Technical Report A

Number 240

Computer Laboratory

Symbolic compilation and
execution of programs by proof:
a case study in HOL

Juanito Camilleri

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© Juanito Camilleri

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Symbolic Compilation and Execution of Programs
by Proof: a case study in HOL

Juanito Camilleri® jacl@cl.cam.ac.uk
Computer Laboratory, University of Cambridge,
New Museums Site, Cambridge CB2 3QG, England

Abstract

This paper illustrates the symbolic ‘compilation’ and ‘execution’ of programs
by proof using the proof assistant HOL. We formalise the operational semantics
of an occam:-like programming language OC and show how synchronous commu-
nication in OC compiles to an intermediate programming language SAFE whose
compilation yields instructions intended to drive machines that communicate via
shared memory. We show how the symbolic formal manipulation of terms of a
programming language, subject to the definition of its semantics, can animate a
desired effect—be it compilation or execution. Needless to say, such compilation
and execution by proof is rather slow, but it is fast enough to give vital feedback
about the compilation algorithm being used. Without such animation it is hard
to anticipate whether the compilation algorithm is reasonable before attempting to
verify it. This is particularly true when attempting to find a plausible handshaking
protocol that implements synchronous communication.

1 Introduction

This paper illustrates the symbolic ‘compilation’ and ‘execution’ of programs by proof.
The mechanised proof assistant HOL [Gor85], is used to conduct this study. The HOL
system supports a version of higher-order logic based on Church’s formulation of simple
type theory.

We formalise the operational semantics of an occam-like programming language oc
and show how synchronous communication in 0C compiles to an intermediate program-
ming language SAFE whose compilation yields instructions intended to drive machines
that communicate via shared memory. The ultimate goal of this work is to verify the
OC compiler by proving a theorem asserting that the state changes resulting from the
execution of the compiled code correspond to the state changes stipulated by the oper-
ational semantics. This paper, however, does not address this issue in detail. Instead,
we show how the symbolic formal manipulation of terms of a programming language,
subject to the definition of its semantics, can animate a desired effect—be it compilation
or execution. ‘

The approach to animation adopted in this paper is based on conversions [Pau]. These
special class of inference rules in HOL, map a term of the logic to a theorem expressing
the equality of that term to some other term. Because of the way the logic of the HOL
system is represented in the strongly-typed, general-purpose programming language ML,
the user can write conversions tailored for a specific application. For example B-conversion

1Contact address as from February 1992: Department of Computer Studies, University of Malta,
Msida, Malta. Fax: 4356 336450

is represented in HOL as a conversion that maps a term of the form (Az.¢;)¢, to a theorem:
- ()\thl)tz = tl [tz/m]

Therefore the conversion can generate a class of equations of the above form. Futhermore,
conversions can be composed in an arbitrarily complex way. They can be constructed
to yield a specific rewriting strategy on classes of terms to yield theorems of a required
form.

There are several reasons for adopting the conversion approach to animation. First, it
is relatively straightforward to write a conversion that animates behavioural definitions
in the way described. These conversions can also be used for symbolic simulation or
partial simulation when variables are used to represent components of a system while the
behaviour of some other component is simulated. Second, because the same definitions
are used in both animation and verification, we avoid errors resulting from discrepancies
between the model of the definitions which is animated and the definitions whose prop-
erties are verified. Furthermore, the results of the animation are theorems backed up by
formal proof. Hence if the animation of a definition conveys unexpected behaviour then
this must be due to oversights in the definition. Third, the conversions used for animation
can be used later to generate theorems that facilitate the verification process. Finally,
when developing a specification for a large system, one can take an incremental and com-
positional approach to animation. In other words, one can write conversions on-the-fly
to animate the definitions of the subsystems and then compose these conversions into
a conversion that animates the whole system. For example, when defining a compiler,
one may choose to write conversions that animate the compilation of expressions and
declarations separately and then use those conversions when constructing a conversion
that animates the compilation of commands.

In this paper we will present a conversion that maps an arbitrary term ¢ of OC to a
theorem expressing that the result of compiling ¢ in an environment e is equivalent to
some term ¢’ of SAFE: '

F Oc_compile t e = ¢t/

The term t' is then manipulated by another conversion that yields a theorem asserting
that the compilation of ¢’ in some environment e’ yields a list of machine instructions 4:

F safe_Compile t' €' =3

Another conversion then fetches the appropriate instruction of the instruction list, as
determined by a program counter, and returns a theorem asserting the state resulting from
the execution of the instruction within the framework of the SAFE-machine. Informally,
suppose

F Machine_Step i s = s’

then we know that one step in the execution of ¢ in state s yields the state s'. Of course
one can apply the conversion again in state s’ to yield

F Machine_Step ¢ &' = §”
which of course can be rewritten as:

t Machine_Step 4 (Machine_Step ¢ s) = s”

This argument can be applied repetitively until the program terminates. Based on these
arguments one can build a general-purpose conversion that animates the execution of the
code resulting from the compilation of 0C programs. Needless to say, such compilation
and execution by proof is rather slow, but it is fast enough to give vital feedback about
the compilation algorithm being used. Without such animation it is hard to anticipate
whether the compilation algorithm is reasonable before attempting to verify it. Con-
versions similar to the ones described above played a significant role in determining a
plausible handshaking protocol.

2 The SAFE machine and instruction set

Consider a machine whose state is a tuple ((pc, stk), (mry, Ink)) comprising a program
counter pc, a stack stk, local memory mry, and link? memory Ink that can be read by
other machines. The local memory and link memory of a machine are represented as
functions of type address->val, a stack has type (val)list, and a program counter is a
positive integer. At each step of computation, a machine takes input® from external links
and executes the instruction specified by the program counter. The instruction may read
to or write from local memory, or it may output to the machine’s links.

The SAFE instruction set is described in Fig.1 and is defined in HOL using the type
definition package [Mel88]. The result of this definition is the following theorem of
higher-order logic, which is a complete and abstract characterisation of the data-type
instruction and asserts the admissibility of defining functions over instructions by prim-
itive recursion. Primitive recursion over instructions is used when defining a function Step
that determines the effect on the state when the instructions are executed (see Fig.2).*

instruction =
F VeO £0 £f1 £f2 el o2 f3 f4 f5 f6 £7 £8 9.
3! fn.
(fn SKP = e0) A
(fn STP = el) A

(fn POP = e2) A

(Vn. £n(JMP n) = £0 n)
(Vn. fn(JMZ n) = f1 n)
(Vn. £n(JMN n) = £2 n)
(Vn. fn(OPO n) = £3 n)
(Vf. fn(OP1 £) = f4)
(Vf. fn(OP2 f) = £5 £)
(Vn. £n(GET n) = £6 n)
(Vn. fn(PUT n) = £7 n)
(Vn. fn(OUT n) = £8 n)
(Vn. £a(INP n) = £9 n)

>>>>>>> > >

?The links discussed in this paper should not be mistaken as links used in a transputer.
8Strictly speaking a machine inputs a function that maps addresses of external links to their values.
#Note that the HOL term (b => z | y) means: f b then z else ¢,

s B
t
imemnory A ? e links B
k
A
S
t
. 2 memory B
links A -t I(é
A R
SKP A skip instruction
STP Stops the machine by setting the program counter to 0
POP Pop the top of the stack
JMP Unconditional jump to instruction n
IMZ n Pop stack then jump to instruction = if the result is zero
JMN n Pop stack then jump to instruction n if the result is non-zero
0PO v Push v onto stack
0P1 op Pop one value from stack, perform op, push result
0P2 op Pop two values from stack, perform op, push result
GET z Push the contents of memory location z onto the stack
PUT & Pop the top of the stack and store the result in memory location
0UT z Pop the top of the stack and store the result in link z
INP @ Input the value of z and push it onto the stack

Figure 1: The SAFE machine and instruction set.

rec_define
instruction
t(Step (SKP) =
Adnp ((pc,stk), (mry,lnk)).
((pc+1,stk), (mry,1lnk)))
(Step (IMP n) =
Ainp ((pc,stk), (mry,lnk)).
((n,stk), (mry,1nk)))
(Step (JMZ n) =
Ainp ((pc,stk), (mry,lnk)).
((HD stk = 0) => ((n,TL stk), (mry,lnk))
I ((pc+1,TL stk), (mry,lnk))))
(Step (JMN n) =
Ainp ((pc,stk), (mry,1nk)).
((HD stk = 0) => ((pc+1,TL stk), (mry,lnk))
I ((n,TL stk), (mry,lnk))))
(Step STP =
Ainp ((pc,stk), (mry,lnk)).
(€0,stk), (mry,1nk)))
(Step POP =
Ainp ((pc,stk), (mry,Ink)).
((pc+1,TL stk), (mry,1nk)))
(Step (OPO v) =
Ainp ((pc,stk), (mry,lnk)).
((pc+1,CONS v stk), (mry,lnk)))
(Step (OP1 opt) =
Ainp ((pc,stk), (mry,1lnk)).
((pc+1,CONS(op1(HD stk)) (TL stk)), (mry,1lnk)))
(Step (0P2 op2) =
Ainp ((pc,stk), (mry,lnk)).
((pc+1,CONS(op2(HD stk) (HD(IL stk)))(TL(TL stk))),(mry,lnk)))
(Step (GET x) =
Ainp ((pc,stk), (mry,lnk)).
((pc+1,CONS (mry x) stk),(mry,lnk)))
(Step (PUT x) =
Ainp ((pc,stk), (mry,lInk)).
((pc+1,stk), ((Store (HD stk) x mry),1nk)))
(Step (OUT x) =
Ainp ((pc,stk),(mry,lnk)).
((pc+1,stk), (mry,(Store (HD stk) x lnk))))
(Step (INP x) =
Ainp ((pc,stk),(mry,lnk)).
(Cpc+1,CONS (inp x) stk),(mry,1lnk)))"

Figure 2: The function Step.

Instructions are fetched according to the following definition, which ensures that the
computation stops once the program counter goes beyond the length of the instruction
list.

Fetch =
 Vinst n.

Fetch inst n =
(((n =0) Vn> (LENGTH inst)) => STP | EL(n - 1)inst)

Note that EL ¢ [zo; 21;...;%n] = z; and LENGTH is a function that determines the length
of a list.

