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Summary

Three dimensional (3D) volume representation, processing and visualisation have
gained growing attention during the last ten years due to the rapid decrease in com-
puter memory cost and the enhancement of computation power. Recent development
in massive parallel computer architectures and special purpose graphics accelerators
also contributes to solve 3D volume manipulation problems which usually require
large memory and intensive computation. Volumetric graphics is becoming prac-
tically possible and finding many applications such as medical image processing,
computer aided design and scientific visualisation.

A volumetric object is usually represented in one of two forms: a large 3D uniform
grid of voxels (volume elements), and a relatively compact non-uniform collection of
volumes. Objects in the latter form are obtained by adaptive recursive decomposi-
tions. An octree is a special case in which each non-terminal volume is subdivided
into eight sub-volumes. The problems of current implementation of octrees concern
the speed and complexity of memory management. This dissertation looks into a
novel approach of designing octree-related volumetric graphics algorithms based on
Content-Addressable Memories (CAMs). A CAM is an architecture consisting of
elements which have data storage capabilities and can be accessed simultaneously
on the basis of data contents instead of addresses. It is demonstrated that the main
features of CAMs, their parallel searching, pattern matching and masked parallel
updating capabilities, are suitable for implementing octree-related algorithms.

New CAM algorithms are presented for transforming octrees, evaluating set op-
erations (union, intersection, difference), displaying volumetric objects, calculating
volumes, constructing octrees from other representations, and so on. These algo-
rithms are remarkably simple and conceptually intuitive. The simplicity plays an
important role in constructing robust 3D solid modelling systems. In addition to
their simplicity many algorithms are more efficient than their conventional counter-
parts.

A new method has been developed to speed up the image synthesis algorithm of
ray tracing using CAM octrees. It is aimed to reduce the number of ray-object inter-
section tests without significantly increasing overhead costs of storage and computa-
tion which are related to octree data structures and their traversals. The simulation
results verify the expected improvements in speed and in memory management.
Ray tracing can be accelerated by applying parallelism. Preliminary analysis shows
possibilities of implementing the above CAM octree ray tracer on general parallel
machines such as MIMD (Multiple Instruction stream, Multiple Data stream).
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Chapter 1

Introduction

Three dimensional modelling and image generation play an important role in com-
puter graphics, image processing, and many scientific and engineering fields such as
computer-aided design and computer-aided manufacture (CAD/CAM). During the
last twenty years, extensive research has been pursued on modelling and image gen-
eration. Many problems in these two fields were identified and experimental systems
were developed to meet increasing demands from applications.

The central problems concerning geometrical modelling systems are the need for
powerful computational means to represent and process solid objects, input and out-
put objects (for example editing objects and displaying them on screens). Graphical
data have three primary forms: as a continuous geometric model, as a discrete pixel
(pictorial element) image, and as a discrete voxel (volume element) image. The first
form is used to represent objects in abstract concepts. The second form is an impor-
tant means for visualising the abstract data on a raster graphics system. Algorithms
related to these two forms have been extensively studied in early years of computer
graphics research and are established as fundamentals of the subject. Unlike the
previous two forms, voxel images have only gained attention of researchers in re-
cent years. Although a lot of progress has been made in model representations and
processing, more research is still needed particularly for improving system perfor-
mance, geometric coverage, application coverage. Current approaches to solve these
problems are to adopt high-level multiple-representations in geometric modelling
systems and to use specialised accelerating hardware for different representations
when suitable.

This chapter gives a brief review of three dimensional (3D) modelling schemes
and their basic features. Requirements of 3D object processing and displaying from
applications are summarised. Following these discussions we look into the main
problems of current systems then propose a new approach of modelling on the basis
of content-addressable memories. Finally comes an overview about the chapter
organisation of the thesis.
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1.1 Geometric Modelling

Geometric modelling is concerned with representing physical objects by symbolic
structures called data. More specifically, 3D models are used to describe geometric
properties of objects in 3D, and store them in the computer as some data repre-
sentation. These data are manipulated using geometric algorithms to compute the
properties of objects. The choice of representation strongly influences the design
of a complete geometrical modelling system. The basic requirement for a good
representation of an object is that it should have descriptive power and must be
valid, complete, easy to be created and efficient in execution. Several representation
schemes are widely adopted for 3D modelling. Each of them has some advantages
or disadvantages and is suitable for different applications. They are listed below
following the definition by Requicha [Requ80] and Voelcker et al. [Voel88].

1. Wireframes: A wireframe represents a solid using segments of 3D space
curves. It is generalised from 2D graphics of lines and arcs. The scheme is
used for historic reasons such as easy plotting and so on. Wireframes have two
serious deficiencies: ambiguity and representing invalid solids. Thus they can
not be used as primary representations.

2. Boundary representations (Breps): Breps are schemes in which a solid
is represented by sets of faces that enclose it completely. These faces can be
polygons for plane surfaces or patches in the case of curved surfaces. Each face
is represented by its bounding edges or vertices. Breps have advantages for
generating line drawing or raster images on a graphic display, for supporting
graphic interaction such as picking up an edge or a vertex.

3. Pure primitive instancing schemes: The schemes are based on the notion
of families of objects, each member of a family is distinguishable by a few
parameters. Each object family is called a generic primitive. It can be a
block, a cylinder, a cone, a sphere, a torus, and so on. These primitives are
unambiguous, unique, concise. However, it is difficult to combine instances
from these object families to create complex objects. Another drawback is
that there is usually no uniform algorithm available for all object families.

4. Constructive Solid Geometry (CSG): A CSG model represents a solid by
regularised Boolean combinations including unions, differences, intersections
and complement of simple primitives. The model is presented in application
programs as a binary tree whose nonterminal nodes are set operators and
terminal nodes correspond to primitive solids. These primitive solids have two
forms: one is based on pure primitive instances as described above, the other
is based on general half-spaces. The virtue of CSG models is that they can

be easily used in designing and generating certain types of objects which are
often used in CAD.

5. Sweep representations: Sweep representations are schemes in which a solid
is represented as a spatial region traversed by a plane or a moving object.
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They have restricted description power and are used only on some occasions.

6. Spatial occupancy enumeration schemes: This is an approximated rep-
resentation of a solid using a union of box-shaped cells occupied by the solid.
The cells may be of a uniform size like 3D spatial grid or of non-uniform sizes
generated by recursive decomposition. There are many structures to represent
varying sized cells. Onme of them is a tree structure called an octree. Spa-
tial occupancy enumeration schemes are unambiguous but storage expensive.
They do not exactly represent geometric objects. Thus they are not suitable
for internal representation in solid modelling systems, but are usually used as
auxiliary tools. These schemes are useful in image modelling and processing,
computer vision.

7. Cell decomposition schemes: Cell decomposition schemes are more gen-
eral forms which represent a solid as a union of quasi-disjoint cells. Cells can
be tetrahedra or other shapes. Typical cell decompositions are solid triangula-
tions and finite element meshes. The latter ones are important representations
used in the 3D finite element analysis for getting numerical solutions of differ-
ential equations. These schemes are unambiguous but not unique. They are
also difficult to construct, especially for curved solids.

In defining the above schemes, we have assumed that objects are rigid solids.
However natural objects include many non-rigid objects such as water and other
deformable solids. In this thesis, representations of non-rigid solids are excluded.

Summarising the above representations, CSG models and Breps are suitable for
modelling in CAD systems, and space occupancy enumeration models are means
for 3D image processing. Primitive instancing and sweeping are used in both cases.
Other schemes are found useful for some special applications.

1.2 Processing and Displaying Solids

The main purpose of modelling objects using the computer is to manipulate and to
visualise them. We want to move and scale objects, calculate volumes, momenta
and other properties of objects, finally display them on some media. Therefore
algorithms in a solid modelling system must include model construction and main-
tenance, geometric transformations, boolean compositions, representation conver-
sion, and visualisation. Many graphical processing algorithms involve some kind of
search operations such as geometric searching, spatial indexing, intersection testing,
and so on. The efficiency of searching operations determines the efficiency of many
algorithms.

Algorithms for solid visualisation are also important parts of the core of a solid
modelling system. Early graphics visualisation is based on line drawing due to con-
straints of display devices such as the storage tube CRT display and the random
scan refresh display. These devices have been obsolete for a long time. Modern dis-
play devices are mainly raster CRT devices which allow shaded images and realistic
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images to be generated. These images give us the impression of solid areas, let us
identify different material properties of objects and various lighting phenomena.

However, the computation cost increases tremendously with raster images espe-
cially for complex images. Many algorithms are of O(n?) (n is the number of objects)
complexity when they are implemented straightforwardly. Graphical system devel-
opers attempted to gain speed either by exploiting spatial locality of geometrical
operations (for example [Tamm81]) or by using specialised hardware such as geo-
metric engine and solids engine [Meag84]. By exploiting spatial locality, average
performance of O(nlogn) can be achieved for some algorithms. Still, we can only
achieve performance of interactive time with these improved methods. In future,
we shall expect computer graphics systems to generate sequences of high quality
images in real time. In order to process and generate images in real time, two ap-
proaches are being pursued. One is a short term strategy and the other is a long
term strategy.

The current short-term strategy is based on graphics supercomputers and spe-
cialised graphics co-processors. Examples of the state-of-the-art systems are Silicon
Graphics IRIS 4D [Akel88] and Stellar GS-1000 [Apga88] and many other graphics
workstations. These workstations serve mainly as high-performance polygon render-
ing processors and solve display problems. They support line drawing and polygon
shading which have limited expressive power and can not generate images with com-
plex lighting and motion blur. At the current stage, only computationally intensive
ray tracing algorithms can handle such images in a simple and elegant way.

Computer graphics is a rapidly moving field. Its horizon changes with the grow-
ing power of general-purpose computers. It is very likely that graphics workstations
will become widely used and next generation display systems will not be limited to
simple shading. When real time ray tracing becomes available, hardware for simple
shading may become as obsolete as storage tube display.

Solid modelling systems require not only display but also other functions such
as set operations, mass computation, and so on. To implement set operations effi-
ciently, schemes which are good at spatial locality should be employed. Jackins et
al. [Jack80] and Meagher [Meag82] described the use of octrees for representing
three dimensional objects of any shape (concave, convex, sculptured, and so on) to
any specified resolution. These representations satisfy uniqueness, completeness and
other requirements. They are also efficient in set operations (union, intersection and
difference), geometric operations (translation, scaling and rotation), hidden surface
removal and other operations such as calculating the volume and the center of grav-
ity of an object. However, representing objects in octrees requires a large memory
space and is only an approximation of objects. These two deficiencies limited the
practical usefulness of octrees as the internal representation for solid modelling sys-
tems. Therefore most systems adopt an approach which uses Brep (and/or CSG)
as internal representation and converts Brep (and/or CSG) to octree when an ap-
plication demands it.

The long-term strategy of real time graphics is to exploit parallelism of graphics
algorithms. The parallelism can be realised either through general-purpose mul-
tiprocessors or through specialised architectures optimised for applications. The
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advantages of using general-purpose multiprocessors are that we can accelerate al-
gorithms for a wide range of applications including both processing and displaying.
Moreover, users can easily update systems to fit the state-of-the-art algorithms.
Apart from the computational intensive problem discussed above, another fac-
tor that affects current systems of modelling and image synthesis is the software
complexity. Graphics problems are so complicated that it is very difficult to write
algorithms which are both efficient and simple. To guarantee the correctness of
programs is even difficult. This is a serious problem which increases the cost for
long-term software maintenance and makes the job of generating a robust system
difficult. We must aim at keeping the design of software as simple as possible. The
complexity of a solid modelling system comes from the following sources,

e Multiple representations are used in one system.

e Thus the system needs algorithms for operating on each representation and
for doing representation conversion.

e Multiple representations may introduce inconsistency. Consistency checks are
both complex and time consuming.

e Algorithms are mainly based on the von Neumann model of computation.
Some of them are complicated due to the sequential nature of the von Neumann
machine.

Among the current problems identified above, key issues concern computation
time, memory management and software complexity. Most graphics systems involve
a certain number of searches. Thus we need to find a kind of computer architecture
‘which allows us to cope more efficiently with these problems. In 1950’s, an archi-
tecture called associative memory was proposed [Slad56] and has been developed
since. It is now known as content addressable memories (CAM). While a detailed
description will be given in Chapter 3, we note briefly here that a CAM is an ar-
chitecture which accesses the data by their content instead of addresses. It is well
suited for searching and simple memory management. We are thus motivated to
assess its potential in improving our 3D graphics systems.

1.3 Scope of the Thesis

This research explores efficient CAM algorithms for octree applications of modelling
and space indexing. Instead of designing algorithms by breaking them down into
sequential form, we construct our octree algorithms in terms of larger conceptual
units of the task. With the assistance of CAM architectures, some common problems
may be less important while others may become more significant. These problems
are identified with respect to our octree applications. The advantages and limitations
of CAM will be investigated.

In Chapter 2, we review octree data structures and algorithms, classify data
types which include raster type and vector type octrees, then look at the three prin-
cipal formats of octree representation, and finally analyse the space/time efficiency
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problems related to these data formats for several major operations. Chapter 3
introduces the concept of CAM. We first give an overview of general CAMs and
then concentrate on a specialised Syracuse CAM which is designed for applica-
tions of quadtrees/octrees [Oldf87]. The main features and functions of Syracuse
quadtree/octree CAM will be summarised. The storage of both raster and vector oc-
trees in CAM are presented. This chapter serves as the foundation for the remaining
chapters.

Although quadtrees [Will88b] and octrees are closely related in terms of the
concept and implementations, they are different in many aspects in applications.
Chapter 4 investigates general CAM octree algorithms for constructing octrees from
other representations, displaying them with hidden surface removal, viewing cross
sections of objects, calculating volumes, transforming objects and so on.

Chapter 5 applies CAM octrees to ray tracing algorithms, the latter being pow-
erful but time expensive techniques for generating realistic synthetic images. Many
researchers have used some kind of space subdivisions to speed up ray tracing by
partitioning the object space and sorting objects in a space order. However, these
accelerating algorithms based on conventional machine architectures suffer some
problems. The major one is that they either require extensive memory or have slow
space traversal. Another problem concerns their complexity in memory manage-
ment. It will be shown that these problems can be readily resolved using CAM
octrees. A simple and elegant CAM algorithm is proposed and tested. The new
algorithm is designed with both memory and speed considerations in mind.

Chapter 6 deals with the specific CAM problem of reading back multiple respon-
ders after a search operation. We examine the importance of ordered-retrieval of
CAM words in octree applications. The octree related orders are clarified. Then
we discuss ordered-retrieval of CAMs with trit (three states) storage. Examples are
used to demonstrate the usefulness of ordered-retrieval.

Chapter 7 concludes with a summary of the new material presented in this the-
sis. This chapter also includes a preliminary analysis on architectures for parallel
processing of ray tracing. We also discuss CAM architectures in relation with other
general-purpose parallel machines, and consider how CAM octree ray tracer should
be configured into parallel architectures of multiprocessors or multicomputers. Fi-
nally some suggestions for future research are given.




Chapter 2

Modelling with Octrees

This chapter reviews the hierarchical data structure—the octree. An octrees is a
three dimensional(3D) generalisation of a binary tree. A binary tree is a tree in
which each node is pointed to by a node called its parent and the node itself may be
a parent of two nodes which are specified by a left link and a right link. An octree
is a tree of degree eight, each parent node has eight children. A parent node is also
a nonterminal node. A terminal node (also called a leaf) contains the information
about the object. Octrees are classified into two types according to contents of leaves
and rules of decomposition. They are raster octrees for volume data and vector
octrees for surface data. An octree can be stored in different formats depending on
requirements of applications. Formats of octrees are distinguished by whether they
have pointers or not. Three commonly used formats are one with a pointer structure,
and two with pointerless structures. The first of the two pointerless octrees is called
a treecode. A treecode is a simple linear structure which stores an octree in depth
first order. The second pointerless octree is called a leafcode and is based on an octal
numbering system. Algorithms related to octrees have been developed for different
octree types and formats.

Octrees have been used as representation techniques in many application areas
such as 3D image processing, volume data processing, solid modelling, computer vi-
sion and robotics. They are also useful for accelerating image generation in computer
graphics.

We first introduce surface based imageries and volume based imageries, and
review the data structures of octrees and algorithms for octree manipulations and
constructions. We then analyse and compare three major formats of octrees, identify
the problems related to the system performance of octree algorithms under conven-
tional computer architectures. These analyses lead to adaptation of an architecture
of content-addressable memory (CAM) which is described in the next chapter.
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2.1 Introduction

Chapter 1 introduced briefly several techniques for 3D object representations. These
representations play crucial roles in much computer-aided scientific and engineer-
ing research. They also influence strongly the software organisation of application
systems and the efficiency of data storage and manipulation. Thus, the choice of
representation schemes will determine the overall performance of a system.

Different applications require different representations. For example, in solid
modelling systems the core representations are Breps and CSG while in 3D image
processing systems the essential schemes are spatial occupancy enumeration and cell
decomposition.

The difference between systems is also reflected in input data. The input to a
system can be classified into two groups: data-generation based input and data-
collection based input. The data-generation based input data is created by users
through specifying the parameters for primitive geometries. It is often used in
computer generated images and synthesised pictures that come out of mathematical
equations. The data-collection based input data is real data about real objects. The
data is represented by 3D arrays of numbers. It is obtained using modern image data
collection techniques such as computer tomography, scanning electron microscopy,
and digital stereoscopy. It is widely used in the computation and display of 3D
structures of scenes, human organs, and many other real objects.

2.1.1 Surface-Based Imagery vs. Volume-Based Imagery

Three dimensional computer graphics representations can be classified according to
two distinct data formats: surface data and volume data. The former is closely re-
lated with the above described data-generation based input. The latter corresponds
to data-collection based input. Surface data represent a 3D object by describing
boundaries between the object and the space, or boundaries between different ma-
terials by using lines, polygons, patches and other abstract geometrical concepts.
They are very useful for visualising 3D objects because many traditional display
algorithms deal with lines and polygons.

In recent years, the second format—volume data has received considerable atten-
tions [Fuch89). One reason is that it is sometimes difficult to convert volume data
obtained by data-collection techniques into surface data. Algorithms for extracting
geometries from 3D arrays are often complex. The results are sometimes ambiguous
and manua) intervention is necessary. The direct and straightforward manipulation
of volume data is attractive for its simplicity and robustness. The volume data is
unambiguous, and can represent both rigid objects and material mixture models
[Dreb88]. Other factors also contribute to the usefulness of volume data.

o Firstly, 3D measurements are advanced thus allowing very high resolution 3D
data to be recorded. The new devices of solid state cameras and lenses, and
improved microscopes give more accurate approximated data to real objects.
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e Secondly, new algorithms called volume rendering have been developed [Dreb88].
These algorithms make full use of 3D arrays of volume data, rather than using
surface data found in such arrays. Such systems process and display directly
with volume data.

¢ Finally, several new memory and processing architectures have been designed
for 3D voxel-based imagery [Meag84, Kauf88]. These architectures make it
possible for real time visualisation of large amounts of 3D data.

2.1.2 Uniform Subdivision vs. Hierarchical Subdivision

Two kinds of architectures have been designed for processing volume data. One is
based on a non-hierarchical model which stores unit cubic cells (voxels) in a large
3D cubic frame buffer. The other is based on hierarchical octree encoding. We
call the former a voxel model and the latter an octree model. In weighing voxel
approach and octree approach, the primary considerations are speed and memory
requirements.

Voxel-based systems are simple because they use a uniform array structure, Ob-
jects are stored in a cellular cubic memory with a real and discrete model. Objects
are manipulated directly using voxel mapping and transformation. Since the num-
ber of cells are fixed in a voxel model, projections, manipulations and rendering
are independent of the scene complexity. When a voxel-based approach is used for
image synthesis, traditional hidden surface removal algorithms for surface data are
no longer necessary. Other advantages of the voxel approach is that the number
of voxels along each direction is not necessarily a power of 2. The numbers can
be different along different axes. For example, in 3D medical data we can have a
resolution of 256 x 256 x 100.

However, the voxel-based approach requires both extensive memory and intensive
computation. A typical cube frame buffer, with a moderate resolution of 512 % 512 X
512 x 8, requires 128 Mbytes of memory for data alone. For higher spatial resolution
and 24-bit colour images, which often occur in computer graphics, Gigabytes of
memory is necessary. On the other hand, the extremely large throughput of data
forms the bottle-neck for performance of such systems. Therefore, the real potential
of voxel-based systems rely on decreasing in the cost of memory and increasing in
the compactness and speed of memory. Massive parallel processing architectures are
also important.

The octree approach, on the other hand, organises blocks of voxels in a hierarchi-
cal manner. At the bottom level, each block represents a group of voxels of the same
colour. This leads to a tremendous saving in memory and much less throughput of
data. The tree structure also allows much quicker traversal than a sequential voxel
array traversal. In the remaining part of the thesis, the octree-based approach will
be studied in further detail.
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2.1.3 Systems for Volume Data Processing

Systems in the category of the voxel-based approach are GODPA (Generalised Ob-
ject Display Process Architecture) [Gold85], PARCUM (Processing ARchitecture
based on CUbic Memory) [Jack85] and CUBE [Kauf88]. All these systems are
hardware oriented. Systems with octree encoding are normally software oriented or
combine hardware with software. One such example is the Insight system of Phoenix
Data Systems [Meag84].

e GODPA is a voxel processor integrated into a complete physician’s worksta-
tion. It has real time implementation of rotation, scaling, translation on grey
scale data. The voxel processor is based on a multi-processor architecture.
There are sixty four processor elements (PEs), each contains a double 128 X128
image buffer. Each PE has access to a part of the object memory and holds
a minipicture of the object. The output image consisting of all minipictures
from PEs is transferred to the frame buffer for display.

e PARCUM is a system designed for storing and displaying solid objects. It was
built around a three-dimensionally organised memory called the memory cube.
An object is represented as 3D arrays of binary digits 1 or 0 and is written
into corresponding cells of the memory cube. Object visualisation can be
implemented by direct accessing of cells in the memory cube. The read access
is carried out by reading 4% voxels in parallel. The process of visualisation
includes projection and illumination for realistic display. The performance
was not presented by the authors.

¢ Kaufman and Bakalash [Kauf88] designed a CUBE architecture for 3D volume
visualisation. It is centered around a 3D cubic frame buffer of voxels, and it
contains three processors, each can access the frame buffer. The functions of
these processors are to input sampled or synthetic data, to manipulate and to
display 3D images. These processors are:

1. A 3D geometry processor for scan-converting geometry into voxels;

2. A 3D frame buffer processor for 3D BitBlt (bit block transfer) and trans-
formation; :

3. A 3D viewing processor which generates orthographic projections of im-
ages.

The CUBE architecture requires huge memory and immense parallel process-
ing to achieve real time display. Two special features were incorporated within
the architecture: a unique skewed memory organisation for parallel retrieval
or storage of voxels; a multiple-write bus. They allow the system to display
an image of n® voxels in O(n?logn) time.

o Insight is a system designed for medical image analysis and planning. It is
based on a solid processing engine embodied in a specialised hardware pro-
cessor. The system combines the software and the special hardware of the
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Solid Engine which is used for image generation, manipulation and analysis of
3D models. A central computer is used for communication, control, processor
initialisation and application programs. A high speed 3D model memory is
used to hold 3D models of octrees. The data in the 3D model memory are
loaded from the central computer and are processed by the Solid Engine.

2.1.4 Octrees

The octree approach of representing 3D objects is based on the principle of recursive
decomposition (also called divide-and-conquer). It is a 3D generalisation of a binary
tree. Its counterpart in 2D is a quadtree. An octree is created by recursively subdi-
viding a cubic space into eight subspaces (referred to as octants) until the octant is
homogeneous or until the specified resolution is reached. Octrees were first investi-
gated independently by several groups of researchers [Jack80, Meag82, Srih81]. Each
group paid attention to a number of specific problems. Jackins [Jack80] discussed
the use of octrees for space planning, object rotation and translation. Meagher
[Meag82] used them for geometric modelling and milling. Whereas Srihari [Srih81]
referred to octrees as a means for 3D digital image processing.

Many algorithms have been developed during the last ten years [Same88a, Same88b,
Chen88]. These algorithms can be classified into two categories: construction of
octrees and manipulations of octrees. These algorithms will be reviewed in Sec-
tions 2.4-2.7.

2.2 Definition of Octrees

An octree is a tree with nodes of degree eight. Its root corresponds to the entire
object space which is a cubical region with a length of 2" (n is the depth of the tree).
The root space is recursively subdivided into eight subspaces (octants or nodes) until
the current space is homogeneous or the smallest cube is reached. The children of
a node are of equal size, each is assigned a number chosen from 0, 1, 2, 3, 4, 5,
6, 7 as in Figure 2.1. These numbers are labels of nodes. A node can be either
a nonterminal or a terminal node. Each nonterminal node (called grey node) has
eight children again and each terminal node (called a leaf node) represents a data
element. Each octant has a position and a size. The position of an octant is given
by the coordinates of its zero-corner. The choice of zero-corner can be determined
by the system programmer. In Figure 2.2 it is the left-bottom-back corner of the
space. The size of an octant must be a power of 2. An octant of a given size can
have only a restricted number of possible positions. For black and white images, the
value of a leaf node is either 1 or 0 (marked full/empty or black/white), depending
on whether it is inside or outside the object. Multiple colours are also used on some
occasions to differentiate different objects. Figure 2.2 shows an example object and
its octree.

The depth of an octree is the level of its deepest leaf which corresponds to a
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Figure 2.2: A sample object and the corresponding octree
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voxel. The level of an octant (v) in an octree is defined as

level(v) = 0 if v is a root octant
B level(father(v)) + 1 otherwise

There are two data formats generally used in computer graphics: raster data and
vector data. These distinct concepts of raster and vector data have been brought
into octree definition too. Similarly, octrees have two distinct data types. Following
the terms in [Same88a), we call them raster octrees and vector octrees respectively
in this thesis. A raster octree models an object as a collection of cubes in 3D space.
A vector octree models an object using the geometric abstractions of vertices, edges,
faces, and polyhedral solids.

2.2.1 Raster Octrees

A leaf node in a raster octree is either full or empty (black/white). A nonterminal
node is labeled grey. The example in Figure 2.2 is a raster octree. Raster octrees have
some limitations when used for solid modelling systems. The first one is that a raster
octree gives a rough approximation of an object. The accurate surface information
which is needed for surface display is lost. The second limitation concerns the
difficulty in conversion of a raster octree to other representations. The memory
expensive is also a problem that restricts the use of octrees in complex solid modelling
systems. Vector octrees are thus proposed to cope with these shortcomings of raster
octrees.

2.2.2 Vector Octrees

Carlbom et al. [Carl85] and Navazo et al. [Nava86] introduced independently the
definition of vector octrees which they referred to as extended octrees and polytrees
respectively. The aims of using vector octrees are to reduce memory requirement
and keep exact representations of objects. The cost of using this data format is the
complicated node types and complicated algorithms. A leaf node of a vector octree
is one of the following: a face cell, an edge cell, a vertex cell, a full or empty cell.
Figure 2.3 illustrates these face, edge and vertex cells.

e A face cell contains a part of a polygon face of the object.

¢ An edge cell has a part of an edge of the object and parts of faces connected
to the edge.

o A vertex cell contains one vertex from the object and parts of edges and
polygon faces which are all converging on the vertex.

o A full cell is a homogeneous cell which lies entirely inside the object.

¢ An empty cell is a homogeneous cell completely outside the object.
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(a) (b) (c)

Figure 2.3: Leaf types of a vector octree: (a) a face cell, (b) an edge cell, and (¢c) a
vertex cell

By introducing these complex cells, the number of nodes in an octree is reduced.
However the space complexity of a vector octree is not easy to analyse. It is related
to the position of the object in the space. There is a problem in the above definition
of vector octrees when an object is not in a good position. An example is shown in
Figure 2.4 (a) where a vertex lies very close to the boundary of a cell. Durst and
Kunni [Durs89] called this situation a black hole. To avoid the possible black hole,
they further generalised the polytree and introduced three new leaf types (Figure 2.5)
in addition to the above five types. These new cells are edge’, vertex’, vertex” cells.

.

(a) (b)

Figure 2.4: A 2D illustration of a problem with vector octrees: (a) a black hole exists
when the object is in a bad position; (b) the problem can be solved by introducing
more node types.

e An edge’ cell contains polygon faces which connect to the same edge. The
edge lies outside the cell.

o A vertex’ cell has several edges and faces in it. All these edges and faces
connect to the same vertex.
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o A vertex” cell has neither vertex nor edge in it, but it has faces converging to
a vertex outside the cell.

e’
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(a) (b) (c)

Figure 2.5: Additional leaf types for an extended vector octree: (a) an edge’ cell,
(b) a vertex’ cell, and (c) a vertex” cell

Raster octrees and vector octrees differ only in their leaves. They can be organ-
ised in computer memory or disc storage using the same basic data structure. In
the next section, several commonly used structures are introduced. The trees are
raster octrees unless otherwise stated.

2.3 Data Structures of Octrees

For many algorithms in computer applications, choosing a proper data structure
is crucial. This is also true for octree related algorithms. For the same data and
operations, some data structures requires more (or less) memory and lead to more
(or less) efficient algorithms than others. In considering the storage efficiency of an
octree and execution efficiency of related algorithms, one must first know how the
octree is stored.

Three principal ways of representing a quadtree/octree on conventional machines
are: a tree structure with pointers [Hunt79a], a tree stored in preorder (known as
a treecode [Oliv83a]) and a tree stored using locational keys (known as a leafcode
[Oliv83b] or a linear octree [Garg82]). The last two formats are pointerless. In
this thesis, these three formats will be referred to as pointer octrees, treecodes
and leafcodes respectively. The efficiency of an algorithm depends on the encoding
scheme adopted. Two other structures (a semi-pointer tree and an extendible cell
structure) are also used in some literature but are less popular compared to the
above encodings.
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2.3.1 Pointer Octrees

Pointer octrees were the first of the three tree encodings used. Many early imple-
mentations of octrees are based on this approach. With this scheme each internal
node (grey) of an octree has eight pointers to connect it with its eight children.
These pointers are numbered as 0 to 7. The leaves do not have pointers but instead
have a field to label the node as either full or empty. In some cases the label is
black/white. To distinguish grey nodes from leaves, one extra bit is needed for each
node. To save memory the position and the size information are normally not stored
in nodes. They can be recomputed during implementation. To implement the tree
traversal or other algorithms it is sometimes necessary to have one more pointer to
link a node with its parent. This pointer is called a father link which is used to
make the process of walking up a tree possible. The operation of walking up a tree
is important for the neighbour finding algorithm which will be introduced later.

