ny, I‘Y)

We write ( )* for the composite functor I/ - F: C — C. Thus we have an endofunctor *: C — C
given by,

X — X
f f*
Y — Y-

Intuitively, X* consists of commutative finite sequences of elements of X, hence we write an element
of X* as T, meaning T = (x,,z2,...,zx) and f is just f in each coordinate. We summarize in
the following definition.

Definition 14 We denote by (( )*, 72, u2) the (strong) monad in C corresponding to the adjunction
F 4 U, which is given by the endofunctor ( )* = U - F and the natural transformations

N2 2
X X X~ # X
satisfying:
12 (n2)
‘X’- ‘\’.l ‘\’- X-t. Xl.
|
7 #3 l #2
‘X'- J"- ‘\’-
H2



The unit of the adjunction F 4 [, the natural transformation n2: C — C takes any object X
of C to the carrier of the free commutative monoid .X'=. Intuitively 72 makes a singleton sequence
of the element = of .X and u» transforms a sequence of sequences into a sequence.

Note that each free commutative monoid (.X'*, n., p.) comes equipped with mapsin C, 1 2= X~
and X" x X* 22 X~ where 7. intuitively picks the empty sequence () of elements of X and pu.
concatenates - commutatively - sequences of elements of X F; and T». The following diagrams
commute:

1 x X~ X" x X~ X~ x1 X" xX"x X" — X" x X"
l .
Be pe x X l B
X* X" x X X
L

The co-unit of the adjunction ¢: MoneC -— Mon¢C takes any free commutative monoid
(X, 7%, px) arising from an arbitrary commutative monoid (X, n, gt} to itself. Thus

e FU(M, n,p) = (M*, px, ux) — (M, n, p)

where the morphism € corresponds to ‘iteration’ of the original multiplication p.

If the category C has a 0 object, then we have 0* = 1. In particular, if we are thinking of C as
Sets and NV the set of natural numbers with its additive monoidal structure (N, 0, +), as in section
2, we have e(N*,n2,12) = (N,0,4). Intuitively that says e(( )) = 0 and €({ny,na,...,nz)) =
ny+na2+...+ng, which implies ¢({n)) = n. More in general, if NV is the closed poset (V, <, 0, e, —0)
we have e(N=, 7., p.) = (N,e,0) and

e({ny,na,...,ne)) =nronyo...on; and €(( }) =e.

In this stronger version the monad (( )*,n, u) is a strong monad, so there are morphisms
yX 2t y=XT
Because we are considering free commutalive monoids in C we have
(X+Y)y=X"xY"

We also have a natural transformation m: U~ x X* — (U x X)*. Intuitively m takes a sequence of
u’s and a sequence of r’s to a sequence where each u is followed by a single z as follows:

m(u,7) = (T, ..., usT) = {(wzy, - S UIEm, . UETY, . AUETy)

Using the natural transformations m we can define the endofunctor S below.

Definition 15 The endofunctor S:MyC —MyC takes an object (U & X) of My C to the object

(U S X*). where, as intuitively T is (£, z2,...,2,), Sa(u,T) means afu,z;) and a(u,z2) and

. and ou, z,).

The object S of My C is defined by the long morphism
U x X "X U= x x- . (U x X)® 2NN

18



If (f,F):A— B is amorphism in MyC, S(f, F) is given by (f. F7) as follows

Sa
U X
l T
I
S3
Ve——trou YV~

As an illustration of the conciseness of the notation used, recall that the small diagram above
corresponds to the big one below:

. UxFr .
UxY* UxY* Ux X~
T xY* na X X*
: U- x F- L
UsxY~ U* x X-
m m
i
T)’)XY. m . (UXF)' -
UxY" U* xY* (UxY) (U x X)*
Fxy frxye (f x Y)" o
| i |
VxYr VexY" (VxY) N
X YT I

N

To show that S is an endofunctor, remember that for the square most down to the right, we use
that the functor ( )" preserves the order on morphisms in C, for the other squares we have equality.

The endofunctor Se has a natural comonad structure given by the monad structure of ( )* in
C. Thus we have morphisms €3: SA — A and §,: S4 — S?4 in My C given by

Sa Sa
U X- Ue—s— o X*
1 [’72 1 III'.’
UVe—S% X v 5 .

To show that the above are morphisms €; and 8, in My C we note that the diagrams below
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commute, which is a consequence of the following fact.