In this paper we assume a configuration in which there are two SAFE machines that
execute instructions in lock-step (see Fig.1). This assumption allows us to animate a
handshake between the two machines in a simple, if not entirely realistic, framework.
Given the definition of the function Step shown in Fig.2, and given that PC and LNK
are functions that extract the program counter and link memory of a state, the overall
behaviour resulting from the simultaneous execution of one step in each machine is defined
as follows:

Machines_Step =

F V((A,B): (instruction)list#(instruction)list) ((s0,sl):statettstate).
Machines_Step (4,B) (s0,s1) =
Step(Fetch A (PC s0))(LNK s1)s0,
Step(Fetch B (PC s1)) (LNK s0)s1

In a step of execution Machine A inputs from the links of Machine B and vice-versa.
Fach machine then proceeds to execute an instruction. Therefore, if a machine writes
to one of its links at some stage of computation, then the value can only be read by the
other machine in the next stage of computation.

The definition of Machines_Step can be used to define the symbolic execution of a
series of steps by primitive recursion on the number of steps taken.

Machines_Steps =
F (Vi s. Machines_Steps 0 i s = s8) A
(Vn i s.
Machines_Steps(SUC n)i s = Machines_Steps n i(Machines_Step i s))

Execution carried out according to this definition can be animated in HOL. One can
write a conversion that given a pair of instruction lists and a pair of initial machine
states, executes the instructions according to the definition of the SAFE machine starting
from the initial states.

Each step of animation is done by a systematic specialization, unfolding and sim-
plification of Machines_Step with the instructions i and the current state s of the two
machines. The result is a theorem of the form:

F Machines_Step 1 s = s’

where s’ is the state after one step of execution. Of course one can apply the same
procedure to the instructions in state s to yield

I Machines_Step ¢ s’ = 5"

where s” is the state after two steps of execution. This can be repeated until the machines
halt—i.e. either both machines encounter a STP instruction or both execute all their
instructions. Note that if the program of one of the machines terminates while the
other can still execute instructions, then the machine with the terminated program will
execute dummy SKP instructions until such time as the other terminates. The trail of
theorems generated as described above and the definition of Machines_Steps can be used
to automatically prove a final theorem asserting the result of executing the program on
the machine being discussed.

The conversion that achieves this is called Animate_Machines_Steps. For example,
consider the pair of instruction lists inst_pair

[OPO 1;PUT 2;JMZ 7;GET 2;0P1 PRE;JMP 2;INP 1;PUT 1], [OPO 6;00T 1]
and assume that the initial state init_states of the machines is:

(((L:pe), ([1:stk)), (((Ax.0) :mry), ((Ax. 0):1nk))),
(((L:pe), ([1:stk)), (((Ox.0) imry), ((Ax. 0):1nk)))

The result of executing Animate_Machines_Steps inst_pair init_states is the theorem
shown in Fig.3. The table shows a trace of the state changes resulting from each step of
the computation done to prove this theorem. The theorem itself asserts that the machines
halt in eleven steps to yield the following final state:

(0:pc, [6]:stk), ((Ox’.((1=x’) => 6 | 0)) imry,Ax.0:1nk),
(0:pc, [6]:stk), ((Mx.0) :mry, x’.((1=x’) => 6 | 0):1lnk)

3 The language SAFE

The language SAFE discussed in this paper is a variant of SAFEQ [Hal89] and one of a
family of languages being studied on the safemos project. SAFE allows one to program
the SAFE machine using primitive constructs that admit communication through shared
memory. Arithmetic expressions in SAFE may access the values of an external link. For
example, the expression (3 + y) - (INPUT x) is valid and if evaluated on Machine A
yields the result of subtracting the value of link x on Machine B from the sum of 3 and
the value of memory location y of Machine A.

The syntactic classes of SAFE expressions, declarations, commands and programs are
represented by the recursive types exp, dec, cmd and prog respectively. The syntax is
defined as follows:

exp ::= VAR string (local variable)
| INPUT string (input from external link)
| CONST num (constant)
| UNOP (num->num) exp (unary operator)
! BINOP (num->(num->num)) exp exp (binary operator)

dec ::= LVAR string (declare a local variable)
| LINK string (declare a link)

(01 9 <= (X =1)) X (0°%¢)‘ ([9]0)
OO0 | 9 <= (X = 1)) XY)([9]°0))

= (OO O XN (M T O XD O X)) ([T T)))

([T ILno‘g o0do]

‘[T IOd'T dNIIZ dWCSHYd Td04Z IAD¢L ZHriZ Ind¢T 0d40]1)
T

sdeqg~seuTyoRy -

(ilo9 (X = 1)) X)) (0" X)) “([91°0) | (COXN(((CO | 9 <= (<X = 1)) X() ([9]‘0))
(19 (X = 1)) X)) T (0°X) “([9]°0) | ((O"XV)“((((0 | 9 <= (X = 1)) cXY)*([9]°6))
(ts (eX = 1)) ¢XY)“(0°%Y) “([9]°0) (CO"xY) (0" «XY) “([9]°8))
((o1l9 (X = 1)) X (0°XY) “ ([9]°0) (CO"x() (0" X ([T°L))
(o1]9 (X = 1)) X0 (0°X¢) “ ([9]°0) (O X)) * (0" «xY)“([0]°€))
(olo (X = 1)) X)) (0" %Y) “ ([9] F0) (O X (0 | T <= («X = 2))" X()*([0]°T))
(o 19 (X = 1)) exX) “(07%Y) “([9]°0) (O XN O | T <= (X =2)) XY)([0]°9))
(ito (eX = 1)) X0 (07 %) “([9]°0) O X0 | T <= (X =2)) X ([T]°9))
(o1l 9 (X = 1)) X)) (07%Y) “ ([9]°0) (OO0 | T <= (X =2)) XO)([1°%))
(1o Gex = 1)) X0 (0 X)) “([9]°€) (O X0 | T <= (X =2)) x)([TI°E))

(0°xX) “ (0" xY) “([9]‘2) (O x) (0" xx) “([T]‘T))

(CRAMCRIIMINA)) CCRISMOR NN

| SuIyoRy Y ourngpel

tion of an example program.

1C €Xecu

The symboli

Figure 3

cmd ::= SKIP (instantaneous skip)
| TSKIP (time-consuming skip)
| stop (stop)
| ASSIGN string exp (assign)
| OUTPUT string exp (output to a local link)
|
|
I
|

IF exp cmd cmd (two-armed conditional)
SEQ cmd cmd (sequence)
WHILE exp cmd (while loop)
BLK dec cmd (block)
prog ::= PAR cmd cmd (parallel composition)

The results of defining these recursive types in HOL are theorems that state the admis-
sibility of defining functions over the syntactic structure of SAFE programs by primitive
recursion. These theorems are of direct utility, since that is how the compiler is defined.

3.1 The SAFE compiler

In this paper we will refer to the components of a parallel composition as processes. The
compilation of the commands in a process proceeds with respect to the variable and link
environments generated by declarations made in the process, as well as with respect to
the link environment resulting from the declarations of links in the other process. For
example, consider the following SAFE program:

PAR (

BLK (LINK ‘x‘) (

BLK (LINK ‘y*) (

BLK (LVAR ‘a‘) (Process A: compiles to

SEQ (wstructions that are
OUTPUT ‘y¢ (VAR ‘a‘)) (executed on Machine A.
ASSIGN ‘a‘ (INPUT ‘x“)))))) (

BLK (LINK ‘x‘) (

BLK (LINK ‘y*) (

BLK (LVAR ‘c‘) (Process B: compiles to
SEQ (instructions that are
QUTPUT ‘x¢ (CONST 6)) (executed on Machine B.

ASSIGN ‘c® (INPUT ‘y*))))))

This will be compiled to a pair of instruction lists whose components are executed on
Machine A and B respectively. Both processes declare links called ‘x¢ and ‘y¢; the link
‘x‘ in Process A is distinct from that in Process B and similarly for the links called fye.
The assignment in Process A should be understood as follows: input a value from link ‘x¢
in Machine B and assign it to the location ‘a¢ in Machine A. The output of this process
states: output the value at location ‘a‘ of Machine A to link ‘y¢ of Machine A. Similarly,
‘x‘ in the output construct of Process B refers to link ‘x‘ of Machine B, while ‘y¢in
the input expression in that process refers to link ‘y* of Machine A. Therefore, when
compiling Process A, one needs to know the addresses of links declared by Process B and
vice-versa.

Let env: mry#address represent a variable environment and link: lnk#address repre-
sent a link environment where address represents the next free memory location and the
next free link location respectively. The function

Com_cmd: cmd->env->1ink->1ink->num->(instruction)list

is defined by primitive recursion on the type cmd, where env:mry#address represents
the local variable environment, the two arguments of type link represent the local and
external link environments respectively, and num represents the address in memory from
which the compiled code is to be stored.®

The definition of Com_cmd is the following theorem of higher-order logic:

Com_cmd =
F (Ve 1 el. Com_cmd SKIP e 1 el = Com_SKIP) A
(Ve 1 el. Com_cmd TSKIP e 1 el = Com_TSKIP) A
(Ve 1 el. Com_cmd STOP e 1 el = Com_STOP) A
(Vx ex el el.
Com_cmd (ASSIGN x ex)e 1 el
(Vx ex e 1 el.
Com_cmd (OUTPUT x ex)e 1 el
(Vex cl c2 e 1 el.
Com_cmd(IF ex ci1 c2)e 1 el
Com_IF ex(Com_cmd c1 e 1 el)(Com_cmd c2 e 1 el)e 1 el) A
(Vel c2 e 1 el.
Com_cmd(SEQ ci1 c2)e 1 el =
Com_SEQ(Com_cmd c1 e 1 el)(Com_cmd c2 e 1 el)) A
(Vex c e 1 el.
Com_cmd(WHILE ex c)e 1 el = Com_WHILE ex(Com_cmd c e 1 el)e 1 el) A
(Vd c el el.
Com_cmd(BLK d c)e 1 el =
Com_cmd c(FST(Com_dec d e 1)) (SND(Com_dec d e 1))el)

1]

Com_ASSIGN(FST e x)ex e 1 el) A

Com_QOUTPUT(FST 1 x)ex e 1 el) A

Details of the compilation algorithm for each of the constructs of SAFE are not in-
cluded here. As an example, however, consider the following definition of the compilation
of WHILE constructs:

Com_WHILE =
F Vex ccfne 1 i n.
Com_WHILE ex c_fne 1l i n =
(let ex_prog = Com_exp ex e 1 i
in let ni1 = n + (LENGTH ex_prog)
in let c_prog = c_fn(nl + 1)
in let n2 = (n1 + 1) + (LENGTH c_prog)
in
((c_prog = [1) =>
ex_prog ++ [JMN n] |
ex_prog ++ ([JMZ(n2 + 1)] ++ (c_prog ++ [JMP nl))))

SWe assume that a block of memory in each machine is reserved exclusively for the program code.