Octree manipulations with pointer octrees are simple and efficient. The subtrees
can be visited in either a depth-first order or a breadth-first order. Node accesses
are quick. However pointer trees have a large memory overhead for storing pointers.
The size of a pointer field is normally 32-bit if implemented in C, although in theory
it could be the base 2 logarithm of the number of nodes in the tree. Unfortunately,
we shall have difficulty in allocating memory by this theoretical estimation since
it depends on the tree size which is usually unknown before implementation. The
overhead of storage for pointers make pointer octrees unsuitable for handling large
trees which are often needed for 3D images and objects.

2.3.2 Treecodes

A treecode is a pointerless tree in which nodes are stored in an array structure with
a specific order, typically a depth first order. These nodes are visited sequentially
in the array. The sequence of records in the array represents implicitly the octree.
With a treecode, every subdivided node is followed by its subdivisions, that is,
the eight subnodes. Each node has a value. A nonterminal node has a negative
value. A terminal leaf has a positive value representing its colour or other associated
information. The treecode of the sample object in Figure 2.2 is

-10000010-101000000

Nonterminal nodes (i.e -1 in the above data) can also be replaced by the average
values of their subtrees. The position and the size of each node are not stored
explicitly. Instead, they are calculated during recursive tree traversal. The pseudo
C program of treecode traversal is shown in Algorithm 2.1.

A treecode requires less storage than a corresponding pointer tree. However the
disadvantage of treecodes is that they are order sensitive. The spatial location and
the size of a node are determined by its position in the array and in relation with
other nodes. A tree must always be traversed from the beginning of the array even
if users are interested only in a small number of nodes. This leads to an inefficient
traversal algorithm especially when a tree is visited in a sequence other than the
order in which it is stored.
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#define HALVE(n) ((n) >>= 1)

/* defining an octant by the coordinates (x,y,z)
of its zero point and the size */

typedef struct {int x, y, z, size;} OCT;

int GREY = -1;

OCT Root = {0, 0, 0, B512};

/* vectors for computing each of the eight suboctants */
int x_table[8] = {0,1,0,1,0,1,0,1},

y_table[8] {0,0,1,1,0,0,1,1},

z_table[8] {0,0,0,0,1,1,1,1};

0CT SubOctant(int i, OCT octant)

BEGIN
HALVE (octant.size);
octant.x += x_table[i]*octant.size;
octant.y += y_table[i]*octant.size;
octant.z += z_table[i]*octant.size;
return (octant);

END
PROCEDURE Traverse(OCT octant)
BEGIN
ReadColour();
IF (colour == GREY) THEN
FOR i = 0 TO 7 DO
Traverse(SubOctant(i, octant));
ELSE Display(octant, colour);
END
main()
BEGIN
Traverse(Root);
END

Algorithm 2.1: The pseudo C procedure of the treecode traversal algorithm

2.3.3 Leafcodes

In contrast to the above two encodings, a leafcode stores space addresses of nodes of
an octree. Each leaf carries the information of its position and size as well as colour.
The structure of a tree in leafcode is a simple array. Each element (corresponding
to a leaf) of the array consists of three fields:

1. an octal number to represent the locational code of an octant’s x, y and z
coordinates;

2. a number to represent the level (or the size) of an octant;
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3. a number indicating the colour of an octant.

Each octal digit in the locational code corresponds to one of eight octants at a
certain level of octree space subdivisions, with the left-most digit for the first level
of subdivisions. Therefore, these octal numbers express the path from the root to
the given node. For black and white images, the colour can be ignored if storing
only black nodes. Leafcodes for the black/white image of Figure 2.2 is shown below.
The tree has only two black nodes for this object.

5X, 71

Leafcodes have the smallest number of nodes among the above three tree encod-
ings. Less nodes are stored since only the nodes which contain object information
are important, although each leaf may take more bits to specify its location. Other
advantages of leafcode octrees include the following. Information about the spatial
location and content of each octant are stored in the node. Therefore nodes in the
leafcode format are not order sensitive. All the nodes can be processed in parallel
for some operations such as translation, rotation by 90 degrees. However, searching
a node is always slow on a conventional machine for a large data set. To improve
searching, a tree must be kept in a sorted order and needs to be resorted after up-
dating. Another disadvantage of leafcodes is that the maximum resolution must be
set in advance and is fixed during implementation.

2.3.4 Other schemes

e Semi-pointer structures: These structures are mainly introduced in quadtrees
[Will88b] and are equally applicable to octrees. They lie between pointer struc-
tures and treecodes. There are many variations of semi-pointer trees. Three
of them are listed here: the sextree proposed by Oliver [Oliv86] (dectree in
the case of 3D octree); Stewart’s one-to-four tree [Stew86]; Williams’s Goblin
quadtree [Will88a]. These formats are basically reorganised treecodes with an
additional pointer for each block of four nodes (eight nodes for octrees). The
pointers allow subtrees to be skipped at any given level. A semi-pointer tree
requires a little more memory compared to the most space efficient scheme of
treecode, but offers greater flexibility for node access and tree traversal. The
breadth-first traversal of trees is made simple.

o An extendible cell (EXCELL) structure: EXCELL is a scheme aimed at in-
dexing and efficient accessing of geometric data. It allows the size and the
shape of cells, which are rectangular parallelepipeds (RPs), to vary according
to the spatial organisation of data. The structure has two parts: a data part
and a directory. The data part consists of cells similar to the leaves of octrees.
The difference is that here cells are not necessarily cubes. Cells are formed by
recursively halving the space of interest in some order. The access of a cell
is through the directory which is an array of pointers to the data cells. Each
element of the array corresponds to a RP of minimal size. Given a point in
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3D space, the minimal RP is calculated and located in the directory. Then
following the pointer in the directory, the data cell can be found. The memory
requirement is extensive for the directory.

2.4 Manipulations of Octrees

The main operations of octrees are those for transformations, display, cross section
generations, set operations, volume computations, connectivity labelling and neigh-
bour finding. The conventional algorithms for these operations are reviewed in the
following sections. They will be discussed according to data structures used.

We shall concentrate mainly on raster octrees. For vector octrees, tree structure
traversals are basically the same as that of raster octrees, except that contents and
manipulations of leaves for vector octrees are more complicated. Applications of
vector octrees are confined to accelerating image generation, set operations and
display.

2.4.1 Geometric Transformations

Geometric transformations of octrees include translations, rotations and reflections.
They are discussed below, each in one subsection.

2.4.1.1 Translation of Octrees

Translating a volume is to move the volume through displacements along each of
three axes x, v, z. Translation of an octree is defined as follows. Given an octree
encoding of an object (the source tree) and a translation vector of the object (T),
the translation process will produce a new octree (the target tree) representing the
translation of the original octree. This process involves reorganisation of the tree to
build the target tree from the source tree.

Jackins and Tanimoto [Jack80], Meagher [Meag82] developed algorithms for
translating pointer octrees. Their algorithm is based on intersection tests which
overlap the space of the source tree and the space of the target tree by moving the
latter with respect to the former, then mapping the colours of the source octants to
the target octants. Oliver and Wiseman [Oliv83a) discussed translation of treecodes.
Their algorithm is based on observations that growth of tree detail is along the edges
of incursions. Those edges are places where new nodes will appear. Translation is
implemented for three axes in turn, each time the tree is translated by a positive
displacement (that is a movement along the positive direction of the axis). If the
object is required to be translated by a negative displacement, an operation for re-
versing the space is implemented before translating. The image is reversed again
after translating.

Translation of leafcodes is straightforward. It can be implemented by address
manipulation. Each node can be translated independently. A translated leafnode
may remain a leaf if it is translated by some multiple of its size, or otherwise may
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need to be broken into several leaves. The node splitting is then a key process. The
resulting tree will need to be sorted and condensed.

2.4.1.2 Scaling of Octrees

Scaling, by a power of two, octrees encoded as pointer structures or as treecodes is
simply to add or to delete levels at the root. Adding one level at the top reduces
the object by half. The new root has eight children, one of them is the old root,
others are empty leaves. The position of the old root in the new tree determines
the position of the object in the new space. Similarly, doubling the size of an object
in octree space is to select a node from eight nodes at the top level of the tree as a
new root. All other brothers of the selected node are deleted. If scaling the octree
of an object by a factor other than a power of two, we must rebuild the tree. Like
translation of octrees, this process involves intersection tests.

Scaling leafcodes by powers of two is less easy than pointer trees and treecodes.
Firstly, all leaves must be scaled independently by recalculating a new address for
each leaf. Secondly, the address of each new leaf will depend not only on its corre-
sponding old leaf but also on the reference point for scaling. Leafcodes are better
than pointer trees for scaling by an arbitrary factor because tree reconstruction is
fast with address manipulation . A scaled leaf may be split into several new leaves.
The final tree will need to be condensed.

2.4.1.3 Rotations and Reflections of Octrees

Rotation of an octree by 90 degrees (or a multiple of it) about an axis is to rotate
the octree about a line passing through the center of the octree space with a specific
direction of rotation. Reflections include reflecting the octree about a plane passing
through the center of the octree space. The plane either is parallel or has an angle
of 45 degree to a face of the space. Both rotations and reflections are implemented
by reordering the sequence of nodes.

For a pointer octree, the rotation process is simply a recursive permutation of
the children of each grey node [Jack80]. The order of permutation is determined
by the space organisation and the axis about which the octree is rotated. For the
space organised as in Figure 2.1 and assuming we want to rotate an octree about
the x-axis and move the z-axis into the y-axis, the rotation can be performed by
applying the permutation (0,1), (1,3), (2,0), (3,2), (4,5), (5,7), (6,4), (7,6). The time
complexity of rotating a pointer octree is O(N), i.e. linear in the number of nodes
N in the tree.

Rotations and reflections of treecodes are less easy than for pointer octrees. It
is because the permutation is performed at each level of the tree in a breadth-first
order, whereas the treecode is organised in a depth-first order. In their paper, Oliver
and Wiseman [Oliv83a] process the treecode one level at a time and make multiple
scans of the input. Each scan skips over the subtree which separates one node from
the next node at the same level. The algorithms are space efficient but not time
efficient.
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Rotations and reflections of leafcodes are very simple by applying the spatial
permutations to all of the octal digits of each node.

0—-21;1—-3;3-52;2—-0;4—-5;6-7;7—6;6—4;

The mapping time is also linear in the number of nodes N in the tree. If only
black nodes are stored then N represents the number of black nodes. Resorting is
needed after rotating the original tree. The sorting takes O(N log N) time.

2.4.2 Set Operations

The basic set operations are union (OR), intersection (AND) and complement
(NOT). The hierarchical data structures like quadtrees and octrees are especially
useful for performing such operations. The algorithms mainly require a traversal of
two input trees in parallel, comparison of corresponding nodes, then construction of
a resulting octree. The rules for node comparison depend on the types and contents
of nodes of the input trees. They are different for raster octrees and vector octrees.
For raster octrees of black and white images, the set operations merge two input
trees according to rules in Table 2.1 and Table 2.2.

Union | WHITE BLACK GREY
WHITE | WHITE BLACK GREY
BLACK | BLACK BLACK BLACK

GREY | GREY BLACK GREY

Table 2.1: Union of two raster octrees

Intersect | WHITE BLACK  GREY
WHITE | WHITE WHITE WHITE
BLACK | WHITE BLACK GREY

GREY | WHITE GREY GREY

Table 2.2: Intersection of two raster octrees

The Table 2.1 can be explained as follows. If two nodes from the tree A and the
tree B are both BLACK then the resulting node in the output tree is BLACK. If one
node, say in A, is WHITE, then the corresponding node in the output is set to the
other node in B. If nodes in both trees are GREY, the output node is set to GREY
and the algorithm is applied recursively to children of A and B. The resulting tree
must be condensed because the union of two trees can yield the situation where all
children of a GREY node in the output tree are BLACK. The intersection of two
octrees (see Table 2.2) is just as simple. A program for intersecting two octrees is
listed in Algorithm 2.2. Again the resulting tree needs to be condensed, and this time
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all WHITE sons are merged. For vector octrees, the node types are more complicated
and lead to complex decision making as demonstrated by Navazo [Nava89] (shown

in Table 2.3).

PROCEDURE Intersect(OCT A, B)
BEGIN
IF A = White OR B = White THEN output White
ELSE IF A = Black THEN copy out the subtree of B
ELSE IF B = Black THEN copy out the subtree of A
ELSE
output Grey
FOR i = 0 TO 7 DO
Intersect(SubOctant(i, A), SubOctant(i, B))
ENDIF
END

Algorithm 2.2: Pseudo C procedure for the octree intersection algorithm

Intersect | W B F E A% G
W W W W W W W
B W B F E \Y G*
F w F WFEG W, F.EV,G WEFV,G @
E w E W,/FEVG WEVG W.E,V,G @&
V w VvV WFEVG WEVG W,V,G G’
G W G* @& G’ G’ G

Table 2.3: Intersection of two vector octrees: G* means that the grey node and its
descendent are copied to the output tree; G’ indicates that further intersection of
the leafnode with the descendent of the grey node is required.

The time complexity of octree set operations is related to the data structure
used for tree encoding. Union and intersection of pointer octrees are performed in
a recursive manner, with an execution time proportional to the number of nodes in
the output octree. The union/intersection time of treecodes is linear in the sum of
nodes from two input octrees. This is because each node of a treecode is determined
by its position in the data array with respect to the nodes before it. To locate an
octant one must visit each node in turn. There is no simple way to skip over a group
of nodes or subtrees. For leafcodes, the time for the intersection/union operation is
linear in the sum of black nodes of two input trees.

The complement of an octree is formed by reversing the colour of its leaves. Black
nodes are changed to white nodes and vice versa. The grey nodes remain unchanged.
The execution time is proportional to the number of nodes in the original tree for
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all three tree formats.

2.4.3 Volumes and Other Integrals

Computation of volumes and other integral properties of solids with complex shape
are necessary in scientific and many other fields. Lee and Requicha [Lee82] sum-
marised several methods for volume calculations using octrees and other cell decom-
position schemes. They calculated volumes of solids represented by CSG. The CSG
model is first converted into an octree, then the octree is traversed in preorder and
the sizes of black nodes are accumulated to obtain the volume. The execution time
is proportional to the number of nodes in the octree.

2.4.4 Displaying Octrees

There are two main approaches to display 3D objects stored as octrees. They are
front-to-back traversals and back-to-front traversals. Since all octants are already
in a sorted order, the hidden surface removal is very easy. It is simply to follow a
specific sequence to visit each node of an octree. With front-to-back display, octree
nodes which are closer to the viewer are visited before those farther away nodes.
Front-to-back methods are suitable for special projections of octrees such as face,
edge, or corner views. The advantage of this approach is that each leaf in the tree
is visited at most once. If a leaf is completely obscured then it is not visited at
all. In back-to-front display, nodes farther away from the viewer are visited before
close ones. The projection of the current octant overwrites the painted region of any
octant visited earlier.

Doctor and Torborg [Doct81] developed a front-to-back display algorithm for
face views. In their algorithm, a display generator transforms an octree-encoded
object into a quadtree-encoded image. The relation of an octant and a quadrant
is simple since the edges of the octant and the projected quadrant coincide. Both
opaque and semi-transparent objects are discussed. Yamaguchi et al. [Yama84]
proposed triangular quadtrees for front-to-back display of octrees with corner views.
The algorithm restricts the image to be an isometric view. With this special view
direction, projections of edges of cubes in an octree divide the space into triangles,
thus a triangular quadtree is formed. Again, edges of triangles coincide with edges of
octants of the original octree. Front-to-back display with an arbitrary view is more
difficult. No simple rule exists to determine the relation between the edges of the
current octant and previously projected octants. One needs to test the intersection
between the projection of an octant and the quadrants in the image plane. Therefore,
for arbitrary views it is simpler to use back-to-front display.

Frieder et al. [Frie85) proposed a display algorithm for recursive back-to-front
read out of voxel-based objects. A similar approach was adopted later by Gargan-
tini et al. [Garg86] for leafcode display. In their method, the farthest suboctant was
examined first, followed by its three face neighbours (in any order), followed again
by the three face neighbours of the closest suboctant, and finally by the closest
suboctant itself. To get this order, a program called Pipeline was used to reorder
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the input leafcode. The program requires repeated searches of the input octree.
Searches slow down the algorithm’s implementation. Meagher [Meag82] adopted
back-to-front display for pointer octrees. He used a predetermined recursive display
sequence 0 123 4 5 6 7 for the octree space shown in Figure 2.1. Similarly, octrees
can be displayed with other sequences of 02461357 0or 01452367 These
three sequences give the same final image of the object. With this method, the
programmer must decide in advance the sequence to be used. Changing the viewing
position may result in different display sequences, or require rotating the octree.

Displaying treecodes in an order other than the stored depth first order is gener-
ally inefficient. It is due to the lack of ability to do random node access in treecodes.
The process may need more than one scan of the octree. Oliver [Oliv84] proposed
two methods for fast display of treecodes. The first algorithm generates an image of
a plane section of an octree and will be summarised in the next section. The second
method displays an orthographic projection of an octree in a front-to-back manner
like Doctor and Torborg’s algorithm mentioned above. Oliver chose a special num-
bering order (Figure 2.6 (b)) to store the octree. Thus it becomes possible to make
a single scan of the tree. However, if the viewing position changes, a different order
may be required thus extra traversals are necessary to reorder the tree. Scanning a
treecode is often inefficient because many nodes must be visited before the wanted
one is found. To make quick skips over those nodes, Oliver further introduced a
sedectree (sedecim is the Latin word for sixteen) in which each parent node has
sixteen child nodes. The first eight nodes are pointers to the offsets and the other
eight nodes are normal octants.

(a) (b)

Figure 2.6: Oliver’s ordinal numbers of octants for two treecode algorithms: (a)
display a plane section which is parallel to the front face of the image space; (b)
display an orthographic projection of an octree in a front-to-back manner.

Noting that only those nodes at the border of the object are contributing to
the final image, several groups of researchers developed algorithms which separate
border octants from inner octants and display border octants only. Chien and
Aggarwal [Chie86b] presented a multi-level boundary search algorithm which detects
and labels the interface between the black/white nodes (surfaces) of a pointer octree.
The algorithm avoids time-consuming neighbour finding operations by using top-
down neighbour computation in conjunction with tree traversal. Gargantini et al.




CHAPTER 2. MODELLING WITH OCTREES 25

[Garg86] proposed another two algorithms which are modifications of the back-to-
front leafcode display algorithm. These two algorithms detect first the 3D border of
the given object, then project the surface voxel of the object onto the screen. The
difference between the two methods is that one processes black and white images and
the other deals with general images with grey-level or different colours. However,
the disadvantages are that the two methods result in a large number of border voxels
and the time is increased for displaying these small voxels.

2.4.5 Cross sections of octrees

A cross-section of an octree is an image of a voxel-thick slice from the octree space. It
is generated by testing the intersection of the octree with a plane. The plane can be
either perpendicular to any axis of the octree space, or with an arbitrary orientation.
The first case corresponds to an orthogonal cross section and the second one is an
arbitrary cross section. An orthogonal cross section can be generated by traversing
the octree, finding the nodes that intersect the plane, and building the corresponding
quadtree from those intersected nodes. The plane-octant intersection test is simple
since the plane is parallel to two of six surfaces of each octant. For an arbitrary
cross section, there is no simple relation between the plane and the octants. The
quadtree corresponding to an arbitrary cross section must be built either top-down
or bottom up. ‘

Yau [Yau84] discussed algorithms for generating quadtrees of cross sections from
pointer octrees. Her algorithms included orthogonal cross section generation, and
arbitrary cross section construction. Two algorithms have been proposed for gen-
erating arbitrary cross sections. One is a top-down method and its key operation
is to detect octant-plane intersections. The other is a bottom-up method which
scan-converts the plane and determines the colour of each pixel by using the point
enclosure test. The pixels are then grouped into quadrants to build the quadtree.

Oliver’s algorithm [Oliv84] generates cross sections from treecodes. Here a
treecode is numbered in such a way that either the first four octants or the last
four octants will be chosen during the depth first traversal. Two more offset nodes
are added to make the algorithm jump over the irrelevant nodes quickly. This mod-
ified tree is called a dectree, in which each parent has ten children.

2.4.6 Neighbour Finding

The neighbours of an octant are those nodes which are spatially adjacent to the
octant. Each octant in an octree space has six faces, twelve edges and eight vertices.
So each node has three kinds of neighbours: face neighbours, edge neighbours, and
vertex neighbours as in Figure 2.7. Given a node and a direction, the node can have
either one face neighbour which is equal to or larger than itself, or several smaller
face neighbours (Figure 2.8).

There are two main reasons for locating the neighbour of an octant. The first
one is that the value of a node, or an operation applied to a node, may depend on
the value of its neighbour. One such example is the connected component labelling
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Figure 2.8: Neighbours of an octant: (a) equal, (b) larger, (c) smaller in size

algorithm. The second reason is that some applications need to visit octants in the
space in spatial order. This is most useful for accelerating ray tracing. Connected
component labelling algorithms visit all neighbours of an octant, while moving be-
tween adjacent octants in space involves only two neighbouring nodes each time.
Motion is possible in the direction of a face, an edge, or a vertex. Motion is also
possible between nodes of different sizes.

There are several techniques for neighbour finding. The most straightforward
method is to use point location. From a node, we compute the coordinates of a
point which just exits the current node space. This point must be located in one
of the neighbours of the node. Then the point location operation is performed. It
starts at the root of the tree, compares the center of the current space with the
point, and determines which of the eight subtrees contains the point. The process
is repeated recursively until a leaf is reached. The worst case time complexity for
locating an octant is linear in the depth of the tree. Point location can also be
implemented in a different way by converting the coordinates of the point to the
octal code of a unit cube and then checking whether it corresponds or belongs to
any octant. This is most often used for leafcodes. Its execution time is proportional
to the log of the number of nodes in the tree since it involves a binary search to find
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a specific node.

Another method [Same89a] is a bottom-up neighbour finding. It adds father
links to the tree and computes the path to the neighbour by following the links
to find the nearest common ancestor of the node and its neighbour. This method
is simple for the cases which search face neighbours that are of a size equal to or
greater than the node itself. The third method is to build explicit links from a
node to its neighbours [Hunt79b]. These links are named ropes and are defined as a
link between two face adjacent nodes. The two nodes are of equal size and at least
one node is a leaf. The memory requirement is increased for storing ropes. Both
the second and third methods are more complex in locating neighbours with a size
smaller than that of the original node. They are also storage extensive.

2.4.7 Condensation of an Octree

A minimal octree is a tree which has a minimal number of nodes for representing
an object. In contrast, the same object may be stored as a non-minimal octree with
more nodes. Those extra nodes often form groups of sibling nodes of the same colour
as shown in Figure 2.9. They can be replaced by one larger node.

Figure 2.9: A 2D representation of nodes of a non-minimal octree

An octree needs to be condensed after operations which result in a situation
where eight sibling nodes in some part of the space are of the same colour. To
condense an octree is to delete children of a grey node when all those leaves below
have an identical label. The grey node is replaced by a leaf with the label. During
condensation, each node of the input tree must be visited once in order to iden-
tify its colour. Therefore the condensation process has a time complexity which is
proportional to the number of nodes in the input tree.
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2.5 Constructing Octrees from Image Models

Octrees can be constructed from two groups of representations: image models and
object models. Image models include 3D arrays of numbers (3D digital images), and
its two variations: run-lengths and serial sections, as well as silhouette images which
are 2D projections of 3D scenes. The data in image models are mainly generated
by data collection techniques. They are important in the field of image analysis
and processing, pattern recognition, computer vision. Object models include sweep
representations, CSG and boundary representations. They are used as object de-
scriptions, generated by users and then stored in computers. In this section, we
discuss image model to octree conversion. The algorithms for converting object
models to octrees will appear in the next section.

2.5.1 3D Arrays

A simple method to build an octree from a 3D binary array is to extend the algorithm
developed by Samet [Same80] for quadtree construction from a 2D array. This is a
recursive method which successively subdivides the array and scans elements of the
array in a depth first order (also named Morton order). Figure 2.10 is an illustration
of scanning a 2D array in Morton order with the space origin in the top-left corner.
A node of a tree is visited after its children are visited. A leaf node is created only
when it contains a maximal block of elements, all these elements being of the same
colour. Minimal octrees are generated with this method. The time complexity is
proportional to the number of voxels in the array. The memory requirement is that
for storing the 3D array and the output octree.

The above simple algorithm is storage extensive. To save storage, Samet [Same81]
proposed an improved algorithm for constructing quadtrees by processing the image
one row at a time and merging identically coloured sons as soon as possible. This is
a bottom-up method. It can be extended to 3D and implemented by voxel insertion.
All the voxels in odd-numbered slices are inserted into the current tree. Merging
operations are only possible for even-numbered slices. The algorithm cannot give
much memory saving for 3D cases since the minimum intermediate storage is that
for storing the octree with the first slice at voxel size. The total number of nodes
for an octree with such a slice is

§(4<D+1) ~-1)—1

While D is the maximum depth of the tree. For the example shown in Figure 2.11
(D = 2), the number of nodes is 41. When image resolution increases (for instance
D = 8, resolution 256 x 256 x 256), this number is 174,761.

The algorithm is more complicated. The key procedure is to add a neighbour
voxel of a node to the tree. It also adds non-terminal nodes to the tree when
necessary. Adding a neighbour of a node in a specified direction consists of the
following processes: traversing ancestor links until a common ancestor of two nodes
is found; and then descending along a path which is the reflection of the ascending
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Figure 2.10: Scanning a 2D array in Morton order.

path about the common boundary between two nodes. If a common ancestor does
not exist, then a non-terminal node is added with its other sons being white. Another
important procedure is a merge process which checks at each even-numbered slice
for possible merges with previous slices. The inner loop of the algorithm is slow
although its asymptotical complexity is still proportional to the number of voxels
in the input. Each node in the tree requires one more field to hold a pointer to
its ancestor. So memory overhead for the final octree is larger than that for the
previous simple method.

Both the above top-down and bottom-up algorithms build pointer octrees. It
is clearly shown that the bottom-up method is much more complex due to the
node insertion operation which is time consuming for pointer octrees. Leafcodes, on
the other hand, make the bottom-up approach simpler and straightforward. Mark
[Mark86], Shaffer and Samet [Shaf87] discussed efficient leafcode-based algorithms
which convert raster data in the form of run-lengths to quadtrees and octrees.

2.5.2 Run-Lengths

A run-length is a widely used representation which stores each row of a raster image
as a sequence of maximal runs of pixels (or voxels) of the same value.

Shaffer and Samet [Shaf87] proposed an algorithm for constructing quadtrees
from run-lengths by using a table of active nodes. The construction process is as
follows. For each pixel in a run, if the pixel has the same colour as an appropriate
active node, do nothing. Otherwise, a node is inserted with the current pixel as
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Figure 2.11: An octree for one slice of a digital image
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the first pixel and with the largest possible size. This node is also added to the
active node table. An active node is removed from the table when the current pixel
is the last pixel of the node. The key operation is to locate the smallest active
node which contains the specified pixel. This needs a search operation. To avoid
search, an access array is used. Each element of the array provides a pointer to
the corresponding active node in the table. This algorithm generates a minimal
quadtree. The authors claimed that their algorithm is optimal by using the number
of insertions as a metric, since it yields at most one insertion per node in the output.
However, the insertion process is not constant and nodes are not inserted in the
preorder. The resulting tree must be sorted. The time complexity for sorting is
O(nlogn) where n is the number of nodes in the output tree. To maintain the table
of active nodes a certain amount of additional storage is needed. The above idea
can be extended to octrees using a larger table.

2.5.3 Serial Sections

Yau and Srihari [Yau83] proposed an algorithm for constructing octrees from a series
of cross-sectional images represented as quadtrees. The algorithm builds an octree
from 2" slices of quadtree images which are orthogonal to one axis. It merges each
pair of adjacent slices in a bottom-up way. At the first stage, the 2" slices are merged
into 2(*~1) generalised slices. This process is repeated n times and finally the last
two generalised slices are merged to obtain the final octree.

2.5.4 Orthogonal Silhouettes

The above octree construction algorithms may become useless if we cannot get
3D binary arrays or run lengths of objects in the first place. In practice, the 2D
images of an object can be generated much easier by using a camera. Such an
approach is often used for robot vision. A series of 2D images from different view
points can be obtained and used to construct the octree of an object. Chien and
Aggarwal [Chie86a] proposed to take three orthogonal face views (front, top, side)
of an object to build an octree. We call it the face-view algorithm here. The images
for three orthogonal views can be easily converted into quadtrees, each quadtree
corresponding to one face. However, three face views are not enough for representing
objects like cones and objects with holes. Three face views of a cone will result in
an octree with pyramid shape. More views are necessary in those cases. Veenstra
and Ahuja [Veen85] added six edge views (one of them is shown in Figure 2.12) to
refine the octree built previously from face views. More complex corner views as in
Figure 2.13 can also be introduced.

These algorithms are based on pointer trees. Here we only give a brief summary
of the face-view algorithm proposed by Chien and Aggarwal [Chie86a] as follows:

1. generating the quadtrees of the three silhouettes from the three orthogonal
views of an object;
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Figure 2.12: An edge view of an octree space

Figure 2.13: A corner view of an octree space

9. transforming each quadtree along the associated viewing direction to obtain
a pseudo-octree representing a cylinder swept through the related viewing
direction;

3. Intersecting the three pseudo-octrees to generate a final octree of the object.

For each view, a pseudo-octree is generated by assigning two numbers known
as labels to every node of the quadtree. Figure 2.14 shows the correspondence be-
tween quadtree orders and pseudo-octree labels for each of the three face views.
The process of intersecting three pseudo-octrees to generate the final octree con-
sists of three procedures: Intersect-3 and Intersect-2 which perform three and
two pseudo octree intersections respectively; Convert which traverses the resulting
pseudo-octree to produce an output octree. The rule for intersection is as follows.
Starting from the root node, the program traverses the three pseudo-octrees in par-
allel. If the nodes from the three pseudo-octrees are grey, Intersect-3 is performed
on the eight combinations of their children. If two are grey and one is black then the
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Figure 2.14: The quadrant numbers and the corresponding pseudo octree labels

outcome is determined by the two grey nodes through Intersect-2. If one node
is grey and the other two are black, the output is the subtree of the grey node. If
all three nodes are black, the output is a black node. If at least one node is white,
then the output node is white. Since it is possible that after intersection all eight
children of a grey node are white, the resulting tree may not be a minimal tree.
Condensation must be performed on the output tree.