U7 x 19 U x Ho
Ux X — U x X" Ux X ——— U x X"
| | l |
11 isa 11 lSa
UxX —4m8— N Ux X N
a S%a

Fact 3 The following diagrams commute:

U x 9 7]'_7XX'
UxX—LUxX'

| -

U~ x X~

N
N ‘ N 2 (U x X)"
m
U= x X~ - (U x X)"
I
nx X~ ar
|
UxX- N*
F Sa
Uxu
I
U X —2 N
I
T’ x X!-
U x X
m
1 (Sa)"

(Ux Xy ——— N~

Note that the first diagram commutes because the transformation m applied to singletons is a
singleton, m({u}, (z)) = (ux); «* applied to a singleton is a and €((n)) = n. The second diagram
says we can transform a sequence of sequences before applying the endofunctor S a second time.

4.3 The comonad ‘"

Now we want to compose the two comonads T and S above, that is we want to define as SoT.
To give an intuitive definition is easy:
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Definition 16 The endofunctor :MxyC —MyC takes an object (U 3 X) of My C to the object
U 3 XY, where intuitively if :U — X* and éu = (z1,Z2,....2a) then la(u, @) is given by
afu,z1) and a(u, z2) and ... and a(u, z,).

But to define !a formally is a long process. First we define a composite monad ( )'U in C.
Note that there is an endofunctor in C given by the composition of the monads ( )V and ().
Thus ( )*Y: C — C takes

X - (XY
| e

Y o= (Y)W

The endofunctor ( )*Y has a natural monad structure in C, its unit X -2~ XY is given by the
composition of the units n; and n; as follows,

n2
X Xt (xey

To give a multiplication u3: X*Y*V — XU we first note:

e We have the following series of natural transformations in C:

Ux XY 2 (U x XYy

XU — (U x x¥)*

(XU)" — (U x xY)"Y

Ux(XYy Z (Ux XYy

From the first line to the second, we just take the exponential transpose. From the second to
the third, we use the fact that if Y has a monoid structure, the same happens to YV - Y is
(U x XY)* in this case - and the free monoids adjunction. The last step is just exponential
transposition again.

» There is a natural transformation in C given by
/\X5 (XU)- — (X-)U
Definition 17 To obtain the natural transformation X it is enough to have the auztliary map

a:U x (XYY — (U x XY)* above, as we could compose it with er”: (U x XV)* — X* and
take the transpose.

Ux(XYVy 2. (U x XUy 22 x=

(XY)r 2% XV
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This A is a distributive law of monads [Beck]. Thus we can use Beck’s results and

e Finally we say that uj is given by the transpose of the long composition:

U {ev, %23

XUy P U g U (U 22y B2 e

U
4Y-U M3 4Y-U

Note that to define the multiplication 3 we use u» and the distributive law X, as well as
evaluation on U twice, instead of ;. Note as well that as an endofunctor the composition ( )U'
also makes sense, but it has no natural monad structure. We summarize the discussion above in
the definition,

Definition 18 The endofunctor ( )Y has ¢ natural monad structure in C, with unit and multi-
plication given by the natural transformations

U
X N3 ,\"U X».U H3 X'U

We need another fact, a similar result was proved in the the work on the categories GC:

Fact 4 The distributive law ) in C induces a distributive law of comonads A in MyC, given by
A:TSA — STA:

TSe

U - X.U

1 A
STa

Ue——m— XU~

To check that A is a morphism in My C, we check the diagram

Ux A

Ux(XY) Ux XY

1 TS«

Ux(XY) N

STa
The composition monad (—*)Y above induces an endofunctor in My C, which is the composition
of S and T'. We call this endofunctor !, its intuitive definition was given before. More formally,
Definition 19 The endofunctor ! in My C acts on objects as
U & X) = (U & (X))
where the morphism ' is given by composition

x,ev)

Ux (XU 2 g xSy



If(f.F):A — B s a morphism in MyC, then Y{f, F) is given by

U——x-"
l
fi Fr()-f
1% Y=Y
'8

To show that ! is really an endofunctor we have to compose the squares we had before for T
and S.

vuyy DXy _UXET e
FxYV (71, ev) (71, ev)
| v ><L yr Xy xe
fxy* Sa
1% xvy"’ 1% x'Y" N
{71, ev) 53

The endofunctor ! in My C has a natural comonad structure given by the monad structure of
()Y in C. Thus ;:'A — A and 8:14 —!!A are given by '

ly ta

U*——".—O——X‘U U X-U
[ 4 ”a U'U
Ue——— X Ue——n——X"

To show that these maps are maps in My C is just the composition of the diagrams we have shown
to commute for T and S. Thus

U x - U x
Ux X B Ux XU UxxvY P uxx
| | |
11 ITSa l
s 4 «U
UxX — —— N Ux XV N

After all the work above to define the comonad ‘" we must show that it works. We do that in
the next section, but before heading for the logic we need a last categorical proposition.