10

where Com_exp is the function that compiles expressions, LENGTH computes the length of
a list of instructions, and n is the address of the first instruction of the resulting code.
Notice that if the body of the loop is empty (i.e. represents SKIP) then optimised code is
generated.

The compilation of SAFE programs is defined by the following theorem:

Safe_Compile =
F Veo cl (e0,e1) (10,11).
Safe_Compile(PAR c0 c1) (e0,et) (10,11) =
(let 1e0 = link_analysis <0 10
and lel = link_analysis cl 11
in
Com_cmd c0 e0 10 lel 1,Com_cmd ¢l el 11 1e0 1)

where link_analysis® specifies the static analysis of link declarations made in a process.
As seen later, this analysis allows one to compile a process of a program with information
about the link declarations made in the other process as required. This is illustrated in
the next section.

3.1.1 A compilation conversion for SAFE programs

Given a program of the form PAR ¢, ¢; one can systematically unfold it according to the
definition of the compiler to yield the pair of those instruction lists that are the compiled
code of ¢y and ¢; respectively. For example, consider the compilation of the program:

PAR (
BLK (LVAR ‘a‘) (Process A
SEQ (
TSKIP) (
ASSIGN ‘a‘ (INPUT ‘x“)))) (
BLK (LINK ‘x¢) (Process B

OUTPUT ‘x¢ (CONST 6)))
Rewriting Safe_Compile (PAR A B) using the definition of Safe_Compile yields

F Safe_Compile (PAR A B) (e0,el) (10,11) =

(let 1e0 = link_analysis A 10
and lel = link_analysis B 11
in

Com_cmd 4 €0 10 lel 1,Com_cmd B el 11 1e0 1)

where (e0,e1) and (10,11) represent the initial variable and link environments for the
machines—let us say that both are equal to:

((Ay.0,1),(Ay.0,1))

®link_analysis is defined by primitive recursion on SAFE commands. The definition is trivial
and is not included here,

11

and the last argument to Com_cmd indicates that the code resulting from the compilation
of A is to commence at address 1 in the block of memory reserved for the program code
. in Machine A (similarly for the compiled code of B on Machine B).

Rewriting with the definition of link_analysis yields

F Safe Compile (PAR A B) (e0,el) (10,11) =
(let 1e0 = (Ay.0,1)
and lel = ((Ai’.((‘x“ = 1i?) => 1 | (Ay.0)i’)),2)
in
Com_cmd A 0 10 lel 1,Com_cmd B el 11 1e0 1)

In other words, link_analysis detects no declarations of links in Process A, and the
declaration of link ‘x¢ in Process B is detected and the link environment let is such that
‘x* identifies the next free link (i.e. link 1) on machine B. Thus when Process A inputs
from link ‘x¢ of machine B, the input is in fact from link 1 of that machine. Unfolding
the definition further yields:

F Safe_Compile (PAR A B) (e0,el) (10,11) =
Com_cmd A(Ay.0,1)(Ay.0,1) (A1’ . ((‘x" = i?) => 1 | (Ay.0)1’)),2) 1,
Com_cmd B(Ay.0,1) (A\y.0,1) (\y.0,1) 1

Rewriting with the definitions of Com_cmd, Com_decl, Com_LVAR, Com_ASSIGN, Com_INPUT,
Com_TSKIP, Com_0UTPUT, and Com_CONST and simplifying further yields

F Safe_Compile
(PAR
(BLK(LVAR ‘a‘)(SEQ TSKIP (ASSIGN ‘a‘(INPUT ‘x‘))))
(BLK(LINK ‘x‘)(OUTPUT ‘x‘(CONST 6))))
(((Ax. 0),1),0x. 0),1)
((Ox. 0),1),(Ax. 0),1) =
[SKP;INP 1;PUT 11,[0PO 6;0UT 1]

It is straightforward to automate the reasoning described informally above as a conversion
that symbolically compiles arbitrary SAFE programs into machine instructions intended
to be executed on the configuration shown in Fig.1. The conversion that has this effect
is called Animate_Safe_Compile.

3.2 The OC language

The language OC imposes a discipline, known as handshaking, on the communication
between two processes. The handshaking protocol of OcC is implemented in the SAFE
language which in turn is compiled into machine instructions which are expected to yield
the desired effect, namely synchronous communication.

The syntactic classes of OC expressions, variable declarations, commands, channels
and programs are represented by recursive types exps, decl, acmds, chans and progs
respectively. The syntax is defined as follows:

exps ::= Var string (local variable)
| Const num (constant)
| Unop (num->num) exps (unary operator)

| Binop (num->(num->num)) exps exps (binary operator)

12

decl = Dec string (declare a local variable)
acmds = Skip (instantaneous skip)
| Stop (stop)
| Assign string exps (assign)
| Inpt string exps (input from a channel)
| Dutpt string exps (output to a channel)
| If exps acmds acmds (two-armed conditional)
| Seq acmds acmds (sequence)
| While exps acmds (while loop)
| Blk decl acmds (block)
chans ::= AB string (channel from Machine A to B)
| BA string (channel from Machine B to A)
progs ::= Par acmds acmds (parallel composition)

| Chan chans progs (program block)

Once again note that OC programs are intended to be executed on the machine con-
figuration in Fig.1. A typical program comprises a series of channel declarations followed
by a parallel construction of two commands, the first to be executed on Machine A and
the second on Machine B. Channels are directed, and they are implemented using SAFE
links. For example, a channel ‘ch¢ that conveys data from Machine A to B is imple-
mented by three links: the ready link ‘Rch*, the data link ‘Dch¢ and the acknowledge link
‘Ach‘. The ready and data links are declared on Machine A and the acknowledge link is
declared on Machine B. The converse holds for channels that convey data from B to A.

The role of links in the implementation of channels is illustrated by the SAFE code
that implements the communication primitives of oc. The compilation of the output
construct of 0cC is defined by the following theorem:”

Com_Outpt =
F Vch e.
Com_QOutpt ch e =
(let (chr,chd,cha) = links_of_chan ch
in
SEQ (
OUTPUT chd(Com_exps e)) (
SEQ (
OUTPUT chr(CONST tt)) (
SEQ (
WHILE(BINOP $==(INPUT cha) (CONST £f))
SKIP) (
OUTPUT chr(CONST ££)))))

According to this definition, an output command Outpt ch e:

® evaluates the expression e and writes the resulting value on link bch, then

"The term links_of_chan specifies a function that, when given a string ‘ch®, returns a triple of
strings (‘Rch®,‘Dch’,“Ach).

13

o enables the ready link Reh, then
o waits until the neighbouring process acknowledges (i.e. until Ach is true).
An input construct compiles as follows:

Com_Inpt =
F Veh x.
Com_Inpt ch x =
(let (chr,chd,cha) = links_of_chan ch
in
SEQ (
WHILE(BINOP $==(INPUT chr) (CONST f£f))
SKIP) ('
SEQ (
ASSIGN x(INPUT chd)) (
SEQ (
OUTPUT cha(CONST tt)) (
SEQ (
delay 3)(
SEQ (
OUTPUT cha(CONST £f)) (
delay 4))))))

In this case, an input command Inpt ch z:
o waits until the neighbouring process enables the ready link Rch of the channel, then
e reads the value of the data link Dch and assigns it to location x, then
o acknowledges the input by enabling the acknowledge link Ach, then

e waits for the duration of 3 instructions—i.e. enough time to ensure that a neigh-
bouring output process never fails to detect the acknowledgement, then

e disables the acknowledge link of the channel, and finally

e waits for the duration of another four instructions to ensure that the neighbouring
output process has disabled the ready link of the channel.

The mapping of the other constructs of OC into SAFE is straightforward.

The compilation of 0C programs is defined by primitive recursion on the types declared
for the syntactic classes of the language. As is the case for the SAFE compiler, one can
implement a conversion Animate_Oc_Compile that maps an arbitrary 0C program to a
theorem asserting the result of compiling the program.

14

4 Animating the handshaking protocol

Suppose that two processes A and B are executing in parallel, that Inpt ch z is one of
the commands in A, and that Outpt ck e is one of the commands in B. When these are
compiled into machine code (via the SAFE compiler), the code generated for the input
command is the following part of the code generated for A:

1. [INP Rch; enter loop and wait until

2. gPO ff;

3. 0P2 $==; ready link is true

4, JMN 1;

5. INP Dch; input from data link, and

6. PUT z; store the value in z

7. 0PO tt;

8. OUT Ach; set the acknowledge link to true
g, SKP; SKP; SKP; delay for three instruction steps
10. 0PO £f;

11. OUT Ach; reset acknowledge link to false
12. SKP; delay for four instruction steps
13. SKP;

14, SKP;

15. SKP]

If the code generated for e is e, then the output command compiles to:

e ++ execute code generated for e
1. [OUT Dch; output result to data link
2. O0PO tt;
3. OUT Rch; set ready link to true
4. INP Ach; enter loop and wait until
5. OPO ff;
6. 0P2 $==; acknowledge link is false
7. JMN 5;
8. O0PO ff;
9. OUT Rch] reset ready link to false

which is part of the code generated for B. Recall that the resulting code for A and B is
executed in lock-step on machines A and B respectively.

The code for the input command cannot be executed beyond its fourth instruction
until the output code has evaluated the expression e, has output the value on link Dch, and
has enabled the ready link Reh. The input command detects the willingness of the output
process at most four steps after the ready link has been enabled. It then inputs from
the data link Dch. In the meantime the output process waits for an acknowledgement.
Consider the worst case scenario after the input process acknowledges. This occurs
when the 8th instruction of the input command coincides with the 5th instruction of
the output command—i.e. when the loop in the output process that is meant to detect

15

acknowledgement just misses the acknowledgement.® Consequently, the output process
needs to go round the loop once more, thus the input process should wait for at least
four steps before disabling the acknowledgement. The disabling of the acknowledgement
link by the input (i.e. the execution of its 13th instruction) coincides with the execution
of the 6th instruction of the output. This means that the output command has three
instructions to execute before it can disable the ready link. The input process therefore
must wait for a further four instructions before it can terminate safely. Otherwise, one
can envisage, and indeed animate, a scenario in which two input commands are consumed
by a single output!