2.6 Constructing Octrees from Object Models

2.6.1 Rectangular Parallelepipeds

Franklin and Akman [Fran85] designed an algorithm for constructing octrees from a
set of rectangular parallelepipeds (RPs) approximating an object. This is a bottom-
up approach for building leafcodes. The RPs are evenly spaced in one plane (for
example xy-plane) and have different lengths along the third axis (z). These RPs
are either obtained by ray casting methods which cast parallel rays through the
xy-plane, or converted from run-lengths.

2.6.2 General CSG Models

The simplest algorithm for constructing octrees from CSG models is to build an
octree for each primitive solid then to merge all these primitive octrees using CSG
set operators. Lee and Requicha [Lee82] proposed an eflicient method to build
octrees from CSG solids. Their algorithm has two major improvements to the above
straightforward method. Firstly, it has a simple cell-primitive classification method
for decomposing a primitive object into variable sized blocks. The algorithm uses a
modified cell classifier to determine whether an arbitrary cell is wholly inside/outside
any primitive of CSG or is intersecting with it. Instead of examining eight vertices
of an octant, the cell classifier checks only the center of the octant. In order to
do this, two boundaries are derived for each solid at each level of subdivision. The
solid is compressed to form an inner-bound as well as expanded to get an outbound
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for testing in/out relations. These boundaries are computed in a preprocessing
phase and stored in main memory. If the central point of an octant is outside the
corresponding outbound, then the octant is white. If the point is inside the inner-
bound, the octant is black. Otherwise, the octant intersects with the boundary of the
solid and is marked grey. Further subdivision is necessary. The second improvement
is an efficient recursive subdivision strategy. Instead of obtaining the final octree
of a CSG model by combining the primitive octrees, the algorithm evaluates set
membership classifications during recursive subdivisions. The combination tables
(for example Table 2.4 for intersection of two primitives) are consulted for each cell
during subdivisions.

Classify (cell, B)
IN OUT INTERS.
Classify IN in out  subdivide
(cell, A)| OUT out out out
INTERS. | subdivide out subdivide*

Table 2.4: Combination table for classifying a cell against a CSG tree (A intersected
with B), * denotes that a non-minimal subtree may appear in this case.

2.6.3 Boundary Representations

Conventionally, two approaches have been employed for building octrees from bound-
ary representations: top-down and bottom-up. The former includes the divide-
and-conquer method with point enclosure tests [Tamm84a], the method of inte-
rior/exterior classification [Meag82], and the method of connected component la-
belling [Tamm84b]. The top-down methods are most useful for generating pointer
octrees and treecodes although they are applicable to leafcodes too. Gargantini et al.
[Garg86] use a bottom-up method to generate leafcodes by interior filling. Tang
and Lu [Tang88] proposed another bottom-up method which generates leafcodes by
transforming coordinates of voxels to octant addresses and then condensing them
into octree nodes.

o Cell classification: This method consists of two steps: an intersection test
and a point enclosure test. In the first step, each octant is examined to see
whether it intersects any of the object’s faces. If it does, then the octant is
subdivided and the test is repeated for each suboctant. Otherwise the octant
could be either interior or exterior to the object. This is determined in the
second step in which the program counts the number of times that a ray
originating from a point inside the octant intersects the faces of the object.
An even number means that the octant is outside the object. Otherwise, it
is inside. The above tests require intensive computation especially when the
number of faces of the object increases. Tamminen et al. [Tamm84a] used
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a spatial indexing technique to speed up the process of point enclosure tests.
By improving the efficiency of tests, the divide-and-conquer method becomes
practical for objects with a large number of polygons.

e Interior/exterior classification: This method classifies an octant as black
when it is interior to the object, white if it is exterior, otherwise subdivides
the octant. An octant is classified as an interior one when it is interior to
all the bounding faces of the object. If it is outside any face then the octant
is an exterior one. This classification requires comparisons between all eight
vertices of an octant and each face of the object. The input data (a list of
faces) are repeatedly scanned for testing each octant. Essentially, this is a
“brute-force” method and is not practical for objects with a large number
of polygons. Moreover, it is only applicable to convex objects. For concave
objects the above classification criteria do not hold. An octant can be interior
to a concave object when the octant is outside some faces of the object. On
the other hand, a cell can be exterior to an object with holes while it is interior

to many faces of the object. Figure 2.15 shows one example of an object with
a hole.

Figure 2.15: The problem of interior/exterior octant classifications for an object
with a hole. The probing cell is interior to the external faces and exterior to the
internal faces of the object.

o Connected component labelling: This algorithm was developed by Tam-
minen and Samet [Tamm84b]. It comprises of two phases. In the first phase,
each polygon of the object is converted into a linear image tree in which black
leaves represent the surface area of the polygon. All trees corresponding to
polygon faces of the object are then merged into a single tree representing the
boundary of the object. In the second phase, the white leaves corresponding to
the interior of the object are changed to black by labelling connected octants.
This method is faster than the cell classification algorithm, but is also com-
plicated involving projection, conversion, overlaying and labelling. It creates
a non-minimal octree which needs further condensation. The time complexity
of the algorithm is related to the surface area of the object.
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e Bottom-up: Tang and Lu [Tang88] designed an algorithm which scan-converts
the object into an array of voxels and then processes these voxels to get a leaf-
code. It requires O(V) time to encode the Cartesian coordinates of voxels into
octant addresses and another O(V) time to condense voxels into leafnodes.
Here V is the number of voxels in the interior of the object. Preprocessing is
needed in their method for exploiting surface coherence and edge coherence to
speed up scan-conversion of planes and lines. It is obvious that the method
is comparatively slow when the object has a big volume but a relatively small
number of polygon faces.

2.7 Constructing Vector Octrees

Carlbom et al. [Carl85], Brunet and Navazo [Brun85] employed different methods
to construct vector octrees from boundary representations of polyhedral objects. A
polyhedral object consists of a list of polygon faces. Each polygon face has a list
of edges. An edge is determined by its two end points and each edge can belong to
at most two polygons. A point has a spatial location and can be shared by several
edges. With the above constraints, the relation among the number of faces (f), the
number of edges (e), and the number of vertices (v) is derived, which is known as
Euler’s Formula, as below
v—e+ f=2

The approach by Carlbom et al. is based on a modified Sutherland-Hodgman
clipping algorithm for the special circumstances of polytrees. Firstly, it recursively
clips polygons into subspaces until the space contains only one of vertex, edge, face
or empty. Secondly, empty octants are classified into black or white using ray cast-
ing techniques. The drawback of Carlbom’s method is that it creates many polygon
segments with pseudo-vertices and pseudo-edges during the process of polygon clas-
sification.

Brunet and Navazo’s method (Algorithm 2.3) is also a recursive decomposition
process. The program keeps lists of faces and vertices associated with the current
octant during subdivisions. The subdivision stops when the octant is one of the face,
edge, vertex, full or empty cells. The clipping procedure computes the above lists
of faces and vertices from the input lists. For each face on the facelist, several tests
are implemented in turn as listed below. The complexity of each test is increasing
in the sequence.

1. checking if any vertex of the face is inside the octant;

2. intersecting the octant with the bounding box of the face so that trivial non-
intersecting faces are rejected quickly;

3. detecting whether the plane of the face intersects the octant;
4. detecting if any edge of the face cuts any face of the octant;

5. examining if intersection of the face and the octant is void.
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PROCEDURE Build-octree(octant,facelist,vertexlist)
BEGIN
FOR i=1 to 8 DO
calculate the suboctant[i] of the octant
clipping(suboctant[i],facelist,vertexlist,facelistl,vertexlistl)
IF no faces in facelistl THEN
IF the node is interior THEN output(BLACK)
ELSE output (WHITE)
ENDIF
ELSEIF only one face THEN output(FACE)
ELSEIF only one edge THEN output(EDGE)
ELSEIF only one vertex THEN output(VERTEX)
ELSEIF suboctant size > 1 THEN output(GREY)
Build-octree(suboctant[i],facelisti,vertexlisti)
ELSE output(GREY, pointer to the faces)
ENDIF
ENDFOR
END

Algorithm 2.3: Pseudocode for Brunet and Navazo’s vector octree construction al-
gorithm.

The algorithm is valid both for plane faces and curved surfaces, but different
clipping procedures are employed.

2.8 Applications

In comparison with other 3D representations (for instance CSG, Breps, wireframes),
octrees have several advantages: hierarchical data organisation, regularity, unique-
ness and spatial addressability. These features facilitate efficient set operations,
volume computation, display with hidden surface removal, point location, neigh-
bour finding, and so on. The above octree algorithms need only integer operations
and thus are suitable for fast manipulation by special-purpose hardware. There
were attempts to build octree machines. However, as will be discussed later, there
are problems with octree machines when they are used for geometric modelling and
milling. Octree machines have not gained popularity in real applications. In the
last ten years, hardware acceleration of floating point operations has become widely
used and general computer power has increased tremendously. Octree engines de-
veloped in the early years of the decade seem even less powerful. Nevertheless, as
general spatial data structures, octrees are still attractive. Octrees have been used
in three dimensional image processing, computer graphics, geometric modelling and
image rendering. Recently, octrees and other hierarchical data structures have re-
ceived considerable attention [Same88a, Same88b] and have extensive influence on
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the design of solid modelling and image processing systems.

2.8.1 3D Image Processing

In image processing octrees show their suitability as a representation scheme for 3D
images of any complexity. The objects may be concave, convex, irregular shapes,
or have holes and disjoint parts. Such images are often seen in medical image
processing (for example, images of a brain). These images are difficult in general to
define using other 3D modelling techniques. Here, octrees are more compact than
3D voxel arrays and have the flexibility to probe certain subsets of the data. Efficient
representations using octrees can save storage and improve the performance of many
tasks such as display of cross-sectional images and the quantitative measurement of
3D objects.

2.8.2 Geometrical Modelling

During the early years of research into spatial data structures, octrees were used
in geometric modelling systems for Boolean operations, geometric operations and
display by hidden surface removal [Jack80, Meag82]. However octrees only approx-
imately represent geometric objects and are memory extensive. These limitations
restrict octrees to be used as the internal representations of geometric objects. Nowa-
days octrees are mainly used as intermediate representations for the above mentioned
applications as well as volume calculation, finite element analysis, surface triangu-
lation and exploitation of spatial locality.

2.8.3 Accelerating Image Generation

The realistic image generation algorithm of ray tracing benefits from the octree
data structure through spatial indexing. By indexing objects using an octree, a
ray can be tested against objects in a spatially sorted order and can also bypass
many irrelevant objects which are far from the ray’s path in the space. Thus the
number of ray-object intersection tests is reduced considerably. These tests are
most time consuming and can cost up to 90 percent of the total processing time for
a straightforwardly designed ray tracer.

2.9 Space and Time Complexities of Octrees

To measure a particular format of octrees we often use two criteria—the space
efficiency and the time efficiency. The space and the time often trade-off each other.
The space efficient schemes usually require longer time to process each element. On
the other hand, the time efficient data structures often require larger memory space.
Since the cost of memory is becoming much cheaper these days, the time eflicient
schemes are more appealing on general purpose workstations. However, memory
access time still remains a major problem for processing a large amount of data
in real time. With improved CPU and special purpose VLSI chips, the processing
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time becomes faster than the memory enquiry. Therefore the space efficient schemes
may also play an important role in real time special purpose systems. We compare
the memory required by the three major octree formats—pointer octrees, treecodes
and leafcodes, then identify, based on the review in previous sections, the major
operations in tree traversals, transformations and constructions.

2.9.1 The Space Analysis

e Pointer Structures:

A grey node in a pointer octree has eight pointers, each pointer uses 32 bit
integers on a conventional machine. A leaf node has one data field to indicate
its colour. The field can be two bits for black and white images or several
bits for colour images. Here we assume 8 bits to record 256 different colours
or grey scales, Each node requires one additional bit to distinguish the grey
nodes from the leaves. The number of grey nodes (G) is determined by the
number of leaves (L) in the tree by the following formula:

1
==(L-1)

The total storage (the number of bits) for a pointer tree is

8+1)xL+(32+1)xG

e Treecodes:

Each node in a treecode has only one record to indicate its content and one
extra bit to distinguish between leafnodes and grey nodes. Again assuming 8
bits per node, the total storage is 9 x (L + G) bits.

e Leafcodes:

The memory requirement of a leafcode is determined by the resolution of the
octree space. On conventional machines, each node is represented by a group
of three numbers: the level of the node in the tree (this decides the size of the
node); the locational code which indicates the node position; the colour of the
node. Assuming the level of the root node is 0 and the maximal level of the
tree is D, we need log, D bits to represent the first number, 3 x D bits for the
second number and another 8 bits to store the colours. The storage required
for each node is

log, D+3 xD+38

For a tree of depth 6, we need 29 x L bits. The L is the total number of
non-white leafnodes.

An example of a sphere of unit size with the center located at the octree space
center is used for demonstration. The results are listed in Table 2.5.

Samet and Webber [Same89b] discussed how to reduce the memory requirement
of a pointer tree by packing pointers. They assumed that pointers need not be
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Pointer Trees | Treecodes | Leafcodes

No. of Nodes Stored 24,769 24,769 9,598

No. of Black Nodes 9,598 9,598 9,598
Minimal Memory Required 297,225 | 222,921 278,342

Table 2.5: Analysis of memory requirements for the three octree formats.

larger than necessary for distinguishing nodes. Thus different trees can use pointers
which are different in size. The size is a function of the total number of leaves,
approximately log(2L) for octrees. Therefore for some examples a packed pointer
tree requires less memory space than the corresponding pointer-less tree. However,
the implementation of such schemes is more difficult. We must know in advance
how many leaves exist. When the number of nodes in a tree increases, reallocation
of the pointer space may be necessary. The packed pointer tree is more suitable for
a static database.

2.9.2 The Time Complexity

Now we analyse the time complexity of the above three octree formats. The key
operations of octree algorithms are tree traversal, random octant query and attribute
query (for instance colour search). Tree traversal is the basic operation for many
octree algorithms. For example algorithms of set operations traverse two input
trees in parallel and apply set operators to the corresponding nodes in two trees.
Algorithms like displaying an octree and computing volumes traverse one tree in
some required order. Random octant query, on the other hand, is most useful for
algorithms of neighbour finding, connected component labelling. Attribute query
includes colour searches and so on. The efficiency of the above operations determines
the overall performance of an octree system.

o Pointer Trees are very simple for top-down tree traversal. The nodes in a
tree can be visited by following the pointers in any predetermined order. The
worst case performance for visiting a random octant is proportional to the
maximal level (D) of the tree. The colour search requires the whole tree to be
traversed in the worst case, thus its performance is related to the number of
nodes in the tree.

e Treecodes have a major disadvantage in that tree traversal is order sensitive.
If the order of traversal is different from the order in which nodes are stored,
traversal algorithms need to use a buffer for storing some nodes or need to
rescan the tree. Therefore the numbering of eight brother nodes in treecodes
influences the complexity of algorithms. No order is universally efficient for
all algorithms, The worst case performance to locate a random octant is
proportional to the number of nodes (N) in the tree. Searching a node with a
specific colour requires O(N) time too.
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e Leafcodes can be traversed in an order other than the sorted order of loca-
tional codes. However the process requires searching. On conventional com-
puters a search operation has a complexity related to the number of black
nodes (n) in the leafcode tree. The worst case performance of traversing the
whole tree is O(nlogn). The time to locate a random octant is O(log n). The
colour search needs O(n) time.

Table 2.9.2 summarises the above time complexity analysis.

Preorder | General | Locating | Colour

Traversal | Traversal | Octant | Search
Pointer Trees| O(N) O(N) O(D) O(N)
Treecodes |  O(N) * ON) | O(N)
Leafcodes| O(n) | O(nlogn) | O(logn) | O(n)

Table 2.6: Analysis of the worst case time complexity of the three octree formats
for basic operations. (NOTE: * in the table stands for O(N) when using buffers or
O(N?) when rescanning)

2.10 Summary

The memory extensive structures of pointer octrees have simple inner loops for
pointer following and are efficient for most tree manipulation algorithms. Treecodes
are the most space efficient representations but have tree traversal problems. They
are suitable for algorithms using special preorder traversal. They are not eflicient
for algorithms which need breadth-first traversal or random node access. Algo-
rithms which involve searching attributes are not efficient with both pointer trees
and treecodes. These algorithms are implemented by traversing the tree exhaustly.
Algorithms of neighbour finding are complicated with pointer trees and treecodes,
requiring some additional fields in the basic data structure (for example father point-
ers and extra links). The memory requirement of a leafcode lies in general between
its counterparts in a pointer tree and a treecode. One drawback of leafcodes is
that their manipulations involve complex inner loops for encoding and decoding
locational codes. However, this can be solved using special hardware when high
performance is required. Advantages of leafcodes over pointer trees and treecodes
are:

1. Leafcodes can be constructed in either a bottom-up or a top-down manner.

2. Walking from one octant to another, and neighbour finding are simple in
leafcodes.

3. Leafcodes are suitable for hardware implementation. With specialised hard-
ware encoding and decoding operations are fast while recursive subroutine
calls are slow.
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4. Leafcodes are suitable for parallel processing since nodes can be processed
independently.

Most octree algorithms involve some tree traversals and the execution time is
determined by the number of nodes in the octree. A leafcode has the smallest number
of nodes among the three formats. Therefore leafcodes are expected for efficient
operations. For general traversal, the key problem of leafcodes concerns the search
operation. On conventional architecture, to improve the searching process, leafcodes
are normally stored in sorted order. The sorting process need O(nlogn) time and
a search requires O(logn) time. By introducing new computer architectures, as we
shall discuss in the next chapter, the searching problem can be solved and octree
leafcodes are becoming very promising with advantages in both storage saving and
execution efficiency.




Chapter 3

Content-Addressable Memories

3.1 Introduction

In Chapter 2, we have shown that leafcodes have some advantages over pointer
structures and treecodes. These include storage efficiency, spatial address coding,
simple space traversal, bottom-up construction, and parallel node processing.

However, leafcodes have one major shortcoming which concerns their data or-
ganisation on conventional architectures. A leafcode is stored as a linear array in
conventional Von Neuman machines. Locating a node in the array requires a search
operation which is slow with sequential processing. Although various algorithms
have been studied to improve the efficiency of search on sequential machines [Sedg88]
the best algorithms need O(log(n)) time for searching one node, plus O(nlog(n))
time for preprocessing to sort the array. Therefore, search is a major problem. How-
ever, solid modelling systems require intensive searches for spatial location and other
operations. To resolve such problems we are motivated to investigate applications of
searching machines in solid modelling systems. Content-addressable memories are
such architectures designed for searching and related operations.

3.2 Content-Addressable Memories

Content-Addressable Memories (CAMs), initially called associative memories [Hanl66],
are generally described as a collection of elements which have data storage capabil-
ities and can be accessed simultaneously on the basis of data contents instead of
specific addresses. CAMs were first investigated by Slade and McMahon in 1956
[Slad56] and have been actively studied since then. A recent monograph on CAMs
was given by Kohonen [Koho87]. An extensive review of research on CAMs can be
found in it.

3.2.1 Concepts of CAMs

There are many different ways to classify CAMs—by general concepts; by function-
ality; by evaluation techniques and so on.

43
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At least three concepts of CAMs exist. The first concept regards CAMs as
extensions of conventional memories for improving performance of a variety of logical
search and match operations. The second assumes a large CAM acting as a special
purpose primary data storage and retrieval device. The third concept concerns an
associative processor which contains a CAM with cells capable of arithmetic and
associative logic in addition to the search and decision logic. In this thesis, we use
the first of these concepts. We think of a CAM chip as a special hardware peripheral
within a general purpose computer. The CAM hardware is a subsystem controlled
by a conventional host computer which sends instructions to the CAM, transfers
data between its internal memory and the CAM and executes various tests on the
CAM. Since only some applications need content addressability, a CAM subsystem
is used only where it provides an advantage over conventional facilities.

CAMs can also be classified by functionality. These are:

e Exact match CAMs: These CAMs select data which match precisely a global
constant.

e General comparison CAMs: The search operations in these CAMs are based
on comparisons of equal, not equal, greater than or equal to, less than, and
less than or equal to a global constant.

¢ Functional memories: These CAMs have the binary ‘0’ and ‘1’ as well as the
“don’t care” value ‘*’ in storage.

When classifying CAMs using their evaluation techniques, we have:

e Fully parallel CAMs: which perform all operations in parallel on all cells of all
words.

e Bit serial CAMs: in which operations are parallel on the same bit of each word
and serial for each bit of a word.

o Word serial CAMs: which perform each operation one word after another.

e Block oriented CAMs: where several blocks of bits or words are executed in
parallel.

The major advantages of CAMs over conventional memories are that a CAM
supports an effective and natural way of organising and retrieving data, reduces
software complexity and increases computing speed and power. For most appli-
cations, the software simplicity is as important as execution efliciency in order to
develop and maintain large and complicated systems. In addition to all the above
advantages, CAMs are particularly suitable for solving searching problems.
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3.2.2 General Features

CAMs have several basic features:

1. Data is stored in any order and no addresses are needed,;
2. Data access involves searching for part of the record (known as the key);

3. For a fully parallel CAM, the key in a search register is compared with every
word stored in the CAM in one memory cycle.

4. CAM provides some means for multiple response handling.

Multiple response handling involves two separate tasks: one is to perform data
transformation operations (that is to write to a group of selected words) in one
memory cycle; the other is to select a word in the matched words for reading out to
a sequential device. We call the former a multiple-write operation, the latter a
nultiple response resolver. Some octree algorithms can be more efficient when
the multiple-write operation is used. In addition to multiple-write, there is
also a single-write operation when a CAM search yields only one response.

The multiple response resolver is crucial and unique to CAMs. Any CAM search
may have zero, one or more responders. To read these responders back to conven-
tional sequential memory, it is necessary to select responders one after another in
some order. The order may be random, based on physical locations of words, or
based on the values of words. One example of selecting words according to the values
is to read out words in a sorted order either ascending or descending. CAMs also
need to identify the number of responders of a search operation. Several schemes
for this measurement were discussed in the survey paper by Parhami [Parh73]. The
simplest scheme gives a binary indication showing either ‘no responder’ or ‘some
responders’. A more popular scheme is the one providing a ternary indication:
‘no responder’, ‘exactly one responder’, or ‘more than one responder’. Two other
sophisticated schemes provide an exact or approximate count of the number of re-
sponders. Users can select a particular CAM design from these schemes according
to the application requirements, hardware complexity and manufacturing cost.

3.2.3 Current Developments in Hardware

The concept of CAM is not new and has been around for thirty years. However for
more than two decades only chips with small memories were manufactured because
of implementation problems and fabrication cost. Not until recent years have the
advances in VLSI technology made it feasible to design a CAM chip with wider
words and trit (0, 1, or don’t care) storage. A don’t care is a cell state that matches
either 0 or 1 presented in a search pattern. The New York State Center for Advanced
Technology in Computer Applications and Software Engineering (CASE center) at
Syracuse University is one of the research organisations actively working on the
design and development of CAMs for a wide area of applications [Brulgs].
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A CAM is composed of cells which are capable of storage and pattern matching.
Each cell operates simultaneously to compare the incoming search pattern with
its stored data. The simplest CAM cells can be built from static RAM circuits
by adding transistors to provide the comparison functions. A static cell requires
15 transistors for storing a trit. Wade and Sodini [Wade87] have developed a
5-transistor dynamic cell for trit storage.

As an example we summarise some basic features of Wade and Sodini’s dynamic
CAM cell. The cell layout is shown in Figure 3.1. The cell can store trit values. To
store a ‘0’ transistor T1 is on, a ‘1’ T2 is on, a ‘*’ neither transistor is on. Search
operations are carried out in parallel using a row match line passing through every
cell of each word. Typical cell search times are in the 50-100ns range. A single chip
can have 64 rows of 32 cells. Several such chips can be cascaded vertically to form
a CAM with a large number of words. The entire CAM, or selected rows and/or
columns, can be searched or written in a single memory cycle. These advances
thus made it possible to design practical application systems on the basis of CAMs.
Applications of CAM are mainly found in pattern recognition, image processing,
evaluation of logic programs and database systems. The cost and speed of CAMs
are determined by

o the cost and access time of memory cells;
e the degree of parallelism and interconnection of cells;

e the amount of logic for each element.

DATA DATA
ROW SELECT
T2 Tl
S q |
ROW MATCH

Figure 3.1: Wade and Sodini’s dynamic CAM cell (courtesy of Richard Williams).

3.3 Syracuse Quadtree/Octree CAM

Oldfield et al. [Oldf88] have proposed a new CAM chip for storing and processing
quadtrees and related spatial applications. This chip is a pack of Wade/Sodini cells
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described in the above section. The chip is currently being designed at Syracuse Uni-
versity and has been simulated at Computer Laboratory, University of Cambridge
[Will88b]. Before using the CAM, one should be aware of the overall architecture
and functions of this specific type of CAM. Here we give a brief summary of the
architecture and features. Its functionality will be described in full detail in the next
section.

3.3.1 Architecture

Figure 3.2 shows the floor plane of the Syracuse CAM chip. The chip is organised
around an array of words (m), each word containing a number of cells (n). Each cell
can store information as one of three states: a don’t care state, which is represented
by *, and conventional 0, 1 states. The storage for three states is referred as trit
storage, analogous to bit storage. Each word has a bit to determine whether it is
in use or free. The design is a general purpose one without any assumptions about
the contents of each word. Each word consists of a single physical field of a fixed
width. For current research we assume that the width is 32 trits. The application
will decide the logical fields within each word.

A simple row logic is added to the CAM design. It is a hardware built into the
CAM chip to handle multiple responders and to provide complex searches which are
combinations of a pair of simple searches. The row logic which contains a multiple
response resolver (MRR) and a general-purpose logic block (GPLB), is repeated
identically on every row and is controlled by vertical micro-code control lines. Two
searches can be combined using one of the sixteen GPLB functions. These functions
will be listed in Section 3.4.

0 1 =«
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Table 3.1: Comparing a cell state with a query.

The most important operations of CAMs are search and write operations. When
a search operation is called, a search pattern is presented as a word of trits and
is compared with all words simultaneously to see if any word matches. A search
operation processes all rows and all columns in parallel. The * in a search pattern
can match any cell state, while the * in a cell can match 0, 1 or * in the search
pattern. Table 3.1 demonstrates cell comparisons. Table 3.2 shows a search pattern
and a group of CAM words to be compared. After a search operation, CAMs need
to distinguish whether there are zero, one or more than one matching words. If
multiple responders are yielded for a search, the MRR works to select one responder
to be read back into a sequential device. The MRR will continue to select subsequent
responders until all responders are read back. The current design supports two kinds
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Figure 3.2: The floor plan of Syracuse CAM chip (courtesy of Richard Williams).

Search Pattern | 1x1x

Trit Words | 0x1x
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Table 3.2: Comparing all words with a query (matching words are shown in boldface)
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of write functions: a single-write and a multiple-write. The multiple-write
operation writes to selected words in parallel within a single memory cycle. During
the write operations a register is used to mask out columns in selected words which
are not to be changed.

A single chip can have 128 words of 32-64 trits on it. Hundreds of such chips
can be cascaded vertically to get a CAM of reasonable size. An octree application
needs several thousand words for a simple scene. The typical execution time for a
search or a multiple-write operation is of the order of 100ns. Chip cascading does
not affect the cycle time.

3.3.2 Interface

The interface has two separate parts: a low level interface and a high level interface.
The low level interface is built on top of the general purpose CAM chip. It is
application independent. In our CAM simulator, the low level interface works as
a procedural interface which models the chip at a functional level. The memory
operations include the following:

e The NoOp function evaluates the row logic.

o The SetWriteMask function sets the mask register to the specified value. A 0
bit in a column will disable subsequent writing to the column.

e The SearchCAM function presents a word with a trit pattern to be compared
with the CAM. All active words are compared with the pattern. The response
bit is set on each matched word.

e The WriteCAM function writes the word into all responding rows on all the
columns selected by the mask register.

o The ReadCAM function reads the next responder and resets its response bit.

The high level interface is designed according to applications. Different appli-
cations, such as quadtrees for geographical information systems and octrees for 3D
modelling, can be built on top of this interface. At this level, a physical CAM word
is divided into a number of logical fields. The interface designer must know the
number of logical fields and the width of each field. This information is provided ac-
cording to the requirement of the particular application. For quadtrees/octrees and
related spatial organisations three fields are normally required, because that each
node in a quadtree or an octree has three sources of information: the tree identity;
the position and the size of the octant; the colour associated with the octant. These
three fields are named as: the id field which keeps the tree identifier; the location
field to store the locational code of a node; the colour field which records the content
of a node. Each word in the CAM represents one node of an octree.

The applications see the high level interface as a group of procedure calls. Each
procedure has parameters related to the above logical fields. The details of functions
of the high level interface for octree applications will be described in the next section.
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This interface is similar to William’s [Will88b] interface for quadtrees except that
the field width and some functions are different.

3.4 CAM Octrees and Functions

3.4.1 Storing Octrees in CAMs

A CAM octree is an octree stored in CAM in the leafcode format. Each leaf contains
an identity, a locational code and a colour. The locational code can represent the
position and size of each octant in one record as described in Section 2.3. The
sample image of Figure 2.2 with an object of two black nodes labelled as A and
B is used again here. The corresponding CAM content is listed in Table 3.3 and
the background nodes are ignored. In Table 3.3, a CAM word is divided into three
fields: id, location and colour. The sum of the widths of three logical fields must not
exceed the width of a CAM word.

Id | Location | Colour
A |01 | 111001 %:%x% 10
B | 01 | 101k 10

Table 3.3: CAM contents for the sample object

3.4.1.1 The ID Field

The id field is used to identify different octrees which are stored together in a CAM
at the same time, and to indicate “free” words. It is assumed to have a width of 3
trits. But only bit patterns are actually stored. All words are initially set to free.
An entry for a new leaf of an octree is added to the CAM by finding a free word and
replacing it with the id for the new entry. If no more free words are available, the
CAM is then full. The CAM system responds with error messages indicating CAM
overflow. Entries are deleted by marking them as free. This can be done either by
a single-write operation or by a multiple-write operation.