Proposition 9 The comonad 1’ in My C defined above satisfies

(A& B) =!AR!B and Ne=J
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Proof: By definition of *!" we have:
MA=Ww=2xY) B=wdy')y n=@gioh

By definition of the product A& B,

ALB) =i(U x V ¥ X +Y) = (U x v "7 (X + ¥)""Y)

Taking the tensor product we have
ASIB = (U x V %3 x-UxV y y-Vx¥)
Thus to show the isomorphisms in My C we have to show the following isomorphisms in C,
(X+Y).UXVEX.UXVXYJ/XU 0~ =1

and that these isomorphisms induce isomorphisms in My C. The isomorphisms in C are clear from
that fact that (X +Y)* = X* x Y*, which implies that

(JY +Y).U><V a kr.UxV x Y.UxV

Actually that is the reason why we are taking commutative monoids in C. a

o

4.4 Logical Properties of

Now to show the logical properties of the comonad ‘" we first recall the rules for the modality of
course! in Linear Logic.

I'A-B I'+B

——————— (dereliction) ————  {(weakening)
r'ArB I''A+ B

[VAVAFB 'k A

—————————— (contraction) M

[V'VAFB IMHiA

Our next theorem show that the comonad ‘I’ defined in the last section really works. The
details are very similar to our previous work as well as to Seely’s work [See’87], to which we refer
the reader. The basic idea is to show that the rules are sound by showing that, if there is a
morphism in the category My C between the objects which are the translation of the antecedent,
then there is a morphism between the objects which translate the sucedent of each rule.

Theorem 4 The comonad ‘!’ in My C satisfies the rules for the modality ‘I’ ¢n Linear Logic.

It is clear that by virtue of being a comonad ‘!’ satisfies the rule (dereliction). To wit, if there
is always a morphism !4 -7+ A, whenever we have a map G® A <. B wecan compose it with
GRA Gon G ® A to get G®'A — B, which shows that the rule (dereliction) is sound.

To show soundness of the rule (!) we need more. If there is always a map !4 214 and
G L A, then we can apply the functor ‘!’ to f, to get !'G “L.14 and if we precompose it with

IG 211G we get !G —!4, which shows the rule (1) is satisfied. But for this we are assuming that
T+ A corresponds to a morphism !G — A, and to know that we use the previous proposition as

' =1G1®'G2 9 ...0'G, 3"((;1&'(;3& - Gk)
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Next to show the soundness of (contraction) and (weakening) we show that !4 is a comonoid
for the tensor product ®ar in My C. It is easy to calculate comonoids with respect to ®3s. They

are objects, sav A, equipped with a co-unit map to Iny = (1 & 1), A = Iis and a ‘diagonal’ map
Al Ag A, satisfying some commutative diagrams.
Then it is clear that A in My C is a comonoid with respect to ®as, as we have morphisms

1A 5T and 1A 21A®!A. Just check the diagrams:

vt xev v < XU

| I | 1

'l Cy Al Ca
1(__(2__ 1 UXU*——!Q—‘%!—Q——X'UXUXX‘UXU

Thus if GRIAR!A L+ B we can compose it with 14 —2-14A3!4 to get GQ'A — B. And if
G -~ B we can compose it with 'A — I to have GQ'4A — B. |

4.5 Comparing Modalities

Similarly to what happen with the monoidal closed structures of 45C and My C, the exponential
connectives !4 and !ps are comparable. In fact one could call £3(A) the subset of the morphisms
{# | ¢:U — X~} such that Vu € U, ¥ ¢(u) € X*, if ¢(u) = (é(u)1, ..., #(u)n) then a(u, ¢(u),) =
a(u, ¢(u)2) = ... = alu, #(u)n). We have then the following morphisms in My C.