From the description above, it is evident that the compilation of a handshaking pro-
tocol is by nature extremely machine dependent. For this reason it is rather hard to
convince one’s self that the protocol behaves as required. This is where the animation
of compilation and execution were particularly reassuring. Consider the 0C program
Handshake defined as follows:

Chan (BA ‘ch‘) (
Par (
Blk (Dec ‘X*) (
Inpt ‘ch’ ‘X))
(
Outpt ‘ch‘ (Comst 5)))

Executing the following conversion Animate_Oc_Compile Handshake yields the following
theorem of higher-order logic asserting the result of compiling Handshake to SAFE:

F Oc_Compile
(Chan (BA ‘ch‘) (
Par (
Blk(Dec ‘X¢) (
Inpt ‘ch‘ ‘X%))
(
Outpt ‘ch‘ (Comst 5)))) =

PAR (
BLK (LINK(STRING & ‘ch')) (
BLK (LVAR ‘X¢) (
SEQ (
WHILE(BINOP $==(INPUT(STRING R ‘ch‘))(CONST ff))
SKIP) (
SEQ (
ASSIGN ‘X‘(INPUT(STRING D ‘ch‘))) (
SEQ (
OUTPUT (STRING A ‘ch*)(CONST tt)) (
SEQ (
SEQ TSKIP(SEQ TSKIP(SEQ TSKIP SKIP)))(
OUTPUT(STRING A ‘ch‘)(CONST ££)))))))) (

8Recall that when a value is output to a link, the value isn’t available for input until the neit step of
computation.

16

BLK (LINK(STRING R ‘ch®)) (
BLK (LINK(STRING D ‘ch®)) (

SEQ (
OUTPUT(STRING D ‘ch*)(CONST 5)) (
SEQ (
OUTPUT(STRING R ‘ch‘)(CONST tt)) (
SEQ (
SEQ TSKIP(SEQ TSKIP(SEQ TSKIP SKIP))) (
SEQ (

OUTPUT(STRING R ‘ch‘)(CONST ££)) (
WHILE(BINOP $==(INPUT(STRING A ‘ch‘))(CONST ££))SKIP)))))))

If the SAFE program on the right-hand side of the equality is called Safe_Handshake,
then executing Animate_Safe_Compile Safe_Handshake when the initial memory and link
environment is (((Ax.0),1),()x.0),1) on both machines, yields the following theorem
asserting the result of compiling the program into machine code:

- Safe_Compile Safe_Handshake
((Qx. 0),1),(Ax. 0),1)
((Ox. 0),1),(Ax. 0),1) =
[INP 1;0P0 £f;0P2 $==;JMN 1;INP 2;PUT 1;0P0 tt;0UT 1;SKP;SKP;SKP;
0PO ££;0UT 1;SKP;SKP;SKP;SKP],
[0PO 5;0UT 2;0P0 t+t;0UT 1;0P0 ££f;0UT 1;INP 1;0P0 ££;0P2 $==; JMN 5]

The execution of the resulting pair of instruction lists can be animated using the con-
version Animate_Machines_Steps. The trace of computation and the theorem asserting
the state change of the machines resulting from the execution of the code are shown in
Fig.4. Notice that according to the theorem shown in Fig.4, the state resulting from the
computation is:

((0:pc,[0;1;5] :stk), (Ax’. ((1¥x’)=>5|0)) :mry, (Ax’.0) :1nk),
((0:pc, [0;1;5] :5tk), (Ax.0) :mry, (Ax’. ((2=x’)=>5]0)) : 1nk)

The stacks of both machines contain three values after the handshake. This highlights
that the compilation algorithm presented above, generates code for a handshake that has
side-effects on the contents of the stack. Hence the compilation algorithm in question
does not manage stack space efficiently. It is trivial to alter the compilation algorithm
to generate code that is more efficient in this sense. The algorithm presented here was
chosen to illustrate the role played by animation in detecting such features.

Consider now the 0C program Check_Handshake:

Chan (BA ‘chf) (

Par (
Blk (Dec ‘X°) (
Seq (
delay 5 (
Seq (

Inpt ‘ch‘ ‘X°)(
Inpt ‘ch‘ ‘X)))) (
Outpt ‘ch‘ (Comst 5)))

17

(€018<=(X=T)) " XY() * (0°XY) *([S¢T¢0]°0)

07 XV ((018<=(cX=T)) " XD ([SiT70]°0))
= ((07x) (0 x) * ([1°1) * ((0"x()“ (0" x\) *([1°1)))

([T 1N0‘FF 0d0°S NHLi==$ ZJO‘IF 040°T JNI‘T IN0‘33 0d0‘Z 100%S 0d0]
‘[dAS dAS dASdAS‘T 1N0°IT 0d0 IS dAS dIS T 10033 0d0¢T INdSZ dNI‘T NWLi==$ TJd0:II 0d0¢T dNI])

cZ
sdeag~seutryory o

(((0]8<=(X=2)) " X)) (0" XY ([S*F:0]‘0)
((C01S<=(c*=Z)) " «XY) “ (0" XY) *([S:T¢0]°0)
(((018<=(cX=Z)) " X)) * (0" XY) ([T 0] °0)
(C(018<=(*=Z)) " XYY (0" XX “([S*T:0]°0)
((C018<=(cX=2)) " XD (0" XY) “([S T:0]°TT)
(((018<=(X=T)) [T<=(X=T)) " XY) “ (O %Y) “ ([S{T¢0] ‘OT)
((C019<=(cX=2)) | T<=(X=T)) " XY} * (0" XY) *([S‘T]6)
(((018<=(X=T)) | T<=(X=T)) " XD “ (0" ¥\) * ([S¢T¢0]‘8)
((015<=(%=T)) | T<=(X=T)) " XD “(O"XY) “ ([S{T T 0]°‘L)
(CC018<=(X=T)) | T<=(X=T)) " X (0" X)) “([S*T:T]‘9)
((€019<=(X=T)) | T<=(X=T)) " XD (0"XY) “ ([S:T]‘Q)
((Q018<=(X=T)) [T<=(X=1)) " XD (0" X)) “([S:T:T]‘8)
((0189<=(X=¢)) | T<=(*=T)) " X (0" X)) “([S T 070 ‘L)
((O18<=(cX=2)) | T<=(X=1)) " ¢XY) (0" X} “ ([S:T¢0] ‘9)
((Q018<=(x=2)) | T<=(X=1)) " XXD (0" xY) “([S‘T]‘9)
((C018<=(X=C)) | T<=(X=7)) " X)) (0" X)) “([§'T 1] ‘8)
(CQO18<=(X=2)) | T<=(X=T)) " X (0" XY) “([8iT:0°0]“ L)
((015<=(X=2)) | T<=(X=T)) " XD “(O X} ([S¢T:0]‘9)
((C019<=(X=C)) [T<=(X=T)) " XD “(0"X()“([S:TI‘S)
((016<=(X=2)) " XY) “ (0" X)) * ([S*T] ‘%)
((018<=(%=T)) " XY) * (0°%Y) “([S]°€)
(0"xY) (0" %) * ([S]°2)

O XN O XD

(€07 ¢XY) “ ((01S<=(X=T)) " XD “ ([ST:0]°0))

(€07 X)) ((0]8<=(cX=T)) " XD “ ([S¢T%0]°8T))

(0" X ((019<=(eX=T)) " XY) “ ([S{T0]°LI))

(CCO™ X T ((Ol5<=(cX=T)) " XY ([S¢TE0]“OT))

(0" X)) ((0]8<=(cX=T)) " XD ([S{T{0]“ST))

(€0 ¢XY) “ ((O19<=(cX=T)) " ¢XY) “ ([S{T:0]‘%T))
(CCO1T<=(cX=T)) " X)) “ ((018<=(cX=T)) " XY) *([S T O] ‘ET))
(CQOIT<=(cX=T)) " XY) * ((015<=((X=T)) " «XY) * ([S¢T]°TT))
(CO1T<=(cX=T)) " X)) ((0]S<=(X=T)) " XD ([S:TI°TT))
01 T<=(X=T)) " XD “ ((0]8<=(cX=T)) " XY¥) * ([S{T]‘0T))
(C01T<=(X=T)) " XY) * (C01G<=(X=T)) " XY) * ([G:T]°6))
(O XY) “((01G<=(X=T)) " XY) ([S‘1]°8))

(0" X)) “((0]S<=(cX=T)) " XY ([S] ‘L))

(O x) (0" %) “ ([T 9))

(O x) (0 x)“ ([1°S))

(O X (0 xY) “ ([0T°%))

(o x) (0 x) “([1:01°€))

(o"x)“(0°xY) “([1]°2))

(O XN O XN (1))

(O X¢) (0" XY) “([T] ‘%))

(0" xY) “(0"xY) “ ([0%01°€))

(o x0 (0 X0 ([0]2))

(OO X (I°))

g surpeey

V sunpen

ting a handshake.

Anima

Figure 4

18

Using the compilation conversions this program compiles to:

[SKP ; SKP; SKP; SKP;SKP; INP 1;0P0 £f;0P2 $==;IMN 6;INP 2;PUT 1;0P0 tt;0UT 1;
SKP; SKP; SKP;0P0 ff;0UT 1;SKP;SKP;SKP;SKP;INP 1;0P0 ff;0P2 $==; JMN 23;
INP 2;PUT 1;0P0 tt;0UT 1;SKP;SKP;SKP;0P0 £f;0UT 1;SKP;SKP;SKP;SKP],

[0PO 5;0UT 2;0P0 tt;0UT 1;INP 1;0P0 £f;0P2 $==;JMN 5;0PO ££;00T 1]

The program was chosen specifically because, according to the machine defined earlier,
the execution of the 8th instruction of the first input command coincides with the 5th
instruction of the output command—recall that when this occurs, the loop in the output
process that is meant to detect the acknowledgement from the input just misses the
acknowledgement. This example tests whether the number of delay steps used at the end
of the first input command suffices to ensure that the output command has enough time,
in the worst case scenario, to disable the ready link of channel ‘ch¢ before the second
input on that channel is attempted. Otherwise both inputs can be consumed by the
single output. In other words, we ask whether the compiled code of Check_Handshake first
handshakes and then enters an infinite loop where the second input waits for an output
(which of course doesn’t occur). The animation of the code generated by the compilation
algorithm presented earlier is shown in Fig.5; the last five steps of the animation shown
in the figure illustrate that the code generated for Check_Handshake behaves as expected.