3.4.1.2 The Locational Field

The location field stores spatial information about leaves of an octree. It is used to
locate an octant in the space. We assume that the space origin is at the left-bottom-
back corner of the universe, although other coordinate systems are also possible.
Different coordinates influence only the encoding and decoding of locational codes.
The encoding process is as follows. The bit patterns of the z, y and 2 coordinates of
the vertex on an octant’s left-bottom-back corner are calculated. The size (s) of the
octant is indicated by replacing the bottom m bits (where m = log, s) of the z, y and
2 patterns with #. The trit patterns of @, y and z are then obtained. Interleaving
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these trit patterns yields the locational code. For example, the bit patterns for the
node B in Figure 2.2 are z (100), y (000) and z (100). When the size is considered,
the bit patterns are replaced by the trit patterns as & (L), y (O%*) and z (1x*).
The z, y and z trit patterns are interleaved to give the locational code (10L#*#*xx)
for the node B as in Table 3.3. The width of the location field is determined by the
image resolution (for example 9 trits are required for an 8 x 8 x 8 image).

3.4.1.3 The Colour Field

The colour field indicates the colour or other information associated with each oc-
tant. It can store colours for raster octrees and indices for vector octrees. With
raster octrees, multiple colours can be handled. The width of the field determines
the number of different colours which can be distinguished. For example a 5-trit
colour field can store 32 different colours. With vector octrees, three trits in the
colour field are reserved for indicating node types. Indices to surfaces are held in
the remaining part of the colour field. Details of vertices, edges and faces are stored
in the conventional main memory. The width of the field depends on the maximum
of the following three numbers: the number of vertices, the number of edges and the
number of faces.

3.4.2 Basic Data Types and Constants

We have mentioned trits several times. The structure of TRITS is a basic data type
associated with the Syracuse CAM architecture. It is defined as a single record in
the high level interface as well as in the applications. A TRITS has two parts: a data
and a dont_care. The data structure of TRITS and some basic constants are listed
below.

typedef struct {unsigned data, dont_care;} TRITS;

TRITS ANY = { 0, "0}, /* %kx,, hkkk x/
FREE = {0, O} /* 000...000 %/
WHITE = {1, O}, /x 000...001 x/
BLACK = {2, O}, /* 000...010 */
RESERVED = {~0, O}, /* 111...111 %/

Other constants include the maximum depth of an octree, the size of the octree
space, and the field masks for write operations. A field mask is related to the width
and the position of the field within a CAM word and is determined by applications.
In the octree application, they are determined by the maximum allowed tree depth.

typedef struct {int x, y, z, size;} OCT;

#define DEPTH () /* the lowest level of octree subdivision x/
#define SIZE () /% the size of the root octant */
#define ID () /% select ‘id’ field for write operations */

#define LOCATION () /% select locational field for write operations */
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#define COLOUR () /x select colour field for write operations */
#define ALL () /% select the whole word */
/* and so on x/

3.4.3 Functions

Basic functions of octree CAMs can be classified into two categories. One includes
those involving CAM hardware operations. The other includes those high level
functions for octree utilities. The former is generally independent of applications and
only the widths of the three logical fields are influenced by applications. Whereas
the high level utility functions are application dependent, for instance related to
quadtrees or octrees. The CAM functions in the first category are listed below in
Algorithm 3.1. We give only procedure names and descriptions.
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int Search (id, location, colour)
TRITS id, location, colour;
/* return TRUE if a search yields any responders */

int ReSearch (op, id, location, colour)
short op; TRITS id, location, colour;
/% search the CAM again, after a Search() operation,
using a GPLB operation on previous responders---return TRUE
if any responders remain. This allows two consecutive searches
to be combined with any GPLB operations */

int MultipleResponse ()
/* return TRUE if a search has more than one responder */

void SingleWrite (mask, id, location, colour)
unsigned mask; TRITS id, location, colour;
/* write to the field (indicated by the mask) of the current
(or first) responder */

void MultipleWrite (mask, id, location, colour)
unsigned mask; TRITS id, location, colour;
/* write to the field (indicated by the mask) of all responders */

void Read (id, location, colour)
TRITS *id, *location, *colour;
/* read the current (or first) responder */

int NextResponder ()
/* get the next responder---return FALSE if last responder */

void AddEntry (id, location, colour)
TRITS id, location, colour;
/% add a new word to the CAM by writing to a free entry */

Algorithm 3.1: A list of high level functions for CAM hardware operations.

These procedures hide the CAM implementation details. From the user’s point
of view, a CAM system is a group of functions operated with several logical fields.
The underlying interface will convert these logical fields into a single physical field
and call the low level CAM interface for CAM hardware operations. The actions
taken by these procedures involve various low level system operations including that
of setting various registers; performing ‘No Op’ function to set each selected line
to high; searching or reading the CAM and so on. The GPLB operations of the
ReSearch function include sixteen actions which are listed in Algorithm 3.2.
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typedef ENUM {
GPLB_CLEAR,
GPLB_A_NOR_B,
GPLB_A_AND_NOT_B,
GPLB_NOT.B,
GPLB_NOT_A_AND_B,
GPLB_NOT_A,
GPLB_A_XOR_B,
GPLB_A_NAND_B,
GPLB_A_AND_B,
GPLB_A_EQUIV_B,
GPLB_A,
GPLB_A_OR_NOT_B,
GPLB_B,
GPLB_NOT_A_OR_B,
GPLB_A_OR_B,
GPLB_SET

} GPLB_OP;

W 0O~ O ;b W~ O

O N
O W N = O

Algorithm 3.2: Sixteen GPLB operations

The high level utility functions for octree applications are listed in Algorithm 3.3.
The encoding and decoding procedures depend on the choice of coding schemes
(interleaving in x, y, z order or z, y, x order) and space origins. The procedure
RunList() is a key operation which is used in some algorithms of the following
chapters. Its function is to split one dimensional orthogonal lines (also called rays)
into segments which fit the octree subdivisions. It generates a list of integers from the
bit patterns of the coordinates and length of a ray. Each integer gives the position of
a segment of the ray. The length of the segment can be derived from the position of
its subsequent segment. All segments are fitted into the spatial restriction of octrees
(that is powers of 2). Rectangles in 2D and rectangular parallelepipeds in 3D can
be processed by calling the RunList () procedure several times and each processes
along one axis.
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void DecodeParall (location, x, y, 2z, w, h, d)

TRITS location; int *x, *y, *z, *w, *h, *d;

/* return the position, width, height and depth of a rectangular
parallelepiped for the locational code */

TRITS EncodeParall (x, y, z, w, h, d)
int x, y, 2z, w, h, d;
/% return the locational code for the rectangular parallelepiped */

void DecodeOct (location, octant)
TRITS location; OCT octant;
/* return the octant from the locational code x/

TRITS EncodeOct (octant)
OCT octant;
/* return the locational code for the octant */

int DecodeNumber (n)
TRITS n;
/* return the colour from the trit code %/

TRITS EncodeNumber (i)
int i;
/% convert the colour to the trit code */

int Size (location)
TRITS location;
/* return the maximum of the width, height or depth
of a rectangular parallelepipeds in the locational code x/

TRITS SetTrit (word, position, value)
TRITS word; int position, value;
/* set the specified trit in selected words to the required value */

int RunList (start, length, list)

int start, length, list[];
/% return a list of integers for a run-length */

Algorithm 3.3: A list of octree utility functions of CAM high level interface.
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The above procedures of the high level interface can be supported by simple front-
end hardware because that they are relatively standard for octree applications. The
efficiency of the overall system can be further improved with this additional front-end
hardware.

3.4.3.1 The RunList() Procedure

Given a ray with a position and a length, we want to fit the ray into the space of
an octree subdivision. This process involves splitting the ray into several maximal
segments, each of which must align properly within an octant (see Figure 3.3). A
segment has some features which are used to determine where we can split the
original ray. For a segment at level i of an octree subdivision, we know that it has a
length of 2P~ (where D is the maximum depth of the octree) and a start coordinate
which is divisible by the length. The number of segments varies for different rays,
but the upper bound of this number is determined by the depth of octrees.

it DEPTH =0

' 1
MazimumNumberof Segments = { 9 « DEPTH otherwise

lengths of segments

12 4 8 12 14

start points of segments

(a) (b)

Figure 3.3: Generating a RunList from a ray: (a) a ray in a 2D region of quadtree
subdivision, (b) the same ray is split into maximal segments.

These segments can be computed either recursively or sequentially. The recursive
procedure [Akma89] searches for the longest segments at each stage until the current
length equals 1. For the ray in Figure 3.3, the segments are obtained in the following
order (the number shown below is the start position of each segment),

Segments  (4) (8)
(2) (12)
(1) (14)
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The sequential splitting process finds the segments in an increasing order of start
positions. For the same ray shown above, the order is (1) (2) (4) (8) (12) (14). We
employ the sequential splitting algorithm in our RunList () procedure because some
algorithms are sensitive to the order.

3.5 The Advantages of CAM Octrees

The most obvious advantages of CAMs are fast searching, parallel updating and
pattern matching capabilities. Each search requires only a single memory cycle as
it simultaneously compares every entry in the CAM with the given search pattern.
Responding words can be updated in parallel by the MultipleWrite() operation
which processes all responders in a single memory cycle. Pattern matching allows
rectangular parallelepipeds (RPs) of different shapes and sizes to be compared in
order to test volume intersection. These capabilities provide us some interesting
features for octree processing as follows.

e Colour queries:

1. Searching for octants of a specific colour can be implemented as a colour
search. The search pattern has don’t caresin the id field and the locational
field, and a required colour in the colour field.

2. Searching for nodes that are not a given colour can be done by combining
two searches using a GPLB (A - B) operation. The first search activates
nodes which can be any colour. The second one searches among the above
active nodes those which are not of the given colour using the ReSearch()
operation.

e Space queries: A space search involves an enquiry with a specific locational
code pattern. Responses to the spatial enquiry are the stored octants inter-
secting with the enquiry volume. The simple space queries benefit from CAM
trit storage and pattern matching facilities. The query space can be one of the
following:

1. An octant of any size, of which two extreme examples are the root space
and a voxel.

2. A restricted RP, for example a scan line or a slice. The restriction is on

the relation of the start coordinate and the length of the RP along each
axis.

e Size queries: All octants of a specific size can be found by searching for
either a 0 or a 1 (not a don’t care) in specific trit positions of the locational

field.

e Combinations: A colour search can be combined with any space query or
size query.
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If implemented with conventional octrees, the above searches are complex and
need many calculations. With CAMs, only minimum computations combined with
a few pattern matching operations are necessary. A search can be operated with any
of the three logical fields. It is possible to search the id field for all nodes in a specific
octree; to search the colour field for a specific colour or index; to search the locational
field for looking up different spaces. It is unique to CAM octrees that searching by
any colour is as efficient as searching by locations. The features described above are
the keys to many efficient CAM algorithms which will be presented in this thesis.
They will be fully explained in Chapters 4 & 5.

3.5.1 Examples

Figure 3.4 shows examples of locational searches, with their corresponding search
patterns in Table 3.4. Items which can be searched in the locational field are octants
(for instance ## 000+ %%), RPs (for example left half space: ## Qsortorsiorx k),
and so on. An enquiry octant may match one of the following: an equal-sized octant,
a larger octant, one or more smaller octants or nothing (when the background is
not stored). For instance, the search of the root space (#* *#ktkixkx +k) gives the
nodes A and B as responders.

(a) (b)

(c) (d)

Figure 3.4: Examples of locational queries.
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Search Space | Search Pattern | Matches
(a) root ok ok kokok AB
(b) slice skl okl w1 AB
(c) line *01 %01 *01 B
(d) voxel 100 010 110 A

Table 3.4: Search patterns as CAM words for locational queries.

3.6 The White Nodes

With pointered octrees and treecodes, all white nodes must be kept in tree structures
because the coordinates of a node are determined by its relation to other nodes in
data structures. However, for leafcodes white nodes are no longer necessary. Each
node has its location and size stored in the record and can be detected by decoding
it. Therefore white nodes are often not stored in leafcodes. By ignoring white nodes,
the number of records of an octree can be reduced. For some images, white nodes
can be up to 80-90 percent of total nodes. Having less records is important for
conventional leafcodes not only for the sake of saving memory but also for speeding
up node enquiry. This is because the searching speed on a conventional machine is
determined by the number of records. The node inquiry time can be significantly
reduced by not storing white nodes.

A CAM octree is a leafcode by nature. Its main differences from a conventional
leafcode are that a CAM octree is stored in CAM and its node enquiry is imple-
mented in parallel. The time spent for searching a node is not determined by the
number of nodes of a tree. Therefore it is less important, in terms of speed of the
query, whether to keep white nodes or not . However, as will be shown below, some
algorithms can be simpler if white nodes are stored while others are less sensitive to
them.

When white nodes of a CAM octree are stored, they are treated in the same
way as nodes with colours. Algorithms like inverting black and white spaces, flood-
fill, scan conversion, and so on can benefit from simple white node operations and
therefore are very elegant and efficient. However, in octree applications, the above
algorithms are used less often than other algorithms such as volume computation
in solid modelling and back-to-front display in medical image processing. Here, the
background information is irrelevant.

3.6.1 Recovery and Deletion of White Nodes

As noted before, searches in a CAM octree are not related to the number of nodes in
the tree. Some algorithms such as interior filling and inverting black/white spaces
are simpler and more efficient when background nodes are stored. Others are better
if white nodes are not stored. If we did not store white nodes in the original CAM
octree, we may need to recover them for some stages when requirements arise. On
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the other hand, we may also want to delete white nodes after some operations.
These processes are shown in Algorithms 3.4 & 3.5 in pseudo C code.

PROCEDURE recover_white(TRITS id, OCT octant)
BEGIN
location = EncodeOct{octant)
IF (!Search(id, location, ANY)) THEN
AddEntry(id, location, WHITE)
ELSE IF (MultipleResponse()) THEN
FOR i = 0 TO 8 DO
recover_white(id, SubOctant(i, octant))
ELSE /* Only one response */
Read (&dummy, &location, &dummy);
IF (octant.size > Size(location)) THEN
FOR i = 0 TO 8 DO
recover_white(id, SubOctant(i, octant))
ENDIF
ENDIF
END

Algorithm 3.4: Algorithm for recovering white nodes of a CAM octree

When an enquiry returns no responder, the space corresponds to a white node. If
a search returns multiple responders, or returns a single responder which is smaller
than the enquiry space, the enquiry octant needs further subdivision. The com-
plexity of the algorithm is O(N), if using the number of searches in CAM as the
measuring metric. The number N is the total number of nodes including black,
white and unstored grey.

The algorithm for deleting white nodes simply contains a Search operation and
a MultipleWrite operation. Its complexity is O(1) while its counterpart on con-
ventional leafcodes is O(n) (n is the number of leaves in the tree).

PROCEDURE delete_white(TRITS id, OCT octant)
BEGIN
IF (Search(id, EncodeOct(octant), WHITE)) THEN
MultipleWrite(ID, FREE, ANY, ANY)
ENDIF
END

Algorithm 3.5: Algorithm for deleting white nodes of a CAM octree.
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3.7 CAM Vector Octrees

A CAM vector octree is stored similarly as a CAM raster octree except that the
colour field is divided into two subfields. We call the first one a subfield for mark
trits (see Table 3.5) which indicate the type of a node. We chose Durst and Kunii’s
definition [Durs89] of vector octrees (called integrated polytrees) in which eight leaf
types are distinguished. The node types are black, white, face, edge, edge’, vertex,
vertex’, vertex”. The black and white nodes are homogeneous nodes and can be
grouped as one type. Hence seven types must be indicated. Three trits are thus
used for node types. The second subfield is either an index to the address of a face,
an edge and a vertex, or a colour indicating the black/white/other colour of the
node. The index is used as a reference to the location of elements of Brep in the
cases where the node is one of faces, edges or vertices.

Mark Trits | Node Types
000 black/white
001 face (f)

010 edge (e)
011 edge (€)
100 vertex (v)
101 vertex (v7)
110 vertex (v”)

Table 3.5: Three trits are used in the locational field to mark the node types of a
CAM vector octree, and the corresponding node types are listed.

Additional functions for encoding and decoding vector octrees are listed below.

TRITS EncodelIndex (ch, i)
char ch; int i;
/* IF ch = ’v’ OR ’va’ OR ’vb’, return the trit code for the given vertex */
/% IF ch = ’e’ OR ’ea’, return the trit code for the given edge */
/% IF ch = ’f’, return the trit code for the given face */

int DecodeIndex (n)
TRITS n;
/* return the index of vertex, edge, or face for the given trit code */

int DecodeType (n)

TRITS n;
/* return the node type for the given trit code */

Algorithm 3.6: A list of additional functions for vector octrees




Chapter 4

Operations on CAM Octrees

4.1 Introduction

Chapter 2 reviewed algorithms for octree manipulation, display and construction.
In this chapter new algorithms are presented for the above operations, based on the
novel CAM octree architecture described in Chapter 3. We shall show that most
new algorithms are more efficient and significantly simpler than their counterparts on
conventional architectures. This is especially true for octree construction algorithms.

As the CAM octree data structure is a variation of the leafcode data struc-
ture, CAM algorithms show their outstanding advantages for operations suited to
leafcodes. Most conventional operations have execution time proportional to the
number of nodes in the input tree, while for the CAM version of algorithms, some
are found linear in the depth of the maximum space subdivision, some are linear in
the number of nodes in the output tree.

The following sections describe general algorithms of octree manipulation which
include geometric transformations, set operations, volume computations, displays,
cross section generations, condensation and neighbour finding. We then discuss
the general trends of conversion between octrees and other representations. This is
followed by several new algorithms for constructing raster octrees and vector octrees
from other representations.

4.2 General Algorithms

4.2.1 Geometric Transformations
4.2.1.1 Rotations and Reflections

Algorithms for 90 degree rotations and reflections of CAM octrees are similar to
their leafcode counterparts which involve permutations of octal numbers in locational
codes. In leafcodes, the mapping from the old value to the new value is implemented
for each octal digit of each node in turn. It takes O(n x D) time for permutation
and an additional O(n logn) time for sorting the output octree where n is the
number of nodes and D is the depth of the tree. The node mapping in CAM

62
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octrees is more efficient by exploiting special CAM capabilities of parallel search
and multiple-write. Corresponding to one octal digit of a leafcode, a trit-triple is
used in CAM. Mapping is implemented for each of the eight values of trit-triples in
the locational field. This can be done globally using search and multiple-write
operations.

The mapping process starts from the most significant trit-triple columns which
correspond to the left-most three columns in the locational field. The following
operations are implemented. Firstly, the program searches on these columns for any
triples which have don’t cares only, and puts the responding nodes into a temporary
tree by multiple-writing their id field with a reserved value. This operation isolates
the don’t cares from other values. It is necessary since the transformation of don’t
care remains unchanged. On the other hand, this operation must be implemented
before digit mapping of other values in the columns because the don’t care triples
would respond to all enquiry for other values. Secondly, after isolating don’t care, the
program searches and transforms triples with a specified value into the new value,
and marks their id field as the above mentioned id in one memory cycle. There are
eight values in total to be searched and transformed. Finally, the nodes with the
reserved id is set back to the original 7d. The process is repeated for other columns
until all columns are transformed.

The execution time is independent of the number of nodes in the tree. The
number of searches and writes is proportional to the maximal depth of the space
subdivision (D) rather than the number of nodes in the octree. Thus the performance
of CAM octree transformation algorithms are much efficient in comparison with the
performance of their conventional leafcode counterparts.

Rotations about an arbitrarily-oriented line need to reconstruct the tree. Here
node splitting and condensing are involved. In these cases, the nodes in the original
tree must be read out from CAM sequentially, then rotated and split to form new
leaves. The resulting tree may need to be condensed as the newly formed tree may
be a non-minimal tree (see Page 27). Here, CAM can be used to speed up the
process of tree reconstruction and condensation, which will be discussed later.

4,2.2 Set Operations

The improvements of octree algorithms for the three basic set operations (AND,
OR, NOT) using CAM depend on the nature of the operations. The union and
intersection operations require traversal of two input trees in parallel and comparison
of their corresponding nodes. If implemented by top-down recursive traversal, then
the execution time of CAM octree union and intersection algorithms is O(N) (N is
the number of nodes including grey, white and black in the output octree). This is
the same as that for the pointer tree which has been discussed in Section 2.4.

The CAM octree can also be traversed in a different order, for instance a size
order. As the union and intersection operations concern only the black nodes, the
program can visit one black node each time and use it as the mask for processing
nodes occupying the same space in the other tree. It would be better if the mask
space selected is large. In these cases a large node in one tree may correspond to
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many small nodes in the other tree and the multiple-write operation can play an
important and effective role. Therefore the largest black nodes are visited before
the smaller ones. With this approach, the worst case complexity is O(n) where n is
the number of black nodes in the output thus the union and intersection operations
are more efficient than in the previous approach.

The NOT operation inverts the black and white spaces of an octree. In solid
modelling systems, this means that the object and its surrounding space is inverted.
Although this is seldomly used in 3D applications, the process of inversion is ex-
tremely simple with a CAM octree. It is a swap procedure which has three pairs
of a search operation and a multiple-write operation, each pair uses only two
memory cycles. The first pair searches and marks all white nodes with a temporary
id. The second pair changes all black nodes to white. The third pair changes all
nodes with the temporary id back to black nodes.

4,2.3 Volumes and Other Integrals

Volume computations with conventional octrees are implemented by traversing the
octree and adding up the volumes of its black nodes. All the nodes in the tree
are visited once thus the time complexity of the algorithm is proportional to the
number of nodes in the input tree. The CAM octree volume computation algorithm
depends on the functionality of the multiple response resolver of a particular CAM
architecture. The current design of Syracuse CAM distinguishes zero, one, and many
responders. No exact counting of the number of responders is supported. With this
design the volume computation is performed by searching the black nodes and then
reading them out sequentially. As in the case of leafcodes, the complexity of the
algorithm based on Syracuse CAM is proportional to the number of black nodes in
the tree.

Identifying the number of responders of a CAM search is an important part in
many CAM designs. There exist four schemes for counting the number of responders
[Parh73]. They are:

1. a binary indication—no responder or some responders;

2. a ternary indication—no responder, exactly one responder or more than one
responder;

3. an approximate count of the number of responders;

4. an indication of the exact number of responders.

Foster and Stockton [Fost71] designed a circuit which counts none, one, two, ...,
N responders to a search in a CAM. They used only “full adders” as elementary
building blocks and minimised propagation delay for the extra counting function.

Assuming a function for counting the exact number of responders is available,
volume calculation of a CAM octree becomes even more efficient. The algorithm
is simply implemented by several searches, each followed by a count. Each search
enquires for octants which have a specific size and have the colour of the required




CHAPTER 4. OPERATIONS ON CAM OCTREES 65

object. Such searches can be easily implemented in octree CAM which provides
functions for size and colour searches as demonstrated in Section 3.5. The maxi-
mum number of possible sizes of octants in the space is determined by the maximal
depth (D) of the space subdivision. Therefore, volume can be calculated with time
complexity of O(D).

However, counting the exact number of responders can be implemented only on
a small scale. It is not practical to design an architecture to count a large number
of responders since the size of the counting register is limited. Still the algorithm
can be reorganised to fit into a small counting register, such as one with a size of 64.
This means that it can distinguish 0, 1, ..., 62, more than 62 responders. We noticed
that the maximum number of nodes at each level (1) of the subdivision is 8 while
the maximum number of nodes for a specific object (or colour) at each level is even
smaller (8' —1). Thus the above simple CAM octree volume computation algorithm
is redesigned in a recursive way. Starting from the largest size, the following process
is repeated for each size in turn. The whole octree space is searched for octants of
the specified size. If the number of responding nodes is less than 62, we multiply
the number of responders with the size then add the result to the volume. If the
number of responders is more than 62, then the current enquiry space is subdivided
and each subspace is searched again for octants of that size. The process ends
after all possible sizes have been examined. The subdivisions in this algorithm are
dynamic. For some small octrees, this adaptive algorithm can be as eflicient as
the previous simple CAM volume computation method based on CAMs with an
unlimited counting register.

4.2.4 Displaying Octrees

As discussed in Section 2.4, the algorithm for displaying leafcodes has one major
shortcoming concerning searching operations. Node searching is necessary when
traversing the tree in an order other than ascending order. On conventional machines
searching for an element from a data file with a sorted linear array needs O(logn)
time. The process for searching a large file, for example a data base of a typical 3D
image with more than 100,000 nodes, is inevitably slow. Whereas in CAM octree
searching is easy. There is no need for sorting and the display algorithm is simple.
The CAM procedure starts from the top level of the tree and searches downward
recursively. If more than one octant responds to the space query then the space is
subdivided into eight suboctants. The procedure is repeated for the eight suboctants
in turn. The order of visiting is as follows. The farthest suboctant is visited first,
then its three face-connected brothers, three edge-connected brothers and finally the
vertex-connected brother. The farthest octant is determined by the viewing position
and can be easily derived from the viewing normal vector. This process continues
until there is only one hit returned, then the corresponding leaf node is displayed.
We can also use CAM to display the border of an object represented as an
octree. The colour field is divided into two parts. The first part has one trit used
to indicate whether the node is a border node or an inner node. It is initially set to
0 (corresponding to an inner node). The second part of the colour field is as usual
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an index to the specific colour. Before displaying, a boundary finding subroutine is
called to mark all the leaves which have at least one white neighbour node as border
leaves. Node marking is done by changing the first part of the colour field from 0
to 1. When displaying the octree, the program searches for surface nodes and visits
the responders in the back-to-front order. The number of border leaves, thus the
number of CAM read operations, is far less than the total number of the nodes in
an octree.

The above algorithm has two advantages. Firstly the boundary finding is easy
for CAM octrees by using a neighbour finding technique which will be discussed
later. Secondly the returned border nodes are leaves of the CAM octree and are
not necessary voxels. Compared to Gargantini’s border display method [Garg86],
the CAM method requires no extra memory for storing 3D border voxels, and uses
less time for projecting border nodes onto the screen since the number of leaves to
be displayed is small. However, the border must be recomputed if two octrees are
merged to form a new octree through union or intersection. The CAM octree border
displaying algorithm can be further improved by marking only those leaves which
have at least one visible face. A visible face has a surface normal pointing to the
eye position. Such an improvement makes the number of nodes to be displayed even
smaller. The choice of the visible faces depends on the eye position.

4.2.5 Cross section generation for octrees

The algorithm for generating orthogonal cross section images of a CAM octree is
very simple and efficient. It involves only one CAM search operation and several CAM
read operations to get a quadtree which corresponds to a cross section of the octree.
An enquiry plane of the cross section is constructed and encoded in the locational
code (as demonstrated in Figure 3.4 of Section 3.5). Then the CAM is searched with
the above locational code. All octants which intersect the plane will respond to the
search. By reading and decoding these responders we obtain quadrant addresses of
responding leaves and thus the required quadtree. The resulting quadtree may need
to be condensed since some nodes may have the same colour and at the same time
form a complete group for a larger quadrant.

In the CAM algorithm it is not necessary to calculate the distance of each node
to the plane, as is required in the corresponding algorithm of pointer octrees. It is
also not necessary to complicate the data structure, as in the treecode algorithm (for
example introducing the dectree [Olivg4]). The complexity of the CAM algorithm
is proportional to the number of nodes of the output quadtree of the cross sectional
image.

4.2.6 Condensation

The condensation algorithm for conventional octrees examines each node in turn in
a depth-first order, to see whether eight sibling leafnodes are of the same colour.
If they are, these nodes are deleted and the colour of their parent is changed from
grey to the child colour. The algorithm visits every node once, since there is no




CHAPTER 4. OPERATIONS ON CAM OCTREES 67

other way to detect the node colour without visiting it. The cost of condensation
is therefore proportional to the number of nodes in the input tree. Using the CAM
capabilities of colour queries as demonstrated in Section 3.4, the new condensation
algorithm is derived as follows.

Our CAM algorithm is a recursive process. Starting at the root space, the
program searches the current space. We assume that all background nodes are
stored in CAM. Therefore the above search will yield either one responder or multiple
responders. A single responder does not need to be processed further. In the case
of multiple responders, the program reads back the first responder and decodes its
colour. Then the space is searched again using a ReSearch() operation to check if
there is any octant which is not of the above decoded colour. If no responder returns
after the ReSearch operation, then all the nodes in the current space have the same
colour. They can be condensed as a single output node. These octants are deleted
in one memory cycle by a Multiple-Write operation. A new node with the size of
the current space is added to the CAM octree. Otherwise the nodes in the current
space have different colours. The process is repeated for each of eight sons of the
current space. The complexity of the algorithm is linear in the number of nodes of
the output tree.

4.2.7 Neighbour Finding

To locate the neighbours of an octant in a CAM octree, we can make enquiry spaces
such that each is one voxel thick and has a cross-section which equals the face of
the seed octant. Searching the CAM octree with the above spaces, we can get 6-
connected neighbours. By adding more enquiry spaces at the edges and corners
of the seed octant, 26-connected neighbours can be obtained. Neighbour finding
algorithms are generally complex for all three conventional octrees because they
involve random traversal of the tree. In contrast, the CAM version of neighbour
finding is very simple—even trivial. Again it has benefited from the trit storage, the
parallel searching and pattern matching capabilities of the CAM architecture.

A closely related algorithm is connected component labelling. It can be imple-
mented for each object in turn. We select, from an object, an octant as the seed,
then give the octant a new colour as the label to the object. Then by using the
neighbour finding algorithm, we can locate those octants which have the colour of
the object and are neighbours to the seed. These octants are updated with a re-
served colour. The next octant with the reserved colour is retrieved and becomes
the seed, and the process repeats. The whole process stops when all octants with
the reserved colour have been processed. The time is linear in the number of nodes
in objects. The neighbour finding can also be used for boundary discovery and so
on.

4.3 Conversion between Representations

As shown in Chapter 1, each representation from Breps, CSG, octrees, and so on
has its advantages over other schemes for some specific applications in geometric
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modelling systems. In order to make use of the best scheme for each application,
multiple-representations are needed in one system. Algorithms for efficient con-
version between different representations are then essential for a system of multi-
representations. When general octree algorithms are improved using CAM, the
efficiency of conversion algorithms becomes more important for overall system per-
formance. In some cases it can be the main bottle-neck of an octree based solid
modelling system. In the remaining part of this chapter we shall concentrate on
approximate conversions from various representations to raster octrees and exact
conversions from boundary representations to vector octrees. The conversion from
raster octrees to other representations is only possible for some special cases [Kuni85]
and will be excluded.

The following sections examine algorithms for constructing octrees using CAM.
The techniques for converting image models to octrees will be discussed in the next
section, followed by a section of constructing octrees from object models of boundary
representations.