(lo)ar

5 Further Work

The linear negation ( )* and the connective “par” of Linear Logic pose problems though in MyC,
even if C is cartesian closed, even in Sets. '

In our previous work, the bifunctor par was defined in the dialectica categories using disjunction
of relations, but for multirelations it is not clear how to define ‘disjunction’ of natural numbers
mVn. We know from the work in GC that AQB should look like (Y x VX 2 X x Y'), but the
problem is to define a well-behaved morphism a«03. One could try the following:

Conjecture 1 Given objects (U & X) and (V Z Y) define their“par” as (UY x VX ¥ X x Y),

where the multirelation «Of is given by «0B(f, g, z,y) = maz(a(fy, z), 89z, y))

The reason for the maximum of two natural numbers is that maz looks a bit like logical or,
if you think of of the truth table for V and 0 means false. But then the identity for this par is
(1 A1), s0 (the linear logic constants) I and L would coincide. Other possibilities for the map
«0f are to take multiplication of natural numbers or their minimum.

But the reason none of these pars work is that they do not satisfy the weak distributive law
[HdP’91] below:

aO(boc) < (alb)oc
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In the case of multiplication the weak distributive law would giveus a x (b+¢) Zaxb+axc<
a x b+c, only true if a < 1 a contradiction.

Also in the dialectica categories linear negation is defined in terms of linear implication into a
dualizing object “L” which is the identity for par. If one considers, as in Lawvere’s paper “oc” as
an element of N that might induce a good choice for “L”, but then linear negation is only defined
for a very small class of objects.

In contrast to the situation described above, if one deals with the category Ay C, one can define
both ‘par’ and linear negation. But then you must have models of Classical Linear Logic, as the
duality A1+ = A is built into the category.

Conclusions

Much work remains to be done. On the mathematical side we want to try to obtain the right level
of generality and to prove the existence of the modality ‘! when the category C is only symmetric
monoidal closed. Some work, with Martin Hyland is in progress, generalizing the construction of
My C so that we model all of (full Intuitionistic) Linear Logic, see [HdP].

There are several questions as to how much of the work above can be done with non-symmetric
monoidal closed categories. That would lead into non-commutative linear logic and there is some
work in progress with Dominic Verity on it, as well as some other work on models of systems useful
for linguistics purposes, see [dP’91].

On the applications side, there is some more work, besides [BGdP], with Carolyn Brown and
Douglas Gurr on the connections between the models of Linear Logic that appear in Concurrency
Theory. Finally, I would like to incorporate quantification into this general picture.
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Appendix

Intuitionistic Linear Logic

We recall the axioms and rules of Intuitionistic Linear Logic, as in [Gir/L].
Axioms:

ArF A (identity)
I
=1 T,0FA

Structural Rules:

r-A4 I'+-4 AT'FB
{permutation) {cut)
o'+ A v+ B
Logical Rules:
Multiplicatives:
'+4A
unit;) ———
( ) LLI-4
IA,B+-C 'k 4 I'+B
(®)————— (@)
LA BFC L'FA®B
'FA ' B+C [AF B
(1) (—or)
T A—oB+C '-r4 -8B
Additives:
I'+4 r~B I A+C I''B+-C
(& (der) ————
T+ A4B [LALBFC [LAZB+C
IAFC r'B-C ' 4 I'-B
(1) (&r)————
IbA@BFC '+Ae B '-Ae B

Note that sequents have only one formula on the right-hand side of the turnstile.
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Full Intuitionistic Linear Logic
We recall the axioms and rules of (Full Intuitionistic) Linear Logic.
Axioms:

A A (identity)
FI LF
TFHLA rorA

Structural Rules:

'~A TEAA AT FA
————— (permutation) (cut)
ol rA OLI'EALA
Logical Rules:
Multiplicatives:
TFA 't A
(unit))—————o (unit, ) ——————
LItA 'FLA
I'A,B+ A TFAA '+ B, A
@)— (®r)
' A B A I'T"FA® B,A, A
T,AFA I, B+ A’ '+-ABA
(B1) 0)—
[T/, AQGBF A A’ '+ AOB A
THAA I',B+- A’ A+ B
(—o1) o) (%)
T A—-oBFAA 'FA—-B
Additives:
'+A4,A 'k B,A (&) T AFA I'BFA
) ————— S,
Ik A&B,A I'AYBt+ A I ALBtF A
[ARA IBFA I'A A '~ B,A
(@) (&) ———— -_—
rLAe#BF A A9 B, A '~A¢ B A

(*) Observe that in rule (—o,) we only deal with one formula on the right-hand side of the
turnstile, according to our intuitionistic flavour of Linear Logic.
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