Now suppose that an oversight in the definition of the compiler causes the compiled
code of the first input to delay for three, rather than four, instruction steps after the
acknowledgement link is disabled (i.e. suppose that one of the SKP instructions underlined
above is missing). In this case, the execution of the code of the second input command
begins before the output command disables the ready link, so that the second input
command erroneously detects that there is a second output willing to handshake with it.
Consequently, the two input commands are consumed by the single output. This scenario
is confirmed by the animated trace of execution shown in Fig.6. Notice that contrary
to what is expected from the OC program Check_Handshake, the animated execution of
the code generated by this faulty compilation would terminate and the following theorem
would result:

F Machines_Steps 38

([SKP ; SKP;SKP ; SKP; SKP; INP 1;0P0 ££;0P2 $==;JIMN 6;INP 2;PUT 1;0P0 tt;

0OUT 1;SKP;SKP;SKP;0P0 £f;0UT 1;5KP;SKP;SKP;INP 1;0P0 ££f;0P2 $==;

JMN 22;INP 2;PUT 1;0P0 tt;0UT 1;SKP;SKP;SKP;0P0 ££f;0UT 1;SKP;SKP;SKP],
[OPO 5;0UT 2;0P0 tt;0UT 1;INP 1;0P0 ££;0P2 $==;IMN 5;0PO ££;00T 1])
(1, 1), (Ax.0), (Ax.0)),(1,[1), (Ax.0),()x.0)) =
(€0,[0;1;5;0;1;51), (Ax’ . ((1=x’)=>5]0), (Ax*.0),
(0,[0;1;51),(Xx.0), (Ax?. ((2=x")=>5]0))))

This example shows how the animation of compilation and execution gives vital feedback
about the consequences of one’s definitions. Moreover, since the animation results from
the formal manipulation of logical terms using the HOL proof assistant, we have the
added assurance that the outcome of the animation is backed up by formal proof.

19

N4 o Mo 1t

(C01G<=(X=2)) " X)) (0"XV)“([S°T:0]°0)
(€018<=(cx=2)) " X)) " (0" X)) “([8fT7°07°0)
(€0]8<=(cX=2)) " X)) (0°XY) “([S°T:0] ‘0)
(€018<=(X=Z)) " X)) (0"xY)“ ([S‘T:0]°0)
(€018<=(cX=2)) " X)) (0"X() “ ([S:T:0]°0)
(€018<=(X=2)) " XD (0"XY)“([S°T 0] °0)
((018<=(c%x=Z)) " X (0°XV)“([SiT£0]€0)
(€01S<=(cX=Z)) " X)) (0°%XY) “([SfT7°0]°0)
((O18¢=(X=2)) " XX (0"X() “([SETL0]°TT)
(C0)19<=(X=Z)) | T<=(X=T)) " XD (0" XY} *([S*T 0] ‘OT)
(CCO1S<={X=Z)) | T<=(X=T)) " X)) (0" XX) ([G‘T]1°8)
(C018<=(X=Z)) | T<=(X=T)) " X (0" %) ([S{T0]°8)
(CO18<=(¢X=Z)) [T<=(X=T)) " XD (O X)) ([S¥T T¢0]°L)
((C0]9<=(cX=2)) | T<=(cX=T)) " XX) * (0"XY) “([S°T T]°9)
(C(018<=(cX=2)) | T<=((X=T)) " XY) (0" XX) ‘ ([SET]1‘9)
((C018<=(X=2)) | T<=((X=T)) " XD (0" XX) “ ([S¢T¢T]°8)
(CO18<=(«X=2)) |1 T<=(X=T)) " XD (0" F) “ ([S Tf0%0] ‘L)
(CCO19<=(X=Z)) | T<=(X=1)) " X " (0"XY) “ ([S‘T:0]°9)
((€019<=(cx=2)) | T<=(cX=T)) " X)) “ (0" X)) ([G°T] Q)
(CO1S<=(X=T)) | T<=(X=T)) " XD “(O"F) “ ([GfT°T]1°8)
((C019<=(X=T)) | T<=(cX=T)) " X)) (0" XY) “([S*T¢0%0] ‘L)
((CO19<=(«X=)) | T<=(X=T))" X)) (0 XY) “([S:T¢0] Q)
(((018<=(X=2)) | T<=(cX=T)) " XY) (0" X() “([ST]‘S)
(€C015<=(X=T)) | T<=(cX=T)) " XD “ (0" XD “ ([T 7] ‘8)
(CC018<=(cX=2)) | T<=((X=T)) " XY) “ (0" XY) * ([G*Tf0f0] ‘L)
((C018<=(X=T)) | T<=((X=T)) " XY) “ (0"XY) “ ([ST:0]°9)
((C0]9<=(cX=2)) | T<=(cX=T)) " ¢XX) “ (0" X)) ([S:7]°9)
(€018<=(¢X=T)) " XX (0"X) ([S T] ‘%)
(€019¢=(X=2)) " X)) (0% ([5]°E)

O X0 (0% ([81°2)

(O OO UID

.Oum..:uao
(CO" X)) “ ((018<=(eX=T)) " XY ([S:T¢0]°€T))
(0" X)) “ ((0]9<=(cX=T)) " XY) “([S¢T£0:T]°92))
(0" XYY T ((0)8<=(X=T)) " XD ([ST{0¢0¢0]°ST))
(0" eXY) “ ((019<=(X=T)) " XY) “([S‘T°0%0] ‘%2))
(€O ¢XX) “ ((0]S<=(X=T)) " XY) “ ([S:T°0]°€T))
(O™ XYY ((018<=(eX=T)) " X)) “([S¢T¢0¢1]°92))
(0" X)) T (0]8<=(X=T)) " XD ([S{T{00%0]°S2))

(0" XD ((018<=(¢X=T)) " XD *([S{T¢0:0] ‘32))

(0" XY “ ((0]8<=(X=T)) " xY) “([S'T¢0]°€T))

(€0° eXX) “ ((01G<=((X=T)) " XY) “ ([S¢T¢0] ‘22))

(0" X)) ((018<=(X=T)) " «X) “ ([§:T¢0]°T2))

(0" XD F((O]8<=(cX=T)) " X)) “ ([GET 0] ‘02))

(0" XYY ((018<=(cX=T)) " XY) ‘ ([GT%0] ‘6T))
(CCO1T<=(cX=T)) " X)) “ ((OlS<=(cX=T)) " XY) “ ([S¢T0]“8T))
(CO1T<=(cX=T)) " «XY) * ((O1S<=(X=T)) " X\) “([S°T]“LT))
(CCO1T<=(cX=T)) " XY) “ ((0]G<=(cX=T)) " ¢XY) “([S¢T] ‘9T))
(COIT<=(cX=T)) " XY) ((0]SG<=(X=T)) " XY) “([ST1]°ST))
(CCOTTL=(cX=T)) " ¢XY) “ ((019<=(cX=T)) " X)) ([S‘T]‘PT))
(O x0) “ ((0]8<=(X=T))" XY) “([SfT]‘ET))

(C0°XY) “ ((0fS<=CcX=T)) " XY) “ ([8]‘ZT))

(O XN O X ([ST°TT))

(Corx) (o x)“([d°om))

(o"xx)“(o-x¢)([0]°6))

(O XN 0 XN “([T¢0]°8))

(o x) “ (Ox) “([TI1°L))

(COx) o x0) (19

(CO XY O x)“([I°9))

(O XY O x) ([1°%))

(orx) o x) (e

(o x) ‘(o x)“([1°2))

(o) (O X (I1°1)

g SUoe

V ournpepy

le output.

ing

Two inputs are not consumed by a s

Figure 5

20

((018<=(X=2)) " x¥) * (0°XY) * ([ST 0] ‘0)
((019<¢=(X=2)) " X() ‘(0" XY) “ ([S¢T0] ‘0)
Aﬁo_mauﬁ“xnmvu..x«vnﬁo.N«V“AhmmﬂMOuﬁoV
((019<=(cX=2)) " XY) * (0°XY) “ ([S{T0]0)
((019<=(x=Z)) " XY)“ (0" X() “ ([S¢T¢0] 0)
Aﬁo_mAumﬁmumuv.“M<V.Ao.x<uﬁﬁmmmﬁm0u«oV
ﬁﬁo_mAunaxumuu.«x<v,ﬁo.w<v“ﬁmmmﬁm0u“0u
((015<=(X=2)) " XY) * (0" %() “ ([S£T£0] 0)
(C019<=(cX=2)) " ¢XY) “ (0°X() “ ([S¢T£0]°0)
Aﬁo_mAuA“xuwvv.“N<uamo.x<u.ﬁﬁmmﬁm0uﬂ0v
Aﬁo_mAnﬁﬁmumvv.hx<vﬂﬁo.x<u.mhmmﬁM0u“ov
((019<=(cX=g)) " xY() (0°XY) “ ([S:T:0]‘0)
((0]8<=(¢X=2)) " «XY¥) “ (0" X\) “ ([S£T:0] ‘0)
((019<=(c*=2)) " XY¥) ‘ (0" XY) * ([S¢T¢0] “0)
((018<=(c¥=2))" XY() “ (0" XY) *([ST¢0] ‘0)
(C019<=(X=Z)) " ¢XY) (0" %Y) * ([¢T£0]°0)
((0l9<=(«X=2)) " X)) “ (0" XY) “ ([S:T:0]°TT)
Aﬁﬁo_mAuA“xumvv_HAuAQMquv.“x<vﬁﬁo.x<vaﬁﬁmmﬂm0u.oﬁv
Anno_mAuﬁaxnmvv_HAuAﬁMuHVV.nx<v.ﬁo.x<v“mmmmﬁu.mu
hﬁmo_mAuA.xuwvv_HAuAhxuﬁvv.“x<v,ﬁo.x<v“ﬁﬁmmﬂm0u,wv
Amno_mAuA“xumvv_ﬁAuﬂnNuﬁvu."x<v,ﬁo.x<vaﬁmmmﬂmﬁMOu,Nv
AAAo_mAuA«xumvv_HAuAﬁxuﬂvv.“x<v,ﬁo.x«vﬁﬁmmmﬂmﬁunmu
Amﬁo_mAuA«xnmvv_HAuﬁqquvv."N<v.no.x<v,ﬁmmmﬂuﬁmv
ﬁﬁﬁo_mAuA“xnmvv_ﬁAunnquvv.~x<unAo.x<v.nﬁmmﬁmﬂu.wv
Aﬁﬁo_mAuA“Numvv_HAuﬁhxuﬁvv.nx<v“ﬁo.x<u,nmmmﬁmoMOu,NV
Aﬁﬁo_mAuAhxumvv_HAuﬁﬁxnﬂvv.“x<v“ﬂo.u<vnﬁhmmﬁm0un@v