4.3.1 Top-down and Bottom-up Approaches

An octree can be built from other representations top-down using divide-and-conquer
methods, or bottom-up by node insertion. With the top-down approach, the number
of leaves of an octree is determined by the surface area of the primitive. If an octree
is defined in a cubic domain of 2" x 2" x 2", the space complexity of the surface area
is of order 22*. The bottom-up approach, on the other hand, has a computation time
determined by the volume of the primitive (of order 2°*). The bottom-up approach
is less efficient than the top-down approach in terms of time complexity (2% vs.
2?"). However, the bottom-up approach has simple tests for both convex and con-
cave objects whereas the top-down approach suffers some difficulties when handling
concave primitives. A mixed bottom-up and top-down approach is introduced later
in this chapter for constructing CAM octrees from Breps.

4.4 Constructing Octrees from Image Models

Here two image models—run-lengths and orthogonal silhouettes are discussed. They
are typical examples of image models. These two models have distinctive character-
istics and are useful in many practical applications. Some other image models can
be easily converted to run-lengths.

4.4.1 Run-Lengths

Williams [Will88b] has proposed a CAM algorithm for converting run-lengths to
quadtrees. His algorithm was designed for trees where the background (white) nodes
are stored in CAM in the same way as the foreground nodes. His algorithm is similar
to Shaffer and Samet’s conventional algorithm [Shaf87] which has been summarised
in Section 2.5, except that CAM capabilities of parallel searching and updating are
used for restructuring and improving the efficiency of the conventional counterparts.
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Shaffer and Samet used a table to store a list of active nodes and insert a node into
the quadtree when it is not a part of a larger node. Their algorithm also used an
access array for speeding up node access. By using the CAM, the above complex
book-keeping operations for accessing the active node table and array are eliminated.
Nodes (including intermediate ones) are inserted into the CAM and can be easily
updated later if further processing requires a node to be changed.

The whole space is initialised to a single background node first. Then for each
run-length the following procedure is repeated. The current run-length is split into
segments using the RunList () procedure of Section 3.4. Each segment is extended
along the other axis to a maximum width and is used as an enquiry space to detect
intersecting nodes. If there are multiple responders then we examine whether these
responders have the same colour as the run-length. The nodes with nonmatching
colours needs to be updated. If only a single node responded and it has a different
colour from that of the run-length, the node is updated too. How to update a node
depends on whether the size of the node is larger than the width of the segment.
If it is, then the node is split into smaller nodes. Those new nodes which have the
same width and overlap with the segment are assigned the colour of the run and
other new nodes keep the old colour. Otherwise the colour of the node is changed.

The same principle is applicable to octrees. The above algorithm can be up-
graded to octree systems easily. The simplification of the CAM algorithm over the
conventional counterpart is more significant for 3D octree applications. With the
conventional algorithm the size of the table and the access array, as well as the
execution complexity increase tremendously when the dimension gets higher. But
in the CAM algorithm 2D and 3D procedures are nearly the same except for the
number of parameters of procedures. The sorting is eliminated because the order of
nodes is no longer important for CAM-based algorithms.

4.4.2 Orthogonal Silhouettes

We have reviewed Chien and Aggarwal’s algorithm for constructing pointer octrees
from orthogonal silhouettes in Sections 2.5.4. Their method has several shortcomings
as listed below:

o It needs to construct three pseudo octrees which are explained in Section 2.5.4.
The process involves mapping each node of the quadtree in a silhouette view as
twin-son-nodes of the pseudo octree. The process is sensitive to the numbering
sequence of the pseudo octree.

e To build the octree, the algorithm intersects the above pseudo octree by
traversing them in parallel. The program for intersecting pseudo octrees is
complicated, involving several procedures to combine child-nodes for different
tests, to check intersections of either three nodes or two nodes, and to convert
from a pseudo octree to an octree.

e It does not guarantee the minimal output octree. Sometimes it generates eight
sibling nodes which are all white—thus the final octree needs to be condensed.
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The CAM algorithm for converting the three orthogonal silhouettes to an octree

is intuitive and simple. Corresponding to the above three steps, we describe the
CAM procedures here:

¢ Storing silhouette views in the CAM:

N

L LS
r-!!

(b} Z (d)

Figure 4.1: The three silhouette views ((a)(b)(c)) of an object are stored as groups
of sweep volumes in the CAM, and the octree of the object (d) is obtained by
intersecting these volumes.

Each of the three silhouette views can be represented as a group of rectangular
parallelepipeds (RPs). Each RP is stored in CAM as a word. The length of
each RP equals the maximum size of the octree space. Its cross section corre-
sponds to the area of a node in the quadtree from one of the three silhouette
views. Figure 4.1 is an example of the three silhouette views of an object: (a)
(b) (c) are projected RPs and (d) is the represented object. The locational
codes for these RPs for the front, top and side views are listed in Table 4.1.
These codes are derived from the coordinates of the zero-corner of RPs. Once
the coordinate is decided the codes will not be influenced by the numbering
systems selected by different users.
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Id Location Colour
20y020 x1ylzl
(a) Front View 001 | 01 % *x
001 | 11%x 01=x
001} 11x% 11
001 | 11x 00
001 | 11% 10=%
001 00 % % x
001 [ 10 % % %%
(b) Side View 010 [ «11 =11
010 11 %10
010 | *11 =01
010 11 %00
010 *10 * % x
010 | *x01 % %%
010 | *00 % %%
(¢c) Top View 011 | 0%0 %%
011 ] 0% 1 =%
011 | 1 %0 *xx
011 | 1 %1 %%
(d) Output Octree 100 | 111 001
100 101 =* %«

— - O OO0 OO OO OO, OO OOo0O

Table 4.1: CAM contents for the three orthogonal views and the output octree.

¢ Intersecting sweep volumes of the three views:

Algorithm 4.1 demonstrates the simple CAM process of intersecting sweep
volumes of the three views and constructing the octree. It is much simpler
than the conventional one discussed above.

¢ No condensation needed:

The white octants are not stored in the output octree. The final tree is minimal
therefore there is no need for condensation. The complexity of the algorithm
is determined by the output octree.
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PROCEDURE build-octree(TRITS id, OCT octant)
BEGIN
location = EncodeOct(octant)
IF Search(ANY, location, WHITE) THEN
IF Search(idx, location, WHITE) AND
1Search(idx, location, BLACK)
the octant is white
ELSE IF Search(idy, location, WHITE) AND
1Search(idy, location, BLACK)
the octant is white
ELSE IF Search(idz, location, ANY) AND
1Search(idz, location, BLACK)
the octant is white
ELSE FOR i = 0 TO 7 DO
build-octree(id, SublOctant(i, octant))
ENDIF
ELSE AddEntry(id, location, BLACK)
ENDIF
END

Algorithm 4.1: Pseudo program for constructing an octree from the three orthogonal
silhouettes of an object

4.5 Constructing Octrees from Object Models

4.5.1 Multiple-pass Top-down Construction of Octrees

This algorithm is an improvement of Meagher’s interior/exterior classification method
[Meag82] which has been reviewed in Section 2.6. By employing the CAM architec-
ture, the new algorithm presented here achieves the goals of conceptual intuition,
programming simplicity and execution efficiency.

4,5.1.1 Observations:
The following features are noted:

1. A convex object can be derived by intersecting half spaces which are repre-
sented by planes enclosing the object. For each plane, the object space is
divided into the interior and exterior of the plane. The object can be con-
structed by deleting the exterior part of each plane in turn.

2. To classify an octant as interior or exterior to a plane, we need to test at most
two vertices of the octant against the plane. Moreover the second vertex can
be tested based on the result of the first one with only two operations.

3. Updating a CAM octree is easy. Firstly, the updating process is not sensitive
to the order in which octree nodes are stored. Secondly, searching octants by
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contents is as efficient as by locations, both can be down in one cycle. Thirdly,
the ability to handle multiple responders leads to the efficient deletion of a
group of nodes.

Based on the above observations, a new CAM algorithm is designed. The al-
gorithm applies the divide-and-conquer method to each polygon of the object in
turn, leading to a multiple-pass, top-down algorithm. It starts with an initial oc-
tree consisting of a black root node. Each pass processes one polygon face from
the object to update the current octree. So the input data is not rescanned and
the octant-polygon tests at each pass are confined to one polygon only. Each test
examines the spatial relationship of a polygon with an octant by testing two vertices
(instead of eight) of the octant against the polygon. Hence, the total number of tests
and the complexity of each test are substantially reduced. The main procedure is
demonstrated in Algorithm 4.2. Octree updating is implemented by efficient octant
insertion/deletion in CAM and is discussed in the next part. :

/* This procedure builds an octree from Brep for a convex object. */
PROCEDURE build-octree (TRITS id)
BEGIN
Read in Brep, and calculate the bounding box of the object.
Calculate the parameters A, B, C, D of each polygon.
/* Initialise the CAM octree as the BLACK root node. */
AddEntry(id, EncodeOct(root), BLACK);
/* Update the octree for each polygon of the object in turn. */
FOR each plane DO
update-octree(id, root, plane);
ENDFOR
END

Algorithm 4.2: The CAM algorithm for constructing an octree from a convex object
in Brep

For simplicity, 2D diagrams (Figures 4.2) are used to show the process of octree
construction for a single object. The cases for multiple objects will be discussed later.
The triangle represents an object. Its edges represent polygon faces enclosing the
object. The initial CAM octree is a tree with a single node which occupies the whole
object space as in Figure 4.2 (a). It is updated by the procedure update-octree()
for each boundary face of the object in turn. The bold edge in each figure represents
the polygon currently being processed. The octree space subdivision at the end of
each pass is shown in Figure 4.2 (b), (c) and (d).

4.5.1.2 Updating a CAM Octree

The procedure update-octree() takes one polygon face, then changes the current
octree by subdividing the space around the plane of the polygon and deleting octants
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(d)

Figure 4.2: A 2D illustration of the stages of the multiple-pass top-down octree
construction algorithm using CAM.

which are outside the plane. The process starts from the root space and tests the
current space against the polygon face (for instance the right-facing polygon seen
edge-on in Figure 4.2 (b)). There are several possible results for such a test.

o Ifit intersects the polygon, the space must be subdivided. For each of the eight
subspaces, the CAM octree is searched for black nodes. If there is no black
node in it then this subspace must have already been tested with previous
polygons as outside the object and does not need to be processed further. The
update-octree() procedure is called for those subspaces which contain black
nodes.

o If the space is interior to the polygon face, no updating is required.

e If the space is exterior to the polygon face, the nodes under the space must
be deleted. This is performed by searching the CAM octree using the current
space, then updating the responders.
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— If there are multiple responders, all the responding nodes are deleted in
one memory cycle by a MultipleWrite() operation.

— If there is only a single responder, the responding node could be smaller
than, equal to or larger than the enquiry space. In the first two situa-
tions the node is deleted by a SingleWrite() operation. Otherwise a
white octant must be inserted into the larger octant using the subroutine
InsertOct().

/* Updating the current octree by processing one polygon face */
PROCEDURE update-octree(TRITS id, OCT octant, POLYGON face)
BEGIN
SWITCH (Testing the relationship of the -octant with the face)
CASE intersect:
IF octant.size > 1 THEN
FOR i =0 TO 7 DO
suboct = SubOctant(i,octant)
IF Search(id, EncodeOct(suboct), BLACK) THEN
update-octree(id, suboct,facelist)
ENDIF L
ENDFOR
ELSE AddEntry(id, EncodeOct(octant), BLACK)
ENDIF
break
CASE inside:
break
CASE outside:
IF MultipleResponse() THEN
MultipleWrite(ALL, FREE, ANY, ANY)
ELSE
Read (&dummy, &location, &colour)
IF Size(location) <= octant.size THEN
SingleWrite(ALL, FREE, ANY, ANY)

ELSE
InsertOct(id, location, colour, EncodeOct(octant), WHITE)
ENDIF
ENDIF
END
END

Algorithm 4.3: The procedure for updating an octree against a polygon face

The subroutines AddEntry(), EncodeOct (), SubOctant(), Size() have been
explained in Chapter 3. Their functions are as follows: add a node to a CAM octree;
encode an octant into its locational address; compute a suboctant of an octant;
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calculate the size of an octant from its location field. The procedure Insert0Oct ()
inserts a small octant into the space of a large octant by splitting the large one. The
inserted part takes the new octant colour, while remaining parts are nodes with the
old colour. This is demonstrated in Figure 4.3 where the node A is split into several
subnodes.

(a) (b) (c)

Figure 4.3: A node in (a) is split into several subnodes in (c) after inserting a small
white node into a larger black node shown in (b).

4.5.1.3 Interior/Exterior Tests

An object is defined as a number of faces, each represented by its polygonal bound-
ary. The plane in which a polygon lies is expressed by the equation [Fole90]:

Az+By+Cz+ D=0
Where

A= (yx —y;) (2 — 25) — (26 — 2) (v — ¥5)
B = (2, — zj)(w1 — ;) — (& — 25) (21 — 2;)
C = (= — @)y — y5) — (yx — y;) (@1 — 5)
D = —(Az; + By; + Cz;)

Here (2}, ¥;, 2;), (T, Yk, 2x) and (@i, yi, z1) denote any three non-collinear points
on the plane. They should be chosen from vertices of the polygon in such an order
that the resulting vector (A, B, C) points towards the “outside” of the object. The
distance (d) of an arbitrary point (X, Y, Z) to the plane is

d=AX+BY+CZ+D

A positive (negative) distance corresponds to a point outside (inside) the plane. If
d = 0, then the point is on the plane.

An octant is classified as interior (exterior) to a plane if all its vertices are inside
(outside) the plane. If an octant is interior to all the planes which define a convex
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object, then the octant is inside the object. It is noted that only two out of eight
vertices of an octant are important in testing the plane/octant relation. These two
vertices lie on the opposite corners of an octant. Figure 4.4 illustrates the possible
cases in 2D. For a 3D situation, four of two-vertex pairs cover all possible situations
in which a plane and an octant can be compared.

BT [4

(a) a<=0 b>=0 (b) a>=0 b<=0

ISV

(c) a<=0 b<=0 (d) a>=0 b>=0

Figure 4.4: Testing two vertices to determine whether a square is in-
side/outside/intersecting to an arbitrary line.

The choice of two vertices is determined by the direction of the plane against
which the octant is tested. The first vertex can be selected (for example the vertex
X1, Y1, Z1 at left-bottom-back corner of an octant when A >0, B> 0, C > 0; or
A <0, B<0,C <0)and examined by

dl =AX1+BY1+CZ1+D

The second vertex is X1+ S,Y1+ 8, Z1 + S, where S is the size of the octant, and
can be tested by

d2=AX1+BY1+CZl+D+(A+B+C)S=dl+ES

where the constant E equals the sum of A, B, C. It is fixed for each face and needs to
be calculated only once, The total floating point operations for testing face-octant
intersection are reduced to 4 multiplications and 4 additions.

We also relax the point-on-plane condition. Instead of using d = 0, |d| < EPS is
used, where EPS is a small constant which is determined by the voxel size and we
chose that EPS equals half of the voxel size. If a polygon face intersects an octant
on a corner then the octant does not need to be subdivided any further. In this way
we can avoid generating many sibling nodes with the same colour. To reduce other
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Figure 4.5: Bounding boxes for an object (the light dotted lines) and a polygon face
(the heavy dotted lines)

redundant octant classifications, bounding box tests are used for the object and its
polygon faces (see Figure 4.5).
The inside/outside/intersection test is summarised as follows:

1. Test whether the octant lies outside the bounding box of the object. If it does,
the octant is outside;

2. Test whether two vertices of the octant are on the outside of the plane. If they
are, the octant is outside;

3. Test whether the two vertices are on the inside of the plane. If they are, the
octant is inside;

4. If one vertex is inside and the other is outside, test whether either of them is
“on” the plane. If the “inside” vertex is on the the plane, the octant is outside
(for example node F in Figure 4.2 (b)). If the “outside” vertex is on the plane,
the octant is inside (for instance node E in Figure 4.2 (b)).

5. Test whether the octant is outside the bounding box of the face. If it is, the
octant is considered to be inside. This test is implemented to avoid unnecessary
subdivision and to keep the node for further processing in the subsequent
passes (for instance nodes M and Q in Figure 4.2 (b)).

6. Otherwise, the octant intersects the plane.

4.5.1.4 Test Results and Analysis

The performance of the new algorithm is scene-dependent and was tested using two
kinds of objects: a sphere approximated by 512 polygons and a cone approximated
by 40 polygons. These two objects were chosen to compare our algorithm with
the connectivity labelling method [Tamm84b] which is currently thought to be an
efficient algorithm. In their paper, Tamminen and Samet tested a unit ball of
400 polygon faces and an object with 40 faces. The sphere and the cone are the
closest examples in the data set available here. We have run examples of a sphere
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and several cones using different space resolutions and different object sizes. The
purpose is to see how the number of polygon faces, object sizes and surface areas,
and space resolutions influence the performance of the algorithm. The sphere of
unit size (Figure 4.6) was tested at resolution 64. For the cone (Figure 4.6) two
sizes were examined at two spatial resolutions of 64 and 128. The size of an object
determines its surface area. The cone2 has one fourth of the surface area of conel.
The results are shown in Tables 4.2 and 4.3.

Figure 4.6: The octree images of a sphere and a cone

The algorithm has been tested with our CAM simulator on a MIPS machine. We
estimated the run time by replacing the execution time of the low level subroutines
which correspond to hardware functions with the CAM time estimated from the
number of cycles. Table 4.2 contains simulation statistics for the hardware functions,
namely the number of searches, reads, and so on. Since the time for one memory
cycle is of the order of 100ns, the total CAM time is much less than one second.

Sphere (512) | Conel (40) Conel (40) Cone2 (40)

Resolution 64 | Resolution 64 | Resolution 128 | Resolution 128
CAM Searches 116,495 16,840 63,707 17,350
CAM Reads 13,257 3,124 12,325 3,047
CAM Writes 36,227 7,940 33,788 7,876
CAM Set-Masks 5,128 1,066 4,634 1,076
CAM Cycles 453,581 73,714 287,981 74,972

Table 4.2: CAM statistics for the multiple-pass top-down octree construction algo-
rithm

Table 4.3 shows sizes of the output octrees and the timing statistics for various
examples. We have listed both the number of black nodes and the total number of
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Sphere (512) Conel (40) Conel (40) Cone2 (40)

Resolution 64 | Resolution 64 | Resolution 128 | Resolution 128

Black Nodes 9,598 1,234 5,880 1,358
Total Nodes 24,769 3,521 15,153 3,681
Test Time 2.58sec 0.35sec 1.98sec 0.3sec
Total Run Time 8.76sec 0.67sec 4.97sec 0.68sec
Time Per Node 0.35msec 0.19msec 0.33msec 0.2msec

Table 4.3: The sizes of output octrees and estimated run times (msec = 1072sec)
of the multiple-pass top-down octree construction algorithm

nodes (black, white and grey). Two timings of the new algorithm have been shown.
One is the time for interior/exterior tests and the other is the estimated total run
time. The total execution time of the algorithm is related to the number of nodes
(black, white and grey). The memory required by this algorithm is determined by
the number of black nodes of the final output octree.

From Table 4.3 we can see that the test time accounts for about one third
of the total run time. The rest of the time is consumed by recursive calls of
update-octree() and the procedure SubOctant() as well as other book-keeping
calculations. A small amount of redundancy in calling the above subroutines is in-
troduced by the multiple-pass top-down traversal. For example, there are repeated
subdivisions (SubOctant ()) at the root level for each polygon face, whereas there is
only one subdivision at the same level for a single-pass top-down method. However,
this overhead is mainly at the top levels and is small.

We did not compare our timings directly with those of the connectivity labelling
algorithm proposed by Tamminen and Samet [Tamm84b]. The main difficulty for
direct comparisons is that the two systems used different machines, object models
and programming techniques. However, a part of their time statistics is listed in
Table 4.4 to give an idea of the speed of their method. It is clear that the CAM
based algorithm is much simpler and requires less memory. This makes it easier
to integrate the octree construction algorithm into complex geometric modelling
systems and to make long term maintenance of large solid modelling systems.

Ball (400) FEzc. (40) Ezc. (40)

Resolution 64 | Resolution 64 | Resolution 128

Total Nodes NA NA 12,331
Total Run Time 100sec 8sec 22sec

Table 4.4: The run times of the algorithm by Tamminen and Samet (on VAX11/750)

The above algorithm can be extended to multiple objects by updating the octree
for each object in turn. Here we have assumed that all objects are separated from
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each other. In the case that all objects are mixed in one data base, it is essential
to separate objects in the first place and assign each object an identifier. Polygons
from different objects can be separated using connectivity properties of objects. The
connectivity is expressed through definitions of edges and faces in Breps.

4.5.2 A Mixed Bottom-up and Top-down Algorithm

It has been noted previously of two trends for constructing octrees from Breps: the
top-down approach and the bottom-up approach. The former is generally more
efficient for convex objects and objects with a small number of polygon faces. The
latter approach is mainly used for leafcodes [Atki86, Tang88] and has several distinct
features:

e There is no restriction to object shapes. Concave objects and objects with
holes can be processed as easily as convex objects.

e Efficient methods can be used to scan-convert polygon faces, curved surfaces
and polyhedra into voxels. These scan-conversion methods often exploit space
coherence of objects.

e The transformation of voxel addresses to octant addresses is straightforward.

e Octants do not need to be generated in octree pre-order as required by the
top-down approach. The nodes are generated in a more or less random order
which is only suitable for leafcodes.

However, there are some problems which influence the efficiency of algorithms
based on the bottom-up approach:

1. The interior filling algorithm proposed by Atkinson et al. [Atki86] allows the
space to grow inwards only. The input to the algorithm is border voxels, each is
tagged as blocked or unblocked in each of its six faces. The space connected to
the unblocked face is recovered and filled. The algorithm needs extra memory
and pre-computation to provide block information.

2. Algorithms of [Tang88, Atki86] involve condensation at certain stages. The
conventional algorithm for condensation is linear in the number of nodes in

the input (O(n?) for [Atki86] and O(n?®) for [Tang88]).

3. Both algorithms require sorting operations either to sort border voxels in the
first phase ([Atki86]) or to sort the resulting octree at the last phase ([Tang88]).

We here design a new method that combines the features of the top-down and
bottom-up approaches, and makes full use of the advantageous part of each ap-
proach. The CAM is used to improve the efficiency in several phases of the new
algorithm. The mixed bottom-up and top-down algorithm is as following, with the
corresponding steps illustrated in Figure 4.7 (a)-(d).
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1. The bottom-up phase: It scan-converts each polygon face of the object into
voxels and inserts them into the CAM. The result is a leafcode with black
border voxels of the object. (Figure 4.7(a))

2. The top-down phase: It calls the procedure of background recovery (see Page 60)
to get the rest of the octants of the octree space and adds them into the CAM
as white nodes. (Figure 4.7(b))

3. Connected component labelling phase: It selects one octant inside the object
as the seed and uses the CAM connected component labelling algorithm to
change interior octants to black. (Figure 4.7(c))

4. Condensation phase: It condenses the output in Figure 4.7(c) to get the min-
imal tree (Figure 4.7(d)). The white nodes can be deleted if necessary.

Kaufman [Kauf87a, Kauf87b] reported two algorithms for efficient scan-conversion
from 3D objects into discrete voxel-map representation. One [Kauf87a] scan-converts
objects defined by planar polygons and the other [Kauf87b] converts objects with
curved surfaces. Both algorithms use incremental processes which are generalised
from the 2D algorithms and have only simple operations of integer additions and
comparisons. Kaufman’s algorithms guarantee that the border voxels from an ob-
ject are linked without 6-connected tunnels which will cause internal cavities. The
“lack of 6-connected tunnels” through the border insures that the interior octants
are separated from the exterior ones by border voxels.

The scan-converted voxels are inserted to form a CAM octree of the black border.
In CAM octrees border voxels can be inserted in any order without affecting the
node search time or invoking any book keeping calculation. This allows voxels to be
inserted according to the order of scan conversion which in turn is determined by
individual polygon faces. This feature contributes considerablely to the execution
efficiency and simplicity of the algorithm.

The complexity of the algorithm is determined by the complexity of each step.
The computational complexity of Kaufman’s scan conversion phase is related to the
sum of the number of polygon faces of each object in the space. For each face the
time complexity is O(n log(n) + v u), where n is the number of edges in a polygon, v
and u denote the two larger sides of the box enclosing the polygon. The formula can
be explained as following: the first term is the complexity for sorting edges and the
second term is the count for inner loop execution. The complexity of other phases
such as recovering background nodes, connected component labelling, condensation
has been discussed previously (Pages 60, 66, 67). The new algorithm is applicable
to objects of any shape.

4.6 Constructing Vector Octrees

We have reviewed in Section 2.7 the conventional vector octree construction al-
gorithm proposed by Brunet and Navazo [Brun85]. Their method can be further
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Figure 4.7: The mixed bottom-up and top-down octree construction algorithm: (a)
bottom-up phase inserting boundary voxels into the CAM octree; (b) top-down
phase recovering the non-boundary octants; (c) the octree after connectivity com-
ponent labelling which separates internal and external octants and (d) condensing
to get the minimal tree.

improved using CAM vector octrees. The structure of CAM vector octrees has been
described in Section 3.7.

In Brunet and Navazo’s method, polygons are clipped recursively against octants.
For each octant, five different node types of a vector octree are examined during the
tree construction in a sequence from simple to complex, that is black/white, face,
edge and vertex. In our CAM algorithm (Algorithm 4.4), we reverse the order for
examining node types and construct a CAM octree in several phases. In the first
phase, some vertex nodes are examined. In the second phase face, white, face, edge
and more vertex nodes are added. Finally the interior nodes and the exterior nodes
are separated by using the CAM connectivity labelling algorithm.

The first phase—build-vertex() is simply a recursive procedure classifying
each vertex point into a proper octant where it is located. The octant should be the
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MAIN()
BEGIN
get the list of faces
load vertices into CAM with the id field as id3
build-vertex(id, Root,faces)
call the connected component labelling procedure
END
PROCEDURE build-vertex(TRITS id, OCT octant, LIST facelist)
BEGIN
Search(id3, EncodeOct(octant), ANY)
IF MultipleResponse() THEN
FOR i = 0 TO 7 DO
build-vertex(id, SubOctant(i,octant), facelist)
ENDFOR
ELSE
build-face(id, octant, facelist)
ENDIF
END
PROCEDURE build-face(TRITS id, OCT octant, LIST facelist)
BEGIN
clip-faces(octant,facelist,facelistl)
SWITCH (the number of faces in the facelisti)
CASE 0: AddEntry(id,EncodeOct(octant),WHITE)
break
CASE 1: AddEntry(id,EncodeOct(octant),EncodeIndex(’f’,face))
break
CASE 2: IF (octant size <= 1) THEN
AddEntry(id,Encodelct(octant) ,GREY)
ELSEIF (two faces share a common edge) THEN
AddEntry(id,Encodelct (octant) ,EncodeIndex(’e’,edge))
ELSE FOR i = 0 TO 7 DO
build-face(id, SubOctant(i,octant), facelistl)
ENDFOR
ENDIF
break
DEFAULT:IF (octant size <= 1) THEN
AddEntry(id,Encodelct(octant) ,GREY)
ELSEIF all faces share a common vertex THEN
AddEntry(id,EncodeOct (octant) ,EncodeIndex(’v’,vertex))
ELSE FOR 1 = 0 TO 7 DO
build-face(id, SubOctant(i,octant), facelistl)
ENDFOR
ENDIF
END
END

Algorithm 4.4: The CAM algorithm for constructing vector octrees

84
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largest possible space which contains one vertex at most. The point classification is
well suited to CAM implementation. We can encode, in preprocessing, each of the
vertices of objects as a voxel in a locational code format and store all these voxels in
CAM with a special id. The id indicates that these nodes are different from nodes
of the octree to be constructed. Starting from the root, the space is searched with
the above id to see if any vertex lies inside. If there are multiple responders which
means several vertices lying in the space, further subdivision is necessary. In such
cases the process is repeated for each subspace unless the specific resolution has been
reached. Otherwise there is no responder or only one responder, then the second
phase starts. The second phase—build-face() clips the faces against the current
octant, then examines the number of faces in the octant to decide the node types.
This phase is similar to Brunet and Navazo’s approach.

An obvious advantage of the new algorithm is that it has a simple vertex test.
Unlike the conventional algorithm which tests each vertex against six bounding
planes of an octant in turn, the CAM algorithm tests all vertices in one memory
cycle. Another advantageous feature is that it eliminates the needs for clipping
polygons at top levels during the construction process. It also uses less storage for
storing intermediate face lists. However, the improvement in terms of speed may not
be significant because most of the time of Brunet and Navazo’s algorithm is spent
on the expensive computation of non-trivial polygon clippings at the low levels of
the tree. Our CAM algorithm improves performance at the top levels.

4.7 Space and Time Complexities of CAM Oc-
tree Algorithms

The memory space is determined by the number of nodes in the CAM. These nodes
are usually black leaves of an octree. The time complexity of octree operations (tree
traversals, locating an octant, colour searches and rotations) using CAM are listed
in Table 4.5.

Preorder | General | Locating | Colour | Rotations

Traversal | Traversal | Octant | Search
Leafcodes | O(n) | O(nlogn) | O(logn) | O(n) [O(n x D)

CAM Octrees | O(n) O(n) 0(1) 0(1) 0(D)

Table 4.5: Comparison of the time complexity of leafcodes and CAM octrees

Table 4.6 lists time complexity for set operations (union and intersection) and
insertion/deletion operations. The CAM algorithms of octree union and intersection
may show particular advantage over conventional algorithms when two input trees
are significantly different in size or shape.




CHAPTER 4. OPERATIONS ON CAM OCTREES 86

Set Insertion
Operations | and Deletion
Pointer Trees O(N) 0(D)

Treecodes | O(N14+N2) O(N)
Leafcodes | O(nl+n2) O(logn)
CAM Octrees O(n) 0(1))

Table 4.6: Analysis of the worst case time complexity of the three octree formats for
set operations, node insertion and deletion. (N—the number of total nodes, n—the
number of black nodes, 1 and 2 indicate the two input trees otherwise the output
tree.)

4.8 Summary

In summarising new CAM algorithms for octree construction, we conclude that these
algorithms extensively use the octant insertion operation. The insertion operation
with CAM octrees has the following features:

1. It is conceptually simple and intuitive.

2. The execution efficiency for inserting an octant into an octree space is insen-
sitive to the order of insertion.

3. An octant is inserted into a space which can be one of the following:
(a) completely empty;
b) partially empty;

(

)

(b)

(c) occupied by a larger octant;

d) occupied by an octant which has the same size as the octant to be inserted;
)

(€) occupied by several smaller octants.

Random octant insertion is difficult in conventional octrees. It involves either tree
traversals (as for pointer trees and treecodes) or intensive searches (as for leafcodes).
Therefore it is always avoided when possible or optimised for special occasions.
However this is no longer a problem when the CAM is employed.