. hﬁno_mAuA“Numvv_ﬁAnAnquvv..N«v.mo'x<v.ﬁmmwﬂunmv
AAAo_mAuANxHNVV~ﬁAnAnxuﬁvv.ﬁx«u.ﬁo.x<vnAmmmﬁmﬁu,wv
mﬁmo_mAnhﬁxumvv_HAuA“Nuﬁvv.nx<v.ﬁo.w<V°mmmmHmoM0u,hv
ﬁﬁno_mAuA“xnwvv_ﬁAuﬁﬁxuﬂvv.«x<v.ﬁo.x<V“AﬁmMHM0u,ov
Aﬁmo_mAuAnxumvv_ﬁAuhﬁxuﬁvv.~x<Vnﬁo.N<v“Ahmmﬂu“mv
mﬁﬁo_mAuA«xumvu_ﬁAunﬁxuﬁvv.~x<v“Ao.x<v“AhmnHmﬂuhmv
Ahﬁo_mAuﬁﬁxnmvv_HAuA"anvv.“x<v.ﬂo.m<uaAﬁmmﬁmom0u”hv
AAAo_mAuﬁaxumvu_ﬁAuA«xnﬁvv..x<v,ﬁo.x<uuﬁhmmﬁm0u“mv
Aﬁﬁo_mAuA“xumvv_HAuA«NnﬁVV.nxau“mo.x«v.ﬁmmmﬁu“mv
(C018<=(eX=2)) " XD “ (0" XY) * ([S¢T]°%)
((01S<=(X=Z)) " ¢XX) € (0" XY) * ([S]°E)

(0°xY)“(0°xY) “([S]°T)

CRAMOROMINES)

Aﬁo.qx<v“hﬁo_mAuA“xuﬁvv.nx<v~nﬁmmﬂmommmﬁM0u.0vv
Aﬁo.«x<v.AAo_mAumﬁxuﬁuv.nx<v.ﬁﬁmmﬁmommmﬁm0uhmmvv
Aho.nx<v“nﬁo_mAuA~anvv.ﬁx<v.mmmmﬁmommmﬁm0u”vav
Aao.“N<V.AAo_mAquxuﬁvu.nxavnammmﬁuommmﬁMOunmmvv
ﬁﬁo.“N«v,nmo_mAunﬂquVv.nx<vﬁﬁmmmﬁmommmﬂm0u“mmvu

mﬁno_ﬁAunﬁanvv.Ax<uﬁﬁﬁo_mAuAnquvv.“m<v.mﬁmmﬂmommmﬁM0u“¢mvv
AAAO_HAuANNuﬂVV.ﬁx<v.ano_mAnA“Huﬁvv.”x«unﬁmmmﬁmommmﬁu“mmuu
Ahﬁo_ﬁAnﬁuxuﬂvv.“x<v,hﬁo_mAuAaquuv.ﬁx«vﬁﬁhmmﬁmommmﬁu“mmvv
Ahﬁo_ﬁAuA“Nuﬁvv.~x<v,ﬁﬁo_mAuA,quvv.“x<uqﬁﬁmmﬁmommmﬁunﬂmvv
AAAO_HAum“quVV.nx<u,Amo_mAuAnanvv.qx<vﬁﬁmmmﬂmommmﬁu~omuv
mmo..N«uﬁﬁmo_mAuA"xnﬁvv.“x<vqﬁhmmﬁmommmﬁu”mmvv
Aﬁo..MAV”ﬁAo_mAuﬂﬂxuﬁuv.nx<vnmﬁmmﬁmommuﬁwmvv

(o aN.ﬂv«AAO_MAHAaNUﬂvv. «N‘ﬂva Aﬁmmﬁmommu.hﬂvu
Aﬁo.qx<v.ﬁno_mAuA“mnﬁvv.“M<v"ﬁmmmﬁM0u”wmvv
Aﬁo.ax<v.mﬁo_mAnﬁﬁxuﬁvu.“N<V.Aﬁmmﬁmom0uﬁmmvv
Aho.ﬁx<u“ﬁno_mAuA“xuﬂvv.“x<v,nhmmﬁuomﬁmouﬁwmuv
Aho..x<V“AAo_mAuAaNuﬂvu.“x<vﬁmmmmﬁmomﬁu“mmvv
Aﬁo.“x<uﬁﬁﬁo_mAuAnxnﬁvv.“x<vnﬁﬁmmﬁMOu“mwvv

(0™ ¢XX) “ ((0]S<=(X=T)) " (XY()“ ([ST 01°12))

(€0™¢XX) * ((018<=(X=T)) " (XY)* ([S{T¢0]°0Z))

((0" X)) ((018<=(X=T)) " X() * ([§¢T¢0] “6T))
Ammo_ﬁAun“xuﬁvv."x«v"mmo_mAuﬁﬂxuﬂvv.axav.ﬁmmuﬁNOQﬁmﬁvv
nﬁﬁo_ﬁAuAaxuﬁvv.Nmau,AAo_mAuA.muﬂvv.nNAV“AHmMHu“NﬁVV
AﬁﬁonﬁAuAnxuﬁvv.nx<vﬂﬁﬁo_mAnA“xnﬁvv."x<uqhﬁmmﬁu“mﬁvv
Amﬁo_ﬁAuAaquvv.“x<vhﬁmo_mAnmnxuﬁuu.“x<u.ammmﬁu“mﬂvu
Ammo_ﬁAuﬁﬂmuﬁuv.~x<u,Aﬁo_mAuﬁnquuv.ﬁx«v,mmmmﬁu“wﬁvv
Aﬁo.u<v.Aﬁo_mAuA“xuﬁvv.“x<vﬁhmmmﬂg"mﬁvv

((O"XY) “ ((015<=(X=1)) " XY) * ([3] ‘ZT))

(O X (0°X) “([ST 1))

(O x0) (0" xY) * ([1°01))

((O"XY) “ (0" xY) “([0]‘6))

(O™ X (0°%0) “([T£0]°8))

(O X)) (0" x¢) “ ([T1°L))

(O"x0) (0" %) “([1°9))

(O X)) “(0°x¢) “([T1°9))

(O™ X)) “ (0 XN “([1°%))

(O X)) (0 x)“([1e))

(O X0 x0)“([1°2))

(O XN 0N ([1°T))

g sunpep

V ourpen

ts are erroneously consumed by one output.

Two inpu

.

Figure 6

21

5 An Operational Semantics for OC

One can argue that the formal definition of the behaviour of a machine can act as an
operational semantics for a high-level programming language such as OC as long as there
is a formal mapping between the constructs of the language and the instructions that
drive the machine. In this sense, we have already presented an operational semantics of
oC programs. In this section, however, we define an alternative operational semantics
as a transition system in the style of Plotkin [Plo81]. We define a transition relation
inductively as the least relation closed under a set of production rules that state how the
behaviour of a construct of 0C can be deduced from the behaviour of its components.

5.1 Inductively defined relations in HOL

Inductive definitions are based on the concept of a relation being closed under a set of
rules. Since rules are essentially implications—if the premisses and side conditions hold,
then the conclusion holds—it is straightforward to express this concept in logic [Mel91].
For example, let Even be the least relation for which the following deduction rules hold.

E2 Even n
Even 0 Even (n + 2)

E1

These rules state precisely the properties required of the relation Even. Rule E1 states
that it must contain 0; and rule E2 states that if n is in Even then so is n + 2. The
relation Even may therefore simply be defined to be the least relation that satisfies these
conditions. It then follows simply by definition that the rules E1 and E2 are satisfied by
Even. Moreover, it follows immediately that Even is a subset of any other relation that
satisfies these rules, since Even is defined to be the least such relation. This means that
Even contains only those values that it must contain by virtue of satisfying the rules.
The following formula asserts that a relation P:num is closed under the rules for Even:

(P0) A (Vn.PnDP(n+2))
Therefore, the assertion that Even is the least such relation is expressed as the term:

FVn. Evenn =
VP.((PO) A (Yn.PnDP(n+2) D Pn

This definition gives rise to an induction principle for reasoning about the relation Even.
This principle of rule induction is essential for many proofs involving such relations. (The
term ‘rule induction’ was coined by Glynn Winskel in [Win85]). For example, to prove
that a property P holds of the relation Even it suffices to show that the set S = {n | P n}
is closed under the rules defining Even. Since Even is defined to be the least such set then
Even is a subset or equal to S and therefore satisfies the property P.

The automation of a definitional mechanism for inductively defined relations in HOL
and the use of the principle of rule induction in proofs of properties of such relations is
discussed extensively in [Mel91] and [CM].

22

5.2 The transition semantics of OC

5.2.1 The Semantic Domains

Let store be an alias for the type mry: address->val presented in section 2 and let envr
and 1nks be domains of type (name->address)#address. For envr, the right operand of
the type constructor # denotes the next free address in local memory, and for lnks it
denotes the next free link. As mentioned earlier, channels are directed and hence an
enumerated type chan_type with objects ab and ba is defined to help distinguish between
channels that allow data-flow from Machine A to B and those that allow data to flow
in the opposite direction. A channel, moreover, is implemented as a triple of links—
the ready, data and acknowledge links—which are declared on Machine A or Machine B
depending on the direction of data-flow.

The domain of type address#address#address is named channel and denotes the
addresses of the links that implement a channel. Let cenv be an alias for the type
of channel environments 1nks#lnks#(nane->chan_type); the two operands of type 1nks
denote the link environments of Machine A and B respectively, while the mapping from
names to channel types is used to establish the whereabouts of the links that implement
a channel. For example, if a channel ch is accessed, and according to the third operand
of cenv the channel has type ab, then one ought to look for the value on the ready link
Reh and that of the data link Deh in Machine A (i.e. using the first operand of cenv)
while the value on the acknowledge link Ach should be sought in Machine B (i.e. using
the second operand of cenv). The converse holds if ch has type ba. The term Links,
intended to specify the behaviour described above, is defined. as follows:

F Vce ch.