The CAM octree construction algorithms and other CAM octree manipulation
algorithms show the advantages of simplicity, clarity, consistency and general effi-
ciency. These properties are very important for a large solid modelling system.




Chapter 5

Ray Tracing using CAM Octrees

5.1 Introduction

Ray tracing is a technique for creating realistic synthetic images. It is simple,
elegant but computationally intensive. Octrees have been used to speed up ray
tracing by partitioning an object space and sorting objects in a spatial order [Glas84].
The main problems of ray tracing acceleration with conventional octree structures
concern memory management and octree traversal. The memory limits the size of an
octree. Tree organisation and the node access speed influence the efficiency of tree
traversals. Walking a ray through octants in a conventional octree is generally slow,
involving ray-octant intersection and point location. These operations in turn affect
the choice of the optimal level of space subdivisions and the algorithm efficiency.
Clearly a better memory management for space subdivision techniques will help
overcome these problems.

This chapter describes an application of CAM octree structures to accelerate ray
tracing. A new algorithm is implemented based on the CAM architecture. The aim
of our new algorithm is to simplify memory management and to speed up octree
node access. The process of locating an octant for a given point is very simple
with only one CAM search operation followed by one CAM read operation. To
avoid ray-octant intersections, a new ray traversal algorithm named adaptive 3D-
DDA (3D Digital Differential Analyser) is introduced. This results in efficient octree
traversal and empty space skipping. Finally the problem of subdividing object space
is discussed.

5.2 Background
5.2.1 The Ray Tracing Algorithm

Image rendering by ray tracing has become popular as a technique for image synthe-
sis [Glas89]. The advantages of ray tracing lie in its simple and straightforward way
of computation and the ability to display optical properties of objects in a scene.
The simplicity of ray tracing algorithms leads to very little memory requirement
for data structure and program code. Ray tracing algorithms have been widely
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used in obtaining realistic images which have been found difficult to generate with
traditional scan line algorithms.

Ray tracing was originally developed for solving hidden surface problems of con-
structive solid geometry (CSG) objects [Gold71]. It was extended by Kay and
Greenberg [KayT9] to generate images with reflection, refraction and shadows, then
studied by Whitted [Whit80] and established as a powerful tool in computer graph-
ics.

Ray tracing unifies visibility problems and lighting problems. By firing rays
from an eye position, visible objects can be detected. By modelling the laws of
optics, complex lighting and shadowing phenomena with multiple light sources can
be handled. The latter is implemented by firing a ray at each light source, then total
light energy at each point of the space can be calculated so that the shadow effect
is determined. Both computation of visibility and shadows are straightforward,
and mainly involve testing of ray-object intersections. Furthermore, objects with
reflection and transparency can be modelled. Ray tracing has other applications
such as removing hidden lines, computing volumes [Roth82], rendering penumbras
and motion blur [Cook84].

5.2.2 Object Models used in Ray Tracing

Among most commonly used representations for modelling 3D solids there are CSG
and Breps which have been described briefly in Chapter 1. Both representations
can be mixed with a primitive-instancing scheme which has a group of basic objects
(referred to as primitives): blocks, spheres, cylinders, cones, tori, and polygons.
However, primitives are organised differently in CSG and Breps. In the former, solid
objects are composed by combining primitives using boolean operators of union,
intersection and difference. A composite object is represented as a binary tree.
While in Breps, each primitive is taken as an individual object and thus processed
independently.

Ray tracing is important for CSG models not only because it generates realistic
images but also because it is a means to visualise objects from model definitions.
The combination operators make CSG remarkably effective for designing solids but
at the same time make CSQ difficult to display. To display solids in the CSG model,
one either converts them into Breps or uses ray casting [Roth82].

Differences between CSG and Brep lead to different ray tracing processes. Al-
though ray-object intersection tests are basically the same for both models, ray
tracing CSG is more complicated and involves point classifications against primi-
tives. In CSG, if a ray is found intersecting several primitives of a composite object,
all these intersection points (where the ray enters or leaves each primitive) must
be stored and sorted by their distance from the ray origin. For primitives like tori,
there could be 4 intersection points. The visible point is determined by evaluating
in/out spaces from the above intersection points according to the boolean opera-
tors (union, difference and intersection) of CSG. Ray tracing Brep models needs no
boolean operations. If considering objects without transparency, the visible point
is the ray entry point which corresponds to the closest ray-object intersection point
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from the viewing position.

Besides CSG and Brep, more complicated models which contain mathemati-
cally defined surfaces such as parametric surfaces and implicit surfaces are used
[Toth85, Barr86]. Ray tracing parametric surfaces are divided into two groups:
one using numerical methods [Joy86] and the other by divide-and-conquer methods
[Snyd87]. Methods in the first group are generally slow involving expensive eval-
uation of surface parameterisations. The divide-and-conquer approach subdivides
a surface into simple triangles which are small enough to approximate closely the
original parametric surface. This will yield a large number of polygons to be traced.

5.2.3 Previous Optimising Algorithms

The original ray tracing algorithm is very expensive in computation. The most time
consuming calculation lies in testing ray-object intersections. Several techniques
have been used to accelerate ray tracing by speeding up the intersection test itself
or reducing the total number of intersection tests. Three approaches have been used
to reduce the number of tests. The first one [Rubi80, Kay86] uses bounding volumes
of objects to test simple bounding boxes or spheres before implementing complex
object tests. The second group exploits spatial coherence of objects by subdividing
object spaces. Algorithms using hierarchical subdivisions [Glas84, Kapl85] and non-
hierarchical uniform subdivisions [Fuji86, Clea88] have been developed. The former
is suitable for ray tracing of highly complex and unstructured environments. The
latter is best for scenes with a large number of objects homogeneously distributed in
spaces. The third group optimises ray tracing by ray classification [Arvo87] which is
quite different from the bounding volume or spatial coherence approaches. Instead
of preprocessing objects in spaces, ray classification algorithms dynamically explore
ray coherence. Other optimising techniques include the item buffer approach for
primary rays [Wegh84], the light buffer for shadow rays [Hain86], and a combination
of hierarchical bounding volume with uniform space subdivision [Snyd87, Goh90].

5.2.3.1 Bounding Volumes

Bounding box algorithms [Rubi80] partition objects into groups, each group being
bounded by a volume. The simplest bounding volumes are spheres or boxes. A
group of objects bounded by a sphere are collected in a list. Groups of such lists
are put into a higher level list. Hierarchies are thus built. There are two problems
for this simple hierarchical bounding volume approach. First, bounding volumes are
not tight so that many rays which hit bounding volumes miss objects. Secondly,
each ray must trace top down through the object hierarchy. Organisation of the
hierarchy affects the efficiency of these algorithms.

Kay and Kajiya [Kay86] used bounding volumes defined by plane-sets which
enclose each object or a group of objects tightly, and introduced a special order
for traversing the hierarchy of bounding volumes. Their traversal algorithm allows
objects to be checked for intersection in approximately the order that each object
would be encountered along the ray path. The main overhead of this algorithm is
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its inherent sorting,.

5.2.3.2 Ray Classification

Arvo and Kirk proposed ray tracing by ray classification [Arvo87]. Their algorithm
partitions rays into five-dimensional (5D) hypercubes, each containing a list of ob-
jects associated with it. Here the 5D corresponds to five degrees of freedom of a
ray. They are the origin and the direction of the ray (x,y,z,u,v). Ray classification
gains its efficiency by exploiting ray coherence. Since many neighbour rays tend to
follow similar ray trees, a ray can benefit from classification for previous rays in a
beam. Although working for all rays, the algorithm is at its best for primary rays
and shadow rays, both these rays have good ray coherence.

Other optimisation techniques such as shadow cache, object sorting, back face
culling for opaque solids are also used by Arvo and Kirk. Object sorting is imple-
mented in preprocessing for the entire object database. Back face culling is done
once for each beam. These techniques are most suitable for sequential processing.
They will introduce algorithm complexities which are deficient for parallel process-
ing. This shows one limitation of ray classification. The algorithm only has an
advantage for sequential processing while subsequent rays can use the information
obtained from processing of previous rays. When rays are processed in parallel
on different processors, the coherence property is less used and overheads in ray
classification become significant.

5.2.3.3 Space Subdivisions

Various space subdivision techniques for optimising ray tracing have been devel-
oped. They are hierarchical subdivisions—octrees and BSP (binary space partition)
trees, and non-hierarchical uniform subdivisions. Subdivisions can be either in im-
age spaces or in object spaces. Here we give a brief comment on subdivisions by
octrees, BSP trees and uniform grids. Detailed comparisons of octree and uniform
subdivisions will be discussed in Section 5.3.

o Octrees: Glassner [Glas84] used modified linear octrees due to the fact that
horizontal walk between octants is easy in linear octrees. In addition, Glassner
used a hash table and linked lists to trade-off speed and memory requirements.
However, the inner loop for locating an octant for a given point is slow. It
requires computing the hash name of the octant.

o BSP trees: Kaplan [Kapl85)] used BSP trees in which each internal node has
two pointers. A BSP tree classifies objects in a scene by dividing the space into
half along each axis in turn. BSP trees have relatively large memory overheads.
Typically, a BSP tree may contain more than 5,000 nodes including internal
nodes and empty leaf nodes. But with node pointers the inner loop of node
traversal may be relatively efficient.

e Grids: Fujimoto et al. [Fuji86] proposed a Spatially Enumerated Auxiliary
Data Structure (SEADS) for fast ray tracing. With SEADS, the space is sub-
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divided into a 3D array using a uniform subdivision. A ray is traced through’
this 3D array using a 3D-DDA (3D Digital Differential Analyser) method.
Other researchers [Clea88, Aman87] use different voxel traversal algorithms
for similar data structures.

Some combined methods have been proposed aiming at achieving better memory
and speed trade-off, or to improve performance of space traversals. For example,
Fujimoto et al. [Fuji86] also used the grid traversal method in octree traversal to
replace ray-octant intersection tests. Snyder and Barr [Snyd87] combined list and
grid structures to ray trace highly complex scenes.

5.2.3.4 Comparisons of Different Schemes

Space subdivisions have advantages in ray tracing all kinds of models including
Brep and CSG defined objects [Wyvi86, Boua87], whereas the ray classification
algorithm and Kay & Kajiya’s efficient bounding volume algorithm are more suitable
for objects in Breps and primitive-instancing schemes. Besides, the regularity of
space subdivisions also makes them more suitable for some hardware implementation
and parallel processing. Therefore, space subdivision algorithms remain useful.

The disadvantages of space subdivision schemes lie in their extensive memory
requirements and long access time. Without memory constraints and the octant
access complexity which limits the effectiveness of octree methods, octree efficient
schemes could well be the way of the future. When the extra cost for octant traversal
is no longer a problem, finer subdivisions of a space can be achieved. Simplification
of memory management may play a key role in solving the space traversal problem.
It is here where CAMs can be very useful.

5.3 Analysis of Space Subdivision Algorithms

5.3.1 Limitations of Conventional Octree Subdivisions

One problem with current octree subdivision algorithms concerns the choice of the
level of space subdivision. This choice influences strongly the performance of octree
based ray tracers. If subdivision is coarse, then a ray which hits nothing in a space
must be checked against many objects in those octants with which the ray intersects.
These checks can be reduced if the scene is subdivided finely enough. On the other
hand, when subdivision is getting finer, the memory required for storing octants
and time spent on walking through them increase. It is difficult to determine when
subdivision is optimal to get the best performance of accelerated algorithms. This
problem will be addressed further in Section 5.7. Here we explain why tree traversal
is slow in a large conventional octree.

In octree and BSP tree methods, overheads of traversing an octree come from
two sources. The first one is that given a point we need to locate an octant which
encloses the point. The second one is ray-octant intersection to construct a point
which is used to locate the next octant. Finding the point involves intersecting the
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ray with each of the six faces of the current octant to obtain the exit point of the
ray. In cases where a ray passes through many octants before it hits any object or
exits the object space, overheads in locating octants and ray-octant intersections
become significantly large.

Hence there are several limitations for the octree approach:

e The efficiency of ray traversals through octants depends on the level of spatial
subdivision.

o The optimal choice of the subdivision level is influenced by contents of scenes,
and is difficult to determine in advance.

o For the above two reasons, the level is commonly limited to a small number,
for example the maximum depth of 4. Thus the algorithm is unsuitable for a
scene with a very large number of objects.

5.3.2 Limitations of Uniform Grids

Recently some studies [Aman87, Clea88] have been in favour of uniform subdivision
algorithms as efficient ray tracing schemes. There are two reasons. First, voxel
traversal for a uniform sized grid is very fast. For example it requires under 10
integer operations to move to the next cell [Clea88]. Second, it is a non-hierarchical
structure so that locating a cell containing a ray origin can be done in constant
time. However, the uniform subdivision scheme has several disadvantages. The
main problems are listed below.

o It requires large memory. For example, at the resolution of 64 the number of
voxels is 262,144. Most systems assume that the level of space subdivisions is
small, typically with only a few hundred voxels.

o Such systems often use a fixed grid size for all scenery. The default grid
size is commonly chosen as 10 x 10 x 10 or 20 x 20 x 20. Since scenes with
different complexity may be suited to different grid resolution, a fixed grid
may not always provide the optimum speed-up. It is also difficult to determine
automatically what the optimal grid size is to achieve the best speed up for a
particular scene.

o The scheme is sensitive to distribution of objects and to variation in the ob-
ject’s size. It works best when objects are uniformly distributed. The existence
of a large background plane will destroy uniform distribution of objects around
grid structures. This situation can make a large number of foreground objects
concentrated in a few grid cells and leave most cells empty. In such a case
system performance is slowed down and many empty cells need to be skipped
on a ray path.

For uniform subdivisions, it is possible to reduce memory requirement by using
a hashing scheme. Hashing provides some means for balancing memory requirement
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and time efficiency. Cleary and Wyvill [Clea88] used a hash table to store the entries
of non-empty voxels. Their algorithm maintains two arrays. One is a full-sized linear
array of 1-bit data to indicate whether a cell is empty or not. Assuming the cell
array contains n® entries, the size of the linear array is n® bits. The other array is a
smaller hash table of length M. To access a cell (i, j, k), an index (p) to the linear
array is calculated using:

p=ixnxj+jxn+k;

Then the linear array is checked. If the cell is non-empty, the hash table is
consulted by computing the hash table address using the following function:

p mod M;

Therefore a small amount of extra computation is introduced in order to locate
a voxel using the hash table. The choice of the table size M is important to the
memory space and access speed. To consume less memory space M should be as
small as possible. However, when the table is small, there is more chance for two
cells to hash to the same address. There are two simple ways to handle the above
problems [Sedg88]. One uses a technique named separate chaining which builds
a linked list of the records for each table address thus colliding cells are chained
together in the list. The other is hashing with linear probing which uses empty
places in the table to solve collisions. When two records hash to the same address,
then the algorithm probes the next position in the table.

It is necessary that the table length M is large enough. Large M can reduce the
average length of linked lists thus sequential searches in separate chaining. With
the linear probing method a large M is required to guarantee enough contiguous
memory to hold all the non-empty grid cells. This means that we must be able
to estimate in advance how many non-empty voxels will exist. The estimation will
be difficult for arbitrary scenes. Assuming we have optimal choice of M which is
just over the number of non-empty voxels, there is still a problem concerning time
efficiency of probing. Sedgwick [Sedg88] showed that for a large table length M and
with the table 90 percent full, linear probing will take about 50 probes for a worst
case search. Therefore the hashing schemes seem unsatisfying for space and time
efficiency when the number of non-empty cells is large. Unfortunately this will have
to be the case for complex scenes.

5.3.3 Empirical Comparison of Space Subdivision Schemes

This section compares uniform subdivisions and octree subdivisions, then analyses
advantages and problems related to them. A better data organisation is proposed
to take advantages and avoid problems in these subdivisions. The proposed scheme
will be explained later in Section 5.3.4. A simple 2D image with several randomly
distributed objects is drawn in Figure 5.1 for analysis. We can see clearly from the
figure that the proposed scheme is a variation of octree subdivisions with two main
improvements. Firstly, empty cells are deleted. Secondly, each cell bounds tightly
objects with which it intersects. All three subdivisions, the uniform, octree and
proposed schemes, are at the same resolution (depth 3 for this example). In the
uniform subdivision scheme there are 64 cells and in the octree scheme there are
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only 16 octants. The proposed scheme has the least number of nodes which is 9.

(a) (b) (c)

Figure 5.1: Comparison of different space subdivision schemes: (a) uniform subdi-
vision; (b) octree subdivision; (c) proposed scheme

Table 5.1 shows the number of voxels (or octants) visited and the number of
ray-object intersection tests involved for each sample ray in the scene of Figure 5.1.
A uniform subdivision has a small number of ray-object intersection tests (7) and a
large number of voxel traversals (48). An octree subdivision has a large number of
ray-object intersection tests (13) and a relatively small number of octant traversals
(23). However, to locate an octant for a given point in a conventional octree is more
expensive than to locate a voxel in a uniform subdivision scheme. Now it is easy to
see why ray tracers based on uniform subdivisions are generally faster than those
based on octree subdivisions. The main reason is that with an octree accelerated
ray tracer, the algorithm is slowed down not only by expensive octant traversals
but also by the remaining large number of ray-object intersection tests caused by
loose bounding octants. An octant bounds objects loosely when objects concentrate
on a small part of it. Therefore, many rays that hit the octant miss objects in it
thus tests are wasted. For example the ray number 7 in Figure 5.1 (b). Even if we
can improve the efficiency of octant traversals, the number of ray-object intersection
tests remains high for octree subdivisions. Cells in a uniform subdivision have tighter
bounds to objects than those of octants in an octree subdivision.

5.3.4 Proposal of a New Scheme

The scheme proposed here (named a CAM octree ray tracer), is shown in Figure 5.1
(c). It combines several advantageous features of other subdivision methods. These
features are the tight voxels of uniform subdivisions and the small memory of oc-
trees. Memory saving is achieved by having various sized cells and ignoring empty
cells. Table 5.1 shows that with the new scheme, the number of visited voxels is re-
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Uniform Octree Proposed
Vozels | Inters. | Vozels | Inters. | Vozels | Inters.
Ray No. | Visited | Tests | Visited | Tests | Visited | Tests
1 8 0 4 1 0 0
2 4 1 2 1 1 1
3 5 1 3 2 1 1
4 8 2 5 2 2 2
5 3 1 1 1 1 1
6 7 1 3 3 1 1
7 8 0 3 2 0 0
8 5 1 2 1 1 1
Total 48 7 23 13 7 7

Table 5.1: Analysis of space subdivision algorithms used for accelerating ray tracing

duced to 7. It is far smaller compared to the corresponding numbers in the uniform
subdivision and octree subdivision schemes. The number of ray-object intersections
is the same as that of uniform subdivision. Therefore, the new scheme can be faster
due to its small number of voxel traversals and ray-object intersection tests. For a
high resolution subdivision (for instance depth 6), reduction in the number of voxel
traversals with the new scheme will become more significant.

However, the question now is how can a ray quickly traverse the space shown
in Figure 5.1 (¢)? How can we decide the next voxel for a ray to visit? With con-
ventional architectures, traversing such a space organisation may well be a complex
task. Peng et al. [Peng87] have tried to use conventional linear octrees to store a
similar spatial organisation. In order to find the next octant, they employ binary
searches. They also tried to skip empty regions more efficiently using a heuristic
method which finds the ray exit point for a given octant. The procedures of binary
searches and ray-octant intersection tests remain the main sources of overheads. The
two questions above can not be answered with simple yet efficient solutions using
conventional architectures. We shall show how they can be resolved with CAMs.

5.4 Ray Tracing using CAM Octrees

As mentioned earlier, algorithms of ray tracing by octrees use up much CPU time
for data structure traversal to find the next octant. It will be helpful to have some
hardware assistance for time consuming octree traversal. This was our motivation
to employ CAM which is very efficient for searching random cells in an octree.
By proposing an algorithm using CAM octrees we attempt to overcome problems
encounted in conventional octree-accelerated ray tracers and to improve their per-
formance.




CHAPTER 5. RAY TRACING USING CAM OCTREES 96

5.4,1 The Aims

Our aims are:
¢ simplifying memory management;
e speeding up the octree node access process by

1. using CAM searches to locate an octant for a given point;

2. removing ray-octant intersections.

In justifying our new technique as a good optimising algorithm or architecture,
the following criteria should be met:

e low computation overheads for the new data structure;

e low memory overheads imposed by the specific data structure;
¢ dynamic optimisation for general scenery;

e simplicity (easy for maintenance).

We have noted in the previous section that the first source of overheads for octree
traversal lies in locating an octant for a given point. This overhead may be readily
overcome by employing a CAM architecture with which only one search operation
is needed. The point location is simpler and more efficient than Glassner’s one
which computes the integer name associated with the octant. Another bottleneck
of ray tracing with Glassner’s octrees lies in the calculation of a point to be located.
Therefore, the new algorithm must also avoid ray-octant intersections. This can be
resolved by introducing an adaptive 3D-DDA technique in cooperation with CAM.
Here we first give an overview of the CAM octree ray tracer. Details of adaptive
3D-DDA and CAM operations will be discussed later in the chapter.

5.4.2 The CAM Octree Ray Tracer: an Overview

The algorithm for speeding up ray tracing using CAM octrees is as follows. The
object space is subdivided into an octree, and the non-empty octants are stored in
the CAM. Each octant has its location, size and an index to a group of objects
associated with it. Traversal of a ray through the octree space is implemented
using an adaptive 3D-DDA algorithm incorporating some CAM operations such as
RunList() and Search() (see Section 3.4). Instead of skipping voxel by voxel as
in Fujimoto’s 3D-DDA algorithm and in other uniform subdivision methods, the
adaptive 8D-DDA method breaks a ray into several segments, each with a length
as long as possible. The adaptive approach allows quicker empty space skipping
especially when the ray is nearly parallel to any of the three coordinate axes in the
object space. A ray segment is in turn split into one or more fragments by the CAM
procedure RunList (), each fragment fits into the octree space. By comparing the
locational codes of these fragments with the contents of the CAM, we obtain the
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octants with which the ray intersects. Each comparison requires only one search.
After finding the closest intersected octant, objects associated with it are tested
against the ray for intersection. The algorithm of ray-CAMoctree is listed below in
pseudo C.

PROCEDURE Ray-CAMoctree(RAY ray)
BEGIN
initialise adaptive 3D-DDA parameters according to the ray origin
and direction;
REPEAT
calculate a ray segment based on adaptive 3D-DDA;
compare the ray segment with CAM contents and get a list of ordered
octants pierced by the ray segment;
IF the list is not empty DO
REPEAT
get an octant from the list;
FOR each object associated with the octant DO
Intersect(ray, object);
ENDFOR
UNTIL no octant left in the list OR intersection is found;
UNTIL intersection is found OR the ray exits the bounding box of space;
END

Algorithm 5.1: The pseudo-C code for intersecting a ray with the CAM octree model

Clearly the main parts of the CAM octree efliciency scheme are to build the
CAM octree data structure and to trace a ray through it. The data structure and
construction of CAM octrees are shown below, followed by a traversing technique
which includes two parts: adaptive 8D-DDA and CAM operations.

5.4.3 Organisation of the Program

The basic ray tracer follows the software design described in Chapter 7 of the book:
“An Introduction to Ray Tracing” [Glas89]. We chose this design for its clarity
and generality. It is a standard method and is machine independent. The software,
written in C, is in a modular fashion to make module interface simple and clear.
The design adopted the object oriented programming philosophy with which files
are organised by data structures of objects instead of by procedures. The aim is to
make the code maintainable and extensible thus to make long term evolution of the
project easier and more reliable. Acceleration techniques can be fitted into modules
without major change in the system architecture of the basic ray tracer.
The features of the basic ray tracer include,

e Extensible multiple primitive types;

o Arbitrary level of diffuse reflection, spectral reflection, transmission;
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e Multiple light sources;
e Simple operations on primitives.

For testing our CAM octree accelerating algorithm, we only consider a simple
rendering model without texture, anti-aliasing and other things like complex ray
distribution. The system contains an array of objects and each array element (an
object) has several fields. The structure of an object is as follows:

structure object {
unsigned short object_type;

double bounding, box[3] [2];
char ¥primitive;

struct PrimProcs *procs;

struct Surf *surf;

Each object has a type which is indicated in the object_type field. An object
can be a primitive object or a composite object. Composite objects are used in
accelerating techniques such as hierarchical bounding structures or space subdivi-
sions, and so on. In the CAM octree algorithm introduced in this chapter only
one composite object is used, that is the root space of the CAM octree. Primitive
objects are polygons, spheres, cylinders, and the like. Each object is bounded by a
simple bounding box formed by three pairs of extents in x, y, and z directions. The
primitive field points to a memory address where the geometric and other useful
information of the object is stored. This field is type dependent and must be cast to
different structures according to the type of a specific primitive. By using type cast,
the overall structure of the program is made simple and clear. Primitive-dependent
information is hidden in a data structure local to the file for each primitive group.
New object types can also be added easily without changing the program structure.
The pointer procs points to functions that perform known operations on object
structures. These functions are:

o Read: Reading a primitive object from a data file;

Intersect: Finding the intersecting point of a ray with an object;

Normal: Calculating the normal vector at a surface point of an object;
e Transform: Translating or scaling an object or a ray;

o Primitive-octant classification: Classifying objects into octants.

The surf field points to the location where we store information about surface
properties which include colour, reflectivity and transparency. Surfaces of a kind
have a unique name and the name is defined before it is used. One surface can be
associated with many primitive objects.
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5.4.3.1 Indexing Objects in a CAM Octree

With our accelerating algorithm, objects (polygons, spheres, and so on) in a scene
are organised using a CAM octree. Each octant in the CAM octree contains a group
of objects. Organisation of groups is shown in Figure 5.2. CAM contents contain
octants’ locations and indices pointing to memory addresses on a child list. Only
non-empty octants are stored. The child list is an array which stores groups of
pointers to objects. Each group associates with a specific octant in the octree space.
A group of primitives which intersect the same octant are indexed sequentially on
the child list. The groups associated with different octants are separated by —1
in the list. The addresses indexed in CAM are the locations of the first child in
each group. When an octant is found intersecting a ray, the first primitive in its
associated group is located and tested against the ray. Other primitives in the same
group are visited in turn until the number —1 is reached.

Child list
CAM contents

id location index

01 ] 000 **% k¥ 000 004

01 | 001 **% %% 005 L 005 child 0

01| 011 001 *** | 010 006 | child 1
01| 011 101 *** | 014 007 | child 2
01| 110 **x *xx [ 019 008 | child 3
009 -1
[ 010

Figure 5.2: Indexing objects in a CAM octree: CAM contents and the child list.

A CAM octree is constructed in preprocessing by recursively subdividing the
space into eight subspaces (octants) until the number of objects in an octant is less
than some criteria (for example six objects) and they are bounded tightly by the
octant, or the octant reaches the smallest size. The tightness of an octant around
its associated objects is tested by further subdividing the octant and examining
whether there are more than four empty suboctants.
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The procedure Sphere-Octant () given below is an example of space subdivisions
for primitives of spheres. It must be noted that only surfaces of spheres are important
for the ray-sphere intersection test. Therefore, any octant which is completely inside
or completely outside the testing sphere is considered as irrelevant to that sphere.
Similarly, polygons can be classified with Sutherland-Hodgman’s 3D window clipping
algorithm. More discussion about subdivisions on polygonal object models will be
given later.

PROCEDURE Sphere-Octant(SPHERE sphere, OCT octant)
BEGIN
check the number of octant’s vertices that lie outside the sphere
IF the number is 0
THEN the octant is completely in the sphere
ELSE IF the number is 1 -- 7
THEN add the sphere to the list associated with the octant
ELSE /% all eight vertices lie outside the sphere */
IF the octant is outside the bounding box of the sphere
THEN the octant is completely outside the sphere
ELSE IF the octant crosses any of three lines, each passes through
sphere center and is parallel to one of three axes
THEN add the sphere to the list associated with the octant
ELSE the octant is outside the sphere
ENDIF
ENDIF
END

Algorithm 5.2: The procedure for classifying a sphere as inside/outside/intersection
to an octant

Since our CAM octree is in locational code format, we must assume the maximum
tree depth in advance. Considering that the current CAM simulator has 32-trits
only, we set the maximum tree depth as 6. Therefore, the root of an octree is a cube
with a size of 64. To make calculations of adaptive 3D-DDA simpler, all objects are
scaled in preprocessing to a cubic space corresponding to the octree root. The eye
position and lights’ positions are scaled in the same way as well.

5.4.4 Adaptive Three Dimensional Digital Differential Anal-
yser

Fujimoto et al. [Fuji86] were the first to use a 3D digital differential analyser (3D-
DDA) for space traversal. The 3D-DDA algorithm is a 3D extension and modifica-
tion of DDA which evaluates some functions incrementally. The DDA is commonly
used in line or surface drawing on displays and plotters. Fujimoto and his colleagues
also use 3D-DDA to traverse an octree structure, but results show that uniform grids
are better than octrees in general. Figure 5.3 is an example of a 3D-DDA corre-
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sponding to a ray.

-

[\

Figure 5.3: A ray and its corresponding 3D-DDA

Our adaptive 3D-DDA is similar to Fujimoto’s 3D-DDA except that the adaptive
algorithm examines a group of voxels in a single step. A ray is split into a series of
segments, each segment has a cross section which is the unit square of a voxel (at the
lowest level of the octree subdivision). The position and the length of the segment is
calculated from the parameters which are determined by the ray origin and direction.
Figure 5.4 gives two dimensional illustrations of the ray segments of our adaptive
8D-DDA in several typical cases. Since some ray segments do not fit the constraint
of the octree space subdivision, they are further broken into fragments. These
fragments (separated by dotted lines) can be seen in Figure 5.4 (b) (c). Related
with Figure 5.4, Table 5.2 compares the number of voxels visited by the 3D-DDA
method and the number of fragments examined for the same ray in our adaptive 3D-
DDA method. The advantageous features of adaptive 3D-DDA are clearly shown in
the results. In the best case, the ray can be tested against the object space in one
step with a single segment. In general situations, the number of fragments is about
one third of the number of voxels visited by the ray. Even in the worst case the
number of fragments is less than two thirds of the number of voxels.

Adaptive

3D-DDA | 3D-DDA
(a) Best Case 8 1
(b) General Case 10 3
(c) Worst Case 14 8
Total 32 12

Table 5.2: Comparisons of traversal steps for 3D-DDA and for adaptive 3D-DDA.
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Figure 5.4: Two dimensional illustrations of adaptive 3D-DDA for rays of different
orientations: (a) the best situation where the ray is nearly parallel to one axis (for
instance the horizontal axis); (b) general situation; (c) the worst case where the ray
enters from one corner of the world space and leaves at the opposite corner.

For each ray, the parameters required for calculating ray segments of adaptive
3D-DDA are shown in Figure 5.5 and constructed as follows,

1. Finding the coordinates of two points (pl, p2) where a given ray enters and
exits the object space (for reflecting/refracting rays pl lies inside the object
space);

2. Determining the main driving axis (MDA) which has the largest movement
from entry point to exit point, the second driving axis (SDA), and the passive

axis (PA);

3. Initialising the increments (s1, s2) and the control terms (cl, c2) in MDA,
while the increments in PA and SDA are the unit voxel size.

Without losing generality, we choose the x-axis as MDA, y-axis as SDA and
z-axis as PA to demonstrate the algorithm. The parameters sl, s2, cl and c2 are

floating point data.

dz dz
sl = 5782 = @

The control terms ¢l and ¢2 are coordinates in MDA of the points where the ray
passes from one segment to the next. The parameters cl and c2 are updated by
increments of s1 and s2 respectively at some stages.

Calculation of each ray segment is implemented by simple comparison, addition
and subtraction. Each ray segment is a parallelepiped which has a position indicated
by coordinates sx, sy, sz, and a length sl. The position of a ray segment is determined
by its left-bottom-back corner. Its width and height are unit size and are ignored
in the data structure. The parameter sx is an integer truncated from floating point
values cl or ¢2. The parameters sy and sz are initialised with the coordinates of the
ray entry point and are increased by unit voxel size during the traversal. Each ray
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Figure 5.5: The parameters for calculating adaptive 3D-DDA: the increments (s1,

s2) and the initial control terms (cl, c2)

segment is updated from the previous segment. The first segment is calculated from

the ray origin if the ray is inside of the boundary of the scene space, or from the
point where the given ray enters the scene space. The pseudo C code of the adaptive

3D-DDA algorithm is listed in Algorithm 5.3.
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/* sx, sy, sz, sl are the coordinates and length of the current segment */

/* [x] is an integer truncated from the floating point number x */

initialise values of pix, ply, plz, p2x, p2y, p2z, si, s2, cl, c2

for current ray;

8X =

[pix]; sy = [plyl; sz = [piz];

WHILE ci < p2x DO

WH

ILE c2 < ci DO

sl = [c2] - sx + 1;

IF intersect any object THEN exit;
sx = [c2];

c2 c2 + 82;

8y = sy + 1;

ENDWHILE

sl
IF
sz
IF

EN
cl
ENDW
WHIL
sl
IF
c2
sy
sX
IF
ENDW
sl =
IF i

= [c1] - sx + 1;

intersect any object THEN exit;
= sz + 1;

c2 < p2x DO
sx = [ci];
sl = [c2] - sx + 1;
IF intersect any object THEN exit;
sx = [c2];
c2 c2 + 82;
sy = sy + 1;
DIF

= ci + 81;
HILE
E ¢2 < p2x DO

= [c2] - sx + 1;

intersect any object THEN exit;
= ¢c2 + 82;
sy + 1;

[c2];

intersect any object THEN exit;
HILE

[p2x] - sx + 1;
ntersect any object THEN exit;

Algorithm 5.3: The procedure for computing ray segments of adaptive 3D-DDA
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The tests in the program for intersecting a ray with objects are actually proce-
dure calls. The procedure involves CAM operations and standard ray-object inter-
section tests. The number of operations of adaptive 8D-DDA for computing each ray
segment is analysed here by counting instructions between two calls of the testing
procedure. The results show that the adaptive 3D-DDA method has, on average,
two floating point comparisons, two assignments from a floating point to an integer,
three integer additions and one integer subtraction. The total number of operations
is 8.

5.4.5 Operations of the CAM

CAM hardware acts as a peripheral device of a host computer. Its task is to find,
in the right order, the octants which are non-empty spaces and are intersected with
the ray currently being traced. To compare a ray segment with a CAM octree, a
search pattern must be constructed whose locational code comes from the paral-
lelepiped corresponding to the ray segment. Then a CAM search() operation is
called. However the ray segment computed from the adaptive 83D-DDA method does
not always fit into octree subdivision (see Figure 5.4 (b) and (c)). It is therefore
necessary to check and break each unfit ray segment further into a group of fitted
fragments, then to compare each fragment with the CAM octree. Segment split-
ting is implemented in the CAM high level interface with the subroutine RunList ()
shown in Section 3.4.

Since all the nodes in CAM are non-empty octants, the enquiry may yield zero,
one or many responders. This means that the ray intersects zero, one or many
octants respectively. These cases are considered in turn. A simple example is shown
in Figure 5.6.

(a) (b)

Figure 5.6: Locating the next octant

1. If a search returns no responders then the ray fragment hits nothing in space.
The program continues for the next ray fragment.
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2. If a search returns one responder, the ray fragment intersects one octant. This
octant could either be the same as the octant hit by the previous fragment
or be a new octant which has not been tested before. In the first case, the
program jumps to the next fragment and continues. Otherwise, each object in
the octant is tested in turn against the ray.

3. If there are multiple responders, the current ray fragment must be divided into
two parts of equal size. The above process is repeated for each half in turn.
This process is a recursive refinement of a ray fragment. Its purpose is to find
the intersected octants in the right order.

If ordered retrieval CAM, which will be introduced later in Chapter 6, is available,
refinements in the third case above can be removed. In this situation, multiple
responders are read out sequentially in a sorted order. A ray must visit a group of
octants in a specific order from the closest octant to the farthest one with respect
to the ray’s origin. Therefore, the program must detect the order required by each
specific ray. The order can be either increasing or decreasing along the MDA. These
and some related problems will be discussed further in Chapter 6.

5.5 Performance and Comparisons

5.5.1 The Influencing Factors

Several experiments were carried out to test the performance of our CAM octree
ray tracer. This section presents results, compares them with the performance of
the naive ray tracer which tests all rays against all objects and the performance of
Glassner’s octree based ray tracer. It should be noted that the comparison between
algorithms is very subjective. There are several factors that may strongly influence
the comparison of different accelerating algorithms. Firstly, the published timing
data are based on different machines which have different architectures, speeds and
floating point co-processors. Secondly, the language used in each system may be dif-
ferent. Although most ray tracers are implemented in C, some of them use assembler
program to improve execution of heavily used procedures. There also exist systems
in FORTRAN 77 [Fuji86] and in OCCAM running on transputers [Goh90]. Thirdly,
the code organisation is also important for the execution efficiency. It depends on
whether the data structure is a linked list or an array, whether the program is object
oriented or is optimised by removing most procedure calls. Finally, comes the test
scene complexity. As we have discussed in Section 5.3 different models tend to work
best for different scenes. Thus it would be more sensible to compare the features of
each algorithm than simply to compare the execution times.

One way to do the comparison is to normalise the average speed (CPU time) of
each machine to Glassner’s VAX 11/780 which has a floating point accelerator of 250
Kflops. Machine speed normalisation is unreliable in the sense that it depends upon
what sort of operations are used in a particular code. Another method to compare
different algorithms is to examine the speed-up of each accelerated algorithm to the
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corresponding naive ray-tracing algorithm. We adopt the latter approach in our
analysis. Considering the above factors we think that more reliable comparisons
of different efficient schemes should be derived as following. All efficient schemes
should be based on the same naive ray tracer which uses a standard code and
program structure. The speed up of each technique should be normalised to that of
the naive ray tracer running on the same machine. Assuming that the tracing time
of a naive ray tracer is 1.0, the relative performance (or speed-up) of accelerated ray
tracers to the naive ray tracer is

SpeedUp = Time of Naive Ray Tracer

Time of Accelerated Ray T'racer

The higher this number is, the faster the accelerating technique is.

Since our experiments were carried out with the CAM simulator, most of the
CPU time was spent on those parts that simulate CAM functions. The simulator is
far slower than real hardware. On the other hand, our current simulator has only
32 trits. We can only test up to a depth of six of space subdivisions and index a
maximum of 4096 groups of objects. Therefore, it is difficult to test a wide range
of scenes using the simulator. Only some representative scenes are selected. We
estimate the execution time of the new algorithm by profiling the program and
subtracting the time which is known to be the part corresponding to hardware
functions. The current CAM simulator and the CAM octree ray tracer involve
many procedure calls in order to keep the design clean. The program can certainly
be further optimised to improve execution speed. The time shown in this section
represents the lower bound of the speed of our new CAM based algorithm.

5.5.2 The Scene Database

Haine [Hain87] proposed a Standard Procedure Database (SPD) package for testing
rendering algorithms. In that database, he selected six scenes which are familiar
to many graphics researchers and users. These scenes are generated by simple pro-
grams. Primitive objects in SPD are regular polygons, polygonal patches, spheres,
cylinders, and cones. The number of objects in a scene can be adjusted directly in
the program. Among six scenes, the recursive tetrahedral pyramid and the sphere-
flake are most widely cited. They are shown in the ray traced images of Figure 5.7
and Figure 5.8. The pyramid scene was introduced by Glassner, and then adopted
by Kay and Kajiya [Kay86], as well as by Arvo and Kirk [Arvo87]. The sphereflake
scene was used by others [Gree89, Prio88].

Here, we choose the two scenes of pyramid and sphereflake to test how much
improvement can be achieved by using CAM octree data structures. In the pyramid
example, the eye rays are not parallel to any of the three axes of the object space.
This example is used to measure the algorithm for arbitrarily oriented rays. In this
case, the eye rays are entering the object space from one corner and leaving from
its opposite corner. It is nearly the worst case for adaptive 3D-DDA. In sphereflake
scenes parallel eye rays were used to test the best case performance of adaptive

3D-DDA.
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Figure 5.7: The image of the recursive tetrahedral pyramid

Figure 5.8: The image of the sphere-flake
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5.5.3 Statistics

Table 5.3 gives the space and time comparisons of our new CAM octree ray tracer
with the naive ray tracer and Glassner’s ray tracers for the pyramid scene. The scene
has 1024 polygons with an image resolution of 512 x 512. Only one light source is
used and no reflection or refraction is considered. The viewpoints in our database
are slightly different from those in Glassner’s image. The number of octants stored
in CAM is nearly half of that of Glassner’s octree. The number of objects per octant
is 4 in the CAM algorithm. The average number of intersections per ray is reduced
tremendously without increasing very much the time for traversing rays through
octants. From the statistics in Table 5.3 we can see that the speed of the CAM
octree based algorithm is about 20 times as fast as Glassner’s algorithm for this
example.

Resolution of | No. of | Aver. Inters. | Ezecution | Speed
Eye Rays | Octants Per Ray Time (Sec.) | Up
Naive (512,512) 1 1024 12,517 1.0
Glassner | (512,512) 473 25.6 NA 7.3
CAM (512,512) 256 1.35 82 152.0

Table 5.3: Statistics of naive, Glassner’s and CAM octree ray tracers for the tetra-
hedral pyramid scene

In the tetrahedral pyramid database, objects are in same size and are distributed
regularly in space. Such object distribution is relatively rare in reality. Other
examples tested are several scenes of sphereflakes. These scenes have the following
distinct characteristics:

1. Objects in the scene differ significantly in size.
The objects’ distribution is uneven in space.
There exists a background plane.

All balls are reflective but without transparency.

A S

Three light sources are assumed.

We ran three models of sphereflakes, each with a different number of objects
in the scene. The timing of these scenes is listed in Table 5.4. The timing results
indicate that the execution time is almost linear in the number of objects in the
scene. The more objects exist in a scene, the more significant the speed-up is. The
number of CAM operations is listed in Table 5.5 for estimating the CAM hardware
time. The real hardware time is far less than one second and thus can be ignored.
Table 5.6 compares the uniform subdivision method with our CAM octree method.
The CAM octree ray tracer is up to eighteen times as fast as the uniform grid ray
tracer in these examples.
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Resolution of | Level of | No. of | Fzecution | Speed
Fye Rays | Subdivision | Octants | Time (Sec.)| Up

Balls91 (100,100) ) 38 1.8 9.3
Balls820 | (100,100) 4 341 12.2 42.0
Balls7381 | (100,100) 5 2956 32.8 157.0

Table 5.4: Statistics of the CAM octree ray tracer for several sphere-flake scenes.

CAM Searches | CAM Reads | CAM Writes
Tetra1024 904,393 157,947 256
Balls91 53,128 64,476 48
Balls820 203,467 126,942 623
Balls7381 428,711 205,381 3864

Table 5.5: Statistics of CAM operations of the CAM octree ray tracer

5.6 Analysis

The performance of the CAM octree ray tracer has been shown in the previous
section. Here we shall undertake some analysis of the algorithm and its complexity.
In our current implementation of the CAM octree ray tracer, we experimented with
object models of Breps and pure primitive instancing schemes. Our algorithm can
be extended straightforwardly to speed up ray tracing of CSG models.

5.6.1 The Time Complexity

Tracing a ray through an object space comprises of three stages. In the first stage
the program tests intersection of the ray with the octree root space. If there is an
intersection then the program passes onto the second stage where we first initialise
the parameters for adaptive 8D-DDA then incrementally calculate ray segments. The
third stage of the CAM ray tracer involves CAM searches for intersected octants.
The responding octants are visited in a closest first order and objects associated

Resolution | Uniform | CAM | Uniform / CAM
Tetra1024 | (100,100) 9.1 2.9 3.1
Balls820 | (100,100) 75.3 12.2 6.2
Balls7381 | (100,100) 592.4 32.8 18.1

Table 5.6: Comparisons of ray tracers using uniform subdivisions and using CAM
octrees.
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with each octant are tested against the ray. The optimal performance of the CAM
ray tracer depends on the balance of the above three stages. Other computations
of ray tracers include calculating the lighting effect and generating secondary rays
of shadowing, reflection and so on. For these secondary rays the above three stages
are repeated.

In the tetrahedral pyramid example, the average number of ray-object intersec-
tions per ray is 1.35. All intersection tests consume 29% of the total execution time.
The time for octant traversal is 48% of the total time. The rest of the execution
time is spent on shading and other calculations. In comparison, we examined the
corresponding statistics for Glassner’s octree ray tracer [Glas84]. It gives an average
of 25 ray-object intersections per ray. Even with such a large number of intersec-
tions per ray, the intersections used up less than 10% of total time. The overheads
in octree traversal cost about 90% of total execution time.

The improvements of our CAM ray tracer to conventional octree accelerated ray
tracers [Glas84, Kapl85] are mainly due to constant CAM searches, special CAM
pattern matching capabilities, and the simple adaptive 3D-DDA algorithm. Because
of the parallel CAM searching capability, the time to locate the octant which encloses
a given point is O(1) instead of log(n) as for conventional octrees. By using pattern
matching and adaptive 3D-DDA we avoid calculating the point which is used for
locating the next octant.

5.6.2 Parallel Primary Rays

The first and the second stages can be simplified for primary rays if we transform
objects into the image space and subdivide the image space. In this case, all primary
rays are parallel to each other and to one of the three axes of the space. Primary
rays correspond to the best situations of the adaptive 3D-DDA algorithm. FEach
ray is a parallelepiped which has unit square and a length of the size of octree root
space. There is no need to compute the parameters of adaptive 3D-DDA for parallel
primary rays. The ray which does not hit any non-empty octant and thus hits
nothing in the space can be detected in a single CAM search. Only secondary rays
and shadow rays involve the adaptive 3D-DDA procedure.

5.6.3 Tight Bounding Octants

The tightness of a bounding octant is also an influencing factor. In our ray tracer,
we developed a two pass preprocessing method to make bounding octants tighter.
The first pass is a conventional object classification procedure. In the second pass,
we check the tightness of octants which are larger than the smallest octant in the
tree. It is implemented by examining how many suboctants of an octant are empty.
If the number of empty suboctants is greater than five then the octant is replaced by
its non-empty children. Table 5.7 shows some examples. We can also store irregular
but tight cells, for instance some rectangular parallelepipeds, in CAM. This will save
CAM entries and will not affect cell traversals by the adaptive 3D-DDA method.
The problem which remains unsolved is the case where the space subdivision
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No. of Nodes No. of Percentage of | No. of Nodes
In First Pass | Non-tight Cells | Non-tight Cells | In Second Pass
Balls91 32 4 12.5 38
Balls820 246 76 31.0 341
Balls7381 2514 314 12.5 2956

Table 5.7: Examining the tightness of bounding octants for sphere-flake images.

is beyond optimum. Figure 5.9 is such an example where we can not get a tight
bounding cell and a ray may miss all the objects in the cell.

Figure 5.9: A problem of octree space subdivisions: a ray missing all objects in an
octant.

5.7 Further Discussions of Space Subdivisions

for Brep Models
5.7.1 The Problem

One interesting problem of octree subdivision schemes is to determine when space
subdivision should stop. There are two criteria to stop further subdivision. The first
one is the complexity of an octant. In our cases for indexing objects, the complexity
of an octant is determined by the maximum number of primitives in the octant. If
the number of objects is greater than the criterion, the octant is subdivided into eight
suboctants. The process is repeated for each suboctant recursively until the number
is equal to or smaller than the criterion. The second criterion is the maximum tree
depth which is the maximum possible level for subdivision. Beyond this level no
further subdivision is allowed.

The choice of the first criterion, that is the maximum number of primitives, is
tricky. If the number is too large, there will be many ray-object intersection tests
within each octant. The resulting speed up may not be optimal due to the still
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large number of intersection tests. It is desirable to have as few primitives in each
octant as possible in order to achieve more reduction in the number of ray-object
intersection tests. However, when the number of objects in an octant becomes
smaller another problem arises. The tree depth must be deep enough in order to
have fewer primitives within each octant. The time for tree traversal will increase
tremendously for conventional tree data structures. The overheads for accessing
octree nodes will become significantly large outweighing the gain from reducing the
number of ray-object intersection tests. Therefore we should pay attention to both
criteria. It is crucial to determine when the subdivision is profitable.

The choice of the maximum tree depth is influenced both by available memory
space and by octree node access speed. With conventional octree ray tracers a deep
tree will increase the memory requirement and slow down octant location. For CAM
octrees the maximum depth of the tree is determined by the available CAM word
width. A width of 48 or 64 trits will allow a maximum depth of ten or more. On
the other hand the increasing depth will not lead to very much slowing down for
accessing a node. The computation of ray traversal through octants is very efficient
with our CAM octree ray tracer. Therefore, the level of space subdivisions can
be relatively deep and the number of objects associated with each octant becomes
smaller. When we can afford a finer subdivision, other questions arise. How fine is
necessary? How fine is enough? It would be interesting to know when a subdivision
is optimal for an arbitrary scene. What is the general criteria for determining that
an octant can be simple enough for good performance? The algorithm should be as
fast as possible and be optimal for general cases.

A common practice is to set the maximum number of primitives to six. However
for some databases especially for objects defined as Breps (polygons or patches), it
is very easy to have some leaves which are subdivided to a very deep level and still
have seven or more primitives. We explain why this happens using the following
two examples.

The first example is an object composed of polygons obtained from surface tes-
sellation of the object. A surface tessellation is a connected mesh of pieces such as
triangles which approximate the surface of an object. This technique is used in ray
tracing mathematically defined surfaces such as parametric and implicit surfaces,
and their boolean combinations [Snyd87]. Triangular tessellation of surfaces is im-
plemented by sampling the parametric surfaces S(u,v) as grids and then breaking
these grids into triangles. There are two ways for sampling the u,v region: uniform
sampling and restricted adaptive sampling (Figure 5.10 (a) (b)). The latter is a
new type of quadtree in which adjacent quadrants have restricted size relation (two
neighbouring nodes differ by one level at most) [Herz87]. The adaptive sampling
is more robust and efficient than uniform sampling for deformed and intersecting
parametric surfaces. It is noted that with the uniform sampling technique each ver-
tex has at most six polygons connected to it. In adaptive sampling the fineness of
the subdivision over the parameter space can vary. Thus there exist certain vertices
which have seven triangles converging on them. Therefore around these vertices
there are always more than six primitives and the spaces are always subdivided to
the deepest level.
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Figure 5.10: Two surface tessellation techniques: the parameter space is tessellated
into triangles with (a) a uniform subdivision, (b) a restricted adaptive subdivision.

The second example is a cone of 40 polygons (Figure 5.11) from a database in
the 3D object file format which is used by the graphics community for interchanging
3D objects. Among these polygons, 20 polygons share the same vertex at the apex
of the cone. Here the number of primitives should be defined as 20 to avoid too fine
subdivisions at the apex.

Figure 5.11: A cone defined in Brep

5.7.2 TUsing Integrated Vector Octrees

For a scene composed of objects defined in Breps (polygons and patches) and with a
moderate complexity, we can use subdivision criteria of vector octrees. The scheme
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using vector octrees is slightly different from that of general object indexing. By
using a vector octree, the object space is subdivided not according to the number
of primitives but according to vertices, edges, faces and their connectivity relations.
Similar to constructing a vector octree which has been described in Section 4.6, a
subdivision stops when the space can be classified as one of v, e, f, v', €’, v" and
empty cells or the space corresponds to a minimal cube (a voxel). The space is
then encoded as a leafcode and stored in CAM. The only difference of our index
here compared with the previous vector octree is that cell types themselves are not
stored, but replaced by pointers. Each pointer relates to the address of the first
polygon from the group of polygons associated with the octant. The groups are
organised in the same way as shown in Figure 5.2.

Once polygons are classified and organised through a CAM octree space indexing,
we can use the CAM octree ray tracer presented in previous sections to generate the
image. In a close examination of ray coherence and polygons’ distribution within
each octant in the vector octree indexing scheme, we noticed that in some common
cases it is unnecessary to test all polygons in an octant before finding the nearest
intersecting point. Our aim is to find the nearest intersection point as quickly as
possible, It is readily conceivable that the data which is most likely to be accessed
should be at the front of the sequential list. Therefore such data can be found earlier
and the cost of accessing it is reduced. This idea can be used in searching the closest
intersecting polygon from a group of polygons in an octant. We can keep the current
intersected polygon (non-back-facing polygon) at the front in the group. When the
next ray visits the same octant, it is also very likely to encounter the same polygon.
So the first test may find the intersecting polygon. In such case it is not necessary
to further test other polygons in the group.

However there are some special cases which violate the above rule. One of the
examples concerns polygons from transparent objects or concave objects. In these
situations several polygons from the group may intersect the ray and the correct
intersection point must be selected from them. We can separate these cases from
the general situation by marking the related octants as irregular cells. When a ray
encounters any of these cells we test all polygons associated with the cell for ray-
object intersection, then find the right one. The irregular cells also include octants
in which polygons from two or more objects meet.

Summarising the advantages of using vector octrees to index polygon faces of
objects in Breps, we conclude that,

1. By indexing Brep primitives in a vector octree, subdivisions near a congested
vertex can stop earlier. A vertex is said to be congested when more than six
polygon faces are connected to it.

2. The number of ray-object intersection tests in a regular node of the vector
octree can be reduced by placing the most recently intersected polygon at the
front of the group. This polygon is very likely to be intersected by the next
ray.
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5.7.3 An Example

The new algorithm has been tested using a scene of a soccer ball. The database of
the ball consists of 32 polygons, each polygon has either five edges or six edges. The
image of the soccer ball is in Figure 5.12. The statistics of intersection tests and
comparison of the improved algorithm with the previous CAM octree ray tracer are
listed in Table 5.8. It demonstrated that the number of intersection tests is reduced
~from 5369 to 4268 and an improvement of 20.5% is achieved.

Figure 5.12: The image of a soccer ball

No. of Percentage
Inters. Tests | of Improvement
Old CAM Version 5369 0
Improved Version 4268 20.5

Table 5.8: Comparison of the CAM octree ray tracer and the improved algorithm
for Breps.
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5.8 Summary

This chapter presented a new ray tracing acceleration algorithm using CAM octrees.
The new algorithm gives memory savings compared with Glassner’s octree method
and all other uniform subdivision methods. Several major features can be noted.

e It uses an adaptive space subdivision.
o It keeps non-empty octants only.

e Each octant binds more tightly to its associated objects.

In comparison with existing space subdivision algorithms, the new CAM algo-
rithm has the smallest execution overheads for data structure manipulations. The
new CAM approach provides fast ray traversal due to the fact that:

1. No ray-octant intersection tests are necessary.

2. The next non-empty octant to be visited for testing ray-object intersections is
found by simple searches in CAM.

3. The use of adaptive 3D-DDA allows, in general, a small number of steps to
traverse the object space. The empty spaces are skipped quickly for arbitrary
rays.

4. The traversals of parallel primary rays can be handled even more efficiently.
They involve only searches and a small number of integer operations.

The underlying benefits of employing CAM are that we can accommodate adap-
tive and fine space subdivisions without too much increase in memory or a significant
decrease in speed. Therefore the Brep object classifications using vector octrees be-
come feasible. The CAM octree scheme is also simpler than conventional octree
methods. For moderately complex scenes which are often used in geometric mod-
elling systems, the CAM approach can be the ideal choice for its algorithm simplicity
and efficiency.




Chapter 6

Ordered-Retrieval of CAM
Octrees

6.1 Introduction

One problem unique to CAMs concerns multiple responses. In CAM operations, a
search may yield zero, one or many responders. Reading many responders into a
sequential device is required in some circumstances. How to select a word among
many responders is then an interesting problem. This requires the CAM system to
provide a means to indicate the number of responders and to select each responder
in an order. The possible orders of selection are:

1. at random;
2. based on physical locations;

3. based on contents of stored words.

The last two orders are usually used in CAM designs. The current Syracuse
CAM design adopted the second order of selection. Selecting words in order of their
physical locations is very straightforward. During searching, the CAM hardware
detects whether there are zero, one or many responders. The responded words are
examined sequentially, one at a time. When many responders exist, a multiple
responder resolver (MRR) is activated to select one word to read at each cycle.
The MRR selects the first word using an external priority scheme based on the
physical location of the word. After the word is read out, the MRR clears the
current responder and proceeds for the next selection. The process is repeated until
all responders are read out.

A more complicated design is required sometimes in applications. It uses the
third type of order selection to retrieve CAM words according to the values of
words (or parts of words). For binary word storage, the order can be ascend-
ing (or descending) by selecting a responder which has a minimum (or maximum)
numerical value. As seen later, several hardware architectures have been investi-
gated for ordered retrieval and have been found very useful in many applications
[Seeb62, Lewi62, RamaT78].

118




CHAPTER 6. ORDERED-RETRIEVAL OF CAM OCTREES 119

The ordered retrieval of binary words from CAMs has been described by several
groups of researchers. At the early stage of CAM research, most work was developed
using cryogenic and superconductive elements. For example, Seeber and Lindquist
[Seeb62] designed a cryogenic CAM for ordered retrievals. Lewin [Lewi62] proposed
a special read circuit which has some remarkable features. It uses a “column-pair”
sensing arrangement with an interrogation routine that retrieves an m-word list in
exactly 2m-1 read cycles. Details of his design will be discussed later. Advances
in VLSI technology during the subsequent decade provided researchers with more
economic means for CAM manufacture. In the late seventies, Ramamoorthy et al.
[Rama78] designed a fast cellular associative memory for ordered retrieval using
distributed logic. In their design, the control logic and the storage logic are designed
together. This is in contrast with previous designs that place the control logic outside
the storage logic. The search and read operations are parallel by word and serial by
bit-slice. There are many other hardware designs which can be found in the review
paper of Parhami [Parh73]. Although it is still difficult to make practical designs for
CAM ordered retrieval in a large scale under current technology, it may be feasible
in the future when VLSI technologies are further developed.

This chapter analyses the feature of ordered retrieval from the applications’ point
of view. Specifically, ordered retrieval of CAM octree nodes is considered and the
importance of this feature for octree operations is assessed. Previous hardware
designs of ordered retrieval are mainly for CAMs of binary word storage whereas
the octree CAM contains ternary word (trit) storage. Thus we need to introduce
the notion of order for trit words. To enable ordered retrieval, words must satisfy
the uniqueness requirement. We will give an informal proof of the uniqueness of
trit words for octree applications. Lewin’s binary word ordered-retrieval theorem
is described and is then extended to trit words. Some examples are presented to
demonstrate the improvement using CAM ordered retrieval to octree operations
such as tree traversal, back-to-front display, scan line conversion and ray tracing.

6.2 Orders of Octree Nodes

To retrieve nodes in order, the following questions should be answered:

1. What can be used to identify the order?
2. What does an order mean for octree nodes?

3. How can we find the order in CAM words which contain don’t cares?

In answering the first question we re-examine the structure of CAM octrees. A
CAM octree is a leafcode stored in CAM, and uses don’t cares to indicate the sizes
of the nodes. Each word in CAM has three fields (id, location, and colour) which
are used to identify different trees stored in CAM at the same time, to locate a
node within one tree and to indicate the colour of a node respectively. The order in
the id field is less relevant than the other two fields for general applications. In the
following discussion we only consider one tree, which means that id is fixed. The
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order in the colour field shows insufficient information in separation of words, since
many octants may have the same colour. It is not suitable for ordered retrieval.

The locational order is the most widely used and an important feature in ge-
ometric modelling. In a CAM octree, each leaf is disjoint from other leaves. The
uniqueness of a leaf in the octree implies that any two nodes of the octree must
have different locations. Thus all the nodes of the octree are distinguishable by
their locations. The locational field can therefore be used as a key field for ordered
retrieval. The detailed comparison of the trit patterns will be discussed in the latter
sections.

Now we move to the second and the key problem—the orders of octree nodes.
We start from the simple problem of orders of point data, then go to the volume
data of octants. The point data are stored as binary words whereas the volume data
are stored with don’t cares. The order in a 1-D space is very simple. A series of
points can be sorted in either increasing or decreasing order along the axis of 1D
space. For higher dimensions such as in 2D or in 3D spaces several possible orders
exist. The user must define more precisely which specific order is required. Points
in a 3D space can be organised in different ways according to the priority of the
three principal axes. We need to specify the primary key, secondary key and so on,
for ordering points. This means that points must be ordered on the basis of their
coordinate values on each axis in turn. If several points have the same coordinate
value on the primary key, then these points are compared by their values on the
secondary key.