Links ce ch =

(let (ce0,cel,ne) = ce in

let (chr,chd,cha) = links_of_chan ch

in
((ne ch = ab) =>
(FST ce0 chr,FST ce0 chd,FST cel cha) |
(FST cel chr,FST cel chd,FST ce0 cha)))

5.2.2 The transition semantics

The operational semantics of 0C commands is defined as a labelled transition system that
determines the execution path between command configurations. A command configura-
tion config is either terminal (TT) in which case it denotes the final store, or else it is
non-terminal (NT) in which case it comprises a command and a store:

config ::= TT store | NT acmds store
A label is either empty, or it denotes input or output.
label ::= E | In channel val | Out channel val

The evaluation of 0C expressions is a function Exec defined, as follows, by primitive
recursion on the type exps:

23

T1

Trans ce e (NT Skip s) E (TT s)

T2
Trans ce e (NT Stop s) E (NT Stop s)

T3 Execezes = v
Trans ce ¢ (NT(Assign X ex) s) E (TT(assign X sev))

Trans ce e (NT ¢q) I conf

T4 Execexes = tt
Trans ce e (NT(If ex cq c1) s) I conf
Ts Trans ce e (NT ¢ s) l conf Exec ez es = £f
Trans ce e (NT(If ez co ¢1) s) I conf
T6 Trans ce e (NT ¢o s) I (NT ¢} s')

Trans ce e (NT(Seq ¢o ¢1) s) I (NT(Seq cf ¢1)s')

Trans ce e (NT ¢g s) I (TT &)
Trans ce e (NT(Seq ¢g c1) s) I (NT ¢; &)

T7

Trans ce e (NT ¢ s) | (NT ¢’ &')

T8 Execezes = tt
Trans ce e (NT(While ez ¢) s) | (NT(Seq ¢/(While ez c)) s')
!
T9 Trans ce e (NT ¢ s) I (TT s') Fxecer e s = tt
Trans ce ¢ (NT(While ez ¢) 5) | (NT(While ez ¢) s')
T10 Execexes = ff
Trans ce e (NT(While ez ¢) s) E (TTs)
T11
Trans ce e (NT(Inpt ch X) s) (In(Links ce ch)v) (TT(assign X s e v))
T12 Execezes = v

Trans ce e (NT(Outpt ch ex) s) (Out(Links ce ch)v) (TT s)

Trans ce (update X e) (NT ¢ s) I (NT ¢ §')
Trans ce ¢ (NT(Blk(Dec X)c)s) | (NT(BLk(Dec X)c')s')

T13

Trans ce (update X e) (NT ¢ s) I (TT s')
Trans ce e (NT(B1lk(Dec X)c)s) I (IT s')

T14

Figure 7: The definition of the transition relation Trans

24

F (VX en s. Exec(Var X)en s = s(FST en X)) A
(Vn en s. Exec(Const n)en s = n) A
(Vopl e en s. Exec(Unop opl e)en s = opi(Exec e en s)) A
(Vop2 el e2 en s.
Exec(Binop op2 el e2)en s = op2(Exec el en s)(Exec e2 en s))

The transition relation Trans: cenv->envr->config->label->config->bool for com-
mands is defined by the rules in Fig.7. Informally, a Skip operation does not affect the
store, while a Stop construct regenerates itself in any store. An assignment statement
X := e augments the value of X in the current store with the result of evaluating e; the
function assign in the assignment rule does precisely this. The rules for the If construct
show which alternative command is executed depending on whether the expression eval-
uates to 0 or 1; note that £f and tt are abbreviations for 0 and 1 respectively. The rules
for sequential composition state that the execution of Seq ¢y ¢; in store s proceeds by
executing constructs in co until a terminal store s’ is reached, then ¢; is executed starting
from s'. The rules for While systematically unfold a while loop into a series of sequential
statements until the boolean condition is ££. The rule for an input construct of the form
Inpt ch X states that if a value v (indicated by the input label) is input on channel ck
then the value of X in the current store is augmented to v. On the other hand, the rule
for an output construct of the form Outpt ch e states that if e evaluates to v then the
value v is output on channel ¢k (this is indicated by the output label). Finally, the rules
for block constructs show how the environment is augmented by declarations.

The relation Trans is defined using the HOL package that automates the derived
principle of inductively defined relations. The details of the package are omitted, but see
[Mel91] and [CM] for more information. The result of the definition are the following
theorems asserting that Trans is closed under the rules:

Trans_rules =
[Vce e s. Trans ce e(NT Skip s)E(TT s);
F Vce e s. Trans ce e(NT Stop s)E(NT Stop s);
F Vex e s v.
(Exec ex e s = v) D
(Vce X. Trans ce e(NT(Assign X ex)s)E(TT(assign X s e v)));
F Vce e ¢0 s 1 conf ex.
Trans ce e(NT c0 s)1 conf A (Exec ex e s = tt) D
(Vei. Trans ce e(NT(If ex cO c¢i)s)l conf);
F Vece e ¢l s 1 conf ex.
Trans ce e(NT cl s)1 conf A (Exec ex e s = ££) O
(V0. Trans ce e(NT(If ex c0 ci1)s)l conf);
FVece e cO s 1 c0? 57,
Trans ce e(NT cO s)1(NT c0’ s’) D
(Vei. Trans ce e(NT(Seq cO c1)s)L(NT(Seq c0’ ci)s’));
F Vece e cOs1s’.
Trans ce e(NT c0 s)1(TT s’) D
(Ve1. Trans ce e(NT(Seq cO ¢1)s)L(NT ci s°));
FVce ecslc’s’ ex.
Trans ce e(NT ¢ s)L(NT ¢’ s’) A (Exec ex e s = tt) O
Trans ce e(NT(While ex c¢)s)1(NT(Seq ¢’(While ex c))s?);
- Vce ec s 1s’ ex.
Trans ce e(NT ¢ s)L(TT s’) A (Exec ex e s = tt) O
Trans ce e(NT(While ex ¢)s)L(NT(While ex c)s’);

25

F Vex e s.

(Exec ex e s = £ff) O (Vce c¢. Trans ce e(NT(While ex ¢)s)E(TT s));
 Vce e ¢ch X s v,

Trans ce e(NT(Inpt ch X)s)(In(Links ce ch)v)(TT(assign X s e v));
 Vex e s v.

(Exec ex e s = v) D

(Vce ch. Trans ce e(NT(Outpt ch ex)s)(Out(Links ce ch)v)(IT s));
FVeceXecslec®s?,

Trans ce(update X e)(NT ¢ s)1(¥T ¢’ s’) D

Trans ce e(NT(Blk(Dec X)c)s)L(NT(Bik(Dec X)c’)s?’);
FVece Xecsls?.

Trans ce(update X e)(NT ¢ s)1(TT s’) D

Trans ce e(NT(Blk(Dec X)c)s)L(TT s°)]

together with a theorem asserting that it is the least such relation:

Trans_ind =
F VP,
(Vce e s. P ce e(NT Skip s)E(TT s)) A
(Vce e 5. P ce e(NT Stop s)E(NT Stop s)) A
(Vex e s v.
(Exec ex e s = v) D
(Vce X. P ce e(NT(Assign X ex)s)E(TT(assign X s e v)))) A
(Vce e c0 s 1 conf ex.
P ce e(NT ¢0 s)l conf A (Exec ex e s = tt) D
(Vel. P ce e(NT(If ex cO ci)s)l conf)) A
(Vce e c1 s 1 conf ex.
P ce e(NT c1 s)1 conf A (Exec ex e s = £f) D
(Vc0. P ce e(NT(If ex ¢c0 ci)s)l conf)) A
(Vce ¢ c0 s 1 c0O’ s’.
P ce e(NT cO s)}1(NT c0’ s’) D
(Vci. P ce e(NT(Seq c0 c1)s)L(NT(Seq cO’ ci)s?))) A
(Vece e cO s 1 s’.
P ce e(NT c0 s)1(TT s’) D
(Ve1. P ce e(NT(Seq cO ci1)s)1(NT ci s?))) A
(Vce e c s 1c’ s’ ex.
P ce e(NT ¢ s)L(NT ¢’ s°) A (Exec ex e 5 = tt) D
P ce e(NT(While ex c¢)s)L(NT(Seq c’(While ex c))s?)) A
(Vce e ¢ s 1 s’ ex.
P ce e(NT ¢ s)1(TT s’) A (Exec ex e s = tt) D
P ce e(NT(While ex c¢)s)1(NT(While ex c)s’)) A
(Vex e s.
(Exec ex e s = f£) O (Vce c. P ce e(NT(While ex ¢)s)E(TT s))) A
(Vce e ¢ch X s v.
P ce e(NT(Inpt ch X)s)(In(Links ce ch)v)(TT(assign X s e v))) A
(Vex e s v.
(Exec ex e s = v) D
(Vce ch. P ce e(NT(Outpt ch ex)s)(Out(Links ce ch)v)(TT s))) A
(Vce Xecslc’s’.
P ce(update X e)(NT ¢ s)L(NT ¢’ s’) D
P ce e(NT(Blk(Dec X)c)s)L(NT(Blk(Dec X)c’)s?)) A
(Vce X ecsls’.
P ce(update X e)(NT ¢ s)1(IT s’) D
P ce e(NT(Blk(Dec X)c)s)L(TT s’)) D
(Vce e c0 1 ¢cl. Trans ce e ¢c0 L ¢l D Pce e ¢c0 1 cl)

26

Hitherto, we have presented a transition system that defines the behaviour of OcC
commands, but, we still have to define the interaction of 0C commands in programs of
the form Par ¢g ¢;. As is the case for commands, a program configuration pconfig can
be either terminal (PT) or non-terminal (PN):

pconfig ::= PT store store | PN progs store store
Let PTrans be a relation of type:
PTrans : cenv->envr->envr->pconfig->pconfig->bool

defined inductively by the rules shown in Fig.8. The definition of Final (used in Fig.8) is
given by the following theorem® of higher-order logic, which allows us to express a class
of rules as a single one:

F Va b.

Final a b

(Is_IT a =>
(Is_TT b =>
PT(Str_of a)(Str_of b) |
PN(Par Skip(Com_of b)) (Str_of a)(Str_of b)) |
(Is_TT b =>
PN(Par(Com_of a)Skip)(Str_of a)(Str_of b) |
PN(Par (Com_of a) (Com_of b)) (Str_of a)(Str_of b)))

The first rule of Fig.8 states that if ¢, inputs on channel ch and yields the configuration
confy and c; outputs on the same channel to become conf;, then the parallel composition
of ¢ and ¢; yields Final confy conf;. The second rule deals with the dual case—i.e.
when ¢y outputs and ¢; inputs. The third rule states that if both ¢, and ¢ perform a
transition that does not involve inputs or outputs to yield confy and conf; respectively,
then Par ¢o ¢; yields Final conf, conf, without any exchange of data. The last two rules
deal with the declaration of channels. For example, the outcome of executing a step of
Chan(4B X) P is the same as the outcome of a step of P after the channel environment
has been augmented (using new_abschan) with the declaration of channel X of type ab.
Similarly for channels of type BA. The definition of new_abschan is the following theorem
of higher-order logic:

F Vs ce ch.
new_abschan s ce ch =
(let (ce0,cel,ne) = ce

in
let (chr,chd,cha) = links_of_chan ch
in
((s = ab) =>

(update chd(update chr ce0),update cha cel,record ne ch ab) |
(update cha ce0,update chd(update chr cel),record ne ch ba)))

®Note that Is_TT specifies a function that returns true when the configuration passed as argument
is terminal and false otherwise.

27

Trans ce eng (NT ¢p so) (In(Links ce ch)v) confy
Trans ce eny (NT ¢; s1) (Out(Links ce ch)v) confy

P1
PTrans ce eng eny (PN(Par co ¢1) so s1) (Final confy confi)
Trans ce eng (NT ¢g s0) (Out(Links ce ch)v) confo
P2 Trans ce eny (NT ¢; 51) (In(Links ce ch)v) confi

PTrans ce eng eny (PN(Par ¢o ¢1) so $1) (Final confy confy)

Trans ce eng (NT ¢g sp) E confy Trans ce eny (NT ¢y 51) E confy

P3
PTrans ce eng eny (PN(Par ¢ ¢1) so s1) (Final confy confy)
P4 PTrans (new_abschan ab ce X) eng eny (PN P sq 51) (PT s5 s1)
PTrans ce eng eny (PN(Chan(AB X)P) sy s1) (PT sp 1)
Ps PTrans (new_abschan ba ce X) eng eny (PN P sg s1) (PT sp 1)

PTrans ce eng eny (PN(Chan(BA X)P) sy s1) (PT sp 1)

Figure 8: The rules defining the transition relation PTrans

Defining PTrans in HOL by the rules in Fig.8 results in the following automatically
generated theorems asserting that the relation is closed under the rules:

PTrans_rules =
[VYce en0 cO sO confO eni ci si comnfil.
(Jch v.
Trans ce enO(NT c0 s0)(In(Links ce ch)v)conf0 A
Trans ce enl(NT c1 s1)(Out(Links ce ch)v)confi) D
PTrans ce en0 enl(PN(Par cO c¢1)s0 s1)(Final conf0 confi),
F Vece en0 ¢0 sO conf0 eni ci si confi.
(3ch v,
Trans ce enO(NT cO0 s0)(Out(Links ce ch)v)conf0 A
Trans ce eni(NT ci s1)(In(Links ce ch)v)confi) D
PTrans ce en0 enl(PN(Par ¢0 ci)s0 s1)(Final conf0 confl);
"k Vece en0 ¢0 s0 conf0 eni c¢1 s1 confi.
Trans ce en0(NT cO sO)E confO A Trans ce eni(NT c1 s1)E confl D
PTrans ce en0 eni(PN(Par ¢0 ¢1)s0 s1)(Final conf0 confl);
F Vce X en0 eni P s0 s1 s0’ si’.
PTrans(new_abschan ab ce X)enO eni(PN P sO s1)(PT s0’ s1’) D
PTrans ce en0 eni(PN(Chan(AB X)P)s0 s1)(PT s0’ s1’);
 VYce X en0 eni P sO si s0’ si’.
PTrans(new_abschah ba ce X)en0 eni(PN P sO s1)(PT s0’ si1’) D
PTrans ce en0 eni(PN(Chan(BA X)P)s0O s1)(PT s0’ si1’)]

together with a theorem stating that it is the least such relation:

28

PTrans_ind =
F VP,
(Vce en0 c0 sO conf0 eni ¢i1 si confi.
(deh v,
Trans ce enO(NT cO s0)(In(Links ce ch)v)conf0 A
Trans ce enl(NT ci s1)(Out(Links ce ch)v)confl) D
P’ ce en0 en1(PN(Par c0 c1)s0 si)(Final conf0 confi)) A
(Vce en0 cO sO conf0 enl ci s1 confi.
(dch v.
Trans ce enO(NT c0 s0)(0Out(Links ce ch)v)conf0 A
Trans ce enl(NT ci s1)(In(Links ce ch)v)confl) O
P’ ce en0 enl1(PN(Par c0 c1)s0 si)(Final conf0 confi)) A
(Vce en0 cO s0 conf0 enl cl si confil.
Trans ce enO(NT ¢0 sO)E confO A Trans ce eni(NT cl si)E confi O
P! ce en0 eni1(PN(Par ¢0 c1)s0 si)(Final conf0 confi)) A
(Vce X en0 ent P s0 s1 s0? s1°’.
P’ (new_abschan ab ce X)en0 eni(PN P s0 s1){(PT s0’ si’) O
P’ ce en0 eni(PN(Chan(AB X)P)s0 si)(PT s0’ s1’)) A
(Vce X en0 eni P sO si sO’ si’.
P’ (new_abschan ba ce X)en0 eni(PN P s0 s1)(PT s0’ s1’) O
P’ ce end eni(PN(Chan(BA X)P)s0 s1)(PT s0’ s1’)) DO
(Vce en0 ent p p’. PTrans ce en0 ent p p’ D P’ ce en0 enl p p’)

This completes the operational semantics of 0C. We will, however, define a final
transition relation

Execute : cenv->envr->envr->pconfig->pconfig->bool

which represents the semantics to completion of 0C programs. The relation is defined by
the rules shown in Fig.9.

6 Conclusion and Future Work |

As stated in the introduction, the ultimate goal of this work is to verify the oc compiler.
The goal is expressed as the following term of higher-order logic:

"Yce en0 enl p0 pi.
Execute ce en0 enl p0 pl D

(Ve s0 si.
(PN c s0 s1 = p0) D
(Vs0’ s1’,
(PT s0’ s1’ = p1) D
(Vi s 10 11.
1=

Safe_Compile
(Oc_Compile c)
(((x. 0),0),(x. 0),0)
(((Ax. 0),0),(Ax. 0),0)) A
(s = ((1,[1),s0,10),(1,[1),s1,11) D
(dn st0’ st1’ 107 11°.
Machines_Steps n i 5 = ((0,st0’),s507,10°),(0,st1’),s1’,117))))"

29

E1 PTrans ce eng eny po (PT 5§ s})

Execute ce eng eny po (PT s§]

B2 Execute ce eng eny po py PTrans ce eng eny pj ph

Execute ce eng eny po ph

Figure 9: The rules defining the transition relation Execute

The proof should proceed by rule induction on the relation Execute; the subgoals gener-
ated will require nested rule inductions on the relations PTrans and Trans. Work on the
compiler proof is in progress.

Formal animation, as described and used in this paper, yields theorems asserting how
programs compile and execute. These theorems can be used to simplify and even prove
subgoals generated in the verification of the compiler. Therefore we expect the same
conversions used for animation and preliminary debugging of behavioural definitions to
play a further role in the verification process.

7 Acknowledgements

I gratefully acknowledge the helpful comments and suggestions of Richard Boulton, Paul
Curzon, Brian Graham, Tom Melham and John Van Tassel. Special thanks to Mike
Gordon for his advice and support.

References

[Bar88] G. Barrett. The semantics and implementation of occam. DPhil thesis,
Oxford University Computer Laboratory, 1988.

[BGHT90] R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel. The HOL verification
of ELLA designs. Technical Report 199, University of Cambridge Computer
Laboratory, August 1990. Revised version in the Proceedings of the Interna-
tional Workshop on Formal Methods in VLSI Design, Miami, 1991.

[Cam88] Albert John Camilleri. Ewecuting Behavioural Definitions in Higher Order
Logic. PhD thesis, Computer Laboratory, University of Cambridge, July
1988.

[Cam89] Juanito Camilleri. An operational semantics for occam. International Jour-
nal of Parallel Programming, 18(5), October 1989.

30

[CM]

[Cur9l]

[Gor85]

[Hal89]
[Hen90]

[inm84]

[Joy89]

[Mel88]

[Mel91]

[Mos85]

[Pau]

[Plo81]

[Win85]

Juanito Camilleri and T.F. Melham. Inductively defined relations in HOL.
(to appear).

Paul Curzon. A verified compiler for a structured assembly language. In
Proceedings of the 1991 Internatiional Workshop on the HOL Theorem Prov-
ing System and its Applications. IEEE Computer Society Press, 1991. To be
published.

M.J.C. Gordon. HOL - a machine oriented formulation of higher order logic.
Technical Report 68, Computer Laboratory, University of Cambridge, July
1985.

Roger Hale. Safe (version 0), November 1989. (unpublished note).

Matthew Hennessy. The Semantics of Programming Languages: An Elemen-
tary Introduction using Structural Operational Semantics. Wiley, 1990.

inmos. occam Programming Manual. International Series in Computer Sci-
ence. Prentice Hall, 1984.

Jeffrey J. Joyce. Multi-Level Verification of Microprocessor-Based Systems.
PhD thesis, Computer Laboratory, University of Cambridge, December 1989.
Report No. 195, Computer Laboratory, University of Cambridge, May 1990.

T.F. Melham. Automafing Recursive type Definitions in Higher order logic. In
Current Trends in Hardware Verification and Automated Deduction. Springer
Verlag, 1988.

T.F. Melham. A package for inductive relation definitions in HOL. In Pro-
ceedings of the 1991 Internatiional Workshop on the HOL Theorem Proving
System and its Applications. IEEE Computer Society Press, 1991. To be
published.

Ben Moszkowski. Executing Temporal Logic Programs. Technical Report 71,
University of Cambridge Computer Laboratory, August 1985.

Lawrence Paulson. A higher-order implementation of rewriting. Science of
Computer Programming, 3(1983):119-149.

Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical report, Department of Computer Science, Aarhus University Denmark,
September 1981.

G. Winskel. Introduction to the formal semantics of programming languages,
October 1985. (unpublished lecture notes).

31