The above discussions are based on point data. The space orders of nodes of an
octree are different. The main reason is that points are of the same size and differ
only in their positions, but octants vary in location as well as in size. We cannot
sort octants by their coordinates of position alone. The orders important to octrees
are summarised here.

e The Depth-First Order

A typical order of octree nodes is the preorder which is the depth-first traver-
sal order for a pointer octree. Many octree operations like octree display with
hidden surface elimination involve preorder traversal. A preorder can be de-
scribed implicitly in octree leafcodes. When leaves are sorted and visited in
an increasing sequence, the tree is traversed in a preorder. This is the key for
the efficient use of CAM with ordered retrieval capacity. The preorder also
applies to point data if locations of points are encoded like those of nodes of
leafcodes.

¢ The Breadth-First Order

The breadth-first traversal of an octree is mainly used in pointer octrees to
skip over subtrees in some operations. This is seldomly used in leafcodes.
Therefore it is less relevant to CAM octrees which are one form of leafcodes.

o Other Orders

There are some other spatial orders for traversing an octree. They are related
to the dimension of the enquiry space. The enquiry space can be a line (1D)
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parallel to one axis of the 3D space. An example of a scan-line in an octree
space is given in Figure 6.1(a). The line can be either a complete scan or a
segment. Octants which intersect the scan line are read out in an ascending
sequence by the nodes’ coordinate values along the axis. If the enquiry space
is a slice (2D) as in Figure 6.1(b), the intersected octants follow the preorder
of the output tree.

PRSI S ——"
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(a) (b)

Figure 6.1: Examples of enquiry spaces: (a) a scan line, (b) a slice

6.3 Distinguishable Trit Words

To do ordered retrieval, each word among those words which will be read out must
be unique. This means that we need to store distinct words in the CAM memory.

In the case of binary storage, two words are distinguishable if and only if there
exists at least one digit column in which two words contain different values. With
the situation of trit storage, like Syracuse CAM, we must know what separates two
trit words. Since a don’t care matches both 0 and 1, two words are indistinguishable
at the column where one of them has the value don’t care. For example, the word
with the location pattern of 001 ##* and the word with that of 001 100 represent
two different nodes but can not be distinguished for order. Two distinct trit words
must be different in at least one digit column and in that column none of them has
a don’t care. The words 001 #** and 000 100 are distinct as they are different in
the third column. Only the values 0 or 1 of a trit column contribute to separate
two words and are important when implementing ordered retrieval of nodes of CAM
octrees.

We also note that nodes of an octree are disjoint from each other. This guar-
antees that each trit word in a CAM octree is unique. The case of non-distinct
words 001 #** and 001 100 mentioned above will not occur since they represent two
octants which partially overlap in the space. The octant corresponding to 001 100 is
in fact a suboctant of the node 001 *xx.
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6.4 Lewin’s Ordered Retrieval of Binary Words

As mentioned before, there were several proposals for designing CAMs for ordered
retrieval. We chose Lewin’s method as an example to demonstrate the principle
of the design. Lewin’s design retrieves only binary words. Extension from binary
words to trit words for Lewin’s algorithm will be discussed in the next section.

The method that Lewin proposed in the early 60’s [Lewi62] aims at solving the
problem of sequential reading out from a binary CAM. It involves generating an
interrogation sequence which successively isolates each word from the list of words
to be read out. The interrogation process is based on a sensing arrangement for the
memory and will be summarised below. It has been demonstrated that with this
design ordered retrieval of m responders requires exactly 2m-1 memory cycles, and
is independent of the word width.

Lewin’s system contains a memory with an array of words and a register of
interrogation drivers. Each word in the array is b bits in width. The register has b
sensing devices, each has a pair of sense lines coupled to the corresponding bit cell
in every word. Four output states can be detected by each sensing device. These
states are shown in Table 6.1.

Column-Pair
Names Signals Meaning
Sense “0” 0,1 All words selected have “0” in this position.
Sense “1” 1,0 All words selected have “1” in this position.
Sense “X” 1,1 Some of the words selected have “0” in this
position. The others have “1”.
Sense “Y” 0,0 No word selected.

Table 6.1: Lewin’s column-pair sense signals and the meanings

The memory access has two steps.

1. The first step activates a set of words to be retrieved by searching for all words
that match the given search pattern. This set of words will be read out into
a sequential device in an order. Here we assume that the read-out order is an
ascending one.

2. The second step executes an interrogation routine which gives a series of inter-
rogation patterns, each pattern subsequently isolates a subset of responders.
The pattern at a given cycle depends on the pattern and sensed results of the
previous cycle. The process of interrogation is described below.

At any memory cycle, the system simultaneously senses the value in all columns
of the set of words using the current interrogation pattern. The sensing result
indicates whether individual columns contain mixed values of 0 and 1, or only one
value (either 0 or 1), or no digits. If there are some columns containing mixed
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values, then the interrogation pattern is changed by setting the most significant
mixed-value digit column to 0. In the next memory cycle, sensing is performed with
the new pattern. The result of sensing is the activation of a subset of words from the
previous set. A complementary subset is discarded. The process is repeated and the
size of the subset is successively decreased until there is no more mixed value in any
column. Then the word is retrieved. After reading out the word, the interrogation
pattern is changed in a reverse direction. The least significant driver which has a
value 0, is set to 1 and all drivers on its right are changed to don’t care. This pattern
visits the previously discarded complementary subset. The process stops if no more
mixed values are sensed and the last interrogation pattern has no 0 state.

6.5 Extension of Lewin’s Method to Trit Words

The above binary word ordered retrieval routine can be extended in order to retrieve
trit words. The main difference between binary words and ternary words in CAM
concerns don’t cares. With ternary CAM storage, the bit cells discussed in the last
section become trit cells. Each sensing device has its sensing lines coupled to a trit
column in every word. The four useful output states from sensing a column of trit
cells are:

1. Some cells in the column are 0 and others are don’t care.
2. Some cells in the column are 1 and others are don’t care.
3. Cells in the column have 0, 1, and/or don’t care.

4. Selected words have don’t care only in the column.

As shown in Section 6.3, the don’t care in any column does not contribute to
separate two words. For any column which contains don’t cares and some digit
value (0 or 1), the sensing result should be determined by digit 0 and 1 in the
column. Like binary CAM, we name the above four states of a sensing device 0, 1,
X and Y states. Here the Y state of Lewin’s column-pair sense signals is used to
indicate the column where all cells have don’t care in storage.

Here we give an example of retrieving an octree in a depth-first order. The object
is shown in Figure 6.2 together with the corresponding CAM contents of leaves. The
solid lines denote visible edges of black nodes of the object. The dotted-lines are
visible edges of white nodes which represent empty space.
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Figure 6.2: An object stored as a CAM octree for ordered retrieval: (a) the octree
decomposition of the object and (b) its CAM contents

Figure 6.3 demonstrates the process of getting the order of octants shown in
Figure 6.2. Figure 6.3(a) is the search pattern which looks for all black nodes of the
octree. Figure 6.3(b) lists the words responding to the above search. These words
are activated on the searching cycle. Figure 6.3(c) prints out all memory cycles of
the interrogation process. The interrogation driver states are a set of descriptors
which are used to select a subset of words. The descriptor at the first cycle come
from the search pattern shown in Figure 6.3 (a). Each subsequent descriptor is
updated from its previous one according to the sensed condition of the previous
cycle. If Xs were sensed, the current descriptor is set by changing the driver which
corresponds to the left most X of the previous cycle to the 0 state. For example,
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(a) The Search Pattern: 01 ek okiok ()]
(b) Responders: A, B,C,E,F,G,K, QR

(c) Interrogation Routine:

Interrogation Sensed Word

Cycle Driver States Condition Selected

1 *ok ok kkk Y RY XXX X01 AB,CEF,GK,QR

2 Ok kb () W XXX X0 1 A,CEG,QR

3 Q0¥ *dk dkx 00X YYY YYY AE

4 000 *¥***x¥xx (00 YYY YYY AA

5 001 #¥* ¥k (] YYY YYY EA

6 Q1% **% k01X YYY YOI C,GK,QR

7 010 *+*k*xx (10 YYY YYY CA

8 Ol1 #¥%d%%x (1] XX XO01 G,K,QR

9 011 %0**** 011 00X YYY GK

10 011*00*** 011 000 YYY GA

11 011 *Q1** (011 001 YYY KA

12 011 *1%%= 011 011 X01 QR

13 011#%1*0%* 011 011 001 QA

14  O11*1%1** 011 011 101 RA

15 Pr¥okk sk 10X YYY YYY BF

16 I¥Q **% *%x 100 YYY YYY BA

17 I*] ¥*% k%% 101 YYY YYY FA

A means that the current word is read out on this cycle

(d) Order of Output Nodes: A, E, C, G K,QR,B,F

Figure 6.3: The interrogation process to retrieve trit words from CAM in an ascend-
ing order

the interrogation driver states in cycle 2 are set to Ok* *%* **% which is updated
from the sensed condition XXX XXX X01 of cycle 1. If there was no X sensed in
the previous cycle, one word must have been read out. The current descriptor is
then set by advancing the right most 0 driver of the previous descriptor to the 1
state, and changing all 1 driver states to its right into don’t care. One of examples
is cycle 5 which follows reading out of node A in cycle 4. In cycle 17, the process

stops as there are no more 0 driver states. The final order of these words is listed
in Figure 6.3(d).
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6.6 Applications

This section demonstrates several common applications of ordered retrieval of a
CAM octree. They include algorithms of octree preorder traversal, octree scan
conversion and octree acceleration of ray tracing. Comparisons of Syracuse CAM
algorithms and the new ordered-retrieval-based CAM algorithms are given. It is
shown that with ordered retrieval CAM we can further improve speed and simplify
software.

6.6.1 Preorder Traversal
6.6.1.1 Algorithm 1

This is a depth-first traversal algorithm (see Algorithm 6.1) for displaying an octree
in a back-to-front order. In the octree, background nodes are stored as nodes of other
colours. The algorithm is designed based on Syracuse CAMs and is a simple recursive
process. The coding schemes, that is whether a leaf is encoded by interlacing the
coordinates in the x y z or zy x order, influence the order of the output. However
the final images from these orders are the same.

PROCEDURE CAMtraverse(TRITS id, OCT octant)
/* traverse the octree in preorder, display leaf nodes */
/* background nodes are stored */
BEGIN
Search(id, EncodeOct(octant), ANY);
IF (MultipleResponse()) THEN
FOR i =0 TO 8 DO
CAMtraverse(id, SubOctant(i, octant));
ELSE
/* display the leaf node */
Read (&dummy, &dummy, &colour);
Display(octant, DecodeColour(colour));
ENDIF
END

Algorithm 6.1: Displaying a CAM octree with background nodes stored in the CAM

6.6.1.2 Algorithm 2

This algorithm (Algorithm 6.2) is slightly different from Algorithm 6.1 by storing
only foreground nodes in the CAM. Therefore less nodes are visited during the
traversal of the octree. There are possibilities that some searches return no responder
when the enquiry space corresponds to a non-stored empty node.
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PROCEDURE CAMtraverse(TRITS id, OCT octant)
/* traverse the octree in preorder, displaying foreground leaf nodes */
/* background nodes are not stored */
BEGIN
IF (!Search (id, EncodeOct (octant), ANY)) THEN return;
ELSE IF (MultipleResponse()) THEN
FOR i = 0 TO 8 DO
CAMtraverse(id, SubOctant(i, octant));
ELSE
Read (&dummy, &location, &colour);
Display(DecodeOct(location), DecodeColour(colour));
ENDIF
END

Algorithm 6.2: Displaying a CAM octree without white nodes

The above algorithms are based on CAMs without ordered retrieval. Their main
sources of inefficiency are recursive procedure calls and suboctant calculations during
octree traversals. A simple example that involves a traversal of a tree of 299,593
nodes has been tested to estimate how much time these procedures consumed. On
a MicroVaxII, the time for 299,593 recursive calls is 16.08 seconds and the time for
subdivisions is 15.46 seconds. The total time is 31.54 seconds plus the CAM access
time which is approximately 0.05 seconds, assuming each CAM operation costs
100ns. The time of recursive procedure calls and subdivisions dominates the whole
process, and forms the bottleneck for the system performance. When a conventional
octree algorithm is dominated by the above two procedures, the Syracuse CAM has
no practical advantage in terms of improving the algorithm’s performance. It is thus
necessary to remove recursive calls. Removing recursion is also important when non-
recursive low level machine languages are used.

6.6.1.3 Algorithm 3

Algorithm 6.3 is a new algorithm using CAM with ordered retrieval hardware.

This algorithm is insensitive to background nodes. Here we assume that they
are not stored. If they are stored in a CAM octree, we can use the new algorithm
either to visit all nodes, or to visit foreground nodes. In the latter case, we move
background nodes to a temporary id using a MultipleWrite operation before calling
CAMtraverse.
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PROCEDURE CAMtraverse(TRITS id, OCT octant)
/* traverse the octree in preorder, display leaf nodes */
/* background nodes can be either stored or ignored */
BEGIN
IF (Search (id, EncodeOct(octant), ANY) THEN
OrderedRead (&dummy, &location, &colour);
Display(DecodeOct(location), DecodeColour(colour));
ENDIF
END

Algorithm 6.3: Displaying a CAM octree using ordered-retrieval CAM

6.6.1.4 Statistics

The code of Algorithm 6.3 is simpler than those of Algorithm 6.1 and Algorithm 6.2.
Firstly, all recursive calls are removed. Secondly, no subdivisions are necessary.
This can be seen more clearly in Table 6.2 which gives a comparison of the above
algorithms in terms of the number of nodes in CAM, procedure calls and CAM
operations.

Nodes Recursive | Subdivi- CAM | CAM

in CAM | Proc. Calls sions | Searches | Reads

Alg. 1 8436 9641 1205 9641 | 8436
Alg. 2 3916 5801 725 5801 | 3916
Alg. 8 3916 0 0 1| 3916

Table 6.2: Comparison of octree display algorithms using CAMs without or-
dered-retrieval (Alg. 1 and Alg. 2) and with ordered-retrieval (Alg. 3).

6.6.2 Scan Conversion

Scan conversion of an octree can be treated either as a series of conversions from
quadtrees into raster scans or a group of tests for line-octant intersections. The latter
is a straightforward extension of the 2D quadtree to run-length conversion algorithm.
Algorithms for raster scan conversion from quadtrees have been designed with the
aid of Syracuse CAM. Two different methods exist.

The first one is described in [O1df87] and is based on an adaptive scan-line
refinement approach. At the start of each scan line, a search pattern is formed by
converting the y coordinate into the binary code and setting the x to don’t cares, then
interlacing the coordinates. The pattern corresponds to a rectangle of unit width
and with a length of the full size of the root of the quadtree. The CAM is searched
with the above pattern and a number of matching entries may respond. When the
background nodes are stored in CAM, there is always at least one responder. If
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a single responder returns, it indicates the number of pixels to be drawn and the
colour of these pixels. If multiple records respond, the search pattern is refined by
forcing the most significant trit of x to 0. This is equivalent to halving the previous
rectangle and selecting the first half as the new enquiry area. The CAM search is
carried out for the new pattern. The above process will repeat until a single match
is obtained. After the responder is read out, the search pattern is changed again to
test the other half of the rectangle. If the background nodes are not stored in the
CAM, a search may return no responder. In such cases the pixels corresponding to
the area being searched are filled with the background (white) colour. The above
algorithm is extensible to 3D by searching rectangular parallelepipeds.

The second method of scan conversion was proposed by Williams [Will88b].
This method uses the pixel locating ability of trit storage. For each scan line, the
locational code of the left-most pixel is used as the initial search pattern. The search
will return a single responder which is the node enclosing the pixel. By decoding
the node size and colour, a run length of the line is obtained. The size of the node is
added to the current pixel position to give the coordinates of the next search pixel.
The process repeats until the end of the row is reached. If there are m quadrants
or octants in a row, processing each row requires m searches and reads, plus some
computation. There is no case which returns zero responder or multiple responders.
The pixel location method requires the background nodes to be stored in the CAM.
Otherwise it will be difficult to determine the next pixel when a search does not
have any matching node. Many more searches will be invoked in the background
areas.

We observed that a scan conversion is simply a process of reading out nodes
which intersect with each scan line in the ascending order. The process of adaptive
scan line refinement in the first approach above is actually aimed at isolating a
subset of multiple responders step by step to get the spatial order. Since Syracuse
CAM retrieves multiple responders by their physical locations, the next word which
is required to be retrieved in an order can only be selected in software. The time
spent on the refining procedure to resolve multiple responders costs a lot of execution
time. If a tree is deep, for example fine subdivisions of a space, the scan conversion
process may be slow. To reduce the number of refining steps, a cache method was
used [O1df87]. In moving from a scan line to the next one, the search patterns of the
former line are taken as initial guesses for the latter one. If there is no responder,
the search pattern is made less precise. If there are multiple responses, the search
pattern is made more precise. However, adaptive refinement requires a buffer to
hold the active search patterns and needs checking of the buffer. These checks take
extra execution time.

Using Lewin’s CAM of ordered retrieval, the above refinement process can be
eliminated completely. For each scan line, one search operation activates all respond-
ing words to be read out. If there are m responders, only 2m — 1 cycles is needed to
read these words in the ascending order. The process is insensitive to background
nodes. In the case where background nodes are not stored, their corresponding runs
can be derived from the addresses and sizes of two subsequent foreground nodes.

Unlike preorder traversals of an octree, the output order of scan conversion is
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Figure 6.4: The coding scheme does not affect the order of a raster scan along any
of the three axes.

not affected by the coding schemes. We demonstrate this using a 2D diagram shown
in Figure 6.4.

6.6.3 Ray Tracing

The ray tracing algorithm based on CAM and adaptive 3DDDA in Chapter 5 involves
comparison of a series of ray segments of a ray against CAM contents to select all
octants intersecting the ray in an order. The order must be such that it allows
the ray to visit the octant nearest to the ray origin first. A ray segment is either
a complete or a partial scan line. Thus a method similar to ordered retrieval for
the scan conversion algorithm can be used in ray tracing. Here octants intersecting
with a ray segment are retrieved in an ascending order along the main driving axis
(MDA) of the ray. The MDA, as shown in Figure 5.5, could be any of the three axes
of the octree space.

Once the order can be identified in hardware, other functions closely related to
the CAM operations can be pipelined to further speed up the process of ray traversal
in an octree. Figure 6.5 shows an simplified example of pipelining the process of
searching all octants which intersect a given ray segment. Some buffers are necessary
between the stages as different stages may vary in the execution time. The input to
the pipeline is the description of a ray segment. The output is a group of indices,
each associated with an octant. These octants are in an increasing order along the
positive direction of the MDA. If the ray is in the same direction as the axis, these
octants are visited in the same order as the output. Otherwise they are visited in
the reverse order.
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Figure 6.5: Pipelining the process of searching a CAM octree for octants intersecting
with a ray.

6.7 Summary

The scheme of ordered retrieval from CAMs of trit words is discussed in this chapter.
This feature is found most useful for depth first traversals and scan conversions of
octrees, and ray tracing with CAM octrees. By using a special circuit to read out
multiple responders in a specific order, the inefficient recursive procedure calls and
repeated octant subdivision calculations in programs are eliminated. The scan line
refinement process in octree scan conversion and CAM octree ray tracing algorithms
is also removed. The software is therefore further simplified. The cost of extra hard-
ware may be justified by the benefit of improved performance, simplified software
and increased reliability.




Chapter 7

Concluding Remarks

This dissertation comprises analysis of 3D volumetric representations with emphasis
on octree data structures, designs of new algorithms for octree manipulation and
visualisation, as well as acceleration of image generation, particularly ray tracing,
using CAM architectures. In this chapter we summarise the main findings of this
study, and further discuss our CAM ray tracing algorithm in relation with other gen-
eral purpose parallel machines. These discussions are based on analysis of general
parallel ray tracing algorithms and our CAM octree ray tracer. Algorithms which
are most efficient for sequential processing by exploiting coherence are not neces-
sarily most suitable for general parallel processing. Therefore, we need to assess
the applicability of the CAM octree ray tracer to general purpose multiprocessors.
Finally some further studies related to this dissertation are suggested.

7.1 Summary

A volumetric object can be represented either as a large 3D uniform grid of voxels
(volume elements), or as a relatively compact non-uniform collection of volumes.
Objects represented in the second form are obtained by adaptive recursive decom-
positions. An octree is a special case of them in which each non-terminal volume
is subdivided into eight sub-volumes. In conventional computer architectures, the
uniform grid structure is stored as an array of data elements, while the octree struc-
ture can be stored in one of three principal forms: a pointer structure; an array of
data corresponding to the preorder of nodes; or an array of encoded data. These
three formats are named pointer octrees, treecodes and leafcodes respectively. The
main drawbacks of uniform grid structures lie in their large memory requirements
and slow voxel access. The octree approach is a partial solution to save space and
improve speed. However, conventional octree algorithms are still far from the goals
of real time implementation, simplicity, consistency and intuition. To achieve real
time performance, a special hardware octree engine [Meag82] has been designed.
The hardware has a simple architecture, involves only integer operations, and is
robust. However, octrees still have some shortcomings even with these hardware
assistance, for instance:

132
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e Construction of octrees from other representations is still implemented in soft-
ware. These algorithms, especially those for converting Breps to octrees, are
either brute-force or complicated for pointer trees and treecodes. The pro-
cess of representation conversion is thus a bottle-neck to octree-based solid
modelling systems.

e With leafcodes, there exist some simple bottom-up construction algorithms
[Atki86, Tang88] which make use of locational information and spatial coher-
ence of objects. The bottom-up algorithms are also more flexible, for example
it can easily be extended to convert objects with curved surfaces to octrees.
Furthermore, these simple construction algorithms may be accelerated using
hardware. However, leafcodes impose searching problems for implementing
most octree algorithms. Searching operations on conventional computers are
slow.

Each of the three principal octree formats has some advantages over other formats
in terms of their efficiency in either time or storage. One format can be best in some
individual experiments, but is worse for other operations. Therefore it is difficult to
build one integrated solid modelling system using only one data format and yet to
keep all operations at their most efficient. It is also unrealistic to use all three octree
formats in one system for efficiency or other reasons. This will inevitably introduce
extra maintenance cost. One solution to the above problems may lie in exploiting
different machine architectures and finding a better design which is efficient for most
octree operations.

Leafcodes are very close to such a goal except for the problem concerning searches.
We thus tried to find a way of solving the searching problem. It has been known
that the special architecture of content addressable memory (CAM) is well suited
to searching operations. A CAM is an architecture that consists of a collection of
elements which have data storage capabilities and can be accessed simultaneously
on the basis of data contents instead of addresses. The main advantages of CAMs
are their parallel searching, pattern matching and masked parallel updating capabil-
ities. We need to examine what can and can not be expected of a particular CAM
architecture for our specific problems of octree manipulations.

We have explored and evaluated the possibilities of using CAM in the frame of
3D volumetric modelling and image generation. We developed a novel approach to-
ward using CAM to improve the performance and software design of octree related
problems. It should be noted that CAM is not a replacement of conventional com-
puting but is likely to form a complementary technology. CAM and conventional
architecture should exist in the same box, with a flexible interface to applications.

CAM is suitable for implementation of octree leafcodes. By using CAM the sys-
tem performance is improved. We also reduce both the conceptual and programming
complexities invoked in implementing octree algorithms. The CAM algorithms are
more intuitive and straightforward compared with their conventional counterparts.
A new ray tracing acceleration algorithm using CAM and octrees has also been
designed and tested. The experiments showed that the new algorithm gives more
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space saving than conventional octree approaches and is much faster than the cur-
rent best accelerated ray tracer using space subdivisions. Based on new algorithms
developed in this thesis, we could design a CAM octree system to improve the overall
3D operations in solid modelling, 3D image processing and image rendering.

Computing environment is a significant factor for designing algorithms. CAM
octrees can provide a base for unifying and simplifying modelling, rendering, geo-
metric searching, property calculation and set operation evaluation in one integrated
system. We can also unify the goals of efficiency, simplicity and versatility on the
basic CAM octree architecture. It is also interesting to note that CAMs are very
flexible. CAMs can support several different tasks: 2D geographical information
systems, 3D image processing, 3D solid modelling systems, 4D animation systems,
and so on.

7.2 Parallel Ray Tracing with Shared CAM

Since the ray tracing technique has inherent parallelism, it fits massively parallel
architectures very well. Parallel and concurrent execution of ray tracers is the only
solution for interactive or real time ray tracing under today’s computing power.
With current VLSI techniques, we hope to achieve real time ray tracing in the near
future. Before this can be realised, a lot of research needs to be done to understand
parallel implementations of ray tracing.

7.2.1 Classifications

Several approaches are applicable to achieve parallelism of ray tracing. They are
closely related to machine or hardware architectures.

e The first approach vectorises the algorithm on Single Instruction Multiple Data
(SIMD) machines [Plun85]. These machines include CRAY supercomputers,
Connection machines and so on. In this approach, the rays are vectorised
straightforwardly and each ray is tested against all objects in the scene. Nei-
ther space coherence nor ray coherence is used. It is easy to implement but is
inefficient for scenes with a large number of objects.

e The second approach executes ray tracing on a collection of general-purpose
computers. Harrison [Harr89] experimented with this approach on the Cam-
bridge processor bank [Need82]. However, this architecture is not suitable for
real time implementation of ray tracing because communication is too slow.

e The third one is implemented on general-purpose multiprocessors of Multiple
Instruction Multiple Data (MIMD) structure, for instance [Goh90]. A group
of processors are connected and all node processors execute their own program
in parallel. There exist two categories of MIMD architectures—tightly coupled
and loosely coupled processors. In the former, all processors share the same
main memory and each have a small local cache. In the latter, each node
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processor has its own local memory and processing power. Examples of loosely
coupled multiprocessors are Hypercubes and transputers.

o The last approach is to build special-purpose hardware in which either pipelin-
ing and parallelism are mixed, for instance [Ulln83], or 2D/3D processor grids
are used [Clea86].

7.2.2 Multiprocessor Parallel Ray Tracing

We shall concentrate on the third approach—parallel ray tracing on loosely coupled
and tightly coupled multiprocessors.

7.2.2.1 Loosely Coupled Multiprocessors

The algorithms on a loosely coupled multiprocessor grid are similar to those on
a multicomputer in the sense that both involve local storage on each processor
and communication between processors. The aims are to make efficient use of all
processors (load balance), keep storage minimal and reduce communications. Two
basic problems for loosely coupled multiprocessor parallelism are:

1. How does the program organise the scene database on different processors?
Each processor has either the entire scene database or a part of it.

2. How does the program distribute rays? The ray distribution may be related
to how the database is organised.

In the case of copying the entire scene to each processor, data management on
each processor is simple. Each processor works independently when it is allocated a
group of rays. The processor needs only to communicate with the host computer and
the amount of communication is minimal, However, this scheme ignores the spatial
coherence information in object space. To use spatial coherence we can presort
objects using space subdivision (uniform grids or octrees). Here, extra memory
space is required to store a grid description or an octree description. The amount
of local memory on each processor needs to be large enough to keep the whole scene
and the grid description. Naturally, we come to the second solution. Each processor
is assigned with one or more regions, each region has a part of the database.

When objects are distributed partly onto each processor, a single processor can
not always fulfill the task of ray-scene intersection for a ray, because one processor
may have only a small portion of objects from those which need to be tested against
the ray. Two methods have been attempted: one moves objects around processors
and the other moves rays around processors.

e Moving objects: The algorithm based on moving objects around processors
is proposed by Green et al. [Gree88] for a transputer network. The processors
are organised as a tree. An octree is used for subdividing the space. The
root processor contains the whole database and the octree description. Each
node processor keeps a copy of the octree description and a part of the scene
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database. A dynamic allocation of objects to processors is implemented. Each
processor is assigned a group of rays and tests each ray in turn. When a local
request for an object fails, the processor sends its parent processor a request
for the object. All processors are well loaded and used efliciently. However,
global communication is high. Firstly, when more transputers are used, the
processor tree becomes deep. An object needs to pass many node transputers
before reaching the destination. Secondly, if a scene database is complex and
the octree is deep, the number of requests for failed objects will increase.
Intersecting one ray with a scene give rise to a lot of communication. The
communication cost would degrade the performance of parallel computation.

e Moving rays: Another approach is based on moving rays, [Clea86, Dipp84,
Nemo86]. Every processor has a part of the database. Each part contains a
group of objects inside a region of the space. Neighbouring processors have
adjacent regions. Each processor tests a ray with objects in its region. If
intersecting nothing the ray is passed to an adjacent processor and is tested
again. The advantage is that objects are copied to each processor only once.
This saves the time used to move a large amount of data around processors.
The obvious problem is that the load for each processor may not be balanced.
Some processors may always be busy because of having a region which contains
a lot of objects, while many other processors are far less loaded. There are
also network congestion problems at regions near a ray origin or a light source.
There were attempts to solve these problems through dynamic load redistri-
bution by introducing more expensive boundary intersection [Dipp84]. Others
[Prio89] used static load balancing methods. The parallel ray tracer based on
moving rays have another problem of repeated ray-object intersections (if one
object is crossing several processors).

In implementing our CAM octree ray tracer for parallel processing on loosely
coupled multiprocessors, the above two approaches are applicable. The approach of
moving objects can be improved on the following bases:

e Our CAM octree ray tracer has fast ray traversals in scene spaces.

e CAM octrees are more compact in comparison with the conventional octrees
by having less nodes and tight cells for indexing spaces.

e By storing octrees in the CAM, each processor can hold more objects hence
the number of failed object requests can be reduced and communication cost
is lower.

With the above architecture of loosely coupled multiprocessors, the CAM can be
connected to one processor which manages high level CAM interface. Other proces-
sors access CAM through messages. This approach requires communication between
CAM processor and other processors. The bottle-neck will lie in communication and
CAM contention.




CHAPTER 7. CONCLUDING REMARKS 137

7.2.2.2 Tightly Coupled Multiprocessors

For tightly coupled multiprocessors which have a shared memory, processors com-
municate to each other through the main memory. Each processor may also have
a local cache working as the high speed buffer. In such systems, the CAM can be
connected in the same way as the main memory. There is a complete connectivity
between CAM and processors. The problem of passing messages around processors
is resolved. On the other hand, CAM access consumes very little time, thus the
contention for CAM may be minimal. Our CAM ray tracer developed in this study
fits the architecture of tightly coupled processors well.

7.3 Suggestions for Further Study

In this study we have developed a number of new octree algorithms based on the
CAM architecture. With the success of experiments on a CAM simulator, further
tests and full scale implementation of related algorithms should be possible. Experi-
ments with complete system integration should be investigated. Wider applications
of Syracuse CAM in computer graphics, for instance 4D space-time applications,
robot development systems and so on, need to be developed further. Finally com-
parison of our CAM octree algorithms with other parallel processing methods for
leafcode octrees on general purpose multi-processors would be worthwhile.
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